
POMDP PLANNING IN SERVICE COMPOSITION

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Min Chen

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

October 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

POMDP PLANNING IN SERVICE COMPOSITION

By

MIN CHEN

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

Io protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Chen, Min, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, October 2011. POMDP Planning in
Service Composition. Major Professor: Dr. Simone Ludwig.

Automated vVeb service composition is becoming an increasingly important

research topic. It describes the automatic process of composing atomic services into

a chain of services that provide a specific functionality that could not be achieved by

atomic services alone. A service-oriented environment is dynamic in nature, meaning

that services come online and go offiine, services change their functionality, etc.

Current classical AI planning techniques suffer from the assumption of deterministic

behavior of \Veb services and require execution monitoring for service failures. To

address this concern, Partially Observable Markov Decision Processes (POMDP) in

workflow composition has been used. POMDPs provide a powerful mathematical

framework for planning and decision making in noisy and/ or dynamic environments.

PO:\1DPs have been widely used to model many real-world problems. This thesis

develops, implements and analyzes the suitability of the POMDP approach to the

Web service composition problem.

iii

ACKNOWLEDGMENTS

There are many people I need to thank you for all the support and guidance

I have been given for this thesis and my study in NDSU.

First and foremost, I need to thank you my advisor, Dr. Simone Ludwig, who

I have had the pleasure of working with. \Vhether providing me v,rith research ideas,

making the complicated problems simple, helping me analyze results, or correcting

my writing, her contribution was invaluable.

Many thanks to my previous advisor, Dr. Kendall Nygard, for the help with

choosing courses and finding my research interests, as well as with my plan of study.

I need to thank you, Dr. Imad Rahal, who encouraged me to continue my

graduate study in the area of Computer Science and keeps giving me advice.

iv

DEDICATION

To my family and friends

V

TABLE OF CONTENTS

ABSTRACT ... 111

ACKNO\VLEDGMENTS . iv

DEDICATION. V

LIST OF TABLES .. viii

LIST OF FIGURES . ix

1. INTRODUCTION . 1

1. 1. Introduction of Service Computing . 1

1.2. Nlotivation. 4

1.3. Contribution . 4

1.4. Outline of Thesis . 5

2. AUTOMATED SERVICE COMPOSITION AND PLANNING. 6

2.1. Automatic Web Service Composition . 6

2.2. Approaches on Web Service Composition . 8

2.2.1. \Vorkflow-based \Veb Service Composition. 8

2.2.2. Model-based Web Service Composition 9

2.2.3. Theoretical-based Web Service Composition 10

2.2.4. AI Planning vVeb Service Composition 10

2.3. Discussion . 12

3. POMDP AND DIFFERENT ALGORITHMS 14

3.1. Partially Observable Markov Decision Process (POMDP) 14

3.1.1. Problem Formulation............... 14

vi

3.1.2. Solving POMDP Problems . 15

3.2. Algorithms on Solving POMDP . 18

3.2.1. Enumeration Algorithm 19

3.2.2. vVitness Algorithm . 21

3.2.3. Two-Pass Algorithm 23

3.2.4. Incremental Pruning Algorithm . 23

3.3. Comparison of the Four Algorithms . 25

4. EXPERIMENTS AND RESULTS 27

4.1. A Case Study . 27

4.2. Development of POMDP Composition Framework 29

4.3. Experiments and Results . 34

4.4. Discussion . 38

5. CONCLUSIONS .. 40

5.1. Summary .. 40

5.2. Conclusion. 40

5.3. Future vVork . 41

BIBLIOGRAPHY ... 42

APPENDIX A. POMDP SOLVER IN JAVA 47

APPENDIX B. POMDP INPUT FILE FORMAT 51

APPENDIX C. JAVA CODE FOR ACCESSING MYSQL 56

vii

LIST OF TABLES

Table

1 Simple example of a service composition. 4

2 Basic model for service composition. 6

3 A framework of service composition system by Rao [6]. 7

4 A POMDP agent decomposed into two parts [14] 16

5 A t-step policy tree [27]. 18

6 Convex piecewise linear function on a continuous belief state with S = 2. 20

7 Motivating scenario with example probability values by Doshi [4]. 29

8 Variations in workflow execution as response to Web Service invocation

changes ... 30

9 Four scenarios of the manufacturer model by Doshi 31

10 Framework of service composition using POMDP 31

11 Screen shot of invocation table in MySQL database. 32

12 Screen shot of service table. 32

13 Comparison of execution time of the four algorithms. 36

14 Trends of the execution time by using the proposed four algorithms. . . . 36

15 Vector convergences by using Incremental Pruning Algorithm 37

16 Relation between states and vectors of the optimal policies. 38

17 Speed of vector convergence with horizon=20 using Incremental Pruning. 39

viii

LIST OF FIGURES

1 Complexity comparison of the four algorithms [27]. 26

2 A sample policy which is mapping the States (S) to Actions (A) 33

3 Action comparison between the four scenarios in Figure 9. 34

4 Required iterations and vectors to generate Scenario 4 (see Figure 9).. . 38

ix

1. INTRODUCTION

In this chapter, a brief introduction on service computing and the motivation

of this research project will be given. The contribution and the overall organization

structure of this thesis will be described.

1.1. Introduction of Service Computing

Services computing is a discipline combining science and technology. In

particular, it is a bridge for the gap between Business Services and IT Services.

The core technology suite includes \Veb services and service-oriented architecture

(SOA), cloud computing, business consulting methodology and utilities, business

process modeling, transformation and integration [l]. Services computing covers the

whole life-cycle of services innovation research. It includes business componentization,

services modeling, services creation, services realization, services annotation, services

deployment, services discovery, services composition, services delivery, service-to

service collaboration, services monitoring, services optimization, as well as services

management. The major goal of services computing is to enable services and

computing technology to perform more efficiently and effectively [l].

Services are components that support the composition of distributed applica

tions, and are offered by service providers/organizations that procure the service

implementations, supply their service descriptions, and provide related technical and

business support. Since services are offered by different businesses and communicate

via the Internet, they provide a distributed computing infrastructure for both

intra- and cross-enterprise application integration and collaboration. Descriptions

of services are used to advertise the capabilities, interface, behavior, and quality of

the service. Service descriptions are necessary for discovery, selection, binding, and

composition of services. The service capability description presents the conceptual

1

purpose and expected results of the service. The service interface description publishes

the service's input, output, and message types. The service behavior description de

scribes the "expected" behavior of a service during its execution. Finally, the Quality

of Service (QoS) description publishes important functional and non-functional service

quality attributes, such as cost, performance metrics, security attributes, reliability,

scalability, and availability. Service clients, and service workflow aggregators utilize

service descriptions to achieve their objectives [2].

Leyman [3] have identified the following components within service-oriented

computing:

• Service foundations: consists of service-oriented middleware which provides

the runtime SOA infrastructure connecting heterogeneous components and

systems and providing access to services over various networks such as the

Internet. The middleware allows application developers to define basic service

functionality describing, publishing, searching and binding of services. The

overall use of the service-oriented architecture is for services to describe their

capabilities in a registry, so that a user can search and discover the appropriate

service based on the capabilities.

• Service composition: Most of the time a single service will not provide

the functionality needed. Therefore, the composition of several services is

necessary to produce the needed functionality. In addition, in some domains

complete process flows, also referred to as workflows, are needed to provided

the envisioned capability.

• Service management and monitoring: Service management is responsible

for the installation and configuration of metrics such as Quality of Service (QoS)

during service execution, in order for the system to be able to monitor the

2

events of the services. Service monitoring includes the collection of information

produced by the services and business process1 viewing the statistics of process

instances including the number of instances in each of the four states (running,

suspended, aborted or completed), in order to intervene in the different states

of the process instances.

• Service design and development: The design of services is a very important

component of a service-oriented architecture. A well-designed infrastructure

can increase the efficiency of businesses by providing reusable, independent,

automated processes as services and mechanisms to effectively use them.

Service Composition combines and reuses independently developed component ser

vices. A composite service is a collection of services combined together to achieve

a desired functionality. The task of automatic service composition has been split

into four phases: planning, discovery, selection, and execution [1]. The first phase

involves generating a plan, i.e., all the services and the order in which they are to be

composed. The plan can be generated manually, semi-automatically, or automatically.

The second phase involves discovering services using the plan. In the past literature

depending on the approach, often planning and discovery are combined into one

component. After all services are discovered, the selection phase involves selecting

the optimal solution from the available potential solutions based on non-functional

properties such as the QoS properties. The last phase involves executing the services

given the plan, as well as in the event one or several services are not available anymore;

an alternate plan/solution has to be found. In this thesis the planning part of the

service composition process is further looked at. To give an example of a service

composition suppose we are looking for a service to make travel arrangements, i.e.,

book a flight, a hotel, and make a rental car reservation. The directory of services

contains Reserve Flight, Reserve Hotel, and Reserve Car services. As we know service

3

Reserve Flight has to be executed first so that some output, e.g. arrival date and time

is known and can be used as the input for the next service, which is Reserve Hotel in

our case followed by the service Reserve Car, which uses the output of Reserve Hotel

as its input. Figure 1 shows this example sequential composition as a directed acyclic

graph.

Query
Input

Figure 1. Simple example of a service composition.

1.2. Motivation

Query
Output

The motivation for this research is the following. The planning approach

to service composition has been heavily researched. However, a new technique to

be applied to the service composition-planning problem called Partially Observable

Markov Decision Process (POMDP) has been proposed and an investigation of the

suitability of this approach on the composition problem has been done. Related

work has been successfully applying Markov Decision Process (MDP) before. MDP

is fully observable for the belief state(s). However, given the dynamic nature

of service-oriented environments, i.e., services go online and offiine, new services

become available, and existing services change their characteristics, the environment is

definitely not fully observable. Therefore, POMDP will be applied to the composition

problem and will be investigated for its suitability in service-oriented environments.

1.3. Contribution

The primary contribution of this thesis is using decision-theoretic planning

called POMDP to automated \Veb service composition based on workflow compo

sition. The advantage of using decision-theoretic planning is that it models the

uncertainty which exists in the process and produces a plan which can optimally

4

balance the expected risks and rewards [4].

It is often the case that a careful study of current techniques can give rise to new

ideas. In light of this purpose, a POMDP composition framework has been developed

to test the performance of using POMDP in automated \Veb service composition.

