
FREQUENT SUBSTRING-BASED SEQUENCE

CLASSIFICATION USING REDUCED ALPHABETS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Charith Devinda Chitraranjan

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

June 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

FREQUENT SUBSTRING-BASED SEQUENCE CLASSIFICATION

USING REDUCED ALPHABETS

By

CHARITH DEVINDA CHITRARANJAN

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Chitraranjan, Charith Devinda, M.S., Department of Computer Science, College
of Science and lVlathematics, North Dakota State University, June 2011. Frequent
Substring-Based Sequence Classification Using Reduced Alphabets. ~fajor Professor:
Dr. Anne M. Denton.

In recent years, various disciplines have generated large quantities of sequence

data which has necessitated automated techniques for classifying these sequences

into different categories of interest. Especially with the rapid rate at which biological

sequence data has been emerging out of high throughput sequencing efforts, the need

to interpret these large quantities of raw sequence data and gain deeper insights into

them has become an essential part of modern biological research. Understanding the

functions, localization and structure of newly identified protein sequences in particular

has become a major challenge and is seeking the aid of computational techniques to

keep up with the pace. In this thesis, we1 evaluate frequent pattern-based algorithms

for predicting aforementioned attributes of proteins from their primary structure

(amino acid sequence). \Ve also apply our algorithms to datasets containing wheat

Expressed Sequence Tags (ESTs) as an attempt to predict ESTs that are likely to

be located near the centromere of their respective chromosomes. \Ve use frequent

substrings mined from the training sequences as features to train a classifier. Our

evaluation includes SVM and association rule-based classifiers. Some amino acids

have similar properties and may substitute one another without altering the topology

1Co-authors: Charith Chitraranjan and Anne Denton, Ph.D.
Charith Chitraranjan contributed with algorithm design and implementation, experimental
evaluation and writing the manuscript. Anne Denton contributed with the initial research idea,
concepts and editing the manuscript.

iii

or function of a protein. Therefore, we use a combination of reduced amino acid

alphabets in an attempt to capture patterns that may contain such substitutions.

Frequent substrings mined from different alphabets are treated as features resulting

from multiple sources and we evaluate both feature fusion and classifier fusion approaches

towards multiple source prediction. 'We compare the performance of the different

approaches using protein sub-cellular location, protein function and EST chromosomal

location datasets. Pair-wise sequence-alignment-based Nearest Neighbor and basic

SVM k-gram classifiers are also included as baseline algorithms in the comparison.

Results show that frequent pattern-based SVM classifiers demonstrate better performance

compared to other classifiers on the sub-cellular location datasets and they perform

competitively with the nearest neighbor classifier on the protein function datasets.

Our results also show that the use of reduced alphabets provides statistically significant

performance improvements for the SVM-based classifier fusion algorithm, for half of

the classes studied.

lV

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my thesis advisor,

Dr. Anne Denton, for her valuable advise, continuous encouragement and providing

me with an opportunity to be a part of her research group, all of which means a lot

to me. I thank Dr. Kendall Nygard for his guidance as the graduate coordinator of

the Computer Science Department, Dr. Shahryar Kianian for letting me take part in

the Wheat Radiation-Hybrid mapping project and Dr. Saeed Salem for introducing

useful research tools and sharing his research ideas with me. I also thank them all

for being in my supervisory committee and for their interest in my work.

I thank all the members of our research group for their valuable input and

pleasant companionship. I thank the staff of the Computer Science Department at

NDSU for helping me with various administrative tasks.

I would also like to extend my gratitude to all my teachers and university

professors in Sri Lanka who laid the foundation for my academic career.

Last but certainly not least, I thank my parents, my brother, other family

members and friends whose support and encouragement made this thesis possible.

V

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS... v

LIST OF TABLES .. viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

CHAPTER L INTRODUCTION . 1

CHAPTER 2. RELATED vVORK . 6

CHAPTER 3. FREQUE:NT SUBSTRING l\1INING..................... 9

CHAPTER 4. REDUCED ALPHABETS 12

4.1. Introduction . 12

4.2. Reducing the Amino Acid Alphabet 14

CHAPTER 5. ASSOCIATION RULE-BASED CLASSIFICATION 17

5.1. Introduction and Preliminary Concepts . 17

5.2. Learning Association Rules for Classification 18

5.3. Classification of a l'\ew Instance . 21

CHAPTER 6. SUPPORT VECTOR MACHINE-BASED
CLASSIFICATION . 22

CHAPTER 7. FEATURE VS CLASSIFIER FUSION APPROACHES
TO\VARDS SEQUE:NCE CLASSIFICATION 26

7.1. Introduction . 26

7.2. Feature Fusion Approach 27

7.2.1. Parameter Estimation 28

vi

7.3. Classifier F\1sion Approach. 33

CHAPTER 8. EXPERIMENTAL EVALUATION 37

8.1. Datasets .. 37

8.2. Experiments . 38

8.3. Results and Discussion . 40

CHAPTER 9. PREDICTION OF GENES/MARKERS IN THE
CENTROMERE REGION OF CHROMOSOMES IN WHEAT 48

9.1. Introduction ... 48

9.2. Importance of Genes/1farkers Near the Cetromere Region for
Radiation-Hybrid Mapping of Wheat 50

9.3. Experimental Evaluation 51

9.3.1. Datasets and Experiments 51

9.3.2. Results and Discussion 52

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 55

REFERENCES . 5 7

Vll

LIST OF TABLES

Table

3.1 An example of a sequence dataset. 10

3.2 Feature vector and feature set representations for the same sequences
contained in Table 3.1. 11

4.1 An example of a sequence, transformed into the different alphabets
shown in Figure 4.1 (A group is represented by its first element) 13

5.1 An example transaction database. 19

5.2 Some of the frequent itemsets and their corresponding classification
rules derived from the transaction database in Table 5.1 at u = 2.
Shown in boldface are all the rules generated by HARMONY [50]. 19

8.1 Composition of the datasets 39

8.2 Fl measure achieved by different classification algorithms as averaged
over 5-fold cross validation

8.3 P-value for the significance of performance improvements gained by
ASSO_FF and SVl\LCF w.r.t the same algorithms when only the
standard alphabet of 20 amino acids is used. 46

8.4 Fl measure achieved by different classification algorithms using the
alphabets derived by Etchebest et al. [21]. 4 7

9.1 Composition of the wheat EST datasets 52

9.2 Fl measure of the different classification algorithms for the wheat EST
datasets in Table 9.1. 54

viii

LIST OF FIGURES

Figure Page

1.1 Basic schematic diagrams of our algorithms. A_l, ... A_N are the
different alphabets used. 5

4.1 Hierarchical clustering tree of reduced alphabets. 13

4.2 Reduced alphabets derived by Murphy et al. [39]. 16

4.3 Reduced alphabets derived by Etchebest et al. (21]. 16

6.1 Demonstration of linear SVMs for 2-dimensional data. 24

7 .1 A diagrammatic view of feature Vs classifier fusion. 27

7.2 Building the classification model. 29

7.3 Main algorithm ... 32

7.4 Optimizing the support threshold for a given alphabet. 33

7.5 Schematic diagram of the ensemble of classifiers 35

8.1 Comparison of precision and recall of ASSO_FF and SVl\LCF
with/without using reduced alphabets. 44

8.2 Running times of the algorithms as averaged over 5-fold
cross-validation. 45

9.1 DNA, chromosome and genes:How they are related. Original image
by (33] ... 48

9.2 Location of genes/markers on a chromosome 50

9.3 Precision achieved by the different classification algorithms for the
wheat EST datasets in Table 9.1. 53

9.4 Recall achieved by the different classification algorithms for the wheat
EST datasets in Table 9.1. 53

ix

LIST OF ABBREVIATIONS

SVM - Support Vector Machine

ASSO_FF - Association rule-based feature fusion

SVM_FF - Support Vector Machine-based feature fusion

SVM_CF Support Vector Machine-based classifier fusion

OM - Outer membrane

Cyto - Cytoplasmic

CM Cytoplasmic membrane

PP - Periplasmic

EC - Extracellular

C\V Cell wall

X

CHAPTER 1. INTRODUCTION

Large amounts of sequence data has been emanating from various different fields

in recent years. Biological sequences contribute to a vast majority of this data while

a considerable portion has originated from other sources such as software execution

traces, medical informatics, stock market trends, weather patterns and market basket

research as well.

\Vith the abundance of data, sequence classification has become a very im­

portant task with a broad range of real world applications such as protein function

prediction, classification of ECG time series data as normal or abnormal, classification

of software execution traces as erroneous or successful and classification of customers

into different groups based on their purchase history.

There has been a steady increase in the amounts of biological sequence data

largely due to recent advances in automated high-throughput sequencing technol­

ogy. Genomes of many species have been fully sequenced resulting in a wealth of

sequence data. However, sequencing a genome in only the first step in an attempt

towards understanding a species. In order to gain deeper insights, attributes such

as structure, function and sub-cellular location of the corresponding proteins need

to be determined. The molecular structures of newly identified proteins are being

determined at a rapid rate thanks to structure genomics projects [22]. However,

experimental determination and manual curation of protein function and sub-cellular

location has been lagging way behind the exponential rate at which sequence data

has been emerging. Experimental evaluation of these attributes is expensive and

time consuming. Therefore, there is a great incentive for making automated predic­

tions about protein function and sub-cellular location in order to characterize and

understand the roles of newly sequenced proteins in an efficient manner.

1

In general, classification is the process of predicting the class membership a

novel data point from a finite set of classes. E.g. predicting the functional family of

a protein sequence. It is well known that sequence similarity of biological sequences

often translates into structural or functional similarity. Therefore it is possible to use

sequence classification algorithms to predict the structure or function of a protein [19].

Furthermore, sequence information can also be used to predict the sub-cellular loca­

tion of a protein. Biological experiments have revealed that information required

to guide a protein to a specific sub-cellular location is encoded in its amino acid

sequence [46]. As another potential application of sequence classification techniques

for biological data, we also attempt to predict the chromosomal location of a set of

Expressed Sequence Tags(ESTs) from wheat. As explained in chapter 9, the goal is

to predict whether a given EST is located close to the centromere of its chromosome

or not. This can be useful in the development of Radiation-Hybrid maps for wheat,

which will in turn assist in sequencing the wheat genome.

In this thesis, we study the use of frequently occurring substrings as features

for sequence classification. A sequence is an ordered list of elements drawn from a set

of distinct elements called an alphabet (A formal description is given in chapter 3).

However depending on the classification problem at hand, some elements in the alpha­

bet may be considered similar to each other so that substitution of one such element

for another may not have an effect on the class specific properties of the sequence.

Therefore, the pattern mining algorithm needs to be aware of these substitutions in

order to discover useful patterns. Protein sequences are a good example where this

situation arises.

Proteins are made up of chains of amino acids each drawn from an alphabet of

20 distinct elements (naturally occurring amino acids). It's well known that certain

sequence patterns are responsible for certain functions or localization of proteins

2

and can be used to make predictions about them [46, 22]. It is also known that

over the course of evolution, some amino acids in a protein could be substituted by

others. Some of these substitutions change the properties of the protein while some do

not. The latter are referred to as conservative substitutions. Typically, conservative

substitution occur when an amino acid is substituted by another which has similar

physiochemical properties [54]. From a pattern mining perspective, these substitu­

tions present a challenging situation because sequence patterns that determine the

function of a protein can contain substituted amino acids thereby causing difficulties

in extracting useful patterns. As a solution to this problem, we propose the use of

reduced alphabets formed by grouping similar amino acids together. \Ve use alphabet

reduction schemes presented in literature [39, 21] that are derived from a hierarchical

clustering tree of the amino acids. The tree is formed by groping amino acids based on

a pair-wise similarity measure so that those with very similar properties are grouped

earlier than those with more distant properties. A more detailed description about

alphabet reduction schemes is presented in chapter 4.

