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ABSTRACT 

Chitraranjan, Charith Devinda, M.S., Department of Computer Science, College 
of Science and lVlathematics, North Dakota State University, June 2011. Frequent 
Substring-Based Sequence Classification Using Reduced Alphabets. ~fajor Professor: 
Dr. Anne M. Denton. 

In recent years, various disciplines have generated large quantities of sequence 

data which has necessitated automated techniques for classifying these sequences 

into different categories of interest. Especially with the rapid rate at which biological 

sequence data has been emerging out of high throughput sequencing efforts, the need 

to interpret these large quantities of raw sequence data and gain deeper insights into 

them has become an essential part of modern biological research. Understanding the 

functions, localization and structure of newly identified protein sequences in particular 

has become a major challenge and is seeking the aid of computational techniques to 

keep up with the pace. In this thesis, we1 evaluate frequent pattern-based algorithms 

for predicting aforementioned attributes of proteins from their primary structure 

( amino acid sequence). \Ve also apply our algorithms to datasets containing wheat 

Expressed Sequence Tags (ESTs) as an attempt to predict ESTs that are likely to 

be located near the centromere of their respective chromosomes. \Ve use frequent 

substrings mined from the training sequences as features to train a classifier. Our 

evaluation includes SVM and association rule-based classifiers. Some amino acids 

have similar properties and may substitute one another without altering the topology 

1Co-authors: Charith Chitraranjan and Anne Denton, Ph.D. 
Charith Chitraranjan contributed with algorithm design and implementation, experimental 
evaluation and writing the manuscript. Anne Denton contributed with the initial research idea, 
concepts and editing the manuscript. 
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or function of a protein. Therefore, we use a combination of reduced amino acid 

alphabets in an attempt to capture patterns that may contain such substitutions. 

Frequent substrings mined from different alphabets are treated as features resulting 

from multiple sources and we evaluate both feature fusion and classifier fusion approaches 

towards multiple source prediction. 'We compare the performance of the different 

approaches using protein sub-cellular location, protein function and EST chromosomal 

location datasets. Pair-wise sequence-alignment-based Nearest Neighbor and basic 

SVM k-gram classifiers are also included as baseline algorithms in the comparison. 

Results show that frequent pattern-based SVM classifiers demonstrate better performance 

compared to other classifiers on the sub-cellular location datasets and they perform 

competitively with the nearest neighbor classifier on the protein function datasets. 

Our results also show that the use of reduced alphabets provides statistically significant 

performance improvements for the SVM-based classifier fusion algorithm, for half of 

the classes studied. 
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CHAPTER 1. INTRODUCTION 

Large amounts of sequence data has been emanating from various different fields 

in recent years. Biological sequences contribute to a vast majority of this data while 

a considerable portion has originated from other sources such as software execution 

traces, medical informatics, stock market trends, weather patterns and market basket 

research as well. 

\Vith the abundance of data, sequence classification has become a very im­

portant task with a broad range of real world applications such as protein function 

prediction, classification of ECG time series data as normal or abnormal, classification 

of software execution traces as erroneous or successful and classification of customers 

into different groups based on their purchase history. 

There has been a steady increase in the amounts of biological sequence data 

largely due to recent advances in automated high-throughput sequencing technol­

ogy. Genomes of many species have been fully sequenced resulting in a wealth of 

sequence data. However, sequencing a genome in only the first step in an attempt 

towards understanding a species. In order to gain deeper insights, attributes such 

as structure, function and sub-cellular location of the corresponding proteins need 

to be determined. The molecular structures of newly identified proteins are being 

determined at a rapid rate thanks to structure genomics projects [22]. However, 

experimental determination and manual curation of protein function and sub-cellular 

location has been lagging way behind the exponential rate at which sequence data 

has been emerging. Experimental evaluation of these attributes is expensive and 

time consuming. Therefore, there is a great incentive for making automated predic­

tions about protein function and sub-cellular location in order to characterize and 

understand the roles of newly sequenced proteins in an efficient manner. 
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In general, classification is the process of predicting the class membership a 

novel data point from a finite set of classes. E.g. predicting the functional family of 

a protein sequence. It is well known that sequence similarity of biological sequences 

often translates into structural or functional similarity. Therefore it is possible to use 

sequence classification algorithms to predict the structure or function of a protein [19]. 

Furthermore, sequence information can also be used to predict the sub-cellular loca­

tion of a protein. Biological experiments have revealed that information required 

to guide a protein to a specific sub-cellular location is encoded in its amino acid 

sequence [46]. As another potential application of sequence classification techniques 

for biological data, we also attempt to predict the chromosomal location of a set of 

Expressed Sequence Tags(ESTs) from wheat. As explained in chapter 9, the goal is 

to predict whether a given EST is located close to the centromere of its chromosome 

or not. This can be useful in the development of Radiation-Hybrid maps for wheat, 

which will in turn assist in sequencing the wheat genome. 

In this thesis, we study the use of frequently occurring substrings as features 

for sequence classification. A sequence is an ordered list of elements drawn from a set 

of distinct elements called an alphabet (A formal description is given in chapter 3). 

However depending on the classification problem at hand, some elements in the alpha­

bet may be considered similar to each other so that substitution of one such element 

for another may not have an effect on the class specific properties of the sequence. 

Therefore, the pattern mining algorithm needs to be aware of these substitutions in 

order to discover useful patterns. Protein sequences are a good example where this 

situation arises. 

Proteins are made up of chains of amino acids each drawn from an alphabet of 

20 distinct elements ( naturally occurring amino acids). It's well known that certain 

sequence patterns are responsible for certain functions or localization of proteins 
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and can be used to make predictions about them [46, 22]. It is also known that 

over the course of evolution, some amino acids in a protein could be substituted by 

others. Some of these substitutions change the properties of the protein while some do 

not. The latter are referred to as conservative substitutions. Typically, conservative 

substitution occur when an amino acid is substituted by another which has similar 

physiochemical properties [54]. From a pattern mining perspective, these substitu­

tions present a challenging situation because sequence patterns that determine the 

function of a protein can contain substituted amino acids thereby causing difficulties 

in extracting useful patterns. As a solution to this problem, we propose the use of 

reduced alphabets formed by grouping similar amino acids together. \Ve use alphabet 

reduction schemes presented in literature [39, 21] that are derived from a hierarchical 

clustering tree of the amino acids. The tree is formed by groping amino acids based on 

a pair-wise similarity measure so that those with very similar properties are grouped 

earlier than those with more distant properties. A more detailed description about 

alphabet reduction schemes is presented in chapter 4. 

\Ve introduce three frequent substring-based sequence classification algorithms 

which make use of reduced alphabets in addition to the full alphabet of 20 naturally 

occurring amino acids. Our motivation is to capture conserved sequence patterns even 

amidst different amino acids that may have substituted one another while preserving 

the properties of interest of a protein. Other sequence classification algorithms that 

take the similarity between amino acids in to account include, sequence distance-based 

algorithms which compute a pairwise sequence alignment using similarity matrices to 

score the alignment and Hidden Markov ~fodel (HM~1)-based algorithms. HMM­

based algorithms usually require a multiple alignment of the input sequences which is 

a computationally expensive process and can also lead to ambiguities often requiring 

manual adjustment [10]. 
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All three algorithms presented in our work consists of two main steps. 1) Mining 

frequently occurring substrings from the training sequences and transforming the 

sequences into a feature space using the substrings. 2) Training a classifier using the 

feature representation of sequences. As explained later in detail, frequent substrings 

are mined using different reduced alphabets and the three algorithms differ in the 

way these features are employed or depending on the classifier (Associative or SVMs) 

used. The first algorithm combines features mined from different alphabets and 

trains an association rule-based classifier on this combined feature space. The second 

algorithm trains an SVM-based classifier on the same feature space. Both of these 

approaches fall into the category of feature fusion in multiple source prediction. The 

third algorithm trains individual classifiers using frequent substrings mined from each 

alphabet and then combines the predictions made by all individual classifiers. This 

approach falls into the category of classifier fusion. The two basic approaches are 

shown in Figure 1.1. The details of combining frequent substrings mined under 

different alphabets and combining the predictions made by different classifiers are 

presented in chapter 7. 

4 
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Figure 1.1. Basic schematic diagrams of our algorithms. A_l, ... A_N are the different 
alphabets used. 
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CHAPTER 2. RELATED WORK 

Previous work on sequence classification can be divided into three broad ar­

eas [52]. 1) Feature-based classification techniques that first transform the sequences 

into feature vectors and then apply conventional classification algorithms on them. 

2) Sequence distance based techniques that utilize some distance function to com­

pute the pair-wise similarity between sequences and then employ a nearest neighbor 

classification method. 3) Techniques that use models such as Hidden Markov Models 

and other statistical models for sequence classification. 

Deshpande and Karypis [19] investigated sequence classification methods that 

fall into each of the three categories mentioned above for the classification of biological 

sequences. Their work includes SVM-based classification of sequences transformed 

into feature vectors, K-nearest neighbor classification using sequence alignment score 

as the pair-wise similarity measure and Markov Model-based classification. Their 

experiments reveal that SVM-based classifiers generally achieve higher accuracy com­

pared to other methods. 

Several studies have been performed on feature-based sequence classification. 

She et al. [46] used a feature space based on frequent substrings for the prediction of 

outer membrane proteins. They compared the performance of several conventional 

classification methods including SVMs, See5 and Association rules on this feature 

space. PSORTB [23] is an extension to this work which can make predictions for 

other sub-cellular locations as well. It also achieved better accuracy through the use 

of a Motif and Profile module and a BLAST module in addition to the SVM module 

used in [46]. A feature space consisting of more general subsequences was proposed 

by Lesh et al [34]. However, mining for frequent subsequences with unconstrained 

gaps is a very expensive process and does not scale well for long sequences. Leslie et 

al. [36, 35] used a K-gram based feature space to develop string kernels for use with 
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SVMs and Chuzhanova et al. [15] used K-grams as features for use with decision trees 

for genetic sequence classification. 