The quality of this new approach has been tested from the investigations.

1.4. Outline of Thesis

The thesis is structured in the following manner. In Chapter 2, a description

on automated \Veb service composition as well as the different planning approaches

on \Veb service composition will be provided. POMDP, POMDP solving and four

exact algorithms on POMDP planning will be described in Chapter 3. A case study

on a supply chain scenario, results and observations will be presented in Chapter 4.

Finally, conclusions and future work will be discussed in Chapter 5.

5

2. AUTOMATED SERVICE COMPOSITION AND

PLANNING

In this chapter, what automatic service composition is and the framework

of service composition will be briefly described. Additionally, an overview on the

different techniques which have been applied in web service composition so far will

be introduced.

2.1. Automatic Web Service Composition

A Web service can be implemented by invoking other web services from different

companies or organizations. A composite service is a \Veb service implemented by

invoking other Web services. A basic service or atomic service is a \Veb service

implemented by accessing the local system [5). Nowadays, increased number of

companies and organizations implement their core business over the Internet. An

atomic service as the basic unit of operation in a Service-oriented Architecture (SOA)

is not able to handle complex tasks. Therefore, to logically connect several atomic

services in order to fulfill the request from users is desirable. See Figure 2, \Veb

service composition, simply, is the act of connecting several basic \Veb services as one

composite service.

Service

Figure 2. Basic model for service composition.

Basic
Service

Basic
Service

Generally, a service composition system as shown in Figure 3 have two partici

pants, service provider and service requester. The service provider provides services to

6

the service requesters to use. The Translator translates the internal languages used

by the Process Generator and external languages used by the servicer requesters.

The Process Generator tries to generate plans that compose the services in the

Service Repository in order to fulfill the requests from service requesters. The

Evaluator evaluates the plans and decides the best one for execution in the situation

that more than one plan has been found. The Execution Engine executes the plan

chosen by the Evaluator and returns the result to the service providers.