\Ve introduce three frequent substring-based sequence classification algorithms

which make use of reduced alphabets in addition to the full alphabet of 20 naturally

occurring amino acids. Our motivation is to capture conserved sequence patterns even

amidst different amino acids that may have substituted one another while preserving

the properties of interest of a protein. Other sequence classification algorithms that

take the similarity between amino acids in to account include, sequence distance-based

algorithms which compute a pairwise sequence alignment using similarity matrices to

score the alignment and Hidden Markov ~fodel (HM~1)-based algorithms. HMM­

based algorithms usually require a multiple alignment of the input sequences which is

a computationally expensive process and can also lead to ambiguities often requiring

manual adjustment [10].

3

All three algorithms presented in our work consists of two main steps. 1) Mining

frequently occurring substrings from the training sequences and transforming the

sequences into a feature space using the substrings. 2) Training a classifier using the

feature representation of sequences. As explained later in detail, frequent substrings

are mined using different reduced alphabets and the three algorithms differ in the

way these features are employed or depending on the classifier (Associative or SVMs)

used. The first algorithm combines features mined from different alphabets and

trains an association rule-based classifier on this combined feature space. The second

algorithm trains an SVM-based classifier on the same feature space. Both of these

approaches fall into the category of feature fusion in multiple source prediction. The

third algorithm trains individual classifiers using frequent substrings mined from each

alphabet and then combines the predictions made by all individual classifiers. This

approach falls into the category of classifier fusion. The two basic approaches are

shown in Figure 1.1. The details of combining frequent substrings mined under

different alphabets and combining the predictions made by different classifiers are

presented in chapter 7.

4

Transform to
alphabet A_ 1

Transform to
alphabet A _N

Trianing
Sequences

Transform to
alphabetA_l

Transform to
alphabet A_ N

Trianing
Sequences

Mine
Frequent

Substrings

Mine
Frequent

Substrings

Combine
Frequent

Substrings

Train
Classifier

(a) Feature Fusion approach.

Mine
Frequent

Substrings

Mine
Frequent

Substrings

Train
Classifier

Train
Classifier

Model_l

Model

Unclassified
Test Sequence

Combine
1---+

Predictions
Prediction

Unclassified Test Sequence

(b) Classifier Fusion approach.

Figure 1.1. Basic schematic diagrams of our algorithms. A_l, ... A_N are the different
alphabets used.

5

CHAPTER 2. RELATED WORK

Previous work on sequence classification can be divided into three broad ar­

eas [52]. 1) Feature-based classification techniques that first transform the sequences

into feature vectors and then apply conventional classification algorithms on them.

2) Sequence distance based techniques that utilize some distance function to com­

pute the pair-wise similarity between sequences and then employ a nearest neighbor

classification method. 3) Techniques that use models such as Hidden Markov Models

and other statistical models for sequence classification.

Deshpande and Karypis [19] investigated sequence classification methods that

fall into each of the three categories mentioned above for the classification of biological

sequences. Their work includes SVM-based classification of sequences transformed

into feature vectors, K-nearest neighbor classification using sequence alignment score

as the pair-wise similarity measure and Markov Model-based classification. Their

experiments reveal that SVM-based classifiers generally achieve higher accuracy com­

pared to other methods.

Several studies have been performed on feature-based sequence classification.

She et al. [46] used a feature space based on frequent substrings for the prediction of

outer membrane proteins. They compared the performance of several conventional

classification methods including SVMs, See5 and Association rules on this feature

space. PSORTB [23] is an extension to this work which can make predictions for

other sub-cellular locations as well. It also achieved better accuracy through the use

of a Motif and Profile module and a BLAST module in addition to the SVM module

used in [46]. A feature space consisting of more general subsequences was proposed

by Lesh et al [34]. However, mining for frequent subsequences with unconstrained

gaps is a very expensive process and does not scale well for long sequences. Leslie et

al. [36, 35] used a K-gram based feature space to develop string kernels for use with

6

SVMs and Chuzhanova et al. [15] used K-grams as features for use with decision trees

for genetic sequence classification.

Agrawal [8] approached the problem of sequence classification by using wavelet

decomposition. Their method is capable of capturing both local and global classi­

fication behavior of sequences. It also benefits from the multi-resolution property

of wavelet decomposition and therefore it can mine classification characteristics of

sequences at different levels of granularity.

Sequence distance based classification schemes use a pair-wise distance function

to measure similarity between sequences and apply a classification method such as the

K-nearest neighbor classifier. The selection of the distance function plays a major role

in these schemes. Work presented in [30, 51] uses Euclidean distance for classification

of time series data. Euclidean distance makes sense only if the two sequences being

compared have equal lengths. Therefore it is not useful for biological sequences in

particular. Sequence-alignment-based distance functions [27} are more suitable for

symbolic sequences such as protein or DNA sequences. String alignment kernel for

use with SVMs proposed by Saigo et al. [42] can also be considered as a sequence

distance based classification scheme.

Markov and Hidden Markov Models are widely used in sequence classification

techniques that fall into the model based category. Yakhnenko et al. [53] applied a

discriminatively trained k-order Markov model to classify protein and text sequence

data. Srivastava et al. [48} used a profile HMM to classify biological sequences.

In general, using item taxonomies in sequential pattern mining was introduced

by Srikant et al. [4 7]. Given a user defined taxonomy on items, it allows sequential

patterns to contain items across all levels in the taxonomy. They modify each

transaction by adding to each item, its ancestors in the taxonomy. Then they mine

sequential patterns while making an attempt to minimize redundant patterns. Han et

7

al. [24] explored the use of item taxonomies in association rule mining. Even though

their focus was on frequent itemset mining, the proposed idea is useful for sequential

pattern mining as well. They iteratively mine frequent itemsets (and eventually strong

rules) at each level in the taxonomy in a top-down manner while reducing the support

threshold as they proceed toward the lower levels.

Andorf et al [12] explored the use of reduced amino acid alphabets for clas­

sification of protein sequences into functional families. They constructed decision

tree-based classifiers using motifs identified through multiple sequence alignments.

Their evaluation shows that classification accuracies achieved by the use of motifs

ba.c;ed on certain reduced alphabets are comparable to that of the 20-letter alphabet.

However, they have not made an attempt to combine different alphabets. A Genetic

Algorithm is used to produce different reduced alphabets in [40]. For each generated

alphabet, N-peptide compositions (same ask-grams) are extracted from the training

sequences and are used to train an SVM-based classifier. The final prediction is

computed according to the mean rule.

\i\Tork presented in this thesis falls into the first category of sequence classifiers

mentioned above. Our feature space is similar to the one used in [46]. Even though

this thesis primarily focuses on protein sequences, our approach can in general be

applied to any form of sequence data composed of symbols that have a taxonomic

relationship between them so that reduced alphabets can be derived from the taxon-

omy.

8

CHAPTER 3. FREQUENT SUBSTRING MINING

Frequent substring mining is a special case of the well known sequential pattern

mining problem. Given a collection of sequences, sequential pattern mining addresses

the problem of discovering subsequences that occur frequently among them. For

example, in a collection of customer purchase records for a computer accessories shop,

the sequence, PC➔ Modem ➔ Webcam could be a frequent subsequence. A substring

is a special subsequence where there are no gaps between adjacent elements.

We mine frequent closed substrings from the sequences in the training dataset

which will serve as primary features for classification as described later in this thesis.

Definition 3.1. (Substring). Let I: = {e1, e2 ... en} be an alphabet and S =

a1 a2 ... am be a sequence over I: where ai E I: for all 1 ::S i ::S rn. A sequence

SI = b1b2 ... bk over I: is said to be a substring of S, denoted by SI s;;; S, if there

exists some O ::S c ::S rn - k so that bj = ac+J for all I ::S j ::S k.

E.g. For an alphabet I: {A, B, C}, 5/ = ABBC is a substring of S

BCAABBCAB

Definition 3.2. (Support). Given a sequence dataset D, the support of a substring

pattern P is given by,

Support(?) /{SE DIP s;;; 5}1

For a given training sequence dataset D, the problem of frequent substring

mining is to find the set of all substring patterns whose support is greater than or

equal to a user specified support threshold ..\. The goal is to find all elements of the

set,

FS {PI (Support(?)~>.)}

9

In most applications, the set of frequent substrings can be extremely large,

especially when ..\ is low. Every substring of a frequent substring is also frequent

and this is a major contributor towards generating a huge set of patterns. This

problem can be alleviated to a great extent by mining for frequent closed substrings.

A substring P is closed if there is no string pl so that P ~ pl and Support(P)

Support(PI). The set of frequent closed substrings FCS, is defined as follows.

PCS {PE PS IP is closed}

FCS for the sequence dataset in Table 3.1 when ..\ = 2 is as shown below. Kote

that we ignore substrings with length=l. (Support is shown within parenthesis).

PCS= {AC(4), ACBDP(3), BAEC(3), BAECE(2), CDBCA(3), DAB(3),

EDA(2), P A(2)}

Table 3.1. An example of a sequence dataset.
i SID I Sequence

1 ACBDFBAECCDBCA
2 CDBCAFDAB
3 ACBDFABAECEDAB
4 BAECEFACDBCA
5 FEDACBDFEBBDAB

Once the frequent substrings are mined, the training sequences are converted

into binary feature vectors or feature sets as shown in Table 3.2, where the rows corre­

spond to sequences and columns (or the set elements in the feature set representation)

correspond to frequent substrings. If a given sequence Si contains the lh frequent

substring, then the lh bit in the feature vector of Si is set to 1 or equivalently, .i

is included in its feature set. If not, the bit is set to 0. Note that both of these

Table 3.2. Feature vector and feature set representations for the same sequences
contained in Table 3.1.

I i Feature Index I
SID 1 1 I 2 I 3 I 4 I 5 I 6 I 7 I ~

1 1 1 1 0 1 0 0 0
2 0 0 0 0 1 1 0 0
3 1 1 1 1 0 1 1 1
4 1 0 1 1 1 1 o 0 1
5 1 1 0 0 0 1 , 1 0

I SID I Feature set
1 {1, 2, 3, 5}
2 {5, 6}
3 {1, 2, 3, 4, 6, 7, 8}
4 {1, 3, 4, 5, 8}
5 {1, 2, 6, 7}

N ote:Features are indexed in the same order as they are listed in FCS

representations contain the exact same information.

From a pattern mining perspective, the set of closed substrings is a lossless

compression of the full set of frequent substrings as the former can be used to derive

the latter. It reduces the dimensionality of the feature space used for classification

significantly without loosing any information from the training data. However, a

substring P may be excluded from the feature space due to the existence of a super­

string pl of P with the same support, while a test sequence may only contain P but

not pl. This could lead to misclassification of test sequences. Nevertheless, we use

the set of closed substrings for the feature fusion-based classification algorithms as

the set of all frequent substrings can become unmanageable large when substrings

from all alphabets are combined. On the other hand, we use the set of all frequent

substrings for the classifier fusion-based algorithm as it treats substrings from different

alphabets individually. The algorithm proposed in [37] is used to mine frequent closed

substrings from the sequences in the training database. The original algorithm is for

mining gap-constrained closed sequential patterns. Hence we set the gap-constraint

to zero for mining substrings. Note that this algorithm directly mines closed frequent

subsequences without having to generate the frequent subsequences first and then

eliminate the non-closed subsequences later. However, we disable the closure checking

functionality when we need the set of all frequent subsequences.