Agrawal [8] approached the problem of sequence classification by using wavelet 

decomposition. Their method is capable of capturing both local and global classi­

fication behavior of sequences. It also benefits from the multi-resolution property 

of wavelet decomposition and therefore it can mine classification characteristics of 

sequences at different levels of granularity. 

Sequence distance based classification schemes use a pair-wise distance function 

to measure similarity between sequences and apply a classification method such as the 

K-nearest neighbor classifier. The selection of the distance function plays a major role 

in these schemes. Work presented in [30, 51] uses Euclidean distance for classification 

of time series data. Euclidean distance makes sense only if the two sequences being 

compared have equal lengths. Therefore it is not useful for biological sequences in 

particular. Sequence-alignment-based distance functions [27} are more suitable for 

symbolic sequences such as protein or DNA sequences. String alignment kernel for 

use with SVMs proposed by Saigo et al. [42] can also be considered as a sequence 

distance based classification scheme. 

Markov and Hidden Markov Models are widely used in sequence classification 

techniques that fall into the model based category. Yakhnenko et al. [53] applied a 

discriminatively trained k-order Markov model to classify protein and text sequence 

data. Srivastava et al. [48} used a profile HMM to classify biological sequences. 

In general, using item taxonomies in sequential pattern mining was introduced 

by Srikant et al. [4 7]. Given a user defined taxonomy on items, it allows sequential 

patterns to contain items across all levels in the taxonomy. They modify each 

transaction by adding to each item, its ancestors in the taxonomy. Then they mine 

sequential patterns while making an attempt to minimize redundant patterns. Han et 
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al. [24] explored the use of item taxonomies in association rule mining. Even though 

their focus was on frequent itemset mining, the proposed idea is useful for sequential 

pattern mining as well. They iteratively mine frequent itemsets ( and eventually strong 

rules) at each level in the taxonomy in a top-down manner while reducing the support 

threshold as they proceed toward the lower levels. 

Andorf et al [12] explored the use of reduced amino acid alphabets for clas­

sification of protein sequences into functional families. They constructed decision 

tree-based classifiers using motifs identified through multiple sequence alignments. 

Their evaluation shows that classification accuracies achieved by the use of motifs 

ba.c;ed on certain reduced alphabets are comparable to that of the 20-letter alphabet. 

However, they have not made an attempt to combine different alphabets. A Genetic 

Algorithm is used to produce different reduced alphabets in [40]. For each generated 

alphabet, N-peptide compositions (same ask-grams) are extracted from the training 

sequences and are used to train an SVM-based classifier. The final prediction is 

computed according to the mean rule. 

\i\Tork presented in this thesis falls into the first category of sequence classifiers 

mentioned above. Our feature space is similar to the one used in [46]. Even though 

this thesis primarily focuses on protein sequences, our approach can in general be 

applied to any form of sequence data composed of symbols that have a taxonomic 

relationship between them so that reduced alphabets can be derived from the taxon-

omy. 
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CHAPTER 3. FREQUENT SUBSTRING MINING 

Frequent substring mining is a special case of the well known sequential pattern 

mining problem. Given a collection of sequences, sequential pattern mining addresses 

the problem of discovering subsequences that occur frequently among them. For 

example, in a collection of customer purchase records for a computer accessories shop, 

the sequence, PC➔ Modem ➔ Webcam could be a frequent subsequence. A substring 

is a special subsequence where there are no gaps between adjacent elements. 

We mine frequent closed substrings from the sequences in the training dataset 

which will serve as primary features for classification as described later in this thesis. 

Definition 3.1. (Substring). Let I: = {e1, e2 ... en} be an alphabet and S = 

a1 a2 ... am be a sequence over I: where ai E I: for all 1 ::S i ::S rn. A sequence 

SI = b1b2 ... bk over I: is said to be a substring of S, denoted by SI s;;; S, if there 

exists some O ::S c ::S rn - k so that bj = ac+J for all I ::S j ::S k. 

E.g. For an alphabet I: {A, B, C}, 5/ = ABBC is a substring of S 

BCAABBCAB 

Definition 3.2. (Support). Given a sequence dataset D, the support of a substring 

pattern P is given by, 

Support(?) /{SE DIP s;;; 5}1 

For a given training sequence dataset D, the problem of frequent substring 

mining is to find the set of all substring patterns whose support is greater than or 

equal to a user specified support threshold ..\. The goal is to find all elements of the 

set, 

FS {PI (Support(?)~>.)} 
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In most applications, the set of frequent substrings can be extremely large, 

especially when ..\ is low. Every substring of a frequent substring is also frequent 

and this is a major contributor towards generating a huge set of patterns. This 

problem can be alleviated to a great extent by mining for frequent closed substrings. 

A substring P is closed if there is no string pl so that P ~ pl and Support( P) 

Support(PI). The set of frequent closed substrings FCS, is defined as follows. 

PCS {PE PS IP is closed} 

FCS for the sequence dataset in Table 3.1 when ..\ = 2 is as shown below. Kote 

that we ignore substrings with length=l. (Support is shown within parenthesis). 

PCS= {AC(4), ACBDP(3), BAEC(3), BAECE(2), CDBCA(3), DAB(3), 

EDA(2), P A(2)} 

Table 3.1. An example of a sequence dataset. 
i SID I Sequence 

1 ACBDFBAECCDBCA 
2 CDBCAFDAB 
3 ACBDFABAECEDAB 
4 BAECEFACDBCA 
5 FEDACBDFEBBDAB 

Once the frequent substrings are mined, the training sequences are converted 

into binary feature vectors or feature sets as shown in Table 3.2, where the rows corre­

spond to sequences and columns ( or the set elements in the feature set representation) 

correspond to frequent substrings. If a given sequence Si contains the lh frequent 

substring, then the lh bit in the feature vector of Si is set to 1 or equivalently, .i 

is included in its feature set. If not, the bit is set to 0. Note that both of these 



Table 3.2. Feature vector and feature set representations for the same sequences 
contained in Table 3.1. 

I i Feature Index I 
SID 1 1 I 2 I 3 I 4 I 5 I 6 I 7 I ~ 

1 1 1 1 0 1 0 0 0 
2 0 0 0 0 1 1 0 0 
3 1 1 1 1 0 1 1 1 
4 1 0 1 1 1 1 o 0 1 
5 1 1 0 0 0 1 , 1 0 

I SID I Feature set 
1 {1, 2, 3, 5} 
2 {5, 6} 
3 {1, 2, 3, 4, 6, 7, 8} 
4 {1, 3, 4, 5, 8} 
5 {1, 2, 6, 7} 

N ote:Features are indexed in the same order as they are listed in FCS 

representations contain the exact same information. 

From a pattern mining perspective, the set of closed substrings is a lossless 

compression of the full set of frequent substrings as the former can be used to derive 

the latter. It reduces the dimensionality of the feature space used for classification 

significantly without loosing any information from the training data. However, a 

substring P may be excluded from the feature space due to the existence of a super­

string pl of P with the same support, while a test sequence may only contain P but 

not pl. This could lead to misclassification of test sequences. Nevertheless, we use 

the set of closed substrings for the feature fusion-based classification algorithms as 

the set of all frequent substrings can become unmanageable large when substrings 

from all alphabets are combined. On the other hand, we use the set of all frequent 

substrings for the classifier fusion-based algorithm as it treats substrings from different 

alphabets individually. The algorithm proposed in [37] is used to mine frequent closed 

substrings from the sequences in the training database. The original algorithm is for 

mining gap-constrained closed sequential patterns. Hence we set the gap-constraint 

to zero for mining substrings. Note that this algorithm directly mines closed frequent 

subsequences without having to generate the frequent subsequences first and then 

eliminate the non-closed subsequences later. However, we disable the closure checking 

functionality when we need the set of all frequent subsequences. 
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CHAPTER 4. REDUCED ALPHABETS 

4. 1. Introduction 

As described previously, sequences are defined over a finite alphabet of distinct 

elements. However, there are situations where distinct elements may have consid­

erable similarity with each other and could be treated as the same element. Let 

I: = {A, B, C, D, E, F} be an alphabet. For example, if A represents "Margarine'' 

and B represents "Butter", then in most general applications A and B could be 

treated as identical elements. This means pattern C DAF could be treated the same 

as CDBF. Therefore it's desirable to group elements A and B together and construct 

a reduced version of the alphabet in order to discover such patterns. On the other 

hand, if one is interested in distinguishing between customers who buy "Margarine" 

and those who buy "Butter", then this grouping is undesirable. Further, there can be 

situations where the appropriate level of reduction is not known a priori. One good 

way of handling these multiple levels of granularity is to consider different reduced 

alphabets where elements have been grouped through hierarchical clustering. 

Provided there is some function to calculate the pairwise similarity between 

distinct elements, an agglomerative hierarchical clustering scheme can be used to 

form reduced alphabets as follows. In the first iteration, group the two most similar 

elements together. In each subsequent iteration, merge the two most similar clusters 

( a cluster can be a single element) and continue this process until the desired number 

of groups are formed. Similarity between clusters can be measured using single, 

complete or average linkage. Theoretically, elements can be clustered until all of 

them are assigned to a single group. However, in most practical applications, the 

process will be terminated before that stage because a single element alphabet is not 

useful. 
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Figure 4.1 shows a hypothetical hierarchical clustering tree for the alphabet I: 

mentioned above. According to this tree, elements A and B are the two most similar 

elements in I:, thus they get merged into a group at the lowest level of the tree, 

followed by D and E. is distantly similar to either D or E and therefore join the 

group (DE) at a higher level of the tree. The two groups (ABC) and (DEC) exhibit 

very little similarity to elements in each other and therefore remain as separate groups 

until the root of the tree. Table 4.1 shows how a sequence can be represented using 

the different alphabets. 

