
AUTOMATED TOOL FOR SOFfW ARE REQUIREMENTS INSPECTION

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Pradeep Amaran

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

April 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

AUTOMATED TOOL FOR SOFTWARE

REQillREMENTS INSPECTION

By

PRADEEP AMARAN

The Supervisory Committee certiffoc; that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Amaran, Pradeep, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, April 2011. Automated Tool for Software
Requirements Inspection. Major Professor: Dr. Gursimran S. Walia.

The software inspection process is a very cost effective method of identifying

defects in documents produced during the software life cycle, leading to higher quality

software with lower field failures. Manual inspections are labor intensive and dependent on

human factors (e.g., preparation, moderation, and cooperation among development and

quality assurance teams). An automated software inspection tool replaces a labor intensive

manual approach of performing the inspection process. An automated inspection tool will

offer greater efficiencies than any techniques involving manual inspections. Automation

allows stakeholders (e.g., authors, inspectors) to closely work in coordination using the

tool. Authors can host documents, view comments posted by inspectors, assign users and

delete them. Inspectors can participate in the inspection process by validating against a set

of guidelines and detect faults in a specific frame of time using different fault and error

based inspection techniques. It is human to err, and as a result some of the faults may be

overlooked. Hence, provisions are made for iterative inspection cycles to maximize the

number of defects found and minimize the number of overlooked ones.

111

ACKNOWLEDGEMENTS

I would like to thank my major adviser, Dr. Gursimran S. Walia for his continued

support, help and direction. I would also like to convey my gratitude to Dr. Kendall E.

Nygard, Dr. Dean Knudson, and Dr. Marcelo J. Carena for being on my graduate

committee. I would also like to thank my family and friends who encouraged me to

complete my paper.

iv

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS .. , ... iv

LIST OFT ABLES viii

LIST OF FIGURES ix

1. INTRODUCTION ... 1

2. RELATED WORK .. 6

2.1. Software Inspections 6

2. 2. Software Faults 7

2.3. Background on Error Abstraction and Requirement Error Taxonomy 8

2.3.1. Development of Requirement Error Taxonomy ... 9

2.3.2. Evaluating the Requirement Error Taxonomy for Detecting Defects During

Inspections 11

2.4. Existing Software Inspection Tools .. 14

2.4.1. Asynchronous or Synchronous Software Inspection Tool (ASSIST) 15

2.4.2. Scrutiny 16

2.4.3. ICICLE 16

2.4.4. CSI .. 17

2.4.5. InspeQ ... 18

2.4.6. WiP ... 19

V

2.4.7. Review Pro ... 20

2.4.8. CheckMate .. 20

2.4.9. Limitations .. 20

3. RESEARCH TOOL ... 22

3.1. Introduction ... 22

3.2. Defect Detection Cycle ... 25

3.2.1. Fault List ... 26

3.2.1.1. General Faults (G) ... 26

3.2.1.2. Omission Faults .. 27

3.2.1.3. Commission Faults .. 28

3.2.1.4. Other Faults (0) .. 29

3.2.2. Error List .. 31

3.2.2.1. Error Abstraction .. 31

3.2.3. New-fault List. .. 33

4. APPLICATION OF RESEARCH TOOL .. 34

4.1. Assigning User Access .. 34

4.2. Uploading a File for Inspectors ... 36

4.3. View Files and Forms .. 37

4.4. Tutorials ... 38

4.5. Fault/Error/New Fault List. ... 40

Vl

4.6. View Comments 41

5. FUTURE IMPROVEMENTS ... 43

6. CONCLUSION .. 44

REFERENCES 45

APPENDIX A. HARDWARE/SOFTWARE SELECTION STUDY 50

Vll

LIST OF TABLES

Table

3 .1. Software defect types ... 22

3.2. Fault list form 29

3.3. Error list form .. 33

3.4. New fault list form 33

4.1. Differences in author's profile versus inspector's profile ... 36

A. 1. Selecting the programming language 50

Vlll

LIST OF FIGURES

Figure

2.1. Fault transformation from phase to phase .. 7

2.2. Process of developing and evaluating requirement error taxonomy 9

3.1. Diagrammatic representation of three steps in defect finding cycle 25

4.1. Adding new author window ... 34

4.2. Adding new inspector window .. 35

4.3. Change password window for changing user password .. 35

4.4. Add new file 37

4.5. View files list. .. 38

4.6. Selection of tutorials .. 38

4. 7. Sample screens hot of tutorial with previous and next button for changing slides 39

4.8. Shows fault list, error list. .. 40

4.9. Shows error list and new fault list . .. 41

4.10. Shows author profile for viewing comments 42

IX

1. INTRODUCTION

In this competitive world it is essential to identify and eliminate defects from

software and its artifacts and be able to develop software on time and with good quality. It

is commonly understood that the majority of defects found in the early stages of software

development via software inspection will improve the quality of the product while being

cost effective. To address this problem, many approaches have been developed and

evaluated through controlled case studies (e.g. [l, 2, 3, 4)). Considerable effort has been

devoted to identifying methods to find and repair problems early in the software lifecycle

when these repairs are easiest and cheapest. The goal of these methods is to detect and

remove early-lifecycle faults i.e., mistakes recorded in a requirements or design artifact and

code.

The use of software code inspections, design inspections, and requirements

inspections has been found to increase software quality and lower software development

costs [5, 6]. Prior studies indicate that inspections can detect as much as 93% of the total

number of defects in an artifact [7]. Based upon a literature survey, on average, software

inspections find 57% of the defects in code and design documents [8].

However, even when faithfully applying various empirically-validated fault-based

techniques, software quality is still not at the desired level. It is estimated that 40-50% of

the total project effort is spent on avoidable rework fixing problems that should have been

fixed earlier in the lifecycle, or should have been prevented. Much of this rework is the

result of the fact that early lifecycle fault detection techniques are based on incomplete

fault taxonomies and do not lead developers to find all types of problems. Therefore, there

1

is still room for significant improvement in early lifecycle defect detection and removal to

eliminate some, or all, of the unnecessary rework.

Before discussing software quality any further, it is important to clarify a few

important terms: error, fault, and failure. Unfortunately, the software engineering literature

often contains contradictory definitions of these terms. In fact, IEEE standard 610.12-1990

provides four definitions of the terms error, ranging from "incorrect program condition"

(referred to as a program error) to "mistake in the human thought process" (referred to as a

human error) [9]. To allay confusion, we provide a definition for each term that will be

used consistently throughout this dissertation. These definitions were originally given by

Lanubile, et al. [10], and are consistent with software engineering textbooks [11, 12, 13]

and IEEE Standard 610.12-1990 [9]:

• Error - defect in the human thought process made while trying to understand given

information, solve problems, or to use methods and tools. In the context of software

requirements specifications, an error is a basic misconception of the actual needs of

a user or customer.

• Fault - concrete manifestation of an error within the software. One error may cause

several faults, and various errors may cause identical faults.

• Failure - departure of the operational software system behavior from user expected

requirements. A particular failure may be caused by several faults and some faults

may never cause a failure.

The term defect is a generic term used to describe any of these three types of

problems. The definition of an error used in this dissertation more closely relates to

2

the human error definition rather than the program error definition in IEEE

Standard 610.12-1990.

The main drawback of software inspection techniques that focuses exclusively on

faults is that the underlying cause of the fault (i.e., the error) is neither addressed nor

identified. Error taxonomy can help developers detect and eliminate errors and related

faults. Furthermore, by identifying errors, developers can find additional related faults that

may have been overlooked (similar to a doctor finding and treating all symptoms once

he/she knows the underlying disease). Therefore, an error-based inspection process is

needed.

