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ABSTRACT 

Annapureddy, Anupama Reddy, M.S., Department of Computer Science, College of 
Science and Mathematics, North Dakota State University, January 2011. Bayesian 
Approach for Detection Classification. Major Professor: Dr. Kendall E. Nygard. 

The objective of this paper is to develop and test a software system that uses 

incomplete information from a collection of sensors to classify different objects present in 

a particular area with a pre-specified probability. The objects in the study are referred to as 

vehicles called the Bus and the Truck. Intruding vehicles move across a designated 

geographical area. Sensors that have been placed in that area detect vehicles and calculate 

probabilities that a vehicle is of a specific type conditioned on the type of vehicle that is 

actually detected. The goal is to determine unconditional probabilities that a given 

detection is of a particular type. The main idea is to find which vehicle is located at a 

geographical point in a designated area using the Bayesian approach to calculate the 

probabilities for this detection classification problem. Each sensor tries to detect the vehicle 

based on its sensing radius, which is nothing but the distance between the sensor and the 

vehicle. To test the methodology, I assumed that the probabilities vary depending on the 

color of the vehicles. For example, if a vehicle is red in color, it is assumed to be easier for 

the sensors to classify than if it is blue. The framework uses Bayesian inference to calculate 

the probabilities and to distinguish two types of moving vehicles. Experiments are 

conducted to find the number of sensors that successfully distinguish two types of moving 

objects with a given probability threshold. In the future the Detection Classification Model 

can be used to distinguish any number of objects with the mobile sensors and also some 

obstacles included in a designated geographical area. 
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1. INTRODUCTION 

In the real world, we encounter different objects, such as humans, vehicles, and 

buildings. People can identify these different objects accurately based on the characteristics 

or properties they exhibit. The goal in this paper is to develop and test a software system 

that uses incomplete information from a collection of sensors to classify different objects 

present in a particular area with a pre-specified probability. The objects in the study are 

referred to as vehicles called the Bus and the Truck. 

The sensors can detect vehicles within a prescribed range and generate probabilities 

using the Bayes' Theorem. "The sensor networks have the capability to answer the queries 

even if the information used is partially corrupt" [1]. These sensors make use of the 

Bayesian networks. 

The Bayes' Theorem can be stated as follows: 

"P(si I ej, Zk) = [ p(si) p(zk I ej, Si)] / [p(zk I ej)] 

Where Si = State of nature (outcome) i, i = 1, 2, 3 ... N 

ej Available experimentj which provides new information,j = 1, 2, 3, ... , J 

Zk = Message k that can be returned from an experiment, k = 1, 2, 3, ... , K 

a, Available course of action l which can be taken, l =1, 2, 3, ... , L 

Posterior Probability that Si will occur given experiment, ej and message, Zk = 

[(Prior Probability that Si will occur) (Probability of the message, zk given experiment, ej 

and the true state is, Si)] 

(Probability that the message, Zk will be received given experiment, ej)'' [2] 

There are two User Interfaces designed in this paper: 

1. User Interface to support classifying the detections and 
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2. User Interface to support the calculating of the Posterior Probabilities when the 

Prior Probabilities are given 

The User Interface to support the calculating of the Posterior Probabilities when the 

Prior Probabilities are given is like a foundation to the Detection Classification Model 

because the equations derived for the Posterior Probability calculation, generation of the 

Decision Tree are used in the Detection Classification Model as well. 

The User Interface to support classifying the detections of the moving objects 

includes two vehicles, a Bus and a Truck, and 100 static sensors. The paths generated are 

color coded, i.e., green for one vehicle and orange for the other. Sensors try to detect the 

vehicle based on the distance from the vehicle and also the color of the vehicle. To model 

incomplete information, if the distance between the sensor and the vehicle is more, the 

probability of detecting the vehicle accurately is lower. Similarly, if the distance is smaller, 

the probability of identifying the vehicles accurately is higher. In our model, if a vehicle is 

red, the probability to detect and classify it accurately will be much higher than if it is blue 

in color. 

The probabilities are generated by iterations. The iterations are carried alternatively 

with respect to the location where the vehicles are found. By recording these values and 

considering threshold values of probabilities for both vehicles, we conclude which vehicle 

is which with a minimum probability level. 

The User Interface to support classifying the detections of the moving objects 

follows this algorithm: 

PRIOR PROBABILITIES AT LOCATION 1 = 0.5 

STEP 1: CALCULATE POSTERIOR PROBABILITIES AT LOCATION 1 
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STEP 2: IF (POSTERIOR PROBABILITY AT LOCATION 1 < THRESHOLD) 

THEN 

STEP 3: PRIOR PROBABILITIES AT LOCATION 2 = POSTERIOR 

PROBABILITY AT LOCATION 1 

STEP 4: CALCULATE POSTERIOR PROBABILITIES AT LOCATION 2 

STEP 5: IF (POSTERIOR PROBABILITY AT LOCATION 2 < THRESHOLD) 

THEN 

STEP 6: PRIOR PROBABILITIES AT LOCATION I POSTERIOR 

PROBABILITY AT LOCATION 2 

ELSE 

STEP 7: IF (POSTERIOR PROBABILITY AT LOCATION 1 ORAT LOCATION 

2 >= THRESHOLD) 

THEN 

STEP 8: STOP 

ELSE 

STEP 9: REPEAT STEPS 1 TO 8 

The paper has the following structure. In Chapter 2, a brief review of the literature 

on vehicle detection based on probabilities is presented. In Chapter 3, the problem 

statement, the application interface, and Bayes' Theorem and its applications are described. 

Chapter 4 explains all the classes and the form in detail along with the problem output. The 

Results are given in Chapter 5, and conclusions are drawn in Chapter 6. 
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2. LITERATURE REVIEW 

Object detection or identification algorithms are based on real-life scenarios. The 

vehicle detection is based on the Bayesian probabilities generated. The detection logic 

differs for each vehicle considered. Probabilities generated are based on the distance 

between the sensor and the vehicle; the colors are also taken into account. The probability 

to find a vehicle when near the sensor will be much higher than finding vehicles that are far 

from the sensor. There is also a much higher probability to find an object which is red in 

color than one that is blue because the red color's wavelength is much higher than blue. 

The detection reports are generated in the form of Decision Trees with the possible 

probabilities included. The paper discusses the "Probabilistic View of Decision Trees" 

approach where each Tree shows the calculated Posterior Probabilities as output; the 

calculated average of all these Posterior Probabilities gives the final estimated Posterior 

Probability [3]. 

The detection logic for each vehicle differs based on characteristics such as color, 

speed, height, etc. I adapted the idea of detection of the vehicle based on color from 

Cuong's paper [4] which describes different kinds of approaches for road extraction with 

one of those approaches being the color-based approach. In the color-based approach the 

image sensor is designed to respond to a range of color and hence, different objects have 

different spectral responses. I used the logic to display different probability values based on 

the color of the vehicle. If the vehicle is red in color the probability generated by the sensor 

would be higher than the vehicle which is in blue. 

Iterative Bayesian calculations are carried out to find which vehicle is placed at a 

geographical point in a given area. This idea is drawn from the book discussed in [5] where 
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there is a method described to find a frequency set using a Bayesian Network in a data-

mmmg process. 

The main idea of object detection is drawn from Schneiderman and Kanade [6] 

where there are Classifiers used for object detection. The Object Detectors make use of the 

Classifiers where there is a different detection logic defined for each kind of object 

detected. For instance, if the detection is a face, there are three factors taken into 

consideration: the front profile, right profile, and left profile poses. Similarly, if the 

detection is a car, there are 15 views that have to be considered, and the Classifiers are 

trained according to those particular viewpoints. 

The idea to have some thresholds for the probabilities to find a vehicle is based on 

Lee and Chang's article [7]. The probabilities that reach the threshold help us track the 

moving objects. In Lee and Chang's article, there are some rules set based on the threshold 

frequencies. 