A_2 

A_3 

A_4 

A_S 

A_6 

Figure 4.1. Hierarchical clustering tree of reduced alphabets. 

Table 4.1. An example of a sequence, transformed into the different alphabets shmvn 
in Figure 4.1 (A group is represented by its first element). 

I Alphabet J Sequence 
A_6 IACBDFBAECCDBCA 
A_5 ACADFAAECCDACA 
AA ACADFAADCCDACA 
A_3 AAADFAADAADAAA 
A_2 AAADDAADAADAAA 
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4.2. Reducing the Amino Acid Alphabet 

There are twenty naturally occurring amino acids that serve as building blocks 

in forming protein chains. However, some of these amino acids have similar properties 

and have been found substituting one another with only minor effects on the final 

topology of a protein which can consequently result in conserved function. The 

multiple Alanine substitutions are among the most well known examples [21]. Substi­

tution matrices such as PAM [18] and BLOSUM [25] provide quantitative values for 

these similarities. They have been developed based on the frequencies of amino acid 

substitutions observed in aligned protein sequences and reflect both evolutionary and 

functional similarity between amino acids [31 ]. 

The similarity between amino acids can be used to group similar ones together 

and derive reduced alphabets. Use of reduced alphabets has been extensively studied 

in relation to protein folding in particular [39, 16, 32, 41]. Further, Andorf et al. [12] 

and Albayrak et al. [10] studied the use of reduced alphabets in classification and 

clustering of proteins based on their functions, respectively. \1/e study the use of 

reduced alphabets and combinations of them, in mining substring patterns from 

protein sequences. Our assumption is that it would allow us to find conserved 

patterns among protein sequences that may not necessarily have identical amino acid 

compositions under the full alphabet of twenty residues but will become identical 

when transformed to a reduced alphabet. For the work presented in this thesis, 

we use the sets of reduced amino acid alphabets derived by Murphy et al. [39] and 

Etchebest et al. [21] In [39], Similarity between a pair of amino acids is expressed in 

terms of a correlation coefficient based on the BLOSU~,f50 substitution matrix. As 

an example, the correlation coefficient for the two residues iv and Y is given by, 
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Where, I\-1n,m is the similarity value between the nth and m th amino acids as found in 

the similarity matrix. The summation of i is taken over the 20 amino acids. 

The correlation coefficient is used as a pair-wise similarity measure to group 

similar amino acids together. First, the two amino acids with the highest correlation 

coefficient are grouped together. Then the two with the next highest correlation 

coefficient are considered for grouping. If none of them is already in a group, then 

they are assigned to a new group. If one of them is already in a group, then the other 

one is assigned to that same group. This process continues until the desired number 

of groups is formed. Figure 4.2 shows some of the reduced alphabets derived. Please 

refer to [39] for a more complete description. 

Etchebest et al. [21] derived reduced alphabets based on amino acid distribution 

observed in structural motifs called protein blocks. Use of protein blocks incorporates 

the influence of local protein structures into the construction of the alphabets. This 

is useful since it is well established that protein structures can be represented as 

a combination of local structures and results in a more complete description than 

classical secondary structures [21]. The authors define a distance measure which is 

based on the distribution of different amino acids in the protein blocks and it is 

then used to generate a hierarchical clustering tree of reduced alphabets as shown in 

Figure 4.3. please refer to [21] for more details. 
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A_lO: 

A_12: 

A_lS: 

A_18: 

A_20: 

Figure 4.2. Reduced alphabets derived by Murphy et al. [39]. 

A_S ALMEQRK 

A_S 

A_9 

A_13 

A_20 

Figure 4.3. Reduced alphabets derived by Etchebest et al. [21]. 
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CHAPTER 5. ASSOCIATION RULE-BASED 

CLASSIFICATION 

5.1. Introduction and Preliminary Concepts 

Association rule mining (ARM) is one of the most important tasks in data 

mining. It has been used in many contexts since its introduction by Agrawal et 

al. [9]. It was initially proposed to facilitate Market Basket Research (MBR). Since 

then it has found applications in areas such as Software engineering, Bioinformatics 

and Precision agriculture as well. 

In typical association rule mining, a rule of the form X ⇒ Y relates two 

disjoint sets of items X and Y where X is called the antecedent and Y is called 

the consequent. For example in MBR this could mean, customers who buy X also 

tend to buy Y. The statistical strength of a rule is ubiquitously expressed in terms 

of support and confidence where the former is the number of transactions containing 

both the antecedent and consequent while the latter is the fraction of transactions 

that contain the antecedent that also contain the consequent. However, in association 

rule-based classification, associations are drawn between itemsets and classes. 

Conventionally, association rule mining is done in two steps. 1) Generating 

all itemsets that exceed a minimum support threshold (frequent itemset mining) 2) 

Deriving association rules from the set of frequent itemsets mined in step 1. 

Given a set of distinct items l { i 1, i 2 , ..• im} and a transaction database 

D = {T1. T2, ... TN} where each ~ ~ l , the problem of frequent itemset mining is 

to find the set 11 of subsets of l so that, 11 {X ~ llSupport(X) ~ o-} where, 

Support(X) l{Ti E DIX~ ~}I 

and u is a user defined minimum support threshold. 
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In our case, the transactions are the training sequences converted into the feature 

space of frequent closed substrings mentioned in chapter 3. Therefore the items refer 

to the indices of the frequent substrings. Le I IndicesO J(FCS). This means, 

an item corresponds to a frequent substring and therefore an itemset corresponds to 

a collection of frequent substrings which can be thought of as a sequence signature. 

Table 5.1 contains an example transaction database where each row represents a 

transaction. Note that the transaction database is constructed in the same manner 

as shown in Table 3.2.2. However, we have constructed a new example different from 

the one shown in Table 3.2.2 in order to be more illustrative of the specifics of this 

section. 

5.2. Learning Association Rules for Classification 

In a binary classification problem the transaction database contains both posi­

tive and negative training instances. In general, if we assume D contains transactions 

belonging to K classes; c1 , c2 •.. CK then, a frequent itemset X can be used construct 

classification rules of the form. 

R: X ➔ Ci, for 1 :5 i :5 K 

If DC\, contains all the transactions belonging to class label c;, the confidence 

of a rule R : X ➔ ci is defined as, 

Table 5.2 lists some of the frequent itemsets along with the confidence values 

of the rules they generate, as derived from the transaction database contained in 

Table 5.1. E.g. Conf({l,5} ➔ -1) = i = 66.7% 
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Table 5.1. An example transaction database. 
) Transaction ) Items 

T1 {1, 3, 4, 6, 7} 
! T2 {l, 4, 5} 

T3 {3, 4, 6, 7} 
T4 {l, 3, 5, 6, 7} 
T5 {l, 3, 6, 7} 

I Class I 
+1 

1 
+l 

1 
-1 

T6 {l, 2, 3, 5, 6} ! -1 
T1 {2, 3, 5, 6} -1 

Table 5.2. Some of the frequent itemsets and their corresponding classification rules 
derived from the transaction database in Table 5.1 at (J = 2. Shown in boldface are 
all the rules generated by HARMO:NY [50]. 

I I Itemset I Support I Conf(R: X ➔ +1)% I Conf(R: X ➔ -1)% I 
1 {l, 3, 5, 6} 2 0 100 I 

I 

I 2 {l, 4} I 2 100 0 I 
I 

3 {l, 5} ! 3 33.3 66.7 
4 ! {1, 6} 4 25 75 
5 {3, 4} 2 100 0 
6 {3, 7} 4 50 50 
7 {4} 3 100 0 
8 { 4, 6} 2 100 0 
9 {5} 4 I 25 75 

i 10 {5, 6} 3 0 100 

Typically, frequent itemset mining generates a large number of itemsets. How­

ever, only the high confidence itemsets are useful for constructing effective classifiers. 

E.g. the itemset {3, 7} is equally associated with both classes with a confidence of 50% 

and is therfore not a useful rule for classification. Further, if a confidence threshold 

is used (E.g. 90%), then itemsets such as {l, 5}, {1, 6} and {5} are also not useful. 

Therefore, mining all frequent itemsets and then selecting the confident rules is not 

an efficient solution and is often prohibitive due to the excessive computational cost 

of frequent itemset mining as well as rule selection from a large number of candidates. 
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In order to avoid the above mentioned inefficiencies in the conventional ap­

proach, we use HAR'.\1ONY [50), an efficient algorithm which directly mines high­

confidence covering rules for classification. Given a minimum support threshold a, 

HARMONY will find high quality classification rules ensuring that for each training 

instance, the highest confidence rule covering that instance is included in the final rule 

set. By defaulL HARMONY does not use a minimum confidence threshold. However, 

users can specify a confidence threshold so that only those rules with confidence 

exceeding the threshold are included in the final classification rule set(But this may 

cause some training instances not to have any rules covering them in the final rule 

set). Please refer to [50] for more details. 

The classification rules generated by using the HARMONY algorithm on the 

same transaction database shown in Table 5.1 are shown in boldface in the same 

Table. Note that it generates only three itemsets but covers all the training instances 

and includes the highest confidence rule for each instance. In spite of pruning 

certain itemsets that would otherwise be generated by the conventional approach, 

and culminating in a much more compact set of rules, HARMONY still preserves the 

most useful and representative rules for classification. E.g. the itemset {1, 3, 5, 6} 

covers transactions T4 arid T6 and generates a rule with confidence of 100% towards 

the negative class. But both of these transactions are covered by the itemset {5, 6} 

which has the same confidence but a higher support. Therfore {5, 6} is prefered over 

{1, 3, 5, 6} and is potentially more useful. 