The idea of using error information to improve software quality is not novel.

Researchers have used information about source of faults in different ways. Some

techniques that focus on errors determine the cause of only a sample of previous faults to

suggest software process changes and prevent future defects [14, 15, 16, 17, 18, 19, 20]. In

the cases where techniques do address the underlying cause of faults (e.g., Root-Cause

Analysis [17], Orthogonal Defect Classification [21], and faults Error Abstraction [10]), the

research has focused primarily on errors from the software engineering domain. These

approaches lack a strong cognitive theory to describe the types of mistakes made when

creating software artifacts. Human Error research in cognitive psychology builds upon

theoretical models of human reasoning, planning, and problem solving, and how these

ordinary psychological processes fail [22, 23, 24, 25, 26]. The exploitation of human error

research broadens our understanding of errors that software engineers make during

development.

3

To address this issue, Walia and Carver have combined the information from

software engineering and cognitive psychology to develop requirements error taxonomy

[27]. Walia et al., have also evaluated the usefulness and completeness of the taxonomy

with a family of four controlled empirical studies [27, 28, 29, 30].

The results from the empirical studies conducted by Walia and Carver [27, 28, 29,

30] at Mississippi State University and North Dakota State University show that the

requirement error taxonomy improves the defect detection effectiveness of both

individual inspectors and teams significantly as compared to the fault checklist-based

inspection process. A second important value of the requirement error taxonomy is that it

can focus developer's attention on common errors during the requirement engineering

process. An awareness of these common errors makes developers less likely to commit

them and more likely to create an artifact that will have fewer defects to remove

during the review and testing. Walia and Carver [31] have investigated the usefulness of

the requirement error taxonomy as a defect prevention technique. A controlled study with

university students showed that the developers can avoid making errors if they have a

priori information about the types of errors that can occur during requirement

development. Section 2 provides a brief description of the error taxonomy along with its

development and evaluation processes.

This Master's paper focuses on developing an automated tool which is intended to

incorporate the error abstraction process and the requirement error taxonomy while

replacing the existing labor intensive manual "error inspection process" of identifying

defects in requirements with intent to improve the inspector's efficiency and effectiveness.

4

The process of identifying defects using the automated tool will be characterized

by: individual preparation done by authors, confined roles of inspectors, preparing

themselves by using tutorials, step-by-step guide on identifying faults, classifying and

abstracting errors from faults in time by understanding requirement error taxonomy, which

are then tabulated as Fault list, Error list, and New Fault list. It is highly likely that some

faults or errors could go unnoticed during 1st cycle of inspection which could be further

brought under lens by repeating the inspection cycles (2nd
, 3rd

, 4th
•..).

The automated software inspection tool is designed to ensure that the inspectors

follow the defect detection process of locating faults, abstracting errors from faults, and re­

inspecting for faults overlooked during the first inspection, and making sure that the

software review process is being visible to the moderators and the managers that will help

them make decisions regarding the software quality measurement.

The later sections of this paper, compares different existing software inspection

tools available in the market. This is followed by the discussion of an automated software

inspection tool that was developed to support the error inspection process.

5

2. RELATED WORK

This chapter is devoted to covering the knowledge in order to better understand the

software faults, error abstraction process and the requirement error taxonomy, and a survey

of existing software inspection tools.

2.1. Software Inspections

Software inspection process was first introduced by Michael E. Fagan in 1970 which

resulted as part of software development while he was employed at IBM. In order to

differentiate software inspection from general inspection software inspection should be

called the in-process inspection [l]. Inspection is a static analysis method used to verify

quality properties of software products. In other words they are a means by which it

enables verifying intellectual products by manually examining the product during its

software life cycle for finding and eliminating defects [2]. Software inspection when

applied in the early stages of software life cycle namely requirements, design, coding

proves more beneficial as defects that propagate from one stage to other can be avoided. If

we neglect to perform inspections and if defects are missed in requirements phase, it would

get amplified in design phase and likewise it will get even more amplified in the coding

stage. The earlier the defect is found, the lower is the cost, and the easier is to fix. This also

ensures that we have the correct base for further stages of software life cycle enabling

developers to produce a high quality software product with good quality. It is beneficial if

a small group of peers dedicate themselves in finding defects in one stage at a time while

maximizing the defects found rather than each individual concentrating to find defects each

one of different stages. Experiences with software inspections have shown that time spent

6

to accommodate inspection process in the software life cycle has helped in gaining time

during the testing and manufacturing phase and saved rework efforts.

2. 2. Software Faults

In a generic sense, faults arise when the development work being done does not

match the software specification already developed or would cause problems downstream

as shown in Figure 2.1.

PNwious
Dlwlopnent
Phase

Currn
PhaN

Nat
Phase

Figure 2.1. Fault transformation from phase to phase.

1. Information transformed co"ectly: Figure 2.1 shows information is transformed

correctly from previous development phase to current phase, which is represented

by arrow 1

2. Information lost during transformation: Figure 2.1 shows that some information is

lost during the transition phase of the project from development to current phase. In

figure it is represented with arrow 2 going halfway between the previous

development phase and current phase.

3. Information transformed inco"ectly: Incorrect information is passed from

previous to current phase, if that incorrect information is used it will snowball

7

problems in future. It is shown in figure 2.1 with a crossed use case with arrow 3

followed from previous phase.

4. Extraneous information introduced: Introducing extraneous information which is

not in scope or software specification can also cause problems downstream. It is

represented with arrow 4 pointing to current phase.

5. Multiple inconsistent transformations occurred for same info: Multiple

inconsistent transformations can lead to confusion and difficulty in understanding

data. As a result it is highly likely to have defects in such instances. It is represented

with arrow 5 in the current phase with '?' symbol.

6. Multiple inconsistent transformations possible for same info: It is possible that the

same information can be transformed inconsistently between two phases as shown

between current phase and next phase. In figure 2.1 it is represented with arrow 6

having transformations between current phase and the next phase with only one

information passed on to next phase.

2.3. Background on Error Abstraction and Requirement Error

Taxonomy

Nine different methods have used causal analysis to determine the source of a fault

and suggest preventive actions (e.g., [14, 19]) or process changes (e.g.,[15, 18, 20, 32]).

These methods were successful relative to their goals, but were incomplete because they

focused on a representative sample of faults (potentially overlooking many errors).

Nevertheless, the insights provided by these methods provided input to the requirement

error taxonomy. A complete discussion of these methods, their limitations and their

8

contributions to the requirement error taxonomy has been published in a systematic

literature review [27].

Lanubile et al., proposed the Error Abstraction approach, in which developers

analyze faults detected during an inspection to determine the underlying errors likely to

have caused them. These errors are then used to guide a re-inspection to detect additional

faults. This work produced some promising initial results, but Lanubile, et al., did not

pursue this research [10]. Walia and Carver work build their work on Lanubile's approach

by formalizing requirement error taxonomy, with ad4itional input from cognitive

psychology, to better support developers during the error abstraction and re-inspection

process. Figure 2.2 illustrates their previous research in developing and evaluating the

requirement error taxonomy. This work is briefly discussed in Section 2. 1.