Translator
Process

Generator Processes

Service requester m
~~~ I 

8 ~ ... 
a. 

ExEGJtion 
Evaluator Service Servte 

Engine A process 
eposn specitation 

Service provi:ier 
Figure 3. A framework of service composition system by Rao [6]. 

Specifically, automatic Web service composition involves effectively connecting 

and reusing atomic services to achieve the desired goal and can be split into distinct 

phases that constitute a complete automatic composition approach [6, 7]: 

• Presentation of Atomic Services: this phase deals with advertisement of 

atomic services. Languages like UDDI [8] or DAML-S [9] can be used to 

advertise the atomic services at a global market places by the service providers. 

• Translation of Internal Processes: normally, the external and internal 

7 



services languages are different. External languages are used by the users in the 

sense that the users can express in a relatively easy manner. Internal languages 

such as logical programming languages need to be more formal and precise in 

order to effectively describe the internals of a service. Thus, the translation 

between external languages and internal languages need to be developed. 

• Generation of composition process model: based on service requester's 

requirements, a process generator tries to solve the requirements by composing 

the atomic services. This phase is the heart of the composition process since it 

involves generating the composition process. 

• Evaluation: it is possible to generates more than one composite service since 

many services have the same or similar functionalities. This phase evaluates 

the composite services by their overall utilities using the utility functions. 

• Execution: this phase involves the execution and deployment of a newly 

composite service after a unique composite process is selected. It can also 

provide a framework for monitoring an executing service. 

2.2. Approaches on Web Service Composition 

As the number of \\!eb services increases dramatically, as well as the demands 

and updates of business environment on newer applications [5, 6, 10], it is impossible 

to deal with the whole process of \\!eb service composition manually. Therefore, 

opportunities and needs for automated or semi-automated \\!eb service composition 

technologies have increased in recent years. Generally, automated web service compo

sition approaches can be grouped into workflow-based, model-based, theoretic-based 

and planning-based approaches. The four approaches will be discussed separately in 

the following. 

2.2.1. Workflow-based Web Service Composition 

8 



\Vorkflow can be described as movement of tasks that can be automated by 

invoking applications or external services through a business process. Simply, the 

workflow composition is to arrange activities to form a business process [11]. Workflow 

technology was first used by the business community. Recently, this concept has been 

applied to automating large-scale science [12]. A composite process is viewed as a 

workflow in workflow-based composition. There are two types for workflow gener

ations in service composition: static and dynamic. The static method requires the 

service requester to pre-define an abstract process model before service composition 

planning starts. EFlow [6] which is a platform for specification, composition and 

management of composite series, uses a static method for workflow generation. On 

the other hand, the dynamic method creates the process model and selects single 

services automatically [6, 12]. Polymorphic Process Model (PPM) [6] combines the 

static and dynamic methods on service compositions. 

An example of a workflow-based approach is a framework that automatically 

constructs a Web service composition schema from a high-level perspective (15]. The 

input is fed to an abstract workflow generator that attempts to create an abstract 

workflow that satisfies the objective by either using already generated workflows or 

subsets of them that are stored in a repository or by performing backtracking to find 

a chain of services that satisfy the objective. The identified abstract workflow is then 

instantiated by either finding existing services through a matchmaking algorithm that 

matches inputs and outputs and binds them to the workflow, or by recursively calling 

the abstract workflow generator if no service can be found for an activity. 

2.2.2. Model-based Web Service Composition 

Model-based approaches are manifold. An e-service composition tool [13, 14] 

implements an automated service composition using Finite State Machines (FSMs). 

The behavior of a service is modeled using two schemata; an external schema specifies 

9 



its exported behavior and an internal schema contains information on which a service 

instance executes each given action that is part of the overall service process. \Vhen 

the composition is synthesized, the external FSM models of the available services and 

target service are transformed to modal logic formulas in Deterministic Propositional 

Dynamic Logic (DPDL). If the resulting set of equations is satisfiable, then a FSM 

for the target service exists. The synthesized FSM can then be converted to a BPEL 

process and executed in an engine. Some recent work of the authors, replace the 

FSMs with transition systems and use a simulation to virtually compute all possible 

composition at once. 

2.2.3. Theoretical-based Web Service Composition 

Theoretical-based approaches use process algebraic languages, such as CCS 

(Calculus of Communicating Systems) [18] or pi-calculus [19] since the process 

specifications included in Semantic Web frameworks, such as vVSMO and SWSF, 

are formally grounded on process algebras. Pi-calculus as introduced by Milanovic 

[20], can be used to describe, as well as compose vVeb services, and the processes can 

be sequences of other processes, parallel compositions, recursive executions, or choices 

between operations, and is therefore able to express all basic composition schemas. 

Information exchange is done between processes as input and output artifacts, which 

are exchanged on channels. 

2.2.4. AI Planning Web Service Composition 

AI Planning which originated from control theory and classic search methods 

has been applied to web service composition. Generally, a planning problem can 

be described as a tuple (S, s0 , G, A, r), where S is a set of possible states, s0 is the 

initial state, G is a set of possible goal states, A is a set of actions from one state 

to another state, r is a translation relation for when a particular action is taking by 

given state [12, 6, 10]. Most of the planning approaches rely on a general model of 

10 



state-transition systems [21]. 

Lots of AI planning techniques have been applied to web service compositions: 

situation calculus, domain-independent heuristic, hierarchical task network planning, 

planning based on Markov Decision Process and planning as Model checking [21]. 

• Situation calculus: the idea is that the software agents can reason about 

\:Veb services to perform automatic Web service composition by a high-level 

logic programming language [6, 21] to build on top of the situation calculus. 

The way of describing the state of world in this approach differs from other 

planning techniques [6, 21]. Mcllraith et. al [6] adapt and extend Golog which 

is a logic programming language for automatic Web service composition. 

• Domain-independent heuristic: it builds a regression-match graph to do a 

backward search from the goal description [21]. The regression-match graph is 

an AND /OR tree. McDermott [6, 23, 24] extended Planning Domain Definition 

Language (PDDL) for automatic construction of Web service. McDermott 

introduced a new concept "value of an action" which enables one to distinguish 

the information transformation from state change [6, 21). 

• Hierarchical task network (HTN) planning: it decomposes tasks recur

sively into smaller subtasks until it reaches primitive tasks. HTN planning can 

achieve good performance in realistic domains since it incorporates and exploits 

domain-independent control knowledge [21]. SHOP2 [22] is based on ordered 

task composition which is a modified version of HTN. RETSINA [23] is another 

planner based on HTN planning. The unexpected situations can be handled by 

re-planning. 

• Planning based on Markov Decision Process (MDP): it is introduced 

by Doshi [4] and Gao [24] to present a policy-based approach for dynamic Web 

11 



service composition. MDP is stochastic, sequential and fully observable. Doshi 

used BPEL4J API to convert a policy into a workflow. Gao used MDP based 

on QoS criteria to create the framework to represent Web service composition 

[24]. 

• Planning as Model checking: it deals with non-determinism, partial ob

servability and extended goals (21]. This technique is used for verification of 

hardware and software systems to determine whether a property holds in a 

certain system formalized as a finite state model (6, 21]. MIPS (21] is based on 

binary decision diagram (BDD) is one implementation. ASTRO (25] extends 

existing platforms with automated \,Veb service composition and execution 

monitoring functionalities [21]. 

2.3. Discussion 

Since \Veb services involve sending and receiving messages, one way to describe 

the state is using a set of documents to represent the most accurate information of the 

state which is fully known. However, we faces two problems in describing the state: 

partially observability of state and ambiguity in state description [12]. Traditional 

planner like STRIPS-style planner encoded the task in terms of logical statements 

by their preconditions and effects [4, 10]. However, the classical planning assumes a 

static service environment with deterministic service outcomes. 

Composite service is similar to a workflow [26] since it connects a set of basic 

services together with the control and data flow among the services. Similarly, a 

workflow has the flow of work items. On the other hand, AI planning is required to 

generate the plan automatically with the general assumption that each vVeb service 

can be specified by its preconditions and effects in the planning context [6]. Service 

composition is the problem of automatically arranging the services in a particular 

order to achieve one or more predetermined goal( s). The results of service composition 

12 



are usually referred to as workflows. 

\Vorkflow-based and AI planning-based approaches are interesting in the specific 

case of service composition. The first approach bases on the fact that the composite 

services are conceptually similar to workflows. On the other hand, AI planning is 

generating a plan which begins with an initial state by taking a series of actions 

to reach the goal state [7]. Hence, applying AI planning techniques to do workflow 

composition in dynamic service environments seems to be feasible. 

13 



3. POMDP AND DIFFERENT ALGORITHMS 

In this chapter, the formulation of POMDP and the four exact algorithms: 

Enumeration, Witness, Two-pass and Incremental Pruning will be briefly introduced. 

3.1. Partially Observable Markov Decision Process (POMDP) 

If there is uncertainty in what a specific decision will do to an environment, 

we can call the environment probabilistic or stochastic. To make a decision when 

the result is not predictable in a stochastic environment is more difficult than in 

a deterministic environment. If the current state of the environment is unknown 

or incomplete in some way, we call the environment partially observable. By 

comparing the uncertainty provided by a stochastic domain, partial observability 

is more challenging since the uncertainty builds throughout the whole planning [27]. 

POMDP models an agent that makes a sequence of decisions under uncertainty 