Once the set of classification rules has been mined, they are ordered in the 

confidence descending order. Support descending order is used to order rules with 

the same confidence. This ordering will provide efficient access to the classification 

rules when the developed model is used to classify new test instances. 
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As mentioned before, the body (itemset) of a classification rule represents a 

collection of frequent substrings which we refer to as a sequence signature, following a 

similar concept as in [20]. The usefulness of sequence signatures go beyond pure classi­

fication purposes as they can reveal important sequence segments that are responsible 

for the specific properties of a family of related sequences. For example, for protein 

sequences, these could mean sequence motifs or functional domains. However, since 

these signatures do not impose a limit on the gap between two frequent substrings, 

they can capture patterns that are wide spread along a sequence which generalizes 

the concept of sequence signatures beyond traditional motifs or domains. 

5.3. Classification of a New Instance 

A new test instance ~, is classified according to the most confident classification 

rule it covers. Ti covers a rule R: X ➔ ci if X ~ ~-

Classlabelof(~) = argcimax(Conf(R: X ➔ ci)): X ~ ~ 

E.g. The transaction; {1, 2, 4, 6} will be classified as positive by the rule R : 

{ 4} ➔ + 1 with 100% confidence. 
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CHAPTER 6. SUPPORT VECTOR MACHINE-BASED 

CLASSIFICATION 

A support vector machine(SVM) [49] is a supervised machine learning technique 

that is applicable to both classification and regression tasks. SVMs have gained 

much popularity in recent years and have found applications in many different fields 

including, text categorization, image recognition and bioinformatics. 

SVMs are extensively used in bioinformatics for sequence classification. Desh­

pande and Karypis [19] investigated the use of several widely used classification 

methods on biological sequence data. Their results prove classifiers based on SVMs 

outperform other popular classification methods such as those based on Markov 

models and K-nearest neighbors. She et al [46] compared See5 [7] (improved version 

of C.4.5), association rules, Hidden Markov Model and SVM based classifiers in their 

study of outer membrane proteins and showed that SVM based classifiers produce 

the best results. Furthermore, SViv1s are particularly suitable for situations with 

high dimensional feature spaces which is exactly the case in our work. 

The following discussion is a very brief introduction to the theory of SVMs. 

Most of the material in the following section is based on [45]. 

Given a sample S of training data points (training examples) defined in a 

space X ~ R11
, SVMs attempt to find a hyperplane which separates the positive 

and negative examples in S. Let S = {(x1, y1), (x2 , y2 ), ..• (xz, Y1)}, where Xi E X 

is the n-dimensional feature vector of the ith training example and Yi E { + 1, -1} 

is its class label, for each i 1, 2 ... l. The goal of a linear classifier is to find a 

hyperplane w.x + b 0, such that all positive examples in S reside on one side and 

the negative examples on the other as shown in Figure 6.1. In the previous equation, 

w E R11 is referred to as the weight vector and it defines a direction perpendicular to 

the hyperplane where as b E JR is called the bias and it determines the distance to 
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the hyperplane from the origin. A separating hyperplane must satisfy the following 

condition. However, this is possible only if the training data is linearly separable. 

Yi(W.Xj+b)~O, 'vi=l,2, ... l (1) 

\Vhen the classifier is being used to predict the class label a new test instance xi, 

it is classified as positive if ( < w .x > +b) > 0. Otherwise, it is classified as negative. 

Definition 6.1 (Functional margin). Functional margin of an example (xi, yi) w.r.t 

a hyperplane characterized by ( w, b) is given by, 

Functional margin of a hyperplane ( w, b) w. r. t a training sample S is given by, 

Definition 6.2 (Geometric margin). Geometric margin of an example (xi, Yi) w.r.t 

a hyperplane ( w, b) is given by, 

Geometric margin of a hyperplane ( w, b) w. r. t a training sample S is given by, 

There are many different separating hyperplanes for a linearly separable training 

dataset as shown in Figure 6.1. 1 (a). SV).1S look for the one with the maximum 

geometric margin which is termed as the maximal margin hyperplane. A hyperplane 
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(a) Two of many possible separating hyper- (b) Maximal margin hyperplane. 'lf,1 = 1/lwl 
planes for linearly separable data. for a canonical hyperplane. 

Figure 6.1. Demonstration of linear SVMs for 2-dimensional data. 

characterized by (w, b) has an inherent degree of freedom so that it can be rescaled 

into (.,\w, .,\b) for some .,\ E JR+ without changing its geometry. The rescaling has no 

effect on the geometric margin but it does affect the functional margin. Therefore, 

the maximal margin hyperplane is found by fixing the functional margin to 1 and 

then minimizing lwl. Hyperplanes with a functional margin of 1 are referred to as 

canonical hyperplanes. The solution to the following optimization problem yields the 

maximal margin hyperplane, (w, b) with geometric margin V,1 = 1/lwl [45]. 

minimizew,b < w.w > 

subject to constraint: Yi(w.xi b) 2: 1 

Through out the above discussion we assumed that the training data is linearly 

separable. However, this is typically not the case with real datasets as they can 

contain outliers due to noise. Therefore, the classification model may need to ignore 

such training examples. This leads to the development of soft margin SVMs that 

allow a few training examples to be on the wrong side of the separating hyperplane. 
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This is achieved by introducing slack variables(~i) into the optimization problem as 

shown below. 

i=l 

minimizetw,b < w.w >+CL~; 
l 

subject to constraint: Yi(w.xi b) 2: 1 - (i 

C is called the regularization parameter and it controls the trade-off between 

margin size and training errors. In practice, a value for C is obtained by assessing 

the performance of the classifier by using a separate validation set or through internal 

cross-validation within the training set. 

·while soft margin SVMs handle outliers in noisy data, kernel functions can be 

used to map linearly inseparable data into a higher dimensional space where it could 

become linearly separable. This is sometimes referred to as the kernel trick. Popular 

kernel functions include; polynomial, Radial Basic Function (RBF) and Sigmoid. 
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CHAPTER 7. FEATURE VS CLASSIFIER FUSION 

APPROACHES TOWARDS SEQUENCE 

CLASSIFICATION 

7.1. Introduction 

In situations where information from multiple sources are used for building 

predictive models, there must be some way of combining this information in order to 

make the final prediction. Feature fusion and classifier fusion are two fundamental 

approaches towards addressing this problem. Feature fusion refers to combining the 

sets of features obtained from individual sources into a single feature set, describing 

each training instance using this combined feature set and then training a single 

classifier. In contrast, classifier fusion refers to training a set of individual classifiers 

using training instances described by features obtained from each individual source 

and then combining the predictions made by these classifiers to generate the final 

prediction for a test instance. In our work, the different alphabets serve as multiple 

sources of information. 

Figures 7 .1 (a) and (b) demonstrate the difference between the two approaches. 

f and h are the functions that perform the actual feature or classifier fusion respec­

tively. In our case, f performs the operation of concatenating feature vectors from 

selected reduced alphabets and h is a meta classification model. Both of these will 

be explained in detail in their respective sections. 

Notation: For the rest of this thesis, we will use A1 to denote the complete 

set of alphabets used in a given experiment. In our experiments A 1 is equal to the 

set of alphabets listed in either Figure 4.2 or Figure 4.3. E.g. referring to Figure 4.2, 

A1 = {A20, A1a, A15, A12, A10}-
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(a) Feature Fusion. f is some function which combines the features. 
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Test 
instance 

(b) Classifier Fusion. h is some function which combines the predictions. 

Figure 7.1. A diagrammatic view of feature Vs classifier fusion. 

7 .2. Feature Fusion Approach 

\Vhile following the feature fusion approach to multiple source classification, we 

combine features (frequent substrings) mined from different reduced alphabets and 

train a classifier using the combined set of features. 

The most straight forward way of combining features would be to concatenate 

feature vectors corresponding to each alphabet in A 1. However, we learned that this is 

not an effective solution as addition of features from certain alphabets aggravated the 
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performance of the classifier. Further, the influence of features from a given alphabet 

on the performance of the classifier is dataset or even class dependent. Therefore, 

in a given classification experiment, we use a subset As of A f. The procedure for 

selecting alphabets and corresponding support thresholds to mine frequent substrings 

from sequences transformed into them, is explained in the next section. For each 

selected alphabet, we reduce the sequence database to the corresponding alphabet 

and mine for frequent substrings. Once mining is complete for all selected alphabets, 

we collect all the frequent substrings and remove duplicates. Using this combined 

set of frequent substrings as features, we then represent the sequences in the training 

dataset as binary feature vectors or feature sets in the same manner as described in 

Chapter 3. Finally, a classification model is developed using these feature vectors 

or feature sets. Any feature-based classification algorithm can be used to build the 

classification model. In this thesis we used either Association rules or Support Vector 

Machines (SVM). Figure 7.2 contains the pseudo code for this process. 

7.2.1. Parameter Estimation 

Selection of which alphabets to use and estimation of a suitable minimum 

support threshold plays an important role in the final classification accuracy achieved 

by our algorithm. \Ve refer to this process as the parameter estimation procedure. 