Known Software
Engineering Errors

Human Errors from
Cognitive Psychology

1. Ad-hoc Review

3. Systematic
Review

➔
Requirement Error

Taxonomy V 1.0

5. ObseMtional
Study

2. Feasibility
Study

4. Control Group
Study

6. Control group
Replicated Study

Figure 2.2. Process of developing and evaluating requirement error taxonomy.

2.3.1. Development of Requirement Error Taxonomy

The requirement error taxonomy has evolved through two versions. To create the

initial version (Vl.O), Walia and Carver performed an ad-hoc review of the software

engineering and psy~hology literature to identify and classify requirement errors [33].

9

Next, this taxonomy was empirically evaluated to determine its usefulness to support the

error abstraction and re-inspection process [28]. After establishing the feasibility of such an

approach, a more formalized, systematic literature search of software engineering and

cognitive psychology research was performed to refine the error taxonomy. The systematic

review, commonly used in medicine, is a process for documenting high-level conclusions

that can be derived from a series of detailed studies [34]. The systematic review identified

149 papers (from software engineering, human cognition, and psychology) that provided

insights into evolving the requirement error taxonomy into V2.0 [27].

The errors identified from software engineering and cognitive psychology research

were analyzed for similarities, and grouped into fourteen error classes (as shown in Table

2.1). These error classes were then classified into three high-level error types: People

Errors (arise from the fallibilities of the people involved in the development process),

Process Errors (arise when selecting the appropriate processes for achieving the desired

goals, relate mostly to the inadequacy of the requirement engineering process), and

Documentation Errors (arise from mistakes in organizing and specifying the requirements,

regardless of whether the developer properly understood the requirements).

To illustrate the information contained in the error taxonomy, an example

participation error (one of the People Errors) along with related faults is described here:

• Error: An important stakeholder (e.g., a bank manager in an ATM system) was not

involved in the requirement gathering process.

• Fault: Some functionality (e.g., handling multiple A TM cards simultaneously at

different machines) was omitted.

10

The complete systematic review process, the organization of the requirement errors into the

error taxonomy, and the details of the requirement errors (along with examples of errors

and faults) can be found in the systematic review publication [27].

Table 2.1. Description of requirement error classes.

DoffillftlnowledCt

Proctsat.«ubOII

~Co&,litloft

0rpNutiOII

It....,_ Mtlotsllct~ Ollla,tl*Q withp,obllffl
doffllln

~MtlotsleckblO ~~ ftP«Uoltht
epplcltior'

~ Mtlots INle ffllSUles _.. ~ rlQIIAl'MftC
elcataofllftddMloplftlfC. rtprdltssoldlt~oldlt

dloMftprocess

~errors~ frOffl dlt consttwaon the cope,we
...... oldlt ~ MIion

~ Nd1~11ttor incorrtet ffltthods. t~
tpp.OICNStoac'-wtl&Mf'POtobs«tNt

ll\ldtQultt Ot PoOf ptOCftStS

~~ tlebltol\proceu

~rtQWtffltntS ~process

~ ~frOffltflt leckof llla,cl~
standltd

Gtftlrll clocunwutioftenors, rtCltdless of~ rtqUnffilftt
euthorcorNdtUlldtntoodtht~

2.3.2. Evaluating the Requirement Error Taxonomy for Detecting Defects During

Inspections

Walia and Carver have evaluated the usefulness of the requirement error taxonomy

with four empirical studies. The validation goal of these studies was to ensure that: 1) the

11

error classes are clearly described, useful, and complete, and 2) the developers can use the

error taxonomy to increase their defect detection effectiveness during inspections.

Study 1 and 3 (see Figure 2.2), were conducted in senior-level capstone courses

where students developed a project for real customers. In these studies, the students first

performed an inspection of their requirement document to identify faults. Then, they were

trained on the use of error taxonomy. The students then used the error taxonomy to abstract

and classify the errors that caused the observed faults. Finally, the students used the error

information to guide the re-inspection of the requirement document. The results from these

two studies indicated that the participants found the error taxonomy both easy to use and

effective. In addition, by using the error taxonomy, the participants found a significant

number of new faults during the re-inspection. Finally, most participants found errors that

were derived from the cognitive psychology human error research, 10%-20% of the total

errors reported [28, 30, 33].

Study 2 and 4 (see Figure 2.2), were conducted with students enrolled in graduate

level courses. In these studies, one group of students (i.e., the experiment group) used the

same procedure as in the Study 1 and 3 described above. The other group of students (i.e.,

the control group) inspected the artifact two times without using error abstraction. In Study

2, the control group participants used the same fault inspection technique during both

inspections and in Study 4, they used a more mature fault inspection technique for the re­

inspection. The results from the experimental group were compared with the results from

the control group to determine what portion of the additional faults found during the re­

inspection can be attributed to the use of the error abstraction and classification approach.

12

The results from these studies showed that the group who used the error abstraction

and classification process found significantly more faults during re-inspection than the

control group, providing more evidence of its usefulness [29, 30].

The results from these four studies can be summarized as follows: 1) the error

abstraction and classification approach improves the effectiveness (number of faults found)

of inspectors during a requirements inspection, 2) the requirement error taxonomy 1s

subjectively useful for inspectors to find errors and faults, and 3) the human error research

from cognitive psychology helped inspectors detect more faults. More details of the

experiment designs and results from each of these studies can be referred.

While the requirement error taxonomy has been effective in detecting defects

during inspections, a more useful analysis required evaluating the effectiveness of the

requirement error taxonomy for preventing defects from occurring during the requirements

development. Leape, and other researchers have employed a similar approach to the

analysis of adverse medical events in order to understand what caused the individuals to

make errors [22, 23]. Leape et al., argued that the underlying cause of the problems should

be used to prevent errors rather than attempting to remove the errors. Because the errors are

mistakes or misunderstandings of the software engineers while creating a software artifact,

the information about the commonly made errors can be used to educate software engineers

to prevent them from making errors in the first place.

Defect prevention techniques can be used during the creation of software artifacts to

help developers create high-quality artifacts. These artifacts should have fewer faults that

must be removed during inspection and testing. Requirement Error Taxonomy also helps

focus developers ' attention on common errors that can occur during requirements

13

engineering. Walia and Carver claim that, by focusing on those errors, the developers will

be less likely to commit them. They have investigated the usefulness of the Requirement

Error Taxonomy as a defect prevention technique. The goal was to determine if making

requirements engineers' familiar with the Requirement Error. Taxonomy would reduce the

likelihood that they commit errors while developing a requirements document. They

conducted an empirical study in which the participants were given the opportunity to learn

how to use the Requirement Error Taxonomy by employing it during the inspection of a

requirements document. Then, in teams of four, they developed their own requirements

document. This requirements document was then evaluated by other students to identify

any errors made. The hypothesis was that participants who find more errors during the

inspection of a requirements document would make fewer errors when creating their own

requirements document. The overall result from their experiment supported this hypothesis

and provided the motivation to further investigate the promise of using the error taxonomy

as a defect prevention technique [31].