to maximize its utility in the effects of given actions and given current states [28]. The 

POMDP model is an extension to the MDP model by adding the partial observability 

to it. In a partially observable environment, the agent receives observations which 

are insufficient to guarantee state knowledge at each step to the current state. In 

the following, the formulation of POMDP and how to solve the POMDP problem in 

general will be described. 

3.1.1. Problem Formulation 

POMDP can be formally defined as a tuple (S, A, 0, T, Z, R, 1 , IT) [27, 30, 31, 

32}, where 

• S is a finite set of possible states, A is a finite set of possible actions, 0 is a 

finite set of possible observations the agent can experience; 

• T: S x A ➔ IT(S) is the state-transition function, which is mapping elements 

of S x A into discrete probability distribution over S. We write T(s, a, s') = 

14 



p(s'is, a) for the probability that the agent will make a transition from states 

to state s' by taking action a. 

• Z: S x A--+ II(Q) is the observation probability function, we write Z(s, a, o) = 

p( ols, a) for the probability of making observation o E O from state s after 

having taken action a. 

• R : S x A --+ JR is a reward function mapping S x A --+ R that specifies a 

immediate reward ra ( s) E R that the agent receives from taking each action in 

each state. 

• 1 E [O, 1) is the discount factor to make the total reward to be finite and the 

problem is well-defined. 

• II : S --+ A is a mapping from S to A which specifies an action to be taken in 

each epoch. 

3.1.2. Solving POMDP Problems 

The standard approach to solve POMDP is to convert it to a continuous-space 

belief-state MDP [27, 29, 30]. Specifically, a POMDP can be decomposed into two 

parts, as shown in Figure 4. The agent is responsible for making observations and 

generating actions which keeps an internal belief state, b. A belief state is a discrete 

probability distribution over the set of environmental states. The SE is the state 

estimator which is responsible for updating the belief state. 1r is a policy which is 

responsible for generating actions [27, 29]. The last belief state, most recent action 

and observation are handled by the first component labeled SE, then the SE returns 

an updated belief state. The policy labeled "1r" as the second component maps belief 

states into actions. 

Given a belief state b E B, where B is the set of belief states which comprises 

the state space. We write b(s) for the probability assigned to states when the agent's 

15 



SE 7C 

AGENT 

Figure 4. A POMDP agent decomposed into two parts [14]. 

belief stat is b. Similarly, b'(s') is the probability assigned to states' when the agent's 

belief state is b'. The next belief state b' is a revised estimate from b by taking action 

a and receiving observation o. That is [29], 

(3.1) 

We use T( b) to represent the belief update. V1r ( s), the value of state s E S, is 

the infinite expected total discount rewards to be received at each future time step. 

That is [29, 33], 

00 

V1r(s) = E(L::,lR(st,at) (3.2) 
t=O 

In infinite horizon problems, we seek to maximize the total expected rewards 

V1r ( s). By adding the discount factor I to control the influence of rewards, where 

0 ~ 1 < l, a POMDP problem can be solved to improve a value function V: B ➔ R 

for 'r:/b E B by iterations of a dynamic programming (DP) update [27, 29, 30]: 

16 



V'(b) = rnaxaEA,bEB {Ra(b) + i I: Pa(olb)V(T(b))} 
oEO 

(3.3) 

Value iteration first developed for solving MDPs in order to find an optimal 

policy [29, 33]. As mentioned earlier, The POMDP can be formulated as a continuous

space belief-state MDP problem. Analogously, an optimal policy of a POMDP 

problem can be found using the value iteration approach. The Principle of Optimality 

by Bellman [34] shows that the stochastic dynamic programming equation given above 

is guaranteed to find the optimal policy (1r*) on this "belief MDP''. 

However, one could consider that optimal t time steps or t-horizon solution can 

approach the optimal infinite horizon solution if t ➔ oo. This is the essence of value 

iteration. Precisely, if we write the value function of the optimal infinite horizon 

policy as V*, and the value function of the optimal t-horizon policy as ½*. It should 

have the following property, 

IV* - ½* I ~ 0, if t ➔ 00 (3.4) 

which means that the difference between value function of the optimal infinite horizon 

policy and value function of the optimal t-horizon policy should tend toward O if t 

tends toward infinity. Hence, the POMDP problems which can be solved by the value 

iteration approach can have two stop criteria: 

• E-approach: we define a small number E 10-9 , where E is a lot less than zero. 

If IV* - ½* I ~ E. We stop solving the problem by the assumption that the 

solution approximates to the optimal solution. 

• horizon-approach: another way is to define the horizon number of solving the 

POMDP problems with certain time steps. If it reaches defined time step we 

have set, we will stop solving the problem whenever IV* - ½* I approximates to 

17 



0 or not. 

3.2. Algorithms on Solving POMDP 

POMDP solving or POMDP planning aims to compute an optimal or approxi

mate policy given a POMDP model [35). POMDP solving faces large computational 

challenges. Normally, there are two approaches for solving POMDP which are value 

iteration algorithm and policy iteration algorithm. In this section, it will only focus 

on the four different exact planning techniques on POMDP planning which use value 

iteration as the basic framework. They are Monahan's Enumeration, Sondik's Two 

pass, Littman's Witness and Zhang's incremental pruning algorithms [27). Before the 

discussion, we need to define, 

• Policy tree (p): generally, at a large enough time t, the decision of a t-step 

policy can be summarized as a t-step policy tree show in Figure 5. The top 

node determines the first action and then the arc is followed by a node on the 

next level based on the observation. 

t steps to go 

t-1 steps to go 

• • • 
• • • 
• • • 

2 steps to go 

I step to go 

Figure 5. A t-step policy tree [27). 

18 



• Parsimonious representations (f): POMDP solving is complicated since 

the belief space for POMDP is continuous and cannot simply keep track of the 

value of belief update. However, Sondik and Monahan proved that the optimal 

value function has the properties of piecewise linearity and convexity [27, 30). 

Therefore, we can represent the value function for a finite planning horizon 

h as a set of vectors r = { o:0 , o:1, ... , o:k} called parsimonious representations. 

Also, the main task of POMDP solving is to minimize the size of parsimonious 

representations. 

• Region (R): given a set of vectors r, each a: E r has a region of information 

states, R( a:, r) where it dominates. That is, 

R(o:, r) ={bib. Q; > b. &, \fa Er - {a:}, b EB} 

• Cross-sum (EB): for two sets of vectors A and B, we define A EBB = { a+bla E 

A,b EB} 

Then, from the properties of piecewise linearity and convexity, we can compute 

the value of each belief state b with inner "dot product" by updating the Equation 

3.3: 

va(b) = maxaEf L b(s). o:(s) (3.5) 
sES 

The main task of POMDP solving is to minimize the size of parsimonious represen

tations in order to reduce the computational time. Hence, Enumeration algorithms, 

Witness algorithms, Two-pass algorithms and Incremental Pruning algorithm will be 

discussed in the following. 

3.2.1. Enumeration Algorithm 

The Monahan 's enumeration algorithm is to generate all the possible a vectors 

by ignoring information state. Then it uses Linear Programming (LP) to trim away 

19 



useless vectors. The Enumeration algorithm is conceptually the simplest of all the 

exact algorithms. 

This algorithm allows DP update to be computed exactly with finite state and 

action space. As shown in Figure 6. it provides a simple linear programming scheme 

to prune the useless vectors [27]. The five vectors o 1 . o 2 . o 3 • o .1 and o 5 shown on 

a belief space with two beliefs b0 and b1 tell us that. o 1 . o 2 and o 5 in solid lines are 

useful vectors. o 3 and o 4 in dashed line are useless wctors. B:v the properties of 

piecewise linearity and convexity. we are only interested in the lines with color. In 

this way. \\·e can trim awa~· o 3 and n.i to eliminate the useless vectors in order to 

reduce the computational time. 

;----v -

6 1 

Figure 6. Conwx piecewise linear function on a continuous belief state with S = 2. 

Specifically. the Enumeration algorithm generates all possible yectors. \\'e write 

the set of a.11 possible vectors as f'~·z. Using the operator cross-sum (EB). ,n .. can define. 

fa = ffi fa.z 
n Q7 n (3.6) 

to compute all possible combinations of vectors in f'~.· Then. the complete enumera-

20 



tion of all possible vectors could be, 

(3.7) 

Thus, with an operator prune, the Enumeration algorithm can be summarized as [27]: 

a z 

Specifically, Algorithm 1 shows the basic steps of the Enumeration approach. 

Algorithm 1 Enum(r n-i, a) 
W +- Uz{f~,z} 
while 1'111 > 1 do 

A+- removeElement(w) 
B +- removeElement(w) 
D+-AEBB 
w +-WU{D} 

end while 
w +- prune(w) 
return W 
end enumeration 

3.2.2. Witness Algorithm 

(3.8) 

The witness algorithm tries to find the best value function for each of the actions 

separately. Witness algorithm computes r~ based on the idea of exploring a finite 

number of regions in the state space [27, 33]. 

As described in Equation 3.3, we can represent Vn-I and Vn using collections of 

policy trees as Vn-l and lln respectively. In this algorithm, we first find a collection 

of policy trees that represents Qf, which represents the expected reward by taking 

action a from belief state b. That is [36], 

Qf(b) = L b(s)R(s, a)+ 1 L Z(ola, b)½-1(b') (3.9) 
s a 

21 



Similar to Equation 3.3, this Q-function is piecewise linear and convex and can be 

represented by collections of policy trees. In order to find a set of policy trees to 

represent Qf(b), the witness algorithm tries to find witness points in each iteration. 

Then the basic approach of witness algorithm can been seen in Algorithm 2. 

Algorithm 2 Witness(fn-1, a) 
Require: b r any information state. 

f' r { a(b)} tt put a vector in belief state b in a set. 
T r N ( a ( b)) tt list all the neighbors of that vector. 
while T =/= <I> do 

v r removeElement(T) tl remove an element from T 
if v E f then 

b r ¢ ~ b should be null. 
else 

b r findRegionPoint(v,r) ti find whether V has region poing in r 
end if 
if b =/- ¢, then 

f' r f U {a(b)} 
TrTU{v} 
Tr TU N(a(b)) 

end if 
end while 
r~ rr 
return r~ 

In words, the first step is to initialize r, the Witness algorithm selects any 

information state and constructs the maximal vector and all the neighbors of that 

state. The second step is discarding neighbors. The loop terminates if the T is empty 

by remove one neighbor at a time. The third step is checking. It will check whether a 

neighbor v is in f' or not. If not, an information state exists in the region by checking 

R(v, I'). Also, it will use findRegionPoint to check the region information state and 

will update Y. Finally, it will return a set of vectors r~. 
Simply, the witness algorithm is using linear programming to find a single point 

called "witness" with the fact that ½* =/= ½ (see Equation 3.4). If a witness is found, it 

is used to determine a new vector by solving a linear program and repeat the process. 

22 



3.2.3. Two-Pass Algorithm 

The biggest difference between \Vitness and Two-pass algorithm is that, it uses 

regions instead of searching witness points in the Two-pass algorithm. The main 

idea for Sondik's Two-pass algorithm is to keep track of the region of a vector in 

parsimonious set r n-i, then finding all the adjacent regions. Recall the definition of 

