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ABSTRACT 

Jenson, Robert Allen, M.S., Department of Mechanical Engineering, College of 
Engineering and Architecture, North Dakota State University, May 2011. Stress-Function 
Variational Method and Its Applications in the Strength Analysis of Bonded Joints and 
Hard Coatings. Major Professor: Dr. Xiangfa Wu. 

High concentrations of interfacial stress near the adherend ends are primarily 

responsible for the debonding failure of bonded joints, such as those structured extensively 

in civil and structural engineering; aeronautical, ground, and marine vehicles; and flexible 

electronics and microelectronic packaging. Accurate determination of these interfacial 

stresses is crucial to improved structural design and optimization as well as health 

monitoring of the structures in which such joints are found. A variety of joint models have 

been available in the literature for joint strength analysis and structural design. Yet, a few 

deficiencies still exist in most of these models in accurate prediction of joint stresses, 

including the violation of the generalized Hooke's law of the adhesive layers and failure to 

satisfy the physical traction conditions at the free edges of joint adherends. 

In this thesis, a generalized stress-function variational method is developed for the 

determination of the interfacial shear and normal stresses in general bonded bimaterial 

joints subjected to mechanical and thermomechanical loads. Specifically, three types of 

joints are considered in this study, including single-sided bonded joints, single-sided strap 

joints, and single-lap joints. During the formulation, two unknown interfacial stress 

functions are directly introduced to satisfy the traction boundary conditions of the joints; 

the Euler-Bernoulli elementary beam theory and 2D elasticity are used to determine the 

stress components of the adherends in terms of the interfacial stress functions. By utilizing 
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the theorem of minimum complementary strain energy, the governing equations of the 

bimaterial joint are obtained as a system of two coupled 4th-order ordinary differential 

equations (ODEs) of the introduced stress functions. These ODEs are formatted into a 

generalized eigenvalue problem, and are further solved numerically by designing robust 

and efficient computational codes using MATLAB™. The results of the analysis are 

validated by comparison with elementary mechanics of materials as well as detailed finite 

element analysis (FEA) using ANSYS™; the current models can accurately satisfy the 

shear stress-free boundary conditions at the adherend edges. 

In addition, the proposed method is further applied to the analysis of progressive 

cracking in hard coatings. In this analysis, a cracked hard coating layer bonded onto a 

substrate is modeled as a single-sided bonded joint, and the expressions of strain energy 

derived in this study are incorporated into energy-based cracking criteria of the system. 

Using the above variational method, the critical loads (i.e., applied axial stress, shear force, 

bending moment, or temperature change) for initial cracking can be determined. Thus, the 

present method is also capable of modeling progressive cracking in hard coating systems. 
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1. INTRODUCTION 

Bonded joints, constructed from two adherends of the same or dissimilar materials 

fastened by means of bolts, solders, or adhesives, have found broad applications in 

numerous engineering practices. Bonded joints are used structurally as load transfer 

elements, surface reinforcing patches, and connectors to link separated parts. Applications 

of bonded joints can be observed in all manners of vehicle, from ground to marine to 

aerospace, as well as in mechanical and civil structures. Furthermore, recent developments 

in the electronics field ( e.g. microelectronics packaging, as well as the more-recent advance 

of flexible electronics) have presented the deposition of stiff silicon structures on compliant 

substrates-systems easily thought of as small-scale application of bonded joints. Due to 

the prevalence of bonded joints, it is critical to understand that the integrity and safety of 

the resulting structures depends greatly on the strength and durability of the joints that 

comprise them. However, due to dissimilarities in material properties between adherends 

of the joint (such as a mismatch of Poisson's ratios, Young's moduli, or the thermal 

expansion coefficients), complicated stress fields arise in the system that include high 

stress concentrations near the free edges of the adherends under mechanical or 

thermomechanical loads. These high interfacial stresses are the primary cause of 

debonding failure commonly observed in engineered joints. Therefore, an accurate stress 

analysis of bonded joints is required for improved joint design and structural optimization; 

in addition, improved stress analyses will also advance both health monitoring of structures 

and our understanding of the failure mechanisms and damage evolution in bonded joints. 
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Stress analysis of bonded joints dates can be tracked to the pioneering works by 

Volkersen (l 938) and Goland and Reissner (l 944), with numerous improvements and 

variations in the decades since then. However, some important notes bear mentioning: 

most of the existing analytic models found in the literature share a few obvious technical 

deficiencies in the view of physics. Firstly, many such models failed to satisfy the shear 

stress-free condition at the free edges of the adherends. That is, at the ends of the overlap 

region of a bonded joint, where no shear stress should exist, a majority of analytic models 

available in the literature instead predicts the maximum value of interfacial shear stress. 