2.4. Existing Software Inspection Tools

There have been many tools developed to help inspectors during the software

inspection process. All of these tools have been tailored better to support a desired software

inspection process in one way or the other. For example, an inspection tool supports

inspection of documents written in natural language, another tool supports inspection of

source codes in C and C++ programming languages, and another tool was developed to

support the distributed inspections by having a web centric program which enables

different group of inspectors (who are scattered across the globe) to inspect a particular

14

software artifact. Some of the existing inspection tools and techniques are discussed below

along with their relationship to this master's paper work:

2.4.1. Asynchronous or Synchronous Software Inspection Tool (ASSIST)

ASSIST is an Asynchronous or Synchronous software inspection tool designed by

F. Macdonald which was developed based on client/server architecture [35]. ASSIST was

designed for inspecting any kind of documents. This tool supported individual as well as

group-based phased inspections. One good thing about group-based inspections was

inspectors had a choice of either performing inspections in the same place or different place

using synchronous meetings. Group-based inspections can be either synchronous or

asynchronous in nature. Perhaps keeping in view of all the inspection processes,

Macdonald came up with a common software inspection template which could withstand

future advances in the inspection processes. Thus this inspection template was converted

into a process definition language known as IPDL (inspection process definition language)

and further embedded into ASSIST. These are some of the features of ASSIST [35].

• It aids to find defects.

• Features for enabling metric collection and analysis of collected values.

• Enables distributed inspection process.

• An online checklist to check each item in the list as and when they are finished .

• There is a provision of text browser which can be used to comment on the

documents and make annotations, which will explain what defects have been found

in the document during the inspection process.

15

2.4.2. Scrutiny

Scrutiny is a web-based software inspection tool which is designed to support

distributed inspections. It was developed in by Bull HN Information systems together with

University of Illinois [35]. The process of inspection using scrutiny is divided in four

different phases namely Initiation, Preparation, Resolution, and Completion.

In the initial phase formation of inspection team occurs followed by preparation of

necessary documentation for inspection process by Moderator. In the preparation phase the

inspectors go through the documents presented to them by moderators and annotate them.

In the resolution phase all the inspecting stakeholders meet and get an insight of the

inspection results and their findings via inspection. The final Completion phase involves

reworking as well as following up of phases in the inspection process. Scrutiny tool is

designed to support only text documents which can be feature enhanced for further

development. It does not support checklists and comprehension [36].

2.4.3. ICICLE

ICICLE stands for Intelligent Code Inspection in a C Language Environment.

ICICLE, as the abbreviation suggests, is designed to assist C language code inspection and

support a set of complex tasks performed during code inspection process [37]. This tool

helps inspectors in finding the common defects by itself with the help of a rule-based static

debugging tool and the UNIX lint tool. It was designed to replace the manual process of

inspecting code which traditionally is done manually using and pen and paper to list all the

errors found in the code. This process was very tedious, error prone, and inconsistent.

ICICLE takes care of all these problems.

16

ICICLE, which concentrates on eliminating aforementioned difficulties, operates

with the following attributes [37]:

• It has an intelligent mechanism of inbuilt tool, which can find errors which are

commonly made and thus makes it much easier and reduces burden for inspectors

of finding errors. Instead they can resort on verifying correct implementation of

requirements, specifications and designs.

• It caters different knowledge base for inspecting code such as domain knowledge,

environment knowledge, and a source of analysis namely cross-referencing.

• It lets inspectors to surf over source code, in a windowed environment which rather

saves time from having them to go through a hard copy of several files.

• A shared window which enables inspectors to share comments for findings and

discuss them in meeting rather than having papers distributed for following the

reader.

• The process of inspection using ICICLE is divided into two phases. One being the

individual inspection and the other inspection meeting. A feature for writing

comments for every line of code during the inspection process is enabled for

inspectors. A responsive referencing system is designed for supplying variables and

functions with a quick movement across the lines of code.

2.4.4. CSI

Collaborative Software Inspection is a web-based inspection tool which support

distributed inspections. It makes it easier for distributed inspection process as all the

documents and materials required for inspection are hosted online [35]. It was designed in

order to support four kinds of collaborative inspection meetings namely:

17

a) Same time, same place

b) Same time, different place

c) Different time, same place

d) Different time, different place

In this process every inspector participating in the individual inspection finds and

creates a list of faults and hands it over to the author who initially created documents. And

it is author who draws a parallel to all faults found by inspectors and to address them in a

group meeting.

CSI provides an online web browser that can effectively give details about data

being used in inspection and status of it. It auto numbers each line in the document; also it

lets inspectors to write comments for that particular line by an annotation window. There is

a provision of hyperlinks from inspected material to a fault list. One may feel that it is

insufficient to have annotations since it is confined to only specific lines. But there is a

notepad available on general inspection documents.

2.4.5. InspeQ

Inspecting Software in phases to ensure Quality is shortly named as InspeQ. Knight

and Meyers developed this inspecting toolset to support their phased inspection technique

[38, 39]. Knight and Meyers together developed this inspection technique which promotes

an inspection process to be "rigorous, tailor-able, efficient in its use of resources, and

heavily computer supported called phased inspections" [38]. Phased inspections are so

designed that after completion of each and every phase of inspection it is expected that the

software product has a minimum set of properties for which it was inspected. One cannot

declare phased inspection is complete without showing that product satisfies all the checks.

18

Inspectors, given the task to perform phased inspections are well explained about what

their role is and objectives are. As a result it is made easier for them to walk on the lines of

predefined phases which are supported by computers. There are two phases in InspeQ:

single-inspector, multiple-inspector. Single inspector as the name suggests is performed by

single inspectors who perform rigorous checklist inspection. It's a phase in which the

product can comply to one or all of the checks listed in the checklists. One cannot move to

the next phase if even one of checks is not satisfied.

Not always single-inspector phase proves handy as there are times when it cannot

determine properties of products for next phase in such instances use of multi-inspector

phase helps. In this phase individual checking is done by individual inspectors against a set

of checklists and once its completed they meet to discuss their findings which could give a

lead for fault findings. InspeQ is a great tool which aids inspectors in conducting phased

inspections effectively and efficiently. The computer support provided by the tool helps

phased inspections to be performed quickly along with mechanisms which could keep a

check on the predefined process if being followed or not and there are features in the tool

which lets one evaluate the results of inspection.

2.4.6. WiP

It is common to have teams across the globe for a company which has a global

presence. With the advent of web-based technologies lives had become easier for many

companies which encouraged working collaboratively effectively and efficiently in a

distributed eco-system. WiP was one such tool which incorporated the entire stand-alone

work environment into a web-based environment with the help of world-wide-web. It

provides online features such as document handling for inspectors; it would let inspectors

19

annotate online documents by not manipulating the document itself as all the annotations

were stored in a server to avoid multiplication of data. It would allow taking simple

inspection statistics too. The initial development motive of WiP was to find if really an

inspection process can be carried out via World Wide Web [36] .

2.4. 7. Review Pro

Review Pro, a web-based, software technical review, inspection tool was developed

by Software Development Technologies Corporation. This was developed keeping in mind

the importance of defect detection in the early stages. As a result the whole process was

automated to effectively find defects and save time. Though web based this was a tool

which was quite independent of web browser, web, messaging server software, and could

be run in Windows NT and UNIX server platforms [35].

2.4.8. CheckMate

This tool works against a predetermined coding policy to inspect coding in C and

C++ programming languages concentrating on classes and methods of the program. The

coding policies could be custom set as needed by the inspectors. It has features to assess

software metrics.

2.4.9. Limitations

Perhaps, one of the notable deficiencies m all the tools so developed is that it

supports only textual documents. Even though text is the main type of documents used for

inspection it should also support other type of documents. There can be diagrams for

inspection too, so files with diagrams should also be allowed to be inspected. During the

inspection process all the defects found are logged in papers. Therefore, there is a high

20

chance of misplacing or losing them. Inspectors are not given prior training to find defects

and classify them. They are usually web centric tools.