The probabilities generated based on the distance from the sensor and the moving 

objects are taken from the concept described in Atiya's paper [8]. In that paper, there is a 

method called K-nearest neighbor, and also, the weights are estimated on the maximum 

likelihood procedure. I made use of the probabilities generated based on the distance from 

the sensor to the vehicle, as the distance between the sensor and the vehicle increases the 

probability is less and vice-versa. 
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3. EXTERNAL VIEW 

The model described in this paper takes inspiration from Bayes' Theorem. This 

chapter deals with the external view of the application, and explains the look and feel of the 

interfaces for the Posterior Probability Calculation and Detection Classification Model in 

detail. Subsections 3.1, 3.2, and 3.3 deal with the problem definition, functionality, and 

logic behind the Posterior Probability Calculation Interface, respectively. The problem 

definition, functionality, and logic behind the Detection Classification Model are explained 

in subsections 3.5, 3.6, and 3.7, respectively. 

3.1. Problem Definition With Respect to Posterior Probability 
Calculation 

The problem is to develop a The User Interface to support the calculating of the 

Posterior Probabilities when the Prior Probabilities are given. For a given "n" value of 

Prior Probabilities, there are "n2
" Conditional Probabilities, and the corresponding "n2

" 

Posterior Probabilities are calculated using this interface. The user can either type in the 

values or can upload the pre-existing probability values for which the Posterior 

Probabilities are calculated. The calculated probabilities can be viewed in the form of a 

Tree. The Visual C# code behind the problem execution can be viewed, and the Posterior 

Probabilities calculated can be displayed on the interface. 

Microsoft's .NET Framework is a new platform built with the Internet in mind, 

without ignoring the classic desktop application platform. I chose the DOTNET platform as 

the framework consists of the drag-drop tool to develop the window forms or the interface 

and the code is automatically generated behind the design. DOTNET is a collection of 

tools, technologies, and languages that all work together in a single environmental 
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framework for building and deploying robust applications. The following sections describe 

how the Posterior Probabilities are calculated. 

3.2. Calculation of Posterior Probabilities 

In this section, the functionality of the interface for the Posterior Probability 

calculation is described. The User Interface performs calculations for the Prior Probabilities 

when the values are entered. The "n" value is always greater than zero (n>O) which is the 

number of Prior Probability values to be considered. We can either load the corresponding 

text file with the naming convention "PriorProbability _ s. txt" if there are some pre-existing 

values of Prior Probabilities, or we can re-enter or modify the existing values. For every 

"n" value of Prior Probabilities, there should be n2 values entered in the text file with the 

naming convention "priorprobability _zs.txt". The values are automatically generated in a 

text file with the naming convention "priorprobability _z.txt". After entering all the 

necessary values and clicking the "Calculate Posterior Probability" button, the event would 

generate the calculated n2 Posterior Probability values in a text file with the naming 

convention "PosteriorProbability.txt". The Decision Tree can be viewed when clicking the 

"View Tree" button. The following section shows an instance of how the interface works 

and also shows the Tree Form of the generated probabilities. 

3.3. The Application User Interface for Posterior Probability 
Calculation 

This section describes how the User Interface application for probability calculation 

works. The User Interface to calculate the Posterior Probability follows these steps: 

1. Enter a value for n (n>O): n 

2. Enter the Prior Probability values: p(s) s1, s2, s3, ... , Sn 
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3. Enter n2 values for the Conditional Probabilities: p (z1; le.i, si) 

4. The values for the probability that the message, z1; , will be received given the 

experiment, e.i, p (z1; \ej) , are automatically generated (joint probabilities) 

5. The Posterior Probability values, ··p (sde.i, z1;) = [ p(si) p(z1;\e.i, si) ]/ [ p(z1;\e.i) ]" 

[2], are calculated 

6. The Decision Tree can be drawn using these probabilities 

7. The calculated probabilities are displayed on the interface 

Figure 3.1 shows the Graphical User Interface to calculate Posterior Probabilities 

when the Prior Probabilities are given. The input for the Prior Probabilities is either entered 

manually, or the pre-existing values entered in the coJTesponding text files can be used. 

ill TO CALCULATE POSTERIOR PROBABILITY r;J(g]~ 

.___Load _ __,! IF · .Pr'Jb11b~1t_y\name s Ix! 

n 

p(si) 

p(zk I ej, si) 

p(zk I eil 

0.110.221 

2 

0.210.41 

oi:..;.10 5 I 

CALCULATE POSTERIOR PROBABILITY 

VlEWTREE 

Figure 3.1. Graphical User Interface to Calculate Posterior Probability 

The Prior Probabilities, p(s) = s1, s2, s3 ... Sn, are given as input in a text file 

··priorprobability_s.txt": s1= p(s,), s2 = p(s2), s3 = p(s3), .. . ,Sn = p(sn). 

The Conditional Probabilities, p(zk\ej, si), are n2 values. These values are given as 

inputs in a text file "priorprobability _zs.txt": 

p(zi\e1, s1), p(z2le1, s1), p(z3\e1 , s1), ... , p(zn\e1, s1) 
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p(z1le1, s2), p(z2le1, s2), p(z3le1, s2), ... , p(znle1, s2) 

p(zde1, s3), p(z2le1, s3), p(z3le1, s3), ... , p(znle1, S3) 

' .... , 

p(z1le1, Sn), p(z2le1, Sn), p(z3le1, Sn), ... , p(zn\e1, Sn) 

The values in each column should add to 1. 

The z values are necessary to calculate the Posterior Probabilities, and for this 

reason, the Joint Probabilities, p(zk\ej) = z1, z2, Z3, ... , Zn,are automatically generated in a 

text file "priorprobability _ z.txt". The following equations show how these probabilities are 

being calculated: 

z1= p(ztle1) p(s1)*p(ztle1, s1) + p(s2)*p(z1le1,s2) + p(s3)*p(z1le1, s3) + ... + p(sn)*p(zde1, Sn) 

z2= p(z2!e1) = p(s1)*p(z2\e1, s,) + p(s2)*p(z2!e1,s2) + p(s3)*p(z21e1, S3) + ... + p(sn)*p(z21e1, Sn) 

z3= p(z3\e1) = p(s1)*p(z3\e1, SI)+ p(s2)*p(z3\e1,s2) + p(s3)*p(z3[e1, S3) + ... + p(sn)*p(z3\e1, Sn) 

Zn= p(zn!e1) = p(s1)*p(znle1, s1) + p(s2)*p(znle1,s2) + p(s3)*p(znle1, S3) + ... + p(sn)*p(znle1, Sn) 

Posterior Probability is calculated using the formula: 

"P(silej, Zk) [ p(si) p(zk\ej, Si)]/ [ p(zk[ej) ]" [2] 

The Posterior Probability values are printed in the text file, 

"PosteriorProbability.txt". The following equations show how the Posterior Probabilities 

are calculated: 

P(s1le1, zi) [ p(s1) p(z1le1, s1) ]/ [ p(zde,) ], P(s1le1, z2) = [ p(s1) p(z2\e1, s1) ]/ [ p(z2\e1) ], 

... , 
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... , 

... , 

... ., 

The values in each column should add to 1. 

Figure 3.2 shows the interface when n equals 3. Figure 3.3 shows the text file 

··priorprobability _s·' where the Prior Probabilities can be entered. All these values should 

be equal to 1. 

EIJ TO CALCULATE POSTERIOR PROBABILITY GJ(Q)l'.E) 

~-Load _ __,) Ir \f'1obab1hty\p1101prob<lb11ity_ • t,t 

n 

p(si) 

p(zk I ei. si) 

p(zk I eil 

3 

I0.5 I 0.2 I 0.31 

jo.3210.12 I 0.16 I 

CALCULATE POSTERIOR PROBABILITY 

VIEW TREE 

Figure 3.2. Graphical User Interface to Calculate Posterior Probability When n Equals 3 



I priorprobability_s - Notepad r;J(g]L8:J 
File Edit Format View Help 

0.2;0.3;0.5 Minimize 

Figure 3.3. Entering s Equals Three Values in priorprobability _s.txt 

The values which are shown in Figure 3.3 are given as input for the Posterior 

Probability calculation. These values always sum to 1. Figure 3.4 shows the text file 

··priorprobability_zs"' where n2 values are entered; i.e., when n equals 3, there must be nine 

values entered into this file, and the values in each column should add to 1. 

It- priorprobability_zs - Notepad GJ(Q]~ 
File Edit Format View Help 

p.5;0.2;0.3 
0.2;0.5;0.2 
0.3;0.3;0.5 

I 

Figure 3.4. Entering n2 Which Equals Nine Values in priorprobability_zs.txt 

The values entered in the '·priorprobability_zs.txC file shown in Figure 3.4 are also 

given as input for the corresponding s values. For every n Prior Probability values (s 

values) entered, there are n2 Conditional Probability values to be entered as input in the 

"priorprobability _ zs.txf' file. The values entered in each column should always sum to 1. 