11

CHAPTER 4. REDUCED ALPHABETS

4. 1. Introduction

As described previously, sequences are defined over a finite alphabet of distinct

elements. However, there are situations where distinct elements may have consid­

erable similarity with each other and could be treated as the same element. Let

I: = {A, B, C, D, E, F} be an alphabet. For example, if A represents "Margarine''

and B represents "Butter", then in most general applications A and B could be

treated as identical elements. This means pattern C DAF could be treated the same

as CDBF. Therefore it's desirable to group elements A and B together and construct

a reduced version of the alphabet in order to discover such patterns. On the other

hand, if one is interested in distinguishing between customers who buy "Margarine"

and those who buy "Butter", then this grouping is undesirable. Further, there can be

situations where the appropriate level of reduction is not known a priori. One good

way of handling these multiple levels of granularity is to consider different reduced

alphabets where elements have been grouped through hierarchical clustering.

Provided there is some function to calculate the pairwise similarity between

distinct elements, an agglomerative hierarchical clustering scheme can be used to

form reduced alphabets as follows. In the first iteration, group the two most similar

elements together. In each subsequent iteration, merge the two most similar clusters

(a cluster can be a single element) and continue this process until the desired number

of groups are formed. Similarity between clusters can be measured using single,

complete or average linkage. Theoretically, elements can be clustered until all of

them are assigned to a single group. However, in most practical applications, the

process will be terminated before that stage because a single element alphabet is not

useful.

12

Figure 4.1 shows a hypothetical hierarchical clustering tree for the alphabet I:

mentioned above. According to this tree, elements A and B are the two most similar

elements in I:, thus they get merged into a group at the lowest level of the tree,

followed by D and E. is distantly similar to either D or E and therefore join the

group (DE) at a higher level of the tree. The two groups (ABC) and (DEC) exhibit

very little similarity to elements in each other and therefore remain as separate groups

until the root of the tree. Table 4.1 shows how a sequence can be represented using

the different alphabets.

A_2

A_3

A_4

A_S

A_6

Figure 4.1. Hierarchical clustering tree of reduced alphabets.

Table 4.1. An example of a sequence, transformed into the different alphabets shmvn
in Figure 4.1 (A group is represented by its first element).

I Alphabet J Sequence
A_6 IACBDFBAECCDBCA
A_5 ACADFAAECCDACA
AA ACADFAADCCDACA
A_3 AAADFAADAADAAA
A_2 AAADDAADAADAAA

13

4.2. Reducing the Amino Acid Alphabet

There are twenty naturally occurring amino acids that serve as building blocks

in forming protein chains. However, some of these amino acids have similar properties

and have been found substituting one another with only minor effects on the final

topology of a protein which can consequently result in conserved function. The

multiple Alanine substitutions are among the most well known examples [21]. Substi­

tution matrices such as PAM [18] and BLOSUM [25] provide quantitative values for

these similarities. They have been developed based on the frequencies of amino acid

substitutions observed in aligned protein sequences and reflect both evolutionary and

functional similarity between amino acids [31].

The similarity between amino acids can be used to group similar ones together

and derive reduced alphabets. Use of reduced alphabets has been extensively studied

in relation to protein folding in particular [39, 16, 32, 41]. Further, Andorf et al. [12]

and Albayrak et al. [10] studied the use of reduced alphabets in classification and

clustering of proteins based on their functions, respectively. \1/e study the use of

reduced alphabets and combinations of them, in mining substring patterns from

protein sequences. Our assumption is that it would allow us to find conserved

patterns among protein sequences that may not necessarily have identical amino acid

compositions under the full alphabet of twenty residues but will become identical

when transformed to a reduced alphabet. For the work presented in this thesis,

we use the sets of reduced amino acid alphabets derived by Murphy et al. [39] and

Etchebest et al. [21] In [39], Similarity between a pair of amino acids is expressed in

terms of a correlation coefficient based on the BLOSU~,f50 substitution matrix. As

an example, the correlation coefficient for the two residues iv and Y is given by,

14

Where, I\-1n,m is the similarity value between the nth and m th amino acids as found in

the similarity matrix. The summation of i is taken over the 20 amino acids.

The correlation coefficient is used as a pair-wise similarity measure to group

similar amino acids together. First, the two amino acids with the highest correlation

coefficient are grouped together. Then the two with the next highest correlation

coefficient are considered for grouping. If none of them is already in a group, then

they are assigned to a new group. If one of them is already in a group, then the other

one is assigned to that same group. This process continues until the desired number

of groups is formed. Figure 4.2 shows some of the reduced alphabets derived. Please

refer to [39] for a more complete description.

Etchebest et al. [21] derived reduced alphabets based on amino acid distribution

observed in structural motifs called protein blocks. Use of protein blocks incorporates

the influence of local protein structures into the construction of the alphabets. This

is useful since it is well established that protein structures can be represented as

a combination of local structures and results in a more complete description than

classical secondary structures [21]. The authors define a distance measure which is

based on the distribution of different amino acids in the protein blocks and it is

then used to generate a hierarchical clustering tree of reduced alphabets as shown in

Figure 4.3. please refer to [21] for more details.

15

A_lO:

A_12:

A_lS:

A_18:

A_20:

Figure 4.2. Reduced alphabets derived by Murphy et al. [39].

A_S ALMEQRK

A_S

A_9

A_13

A_20

Figure 4.3. Reduced alphabets derived by Etchebest et al. [21].

16

CHAPTER 5. ASSOCIATION RULE-BASED

CLASSIFICATION

5.1. Introduction and Preliminary Concepts

Association rule mining (ARM) is one of the most important tasks in data

mining. It has been used in many contexts since its introduction by Agrawal et

al. [9]. It was initially proposed to facilitate Market Basket Research (MBR). Since

then it has found applications in areas such as Software engineering, Bioinformatics

and Precision agriculture as well.

In typical association rule mining, a rule of the form X ⇒ Y relates two

disjoint sets of items X and Y where X is called the antecedent and Y is called

the consequent. For example in MBR this could mean, customers who buy X also

tend to buy Y. The statistical strength of a rule is ubiquitously expressed in terms

of support and confidence where the former is the number of transactions containing

both the antecedent and consequent while the latter is the fraction of transactions

that contain the antecedent that also contain the consequent. However, in association

rule-based classification, associations are drawn between itemsets and classes.

Conventionally, association rule mining is done in two steps. 1) Generating

all itemsets that exceed a minimum support threshold (frequent itemset mining) 2)

Deriving association rules from the set of frequent itemsets mined in step 1.

Given a set of distinct items l { i 1, i 2 , ..• im} and a transaction database

D = {T1. T2, ... TN} where each ~ ~ l , the problem of frequent itemset mining is

to find the set 11 of subsets of l so that, 11 {X ~ llSupport(X) ~ o-} where,

Support(X) l{Ti E DIX~ ~}I

and u is a user defined minimum support threshold.

17

In our case, the transactions are the training sequences converted into the feature

space of frequent closed substrings mentioned in chapter 3. Therefore the items refer

to the indices of the frequent substrings. Le I IndicesO J(FCS). This means,

an item corresponds to a frequent substring and therefore an itemset corresponds to

a collection of frequent substrings which can be thought of as a sequence signature.

Table 5.1 contains an example transaction database where each row represents a

transaction. Note that the transaction database is constructed in the same manner

as shown in Table 3.2.2. However, we have constructed a new example different from

the one shown in Table 3.2.2 in order to be more illustrative of the specifics of this

section.

5.2. Learning Association Rules for Classification

In a binary classification problem the transaction database contains both posi­

tive and negative training instances. In general, if we assume D contains transactions

belonging to K classes; c1 , c2 •.. CK then, a frequent itemset X can be used construct

classification rules of the form.

R: X ➔ Ci, for 1 :5 i :5 K

If DC\, contains all the transactions belonging to class label c;, the confidence

of a rule R : X ➔ ci is defined as,

Table 5.2 lists some of the frequent itemsets along with the confidence values

of the rules they generate, as derived from the transaction database contained in

Table 5.1. E.g. Conf({l,5} ➔ -1) = i = 66.7%

18

Table 5.1. An example transaction database.
) Transaction) Items

T1 {1, 3, 4, 6, 7}
! T2 {l, 4, 5}

T3 {3, 4, 6, 7}
T4 {l, 3, 5, 6, 7}
T5 {l, 3, 6, 7}

I Class I
+1

1
+l

1
-1

T6 {l, 2, 3, 5, 6} ! -1
T1 {2, 3, 5, 6} -1

Table 5.2. Some of the frequent itemsets and their corresponding classification rules
derived from the transaction database in Table 5.1 at (J = 2. Shown in boldface are
all the rules generated by HARMO:NY [50].

I I Itemset I Support I Conf(R: X ➔ +1)% I Conf(R: X ➔ -1)% I
1 {l, 3, 5, 6} 2 0 100 I

I

I 2 {l, 4} I 2 100 0 I
I

3 {l, 5} ! 3 33.3 66.7
4 ! {1, 6} 4 25 75
5 {3, 4} 2 100 0
6 {3, 7} 4 50 50
7 {4} 3 100 0
8 { 4, 6} 2 100 0
9 {5} 4 I 25 75

i 10 {5, 6} 3 0 100

Typically, frequent itemset mining generates a large number of itemsets. How­

ever, only the high confidence itemsets are useful for constructing effective classifiers.

E.g. the itemset {3, 7} is equally associated with both classes with a confidence of 50%

and is therfore not a useful rule for classification. Further, if a confidence threshold

is used (E.g. 90%), then itemsets such as {l, 5}, {1, 6} and {5} are also not useful.

Therefore, mining all frequent itemsets and then selecting the confident rules is not

an efficient solution and is often prohibitive due to the excessive computational cost

of frequent itemset mining as well as rule selection from a large number of candidates.

19

In order to avoid the above mentioned inefficiencies in the conventional ap­

proach, we use HAR'.\1ONY [50), an efficient algorithm which directly mines high­

confidence covering rules for classification. Given a minimum support threshold a,

HARMONY will find high quality classification rules ensuring that for each training

instance, the highest confidence rule covering that instance is included in the final rule

set. By defaulL HARMONY does not use a minimum confidence threshold. However,

users can specify a confidence threshold so that only those rules with confidence

exceeding the threshold are included in the final classification rule set(But this may

cause some training instances not to have any rules covering them in the final rule

set). Please refer to [50] for more details.

The classification rules generated by using the HARMONY algorithm on the

same transaction database shown in Table 5.1 are shown in boldface in the same

Table. Note that it generates only three itemsets but covers all the training instances

and includes the highest confidence rule for each instance. In spite of pruning

certain itemsets that would otherwise be generated by the conventional approach,

and culminating in a much more compact set of rules, HARMONY still preserves the

most useful and representative rules for classification. E.g. the itemset {1, 3, 5, 6}

covers transactions T4 arid T6 and generates a rule with confidence of 100% towards

the negative class. But both of these transactions are covered by the itemset {5, 6}

which has the same confidence but a higher support. Therfore {5, 6} is prefered over

{1, 3, 5, 6} and is potentially more useful.

Once the set of classification rules has been mined, they are ordered in the

confidence descending order. Support descending order is used to order rules with

the same confidence. This ordering will provide efficient access to the classification

rules when the developed model is used to classify new test instances.