By parameters, we mean the set of selected alphabets(As) and a support threshold 

,\i for each ai E A8 • Suppose we have a total of N different alphabets to choose 

from, then we have a total of 2N - 1 possible alphabet selections. E.g. there are 

1023 different alphabet selections available for N = 10. In the most flexible case, the 

support threshold can take a value anywhere between 0-100% of the dataset size and 

can be independantly chosen for each selected alphabet. Therfore selecting a subset 

from all available alphabets and sleeting minimum support thresholds for them is an 

extremely difficult task and exploring all possible combinations is not an option. 
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SUBROUTINE 1: Learn (D, Asp) 

Input: D - Training database 
Input: Asp - A set of tuples (ai, Ai), where ai is an alphabet and Ai is the minimum 
support threshold used to mine frequent substrings from D transformed into ai. 
Output: Model - The classification model learned 

I. FCS ¢ 

2. For each (ai, Ai) E Asp 

3. Dai = D transformed into alphabet ai 

4. FC Sai Frequent Substrings mined from Dai with min support = Ai 

5. FCS = FCS u FCSai 

6. FCS = Remove_Duplicates(FCS) 

7. f eature_vector s = sequences in D transformed into feature vectors using FC S 

8. l'v[ odel = Classifier trained with feature_vectors 

9. return }vf odel 

Figure 7.2. Building the classification model. 

In order to make this alphabet selection and support threshold estimation 

process more manageable, we use a greedy approach as described by the pseudo 

code in Figure 7.3. This process runs in several rounds. In the first round, it selects 

the alphabet that yields the best classification result and adds it to a set of selected 

alphabets(A8 ). In each subsequent round, it finds the alphabet which gives the best 

result when combined with the alphabets already in the selected set and adds it to 

the selected set. As explained in the next paragraph, by "classification result", we 

mean the Fl value obtained by internal cross validation within the training set. The 

greedy nature of this process may cause the selected parameter values to deviate from 

the absolute optimal values. However, as for our experience, it provides parameter 

values that result in reasonably good classification accuracy. 
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The optimization sub-routine outlined in Figure 7.4 is responsible for selecting a 

near optimal minimum support threshold(>-.) for a given alphabet (either by itself or 

in combination with already selected alphabets). It performs a k-fold cross validation 

(E.g. 3-fold) within the training dataset in order to obtain classification results for 

parameter estimation. Please note that this cross validation is separate from the cross 

validation we use in the experimental evaluation of our algorithm in section 8.2 and 

should not be confused with each other. We use the Fl measure as the objective 

measure and try to maximize it using a hill climbing approach with multiple restarts. 

Lines 1-3 are used to skip the optimization if required and its use will be explained 

later in this section. 

Definition 7 .1. (Precision, Recall and Fl measure) 

Let, TP(True Positives) - Number of test instances (test sequences in our case) 

predicted as positive and are actually positive. 

FP(False Positives) Number of test instances predicted as positive but are actually 

negative. 

TN(True Negatives) Number of test instances predicted as negative and are actually 

negative. 

FN(False Negatives) Number of test instances predicted as negative but are actually 

positive. Then, 

Precision 
TP 

TP+FP 
Fl = 2.Precision.Reca.ll 

Precision Recall 

Recall 
TP 

TP+FN 

The loop starting at line 4 of Figure 7.4 varies the value of ,\ for each iteration 

until the Fl value reaches a maximum. We use a hill climbing approach to update 

>-.. Note that there is a possibility of the Fl value reaching a local maxima due to 
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the inherent nature of the hill climbing approach. However, we use multiple restarts 

as an attempt to reduce the possibility of a local maxima. For each fold in the cross 

validation, line 6 builds the classification model and line 7 makes the predictions for 

the sequences in the secondary testing dataset. Line 8 calculates the overall Fl value 

using the predictions made in all folds. 

Figure 7.3 contains the pseudo code for the complete algorithm, including 

parameter estimation and construction of the final classification model. Lines 4-9 

describe the process of discovering the best alphabet in a given round. In the very 

first round where there are no alphabets selected yet, i.e. As = ¢, this refers to 

finding the alphabet in A1 which gives the best result (highest Fl value) on its own. 

In subsequent rounds, it finds from the set of alphabets which haven't been selected 

yet (A1 - As), the one that gives the best result when combined with the alphabets 

already in the selected set(A 8 ). Line 10 checks if the best alphabet found in the 

current round actually improves the overall best result achieved so far. If it does, it 

is added to the selected set and its support threshold is saved for future use and the 

process moves on to the next round. If it doesn't, the parameter estimation process 

terminates. Even though our parameter estimation process is capable of determining 

a near optimal support threshold for each selected alphabet independently of others, 

for efficiency reasons, we fix the support threshold at a constant value after the initial 

round. More specifically, in the very first round we select the best alphabet and 

its optimal support threshold. Then we keep the support threshold constant at this 

value and prohibit the optimization subroutine from changing it in subsequent rounds. 

This is achieved at line 14, where Ac is assigned the optimal support threshold of the 

first selected alphabet which will cause the optimization sub-routine not to change it 

thereafter. Line 16 calls the Learn subroutine along with the parameters estimated 

as described above, to build the final classification model. 

31 



ALGORITHM 1: 

Input: Dtr - Training sequence database. 
Input: Ai Set of all alphabets. 
Output: Af odel - Classification IV1odel. 

1. As </J, Asp </J / /Initialization 

2 . ..Xe= O 

3. globaLbesLFl = 0 

4. currenLbesLFl = 0 

5. For each alphabet a E A f As 

6. (Fl,...\) Optimize(a,Asp,Ac,Dtr) 

7. If Fl > currenLbesLFl 

8. currenLbesLFl = Fl 

10. If currenLbesLFl > globaLbesLFl 

11. globaLbesLFl = currenLbesLFl 

12. As= As U {as} 

13. A.9p Asp U {(as, As)} 

15. Goto line 4 

16. Model=Learn(Asp, D) 

17. return Model 

Figure 7.3. :.fain algorithm. 
Lines 1-15 account for parameter optimization. Line 16 builds the final classification 
model 
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SUBROUTINE 2: Optimize(a, Asp, Ac, D) 

Input: a - Alphabet for which the optimal support threshold is being estimated. 
Input: Asp - The set of already selected alphabets and their respective support 
thresholds. 
Input: Ac - The value of the support threshold if it's fixed at some value. 0 if not. 
Input: D - Input sequence database. 
Output: (Fl, A) - \¥here Fl is the best result achieved and A is the support 
threshold that produced the best result. 

1. If Ac NULL 

3. Goto line 5 / /No optimization required. A is fixed. 

4. Loop while changing A until Fl reaches maximum 

5. For i = 0 to Folding 

6. M~odel = Learn(D;r, Asp U {(a, A)}) 

7. Predictions= Predictions U Test(D:st, .Af odel) 

8. Fl= Calculate_Fl(Predictions) 

9. return (Fl, A) 

Figure 7.4. Optimizing the support threshold for a given alphabet. 

7 .3. Classifier Fusion Approach 

In this section we describe an ensemble of SVM-based classifiers, each trained 

with features mined with respect to a distinct alphabet. The predictions made by 

individual classifiers are then combined using a meta classifier to obtained the final 

result. This approach of combining classifiers is commonly referred to as stacking 

in the ~1achine Learning community. Seewald (44] showed that other schemes of 

classifier fusion such as Voting, Selection by cross-validation, Grading and Bagging 

can also be reformulated as stacking. 
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Figure 7.5 shows the schematic diagram of our approach. First, the training 

sequences are transformed into the different alphabets used in the experiment. Note 

that unlike in the feature fusion approach, in this case we do not perform any alphabet 

selection. Instead, we use the complete set of alphabets(A1 ). In phase-1, for each 

alphabet, the primary training sequences are further split into secondary training 

and testing sets and frequent substrings are mined from the secondary training set. 

Using the frequent substrings as features, an SVM model is trained on the secondary 

training set and predictions are made for the sequences in the testing set. We use 

k-fold cross validation to split the primary set of training sequences into secondary 

training and testing sets mentioned above. Therefore, this cross validation process 

provides predictions for each sequence in the primary training dataset. If there are N 

alphabets, this results in N predictions for each sequence. A prediction is expressed 

as the distance from the separating hyper-plane of the corresponding SVM model. 

Higher the distance, the more likely the prediction is correct. 

\Ve use the predictions of the Phase-1 SV:Ms to train a meta SVM model as 

follows. The predictions made by the Phase-1 SVl\fa transform each sequence in the 

primary training set into an N-dimensional feature vector where the ith element is the 

prediction made by the ith Phase-1 SVM model. For a given training sequence, if all 

N predictions made by the Phase-1 SVl\1s are in favor of the same class, we consider 

it as a confident prediction and do not further process it. On the other hand, if at 

least one prediction differs from the rest, we note there is some disagreement between 

the classifiers and use these vectors to train the meta SVM model. Our belief is that 

the meta SVM model will learn how to treat instances where the individual Phase-

1 classifiers have provided conflicting predictions. (Please note that the filter for 

detecting conflicting predictions is not shown in the figure due to space limitations) 
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Figure 7.5. Schematic diagram of the ensemble of classifiers. 
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In Phase-2, for each alphabet, we mine frequent substrings from the complete 

set of primary training sequences and train N, SVM models. When a prediction 

needs to made for an unclassified test sequence, we consult each of the Phase-2 SVM 

models. Following the same reasoning as in Phase-I, if all models have predicted in 

favor of the same class, we let this be the final prediction. If at least one model has 
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predicted a different class compared to the rest, then. using the N-dimensional feature 

vector produced by the Phase-2 SVM models, we consult the meta SVM model built 

in Phase-I (Modelo as shown in Figure 7.5) to generate the final prediction. 

In this approach, we do not try to find an optimal support threshold for frequent 

substring mining. Instead, we use a constant support threshold for all alphabets. 