Figure 3.5 shows the text file "priorprobability _z.txt'· where the values are generated 

automatically. 

If\ priorprobability_z - Notepad t-)(g]IBJ 
File Edit Format View Help 

o.31 I o.34 I o.37 I 

Figure 3.5. Probabilities Generated in priorprobability _z.txt 
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The values shown in Figure 3.5 are the calculated values for Joint Probabilities and 

are generated in the "priorprobability _ z.txf' text file. When added, these values will always 

equal 1. Figure 3.6 shows the final calculated Posterior Probabilities for the given Prior 

Probabilities. 

lfl PosteriorProbability - Notepad ~(g)~ 
File Edit Format View Help 

0.32 I 0.12 I 0.16 I 0.19 0.44 0.16 
0.48 0.44 0.68 

Figure 3.6. Posterior Probabilities Generated for n Equals 3 

The Posterior Probabilities calculated with all the necessary inputs given are 

displayed in a text file called "PosteriorProbability.txC as shown in Figure 3.6. The values 

displayed in each column should always equal 1. The Decision Tree can be drawn using 

these probabilities. The example in Figure 3.7 shows the Decision Tree when n equals 3. 

P(S I) 

Figure 3.7. Example of Tree Diagram When n Equals 3 

The Tree view generated from the calculations for n equals 3 is shown in Figure 3.8 

with the Prior and Posterior Probability values in Tree format. 
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~ TreeForm GJ[g]L8] 
all 

8 s1 = 0.2 
z1 = 0.31 I P(z1 I e1, s1) = 0.5 
z2 = 0.341 P(z2 I el, sl) = 0.2 
z3 = 0.371 P(z3 I el , sl) = 0.3 

8 s2c0.3 
z1 = 0.31 I P(zl I el, s2) = 0.2 
z2 = 0.341 P(z2 I el, s2) = 0.5 
z3 = 0.371 P(z3 I el , s2) = 0.3 

8 s3=0.5 
z1 = 0.31 I P(z1 I el, s3) = 0.3 
z2 = 0.341 P(z2 I e1, s3) = 0.2 
z3 = 0.371 P(z3 I el, s3) = 0.5 

Figure 3.8. Tree View Generated When n Equals 3 

The Tree form in Figure 3.8 shows the Tree fom1at of the Posterior Probabilities 

calculated with the Prior Probabilities given as input. Since, the given input is 3 for the 

Prior Probabilities there are 9 corresponding Conditional Probabilities and Posterior 

Probabilities produced. 

3.4. The Detection Classification System Design 

The Detection Classification System performs motion calculations for the vehicles: 

Bus and Truck. The major components in the system are the vehicles, the environment, and 

the communication mechanisms. Vehicles are the dependent entities in the system that has 

the capability to move according to the speed parameters set. 

3.5. Problem Statement With Respect to Detection Classification 

The problem is to develop a Detection Classification System which has I 00 sensors 

and 2 moving vehicles, i.e., Bus and Truck. The sensors try to find the probability to detect 

a vehicle, and whenever there is detection, sensors generate a report. The vehicles move 

randomly, and for each vehicle move, there is a Tree Diagram set up with the probabilities 

put in whenever the Posterior Probabilities reaches the assumed thresholds for each 
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vehicle. The paths generated by the vehicles are green and orange in color. The whole idea 

is to find which vehicle is at a particular location in the considered area even when there is 

little or no perfect information available. The vehicle detection is found out using the 

Bayes' Theorem. 

3.6. The Application User Interface for Detection Classification 

This section describes, in detail, the layout of the application User Interface for the 

Detection Classification System. Figure 3.9 shows the User Interface of the Visual C#

based implementation of the artificial Detection Classification System. The grid panel can 

be divided anywhere from a 20*20 matrix of squares to a 50*50 matrix of squares that 

contain I 00 sensors indicated by an asterisk (*) at different locations. The interface 

displays the location, i.e., (x, y) coordinates of the sensor, when the cursor points and when 

the sensors are numbered from I to I 00. A default grid is loaded at startup with only the 

"Start" button active. The grid can be reset to default using the "Reset'' button. The 

"Pause" button is used to pause the simulation. In pause mode, the button changes to 

"Resume", and the simulation can be continued by using the "Resume" button. The "Stop" 

button stops the simulation, making it possible to input necessary parameter changes 

followed by restarting the simulation. 

The boxes on the left control the execution include the following items: 

I. Grid is a component which allows us to select the size of the grid, ranging from 

20*20 to 50*50, with X and Y being the axis and the check box "Show Grid." 

This component also consists of the major buttons "Change Grid Size and 

Clean," "Populate Sensors," and "Populate Bus/Truck" 
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>< [Pgcj v [P 11 
G!) S-Gold 

' O...,..GridSia.-a.... I 
1 ..__._. 1 
I .._..... .... _,._. 1 

BwoSs-d 1~100;;.;._ __ __, l--+----+---1--J-4----+---1--J-+----+----t--.._+--+---t--.._+--t--t--t 
,-..-, Ss-d l.._1aa ___ __, l--+----+---I--J-+----+---1--J-+----+----t--.._-4---+---f--1----+--t--t--t .__ 
* 5.....,. 
B e .. 
T ,. .... 

v-
No• 

B~•Theorem 

P(S)-1 PC•l"PC""- lat. allVPI llkl-U 
f'ISJ - Pl• I at.""- I 
-.PIS)lef'_........., 

p(e)le,._,.,.......... ........ ., ...... 
el•A--••M_,._,_,__,. -

Figure 3.9. Initial Load of the Interface 

p 

2. Bus Speed indicates the speed the Bus moves per 100 seconds 

3. Truck Speed indicates the speed the Truck moves per 100 seconds 

4. Legend is a brief description accompanying an illustration, indicating which are 

the sensors and the vehicles 

5. Sensor grid displays the X, Y coordinates and the index number for the sensor 

when the mouse hovers over a sensor in the interface 

6. Bayes' Theorem shows the logic behind the application developed 

The Detection Classification Interface follows these steps: 

1. Populate the sensors 

2. Populate the vehicles: Bus and Truck 

3. Specify the speed parameters 

4. Start the simulation 

5. The vehicles move randomly 
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6. At the initial load of the vehicles, the probabilities are generated by the sensors 

based on distance and color 

7. The sensors try to detect the vehicles 

8. A Decision Tree is generated in the form of a report for each detection by a 

sensor 

Figure 3.10 shows the User Interface for a Detection Classification System when 

the simulation is complete. The simulation is run with the vehicles, and the sensors 

populated on the grid. When a specific speed is set for both the vehicles and the "Start'' 

button is clicked, the vehicles tend to move. For each vehicle move with the "B" image, the 

path is shown in green, and for each vehicle move with the "T' image, the path is shown in 

orange. The path generated is shown in the form of arrows to track the direction of the 

moving vehicle. 
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Figures 3. 9 and 3 .10 depict the initial and final phases of the application. The 

following subsection describes the logic behind the object detection. 

3. 7. Logic Behind the Detection Classification 

This section deals with the logic used for the Detection Classification System. The 

environment for the Detection Classification Model is a finite, rectangular grid and consists 

of two moving objects in the presence of 100 static sensors. The objects can move to any of 

the eight neighboring cells which are not occupied by sensors. Even before the simulation 

starts, the objects that are present are detected by the sensors. The sensor closest to one of 

the vehicles is taken into consideration, and the Conditional Probabilities are calculated 

based on the distance and color of the vehicle; the Conditional Probabilities would further 

help us find the Posterior Probabilities. Upon finding the Posterior Probabilities, the 

Posterior Probabilities are assumed to be the Prior Probabilities for the other vehicle; 

hence, the Conditional Probabilities are calculated in a similar method as that mentioned 

earlier, and also, the Posterior Probabilities are generated. The sensors have a sensing 

radius by which they produce the probabilities to find a Bus/Truck based on the distance 

and color of the vehicle. 