20

As mentioned before, the body (itemset) of a classification rule represents a

collection of frequent substrings which we refer to as a sequence signature, following a

similar concept as in [20]. The usefulness of sequence signatures go beyond pure classi­

fication purposes as they can reveal important sequence segments that are responsible

for the specific properties of a family of related sequences. For example, for protein

sequences, these could mean sequence motifs or functional domains. However, since

these signatures do not impose a limit on the gap between two frequent substrings,

they can capture patterns that are wide spread along a sequence which generalizes

the concept of sequence signatures beyond traditional motifs or domains.

5.3. Classification of a New Instance

A new test instance ~, is classified according to the most confident classification

rule it covers. Ti covers a rule R: X ➔ ci if X ~ ~-

Classlabelof(~) = argcimax(Conf(R: X ➔ ci)): X ~ ~

E.g. The transaction; {1, 2, 4, 6} will be classified as positive by the rule R :

{ 4} ➔ + 1 with 100% confidence.

21

CHAPTER 6. SUPPORT VECTOR MACHINE-BASED

CLASSIFICATION

A support vector machine(SVM) [49] is a supervised machine learning technique

that is applicable to both classification and regression tasks. SVMs have gained

much popularity in recent years and have found applications in many different fields

including, text categorization, image recognition and bioinformatics.

SVMs are extensively used in bioinformatics for sequence classification. Desh­

pande and Karypis [19] investigated the use of several widely used classification

methods on biological sequence data. Their results prove classifiers based on SVMs

outperform other popular classification methods such as those based on Markov

models and K-nearest neighbors. She et al [46] compared See5 [7] (improved version

of C.4.5), association rules, Hidden Markov Model and SVM based classifiers in their

study of outer membrane proteins and showed that SVM based classifiers produce

the best results. Furthermore, SViv1s are particularly suitable for situations with

high dimensional feature spaces which is exactly the case in our work.

The following discussion is a very brief introduction to the theory of SVMs.

Most of the material in the following section is based on [45].

Given a sample S of training data points (training examples) defined in a

space X ~ R11
, SVMs attempt to find a hyperplane which separates the positive

and negative examples in S. Let S = {(x1, y1), (x2 , y2), ..• (xz, Y1)}, where Xi E X

is the n-dimensional feature vector of the ith training example and Yi E { + 1, -1}

is its class label, for each i 1, 2 ... l. The goal of a linear classifier is to find a

hyperplane w.x + b 0, such that all positive examples in S reside on one side and

the negative examples on the other as shown in Figure 6.1. In the previous equation,

w E R11 is referred to as the weight vector and it defines a direction perpendicular to

the hyperplane where as b E JR is called the bias and it determines the distance to

22

the hyperplane from the origin. A separating hyperplane must satisfy the following

condition. However, this is possible only if the training data is linearly separable.

Yi(W.Xj+b)~O, 'vi=l,2, ... l (1)

\Vhen the classifier is being used to predict the class label a new test instance xi,

it is classified as positive if (< w .x > +b) > 0. Otherwise, it is classified as negative.

Definition 6.1 (Functional margin). Functional margin of an example (xi, yi) w.r.t

a hyperplane characterized by (w, b) is given by,

Functional margin of a hyperplane (w, b) w. r. t a training sample S is given by,

Definition 6.2 (Geometric margin). Geometric margin of an example (xi, Yi) w.r.t

a hyperplane (w, b) is given by,

Geometric margin of a hyperplane (w, b) w. r. t a training sample S is given by,

There are many different separating hyperplanes for a linearly separable training

dataset as shown in Figure 6.1. 1 (a). SV).1S look for the one with the maximum

geometric margin which is termed as the maximal margin hyperplane. A hyperplane

23

0

0

• 0 ' ' . ' '
'

•
•

0

'-,.~--
' '

• \jl

(a) Two of many possible separating hyper- (b) Maximal margin hyperplane. 'lf,1 = 1/lwl
planes for linearly separable data. for a canonical hyperplane.

Figure 6.1. Demonstration of linear SVMs for 2-dimensional data.

characterized by (w, b) has an inherent degree of freedom so that it can be rescaled

into (.,\w, .,\b) for some .,\ E JR+ without changing its geometry. The rescaling has no

effect on the geometric margin but it does affect the functional margin. Therefore,

the maximal margin hyperplane is found by fixing the functional margin to 1 and

then minimizing lwl. Hyperplanes with a functional margin of 1 are referred to as

canonical hyperplanes. The solution to the following optimization problem yields the

maximal margin hyperplane, (w, b) with geometric margin V,1 = 1/lwl [45].

minimizew,b < w.w >

subject to constraint: Yi(w.xi b) 2: 1

Through out the above discussion we assumed that the training data is linearly

separable. However, this is typically not the case with real datasets as they can

contain outliers due to noise. Therefore, the classification model may need to ignore

such training examples. This leads to the development of soft margin SVMs that

allow a few training examples to be on the wrong side of the separating hyperplane.

24

This is achieved by introducing slack variables(~i) into the optimization problem as

shown below.

i=l

minimizetw,b < w.w >+CL~;
l

subject to constraint: Yi(w.xi b) 2: 1 - (i

C is called the regularization parameter and it controls the trade-off between

margin size and training errors. In practice, a value for C is obtained by assessing

the performance of the classifier by using a separate validation set or through internal

cross-validation within the training set.

·while soft margin SVMs handle outliers in noisy data, kernel functions can be

used to map linearly inseparable data into a higher dimensional space where it could

become linearly separable. This is sometimes referred to as the kernel trick. Popular

kernel functions include; polynomial, Radial Basic Function (RBF) and Sigmoid.

25

CHAPTER 7. FEATURE VS CLASSIFIER FUSION

APPROACHES TOWARDS SEQUENCE

CLASSIFICATION

7.1. Introduction

In situations where information from multiple sources are used for building

predictive models, there must be some way of combining this information in order to

make the final prediction. Feature fusion and classifier fusion are two fundamental

approaches towards addressing this problem. Feature fusion refers to combining the

sets of features obtained from individual sources into a single feature set, describing

each training instance using this combined feature set and then training a single

classifier. In contrast, classifier fusion refers to training a set of individual classifiers

using training instances described by features obtained from each individual source

and then combining the predictions made by these classifiers to generate the final

prediction for a test instance. In our work, the different alphabets serve as multiple

sources of information.

Figures 7 .1 (a) and (b) demonstrate the difference between the two approaches.

f and h are the functions that perform the actual feature or classifier fusion respec­

tively. In our case, f performs the operation of concatenating feature vectors from

selected reduced alphabets and h is a meta classification model. Both of these will

be explained in detail in their respective sections.

Notation: For the rest of this thesis, we will use A1 to denote the complete

set of alphabets used in a given experiment. In our experiments A 1 is equal to the

set of alphabets listed in either Figure 4.2 or Figure 4.3. E.g. referring to Figure 4.2,

A1 = {A20, A1a, A15, A12, A10}-

26

Source 1

Features from
Source 2

Features from
SourceN

Transform into
feature space

Training
instances

Train
Classifier

Model

I
Test

instance

(a) Feature Fusion. f is some function which combines the features.

Tr instances

Train
Classifier 1

Train
Classifier 2

described using ~ Train
features from Classifier N

SourceN

Model 1

Model2

ModelN

Test
instance

(b) Classifier Fusion. h is some function which combines the predictions.

Figure 7.1. A diagrammatic view of feature Vs classifier fusion.

7 .2. Feature Fusion Approach

\Vhile following the feature fusion approach to multiple source classification, we

combine features (frequent substrings) mined from different reduced alphabets and

train a classifier using the combined set of features.

The most straight forward way of combining features would be to concatenate

feature vectors corresponding to each alphabet in A 1. However, we learned that this is

not an effective solution as addition of features from certain alphabets aggravated the

27

performance of the classifier. Further, the influence of features from a given alphabet

on the performance of the classifier is dataset or even class dependent. Therefore,

in a given classification experiment, we use a subset As of A f. The procedure for

selecting alphabets and corresponding support thresholds to mine frequent substrings

from sequences transformed into them, is explained in the next section. For each

selected alphabet, we reduce the sequence database to the corresponding alphabet

and mine for frequent substrings. Once mining is complete for all selected alphabets,

we collect all the frequent substrings and remove duplicates. Using this combined

set of frequent substrings as features, we then represent the sequences in the training

dataset as binary feature vectors or feature sets in the same manner as described in

Chapter 3. Finally, a classification model is developed using these feature vectors

or feature sets. Any feature-based classification algorithm can be used to build the

classification model. In this thesis we used either Association rules or Support Vector

Machines (SVM). Figure 7.2 contains the pseudo code for this process.

7.2.1. Parameter Estimation

Selection of which alphabets to use and estimation of a suitable minimum

support threshold plays an important role in the final classification accuracy achieved

by our algorithm. \Ve refer to this process as the parameter estimation procedure.

By parameters, we mean the set of selected alphabets(As) and a support threshold

,\i for each ai E A8 • Suppose we have a total of N different alphabets to choose

from, then we have a total of 2N - 1 possible alphabet selections. E.g. there are

1023 different alphabet selections available for N = 10. In the most flexible case, the

support threshold can take a value anywhere between 0-100% of the dataset size and

can be independantly chosen for each selected alphabet. Therfore selecting a subset

from all available alphabets and sleeting minimum support thresholds for them is an

extremely difficult task and exploring all possible combinations is not an option.

28

SUBROUTINE 1: Learn (D, Asp)

Input: D - Training database
Input: Asp - A set of tuples (ai, Ai), where ai is an alphabet and Ai is the minimum
support threshold used to mine frequent substrings from D transformed into ai.
Output: Model - The classification model learned

I. FCS ¢

2. For each (ai, Ai) E Asp

3. Dai = D transformed into alphabet ai

4. FC Sai Frequent Substrings mined from Dai with min support = Ai

5. FCS = FCS u FCSai

6. FCS = Remove_Duplicates(FCS)

7. f eature_vector s = sequences in D transformed into feature vectors using FC S

8. l'v[odel = Classifier trained with feature_vectors

9. return }vf odel

Figure 7.2. Building the classification model.

In order to make this alphabet selection and support threshold estimation

process more manageable, we use a greedy approach as described by the pseudo

code in Figure 7.3. This process runs in several rounds. In the first round, it selects

the alphabet that yields the best classification result and adds it to a set of selected

alphabets(A8). In each subsequent round, it finds the alphabet which gives the best

result when combined with the alphabets already in the selected set and adds it to

the selected set. As explained in the next paragraph, by "classification result", we

mean the Fl value obtained by internal cross validation within the training set. The

greedy nature of this process may cause the selected parameter values to deviate from

the absolute optimal values. However, as for our experience, it provides parameter

values that result in reasonably good classification accuracy.

29

The optimization sub-routine outlined in Figure 7.4 is responsible for selecting a

near optimal minimum support threshold(>-.) for a given alphabet (either by itself or

in combination with already selected alphabets). It performs a k-fold cross validation

(E.g. 3-fold) within the training dataset in order to obtain classification results for

parameter estimation. Please note that this cross validation is separate from the cross

validation we use in the experimental evaluation of our algorithm in section 8.2 and

should not be confused with each other. We use the Fl measure as the objective

measure and try to maximize it using a hill climbing approach with multiple restarts.

Lines 1-3 are used to skip the optimization if required and its use will be explained

later in this section.

Definition 7 .1. (Precision, Recall and Fl measure)

Let, TP(True Positives) - Number of test instances (test sequences in our case)

predicted as positive and are actually positive.

FP(False Positives) Number of test instances predicted as positive but are actually

negative.

TN(True Negatives) Number of test instances predicted as negative and are actually

negative.