It should be noted that all the tools developed so far are based on a predetermined

framework for conducting inspection processes some identify defects in C, C++

programming language code, some find faults in documents which could be annotated, and

some others are developed to do software inspection in web based environment. It becomes

clear that the majority of tools are custom made to suit specific purposes for methods of

inspection process. Likewise, the tool in this paper is designed to replace a predetermined

labor intensive manual way of conducting error inspection processes. Considering some of

the limitations of the existing tools, we have developed an automated software tool for

error inspection process. The phases of finding faults, abstracting errors from faults, and

classification of errors from the requirement checklist, which forms the basis of the tool are

explained in the following section along with types of software defects and some examples

of defects in requirements.

21

3. RESEARCH TOOL

3.1. Introduction

Inspection is an effective verification and defect detection process. The main goal

of inspection is to find and fix defects and not defect prevention. The table 3.1 below

describes different types of software defects that can be found during an inspection:

Table 3.1. Software defect types.

Type Description

Omission Necessary information about the system has been omitted from the

software artifact.

Incorrect fact Some information in the software artifact contradicts information in

the requirements document or the general domain knowledge.

Inconsistency Information within one part of the software artifact is inconsistent with

other information in the software artifact.

Ambiguous Information within the software artifact is ambiguous, i.e. any of a

Information number of interpretations may be derived that should not be the

prerogative of the developer doing the implementation.

Extraneous Information is provided that is not needed or used.

Miscellaneous Other defects; e.g. a requirement may be found in an inappropriate

section of the document.

22

To better understand the process of detecting faults in requirements, this section

describes e~amples of different type of software faults using specifications for a Gas

Station Control System (GSCS). Examples (3.1, 3.2, 3.3) has excerpts from requirement

specifications with their defects addressed. The key point which leads to defect is

underlined and 'Note' explains about defect found.

Example Requirement: Gas Station Control System (GSCS)

Overview:

- " ... The gas station allows customers to purchase gas (self-service) or to pay for

maintenance work done on their cars. Local gas stations may have billing accounts set up

so that the gas station .is sent a monthly bill, rather than paying for each transaction at the

time of purchase. There will always be a cashier on-duty at the gas station to accept cash

payments or perform system maintenance, as necessary. Customers have the freedom to

use visa/master cards."

- The requirements in this excerpt " ... concern how the system receives payment from the

customer. A local customer has the option to be billed automatically at the time of

purchase, or to be sent a monthly bill and pay at that time. Customers can always pay via

cash or credit card (visa/master). "

Example 3.1: Functional Requirement 5

If payment is to be made by cash, the cashier is responsible for accepting the

customer's payment and making change, if necessary. When payment is complete, the

cashier indicates this on the cashier's interface. The GSCS and the gas pump interface

then return to the initial state.

23

er Note: Information was lost during the creation of the requirements. As the description

does not mention clearly, what is the purchase price? To handle a cash transaction, the

cashier must know what the purchase price was and how greater a cash payment can be

accepted. This information has been left out of the description of the functionality -

therefore we have a defect!

Example 3.2: Functional Requirement 3

If the customer has selected to pay at the time of purchase, he or she can choose to

pay by cash or credit card. If the customer selects cash, the gas pump interface instructs

the customer to see the cashier to pay at cash counter If the customer selects credit card,

the gas pump interface instructs the customer to swipe his or her credit card through the

credit card reader. If an invalid or no selection is made, the GSCS will use the credit card

payment option, which is the default.

er Note: Information was translated incorrectly. In the example, domain knowledge

should indicate that defaulting to credit card payment is an incorrect response. (What

kind of transaction ever happens this way?) Because we know that this functionality

should not be implemented the way it is described, we have a defect.

Example 3.3: Functional Requirement 2:

After the purchase of gasoline, the gas pump reports the dollar amount of the

purchase to the GSCS. The maximum value of a purchase is $999.99. The GSCS then

causes the gas pump interface to query the customer as to payment type.

Functional Requirement 4:

If payment is to be made by credit card, then the card reader sends the account

number to the GSCS. If the GSCS receives an invalid card number, than a message is sent

24

to the gas pump interface asking the customer to swipe the card through the card reader

again and if still doesn't accept it look for cashier. After the account number is obtained

first enable pump, pump gas or hang-up hose to disable pump and get purchase price, the

account number and purchase price are sent to the credit card system, and the GSCS and

gas pump interface are reset to their initial state. The purchase price sent can be up to

$10000.

c::r Note: Information was described inconsistently. Because we don't know from domain

knowledge which of the two descriptions is correct, we have found a defect.

3.2. Defect Detection Cycle

Now that we have seen some examples of defects, it is important to understand the

underlying steps adopted in inspecting requirements checklist and to know on what basis

defects found are classified and recorded in corresponding tables of each step that stands as

a foundation for the automated tool developed in this paper (figure 3.1).

Inspection

Figure 3.1. Diagrammatic representation of three steps in defect finding cycle.

25

Step 1: Finding Faults Using Fault Checklist.

Inspectors undergo training on how to find faults using the fault checklist

technique. They read the requirements document and use the knowledge gained from the

training to find faults and log them in fault list.

Step 2: Finding Error From Fault List

Inspectors are trained on the requirement error taxonomy and on how to abstract

errors from faults using the error information in the requirement en-or taxonomy and fill

error list form. Once they are trained they use the knowledge gained from training to

extract errors from faults on their fault lists and log the extracted errors on error list form.

A detailed description of the error abstraction training is published in [9].

Step 3: Find New-Fault List.

Now that inspectors have gathered errors from the above step they use the error

information from Step 2 to re-inspect the requirements document to find more faults. And

the additional faults found are logged in error- fault list (new fault list).

3.2.1. Fault List

How does one detect fault?

• By reading the document

• By understanding what the document describes

• By answering the questions in the fault checklist

Different checklist techniques with their characteristics which are used to detect defects to

fill fault list form are given below:

3.2.1.1. General Faults (G)

• Are the goals of system defined?

26

• Are the requirements clear and unambiguous?

• Is a functional overview of system provided?

• Is an overview of operational modes provided?

• If assumptions that affect implementation have been made, are they stated?

• Have the requirements been stated in the terms of inputs, outputs, and processing

for each function?

• Are all functions, devices, constraints traced to requirements and vice versa?

• Are the required attributes, assumptions and constraints of the system completely

listed?

3.2.1.2. Omission Faults

• Missing Functionality (MF)

o Are the desired functions sufficient to meet the system objectives?

o Are all inputs to a function sufficient to perform the required function?

o Are undesired events considered and their required responses specified?

o Are the initial and special states considered (e.g., system initiation,

abnormal termination)?

• Missing Perfonnance (MP)

o Can the system be tested, demonstrated, analyzed or inspected to show that

it satisfies the requirements?

• Missing Interface (Ml)

o Are the inputs and outputs for all interfaces sufficient?

o Are the interface requirements between hardware, software, personnel and

procedures included?

27

• Missing Environment (ME)

o Have the functionality of hardware or software interacting with the system

been properly specified?

3.2.1.3. Commission Faults

• Ambiguous information (Al)

o Are the individual requirements stated so that they are discrete,

unambiguous, and testable?

o Are all mode transitions specified deterministically?

• Inconsistent information (II)

o Are the requirements mutually consistent?

o Are the functional requirements consistent with the overview?

o Are the functional requirements consistent with the actual operating system?