For instance, if the sensing radius is 9 grid squares and if the vehicle detected is a 

Bus at a distance, d = 9 grids from the sensor, then the probability, p, would be 0.1; d 9 

grid squares, p 0.1; d = 8 grid squares, p = 0.2; d 7 grid squares, p 0.3; d = 6 grid 

squares, p 0.4; d = 5 grid squares, p = 0.5; d = 4 grid squares, p 0.6; d 3 grid squares, 

p = 0.7; d = 2 grid squares, p = 0.8; d = 1 grid square, p 0.9; and if the detected vehicle is 

a red Truck at a distance, d 7-9 grid squares from the sensor, then the probability, p, 

would be 0.75; d = 4-6 grid squares, p = 0.85; and d 1-3 grid squares, p = 0.95. 
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Considering the possible Prior Probabilities for the States of Nature for the vehicle 

to be a Bus, s1, and for the vehicle to be a Truck, s2, to be mutually equal events, i.e., s1 s2 

= 0.5, the Posterior Probabilities are calculated. For instance, if the sensor 2 cells away 

from the vehicle detects the vehicle to be a Bus if indeed it is a Bus, then the probability, p 

(z11I e1, s1), is 0.8, and the probability to detect the vehicle as a Truck if indeed it is a Bus, p 

(z12I e,, s1), will be 1-0.8 = 0.2. If the sensor detects the vehicle as a Truck if it is indeed a 

Truck, then the probability, p (z22 1 e1, s2), is 0.95, and the probability to detect the vehicle 

as a Bus if it is indeed a Truck, p (z21I e1, s2), will be 1-0.95 0.05. 

The Joint Probabilities can be calculated, i.e., "p (zk !ej) = (Prob{si}* Prob{zk I ej, 

Si})" [2]. 

p (z1) p (s1)* p (z11I e1, s1) + p (s2) * p (z21I e1, s2) 

p (z2) = p (s1)* p (znl e1, s1)+ p (s2) * p (z22I e,, s2). Where p (z12I e1, s1) = 1- p (z11I 

e1, s1) and p (z21I e1, s2) = 1- p (z22I e1, s2) and the Posterior Probability can be calculated 

using the formula 

"P ( Si I ej, Zk), P (S) = [p (si)*p (zk I ej, Si)] / p (zk I ej)" [2] 

Whenever a vehicle is detected by a sensor, a Decision Tree is generated. The 

Decision Tree can be drawn using these probabilities. The Decision Tree is considered as a 

form of report for the object detection. The report generated is stored in a text file. 

Figure 3.11 shows an example of the Decision Tree for n equals 2. Figure 3.12 

depicts the Decision Tree generated from the probabilities calculated with the entire Prior, 

Joint, and Posterior Probability values included. 
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Figure 3 .11. Example of Tree Diagram When n Equals 2 

Figure 3.11 displays how a Tree Diagram can be drawn using the posterior and 

Prior Probabilities for an experiment where n is given as 2. The Tree keeps expanding as 

the number of inputs increases. 
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Figure 3.12. Tree View Generated When n Equals 2 

The Tree view shown in Figure 3.12 is the fonn of the output generated with all the 

probabilities calculated and the same values put in the Tree format. Figure 3.13 shows the 
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interface when the complete paths for the vehicles have been generated with the green

colored path assuming the vehicle to be a Bus and the orange-colored path assllniing the 

vehicle to be a Truck. 

f:R l>c-toction Clu1ssificu11ion Model r::-]@® 
Grid 

>< ~ V [r_; ] 
G!) ShowGrld 

I ~GridSlze-0-, I 
,..,.,..-s--• 

BuoSpe,od &.;;.!IW;:;.;;.._ __ __, 

Touc1r. s,-..1 ~I ,aa ___ ~ 
L_..:I 

* s ...... 
B e ... 
T Tnd. 

Senoor 

><-

No• 

P(SJ-11'«•1" i,«alai. olJIIPI a I ail 

-.P(SJ•-~ 

l'«•J•-~ 
oiloSt-ol.-.e 
eiloAY--
aioM_r.....,_,___.. 

* 

* '"'~ 

* 

* 

* * -<, • ' 

14' I 

~,, * ii..! ' * I< .~ * :1~ ~ * ,.,! l * <,- ' * * * * * 
* * * * * * * * * * * 

I~ 1-i ._ * ** * le. • 

k.. * * * *** * * * * ** ** * ..... ~ * 
* I .I 

B '* ~ 

* II I I 

* * 3* ~* I 

,* 
il •• * * * * II * ** * * * * ** 

Figure 3.13. Interface With Complete Paths Generated 

* * * * * * * * * * * * * * * * * * * * * * 
* * * * 

* * ~ c~ * * * 
R .. 

The Posterior Probabilities generated for the first location, i.e., location 1, where the 

vehicle is detected by the closest sensor are considered as Prior Probabilities for the next 

location where the vehicle is detected by the sensor closest to location 2. There are some 

thresholds considered for each vehicle. When the produced probabilities appear in the 

thresholds, the iteration is stopped, or this will be an alternative chain process. 
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4. INTERNAL VIEW 

The environment for the Detection Classification Model is a finite, rectangular grid 

and consists of two moving objects in the presence of 100 static sensors. The objects can 

move to any of the eight neighboring cells which are not occupied by sensors. Even before 

the simulation starts, the objects that are present are detected by the sensors. The sensor 

closest to one of the vehicles is taken into consideration, and the Conditional Probabilities 

are calculated based on the distance and color of the vehicle; the Conditional Probabilities 

would further help us find the Posterior Probabilities. Upon finding the Posterior 

Probabilities, the Posterior Probabilities are assumed to be the Prior Probabilities for the 

other vehicle; hence, the Conditional Probabilities are calculated in a similar method as that 

mentioned earlier, and also, the Posterior Probabilities are generated. The goal is to find 

which object is detected at a particular location in the environment considered. The task of 

detecting the vehicle or the moving object can be interpreted as a continuous, alternating 

iterative process for each vehicle. 

This chapter describes the sample problem for the interfaces, Posterior Probability 

Calculation, and the Detection Classification Model with which we worked. The chapter 

also walks through the class relationships and the key implementation code. 

4.1. Internal View of the Posterior Probability Calculation 
Interface 

This section gives an internal view of the interface for Posterior Probability 

calculation. In this chapter, there are some key classes which are used for the probability 

calculation. Each class consists of some important methods involved in the Posterior 

Probability calculation. 
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4.1.1. Calculation Class 

This class contains the methods necessary to calculate the Posterior Probability 

when the Prior Probabilities are provided using the Bayes' Theorem. The following 

subsections give a brief description of the methods used in the calculation of the Posterior 

Probability. 

4.1.1.1. Calculateposteriorprobability Method 

The calculatePosteriorProbability method uses the formula to determine the 

Posterior Probability using a formula derived from the Bayes' Theorem. 

public void calculatePosteriorProbability() 
{ 

} 

for (inti= O; i < n; i++) 
for (intj O; j < n; j++) 

post_p[i, j] = Math.Round(p_si[i] * p_zk_si[i, j] / p_zk[i],2); 

4.1.1.2. Writedata Method 

The writeData method writes the calculated Posterior Probabilities to a text file 

called "PosteriorProbability .txt". 

public void writeData() 
{ 

Stream Writer writer= new Stream Writer("PosteriorProbability.txt"); 

string[] value new string[ n]; 
for (int s = O; s < n; s++) value[s] = ""; 

for (inti= O; i < n; i++) 
for(intj O;j<n;j++) 

value[i] += post_p[i, j] + " I "; 

for (int w = O; w < n; w++) 
writer. Write Line( value[ w ]); 

writer.Close(); 
} 
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4.1.2. Windows Form 

The Form class contains all the variables and controls necessary for the calculation 

of Posterior Probability. It represents a window within the application where we can add 

controls commonly associated with windows, such as a button, a text box, a check box, or a 

radio button, and set properties to interact with the controls by altering their appearance 

and behavior. The form could include dialog boxes as well as Multiple Document Interface 

(MDI) client and parent windows. The programming logic to form, i.e., the code behind the 

form, is added to the class, derived from the form, which is created when the User Interface 

for the application is designed. The event handlers can also be created in the class. The 

event-handling method is registered in the application when an event is created such as 

when the user clicks a button, i.e., when the control changes state. 