FN(False Negatives) Number of test instances predicted as negative but are actually

positive. Then,

Precision
TP

TP+FP
Fl = 2.Precision.Reca.ll

Precision Recall

Recall
TP

TP+FN

The loop starting at line 4 of Figure 7.4 varies the value of ,\ for each iteration

until the Fl value reaches a maximum. We use a hill climbing approach to update

>-.. Note that there is a possibility of the Fl value reaching a local maxima due to

30

the inherent nature of the hill climbing approach. However, we use multiple restarts

as an attempt to reduce the possibility of a local maxima. For each fold in the cross

validation, line 6 builds the classification model and line 7 makes the predictions for

the sequences in the secondary testing dataset. Line 8 calculates the overall Fl value

using the predictions made in all folds.

Figure 7.3 contains the pseudo code for the complete algorithm, including

parameter estimation and construction of the final classification model. Lines 4-9

describe the process of discovering the best alphabet in a given round. In the very

first round where there are no alphabets selected yet, i.e. As = ¢, this refers to

finding the alphabet in A1 which gives the best result (highest Fl value) on its own.

In subsequent rounds, it finds from the set of alphabets which haven't been selected

yet (A1 - As), the one that gives the best result when combined with the alphabets

already in the selected set(A 8). Line 10 checks if the best alphabet found in the

current round actually improves the overall best result achieved so far. If it does, it

is added to the selected set and its support threshold is saved for future use and the

process moves on to the next round. If it doesn't, the parameter estimation process

terminates. Even though our parameter estimation process is capable of determining

a near optimal support threshold for each selected alphabet independently of others,

for efficiency reasons, we fix the support threshold at a constant value after the initial

round. More specifically, in the very first round we select the best alphabet and

its optimal support threshold. Then we keep the support threshold constant at this

value and prohibit the optimization subroutine from changing it in subsequent rounds.

This is achieved at line 14, where Ac is assigned the optimal support threshold of the

first selected alphabet which will cause the optimization sub-routine not to change it

thereafter. Line 16 calls the Learn subroutine along with the parameters estimated

as described above, to build the final classification model.

31

ALGORITHM 1:

Input: Dtr - Training sequence database.
Input: Ai Set of all alphabets.
Output: Af odel - Classification IV1odel.

1. As </J, Asp </J / /Initialization

2 . ..Xe= O

3. globaLbesLFl = 0

4. currenLbesLFl = 0

5. For each alphabet a E A f As

6. (Fl,...\) Optimize(a,Asp,Ac,Dtr)

7. If Fl > currenLbesLFl

8. currenLbesLFl = Fl

10. If currenLbesLFl > globaLbesLFl

11. globaLbesLFl = currenLbesLFl

12. As= As U {as}

13. A.9p Asp U {(as, As)}

15. Goto line 4

16. Model=Learn(Asp, D)

17. return Model

Figure 7.3. :.fain algorithm.
Lines 1-15 account for parameter optimization. Line 16 builds the final classification
model

32

SUBROUTINE 2: Optimize(a, Asp, Ac, D)

Input: a - Alphabet for which the optimal support threshold is being estimated.
Input: Asp - The set of already selected alphabets and their respective support
thresholds.
Input: Ac - The value of the support threshold if it's fixed at some value. 0 if not.
Input: D - Input sequence database.
Output: (Fl, A) - \¥here Fl is the best result achieved and A is the support
threshold that produced the best result.

1. If Ac NULL

3. Goto line 5 / /No optimization required. A is fixed.

4. Loop while changing A until Fl reaches maximum

5. For i = 0 to Folding

6. M~odel = Learn(D;r, Asp U {(a, A)})

7. Predictions= Predictions U Test(D:st, .Af odel)

8. Fl= Calculate_Fl(Predictions)

9. return (Fl, A)

Figure 7.4. Optimizing the support threshold for a given alphabet.

7 .3. Classifier Fusion Approach

In this section we describe an ensemble of SVM-based classifiers, each trained

with features mined with respect to a distinct alphabet. The predictions made by

individual classifiers are then combined using a meta classifier to obtained the final

result. This approach of combining classifiers is commonly referred to as stacking

in the ~1achine Learning community. Seewald (44] showed that other schemes of

classifier fusion such as Voting, Selection by cross-validation, Grading and Bagging

can also be reformulated as stacking.

33

Figure 7.5 shows the schematic diagram of our approach. First, the training

sequences are transformed into the different alphabets used in the experiment. Note

that unlike in the feature fusion approach, in this case we do not perform any alphabet

selection. Instead, we use the complete set of alphabets(A1). In phase-1, for each

alphabet, the primary training sequences are further split into secondary training

and testing sets and frequent substrings are mined from the secondary training set.

Using the frequent substrings as features, an SVM model is trained on the secondary

training set and predictions are made for the sequences in the testing set. We use

k-fold cross validation to split the primary set of training sequences into secondary

training and testing sets mentioned above. Therefore, this cross validation process

provides predictions for each sequence in the primary training dataset. If there are N

alphabets, this results in N predictions for each sequence. A prediction is expressed

as the distance from the separating hyper-plane of the corresponding SVM model.

Higher the distance, the more likely the prediction is correct.

\Ve use the predictions of the Phase-1 SV:Ms to train a meta SVM model as

follows. The predictions made by the Phase-1 SVl\fa transform each sequence in the

primary training set into an N-dimensional feature vector where the ith element is the

prediction made by the ith Phase-1 SVM model. For a given training sequence, if all

N predictions made by the Phase-1 SVl\1s are in favor of the same class, we consider

it as a confident prediction and do not further process it. On the other hand, if at

least one prediction differs from the rest, we note there is some disagreement between

the classifiers and use these vectors to train the meta SVM model. Our belief is that

the meta SVM model will learn how to treat instances where the individual Phase-

1 classifiers have provided conflicting predictions. (Please note that the filter for

detecting conflicting predictions is not shown in the figure due to space limitations)

34

r

Transform I Secondary

toA 1 Training/
Testing sets

Transform I Secondary

toA 2 Training/
Testing sets

Transform I Secondary
to A N,r--1-t-+1 Training /

Testing sets

- - - -

Mine
Frequent

Substrings

Mine
Frequent

Substrings

Mine
Frequent

Substrings

- - - - -

Train SVM
and Test

Train SVM
and Test

Train SVM
and Test

__ T _____ I

I_ !1:_a~-~ J

Train
Stage-2 SVM

I - - - - - - _I

r
I

I ..---------.

- _J I Model_ 0 l . ►
I._ ____ _ Fmal

Trianing
Sequences Frequent Train Mine~

Substrings SVM

Frequent ➔ Train
Mine §

Substrings SVM

Mine {§· ram
,.____,.. Frequ~nt SVM

Substnngs

Model 1

t
Model 2

Model N

Unclassified Test
Sequence

Figure 7.5. Schematic diagram of the ensemble of classifiers.

I prediction

Yes

Final 1

prediction :

I r-----1
1 Phase-2 J -------

In Phase-2, for each alphabet, we mine frequent substrings from the complete

set of primary training sequences and train N, SVM models. When a prediction

needs to made for an unclassified test sequence, we consult each of the Phase-2 SVM

models. Following the same reasoning as in Phase-I, if all models have predicted in

favor of the same class, we let this be the final prediction. If at least one model has

35

predicted a different class compared to the rest, then. using the N-dimensional feature

vector produced by the Phase-2 SVM models, we consult the meta SVM model built

in Phase-I (Modelo as shown in Figure 7.5) to generate the final prediction.

In this approach, we do not try to find an optimal support threshold for frequent

substring mining. Instead, we use a constant support threshold for all alphabets.

If necessary, the same techniques mentioned in the previous sections can be used

to optimize the support threshold for each alphabet. However it will significantly

increase the running time of the algorithm. Our experiments show that having a

constant support threshold produces acceptably good results when using the classifier

fusion approach.

36

CHAPTER 8. EXPERIMENTAL EVALUATION

8.1. Datasets

'\Ve used four datasets for the experimental evaluation of our algorithms. The

first two are protein sub-cellular location datasets corresponding to Gram-negative

and Gram-positive bacteria respectively. The third and fourth datasets contain pro­

tein sequences assigned with Gene Ontology terms based on their molecular function.

The two sub-cellular location datasets were obtained from the PSORTb v.2.0 [23)

database. The location of each protein in these datasets has been experimentally

verified and reported in literature, thereby making them very reliable. The Gram­

negative bacteria dataset contains 1444 singly located proteins residing at five different

location sites where as the Gram-positive dataset contains 541 singly located proteins

at four location sites.

The third protein dataset consists of subfamilies of peptidase. Peptidase, also

known as protease is a clinically important group of enzymes (proteins that catalyze

chemical reactions) whose function is to break down proteins and are utilized in

many metabolic processes of an organism. E.g. digestion of proteins contained

in foods. Study of protease is also important in developing protease inhibitors for

antiretroviral therapy. E.g for HIV. There are six broad categories of peptidase;

Metallopeptidase, Cysteine, Serine, Threonine, Aspartate and Glutamic acid. \Ve

extracted a set of 516 experimentally annotated peptidase protein sequences from the

UniProt database [38], which mainly contained sequences belonging to the first three

sub-families mentioned above. (The other sub-families had only a small number of

experimentally annotated sequences. Therefore we did not attempt to classify them.

However, we included them as negative examples in training and testing of classifiers

developed for the three most represented sub-families). A similar dataset has been

used in [19].

37

The fourth dataset consists of 206 proteins from subfamilies of Human kinases,

another clinically important family of proteins. Similar to the previous dataset, we

downloaded sequences from the U niProt database which have been experimentally

annotated to the kinase family. We mainly focused on the two subfamilies; pro­

tein Serine/Threonine kinase activity (GO:0004674) and protein Thyrosine activity

(GO:0004713) as others did not have a sufficient number of sequences. Similar

datasets have been used in [13, 53, 14]. Table 8.1 shows the composition of all four

datasets.

8.2. Experiments

For notational convenience we use the terms ASSO_FF, SV!vLFF and SVALCF

to refer to association rule-based, SVM-based feature fusion and SVM-based classifier

fusion algorithms respectively.

The main objectives of our experiments were, 1) determine the effect of using

reduced alphabets on the different algorithms ASSO_FF, SVALFF and SVALCF. 2)

determine how they compare with other algorithms that make use of the similarity

between amino acids. To achieve the first objective, we compare the results achieved

by each algorithm with those achieved by the same algorithm when only the alphabet

of 20 amino acids is used, i.e. A1 = {A20}. To achieve the second objective, we

compare our algorithms with a sequence-alignment-based K-nearest neighbor clas­

sification algorithm. \Ve implemented a k-NN algorithm that uses BLAST [11] to

compute a pairwise sequence alignment of the test sequence with each of the training

sequences, pick the k nearest neighbors based on the E-values of the alignments and

use majority voting to predict a class for the test sequence. BLAST uses an amino acid

similarity matrix to score the alignments and therefore this classification algorithm

inherently considers the similarity between different amino acids. Further, we also

compare our algorithms with an SVM k-gram based[35, 14] method as well.

38

Table 8.1. Composition of the datasets.

Gram-negative Bacteria

Location site Number of Sequences
Outer membrane(OM) 391 j

I

Cytoplasmic(Cyto) 278
Cytoplasmic membrane(CM) 309
Periplasmic(PP) 276
Extracellular(EC) 190
Total 1444 I

!