• Inconsistent and Extra Functionality (EF)

o Are all desired functions necessary to meet the system objectives?

o Are all inputs to a function necessary to perform the required function?

o Are the inputs and outputs for all interfaces necessary?

o Are all the outputs produced by a function used by another function or

transferred across an external interface?

• Wrong selection (WS)

o Are all the requirements, interfaces, constraints, etc. listed in the appropriate

sections?

28

3.2.1.4. Other Faults (0)

• If you find additional faults, not related to specific questions on the checklist, which

do not fall in any of the existing categories, classify it as Other (0).

• Once faults are found, it is logged in fault list form as shown in table 3.2 which has

various fields.

Table 3.2. Fault list form.

Fault# Page# Reg# Fault Description Time Importance Probability Break

Class Found Level of Causing

Failure

The fields described in Table 3.2 are listed follows:

• Fault#- serial identification number (e.g., 1, 2, 3, etc).

• Page #- maps to the page number in a SRS document where that fault is present

(e.g., 3, 5, 6 etc) .

• Requirement #- maps to a particular requirement number where a fault is found

(e.g., FR2.l, FR3, etc).

• Fault class- describes the classification of a fault. A fault is classified in following

classes using fault checklist: General (G), Missing Functionality (MF), Missing

Performance (MP), Missing Interface (MI), Missing Environment (ME),

Ambiguous Information (AI), Inconsistent Information (II), Incorrect or Extra

Functionality (EF), Wrong Section (WS), Other (0).

29

• Description- provides a brief but clear description of the fault in the requirements

document.

• Time found- it is the time when a particular fault was found.

• Importance level- this is the scale of importance of a particular requirement fault

found during inspection and has to be classified as per following scale:

o 0: not important, designer should easily see the problem

o I: problem, if a failure occurs it should be easy to find and fix (e.g. change

to I module)

o 2: important, if a failure occurs, it could be hard to find and fix (e.g. change

to few modules)

o 3: very important, if a failure occurs, it could be very hard to find and fix

(e.g., change to several modules and their dependencies)

o 4: if a failure occurs, it could cause a redesign

• Probability of causing failure- describes the probability scale that a particular fault

can cause system failure using following scale:

o 0: will not cause fault of failure, regardless whether it is caught by the

designer

o I: will not cause fault or failure, because it will be caught by designer

o 2: could cause a failure, but will most likely be caught by designer

o 3: would cause a failure, will most likely not be caught by designer

• Break: describes breaks taken during the inspection.

30

3.2.2. Error List

As mentioned in Section I, as per IEEE standard terminology, Error is a defect in

the human thought process made while trying to understand given information, solve

problems, or to use methods and tools. In the context of software requirements

specifications, an error is a basic misconception of the actual needs of a user or customer

[9]. In order to fill up error list we have to abstract errors from fault list with the help of

requirement error taxonomy and classify them. And the different requirement error classes

were described earlier in table 2.1.

3.2.2.1. Error Abstraction

The error abstraction process helps to abstract errors/mistakes from the faults.

Abstraction of errors can be done by the following steps:

• Analysis of the fault list

o Why each fault (in your fault report form) represents a defect in the SRS?

• Grouping of the related faults

o Group faults based on their categories or nature (e.g., G, MF, MP, MI, ME,

AI, II, IF, WS)

• Eliciting the underlying reasons for the occurrence of the faults

o Find pattern in the grouped faults and think of some believed reasoning for

these faults to have occurred

o Write down the errors (mapping errors to faults).

Also, inspectors use requirement error taxonomy that describes different types of errors

that occur during development of the requirement.

Example 3.4, explains how error can be abstracted from requirements faults Fl, F9.

31

Example 3.4:

Consider these faults:

Requirement Fault Fl: The requirements say "The system keeps a rental transaction record

for each customer giving out information and currently rented tapes for each customer."

However, an explanation of exactly what information is given out for each customer has

been omitted.

Requirement Fault F9: The requirements say that when a tape is rented, the "rental

transaction file is updated." However, what it means to update the rental transaction file is

not specified. The information to be stored here is not discussed.

Understanding of Error abstraction

RFl and RF9 - can be classified as Missing Information (Ml) class. The missing

information about "How the information in the database is to be updated?"

Error can be that, "how the rentals are to be logged is not completely understood"

c:? Note: however, it is not always the case that you will find an error responsible for

multiple faults (as in above example). Error can be responsible for single faults, and

patterns can also be found between errors in different classes

Since, abstracting errors from faults is a very creative process, to support the error

abstraction process; inspectors are trained on how to use the Requirement Error Taxonomy

(that describes the different types of errors that can occur during the development of

requirement document) to abstract errors from the faults during the error abstraction

process.

Once errors are abstracted, use "Error list Form" as shown in table 3.3 to log errors

corresponding to each fault (from your fault list that you submitted).

32

Table 3.3. Error list form.

Error# Fault# Description of Error Time found Break (time)

3.2.3. New-fault List

This step involves using the error information from the "Error List" to re inspect the

SRS document for the faults that were missed during the first inspection. The process of re­

inspection of software artifact using the error information includes following steps:

• For each error in the "Error List", inspect the SRS for fault(s) caused by it.

• For each new fault found, complete a row in the "New Fault List".

• An error can cause one or more faults.

Now that all three lists are explained it should be noted that lists should be filled in a

sequential order starting from Fault List then Error List followed by New Fault List. A

"New Fault List" form used by inspectors to log faults is shown in table 3.4.

Table 3.4. New fault list form.

Error# Page# Fault Description Time Importance Probability Break

Class Found Level Of Causing

Failure

33

4. APPLICATION OF RESEARCH TOOL

The whole process of conducting software inspection talcing different stakeholders

into account like authors, and inspectors makes it feasible to design a software tool to cater

error inspection needs. By understanding steps adopted for inspection as discussed in the

earlier section this chapter presents an automated tool with some screenshots and

description.

4.1. Assigning User Access

An author who conducts inspection process will be able to assign user name,

password for inspectors, authors. Authors can assign temporary passwords and inspectors

can change it once they login. Figures 4.1 to 4.3 show screens of adding users, changing

passwords.

- ----·-~-~ ------
. ~ AddNewUser ~ [Ej ~

Rall

PMIWafd

CornnP.....anl

11 w 111 ao.

Figure 4.1. Adding new author window.

34

;t!' AddNewU ser ~[EI Im

CINteU•============:;~

Rall

U•Name

Paeaword

Confinn P...-d

aa.

Figure 4.2. Adding new inspector window.

Once users login into their respective accounts they can change their temporary

password to permanent.

Change Password ~ @I £3

a.,gep...-c1-----------~

U•Name

Oki Password

New P...-d ; ~~~:::::::::::::::::::::::::

CcnimPaeaword • .:===="""""'======!JI

aa.

Figure 4.3. Change password window for changing user password.

There are different access rights assigned to author and inspector. Authors can host

files and delete them but inspectors can only open the files hosted by authors but not delete

them. Authors can view comments of inspectors recorded during inspection but they cannot

35

delete their comments. Authors do not need training for inspection but inspectors do need

training for inspection. These differences in their profile is compared in Table 4.1

Table 4.1. Differences in author's profile versus inspector's profile.

Authors profile Inspectors profile

Can assign authors or inspectors. Cannot assign authors or inspectors.

Can upload and delete files for Can only view uploaded files by authors.

inspectors.

Can view inspectors name for whom Can authors name who uploaded the file.

file is uploaded.

Can view recorded comments from Can record faults, errors, new faults from

inspection. inspection.