4.1.2.1. Calculation Form 

This section describes the variables and controls required for the Calculation form. 

calculation calc; 
string s _path; 
string z _ s _path; 
string z _path; 

public Forml() 
{ 

} 

InitializeComponent(); 
calc = new Calculation(); 

4.1.2.2. Controls in the Calculation Form 

This section deals with all the controls present in the Posterior Probability 

Calculation Form. The buttons used in the application are Load, Calculate Posterior 

Probability, and View Tree. The Loadbutton_Click Event validates the input provided in 

the* _s.txt file and shows the input in the text box provided for the p(si) field. The event 

23 



also validates the input provided in "priorporbability _ zs.txt" and "priorporbability _z.txt", 

and shows the input values in the text boxes provided for p(zklej, sk) and p(zkjej). 

The CalculatePosteriorProbabilitybutton _ Click Event takes all the values provided 

in the text boxes and calculates the Posterior Probability for the given values. The process 

displays the values in the text box provided below the "Calculate Posterior Probability" 

button. 

The View Treebutton _ Click Event considers all the values provided and calculated. 

It generates a Tree View of the probabilities for an easy decision. 

4.1.2.3. Treeform 

This class contains the methods necessary to build a Decision Tree when all the 

necessary probabilities are calculated. 

private void buildTree() 
{ 

TreeNode node= new TreeNode("el "); 
Tree View I .Nodes.Add(node ); 

for (inti= 0; i < calc.getN(); i++) 
{ 

TreeViewl.Nodes[0].Nodes.Add("s" + (i + I)+ 11 "+ 
Convert.To String( calc.get_p _ si()[i])); 

for (int j 0; j < calc.getN(); j++) Tree View I .Nodes[0].Nodes[i].Nodes.Add("z" 
+ G + 1) + "=" + Convert.ToString(calc.get_p_zk()IJ])+" I 
P(z"+G+ I )+"!el ,s"+(i+ 1 )+")="+Convert.ToString( calc.get_p _zk _si()IJ,i])+")"); 

} 
Tree View I .Refresh(); 

} 

4.2. Internal View of the Detection Classification System 

The environment for the Detection Classification Model is a finite, rectangular grid 

world and consists of a Bus, a Truck, and 100 static sensors. Vehicles move randomly, and 

the sensors calculate the probability of finding vehicles. From a given square, a vehicle 
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may move to any of the eight neighbor squares. The goal is to detect vehicles when the 

vehicles do not collide and when there is no complete information provided by the sensors. 

4.2.1. World Class 

This class contains the methods necessary to find the detections of a Bus and Truck 

from one square to another using the algorithm based on the Bayes' Theorem. The class 

determines the probable detection of the vehicle to be a Bus or a Truck. 

Probabilities are considered based on the distance between the sensor and the 

vehicle: 

public void calculateN ewPosterior(int move_ no) 

{ 
int move= move_no +I; 
Zone[] z = FindNearBus(); 
int bi = -1 ; int bj = -1 ; 
int ti = -1 ; int tj = -1; 
for (int i O; i < this. Width; i++) 
{ 

for (int j O; j < this.Height; j++) 
{ 

if (zone[i, j].isBus()) 
{ bi= i; bj = j; } 
if (zone[i, j].isTruck()) 
{ ti i; tj j; } 

} 
} 
bool foundfirst = false; 
bool foundsec = false; 
Vehicle firstVeh = Vehicle.Bus; 
Vehicle sec Veh = Vehicle.Bus; 
double pfirstfound O; 
double psecondfound = O; 

if (z.Length > 0) 
{ 

Zone zz = z[O]; 
double distBus = this.calculate_distance(zz.getX(), zz.getY(), bi, bj); 
double distTruck this.calculate_distance(zz.getX(), zz.getY(), ti, tj); 
double pb = 1 - 0.1 * distBus; 
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double pt= 0; 
if (distTruck >= 1 && distTruck <= 3) pt 0.95; 
if (distTruck >= 4 && distTruck <= 6) pt= 0.9; 
if (distTruck >= 7 && distTruck <= 9) pt= 0.85; 

//conditional 
double pzl lelsl pb; 
double pz12elsl = 1 - pb; 
double pz21els2 = 1 - pt; 
double pz22els2 pt; 

//prior 
double psl 0.5; 
double ps2 0.5; 

double pzlel = psl * pzl lelsl + ps2 * pz21els2; 
double pz2el = psl * pz12elsl + ps2 * pz22els2; 

//posterior 
double npzl lelsl = (psl * pzl lelsl) / (pzlel); //P(sljel,zl) 
double npz12elsl = (psl * pz12elsl) / pz2el; //P(sljel,z2) 
double npz21els2 (ps2 * pz21els2) / (pzlel); //P(s2jel,zl) 
double npz22els2 = (ps2 * pz22els2) / pz2el; //P(s2jel,z2) 

4.2.2. Windows Form 

The Form class contains all the variables and controls necessary for the calculation 

of the Posterior Probability. It represents a window within the application where the 

developer adds controls commonly associated with windows, such as a button, a text box, a 

check box, or a radio button, and sets the properties to interact with the controls by altering 

their appearance and behavior. The form could include dialog boxes, and Multiple 

Document Interface (MDI) client and parent windows. The programming logic to form, 

i.e., the code behind the form, is added to the class, derived from the form, which is created 

when the User Interface for the application is designed. The event handlers can also be 

created in the class. The event handling method is registered in the application when an 

event is created such as when the user clicks a button, i.e., when the control changes state. 
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4.2.2.1. Detection Classification Form 

This section contains all the variables and controls responsible for detecting the 

vehicles. It represents a window within an application. 

public Form I() 
{ 

} 

lnitializeComponent(); 
this.SetStyle(ControlStyles.DoubleBuffer I ControlStyles.UserPaint I 
ControlStyles.AllPaintingln WmPaint, true); 
this. U pdateStyles(); 
this.DoubleBuffered true; 
this.bac new SolidBrush(this.BackColor); 
this.MouseMove += new MouseEventHandler(gridPanel _ MouseMove ); 

listBox l.SetSelected(0, true); 
listBox2.SetSelected(0, true); 
grid_ON true; 
move_no = 0; 

x _grid = lnt32.Parse(listBox l .Selectedltem. ToString()); 
y _grid lnt32.Parse(listBox2.Selectedltem.ToString()); 

int x_temp gridPanel.Size.Width / x_grid; 
int y_temp = gridPanel.Size.Height / y_grid; 

if (x _ temp < y _temp) rectangle _size x _ temp; 
else rectangle_ size y _ temp; 

world= new World(x _grid, y _grid, rectangle_ size); 
gridPanel.Hide(); 

4.2.2.2. Controls in the Detection Classification Form 

This section describes the controls present in the Detection Classification Form. 

1. Buttons: The buttons used in the application are as follows: "Change grid size 

and clean," "Populate Sensors," "Populate Bus, Truck," "Start," "Pause," 

"Stop," "Reset," and "Change Grid Size and Clean" which allows for a change 

in the grid size and cleans the previously populated grid 
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The "Populate Sensors" and "Populate Bus, Truck" buttons are active before the 

grid is loaded with the sensors and the vehicles and, after you stop or reset the application 

by pressing the "Start" and the "Reset" buttons, respectively. The "Populate Sensors" and 

"Populate Bus, Truck" buttons are inactive when the application is either running or 

paused. 

The "Start" button revalidates the input of the text boxes and makes sure that the 

sensors and vehicles are placed in the grid. Then, the vehicles start to move randomly. 

Some control availability is changed to prevent misuse. The Timer starts so that the 

simulation can begin. 