cross-sum described before, if a vector a b would be useful, it is enough to check 

whether the region R( a, A) n R(b, B) is empty or not. The Two-pass algorithm is 

using this fact to define a region for a vector to find the adjacent regions. Algorithm 

3 shows the routine for computing r~ using the Two-pass algorithm. The algorithm 

explores a region using an LP for each belief state. 

Algorithm 3 TwoPass(fn-l, a) 
Require: b f- any information state. 

f f- { a(b)} ~ put a vector in belief state b in a set. 
Y f- N ( a ( b)) ~ list all the neighbors of that vector. 
while Y =/- <r> do 

a f- removeElement(Y) 
r f- r{a} 
R +- nzR(vz, f~,z) 
for each v E N(a) do 

L f- setUpTwoPassLP(a, v, R) 
if feasibleLP(L) and v EI' then 

Yt-YU{v} 
end if 

end for 
end while 
return r~ 
end TwoPass 

3.2.4. Incremental Pruning Algorithm 

The Incremental Pruning algorithm was proposed by Zhang and Liu [27]. The 

Incremental Pruning algorithm can solve the problems that cannot be solved within 

a reasonable time in the vVitness algorithm. The Incremental Pruning uses the DP 

update to break down the value function V' defined in Equation 3.1 as a combination 

23 



of simpler value functions: 

(3.10) 

(3.11) 
0 

(3.12) 

The equations above are piecewise linear and convex. purge is an operator that 

takes a set of vectors and reduces it to its unique minimum form. In order to remove 

dominated vectors without affecting the value of any belief state, there are two ways to 

test for dominated vectors. One simple way is to remove any vector that is pointwise 

dominated by another vector. That is, 

a vector a 1(s) and another vector a 2 (s)) if a 1(s) < a 2(s) for 'vs ES, we can 

say a 1(s) is pointwise dominated by a 2 (s). 

However, using this way we can not find out all dominated vectors though it is 

fast. Another way is the linear programming method which can detect all dominated 

vectors. Given a vector ,B and a set of vectors A, where ,B ¢-. A. If we add ,B to A to 

determine whether it improves the value function represented by A or not. If it does 

not, then f3 is dominated by A. Incremental Pruning algorithm uses the two sets to 

prune dominated vectors of a set of vectors to its minimum size. 

The Incremental Pruning algorithm uses the notation cross-sum (EB) to enu

merate all the possible combination vectors on initializing r. \Ve use an operator 

purge to pruner. If we have three sets of vectors A, B and C, prune and EB have 

the property: 

purge(A EBB EB C) = purge(A EB purge(B EB C)) (3.13) 

The Incremental Pruning algorithm exploits this property and then ra can be 

24 



computed as: 

r = purge(ra,oi EB purge(ra,o2 ... EB purge(ra,ok-l EB ra,Ok))) (3.14) 

In this way, the Incremental Pruning algorithm reduces the number of solving LP 

problem in a recursive process. It breaks down the problem to prune dominated 

vectors recursively to improve the computational times. 

As shown in Algorithm 4, it first enumerates all the lists of vectors into a set of 

vector lists W. Then it removes a list of vectors (A) and a list of vectors (B) from the 

set W, then uses the operator cross-sum to list all combinations of List A and List B. 

Later, it will prune the dominated vectors to get a new list of vectors (D) and put it 

back into W. Recursively, it keeps checking until W is empty. 

Algorithm 4 incrementalPruning(I' n-I, a) 
W +- Uz{f~,z} 
while Jwl > 1 do 

A+- removeElement(w) 
B +- removeElement(w) 
D +- purge(A EB B) 
w +- w U {D} 

end while 
return W 
end incremental pruning 

3.3. Comparison of the Four Algorithms 

The applicability of POMDP is limited in two perspectives. One is the data 

intensive, and another is that the solution of the PO:MDP model of most realistic 

problems require large computational time [31 J. 

Let If~! = Q, IZI = Zand !f~'zl = 1'vl, where Q 2 lv[. From the Table 1, all 

four algorithms have the same complexity of total LPs which is the total number of 

linear programming required for solving POMDPs. The total constraints required for 

solving the Two-pass algorithm is a lot larger than the ·witness algorithm and the 

25 



Incremental Pruning algorithm. So if it has more than 3 or 4 observations (IZI), the 

Two-pass algorithm is impractical. Also, the Witness algorithm and the Incremental 

Pruning algorithms have the same complexity in the worst case of total constraints. 

However, the Incremental Pruning algorithm is better than the Witness algorithm in 

the best case. 

Algorithm Total LPs Worst case of total constraints Best case 
Enumeration O(ZMQ) - -

Two-pass O(Zlv!Q) O(Z2lvf2Q) O(Z2j\Jf2Q) 
\Vitness O(Zlv!Q) O(Z.MQ2

) O(ZA1Q2 ) 

Incremental Pruning O(Zlv1Q) O(ZlvfQ2
) O(ZQ2

) 

Table 1. Complexity comparison of the four algorithms (27]. 

26 



4. EXPERIMENTS AND RESULTS 

In this chapter, a case study from existed work and the framework on modeling 

the Web service composition into a POMDP problem will be introduced. Also, 

the experiments and results by measuring the proposed six different cases will be 

discussed. 

4.1. A Case Study 

In order to illustrate the workflow composition of web services, Doshi's [4] 

manufacturer models instead of using MDP has been adopted, POMDP has been 

applied to solve the same problem by adding observations to it. 

A manufacturer can receive some orders and deliver some merchandise to 

a retailer. If sufficient stock exists in his inventory, he may satisfy the order 

immediately. In order to produce the goods needed for the order, the manufacturer 

can require parts from the preferred supplier, search for a new supplier or buy 

the parts from the Spot Market. In this way, the manufacturer will have the least 

cost if he/she satisfies the order from the inventory. It will increase costs if he tries 

to search from the preferred supplier, other new supplier and the Spot Market 

to produce the goods. 

Figure 7 shows Doshi's motivating scenario graphically. As shown in the figure, 

the manufacturer initially attempts to fetch the order from his own inventory. If 

there is insufficient order, he will prefer to order parts from preferred supplier to 

produce the goods for the order. If he still cannot satisfy the order, he will search 

for new suppliers. If he still cannot find the parts, he will finally buy them from the 

Spot Market. 

Specifically, from Figure 8, Doshi's model has 6 states: 

• Inventory Availability 

27 



• Preferred Supplier Availability 

• New Supplier Availability 

• Spot market Availability 

• Order Assembled 

• Order Shipped. 

Six actions are service invocations, which are: 

• Check Inventory Status 

• Check Preferred Supplier status 

• Check New Supplier Status 

• Check Spot Market Status 

• Assemble Order 

• Ship Order. 

Two observations which denote the invocations' failure or success: 

• Failure 

• Success 

The transition probabilities of each action on some states are also calculated. For 

example ( see Figure 7), 

T(Inventory Availability !Check Inventory Status, Preferred Supplier Availability) = 

0.7. 

If we view the workflow composition as a goal-driven problem, AI planning 

algorithms seem to be the suitable candidates for automatic workflow composition. 

28 



Check Inventory 
R•ply = \'es with 
prob. O.l 

Ch.ck avallablllly and order parts 
~----<Reply• \'es 

with pr,ob. 0. 7 

Check availablllty and ord.r parts 
V,-_..;:::::=::::;___---1 Reply= \'a 

with prob. 0.4 

Check a •·allablllty and order parts 
'--------l Reply=\''" 

"'ith prob. l 

Figure 7. Motivating scenario with example probability values by Doshi [4]. 

However, the time, cost, factors in service level agreements (4] of the workflow 

composition need to be accomplished. By these aspects, the problem cannot simply be 

defined as a goal-driven problem. Instead, it should be addressed by decision-theoretic 

planning techniques. Hence, the problem can be addressed by using POMDP. 

After the manufacturer problem has been modeled into the POMDP problem, 

the problem can be solved using the Equation 3.2 which is guaranteed to find the 

optimal policy for the POMDP. Then the optimal policy 1r* which is a mapping from 

states to actions will be found. 

From Figure 8, we can see that the model will have four different scenarios in 

Figure 9, which means that if we apply POfv1DP to solve this model, the optimal 

policy or sub-optimal policy n* should generate 4 different types of workflows ( see 

Figure 9) for service invocations with different transition probabilities and observation 

probabilities. 

4.2. Development of POMDP Composition Framework 

In order to apply the POMDP technique to Web service composition, a 

framework of the experimental process which has four phases: service invocation, 

extract the POMDP data, POMDP algorithms suite, and service composition (see 

29 



Order 
Assembled 

Order 
Shipped 

Inventory 
Availability 

Spot Market 
Availability 

Figure 8. Variations in work.flow execution as response to \Veb Service invocation 
changes. 

Figure 10) has been developed. 

• Service invocation: in this phase, the \Veb service invocations executions 

have been modeled and their execution time, observations and response time 

have been stored into a database. For example, the invocation will have the 

format as shown in Figure 1 L 

srv_id is the service ID which represents each distinct service, for exam

ple, if we have 6 services, then the service ID will be a set of integers 

{O, 1, 2, 3, 4, 5}. The names of the services will show in Figure 12, Check_avail 

= Check Inventory Status, Check_Supp_Avail = Check New Supplier Status, 

Check_SpoLMarkeLAvail = Check Spot market Status, Assemble_Order = 

Assemble Order, Ship_order = Ship Order. id is the row number of the table 

in the query. The status is either 0.0 or LO to denote the service invocation 

is available or not. exec_time is the execution time for the particular service 

invocation. Observation is either 0.0 or LO to denote the invocation is failure or 

not. resp_time is the response time for each invocation to make a decision and 

transit to the next state. w f _ id are a set of integers { 1, 2, 3, 4} which denote the 

30 



Inventory 
Availability 

Order 
Assembled 

Order 
Shipped 

Scenario 1 

Inventory 
Availability 

r •rr• 
Suppll•r 
AvallablHty 

Order 
Assembled 

Order 
Shipped 

Scenario2 

Inventory 
Availability 

New Supplier 
Availability 

Order 
Assembled 

Order 
Shipped 

Scenario 3 

Figure 9. Four scenarios of the manufacturer model by Doshi. 

Service Extract POMDP POMDP 

Invocation Data Algorithms 

(DB) Suite 

( Tablel I Table 2 ] 0©0 e c;) s 

Figure 10. Framework of service composition using POMDP. 

Inventory 
Availability 

r•ferr• 
Supplier 
AvallabiHty 

New Supplier 
Availability 

Spot Market 
Availability 

Order 
Assembled 

Order 
Shipped 

Scenario4 

Service 

Composition 

(Workflow) 

000 

four scenarios of workflows for service composition. In this way, 10238 different 

invocations artificially have been generated and stored into a MySQL database. 

• Extract POMDP data: it extracts the data from the MySQL query into a 

Java Programming (Appendix C) in order to calculate the transition probabil

ities, observation probabilities and rewards in this phase. This phases extracts 

the data to get a widely used POMDP problem file which has originally been 

used by Cassandra [27]. In a Cassandra's file format, a POMDP problem will 

have variables (Appendix B): discount (,), rewards (R), states (S), actions 

31 



srv_id . id status exec_lime observation resp_time wf_id 

1 622 1.0 171003.0 1.0 3.0 1 

4 623 1.0 171009.0 1.0 6.0 1 

5 624 1.0 171012.0 1.0 3.0 1 

Figure 11. Screen shot of invocation table in MySQL database. 

id name 
1 Check_ avail 

2 Check_ Supp_Avail 

3 Check_Spot_Market_Avail 

4 Assemble_ Order 

5 Ship_order 

Figure 12. Screen shot of service table. 