Does not need training. Inbuilt tutorial needs training for recording

faults, errors, new faults.

4.2. Uploading a File for Inspectors

Authors can browse and upload requirement specification files for inspectors by

selecting the names of inspectors in the Add New File window. To upload author needs to

click on 'Browse' button then click open file, select inspectors to upload file by clicking on

'upload' button. AddNewFile window in figure 4.4 shows the list of inspectors who were

added by author for inspection and can select one or more inspectors to upload file

requirements checklists file (or any other file).

36

foldm .,

Mlimr.,

'°""'
Figure 4.4. Add new file.

4.3. View Files and Forms

All documents hosted by authors for inspectors can be viewed. It can be checklist

for them to validate and classify the defects in the inspection process. It shows the name of

the author who uploaded it along with name of file with its extension (.pdf, .docx, .ppt,

etc.,). Buttons for opening uploaded files are provided on the extreme right column as

shown in figure 4.5. Like to 'view' button is available for recording faults and errors.

37

:! F 1le s l1s t l?l@J Jrn

Fdt'Enarlilt

Figure 4.5. View files list.

4.4. Tutorials

Tutorials are provided for inspectors to self-learning and preparing themselves before

proceeding to find defects. The figure 4.6 shows 'Tutorials' is listed under the

'Documents' tab.

Figure 4.6. Selection of tutorials.

38

Introduction to software inspections - This tutorial explains basic concepts and benefits of

inspection, gives an insight of defect detection process and how is it practiced, a sample

screenshot of tutorial is shown in figure 4. 7.

11 T ulo11al lnlroduclron To Soll ware lnspeclrons ?l@IE:3

Outline
• Basic concepts and benefits of inspections

• Inspections for defect detection: Quick practice
and discussion

• Details of Assignment
- Fault Checklist Technique

- Checklist Method

-Fault Form

-Timeline

Pmiaut

Figure 4. 7. Sample screenshot of tutorial with previous and next button for changing slides.

Inspection Using Fault Check List Technique -This tutorial explains how to detect faults,

different checklist methods, teaches how to classify the faults by using conditional

checklist, and finally attributes of fault list form, what parameters should be used to fill the

form with time constraints are explained with example.

Error Abstraction and Classification Process -. This tutorial explains how to abstract error

from faults and classify them, while tabulating in Error list form. This also explains process

39

of finding new faults or more faults by re-inspecting software requirement specification

(SRS) document using the errors already found.

Requirement Error Taxonomy- this document which explains different types of errors that

occur during the development of requirement document supports the error abstraction

process.

4.5. Fault/Error/NewFault List

Fault/Error List form is used by inspectors to log faults and errors during inspection

as shown in figure 4.8. Inspectors can use 'Instructions', 'Attributes' tab to fill the form.

3 FR4 N

!5 FR15.& EF

fll5.I Ml

111110..n. ! .. .,.. Tille

whichallhe_._..., ____ 1:20pa 3

0111.roc.,..i 1:50pa

z
z

... 1112:1U'iol -=----:-

Ea1.11t--,----------------... - _-_-_ -------.... -----,=:::-----=;....------,
W.Qm lc,.c._ 1 __ 3] 111110..T- I SIIIIDaT- f17•J .. ·11 06c3!t.AM .3

....... ...
Howlho•-••lo~•""'~- 6,.0..,

Figure 4.8. Shows fault list, error list.

The same 'Error list' saved from previous form is shown in the Error/New Fault List form

for ease of use to find more faults and record in New Fault List as shown in figure 4.9.

40

Wini Fd I.ill StapDlleT1111

Figure 4.9. Shows error list and new fault list.

Fault list, Error list and New fault list are recorded in sequential order making it one

inspection cycle. Likewise inspection can be repeated by keeping a count for each cycle.

4.6. View Comments

Now that all the defects are logged and submitted in inspectors profile it can be

viewed in authors profile by clicking on Documents> View Comments> View (can chose

either of the lists to view comments as shown in figure 4.10).

41

Figure 4.10. Shows author profile for viewing comments.

42

5. FUTURE IMPROVEMENTS

It can incorporate email facility. Any team of inspection will prefer to meet and

discuss the results of inspection process. So to satisfy such needs it can also have features

for users to invite for meeting sessions along with email facility. It can have user statistics

to show how many defects were found by user in an hour supported with graphs for further

analysis of inspection process to improve productivity of the inspector. Also, inspector

profiles can have enhancements showing due date for each inspection in the 'FileList'

window. Each defect log form (Fault/Error List, Error/New Fault List) can show which

document is currently being inspected furthermore both fault list and new fault list forms

can have drop down list with fault classes(e.g., G, MF, MP, MI, ME, AI, II, IF, WS, 0) to

select from while recording faults. A comments section can be added in fault list. A search

capability in fault list for inspectors will also be of great help.

43

6. CONCLUSION

This paper was an effort to develop automated tool which supports proven

techniques of finding defect in requirements. It replaces process of inspecting requirements

checklist which is currently done manually using pen and paper to list all the defects found

during requirements inspection. It facilitates error inspection process by assigning authors

and inspectors to participate upload requirements specification document. It also provides

freedom for inspectors to educate themselves with the help of inbuilt tutorials to detect

defects and record their findings in three stages. Inspectors read the requirements document

uploaded by authors to find fault list, using fault list by reasoning what caused those faults

they find errors which is classified with the help of error taxonomy and finally use the error

information to re-inspect requirements document to find the faults that might have been

overlooked during the first inspection.

This tool is confined for use in requirements phase of software development. After

error taxonomies have been developed and evaluated for the later phases of software

development process (e.g., design, coding etc), this tool can be easily adapted to support

the error-based inspection in the later phases of software development process.

44

REFERENCES

1. Basili, V.R., Green, S., Laitenberger, 0., Lanubile, F., Shull, F., S111rumgard, S., and

Zelkowitz, M.V., "The Empirical Investigation of Perspective-Based Reading."

Empirical Software Engineering: An International Journal, 1 (2): pp. 133-164. 1996.

2. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,

and Wong, M.Y., "Orthogonal defect classification-a concept for in-process

measurements." IEEE Transactions on Software Engineering, 18(11): pp. 943-956.

1992.

3. Florac, W. Software Quality Measurement: A Framework for Counting Problems and

Defects. Technical Reports, CMU/SEI-92- TR-22. Software Engineering Institute:

1992.

4. Sakthivel S., "A Survey of Requirements Verification Techniques," Journal of

Information Technology, pp. 668-79. 1991.

5. Fagan, M. E., "Design and Code Inspections to Reduce Errors m Program

Development," IBM Systems Journal, vol. 15, pp. 182-211, 1976.

6. Porter, A. A., Johnson, P.M., "Assessing Software Review Meetings : Results of a

Comparative Analysis of two Experimental Studies," IEEE Transactions on Software

Engineering, vol. 23, pp. 129-145, 1997.

7. Fagan, M. E., "Advances in Software Inspections," IEEE Transactions on Software

Engineering, vol. 12, pp. 744-751, 1986.

45

8. Briand, L. C., El Emam, K., Laitenberger, 0., Fussbroich,T., "Using Simulation to

Build Inspection Efficiency Benchmarks for Development Projects," presented at

International Conference on Software Engineering, pp. 340-449. 1998.

9. IEEE Std 610.12-1990, IEEE standard glossary of software engineering

terminology. 1990.