The "Pause/Resume" button stops/start the Timer, depending on the situation, so 

that the simulation can be paused; upon clicking on the "Pause" button, the timer stops and 

changes the button's text to "Resume." Otherwise, clicking the "Resume" button starts the 

timer again, changes the text to "Pause," and continues the vehicular movement. 

if (button_ Pause.Text "Pause") 

else 

{ 

} 

{ 

} 

timer_ Bus.Stop(); 
timer_ Truck.Stop(); 
button _Pause.Text= "Resume"; 

timer_ Bus.Start(); 
timer_ Truck.Start(); 
button _Pause.Text= "Pause"; 

The "Stop" button stops the Timer and disables some controls available to prevent 

misuse. Upon clicking the "Stop" button, the input text boxes that were read-only are 

activated and can be used to change the grid dimensions and speed parameters. The notable 
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difference between the "Pause/Resume" and "Stop" button is that the "Pause/Resume" 

button pauses the simulation and starts it from the same point where it was stopped, 

whereas the "Stop" button stops the simulation and starts it all over again. 

private void button_ Stop_ Click( object sender, EventArgs e) 
{ 

} 

timer _Bus.Stop(); 
timer_ Truck.Stop(); 
Button_ ChangeGrid.Enabled = true; 
Button_PopulateSensors.Enabled = true; 
Button_PopulateTruck.Enabled = true; 
button _Reset.Enabled = true; 
button RefreshDecisionTree.Enabled true; 
world.calculate_ distances(); 
this.button I .Enabled true; 

The "Reset" button resets the simulation by calling the "StopButton_ Click()" 

method to stop the simulation. "Reset" button enables the "Populate Sensors, Populate Bus 

and Truck_ Click()" method to populate the grid with the sensors and vehicles. 

{ 

} 

button _Reset.Enabled = false; 
button_Stop_Click(sender, e); 
button_ Start.Enabled = true; 
button_Pause.Text = "Pause"; 
Button_ ChangeGrid_ Click(sender, e); 
Tree View I .Nodes. Clear(); 

The "Decision Tree" button is used to view the Tree of probabilities generated for 

each move. 

2. Text boxes: The text boxes used in the application are "Truck Speed" and "Bus 

Speed." The input value for a text box must be an integer value 

3. Check boxes: The check box used in the application is "Show Grid." The 

"Show Grid" check box lets the panel paint if "Show Grid" is checked. When 

there is a change, it repaints itself to reflect the change 
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{ 

} 

if (grid_ON == true) grid_ON = false; 
else grid_ ON = true; 

gridPanel.Invalidate(); 
this.Invalidate(); 

4.3. Modifying the Simulation 

To modify the code, we should use the Microsoft Visual Studio 2010 Environment 

or later and the Microsoft .NET Framework 2.0. The code has comments indicating which 

variables for the Bus, Truck, sensors, and paths can easily be changed. 

4.4. Output 

Simulations are run to check the specifications provided for the vehicular 

movement scenarios. Figure 4.1 depicts the initial scenario when the grid is loaded with 

vehicles and the sensors are placed on it. The asterisks (*) represent the sensors; the letter 

"B" represents the Bus; and the letter "T' represents the Truck. 
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Figure 4.2 shows the interface when the simulation is started. The sensors show the 

probabilities when the mouse hovers , i.e., the probability to find a Bus if it is indeed a Bus, 

p (zl 1 !el, sl); the probability to find a Truck if it is indeed a Bus, p (zl2 lel, sl) = 1-p 

(zl 1 lel, sl); the probability to find a Truck if it is indeed a Truck, p (z22 !el, s2); and the 

probability to find a Bus if it is indeed a Truck, p (z21 lel, s2) = 1-p (z22 lel, s2). 
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Figure 4.2. Starting the Simulation 
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When the Bus and Truck are populated, the sensors show the initial probabilities, 

i.e., before the simulation begins. The vehicles move randomly; the probabilities generated 

by the sensors are captured; and the Posterior Probabilities are calculated. For each sensor, 

there are two sets of Conditional Probabilities generated: one set of values with respect to 

the vehicle for image "B" and the other set of values with respect to the vehicle for image 

"T." Figure 4.3 shows the hover-over message for each sensor, including the location and 

also the sensor's index number. 
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Figure 4.3. Message When the Mouse Hovers Over a Sensor 
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For each vehicle detection, a report is generated in the form of a Decision Tree. It is 

shown in APPENDIX A. REPORT GENERA TED. Hence, for each iteration in a move, the 

report is generated in the form of a Decision Tree with all the necessary probabilities 

calculated and shown. Where e represents the experiment, s 1 and s2 are states of nature, z 1 

and z2 represent the Joint Probabilities, P(zl !el ,sl), P(z2lel, z2), P(zl !el ,s2) and 

P(z2lel,s2) represent the Conditional Probabilities and P(sljel,z2), P(s2lel,zl), P(s2jel,z2), 

and P(sljel,zl) represent the Posterior Probabilities. 

32 



5. RESULTS 

The Bayesian Approach was used to solve the Detection Classification problem. I 

used test cases where Test Case 1 and Test Case 2 help us find the efficiency of the 

algorithm designed for classifying the detection. The test cases were executed on a 

Windows XP Operating System. 

5.1. Test Case 1 

Experiments were carried out to find the number of sensors that successfully 

distinguish two types of moving objects. With the variable being the number of sensors, we 

conducted the experiments in decreasing order of sensors. The sensors are placed 

randomly, the default size of the geographical area is 20x20 grid squares, and the same 

layout is used for all the differing number of sensors. The movement of the vehicles is 

fixed with the variable number of sensors. Table 5.1 shows a"✓" whenever the threshold 

values are reached. 

Table 5.1. Number of Sensors That Successfully Distinguish Two Moving Objects at Given 
Thresholds 

No. of Sensors Threshold Value Threshold Value Threshold Value 
0.85 0.9 0.98 

50 ✓ ✓ ✓ 
45 ✓ ✓ ✓ 
40 ✓ ✓ ✓ 
35 ✓ ✓ ✓ 
30 ✓ ✓ ✓ 
25 ✓ ✓ ✓ 
20 ✓ ✓ ✓ 
15 ✓ ✓ ✓ 
10 ✓ ✓ ✓ 
07 ✓ ✓ -
05 ✓ - -
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With the threshold values set at 0.85, 0.9, and 0.98, the experiments revealed that 

the number of sensors required to successfully distinguish two moving objects reach the 

threshold values were, respectively, 5, 7, and 10 with the number of sensors ranging from 

50 to 5. The experiment was run once for each threshold value, with the number of sensors 

decreasing in multiples of five. From Table 5 .1, we can see the number of sensors to 

successfully distinguish two moving objects to reach a threshold value of 0.85 is 5. 7 

sensors are required to reach a threshold value of 0.95 and at least 10 sensors are required 

to reach a threshold value of 0.98. 

5.2. Test Case 2 

Experiments were carried out to find how frequently threshold values are generated 

to distinguish two types of moving objects with the varying number of sensors. The values 

in Table 5.2 are displayed for the sensors that are placed randomly, the default size of the 

geographical area is 20x20 grid squares, and the same layout is used for all the differing 

number of sensors. 

Table 5.2. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.98 

No. of sensors Frequency to reach the threshold 0.98 
10 5 
20 8 
30 13 
40 20 
50 25 
60 29 
70 33 
80 38 
90 42 
100 45 

There are 150 iterations simulated. For a given move of the two vehicles, the 

algorithm is run until the specified threshold is reached. Moves proceed one by one, and 
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the iterations are cumulative across the vehicle moves. The process stops when 150 

iterations are reached, regardless of the number of vehicle moves. Figure 5 .1 shows the 

values for the number of sensors on the x-axis and the number of times the threshold value, 

0.98, was reached on the y-axis. 

From the following Figure 5.1, we can see that the threshold frequency is linearly 

increasing with the corresponding number of sensors when the threshold value is 0.98. This 

finding shows that the number of sensors is directly proportional to the threshold 

frequency. 

so 
45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

Threshold Frequency with varying no. 
of Sensors 

,-.-- ,.-,-, 

0 10 20 30 40 so 60 70 80 90 100 

- Threshold Frequency 
with varying no. of 
Sensors 

Figure 5.1. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.98 

Table 5.3 shows the frequency with which the variable number of sensors reached 

the threshold value of0.9. The values in Table 5.3 are displayed for 150 iterations when all 

the moves for the simulation are considered with the variable number of sensors and the 
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threshold value considered is 0.9. Figure 5.2 shows the results for the number of sensors on 

the x-axis and the number of times the threshold value, 0.9 was reached on the y-axis. 

Table 5.3. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.9 

No. of sensors Frequency to reach the threshold 0.9 
7 
10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
100 

20 
25 
33 
39 
45 
52 
59 
65 
71 
74 
78 
81 
85 

Threshold Frequency with varying no. 
of Sensors 

0 10 20 30 40 so 60 70 80 90 100 

- Threshold Frequency 
with varying no. of 
Sensors 

Figure 5.2. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.9 
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From the graph in Figure 5.2, we can see that the threshold frequency is linearly 

increasing with the corresponding number of sensors when the threshold value is set at 0.9. 