Gram-positive Bacteria
Location site Number of Sequences
Cytoplasmic(Cyto) 194
Cytoplasmic membrane(CM) 103
Cell wall(C\V) 61

, Extracellular(EC) i 183
Total 541

Sub-families of Peptidase
Function/Sub-family Number of Sequences
Metallopeptidase activity 160
Cysteine-type peptidase activity 129
Serine-type peptidase activity 172
Others 55
Total 516 I

Subfamilies of Human Kinase Activity
Function/Sub-family Number of Sequences

! Serine/Threonine Kinase activity 160
Thyrosine Kinase activity 41
Others 5 I
Total 206

Each algorithm was tested on a standard one-against-all binary classification

setting. \Ve developed a binary classifier for each class in a given dataset. E.g.

we constructed five binary classifiers corresponding to the five sub-cellular location

sites of the Gram-negative bacteria dataset shown in Table 8.1. For a given class,

sequences belonging to that class are treated as positive instances and the rest of the

39

sequences in the dataset are treated as negative instances. Our intention was to train

a classifier so that it can identify sequences in the class for which it was trained for,

amidst sequences belonging to all other classes of the given dataset.

As mentioned before, frequent substrings were used as features for SVM_CF

where as frequent closed substrings were used as features for ASSO_FF and SVM_FF.

Further, inclusion of very short length substring patterns (length 4 or less) caused

ASSO_FF to have prohibitively long run times. Therefore we included only those

substrings with length 4 or greater in the feature space used for ASSO_FF.

For the SVM K-gram based and k-NN algorithms, we experimented with values

of k = l, 2, 3, 4 and k = l, 3, 5, 7, 20 respectively and chose the value which resulted

in the best Fl value for each class. Linear kernels were used for all experiments

involving SVJ\1s.

We carried out independent experiments using alphabets derived by Murphy

et al. [39] and Etchebest et al. [21] as listed in Figures 4.2 and 4.3 respectively. I.e.

{A20,A13,A11,A 9 ,A8 ,As}. J\forphy et al.

studied more alphabets than those listed in Figure 4.2, but we did not use those

with less than 10 distinct elements in them as it was shown in [39] that they cause

information loss with regard to protein folding.

All experiments based on SVMs were performed using a linear kernel function.

Further, we did not attempt to optimize the parameter C associated with SVIvis as

any value greater than 1 produced the same best result. \Ve used the SV 1\11ight [26]

implementation.

8.3. Results and Discussion

Table 8.2 summarizes the classification results of all algorithms in terms of Fl

measure. The Fl measure provides a good single measurement of classifier perfor­

mance combining both precision and recall. Based on these results, it is evident that

40

Table 8.2. Fl measure achieved by different classification algorithms as averaged over
5-fold cross validation.

Gram-negative Bacteria

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF k-NN k-grams
OM 73.6(66.0) 92.8(87) 92.2(88.1) 87.6 87.5
Cyto 36.7(22.5) 78.5(76.5) 81.7(76.8) 59.3 71
CytoMem 81.2(57.3) 91.7(91.3) 93.6(91) 80.1 90.1
pp I 49(46.5) 72.5(71.6) 76.7(71.2) 77.3 68.2
EC 58.5(57.7) 75.1(73.2) 75.6(71.1) 78.8 69.7

Gram-positive Bacteria

I Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF k-NN k-grams
Cyto 73.8(70.4) 89.1(88.8) 90.1(87.7) 79.7 84.7
CytoMem 76.2(72.7) 91.8(89.6) 92.3(89.7) 77.3 89.3
C\iV 49(24.3) 82.5(78.1) 83.5(77. 7) 72.8 88.8
EC 57.5(54.1) 81.3(82.1) 83.2(81.8) 78.2 80.2

Subfamilies of Peptidase activity

\ Class
Fl measure (%)

ASSO_FF SVM_FF i SVM_CF I k-NN k-grams i
Metallo 75.1(70.6) 85(81.6) 87.8(80.6) I 95.0 80.1
Cysteine 80.5(77.7) 93.2(91.9) 93.9(90.8) I 98.1 I 88.2

. Serine 84(82.6) 89.7(87) 92.3(89.2) I 95.3 86.9
Subfamilies of Kinase Activity - Human

Class I Fl measure (%)
ASSO_FF SVM_FF SVM_CF k-NN k-grams

Serine 95.6(94.9) 96.7(94.8) 96.7(94.7) 96.3 94.6
ThyTosine 82.7(79.5) 83.3(80) 84.5(75.8) 87.8 71.6

Notel: Alphabets listed in Figure 4.2 (Murphy et al.) are used for ASSO_FF, SVM_FF
and SVi\LCF. Shown within parenthesis is the Fl value achieved by the same algorithm
when only the alphabet of 20 amino acids is used.
Note2: For SVM_CF 1 a constant support threshold of 2% of the class of interest was used
in all experiments.

SVM-based classification performs better than Association Rule-based classification

on all of our datasets. However, it must be noted that the models learned by SVMs

are not easily interpretable and therefore they act as a black box from a users point

of view. On the other hand, the classification rules learned by an associative classifier

41

are easy to understand. Especially in our case, the body of a rule, i.e. an itemset1 is a

collection of frequent substrings so that it can be thought of as a sequence signature

which is responsible for assigning a given sequence to a particular class.

Comparison of SVM_FF and SVM_CF reveals that the classifier fusion approach

performs better than its feature fusion counterpart and is also much more efficient in

terms of execution time. SVM-based algorithms outperform the k-NN classifier on

protein sub-cellular location datasets. However, k-NN performs better on the protein

function datasets closely followed by SVM_CF.

One of our goals was to evaluate the performance improvements gained by

using reduced alphabets. vVe will discuss the results based on alphabets derived by

Murphy et al. [39] as they produced better results in general compared to those of

Etchebest et al. [21]. Referring to Table 8.2, we could see that all three algorithms

showed some degree of improvement w.r.t their versions which do not use reduced

alphabets, for all classes across all datasets except for the Gram-positive bacteria

extracellular class where SVALFF has performed worse. \Ve carried out a two­

tailed binomial test [43] to evaluate the statistical significance of the performance

improvements gained by ASSO_FF, SVM_FF and SVM_CF compared to the same

algorithms when only the standard alphabet of 20 amino acids is used. Table 8.3

contains these p-values where significant results at the 5% level are shown in boldface.

SVM_CF demonstrates statistically significant performance improvements for 7 out

of 14 classes across all datasets. ASSO_FF has achieved significant improvements for

3 classes while SVAf_FF has gained significant improvements for only 1 class.

Figure 8.1 shows the precision and recall achieved by ASSO_FF and SVlvLCF

in comparison with those achieved by the same algorithms when only the standard

alphabet of 20 amino acids is used. This figure illustrates that for SVM_CF, the use of

reduced alphabets improves recall for all classes except Gram-positive cytoplasm and

42

cytoplasm membrane. This is the expected behavior because the use of reduced al­

phabets allows more patterns fo be discovered. It also maintains comparable precision

with the exception of Gram-negative bacteria cytoplasm and Gram-positive bacteria

cell wall, where more precision has been sacrificed for improved recall. However, the

overall Fl measure has improved in all classes as mentioned before. ASSO_FF also

behaves in a similar manner for many of the classes although in some cases it improves

precision as well. However, it has also involved in more cases where the recall has not

improved.

Table 8.4 shows the Fl measures achieved when the alpha.bets derived by

Etchebest et al. [21] are used. The SVM-based classifiers do not show much variation

between the two different alphabet schemes. However, the Fl measure for ASSO_FF

shows greater variation for some classes. E.g. Gram-positive bacteria cytoplasm, cy­

toplasm membrane and Gram-positive bacteria cell wall. For the remaining classes the

variation is not so remarkable but it is generally greater than that of the SVM-based

methods. \Ve believe this is due to the fact that ASSO_FF uses longer substrings

as features and the different types of alphabets used can have a greater influence on

discovering longer patterns than shorter patterns. I.e. longer patterns have a higher

tendency to be broken in to smaller fragments due to mismatches. Some of these can

be recovered to a certain extent by using reduced alphabets. The extent to which they

are recovered depends on the alphabets used. This effect is less for shorter patterns.

Figure 8.2 shows the run times of the different algorithms. k-NN is the fastest

algorithm for all datasets, followed by SVALCF. ASSO_FF appears to be faster than

SVM_FF. However, note that given identical training data and feature spaces, SVM­

based classification is generally faster than association rule-based classification for our

data. Yet, due to limiting the feature space of ASSO_FF to only those substrings of

length 4 or greater, it appears to performs faster than SVM_FF.

43

Gram Negative Bacteria Precision(%)

=

~UII
~ - 1: ~

I'
~

~
~

I i I:) 1:)

~ I[1, ~ I: ASro_FF -
D Ii I ASro_FF(20 Only) =

- I,> I , SVM,_Ql -

u
100
90
80
70
60
50
40
30
20
10
0 " ' I: ' Ii' >, SVM_0:(20 only) l!QQ2!;

100 :r 70
60
50 t

40 [30
20
JO
0 L_

(l,(C OI pp FC

Gram Positive Bacteria Precision(%)

Peptidase Precision(%)

IUtll
Metallo Cysteine Serine

Human Kinases Precision(%)

Serine

ASro FF -ASSO_FF(20 Only) ~
SVM Ql -SVM...O:(20 on Jy) l!QQ2!;

~ _J____:

Thyrosine

I

100 1 90 ·
80 -
70
60 I
50 1
40 '
30
20 r

Gram Negative Bacteria Recall(%)

10 ~ - o • :x
0 ~ ,c.-,a__ a.>l,..,."----...,,___,,.___.._,,~ .,___..,,,t.a.Y

100

~I
60
50 -

;~ r
20 -

(l,(C pp FC

Gram Positive Bacteria Recall(%)

I~ l _ --.x,... ~ '---"IUOJ-.0'-------"11..0LJ-.n<'----.a..OU~ L---•

100 I
90 1 80 ~

70
60
50 1
40 '
30 r
20 ~
JO -

C OI cw F.C

Peptidase Recall(%)

0 '------~----'-'-------'><ia~ __......__ ~ --

JOO :1
70
60
50
40 I
30 1-
20 ·
JO ~
0

Metallo Cysteine Serine

Human Kinases Recall(%)

Serine Thyrosine

Figure 8.1. Comparison of precision and recall of ASSO_FF and SVM_CF
with/without using reduced alphabets.
Alphabets listed in Figure 4.2 (Murphy et al.) are used as reduced alphabets. 20
only means only the standard alphabet of 20 amino acids is used.

44

3000

~ 1000
~ 500

100

1000

500

200

100

50

Gram Negative Bacteria Runtime

(1,1 C 0d pp F.C

Peptidase Runtime

Metal lo Cysteine Serine

u ..,
"'

1000

500

100

50

1000

500

200

100

30

Gram Positive Bacteria Runtime

C 0d cw EC

Human Kinases Runtime

Serine Thyros irie

Figure 8.2. Running times of the algorithms as averaged over 5-fold cross-validation.

45

Table 8.3. P-value for the significance of performance improvements gained by
ASSO_FF and SVM_CF w.r.t the same algorithms when only the standard alphabet
of 20 amino acids is used.