10. Lanubile, F., Shull, F., and Basili, V.R. "Experimenting with error abstraction in

requirements documents". In Proceedings of Fifth International Software Metrics

Symposium, METRICS98. pp. 114-121. 1998.

11. Endres, D. Rombach, A Handbook of Software and Systems Engineering, first ed.,

Pearson Addison Wesley, Harlow, England, 2003.

12. S.L. Pfleeger, J.M. Atlee, Software Engineering Theory and Practice, third ed., Prentice

Hall, Upper Saddle River, NJ, 2006.

13. Sommerville, Software Engineering, eighth ed., Addison Wesley, Harlow, England,

2007.

14. Card, D.N., "Learning from our mistakes with defect causal analysis." Software, IEEE.

1998. 15(1): pp. 56-63. 1998.

15. Grady, R.B., -Software Failure Analysis for High-Return Process Improvement,

Hewlett-Packard Journal. 47(4): pp. 15-24. 1996.

16. Jacobs, J., Moll, J.V., Krause, P., Kusters, R., Trienekens, J., and Brombacher, A.,

"Exploring Defect Causes in Products Developed by Virtual Teams." Journal of

Information and Software Technology. 47(6): pp. 399-410. 2005.

46

17. Lezak, M., Perry, D., and Stoll, D. "A Case Study in Root Cause Defect Analysis". In

Proceedings of the 22nd International Conference on Software Engineering. Ireland.

pp.428-437.2000.

18. Masuck, C., "Incorporating a Fault Categorization and Analysis Process in the Software

Build Cycle." Journal of Computing Sciences in Colleges. 20(5): pp. 239 - 248. 2005

19. Mays, R.G., Jones, C.L., Holloway, G.J., and Studinski, D.P., "Experiences with Defect

Prevention." IBM Systems Journal. 29(1): pp. 4- 32. 2000.

20. Nakashima, T., Oyama, M., Hisada, H., and Ishii, N., "Analysis of Software Bug

Causes and Its Prevention." Journal oflnformation and Software Technology. 41(15):

pp. 1059-1068. 1999.

21. Chillarege, R., Bhandari, LS., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,

and Wong, M.Y., "Orthogonal defect classification-a concept for in-process

measurements." IEEE Transactions on Software Engineering. 18(11): pp. 943-956.

1992.

22. Kohn, L.T., Corrigan, J.M., and Donaldson, M.S., "To Err is Human: Building a Safer

Health System. A Report of the Committee on Quality Health Care. Washington, DC.

2000.

23. Leape, L. L., "Errors in Medicine," Journal of the American Medical Association,

272(23): pp.1851-1857. 1994.

24. Norman, D.A., "Categorization of Action Slips." Psychological Review. 88: pp. 1-15.

1981 .

47

25. Rasmussen, J., "Skills, Rules, Knowledge: Signals, Signs and Symbols and Other

Distinctions in Human Performance Models." IEEE Transactions: Systems, Man, &

Cybernetics. pp. 257-267. 1983.

26. Reason, J., Human Error. 1990, New York: Cambridge Press.

27. Walia, G.S. and Carver, J., -A Systematic Literature Review to Identify and

Classify Requirement Errors, Journal of Information and Software Technology. 51(7).

pp. 1087-1109.2009.

28. Walia, G.S., Carver, J., and Philip, T. "Requirement Error Abstraction and

Classification: An Empirical Study". In Proceedings of IEEE Symposium on Empirical

Software Engineering. Brazil: ACM Press. pp. 336-345. 2006(b).

29. Walia, G., Carver, J., and Philip, T., Requirement Error Abstraction and Classification:

A Control Group Replicated Study, in 18th IEEE Symposium on Software Reliability

Engineering. Sweden, 2007.

30. Walia, G., Carver, J., Using Error Abstraction and Classification to Improve the Quality

of Requirements: Conclusions from Family of Studies, Technical Report. 2010, NDSU,

http://cs.ndsu.edu/research/ reports.htm.

31. Walia, G., Carver, J. "Evaluate the Use of Requirement Error Abstraction and

Classification Method for Preventing Errors During Artifact Creation: A Feasibility

Study." Proceedings of the 21st IEEE International Symposium on Software Reliability

Engineering. November 1-4. San Jose, California, USA. pp. 81-90. 2010.

48

32. Kan, S.H., Basili, V.R., and Shampiro, L.N., "Software Quality: An Overview from

The Perspective Of Total Quality Management." IBM Systems Journal. 33(1): pp. 4-19.

1994.

33. Walia, G.S., Empirical Validaton of Requirement Error Abstraction and Classification:

A Multidisciplinary Approach, M.S Thesis, Computer Science and Engineering,

Mississippi, Starkville, 2006(a).

34. Kitchenham, B. Procedures for Performing Systematic Reviews. TR/SE-0401.

Department of Computer Science, Keele University and National ICT, Australia Ltd.:

2004.

35. Software Inspections. http://people.cis.ksu.edu/~hankley/d84 l /Fa99/Chap3.html.

Date Accessed: January 31, 2011.

36. Alastair Dunsmore, "Comprehension and Visualization of Object-Oriented Code for

Inspections", URL: http://www2.umassd.edu/SWPI/EFoCS/EFoCS-33-98.pdf.

37. L. Brothers and V. Sembugamoorthy and M. Muller. "ICICLE: Groupware for Code

Inspection," 1990 ACM Conference on Computer Supported Cooperative Work, pages

169-181, Oct, 1990.

38. John C. Knight and E. Ann Meyers. "Phased Inspections and their Implementation,"

Software Engineering Notes, Vol.16, No.3, pp.29-35. July 1991.

39. John C. Knight and E. Ann Meyers. "An Improved Inspection Technique,"

Communications of the ACM, Vol.11, No. 11, pp.51 -61. November 1993.

49

APPENDIX A. HARDWARE/SOFTWARE
SELECTION STUDY

Programming Language

It is clear from the study results tabulated in Table A.l all the tools are good for

rapid development. The following development tools were considered:

* Poor ** Average ***Good ****Very Good *****Excellent

Table A. 1. Selecting the programming language.

Criteria Visual Basic Visual C++ Visual C#

Ease of learning ***** *** *****

Ease of development ***** *** *****

Interfacing with other **** *** ****

programs

Performance *** ***** ****

Functionality **** ***** *****

Previous Knowledge and **** **** None

Experience

Rapid Development ***** *** *****

Resource requirement *** **** ****

Network Support **** ***** *****

From the performance perspective Visual C++ or C# looks to be the correct choice. C# was

selected since it has got the most choices. There was no previous knowledge on this

50

language but the material available to learn was readily available and was easy to access.

Another reason for selection of C# is that the predictions of the future seem that it will be a

widely used language. Therefore, gaining knowledge in that area will be an added

advantage for the future career.

Operating System

Since development tools selected were Visual C#, a windows based system would

be required for the efficient running of the system. Currently .NET is supported only on the

Microsoft windows platform. The operating system should also be easy to use, and perform

well with minimum resource requirements. Familiarity and popularity are also important

considerations. Considering all these factors, Windows Vista Professional was selected as

the operating system.

Database

As part of the development of the tool Microsoft SQL Server 2008 was considered

for the backend manipulations of user access right and table creation. Microsoft SQL

Server 2008 has been considered as it is readily available in the market and easy to procure

and use it in coordination with Visual Studio C# Express edition.

Hardware Requirements

Any configuration of hardware that can support Windows Vista, .NET Framework

3.5, Microsoft SQL Server 2008 is required for the implementation of the tool.

51

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060