Table 5.4 shows the frequency with which the variable number of sensors reached the 

threshold value of 0.85. Figure 5.3 shows the values for the number of sensors on the x

axis and the number of times the threshold value, 0.85, was reached on the y-axis. The 

values in Table 5.4 are displayed for 150 iterations when all the moves for the simulation 

are considered with the variable number of sensors and the threshold value considered is 

0.85. 

Table 5.4. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.85 

No. of sensors Frequency to reach the threshold 0.85 
5 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

110 

100 

'JO 
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Threshold frequency with varying no. 
of sensors 

0 10 20 30 40 so 60 70 80 'JO 100 

- Threshold frc-qucncv 
with v.:,ryinp, no. or 
s.c-ns.ors 

Figure 5.3. Threshold Frequency With Varying Number of Sensors With the Threshold 
Value Set as 0.85 

37 



From the graph in Figure 5.3, we can see that the threshold frequency is linearly 

increasing with the corresponding number of sensors. The experiment shows that the 

number of sensors is directly proportional to the threshold frequency. 
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6. CONCLUSIONS AND FUTURE WORK 

A Posterior Probability Calculation Interface and a Detection Classification Model 

were developed and implemented and tested. In the Detection Classification Model where 

multiple sensors with sensing radii detected the two vehicles, Bus and Truck, the strategy is 

to explore an unknown area, added with some intelligence, with sensors that can detect the 

vehicles. This paper presented a Bayes' Theorem-based strategy where the sensors used 

different detection logics to classify the moving objects. Although the geographical area 

considered in this model was a finite, rectangular grid, the algorithm could be applied to 

any area geographically connected by neighborhood relations and to any moving objects. 

This model can be used to design multi-vehicular movement systems which involve 

probability-oriented navigation methods in the presence of obstacles. 

While this implementation meets all of the essential requirements of the Bayes' 

Theorem, there are ways in which the solution could be augmented and improved. Use of 

techniques like sensor communication and movement can help find better solutions by 

exploring the solution space far more thoroughly. But the .NET-based implementation 

demonstration in this article can reach that level of sophistication since they are essentially 

just refinements of the basic algorithm. 

This paper described a model that is limited to only two objects and static sensors. 

The application could be developed to accommodate multiple objects and different types of 

sensors. With dynamic targets, i.e., the movement of sensors with time, new things could 

be tried, and also, a special case, a point of coincidence for the objects with obstacles 

present in the geographical area, can also be considered. New languages can be developed 
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to describe scenarios, such as the geographical area of interest, location of targets, etc. 

Work can be done in scaling up the system with more and different types of grid variables. 

With the experiments conducted, we can come to a conclusion that a particular 

vehicle can be found at a certain location in a designated area with the probability greater 

than or equal to a threshold value. The Bayes' Theorem is completely based on 

probabilities; we cannot really conclude that a particular vehicle is found at a location with 

an exact value. 
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APPENDIX A. REPORT GENERATED 

The detection report is generated in the form of a Decision Tree with all the 

necessary probabilities calculated and shown. Where e represents the experiment, s 1 and s2 

are states of nature, zl and z2 represent the Joint Probabilities, P(zllel,sl), P(z21el, z2), 

P(zl le 1,s2) and P(z21e l ,s2) represent the Conditional Probabilities and P(sl le 1,z2), 

P(s21e 1,zl ), P(s2jel ,z2), and P(sl !el ,zl) represent the Posterior Probabilities. 

Decision.txt 

Move No. 0 

el 

sl = 0.5 

zl =0.421 P(zl lel ,sl )=0.71 P(sl !el ,zl)=0.82 

z2=0.571 P(z2je1,sl)=0.31 P(sllel,z2)=0.26 

s2 0.5 

zl=0.421 P(zllel,s2)=0.151 P(s2lel,zl)=0.18 

z2=0.571 P(z2lel ,s2)=0.85 I P(s2je 1,z2)=0. 74 

e2 

st = 0.82 

zl=0.61 P(zl!el,sl)=0.71 P(sljel,zl)=0.96 

z2=0.41 P(z21el,sl)=0.31 P(sllel,z2)=0.62 

s2 0.18 

zl=0.61 P(zljel,s2)=0.151 P(s2jel,zl)=0.04 

z2=0.41 P(z21el,s2)=0.85I P(s21el,z2)=0.38 

e3 

sl = 0.26 

zl=0.291 P(zljel,sl)=0.71 P(sljel,zl)=0.62 

z2=0.71 I P(z2lel,sl )=0.31 P(sl jel ,z2)=0.11 
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s2 = 0.74 

zl=0.291 P(zllel,s2)=0.151 P(s2lel,zl)=0.38 

z2=0.711 P(z21el,s2)=0.85I P(s2lel,z2)=0.89 

e4 

s1 0.96 

zl=0.681 P(zl lel,s1 )=0.71 P(s1 lel,zl)=0.99 

z2=0.321 P(z2lel,sl)=0.31 P(s1 lel,z2)=0.88 

s2 = 0.04 

zl=0.681 P(zllel,s2)=0.151 P(s2jel,zl)=0.01 

z2=0.321 P(z21e 1,s2)=0.851 P(s21e 1,z2)=0.12 

e5 

s1 0.62 

zl =0.491 P(zl lel,sl)=0.71 P(s1 lel,zl)=0.88 

z2=0.5ll P(z2lel,s1)=0.31 P(sllel,z2)=0.37 

s2 = 0.38 

zl=0.49j P(zljel,s2)=0.151 P(s2lel,zl)=0.12 

z2=0.51 I P(z21el,s2)=0.851 P(s21el,z2)=0.63 

e6 

s1 0.62 

zl =0.491 P(zl !el ,s1 )=0.71 P(sllel ,zl)=0.88 

z2=0.51 I P(z2jel,s1 )=0.31 P(s1 le 1,z2)=0.3 7 

s2 0.38 

zl =0.491 P(zllel ,s2)=0.151 P(s2lel,zl)=0.12 

z2=0.5ll P(z2!el,s2)=0.851 P(s2jel,z2)=0.63 

e7 

s1 0.11 

zl =0.21 I P(zl !el ,s1)=0.71 P(s1 !el ,zl)=0.37 
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z2=0.791 P(z2lel ,s1 )=0.31 P(sl le l ,z2)=0.04 

s2 = 0.89 

zl=0.211 P(zllel,s2)=0.151 P(s2lel,zl)=0.63 

z2=0.791 P(z2lel,s2)=0.851 P(s2lel,z2)=0.96 

e8 

s1 0.88 

zl =0.641 P(zl le 1,s1 )=0.71 P(sl lel ,zl )=0.97 

z2=0.36I P(z2le1 ,s1)=0.31 P(sl lel,z2)=0.73 

s2 = 0.12 

zl =0.641 P(zljel ,s2)=0.151 P(s21e 1,zl )=0.03 

z2=0.36I P(z21e 1,s2)=0.851 P(s21e 1,z2)=0.27 

e9 

s1 0.37 

zl =0.351 P(zl lel ,s1 )=0. 71 P(s1 lel ,zl )=0. 73 

z2=0.651 P(z2lel,s1)=0.31 P(sllel,z2)=0.17 

s2 = 0.63 

zl=0.351 P(zllel,s2)=0.151 P(s2jel,zl)=0.27 

z2=0.65I P(z21e l ,s2)=0.851 P(s21e l ,z2)=0.83 

el0 

sl 0.37 

zl=0.351 P(zllel,s1)=0.71 P(sllel,zl)=0.73 

z2=0.651 P(z2le1 ,sl)=0.3j P(sljel,z2)=0.17 

s2 = 0.63 

zl =0.35! P(zl jel ,s2)=0.l 51 P(s2lel,z1 )=0.27 

z2=0.65I P(z21el,s2)=0.85j P(s2lel,z2)=0.83 

ell 

sl = 0.04 
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zl =0.171 P(zl !el ,sl )=0.71 P(s1 !el ,zl )=0.17 