Gram-negative Bacteria

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF
OM 0.0049 0.0000 0.0005
Cyto 0.0969 0.4657 0.2543
CytoMem 0.0000 1.0000 0.0106
pp 0.0777 i 0.3323 0.0094 i
EC 0.8804 0.7359 0.0931

Gram-positive Bacteria

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF
Cyto 0.3421 1.0000 0.0730

. CytoMem 0.6718 0.4807 0.1094
CW 0.4050 0.5078 0.3877

! EC 0.0091 NA 0.2891
Subfamilies of Peptidase activity

I Fl measure (%)
Class

ASSO_FF SVM_FF SV1'LCF I

~!Jetallo 0.1118 0.1839 0.0002
Cysteine 0.2801 0.4531 0.0391

i

Serine 0.8026 0.1360 0.0117

I Subfamilies of Kinase Activity - Human ;

Class Fl measure (%)
ASSO_FF SVM_FF SVM_CF

Serine 0.7872 0.1796 0.0156
Thyrosine 0.6875 0.7539 0.0625

Notel: Alphabets listed in Figure 4.2 (Murphy et al.) were used as reduced alphabets.

46

Table 8.4. Fl measure achieved by different classification algorithms using the
alphabets derived by Etchebest et al. [21].

Gram-negative Bacteria

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF
OM 73(73.6) 87.6(92.8) 91(92.2)

. Cyto 23.2(36.7) 77.1(78.5) 79.7(81.7)
CytoMem · 65.5(81.2) 91. 7(91. 7) 93.8(93.6)
pp 47.6(49) 71.6(72.5) 75.5(76.7) ;
EC 62.1(58.5) 74.7(75.1) 77.8(75.6)

Gram-positive Bacteria

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF
Cyto 72.9(73.8) 88.9(89.1) , 90.9(90.1)
Cyto:t\1em 78.7(76.2) 89.6(91.8) 91.9(92.3)
cw 62. 7(49) 80.4(82.5) 83.5(83.5)
EC 55.3(57.5) 81.3(81.3) 82.8(83.2) i

Subfamilies of Peptidase activity

Class
Fl measure (%)

ASSO_FF SVM_FF SVM_CF
Metallo 69.8(75.1) 82.3(85) 85.5(87.8)
Cysteine 85.1(80.9) 91.1(93.2) 93.2(93.9)
Serine 82.2(84) i 88.5(89.7) 92.1(92.3)

' I Subfamilies of Kinase Activity - Human I

Class I Fl measure (%)
I ASSO_FF SV1\1_FF I SVM_CF

Serine j 95.3(95.6) 95.4(96.7) / 95.5(96.7)
Thyrosine ! 80.6(82.7) 81.7(83.3) I 77.6(84.5)

1

Note: Shown within parenthesis are the Fl values achieved by using alphabets derived
Murphy et al. [39]

47

CHAPTER 9. PREDICTION OF GENES/MARKERS IN

THE CENTROMERE REGION OF CHROMOSOMES IN

WHEAT

9.1. Introduction

All t hr biological information required to construct and maintain a living in­

st auce of au organism is contained i11 what is known as its genom,(' [-1]. This infonna­

tion is stored in long strands of deox_nibonucleic acid (D:\A). ,d1ich cH(' organized

into structur<' called chronwsomcs. The DNA in a chromo::;ome is divided into disnC'te

segments called ge77 cs. Figure 9.1 illustrntrs how D:\"A. chromosomes and genes are

related to each other. Genes are tlw basil' units of heredity of an organism and are

responsible for passing genl'tic traits to off-spring. They also encode the instructions

required to produce proteins. Therefore. cldermination of the D:\"A sequrnce of grnes

and their location on the chromosome is , ·pry important in genomic research.

~
double helix)

Chromosome
Base Pairs

Ctuomatid Chromatk1

Figure 9.1. D::\' A. d1romosome and genes:How the:-,· are relatrd. Original image
by [33].

Genome mapping is the process of identifying the locations of gen rs/ markers

on their resprcti,·e chromosomes. :\larkrrs are D:\"A segments that act as landmarks

-18

on a map. Figure 9.2 shows an example of how genes/markers are located on a

chromosome. Genome maps assist scientists in their study of genes. Examples

include, locating a human disease gene on the genome [5, 17] or localizing genes

that could be used for improving a crop plant [29]. They also provide a framework

for genome sequencing [5, 6, 29]. There are two main types of maps; genetic linkage

maps and physical maps. Genetic maps are based on the principle that genes/markers

that are close together on a chromosome are less likely to be separated during the

process of meiotic recombination and are therefore more likely to be inherited together

than those that are father apart (Please refer to [5] for more details). Genetic maps

provide the relative order of markers on a chromosome and an indirect estimate of

the distance between them. However, the rate of recombination is not uniformly

distributed along the length of a chromosome. Therefore, distance in a genetic map

may not always correspond to the actual physical distance. On the other hand,

physical maps provide an estimate of the true physical distance between markers [5].

There are three general types of physical maps; chromosomal or cytogenetic maps,

radiation hybrid (RH) maps, and sequence maps [5]. These different types of maps

vary in resolution. Chromosomal maps are low in resolution while RH maps and

sequence maps are of higher resolution and provide finer details. In our work, we are

especially interested in radiation hybrid mapping of wheat chromosomes.

In Radiation hybrid (RH) mapping, measured doses of radiation is used to break

the chromosome of interest into fragments at random points. These fragments are

then recovered using recipient cells which are subsequently analyzed for the presence

or absence of markers [17]. Similar to genetic mapping, RH mapping also relies on

the concept that markers that are physically close on a chromosome tend to stay

together on the same fragment because the closer two markers are, the less likely that

radiation will strike the chromosome at a point between them and induce a break.

49

Genes I Markers +- Centromere

Figure 9.2. Location of genes/markers on a chromosome.

Based on this theory, it is possible to determine the order of markers and estimate

the distance between them by observing the frequency of breakage. Since radiation

induced chromosomal breakage is random, RH mapping is not affected by the uneven

distribution of meiotic recombination as genetic mapping. Please refer to [17, 29] for

more details.

9.2. Importance of Genes/Markers Near the Cetromere Region for

Radiation-Hybrid Mapping of Wheat

As mentioned above, one of the main problems in genetic mapping is that the

rate of recombination is not uniformly distributed along the length of a chromosome.

This is a main concern in wheat, where the rate of recombination is approximately

proportional to the square of the distance of a given segment from the centromere.

Further, it is estimated that one-forth to one-third of the wheat genome is present

around the centromeres and this region is subject to less that 1 % of total recombi­

nation [28]. This causes difficulties in developing high resolution genetic maps for

wheat. Since RH mapping does not depend on the natural recombination process, it

does not sufer from this problem and is therefore very suitable for developing high­

resolution physical maps for wheat chromosomes including the centromere regions.

50

However, in order to utilize the full potential of RH mapping to map the centromere

regions, a sufficient number of marker for these regions should be used in the mapping

process. One of the different types of markers used in RH mapping are those that

are designed uging Expressed Sequence Tags (ESTs). ESTs are short segments of

DNA extracted by sequencing one or both ends of an expressed gene [3]. Our goal

is to use the frequent-substring-based sequnce classification techniques mentioned

previously in this thesis, to predict ESTs that are likely to be near the centromere of

the chromosomes.

9.3. Experimental Evaluation

9.3.1. Datasets and Experiments

Vie used wheat EST sequences available at [1], for our experiments. It contains

ESTs mapped to segments of chromosomes called deletion bins. Since our interest

is in predicting ESTs that are probably located near the centromere, we divide

the dataset into two classes: ESTs in peri-centromere bins and ESTs in all other

bins. Peri-centromere bins are the deletion bins that cover the centromere of a

given chromosome. \Vheat is a hexaploid species and has three genomes A,B and

D. Each of these genomes has 7 chromosomes. We used ESTs mapped to D-genome

chromosomes labeled, 1D-7D and focused on one chromosome at a time. This lead

to the construction of 7 datasets with two classes each as shown in Table 9.1. Since

our algorithms are designed to work with amino acid sequences, we translated the

nucleotide sequences of the ESTs into their corresponding amino acid sequences using

the Transeq [2] tool.

For each dataset, i.e., chromosome listed in Table 9.1, we employed the clas­

sification algorithms ASSO_FF SVALFF and K-NN as described in section 8.2

while treating ESTs in peri-centromere bins as the positive class. Experiments

were carried out to perform a 5-fold cross validation. However, the automated

51

Table 9.1. Composition of the wheat EST datasets.

Dataset Number of ES Ts
(Chromosome) Peri-centromere Non-peri-centromere

lD 96 547
2D 150 623
3D 121 591
4D 87 515
5D 218 386
6D 66 411
7D 96 547

parameter estimation process described for ASSO_FF and SVM_FF in section 7.2.1

did not produce reasonable parameter values. We believe that our classifiers and

automatically selected parameter values did not generalize well enough for the wheat

EST datasets. Therefore, as an attempt to see how well the classifiers can perform

at their best, we selected values for the parameters so as to obtain best classification

results based on the final testing data. Note that this contrasts to the way we selected

parameter values for the experiments in section 8.2, where we selected them using

only the training data without the involvement of final testing data.

9.3.2. Results and Discussion

Figures 9.3 and 9.4 show the precision and recall achieved by the three different

classification algorithms for the wheat D-genome EST datasets in Table 9.1. Accord­

ing to results shown in Figure 9.3, both ASSQ_FF and SVIILFF demonstrate better

precision than what would be achieved due to random chance. The precision achieved

by k-NN is very low and can be attributed to random chance.

As indicated by Figure 9.4, k-NN achieves the best recall. However, this may not

be considered as acceptable performance due to its low precision as mentioned before.

SVIILFF achieves a lower recall compared to k-NN but can be nominated as the better

of the two classifiers in terms of overall performance due to its higher precision. This

52

80

70

60 ---~ 50 ---t::
0 ·- 40 C/'.l ·-() 30 (].)
1--<
~

20

10

0

ASSO_FF ··· ········ ············ ················ ······· · · ······ ·········· SVM_FF

lD 2D 3D 4D 5D

K-NN
Random

6D

ocxx)I
PQQQSI

7D

Figure 9.3. Precision achieved by the different classification algorithms for the wheat
EST datasets in Table 9.1.
Random is the precision that could be achieved due to random chance.

70 ,---------------
ASSO_FF

60 ····· ·················· ············· ··· ············· ·················· SVM_FF
K-NN t """'"X"""XXl~

50 · ·· ··············

40

30

20

10

0
lD 2D 3D 4D 5D 6D 7D

Figure 9.4. Recall achieved by the different classification algorithms for the wheat
EST datasets in Table 9.1.

53

is confirmed by the Fl measures as shown in Table 9.2. The performance of ASSO_FF

is impaired by its poor recall.

Table 9.2. Fl measure of the different classification algorithms for the wheat EST
datasets in Table 9.1.

Dataset Fl measure (%)
(Chromosome) ASSO__FF SVM__FF k-NN

1D 8.6 26.5 I 24.1
! 2D 17.5 22.6 29

3D 19.3 28.9 21.9
4D 15 29.9 14.1
5D 32.2 42.9 39.1 I

I

6D 13.3 18 18.6
7D 15.4 31 28.4

According to overall results, SVM-based classification seems to show a slight

degree of promise on wheat EST data. However, it needs to be considerably improved

before it can be used effectively for the prediction of peri-centromere ESTs in wheat.

Making use of comparative genomic techniques has been suggested by experts as

future direction for improvements.

54

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

In this thesis, we presented three frequent substring-based sequence classifica­

tion algorithms using reduce alphabets; An association rule-based classifier adopting

a feature fusion approach(ASSO_FF), SVM-based classifier adopting a feature fusion

approach and an SVM-based classifier adopting a classifier fusion approach(SVM_CF).

Through our experimental evaluation we showed that SVM_CF in particular, demon­

strates statistically significant performance improvements with the use of reduced

alphabets, for half of the classes studied. Our results show that SVM-based classifi­

cation performs better that association rule-based classification on all of our datasets.