If necessary, the same techniques mentioned in the previous sections can be used 

to optimize the support threshold for each alphabet. However it will significantly 

increase the running time of the algorithm. Our experiments show that having a 

constant support threshold produces acceptably good results when using the classifier 

fusion approach. 
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CHAPTER 8. EXPERIMENTAL EVALUATION 

8.1. Datasets 

'\Ve used four datasets for the experimental evaluation of our algorithms. The 

first two are protein sub-cellular location datasets corresponding to Gram-negative 

and Gram-positive bacteria respectively. The third and fourth datasets contain pro­

tein sequences assigned with Gene Ontology terms based on their molecular function. 

The two sub-cellular location datasets were obtained from the PSORTb v.2.0 [23) 

database. The location of each protein in these datasets has been experimentally 

verified and reported in literature, thereby making them very reliable. The Gram­

negative bacteria dataset contains 1444 singly located proteins residing at five different 

location sites where as the Gram-positive dataset contains 541 singly located proteins 

at four location sites. 

The third protein dataset consists of subfamilies of peptidase. Peptidase, also 

known as protease is a clinically important group of enzymes (proteins that catalyze 

chemical reactions) whose function is to break down proteins and are utilized in 

many metabolic processes of an organism. E.g. digestion of proteins contained 

in foods. Study of protease is also important in developing protease inhibitors for 

antiretroviral therapy. E.g for HIV. There are six broad categories of peptidase; 

Metallopeptidase, Cysteine, Serine, Threonine, Aspartate and Glutamic acid. \Ve 

extracted a set of 516 experimentally annotated peptidase protein sequences from the 

UniProt database [38], which mainly contained sequences belonging to the first three 

sub-families mentioned above. (The other sub-families had only a small number of 

experimentally annotated sequences. Therefore we did not attempt to classify them. 

However, we included them as negative examples in training and testing of classifiers 

developed for the three most represented sub-families). A similar dataset has been 

used in [19]. 
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The fourth dataset consists of 206 proteins from subfamilies of Human kinases, 

another clinically important family of proteins. Similar to the previous dataset, we 

downloaded sequences from the U niProt database which have been experimentally 

annotated to the kinase family. We mainly focused on the two subfamilies; pro­

tein Serine/Threonine kinase activity (GO:0004674) and protein Thyrosine activity 

(GO:0004713) as others did not have a sufficient number of sequences. Similar 

datasets have been used in [13, 53, 14]. Table 8.1 shows the composition of all four 

datasets. 

8.2. Experiments 

For notational convenience we use the terms ASSO_FF, SV!vLFF and SVALCF 

to refer to association rule-based, SVM-based feature fusion and SVM-based classifier 

fusion algorithms respectively. 

The main objectives of our experiments were, 1) determine the effect of using 

reduced alphabets on the different algorithms ASSO_FF, SVALFF and SVALCF. 2) 

determine how they compare with other algorithms that make use of the similarity 

between amino acids. To achieve the first objective, we compare the results achieved 

by each algorithm with those achieved by the same algorithm when only the alphabet 

of 20 amino acids is used, i.e. A1 = {A20}. To achieve the second objective, we 

compare our algorithms with a sequence-alignment-based K-nearest neighbor clas­

sification algorithm. \Ve implemented a k-NN algorithm that uses BLAST [11] to 

compute a pairwise sequence alignment of the test sequence with each of the training 

sequences, pick the k nearest neighbors based on the E-values of the alignments and 

use majority voting to predict a class for the test sequence. BLAST uses an amino acid 

similarity matrix to score the alignments and therefore this classification algorithm 

inherently considers the similarity between different amino acids. Further, we also 

compare our algorithms with an SVM k-gram based[35, 14] method as well. 
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Table 8.1. Composition of the datasets. 

Gram-negative Bacteria 

Location site Number of Sequences 
Outer membrane(OM) 391 j 

I 

Cytoplasmic( Cyto) 278 
Cytoplasmic membrane(CM) 309 
Periplasmic(PP) 276 
Extracellular(EC) 190 
Total 1444 I 

! 

Gram-positive Bacteria 
Location site Number of Sequences 
Cytoplasmic( Cyto) 194 
Cytoplasmic membrane( CM) 103 
Cell wall( C\V) 61 

, Extracellular(EC) i 183 
Total 541 

Sub-families of Peptidase 
Function/Sub-family Number of Sequences 
Metallopeptidase activity 160 
Cysteine-type peptidase activity 129 
Serine-type peptidase activity 172 
Others 55 
Total 516 I 

Subfamilies of Human Kinase Activity 
Function/Sub-family Number of Sequences 

! Serine/Threonine Kinase activity 160 
Thyrosine Kinase activity 41 
Others 5 I 
Total 206 

Each algorithm was tested on a standard one-against-all binary classification 

setting. \Ve developed a binary classifier for each class in a given dataset. E.g. 

we constructed five binary classifiers corresponding to the five sub-cellular location 

sites of the Gram-negative bacteria dataset shown in Table 8.1. For a given class, 

sequences belonging to that class are treated as positive instances and the rest of the 
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sequences in the dataset are treated as negative instances. Our intention was to train 

a classifier so that it can identify sequences in the class for which it was trained for, 

amidst sequences belonging to all other classes of the given dataset. 

As mentioned before, frequent substrings were used as features for SVM_CF 

where as frequent closed substrings were used as features for ASSO_FF and SVM_FF. 

Further, inclusion of very short length substring patterns (length 4 or less) caused 

ASSO_FF to have prohibitively long run times. Therefore we included only those 

substrings with length 4 or greater in the feature space used for ASSO_FF. 

For the SVM K-gram based and k-NN algorithms, we experimented with values 

of k = l, 2, 3, 4 and k = l, 3, 5, 7, 20 respectively and chose the value which resulted 

in the best Fl value for each class. Linear kernels were used for all experiments 

involving SVJ\1s. 

We carried out independent experiments using alphabets derived by Murphy 

et al. [39] and Etchebest et al. [21] as listed in Figures 4.2 and 4.3 respectively. I.e. 

{A20,A13,A11,A 9 ,A8 ,As}. J\forphy et al. 

studied more alphabets than those listed in Figure 4.2, but we did not use those 

with less than 10 distinct elements in them as it was shown in [39] that they cause 

information loss with regard to protein folding. 

All experiments based on SVMs were performed using a linear kernel function. 

Further, we did not attempt to optimize the parameter C associated with SVIvis as 

any value greater than 1 produced the same best result. \Ve used the SV 1\11ight [26] 

implementation. 

8.3. Results and Discussion 

Table 8.2 summarizes the classification results of all algorithms in terms of Fl 

measure. The Fl measure provides a good single measurement of classifier perfor­

mance combining both precision and recall. Based on these results, it is evident that 
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Table 8.2. Fl measure achieved by different classification algorithms as averaged over 
5-fold cross validation. 

Gram-negative Bacteria 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF k-NN k-grams 
OM 73.6(66.0) 92.8(87) 92.2(88.1) 87.6 87.5 
Cyto 36.7(22.5) 78.5(76.5) 81.7(76.8) 59.3 71 
CytoMem 81.2(57.3) 91.7(91.3) 93.6(91) 80.1 90.1 
pp I 49( 46.5) 72.5(71.6) 76.7(71.2) 77.3 68.2 
EC 58.5(57.7) 75.1(73.2) 75.6(71.1) 78.8 69.7 

Gram-positive Bacteria 

I Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF k-NN k-grams 
Cyto 73.8(70.4) 89.1(88.8) 90.1(87.7) 79.7 84.7 
CytoMem 76.2(72.7) 91.8(89.6) 92.3(89.7) 77.3 89.3 
C\iV 49(24.3) 82.5(78.1) 83.5(77. 7) 72.8 88.8 
EC 57.5(54.1) 81.3(82.1) 83.2(81.8) 78.2 80.2 

Subfamilies of Peptidase activity 

\ Class 
Fl measure (%) 

ASSO_FF SVM_FF i SVM_CF I k-NN k-grams i 
Metallo 75.1(70.6) 85(81.6) 87.8(80.6) I 95.0 80.1 
Cysteine 80.5(77.7) 93.2(91.9) 93.9(90.8) I 98.1 I 88.2 

. Serine 84(82.6) 89.7(87) 92.3(89.2) I 95.3 86.9 
Subfamilies of Kinase Activity - Human 

Class I Fl measure (%) 
ASSO_FF SVM_FF SVM_CF k-NN k-grams 

Serine 95.6(94.9) 96.7(94.8) 96.7(94.7) 96.3 94.6 
ThyTosine 82.7(79.5) 83.3(80) 84.5(75.8) 87.8 71.6 

Notel: Alphabets listed in Figure 4.2 (Murphy et al.) are used for ASSO_FF, SVM_FF 
and SVi\LCF. Shown within parenthesis is the Fl value achieved by the same algorithm 
when only the alphabet of 20 amino acids is used. 
Note2: For SVM_CF 1 a constant support threshold of 2% of the class of interest was used 
in all experiments. 

SVM-based classification performs better than Association Rule-based classification 

on all of our datasets. However, it must be noted that the models learned by SVMs 

are not easily interpretable and therefore they act as a black box from a users point 

of view. On the other hand, the classification rules learned by an associative classifier 

41 



are easy to understand. Especially in our case, the body of a rule, i.e. an itemset1 is a 

collection of frequent substrings so that it can be thought of as a sequence signature 

which is responsible for assigning a given sequence to a particular class. 

Comparison of SVM_FF and SVM_CF reveals that the classifier fusion approach 

performs better than its feature fusion counterpart and is also much more efficient in 

terms of execution time. SVM-based algorithms outperform the k-NN classifier on 

protein sub-cellular location datasets. However, k-NN performs better on the protein 

function datasets closely followed by SVM_CF. 