(A), observations (0), transition probabilities (T), observation probabilities 

(Z). Some might have the initial belief states (s0 ). For example, ~I= 0.95 and 

s0 = 0 in this thesis. 

In this phase, the main routine is to calculate the transition probabilities, 

observation probabilities and rewards for the state-action pairs. By Bayes' 

Theorem, we can calculate the transition probabilities (Equation 4.1) and 

observation probabilities (Equation 4.2) respectively, 

T = P( 'I ) = P(s,s',a) 
s s,a P(s,a) (4.1) 

where s is the current state, s' is the next state and a is an action takes from 

current state to next state. 

0 = P( I ) = P(s,o,a) 
so,a P(o,a) (4.2) 

Similarly, s is the current state, o is the observation of current state, and a is 

an action taking by the current state based on the observation. 

The rewards are calculated by the response time for a state takes a particular 

32 



action, that is, 

Reward(s, a)= C(s, a) (4.3) 

• POMDP algorithms suite: in this phase it uses the PO:YIDP file generated 

in the previous phase as the input file to test four exact POMDP algorithms: 

Enumeration, Two-pass, Witness and Incremental Pruning (see Appendix A). In 

this phase, it uses the proposed four algorithms in order to get the four scenarios 

as mention before. After the implementations, the four exact algorithms can 

return an optimal policy. One sample optimal policy for a 3 states= {O, 1, 2} 

and 3 actions= {O, 1, 2} looks like Table 2. 

I Number of Iteration s Al 
1 0 0 
2 0 1 
3 1 1 
4 1 1 
5 2 2 

Table 2. A sample policy which is mapping the States (S) to Actions (A). 

• Service composition: the results return to the user and can be used by the 

workflow engine to compose and execute the workflow in this phase. We can 

construct a workflow using the optimal policy which have got from the previous 

phase to represent the service composition result graphically. Algorithm 5 [4] 

shows how to construct a workflow by an optimal policy. 

Overall, as shown in Figure 10, firstly, it generated the data of the service 

invocations and stored them in a database. Secondly, it calculated the transition prob

abilities, observations probabilities, rewards and other variables which are required 

for a POMDP problem from the data. Specifically, it used the Bayesian conditional 

probability formula to calculate the transition and observation probabilities. Thirdly, 

33 



Algorithm 5 Translating a policy into a workflow 
Require: 1r* and s0 

S ¢= So 

whiles fgoal state do 
a{= 7r* 

Execute invocation a 
Get response of a and next state s' 
s ¢= s' 

end while 
return a workflow 

it tested the proposed algorithms using the required POMDP data file with different 

scenarios. Finally, an optimal policy from solving the POMDP problem is generated. 

Since the optimal policy is described as state-action pairs, it reconstruct the \Veb 

service workflow with different invocations (actions). 

4.3. Experiments and Results 

Doshi's model as a POMDP problem has been implemented and comparison of 

the required actions of the four different scenarios are shown in Figure 9. 

As shown in Table 3, the number of actions of the optimal policies required in the 

four different scenarios tells us that if a service fails, the state remains unchanged. In 

this situation, the policy prescribes an optimal action depending on the current state 

and the observations. It is capable of optimally recovering from \Veb service failure 

while classic planning needs to be monitored for unexpected interaction between the 

plan and environments. 

Scenario Number of actions 
1 3 
2 9 
3 23 
4 48 

Table 3. Action comparison between the four scenarios in Figure 9. 

In order to show the effectiveness of automated Web service composition 

34 



based on workflow composition by using the POMDP planning, the four exact 

algorithms Enumeration, Two-pass, Witness and Incremental Pruning Algorithms 

were compared. Six cases of the Web service composition which are fully connected 

similar with Scenario 4: 1) 3 states and 3 actions with 2 observations, 2) 6 states 

and 6 actions with 2 observations, 3) 9 states and 9 actions with 2 observations, 

4) 12 states and 12 actions with 2 observations 5) 15 states and 15 actions with 2 

observations and 6) 18 states and 18 actions with 2 observations, were produced for 

the simulations. 

1. Result Comparison of Execution Time of the Four Algorithms 

In this investigation, the execution times of the four algorithms for the six cases 

mentioned above have been tested. Recall the complexity of the four algorithms in 

Chapter 3, the six cases when the workflow is fully connected like the Scenario 4 

have been tested. As shown in Figure 13, Enum = Enumeration, twopass = Two

pass, incrpune = Incremental Pruning. The Two-pass algorithm is the one that has 

the worst execution time. The Enumeration algorithm is slightly better than the 

Two-pass Algorithm. \:Vitness and Incremental Pruning algorithms almost have the 

same execution time. The figure shows that when the number of states and actions 

increases, the Witness and Incremental Pruning algorithms use much less execution 

time than the Enumeration and Two-pass algorithm. 

2. Investigation of Trends on Execution Time of the Four Algorithms 

In order to explore the trends of execution time of the four algorithms in the six 

cases, as shown in Figure 14, we can see that the four algorithms have exponential 

execution time of the number of states and actions. At the beginning, there are 

not too many differences between different algorithms with small size problem. But 

when the number of states increases, the Witness and Incremental Pruning algorithms 

performed a lot better than the Enumeration and the Two-pass algorithm. 

35 



350 -
1 300 

1 250 

l zoo 
1-

,; 150 

i 100 ]~~~~~~~~~~~~~~~~ 
iii 

50 

0 

3x3 6x6 9x9 12x12 15x15 18x18 

■ enum 

■ twopass 

■ witness 

■ incprune 

Figure 13. Comparison of execution time of the four algorithms. 

-. 500 -+----------------- 1<,r---

i 
1 400 +---------------=~- --

) 300 -t--------------,.~ - -----...--
1-
a: 

! 200 +-----------::."'7~ - = ------
i 
iii 100 +----------,_.c,,"""=i~--------

3x3 6x6 9x9 12x12 15x15 18x18 21x21 

Ctie5 

~ enum 

~ twopass 

-.-witness 

--;,,,i,- Jncprune 

Figure 14. Trends of the execution time by using the proposed four algorithms. 

3. Investigation of Convergence of Vectors 

The convergence of vectors with the same stop criterion ( E - approach) has been 

tested. Here the vectors are the actions of the optimal policies. The results of the 

four cases: 9 x 9, 12 x 12, 15 x 15, and 18 x 18 have been compared. In Figure 15, 

the number of vectors of each iteration increases quickly at first until it reaches its 

peak. Then it will drop and converge to a constant number. Also, as shown in the 

figure , after 10 iterations, the number of vectors is already starting to converge but 

have not met the stop criterion. 

36 



250 

I:! 200 
0 
tl 
!I! 150 ... 
0 

j 100 
E 
:I 

Z 50 

0 

0 

Trends of Convergence 

10 20 30 40 

lt~rations 

50 

~ 18xl8 

--15xl5 

....- 12x12 

- 9x9 

Figure 15. Vector convergences by using Incremental Pruning Algorithm. 

4. Investigation of Relation Between N1tmbrr of States and N1tmber of Vectors 

The required iterations and vectors for the six cases have been recorded. From 

Table 4. the required iterations of each case are around 558 using the c:-approad1 

stop criterion. The number of wctors required to clrmv a full workflow (Scenario -1 in 

Figure 9) of the sen"ice invocations are shown in Table -1 too. 

In order to see the relation between states and requirC'cl wctors of an optimal 

polic~·, see Figure 16. as the number of st ates increases. the number of wctors of 

an optimal policy increases linearly to draw a fully connected workflow. A linear 

equation can be described as. 

y = 9x + c; ( 4.4) 

where y is the number of vectors, x is the number of states and c is some constant. 

5. Investigation on the Speed of Vector Convergence 

In order to test the speed of convergence to near-optimality. as shown in Figure 

17. the speed of the vectors converges with the horizon = 20 by using the horizon

approach stop criterion will not change too much \\·hen sizes of states and actions are 

small. Howewr. as the number of states and actions increases. the total execution 

37 



SxA Number of Iterations Number of vectors 
3x3 607 12 
6x6 558 87 
9x9 558 107 

12 X 12 558 123 
15 X 15 557 140 
18 X 18 559 167 

Table 4. Required iterations and vectors to generate Scenario 4 (see Figure 9). 

250 

200 
.,,.. 

~ 150 
0 
,.: 
u 
> 100 • .. 

so 

.... 
0 ~ 

0 5 10 15 20 

S1ates 

Figure 16. Relation between states and vectors of the optimal policies. 

time for vector convergence increases a lot faster than before. 

4.4. Discussion 

25 

The results above have shown that the POMDP planning can be used in 

automated Web service composition. By using a policy for workflow generation, 

it will always prescribe an optimal Web service to execute at that state since the 

policy is a mapping from state to action. In this way, if a Web service fails, the state 

of workflow does not change. Thus, the policy will decide to take the same action or a 

different one depending on which action is the best one. Therefore, it can handle the 

Web service failure by using the policy-based approach in Web service composition. 

Comparing to MDP, POMDP is partially observable while MDP is fully observable. 

POMDP can solve the uncertainty about the action outcome and uncertainty about 

38 



6000 

_sooo 
"' -0 
C: 

8 4000 
~ 

e 3000 
F 
C: 
0 
:g 2000 
u 
"' 
~ 1000 

0 

9x9 12x12 15x15 18x18 

Cases 

21x21 30x30 

Figure 17. Speed of vector conn'rgence ,,;,,·ith horizon=20 using Incremental Pruning. 

the world state due to partially information ,:vhid1 are more suitable for dynamic 

sen·ice environments. Hmve,·er. to apply PO~IDP on \Veb sen·ice composition is 

harder than using I\-IDP. Finding an optimal policy for a PO;\IDP is PSPACE

Complete ,vhile finding an optimal policy for a I\lDP is P-Complcte. 

Howc,·er. the execution time of PO:t\lDP \\,ill increase exponentially b>· the 

number of states and actions. Only six cases have been tested with the largest 

numb0r of i1wocations equal to 18 to get the fully connected ,,·orkflow (Scenario 

4). From Figure 13. ,ve can see that the execution time is about 4 minntes for the 

fastest algorithm to compute an optimal policy. Even though it can guarantec to 

find an optimal solution, as the im·ocation number increases, the execution time will 

become 0xtremely large. As we know. there are thousands of vVeb services and our 

approach can only solw the problem of small numbers of invocations. Howewr. as it 

has been discovered in Figure 15. after 10 iterations, the vectors already started to 

convergence. In Figure 17. ,vith the horizon equals to 20. it still get the approximate 

policy. By this wa>·, we can reduce the execution time in order to solve relatin' large 

:-;ize composition problems. 

39 



5. CONCLUSIONS 

5.1. Summary 

In the first part of the thesis, the recent developments in automated \Veb service 

composition especially on workflow-based and AI planning based approaches have 

been introduced in Chapter 2. Because of the partial observability and ambiguity of 

state descriptions of Web services, as well as the composite services are workflow-like, 

to apply the AI planning technique to workflow composition seemed interesting. Thus, 

POMDP planning which can plan under uncertainty and insufficient information has 

been introduced in Chapter 3. Also, in order to test the performance of applying 

POMDP in workflow composition, experiments and analysis have been done in 

Chapter 4. 

5.2. Conclusion 

In this work, a case study on Doshi's manufacturer model by applying the 