However, interpretabilty of the learned classification rules is an advantage of asso­

ciation rule-based classification using frequent substrings. SVMs also outperform

the k-NN classifier on protein sub-cellular location datasets. On the other hand,

k-NN classifier performs better on the protein function datasets while the SVMs

demonstrate competitive performance. We believe the better performance of the

k-NN algorithm on protein function datasets is due to the high pair-wise sequence

similarity of these datasets compared to that of the sub-cellular localization datasets.

k-NK performs best on the Peptidase function dataset, which has the highest average

pair-wise similarity score1 of 401 whereas for aU other datasets the score is lower than

300.

Our algorithms showed limited performance on the wheat EST datasets. SVM_FF

showed some promise but needs to be considerably improved before it could be

employed to effectively identify ESTs in peri-centromere bins.

As future work, we plan to combine the frequent substring-based SVM classifier

with the pair-wise sequence alignment-based k-NN classifier using the same meta

classifier approach described for SVlvLCF. \Ve believe this will combine the power of

1The pair-wise sequence alignment score computed using BLAST for every pair of sequences of
the same class and then averaged over the entire dataset.

55

sequence alignment for homology detection with the usefulness of frequent substrings

to discover more specific sequence patterns responsible for the properties of a protein.

It is will also be interesting to extend the same idea of combining frequent

substrings as used for association rule-based classification, for the discovery of gener­

alized sequence signatures similar to the ones described in [20]. However, preliminary

experiments we carried out in this direction revealed that even with the use of reduced

alphabets, frequent substrings tend to break in to smaller fragments due to a few

mismatches. This results in a large number of fragmented substrings making it

difficult for frequent itemset mining algorithms to operate efficiently. Therefore, we

need to explore the use of approximate closed sequential pattern mining algorithms

as a solution this problem.

56

REFERENCES

[1] http://wheat.pw.usda.gov/cgi-bin/westsql/mapJocus.cgi.

[2] http://www.ebi.ac.uk/tools/emboss/transeq.

[3] http://www.ncbi.nlm.nih.gov/ about /primer/ est.html.

[4] http://www.ncbi.nlm.nih.gov/ about/ primer/ genetics_genome.html.

[5] http://w,vw.ncbi.nlm.nih.gov/about/primer/mapping.html.

[6] http://www.ornl.gov/sci/techresources/human_genome/publicat/primer/prim2.html.

[7] Rulequest research, information on see5 / c5.0. http: //www.rulequest.com/see5-

info.html.

[8] C. C. Aggarwal. On effective classification of strings with wavelets. In Proceedings

of the 8th ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD '02, pages 163-172, Edmonton, Alberta, Canada, 2002. ACM.

[9] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. SIGA10D Rec., 22:207-216, June 1993.

[10] A. Albayrak, H. Otu, and U. Sezerman. Clustering of protein families into

functional subtypes using relative complexity measure with reduced amino acid

alphabets. BMC Bioinformatics, 11:428, 2010.

[11] S. Altschul, vV. Gish, VI/. Miller, E. Myers, and D. Lipmanl. Basic local alignment

search tool. Journal of Molecular Biology, 215:403-410, 1990.

[12] C. Andorf, D. Dobbs, and V. Honavar. Discovering protein function classification

rules from reduced alphabet representations of protein sequences. In Proceedings

57

of the Conference on Computational Biology and Genome Informatics. Durham,

North Carolina, USA, 2002.

[13] C. Andorf, D. Dobbs, and V. Honavar. Exploring inconsistencies in genome-wide

protein function annotations: a machine learning approach. BMC Bioinformat­

ics, 8:284, 2007.

[14] C. Andorf, A. Silvescu, D. Dobbs, and V. Honavar. Learning classifiers for

assigning protein sequences to gene ontology functional families. In Proceedings

of the 5th International Conference on Knowledge Based Computer Systems

(KBCS), page 256, 2004.

[15] N. A. Chuzhanova, A. J. Jones, A. J. Jones, and S. Margetts. Feature selection

for genetic sequence classification. Bioinformatics, 14:139-143, 1998.

[16] N. Clarke. Sequence minimization: exploring the sequence landscape with

simplified sequences. Current Opinion in Biotechnology, 6:467-472, 1995.

[17] D. Cox, M. Burmeister, E. Price, S. Kim, and R. Myers. Radiation hybrid

mapping: a somatic cell genetic method for constructing high-resolution maps

of mammalian chromosomes. Science, 250:245-250, October 1990.

[18] M. 0. Dayhoff and R. M. Schwartz. Chapter 22: A model of evolutionary change

in proteins. In Atlas of Protein Sequence and Structure, 1978.

[19] :'.\1. Deshpande and G. Karypis. Evaluation of techniques for classifying biological

sequences. In Proceedings of the 6th Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, PAKDD '02, pages 417-431, London,

UK, 2002. Springer-Verlag.

[20] D. H. Dorr and A. M. Denton. A pattern mining approach toward discovering

generalized sequence signatures. In Proceedings of the SIAM International

58

Conference on Data Mining, SDM 08', April 24-26, Atlanta, Georgia, USA,

pages 353-362, 2008.

[21] C. Etchebest, C. Benros, A. Bornot, A. Camproux, and A. de Brevern. A

reduced amino acid alphabet for understanding and designing protein adaptation

to mutation. European Biophysics Journal, 36:1059-1069, 2007.

[22] I. Friedberg. Automated protein function prediction: the genomic challenge.

Briefings in Bioinformatics, 7:225-242, 2006.

[23] J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and

F. S. L. Brinkman. Psortb v.2.0: Expanded prediction of bacterial protein

subcellular localization and insights gained from comparative proteome analysis.

Bioinformatics, 21:617-623, March 2005.

[24] J. Han and Y. Fu. Discovery of multiple-level association rules from large

databases. In Proceedings of the 21th International Conference on Very Large

Data Bases, VLDB '95, pages 420-431, San Francisco, California, USA, 1995.

Morgan Kaufmann Publishers Inc.

[25] S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein

blocks. Proc Natl Acad Sci, 89:10915-10919, 1992.

[26] T. Joachims. Making large-scale support vector machine learning practical, pages

169-184. MIT Press, Cambridge, Massachusetts, USA, 1999.

[27] L. Kajn, A. Kertsz-Farkas, D. Franklin, N. Ivanova, A. Kocsor, and S. Pon­

gor. Application of a simple likelihood ratio approximant to protein sequence

classification. Bioiriformatics, 22(23):2865-2869, 2006.

[28] V. Kalavacharla, K. Hossain, Y. Gu, 0. Riera-Lizarazu, M. I. Vales, S. Bhamidi­

marri, J. L. Gonzalez-Hernandez, S.S. Maan, and S. F. Kianian. High-resolution

59

radiation hybrid map of wheat chromosome ld. Genetics, 173:1089-1099, June

1990.

[29) V. Kalavacharla, K. Hossain, 0. Riera-Lizarazu, Y. Gu, S. S. Maan, and S. F.

Kianian. Radiation hybrid mapping in crop plants. Advances in Agronomy,

102:201-222, 2009.

[30] E. Keogh, X. Xi, L. \\iei, and C. Ratanamahatana. The ucr time series clas­

sification and clustering homepage. www.cs.ucr.edu/eamonn/time_series_data/,

2006.

[31) Y. Kim, J. Sidney, C. Pinilla, A. Sette, and B. Peters. Derivation of an amino

acid similarity matrix for peptide: Mhc binding and its application as a bayesian

prior. BMC Bioinforrnatics 10:394, 2009.

[32] B. Kuhlman and D. Baker. Exploring folding free energy landscapes using

computational protein design. Current Opinion in Biotechnology, 14:89-95, 2004.

[33) D. Leja. Talking glossary of genetic terms. National Human Genome Research

Institute, National Institutes Of Health.

[34] N. Lesh, M. J. Zaki, and M. Ogihara. Mining features for sequence classification.

In Prnceedings of the 5th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD '99, pages 342-346, San Diego, California, uSA,

1999. ACM.

[35] C. Leslie, E. Eskin, and \V. Noble. The spectrum kernel: A string kernel for svm

protein classification. In Pacific Symposium on Biocomputing, pages 566-575,

2002.

[36) C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein

sequences. Journal of Machine Learning Research, 5:1435-1455, December 2004.

60

[37] C. Li and J. \Vang. Efficiently mining closed subsequences with gap constraints.

In Proceedings of the SIAM International Conference on Data 1'1! ining , 08, pages

313-322, 2008.

[38] M. Magrane and The-UniProt-Consortium. Uniprot knowledgebase: a hub of

integrated protein data. Database, 2011: bar009 {2011), 2011.

[39] R. Jv1urphy1 A. \Vallqvist, and M. Levy. Simplified amino acid alphabets for

protein fold recognition and implications for folding. Protein Engineering,

13: 149-152, 2000.

[40] L. Nanni and A. Lumini. A genetic approach for building different alphabets for

peptide and protein classification. BMC Bioinformatics 9:45, 2008.

[41] K. Plaxco, D. Riddle, V. Grantcharova, and D. Baker. Simplified proteins: min­

imalist solutions to the protein folding problem. Current Opinion in Structural

Biology, 8:80-85, 1998. ·

[42] H. Saigo, J.-P. Vert, l'\. Ueda, and T. Akutsu. Protein homology detection using

string alignment kernels. Bioinformatics, 20:1682-1689, July 2004.

[43] S. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended

approach. Data Mining and Knowledge Discovery, 1:317-327, 1997.

[44] A. K. Seewald. Towards a theoretical framework for ensemble classification. In

Proceedings of the 18th International Joint Conference on Artificial Intelligence,

IJCAI 'OS, Acapulco, Mexico, pages 1443-1444, 2003.

[45] J. Shawe-Taylor and N. Cristianini. Support Vector Machines and other kernel­

based learning methods. Cambridge University Press, 2000.

61

[46] R. She, Chen, K. Wang, M. Ester, J. Gardy, and F. Brinkman. Frequent-

subsequence-based prediction of outer membrane proteins. In In Proceedings of

the 9th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 436-445. ACM Press, 2003.

[47] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of the 5th International Conference

on Extending Database Technology: Advances in Database Technology, EDBT

'96, pages 3-17, London, UK, 1996. Springer-Verlag.

[48] P. Srivastava, D. Desai, S. Nandi, and A. Lynn. Hmm-mode-improved classi­

fication using profile hidden markov models by optimizing the discrimination

threshold and modifying emission probabilities with negative training sequences.

BMC Bioinformatics 8:104, 2007.

[49] Vapnik and N'. Vladimir. The nature of statistical learning theory. Springer­

Verlag New York, Inc., New York, New York USA, 1995.

[50] J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for

classification. In Proceedings of the SIAM International Conference on Data

Afining, SDM 05', Newport Beach, California, USA, pages 205-216, 2005.

[51] L. Wei and E. Keogh. Semi-supervised time series classification. In Proceedings

of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD '06, pages 748-753, Philadelphia, Pennsylvania, USA, 2006.

ACM.

[52] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. SIGKDD

Explorations Newsletter, 12:40-48, November 2010.

62

[53] 0. Yakhnenko, A. Silvescu, and V. Honavar. Discriminatively trained markov

model for sequence classification. In Proceedings of the 5th IEEE International

Conference on Data Mining, ICDM '05, pages 498-505, Washington, DC, USA,

2005. IEEE Computer Society.

[54] Z. Yang, R. Nielsen, and M. Hasegawa. Models of amino acid substitution

and applications to mitochondrial protein evolution. Molecular Biology and

Evolution, 15:1600-1611, 1998.

63