One of our goals was to evaluate the performance improvements gained by 

using reduced alphabets. vVe will discuss the results based on alphabets derived by 

Murphy et al. [39] as they produced better results in general compared to those of 

Etchebest et al. [21]. Referring to Table 8.2, we could see that all three algorithms 

showed some degree of improvement w.r.t their versions which do not use reduced 

alphabets, for all classes across all datasets except for the Gram-positive bacteria 

extracellular class where SVALFF has performed worse. \Ve carried out a two­

tailed binomial test [43] to evaluate the statistical significance of the performance 

improvements gained by ASSO_FF, SVM_FF and SVM_CF compared to the same 

algorithms when only the standard alphabet of 20 amino acids is used. Table 8.3 

contains these p-values where significant results at the 5% level are shown in boldface. 

SVM_CF demonstrates statistically significant performance improvements for 7 out 

of 14 classes across all datasets. ASSO_FF has achieved significant improvements for 

3 classes while SVAf_FF has gained significant improvements for only 1 class. 

Figure 8.1 shows the precision and recall achieved by ASSO_FF and SVlvLCF 

in comparison with those achieved by the same algorithms when only the standard 

alphabet of 20 amino acids is used. This figure illustrates that for SVM_CF, the use of 

reduced alphabets improves recall for all classes except Gram-positive cytoplasm and 
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cytoplasm membrane. This is the expected behavior because the use of reduced al­

phabets allows more patterns fo be discovered. It also maintains comparable precision 

with the exception of Gram-negative bacteria cytoplasm and Gram-positive bacteria 

cell wall, where more precision has been sacrificed for improved recall. However, the 

overall Fl measure has improved in all classes as mentioned before. ASSO_FF also 

behaves in a similar manner for many of the classes although in some cases it improves 

precision as well. However, it has also involved in more cases where the recall has not 

improved. 

Table 8.4 shows the Fl measures achieved when the alpha.bets derived by 

Etchebest et al. [21] are used. The SVM-based classifiers do not show much variation 

between the two different alphabet schemes. However, the Fl measure for ASSO_FF 

shows greater variation for some classes. E.g. Gram-positive bacteria cytoplasm, cy­

toplasm membrane and Gram-positive bacteria cell wall. For the remaining classes the 

variation is not so remarkable but it is generally greater than that of the SVM-based 

methods. \Ve believe this is due to the fact that ASSO_FF uses longer substrings 

as features and the different types of alphabets used can have a greater influence on 

discovering longer patterns than shorter patterns. I.e. longer patterns have a higher 

tendency to be broken in to smaller fragments due to mismatches. Some of these can 

be recovered to a certain extent by using reduced alphabets. The extent to which they 

are recovered depends on the alphabets used. This effect is less for shorter patterns. 

Figure 8.2 shows the run times of the different algorithms. k-NN is the fastest 

algorithm for all datasets, followed by SVALCF. ASSO_FF appears to be faster than 

SVM_FF. However, note that given identical training data and feature spaces, SVM­

based classification is generally faster than association rule-based classification for our 

data. Yet, due to limiting the feature space of ASSO_FF to only those substrings of 

length 4 or greater, it appears to performs faster than SVM_FF. 

43 



Gram Negative Bacteria Precision(%) 

= 

~UII 
~ - 1: ~ 

I' 
~ 

~ 
~ 

I i I:) 1:) 

~ I[ 1, ~ I: ASro_FF -
D Ii I ASro_FF(20 Only) = 

- I,> I , SVM,_Ql -

u 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 " ' I: ' Ii' >, SVM_0:(20 only) l!QQ2!; 

100 :r 70 
60 
50 t 

40 [ 30 
20 
JO 
0 L_ 

(l,( C OI pp FC 

Gram Positive Bacteria Precision(%) 

Peptidase Precision(%) 

IUtll 
Metallo Cysteine Serine 

Human Kinases Precision(%) 

Serine 

ASro FF -ASSO_FF(20 Only) ~ 
SVM Ql -SVM...O:( 20 on Jy) l!QQ2!; 

~ _J____: 

Thyrosine 

I 

100 1 90 · 
80 -
70 
60 I 
50 1 
40 ' 
30 
20 r 

Gram Negative Bacteria Recall(%) 

10 ~ - o • :x 
0 ~ ,c.-,a__ a.>l,..,."----...,,___,,.___.._,,~ .,___..,,,t.a.Y 

100 

~I 
60 
50 -

;~ r 
20 -

(l,( C pp FC 

Gram Positive Bacteria Recall(%) 

I~ l _ --.x,... ~ '---"IUOJ-.0'-------"11..0LJ-.n<'----.a..OU~ L---• 

100 I 
90 1 80 ~ 

70 
60 
50 1 
40 ' 
30 r 
20 ~ 
JO -

C OI cw F.C 

Peptidase Recall(%) 

0 '------~----'-'-------'><ia~ __......__ ~ --

JOO :1 
70 
60 
50 
40 I 
30 1-
20 · 
JO ~ 
0 

Metallo Cysteine Serine 

Human Kinases Recall(%) 

Serine Thyrosine 

Figure 8.1. Comparison of precision and recall of ASSO_FF and SVM_CF 
with/without using reduced alphabets. 
Alphabets listed in Figure 4.2 (Murphy et al.) are used as reduced alphabets. 20 
only means only the standard alphabet of 20 amino acids is used. 
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Figure 8.2. Running times of the algorithms as averaged over 5-fold cross-validation. 
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Table 8.3. P-value for the significance of performance improvements gained by 
ASSO_FF and SVM_CF w.r.t the same algorithms when only the standard alphabet 
of 20 amino acids is used. 

Gram-negative Bacteria 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF 
OM 0.0049 0.0000 0.0005 
Cyto 0.0969 0.4657 0.2543 
CytoMem 0.0000 1.0000 0.0106 
pp 0.0777 i 0.3323 0.0094 i 
EC 0.8804 0.7359 0.0931 

Gram-positive Bacteria 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF 
Cyto 0.3421 1.0000 0.0730 

. CytoMem 0.6718 0.4807 0.1094 
CW 0.4050 0.5078 0.3877 

! EC 0.0091 NA 0.2891 
Subfamilies of Peptidase activity 

I Fl measure (%) 
Class 

ASSO_FF SVM_FF SV1'LCF I 

~!Jetallo 0.1118 0.1839 0.0002 
Cysteine 0.2801 0.4531 0.0391 

i 

Serine 0.8026 0.1360 0.0117 

I Subfamilies of Kinase Activity - Human ; 

Class Fl measure (%) 
ASSO_FF SVM_FF SVM_CF 

Serine 0.7872 0.1796 0.0156 
Thyrosine 0.6875 0.7539 0.0625 

Notel: Alphabets listed in Figure 4.2 (Murphy et al.) were used as reduced alphabets. 
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Table 8.4. Fl measure achieved by different classification algorithms using the 
alphabets derived by Etchebest et al. [21]. 

Gram-negative Bacteria 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF 
OM 73(73.6) 87.6(92.8) 91(92.2) 

. Cyto 23.2(36.7) 77.1(78.5) 79.7(81.7) 
CytoMem · 65.5(81.2) 91. 7(91. 7) 93.8(93.6) 
pp 47.6(49) 71.6(72.5) 75.5(76.7) ; 
EC 62.1(58.5) 74.7(75.1) 77.8(75.6) 

Gram-positive Bacteria 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF 
Cyto 72.9(73.8) 88.9(89.1) , 90.9(90.1) 
Cyto:t\1em 78.7(76.2) 89.6(91.8) 91.9(92.3) 
cw 62. 7( 49) 80.4(82.5) 83.5(83.5) 
EC 55.3(57.5) 81.3(81.3) 82.8(83.2) i 

Subfamilies of Peptidase activity 

Class 
Fl measure (%) 

ASSO_FF SVM_FF SVM_CF 
Metallo 69.8(75.1) 82.3(85) 85.5(87.8) 
Cysteine 85.1(80.9) 91.1(93.2) 93.2(93.9) 
Serine 82.2(84) i 88.5(89.7) 92.1(92.3) 

' I Subfamilies of Kinase Activity - Human I 

Class I Fl measure (%) 
I ASSO_FF SV1\1_FF I SVM_CF 

Serine j 95.3(95.6) 95.4(96.7) / 95.5(96.7) 
Thyrosine ! 80.6(82.7) 81.7(83.3) I 77.6(84.5) 

1 

Note: Shown within parenthesis are the Fl values achieved by using alphabets derived 
Murphy et al. [39] 
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CHAPTER 9. PREDICTION OF GENES/MARKERS IN 

THE CENTROMERE REGION OF CHROMOSOMES IN 

WHEAT 

9.1. Introduction 

All t hr biological information required to construct and maintain a living in­

st auce of au organism is contained i11 what is known as its genom,(' [-1]. This infonna­

tion is stored in long strands of deox_nibonucleic acid (D:\A). ,d1ich cH(' organized 

into structur<' called chronwsomcs. The DNA in a chromo::;ome is divided into disnC'te 

segments called ge77 cs. Figure 9.1 illustrntrs how D:\"A. chromosomes and genes are 

related to each other. Genes are tlw basil' units of heredity of an organism and are 

responsible for passing genl'tic traits to off-spring. They also encode the instructions 

required to produce proteins. Therefore. cldermination of the D:\"A sequrnce of grnes 

and their location on the chromosome is , ·pry important in genomic research. 

~ 
double helix) 

Chromosome 
Base Pairs 

Ctuomatid Chromatk1 

Figure 9.1. D::\' A. d1romosome and genes:How the:-,· are relatrd. Original image 
by [33]. 