POMDP technique to workflow composition has been done. Six cases with different 

states and actions to test the performance of POMDP service composition have been 

recorded. The results obtained tell us that POMDP regardless of the computational 

time can guarantee to compute an optimal policy in a dynamic service environment. 

Small size problems can be solved in a few seconds. Also, a relatively large sized 

problem can be solved by using the horizon-approach stop criterion to get a near 

optimal policy. However, while the size of the composition problems increases, the 

challenge of computational time increases. As we know, hundreds of services exist 

in the \Veb service environment, \Veb service composition using POMDP cannot 

be computed in a reasonable time. Also, as new services become available, the 

recomposition are required. Recomposition of services is time consuming and the 

cost increases. An efficient way to add new services into the current workflow without 

recomposing it needs to be considered. 

40 



5.3. Future Work 

The analysis shows us that the service composition using POMDP challenges 

the computational time complexity of large size problems. Since there are hundreds 

of 'Web services, it is impractical to solve the POMDP in such situations. Hence, in 

order to reduce the computational time complexity of solving POMDP Web service 

compositions in future, I plan to: 

• adopt hierarchical concepts into the workflow composition. Composability of 

service composition has the ability to form new composite services by combining 

the functionalities of existing services, thus, the existing service themselves 

can be composite. Solving a hierarchical POMDP problem of Web service 

composition can be decomposed into small POMDP problems in the domain 

based on actions. 

• In order to solve the large size problem, we propose to use approximate heuristic 

algorithms instead of using exact algorithms. Although the approximate 

algorithms cannot guarantee to compute the optimal solution, the near-optimal 

solution with the efficiency can still work since some services have the same 

functionalities. 

41 



BIBLIOGRAPHY 

[l] IEEE Computer Society. Overview. Date retrieved: Oct. 2011, from http:// 

tab.computer.org/tcsc/scope.htm. 

[2] M.P. Papazoglou, D. Georgakopoulos. Service-Oriented Computing. Communi

cations of the ACM, 46(10):25-65, 2003. 

[3] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. Service-Oriented Com

puting: State of the Art and Research Challenges. Computer, pp. 38-45, Novem

ber, 2007. 

[4] P. Doshi, R. Goodwin, R. Akkiraju, K. Verma. Dynamic Workflow Composi

tion: Using l'vfarkov Decision Processes. International Journal of \Veb Services 

Research, Vol. 2, No. 1. (2005), pp. 1-17. 

[5] G. Alonso. Web services: concepts, architectures and applications. Springern, 

first edition 2003. 

[6] J. Rao and X. Su. A Survey of Automated Web Service. Composition Methods. 

In LNCS, Vol. 3387 /2005 (2005), pp. 43-54. 

[7] G. Baryannis, 0. Danylevych, D. Karastoyanova, K. Kritikos, P. Leitner, F. 

Rosenberg, and B. \:Vetzstein. Service Composition. in Proc. S-CUBE Book, 2010, 

pp.55-84. 

[8] UDDI. Online Community for the Universal Description, Discovery, and Integra

tion. Date retrieved: 14 Oct. 2011, from http: //uddi. xml. org/. 

[9] DAML-S 0. 7 Draft Release. DAML.org. Date retrieved: 14 Oct. 2011, from http: 

//WW'w'.daml.org/services/daml-s/0.7/. 

42 



[10] A. Kim, M. Kang, E. Ioup, C. Meadows, and J. Sample. A Framework for 

Automatic Web Service Composition. Naval Research Laboratory 2009. 

[11] A. DiCaterino, K. Larsen, 1\1. Tang, and W. \Vang. An Introduction to Workfiow 

Management Systems. 01 Nov 1997. 

[12] A. Barker and J.V. Hemert. Scientific Workfiow: A Survey and Research 

Directions. Parallel Processing and Applied Mathematics In Parallel Processing 

and Applied Mathematics , Vol. 4967 (2008), pp. 746-753. 

[13] D. Berardi, D. Calvanese, G.D. Giacomo, M. Lenzerini, and M. Mecella. Auto

matic service composition based on behavioral descriptions. Int. J. Cooperative 

Inf. Syst., 14(4):333-376, 2005. 

[14] H. Schuster, D. Georgakopoulos, A. Cichocki, Andrzej and D. Baker. Model

ing and Composing Service-Based nd Reference Process-Based ~Multi-enterprise 

Processes. Proceedings of the 12th International Conference on Advanced Infor

mation Systems Engineering, 2000. 

[15] D. Ganesarajah, E. Lupu. Workfiow-based composition of web-services: a busi

ness model or a programming paradigm?. 6th International Enterprise Dis

tributed Object Computing, Lausanne, Switzerland, 2002. 

[16] F. Ranno, S.K. Shrivastava, S.M. Wheater. A language for specifying the compo

sition of reliable distributed applications. Distributed Computing Systems, 1998. 

Proceedings. 18th International Conference on 26-29 May 1998. 

[17] J. Cardoso, A. Sheth. Semantic Web Services. Processes and Applications. 

Springer, 2006. 

[18] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle 

River, :-JJ, USA, 1989. 

43 



[19] R. Milner. Communicating and mobile systems: the pi-calculus. Cambridge 

University Press, fifth edition, 2004. 

[20] N. Milanovic and M. Malek. Current solutions for web service composition. IEEE 

Internet Computing, 8(6):51-59, 2004. 

[21] E. Sirin Automated Composition of Web Services using AI Planning Tech

niques. Date retrieved: Oct. 2011, from http://www. cs. umd. edu/Grad/ 

scholarlypapers/papers/aiplanning.pdf. 

[22] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau. HTN planning for Web Service 

composition using SHOP2. \:Veb Semantics: Science, Services and Agents on the 

World Wide \:Veb In International Semantic \Veb Conference 2003, Vol. 1, No. 4. 

(October 2004), pp. 377-396. 

[23] M. Paolucci and 0. Shehory and K.P. Sycara and D. Kalp and A. Pannu. 

A Planning Component for RETSINA Agents. 6th International \:Vorkshop on 

Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL), 

2000. 

[24] A. Gao, D. Yang, S. Tang, M. Zhang, Web Service Composition Using Markov 

Decision Processes. 2005. 

[25] A. Marconi, M. Pistore, P. Traverso. Automated Composition of Web Services: 

the ASTRO Approach. IEEE Data Eng. Bull., 23-26, 2008 

[26] F. Casati and M. Sayal and M. Shan. Developing E-Services for Composing E

Services. pages 171-186, vol 2068, 2001. 

[27] A.R. Cassandra. Exact and Approximate Algorithms for Partially Observable 

Markov Decision Processes. Ph.D. Thesis. Brown University, Department of 

Computer Science, Providence, RI, 1998. 

44 



(28) L.P. Kaelbling, A.R. Cassandra , and J.A. Kurien. Acting Under Uncertainty: 

Discrete Bayesian Models for .Mobile-Robot. Proceedings of IEEE/RSJ Interna

tional Conference on Intelligent Robots and Systems (IROS), 1996. 

(29} L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in 

partially observable stochastic domains. Artificial Intelligence, Volume 101, pp. 

99-134, 1998. 

[30) z. Feng and S. Zilberstein. Region-Based Incremental Pruning for POMDPs. 

Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence 

(UAI), 146-153, Banff, Canada. 2004. 

[31] C.C. vVhite. (1991). A survey of solution techniques for the partially observed 

Markov decision process. Annals of Operations Research 32 (1): 215-230. 

[32) E.J. Sondik. The Optimal Control of Partially Observable Markov Processes Over 

the Infinite Horizon: Discounted Costs. Operations Research Vol. 26, No. 2 (Mar. 

- Apr., 1978), pp. 282-304. 

[33) A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting optimally in partially 

observable stochastic domains. In Proceedings of the Twelfth National Conference 

on Artificial Intelligence, ( AAAI) Seattle, \VA, 1994. 

[34] R.Bellman Dynamic Programming. Dover Publications, 1957. 

[35] J. Baxter and P.Bartlett. Reinforcement learning in POMDP's via direct gradient 

ascent. In In Proc. 17th International Conf. on Machine Learning, pages 41 C4. 

[36) M.L. Littman The Witness Algorithm: Solving Partially Observable Markov 

Decision Processes. Brown University Providence RI 1994 1-48. 

45 



(37] A.R. Cassandra, M.L. Littman and N.L. Zhang. Incremental pruning: A simple, 

fast, exact method for partially observable Markov decision processes. Uncertainty 

in Artificial Intelligence (UAI), 1997. 

46 



APPENDIX A. POMDP SOLVER IN JAVA 

The following classes are the main class of slaving POMDP in Java. 
The main class on solving POMDP: 

public interface pomdp-solveIN { 

} 

public void initPomdpSolve ( PomdpSolveParams param ) ; 

public void cleanUpPomdpSolve ( PomdpSolveParams param ) ; 

public void solvePomdp( PomdpSolveParams param ) throws IOException; 

/• For now our default policy is just all zeroes, •/ 

public AlphaList getDefaultlnitia!Policy( ); 

/• Some algorithms will solve one iteration of POMDP value 

iteration by breaking the problem into a separate one 

for each action, This routine will irnplement the basic 

structure needed and call the appropriate routines 

depending on the specific algorithm being used. Current 

algorithms that do it this way: TwoPass, Witness 

and lncrementalPruning *f 

public AlphaList improveByQ( Alpha.List[][] projection, 

PomdpSolveParams param ) ; 

f* This does a single DP step of value iteration for a POMDP. 

It takes in the previous value function and parameters for 

solving and returns the next or improved solution. •/ 

public Alpha.List improveV( AlphaList prev-alpha-list, 

PomdpSolveParams pa.ram ) i 

Main class for defining POMDP problem: 

public interface pomdpI!'s { 

f* Often we would like to do some max or min procedure and 

require initialization to the most extreme value. 

Since the extreme value depends on whether or not we 

are using rewards or costs, we have 

encapsulated this in this routine. *f 

public double worstPossibleValue (); 

/• Often we would like to do some max or min procedure and 

require initialization to the most extreme value, Since 

the extreme value depends on whether or not we are using 

rewards or costs we have encapsulated this in this 

routine. *f 
public double bestPossibleValue (); 

/• Often we would like to do some max or min procedure and 

require copa.ring a new value to a current value. Since 

the test for which is better depends on whether rewards 

or costs are being used j we have encapsulated this in 

this routine, We also want to account 

for the precision of the current run (i.e. 1 

gDoubleEqualityPrecision .) •/ 

47 



} 

public int isBetterValue ( double new_value, 

double current , 

double epsilon ) ; 

/• Does the necessary things to read in and set-up a POl'vIDP 

file. Also precomputes which observations are possible 

and which are not. • / 

public void initializePorndp ( String filename, 

double obs-possible-epsilon ); 

/* Deallocates the POMDP read in by initializePomdp ().•/ 

public void cleanUpPomdp( ); 

Class for cross-sum calculations: 

public interface cross-sumIN 

/* Takes the cross sum of two sets of vectors and returns the 

resulting set, If either A or B is null, then NULL is returned. 

If either list is empty, then an empty list is returned. The 

save_obs_sources argument deterines whther we do the 

bookkeeping required to develop a policy graph or not. */ 

} 

public AlphaList crossSum ( AlphaList A, 

AlphaList B, 

int save-obs-sources ) ; 

Class for Incremental Pruning algorithm: 

public interface inc_pruneIN { 

public void initincPrune ( ) ; 

public void cleanUpincPrune( ); 

I* The main incremental pruning algorithm routine for 

finding the Q-function represention for value 

iteration with POMDPs. *I 
public AlphaList improveincPrune( AlphaList [] projection, 

PomdpSolveParams param ) ; 

Class for solving linear programmings by using a java wrapper of Ip-solve 5.5: 

public class Lpsolve{ 

public static SolverResults solveLPProblem(ArrayList<double[] > 

Constraints, double(] 

ObjF, double[] RHS, 

char[] sense) { 