z2=0.83I P(z2lel,s1)=0.3I P(sllel,z2)=0.02 

s2 0.96 

zl=0.171 P(zllel,s2)=0.151 P(s2jel,zl)=0.83 

z2=0.83I P(z2lel,s2)=0.85I P(s2lel,z2)=0.98 

Move No. 1 

el 

s1 = 0.5 

zl =0.381 P(zl lel ,s1 )=0.61 P(sl lel ,zl )=0.8 

z2=0.621 P(z2jel,sl)=0.41 P(sllel,z2)=0.32 

s2 = 0.5 

zl=0.381 P(zllel,s2)=0.151 P(s2lel,zl)=0.2 

z2=0.62I P(z2lel,s2)=0.85I P(s2jel,z2)=0.68 

e2 

s1 = 0.8 

zl =0.51 I P(zl lel,s1 )=0.61 P(s1 !el ,zl )=0.94 

z2=0.49j P(z2jel,s1)=0.4I P(sllel,z2)=0.65 

s2 = 0.2 

zl=0.511 P(zllel,s2)=0.151 P(s2lel,zl)=0.06 

z2=0.491 P(z21e 1,s2)=0.851 P(s2le 1,z2)=0.35 

e3 

s1 = 0.32 

zl=0.291 P(zllel,sl)=0.61 P(sllel,zl)=0.65 

z2=0.711 P(z21el,s1)=0.41 P(sllel,z2)=0.18 

s2 0.68 

zl =0.291 P(zl le 1,s2)=0.151 P(s21e 1,zl )=0.35 

z2=0.711 P(z2lel,s2)=0.85I P(s2lel,z2)=0.82 
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e4 

sl 0.94 

zl=0.571 P(zllel,sl)=0.61 P(sllel,zl)=0.98 

z2=0.43I P(z2lel,sl)=0.4I P(sllel,z2)=0.88 

s2 = 0.06 

zl =0.571 P(zl lel ,s2)=0.l 51 P(s21e l ,zl )=0.02 

z2=0.431 P(z21el ,s2)=0.85I P(s21el ,z2)=0.l 2 

e5 

sl 0.65 

zl =0.441 P(zl lel,sl)=0.61 P(sl lel,zl)=0.88 

z2=0.56j P(z2jel,sl)=0.4I P(sllel,z2)=0.47 

s2 = 0.35 

zl =0.441 P(zl lel,s2)=0.151 P(s2lel ,zl)=0.12 

z2=0.56I P(z21e l ,s2)=0.85 I P(s21e l ,z2)=0.53 

e6 

sl = 0.65 

zl=0.441 P(zllel,s1)=0.61 P(sllel,zl)=0.88 

z2=0.56I P(z2lel,sl)=0.4j P(slje1,z2)=0.47 

s2 0.35 

zl=0.441 P(zllel,s2)=0.15I P(s2lel,z1)=0.12 

z2=0.56I P(z21el ,s2)=0.851 P(s2je 1,z2)=0.53 

e7 

s1 = 0.18 

zl=0.231 P(zljel,s1)=0.61 P(sllel,zl)=0.47 

z2=0.771 P(z2jel,sl)=0.41 P(sljel,z2)=0.09 

s2 0.82 

zl =0.23j P(zljel,s2)=0.151 P(s2lel ,zl)=0.53 

z2=0.77j P(z2lel,s2)=0.85I P(s2jel,z2)=0.91 
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e8 

sl 0.88 

zl=0.551 P(zllel,sl)=0.61 P(sllel,zl)=0.97 

z2=0.451 P(z2lel,sl)=0.4I P(sllel,z2)=0.78 

s2 = 0.12 

zl=0.551 P(zljel,s2)=0.15I P(s2jel,zl)=0.03 

z2=0.451 P(z2je l ,s2)=0.85I P(s2je 1,z2)=0.22 

e9 

sl = 0.47 

zl =0.361 P(zl lel ,sl)=0.61 P(sl jel ,zl)=0.78 

z2=0.641 P(z2lel,sl)=0.4I P(sljel,z2)=0.29 

s2 0.53 

zl =0.361 P(zl jel,s2)=0.l 51 P(s2jel,zl)=0.22 

z2=0.641 P(z2jel,s2)=0.851 P(s2jel,z2)=0.71 

elO 

sl = 0.47 

zl=0.361 P(zljel,sl)=0.61 P(sllel,zl)=0.78 

z2=0.64I P(z2jel,sl)=0.4I P(sllel,z2)=0.29 

s2 0.53 

zl=0.361 P(zljel,s2)=0.15I P(s2jel,zl)=0.22 

z2=0.64l P(z2lel,s2)=0.851 P(s2jel,z2)=0.71 

ell 

sl = 0.09 

zl =0.191 P(zllel ,sl )=0.61 P(sl jel,zl )=0.29 

z2=0.8ll P(z2jel,sl)=0.4I P(sllel,z2)=0.05 

s2 0.91 

zl =0.191 P(zl jel,s2)=0.l 5I P(s2jel,zl)=0.71 

z2=0.811 P(z2jel,s2)=0.851 P(s2jel,z2)=0.95 
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e12 

sl = 0.78 

zl=0.51 P(zllel,s1)=0.61 P(sllel,zl)=0.93 

z2=0.5I P(z21e l ,s I )=0.41 P(s I le 1,z2)=0.63 

s2 = 0.22 

zl =0.51 P(zl lel ,s2)=0.151 P(s2lel ,zl )=0.07 

z2=0.5I P(z2jel ,s2)=0.851 P(s2lel,z2)=0.37 

el3 

s1 = 0.29 

zl=0.281 P(zllel,s1)=0.61 P(sllel,zl)=0.63 

z2=0.721 P(z21el,s1)=0.41 P(sllel,z2)=0.16 

s2 = 0.71 

zl=0.281 P(zllel,s2)=0.151 P(s2lel,zl)=0.37 

z2=0.721 P(z2jel,s2)=0.85I P(s2lel,z2)=0.84 

e14 

sl = 0.29 

zl=0.281 P(zllel,s1)=0.61 P(sljel,zl)=0.63 

z2=0.721 P(z21el,s1)=0.41 P(sllel,z2)=0.16 

s2 = 0.71 

zl =0.281 P(zl lel,s2)=0.151 P(s2lel,zl )=0.37 

z2=0.721 P(z21e 1,s2)=0.851 P(s21e 1,z2)=0.84 

e15 

s1 0.05 

zl=0.171 P(zljel,s1)=0.61 P(sllel,zl)=0.16 

z2=0.83I P(z2jel,s1)=0.41 P(s1 lel,z2)=0.02 

s2 = 0.95 

zl=0.171 P(zllel,s2)=0.151 P(s2!el,zl)=0.84 

z2=0.83j P(z2lel,s2)=0.851 P(s2lel,z2)=0.98 
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e16 

sl 0.63 

zl =0.431 P(zl lel ,s 1)=0.61 P(s l lel ,zl )=0.87 

z2=0.571 P(z2lel,sl)=0.4I P(sl lel,z2)=0.44 

s2 = 0.37 

zl=0.431 P(zlle1,s2)=0.151 P(s2lel,zl)=0.13 

z2=0.571 P(z21e 1,s2)=0.85 I P(s2lel ,z2)=0.56 

e17 

sl 0.16 

zl =0.221 P(zl !el ,sl )=0.61 P(sl lel,zl )=0.44 

z2=0.781 P(z2lel,sl)=0.41 P(sljel,z2)=0.08 

s2 = 0.84 

zl=0.221 P(zllel,s2)=0.15I P(s21el,zl)=0.56 

z2=0. 781 P(z21e 1,s2)=0.85I P(s21e 1,z2)=0.92 

e18 

sl 0.16 

zl=0.221 P(zllel,sl)=0.61 P(sllel,zl)=0.44 

z2=0.781 P(z2jel,sl)=0.41 P(sllel,z2)=0.08 

s2 0.84 

zl=0.221 P(zllel,s2)=0.151 P(s2jel,zl)=0.56 

z2=0. 781 P(z2le l ,s2)=0.851 P(s21e 1,z2)=0.92 

el9 

sl 0.02 

zl=0.161 P(zljel,sl)=0.61 P(sljel,zl)=0.08 

z2=0.841 P(z21el,sl)=0.4I P(sl lel,z2)=0.0l 

s2 0.98 

zl =0.161 P(zl lel ,s2)=0.15I P(s2lel,zl)=0.92 

z2=0.84I P(z21e 1,s2)=0.85I P(s21e 1,z2)=0.99 
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