Furthermore, a number of studies of the bonded joint problems treated the adhesive layer 

using a shear-lag model, which violated the generalized Hooke's law for the adhesive 

layer; the shear-lag model allows for only shear deformation of the adhesive, which skews 

the stress-strain relationship detailed by Hooke's law for isotropic, linearly thermoelastic 

solids. 

Therefore, it is the mam goal of this thesis work to eliminate these obvious 

technical deficiencies and provide improved and more physically compatible models for 

stress analysis of bonded joints. Specifically, a systematic methodology based on the 

stress-functional variation of complimentary strain energy of bonded joints is formulated 

for accurate determination of the entire stress field of bonded joints of all kinds of 

configurations. In the simplest case of bonded joints made of two slender adherends, two 

interfacial shear and normal stress functions can be directly introduced. Stress equilibrium 

equations for representative segmental elements of the adherends can then be constructed 

using these stress functions. Based on classic Euler-Bernoulli beam theory and two

dimensional (2D) elasticity, expressions of the planar stress components in the adherends 
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can be subsequently derived, from which an expression of the complementary strain energy 

of the joint can be defined. According to the theorem of minimum complementary strain 

energy, the stationary point of the strain energy corresponds to the state of static 

equilibrium of the joint. Minimization of the strain energy through variational operations 

results in a system of two coupled 4th-order ordinary differential equations (ODEs), which 

can be solved efficiently using eigenfunctions. A compact, efficient, computational 

package is designed with MA TLABTM. The solution of the joint stress field is determined 

completely in terms of the joint geometries, material properties, and traction boundary 

conditions (BCs ). Thus, the interfacial stresses in the joint obtained in this study can fully 

satisfy all the traction BCs properly. 

The methods developed in the present work can be effectively applied to a variety 

of joint configurations subjected to arbitrary combinations of loading. The proposed 

efficient solution methods are expected to be useful for interfacial damage evaluation of 

bonded joints, as well as joint design and structural optimization through scaling analysis 

of joint parameters. The work can also be easily generalized for a number of bonded 

structures and layered materials-e.g., hard coatings and flexible electronics-where the 

strength and durability of the system depends highly on interfacial stresses. 
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2. LITERATURE REVIEW 

2.1 Joining Technology and History of Bonded Joints 

The history of adhesively bonded joints can be traced back to the mid-Pleistocene 

era, with the discovery of simple spears constructed from stone flakes bonded to pieces of 

wood with tar {Mazza et al., 2006). In the past five decades, developments have been made 

in the application of advanced adhesive joining techniques to aircraft design, where aircraft 

skins are bonded to support structures, such as stringers and metallic honeycomb 

assemblies, via adhesives {Higgins, 2000). Furthermore, not only aerospace but also all 

types of vehicles {e.g. ground and marine transportation, etc.) have evidenced the 

developments in the application of adhesive joining technology. Besides vehicle design, 

these adhesive joints have also found use in civil structures and other mechanical systems 

as well. Some of the reasons for the ever growing use of adhesively bonded joints in 

engineering applications include the more compact structural design, lower cost in 

manufacturing, and improved mechanical durability, noise suppression, and weight 

reduction compared to other types of mechanically bonded constructs {i.e., bolts, rivets, 

welds, etc.). Adhesively bonded joints normally lead to more efficient load transfer 

between joined parts and higher durability of the structure {Goncalves et al., 2002; 

Mortensen and Thomsen, 2002). The adhesive layers in these types of joint can also 

provide noticeable structural damping, cracking retardant properties, and corrosion 

resistance {Tsai et al., 1998). Furthermore, adhesive joints are also associated with 

conservation of materials and weight reduction, which can lower the costs of production 

relative to other types of mechanical fasteners. It has been reported that 10-15% of the 
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weight of a typical commercial aircraft can be saved by replacing rivets with adhesive 

bonds (Brockmann et al., 2009). This makes a significant impact on the cost-reduction and 

energy conservation goals of the industry. 