//The Solution object which will be returned 

Solver Results Sol = new SolverResults ( J; 
if (Constrain ts. is Empty()) 

return null; 

try 

int NbColumns = Constraints, get (0). length; 

int NbRows Constraints. size (); 

int ret 0; 

48 



//Create Lpsolve linear problem 

LpSolve LpProb = LpSolve. makeLp (0, NbColumns); 

if(LpProb.getLp() = 0) { 

// Linear problem could not be constructed. 

Sol. Status = SolverReturnStatus. :Model Creation Failure i 

ret 1 i 

if (ret = 0) {//Linear problem constructed OK to proceed. 

//Set AddRowMo<le to true 

LpProb, setAddRowmode( true); 

//Create column index Array (used to add constraints) 

int[] ColNo new int[NbColumns]; 

for (int i = O; i < NbColumns;) { 

Co!No [ i++] = i; 

//Add constraints 

for ( int j = O; j < NbRows; i++) { 

if(sense[j] = 'L') 

LpProb. add Const rain tex ( NbColumns, Con strain ts . get ( j ) • 

Co!No, LpSolve. LE, RHS [ j ] ) ; 

else if(sense[j] = 'E') 

LpProb, ad dConstrain tex { NbColumns, Constraints . get ( j ) , 

Co!No, LpSolve.EQ, RHS[j]); 

else 

LpProb. addConstraintex (NbColumns, Constraints. get ( j), 

ColNo, LpSolve.GE, RHS[j]); 

//Set Add Row Mode back to false 

LpProb. setAddRowmode( fa! se); 

//Set Objective Function 

LpProb. setObjFnex ( NbColumns, ObjF, Co!No); 

/ /Set Direction Maximize 

LpProb. set Maxim (); 

//Solve the Linear Problem 

ret LpProb. solve(); 

if ( ret = LpSolve .OPTIMAL) 

ret = 0~ 

else 

r et l; 

Sol.Status SolverReturnStatus. OptimalSolutionNotfound; 

//Store Optimisation values 

if ( ret = 0) { 

double(] VariableResult new double [NbColumns]; 

double[] ConstraintResult = new double [NbRows]; 

double Objective = O; 

double[] DualResult new double[NbColumns + NbRows + l]; 

double[] Weights new double [NbRows]; 

/ /Get Primal Solution ( variables values) 

LpProb. get V ariab !es (Variable Result ) ; 

49 



//Get Objective Value 

Objective LpProb. getObjective (); 

//Get Dual Solution (weights) 

LpProb. getConstraints ( ConstraintResult); 

LpProb. get Du al Solution ( Dual Resu Jt ) ; 

System. arraycopy ( Dual Result , NbColumns + 1, Weights, 0, NbRows); 

Sol. ConstraintResult Constra)ntResult; 

Sol. DualResult = DualResult; 

Sol. Objective = Objective; 

Sol. VariableResult VariableResult; 

Sol. \Veights = Weights; 

Sol. Status = SolverReturnStatus. Optima.lSolutionFound; 

catch ( LpSolveException e) { 

e. printStackTrace (); 

Sol.Status So)verReturnStatus. UnknownError; 

return Sol; 

50 



APPENDIX B. POMDP INPUT FILE FORMAT 

Description of the file format adopted from Anthony R. Cassandra [27]. The following 

5 lines must appear at the beginning of the file. They may appear in any order as long 

as they preceed all specifications of transition probabilities, observation probabilities 

and rewards. 

discount: a float value between O and 1. 

values: [reward, cost] 

states: [integers, (list - of - states)] 

actions: [integers, (list - of - actions)] 

observations: [Integers, (list - of - observations)] 

The definition of states, actions and observations can be either a number 

indicating how many there are, or it can be a list of strings, one for each entry. 

For example, 

actions: 2 

actions: Turn-left Turn-right 

After the preamble, there is the optional specification of the starting state. 

(Note that this is ignored for some exact solution algorithms.) There are a number 

of different formats for the starting state. You can either: 

• enumerate the probabilities for each state, 

• specify a single starting state, 

• give a uniform distribution over states, or 

• give a uniform distribution over a subset of states. 

51 



After the initial five lines and optional starting state, the speciifications of 

transition probabilities, observation probabilities and rewards appear. To specify 

an entire transition matrix for a particular action: Where each row corresponds 

T: action 
f f f 
f f f 

f f f 

to one of the start states and each column specifies one of the ending states. Each 

entry must be separated from the next with one or more white-space characters. The 

state numbers go from left to right for the ending states and top to bottom for the 

starting states. The new-lines are just for formatting convenience and do not affect 

final matrix results. The only restriction is that there must be SxS values specified 

where 'S' is the number of states. 

To specify an entire observation probability matrix for an action: 

0: action 
f f f 
f f f 

f f f 

The format is similiar to the transition matrices except the number of entries 

must be SxO where 'S' is the number of states and 'O' is the number of observations. 

To specify individual rewards: 

R: action : start-state : end-state : observation f 

For any of the entries, an asterick for either (state), (action), (observation) 
indicates a wildcard that will be expanded to all existing entities. Following is an 
example POMDP file by our simulation, 

discount: 0.95 

values: reward 

52 



states: 6 

actions: 6 

observations: 2 

start: 1.0 0.0 0.0 0.0 0.0 0.0 

T: 0 

0 0 

0 0 

0 0 

o.o 
0.0 

0.2 

T: 1 

0.33 

0.0 

0.0 

0 0 

0 0 

0. 2 

T: 2 

0.33 

0 0 

0 0 

0.0 

0.0 

o. 2 

T: 3 

0 33 

o o 
0.0 

0.0 

0.0 

0.2 

T: 4 

0.33 

o.o 
o.o 
o.o 
0.0 

0.2 

T: 5 

0.33 

o.o 
0 0 

0 0 

o.o 
0.0 

0: 0 

0.2 

0.33 

0.0 

0.0 

o.o 
0.2 

0.33 

o.o 
0.0 

0.0 

0.0 

0.2 

0.33 

0.33 

0.0 

o.o 
0.0 

0.2 

0.33 

0.33 

o.o 
0.0 

0.0 

0.2 

0.33 

0.33 

0 0 

0 0 

0.0 

0.2 

0.33 

0.33 

0.0 

0.0 

0.0 

o.o 

0.0 

0.33 

0.33 

0.0 

o.o 
0.2 

0.00 

0.30 

0.33 

0.0 

0.0 

0.2 

0.00 

0.33 

0.0 

o.o 
0.0 

0.2 

0.00 

0.33 

0.33 

0.0 

0.0 

0.2 

o.oo 
0.33 

0.33 

0.0 

0.0 

0.2 

0.00 

0.33 

0.33 

o.o 
0.0 

0.0 

0.0 

0.0 

0.33 

0.5 

o.o 
0.2 

0.00 

0.00 

0.33 

0.5 

0.0 

0.2 

0.00 

0.00 

0.6 

0.5 

0.0 

0.2 

0.00 

0.00 

0.33 

0.9 

0.0 

0.2 

0 00 

0 00 

0.33 

0 0 

0 0 

0 2 

0.00 

0.00 

0.33 

0.0 

0.0 

0.0 

0.8 

0.34 

0 34 

0 5 

0.5 

0.2 

0.34 

o. 70 

0.34 

0.5 

0.5 

0.2 

0.34 

0.34 

0.4 

0.5 

0.5 

0.2 

0. 3·1 

0.34 

0.34 

0. 1 

0.5 

0.2 

0.34 

0.34 

0.34 

0.5 

0.2 

0.2 

0 34 

0.34 

0.34 

0.5 

0.5 

o.o 

0.0 

o.o 
0.0 

0.0 

0.5 

0.0 

0.0 

0.0 

0.0 

o.o 
0.5 

0.0 

o.o 
0.0 

0.0 

0.0 

0.5 

0.0 

0.0 

o.o 
0.0 

0.0 

0.5 

o.o 

0.0 

0.0 

0 0 

0 5 

0.8 

0.0 

0.0 

0.0 

0.0 

0 5 

0 5 

53 



1.0 0.0 

J.0 0.0 

0.5 0.5 

0.4 0.6 

0.5 0.5 

0.5454545454545454 0.45454545454545453 

0: 1 

0.6666666666666666 0.3333333333333333 

0.5 0.5 

0.5833333333333334 0.4166666666666667 

0.4166666666666667 0.5833333333333334 

0.5 0. 5 

0.5 o. 5 

0: 2 

0 0 1.0 

.o 0.0 

0 36363636363636365 0.6363636363636364 

o.o 1.0 

o. 7 0 .3 

0.2857142857142857 0.7142857142857143 

0: 3 

0 5 0 5 

0 625 0.375 

1.0 0.0 

1.0 0.0 

0.111111111111111s o.2222222222222222 

o.o 1.0 

0: 4 

0.38461538461538464 0.6!53846153846!54 

o. 55555555555555 56 o. 4444444444444444 

1.0 0.0 

0 36363636363636365 0.6363636363636364 

O 5333333333333333 0.4666666666666667 

0.5333333333333333 0.4666666666666667 

0: 5 

0.5 0.5 

o. 2 0.8 

1 .0 0.0 

0.6666666666666666 0.3333333333333333 

0.4166666666666667 0.5833333333333334 

0.4 0.6 

R: 0 0 . . -100 

R: 0 . . 20 

R: 0 2 . . 9 

R: 0 3 . . 3 

R: 0 4 . 30 

R: 0 5 . 9 

54 



R: 0 . 4 

R: . 3 

R: 2 . . 26 

R: 3 ; . . 8 

R: 4 . 30 

R: 5 2 

R: 2 0 . 15 

R: 2 ; . . 7 

R: 2 2 . 5 

R: 2 3 . 19 

R: 2 4 . 25 

R: 2 5 . 10 

R: 3 0 . 3 

R: 3 : . . 2 

R: 3 2 . 5 

R: 3 3 . 8 

R: 3 4 ; . . 16 

R: 3 5 ; . . 6 

R: 4 0 . . 45 

R: 4 . : . 3 

R: 4 2 . 6 

R: 4 3 . 2 

R: 4 4 . . 5 

R: 4 5 : . . 6 

R: 5 0 . 100 

R: 5 9 

R: 5 2 . 7 

R: 5 3 . 4 

R: 5 4 . 7 

R: 5 5 : . . 77 

55 



APPENDIX C. JAVA CODE FOR ACCESSING MYSQL 

Java class for accessing MySQL database and calculating the transition probabilities, 
observations probabilities and rewards. 

/• If you need to seperate the states from the action names 

you need to make simple changes to the code, 

the changes are gonna be straightforward*/ 

/"'Two function that are to be used are : 

1: assess/-State_prob which asseses the probabilities of 

type P( Stl=AssembeLorder I st0 = check-avail) 

2: assess-Obs-Prob which assesses the probabilities of type 

P(Stl=AssembeLOrder I Observation=yes • action check_avail) 

public class assess-prob 

private String ConnectionString "jdbc:mysql,//localhost: 

3306/wfcomp_db?"+ 

'
1 user=root&password=123"; 

//function to assess the probabilities of P(stl=bl st0=a) 

public double assess-State-prob ( String st0; String stl, 

String action) 

try 

DB-Query db new DB-Query( ConnectionString); 

double count =0; 

ResultSet rs =db.Execute-Query(" select count(*) as 

cnt from invocation as invl, invocation as inv2, 

service as srvl, service as srv2 where 

srvl,id~invl.srv-id and srv2.id=inv2.srv_id ands 

rvl.name='"+sto+"' and srv2.name='"+stl+"' and 

srv2. name="'+ action+"' and 

inv2. e:x:ec-time=invl. exec_time+inv2. resp-time 

and invl.id =inv2.id-1"); 

if (rs. next()) 

count Integer. parselnt (rs. getString ('1 cnt")); 

double total 0· 

tot al assess-single (stl, action); 

if ( total !=O) 

return (double) (count/ total); 

else 

return 0; 

catch(SQLException ex) 

{ 

System. out. print In (ex. get Message ()); 

return O; 

56 



/*function to assess single probabilities of the 

form P(a=0), ( the # of rows having a=0)*/ 

public double assess-single ( String value, String action) 

try 

// The \Vorkflow instance is generated 

DB-Query db new DB-Query( ConnectionString); 

ResultSet rs db, Execute-Query(n select count(*) 

as cnt from invocation. service where 

service. id=srv_id and 

service .name= 1"+value+"' and 

service. name='"+ action+"'") i 

int count =0; 

if ( rs . next ()) 

count Integer. parse Int (rs. getString (" cnt")); 

return count; 

catch (SQLException ex) 

System. out.print ln (ex. get Message()); 

return O; 

/*function to assess the probabilities of type 

P( st=stl I obs = obsl, action 

public double assess_Obs_prob(String state ,String action ,String obs) 

try 

DB-Query db new DB-Query(ConnectionString); 

double count =0; 

ResultSet rs= db.Execute_Query(" select count(*) 

as cnt from invocation as invl 1 invocation as 

inv2 1 service as srvl, service as srv2 where 

srvl. id=invl, srv-id and srv2. id=inv2, srv_id and 

srvl .name=m+action+"' and 

invl. observation='''+obs+"' and 

srv2.name="'+state+"' and 

inv2. exec-time=invl. exec_time+inv2. resp-time 

and invl. id =inv2. id 1" ); 

if (rs.next()) 

count= Integer.parseint(rs.getString("cnt")); 

// calculate the divider 

double total O: 

rs db. Execute-Query(" select count(*) as cnt from 

invocation , service as srvl where srvl. id= srv_id 

and srvl .name='"+action+'" and observation="'+obs+" ,...,); 

if( rs. next()) 

total= Integer.parselnt(rs.getString(''cnt~')); 

57 



if ( total l=O) 

return (double) (count/ total); 

else 

return O; 

catch ( SQLException ex) 

System. out. print In (ex. get Message ()) ; 

return 0; 

/* function to assess the COST 

R( stl=statel I stO=stateO, action 

public double assess-Reward ( String stateO, String statel , String action) 

try 

DB-Query db = new DB-Query ( ConnectionString); 

double cost =10000; //used as for infinity 

ResultSet rs= db.Execute_Query("aelect avg(inv2.resp-time) 

as cost from invocation as invl, invocation a.s inv2 1 

service as srvl, service as srv2 where 

srvl. id=invl. srv_id and srv2. id=inv2. srv_id and 

srvl .name="'+stateo+ri • and srv'2 ,name="'+statel +''' 
and srv2 .name="'+action+"' and 

inv2. exec~time=invl. exec_time+inv2. resp_time 

and invl. id =inv2. id -1''); 

if ( rs , next () ){ 

if(rs.getString("cost") !=null) 

cost Double. pars-eDouble (rs. getString ('1 cost")) i 

return cost; 

catch ( SQLException ex) 

System. out. println (ex. get Message ()); 

//for error 

return -1: 

58 