Genome mapping is the process of identifying the locations of gen rs/ markers 

on their resprcti,·e chromosomes. :\larkrrs are D:\"A segments that act as landmarks 
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on a map. Figure 9.2 shows an example of how genes/markers are located on a 

chromosome. Genome maps assist scientists in their study of genes. Examples 

include, locating a human disease gene on the genome [5, 17] or localizing genes 

that could be used for improving a crop plant [29]. They also provide a framework 

for genome sequencing [5, 6, 29]. There are two main types of maps; genetic linkage 

maps and physical maps. Genetic maps are based on the principle that genes/markers 

that are close together on a chromosome are less likely to be separated during the 

process of meiotic recombination and are therefore more likely to be inherited together 

than those that are father apart (Please refer to [5] for more details). Genetic maps 

provide the relative order of markers on a chromosome and an indirect estimate of 

the distance between them. However, the rate of recombination is not uniformly 

distributed along the length of a chromosome. Therefore, distance in a genetic map 

may not always correspond to the actual physical distance. On the other hand, 

physical maps provide an estimate of the true physical distance between markers [5]. 

There are three general types of physical maps; chromosomal or cytogenetic maps, 

radiation hybrid (RH) maps, and sequence maps [5]. These different types of maps 

vary in resolution. Chromosomal maps are low in resolution while RH maps and 

sequence maps are of higher resolution and provide finer details. In our work, we are 

especially interested in radiation hybrid mapping of wheat chromosomes. 

In Radiation hybrid (RH) mapping, measured doses of radiation is used to break 

the chromosome of interest into fragments at random points. These fragments are 

then recovered using recipient cells which are subsequently analyzed for the presence 

or absence of markers [17]. Similar to genetic mapping, RH mapping also relies on 

the concept that markers that are physically close on a chromosome tend to stay 

together on the same fragment because the closer two markers are, the less likely that 

radiation will strike the chromosome at a point between them and induce a break. 
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Genes I Markers +- Centromere 

Figure 9.2. Location of genes/markers on a chromosome. 

Based on this theory, it is possible to determine the order of markers and estimate 

the distance between them by observing the frequency of breakage. Since radiation 

induced chromosomal breakage is random, RH mapping is not affected by the uneven 

distribution of meiotic recombination as genetic mapping. Please refer to [17, 29] for 

more details. 

9.2. Importance of Genes/Markers Near the Cetromere Region for 

Radiation-Hybrid Mapping of Wheat 

As mentioned above, one of the main problems in genetic mapping is that the 

rate of recombination is not uniformly distributed along the length of a chromosome. 

This is a main concern in wheat, where the rate of recombination is approximately 

proportional to the square of the distance of a given segment from the centromere. 

Further, it is estimated that one-forth to one-third of the wheat genome is present 

around the centromeres and this region is subject to less that 1 % of total recombi­

nation [28]. This causes difficulties in developing high resolution genetic maps for 

wheat. Since RH mapping does not depend on the natural recombination process, it 

does not sufer from this problem and is therefore very suitable for developing high­

resolution physical maps for wheat chromosomes including the centromere regions. 
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However, in order to utilize the full potential of RH mapping to map the centromere 

regions, a sufficient number of marker for these regions should be used in the mapping 

process. One of the different types of markers used in RH mapping are those that 

are designed uging Expressed Sequence Tags (ESTs). ESTs are short segments of 

DNA extracted by sequencing one or both ends of an expressed gene [3]. Our goal 

is to use the frequent-substring-based sequnce classification techniques mentioned 

previously in this thesis, to predict ESTs that are likely to be near the centromere of 

the chromosomes. 

9.3. Experimental Evaluation 

9.3.1. Datasets and Experiments 

Vie used wheat EST sequences available at [1], for our experiments. It contains 

ESTs mapped to segments of chromosomes called deletion bins. Since our interest 

is in predicting ESTs that are probably located near the centromere, we divide 

the dataset into two classes: ESTs in peri-centromere bins and ESTs in all other 

bins. Peri-centromere bins are the deletion bins that cover the centromere of a 

given chromosome. \Vheat is a hexaploid species and has three genomes A,B and 

D. Each of these genomes has 7 chromosomes. We used ESTs mapped to D-genome 

chromosomes labeled, 1D-7D and focused on one chromosome at a time. This lead 

to the construction of 7 datasets with two classes each as shown in Table 9.1. Since 

our algorithms are designed to work with amino acid sequences, we translated the 

nucleotide sequences of the ESTs into their corresponding amino acid sequences using 

the Transeq [2] tool. 

For each dataset, i.e., chromosome listed in Table 9.1, we employed the clas­

sification algorithms ASSO_FF SVALFF and K-NN as described in section 8.2 

while treating ESTs in peri-centromere bins as the positive class. Experiments 

were carried out to perform a 5-fold cross validation. However, the automated 
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Table 9.1. Composition of the wheat EST datasets. 

Dataset Number of ES Ts 
(Chromosome) Peri-centromere Non-peri-centromere 

lD 96 547 
2D 150 623 
3D 121 591 
4D 87 515 
5D 218 386 
6D 66 411 
7D 96 547 

parameter estimation process described for ASSO_FF and SVM_FF in section 7.2.1 

did not produce reasonable parameter values. We believe that our classifiers and 

automatically selected parameter values did not generalize well enough for the wheat 

EST datasets. Therefore, as an attempt to see how well the classifiers can perform 

at their best, we selected values for the parameters so as to obtain best classification 

results based on the final testing data. Note that this contrasts to the way we selected 

parameter values for the experiments in section 8.2, where we selected them using 

only the training data without the involvement of final testing data. 

9.3.2. Results and Discussion 

Figures 9.3 and 9.4 show the precision and recall achieved by the three different 

classification algorithms for the wheat D-genome EST datasets in Table 9.1. Accord­

ing to results shown in Figure 9.3, both ASSQ_FF and SVIILFF demonstrate better 

precision than what would be achieved due to random chance. The precision achieved 

by k-NN is very low and can be attributed to random chance. 

As indicated by Figure 9.4, k-NN achieves the best recall. However, this may not 

be considered as acceptable performance due to its low precision as mentioned before. 

SVIILFF achieves a lower recall compared to k-NN but can be nominated as the better 

of the two classifiers in terms of overall performance due to its higher precision. This 
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Figure 9.3. Precision achieved by the different classification algorithms for the wheat 
EST datasets in Table 9.1. 
Random is the precision that could be achieved due to random chance. 
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Figure 9.4. Recall achieved by the different classification algorithms for the wheat 
EST datasets in Table 9.1. 
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is confirmed by the Fl measures as shown in Table 9.2. The performance of ASSO_FF 

is impaired by its poor recall. 

Table 9.2. Fl measure of the different classification algorithms for the wheat EST 
datasets in Table 9.1. 

Dataset Fl measure (%) 
(Chromosome) ASSO__FF SVM__FF k-NN 

1D 8.6 26.5 I 24.1 
! 2D 17.5 22.6 29 

3D 19.3 28.9 21.9 
4D 15 29.9 14.1 
5D 32.2 42.9 39.1 I 

I 

6D 13.3 18 18.6 
7D 15.4 31 28.4 

According to overall results, SVM-based classification seems to show a slight 

degree of promise on wheat EST data. However, it needs to be considerably improved 

before it can be used effectively for the prediction of peri-centromere ESTs in wheat. 

Making use of comparative genomic techniques has been suggested by experts as 

future direction for improvements. 
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CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

In this thesis, we presented three frequent substring-based sequence classifica­

tion algorithms using reduce alphabets; An association rule-based classifier adopting 

a feature fusion approach(ASSO_FF), SVM-based classifier adopting a feature fusion 

approach and an SVM-based classifier adopting a classifier fusion approach(SVM_CF). 

Through our experimental evaluation we showed that SVM_CF in particular, demon­

strates statistically significant performance improvements with the use of reduced 

alphabets, for half of the classes studied. Our results show that SVM-based classifi­

cation performs better that association rule-based classification on all of our datasets. 

However, interpretabilty of the learned classification rules is an advantage of asso­

ciation rule-based classification using frequent substrings. SVMs also outperform 

the k-NN classifier on protein sub-cellular location datasets. On the other hand, 

k-NN classifier performs better on the protein function datasets while the SVMs 

demonstrate competitive performance. We believe the better performance of the 

k-NN algorithm on protein function datasets is due to the high pair-wise sequence 

similarity of these datasets compared to that of the sub-cellular localization datasets. 

k-NK performs best on the Peptidase function dataset, which has the highest average 

pair-wise similarity score1 of 401 whereas for aU other datasets the score is lower than 

300. 

Our algorithms showed limited performance on the wheat EST datasets. SVM_FF 

showed some promise but needs to be considerably improved before it could be 

employed to effectively identify ESTs in peri-centromere bins. 

As future work, we plan to combine the frequent substring-based SVM classifier 

with the pair-wise sequence alignment-based k-NN classifier using the same meta 

classifier approach described for SVlvLCF. \Ve believe this will combine the power of 

1The pair-wise sequence alignment score computed using BLAST for every pair of sequences of 
the same class and then averaged over the entire dataset. 
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sequence alignment for homology detection with the usefulness of frequent substrings 

to discover more specific sequence patterns responsible for the properties of a protein. 

It is will also be interesting to extend the same idea of combining frequent 

substrings as used for association rule-based classification, for the discovery of gener­

alized sequence signatures similar to the ones described in [20]. However, preliminary 

experiments we carried out in this direction revealed that even with the use of reduced 

alphabets, frequent substrings tend to break in to smaller fragments due to a few 

mismatches. This results in a large number of fragmented substrings making it 

difficult for frequent itemset mining algorithms to operate efficiently. Therefore, we 

need to explore the use of approximate closed sequential pattern mining algorithms 

as a solution this problem. 
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