In addition to these applications, the analysis of bonded joints has also become a vital 

concern with regard to microelectronics packaging and flexible electronics. For 

microelectronic devices, thermal stresses are the primary cause of debonding failure and 

functionality defects; more accurate and in-depth analysis of the interfacial thermal stresses 

in bonded chip components will allow for a better understanding of damage evolution and 

mechanical failure of these chips and has been the subject of much research in the past 

three decades (Chen and Nelson, 1979; Ru, 2002; Suhir, 1986, 1989, I 991, 2001; Suhir and 

Vujosevic, 2010; Suo, 2003; Tsai et al., 2004). Similarly, advances in recent flexible 

electronics, which involves the deposition of rigid silicon islands on compliant polymeric 

substrates, rely on a more accurate analysis of the interfacial stresses of the joining 

components. Such interfacial stresses directly influence the mechanical durability and 

reliability of such integrated devices (Jiang et al., 2007, 2008; Khang et al., 2006, 2009; 

Kim and Rogers, 2008; Lu et al., 2007; Song et al., 2008; Sun et al., 2006). 

2.2 Types of Bonded Joints 

In their simplest form, bonded joints can be defined as two or more adherends of 

the same or dissimilar materials fastened together by mechanical means ( e.g. bolts, rivets, 

etc.), welds, or adhesives. Due to the widespread use of adhesively bonded joints in a large 

array of engineering disciplines, it is this particular model that will be studied more 

extensively in the following work. Typically, adhesively bonded joints come in a variety of 
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configurations, which are classified primarily according to their geometric arrangements. 

Figure 2.1 illustrates several of the most commonly used types of bonded joints. To 

mention a few. the simplest lap joints consist of two or more adherends which overlap each 

other in the bonding region. In contrast, the strapped joints are similar to a butt joint 

covered with a reinforcing patch. Also. the simple single-sided bonded joint can be used to 

represent the microelectronics and flexible electronic devices for analysis. 

Single-lap joint Double-lap joint 

-I 
l- : 1--

Single-sided strap joint Double-sided strap joint 

-I I l- --t 1--

Single-sided bonded joint Double-sided bonded joint 

~ 
I I 

~ ~ l-

Figure 2. I. Common types of bonded joints. 

Due to the existence of multiple interfaces and the mismatch of material properties 

across the bonding surfaces. complicated stress fields usually occur in bonded joints 

subjected to external mechanical or thermomechanical loads. These stress fields are 

characterized by the existence of high stress concentrations near the free edges of the 

bonded joints. which are responsible for their debonding failure. The failure mode of an 

adhesively bonded joint depends on the material properties of the adherends. interfacial 

bonding strength. and loading condition. among others. It can occur in any of several 
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competing ways: Figure 2.2 shows the typical failure modes of adhesively bonded joints. 

These modes can be generally divided into two basic types: failure of the adherend. and 

failure of the adhesive layer. While the diagram shows only adhesively bonded single-lap 

joints subjected to axial loading. the same failure modes can be also caused by any 

combination of axial force. transverse shear force, or bending moments in other types of 

joint configuration. Because the high interfacial stresses are directly responsible for the 

debonding failure of joints and heavily influence the strength and reliability of the 

structures integrated with them. it is essential to joint design, structural optimization and 

damage assessment that a more accurate analysis of mechanical and thermal stresses in 

bonded joints be completed. 

Adherend Failure Modes 

a. Adherend Fracture (far-field) b. Compo itc Adhercnd 
Interlaminar Fracture 

e. Adhe ive (Bondline) Fracture- hear 

\ 1111!,1\ I! I ,11 lu11. \ l 1., 

f. Adhe ive (Bondl ine) 
Fracture - Peel 

Figure 2.2. Typical failure modes of adhesively bonded joints (Heslehurst and Hart-Smith, 
2002). 

2.3 Stress Analysis of Bonded Joints: Existing Analytic and Numerical 

Methods 

Stress analysis of bonded joints can be traced back to Timoshenko ·s model of a bi

metal thermostat (Timoshenko, 1925). The analysis, which examined two perfectly bonded 
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dissimilar metal strips subjected to a uniform temperature change, first touched on the 

concept of free-edge stresses in the joint. Volkersen (1938) and Goland and Reissner 

( 1944) were the first to investigate the stresses in adhesively bonded single-lap joints under 

mechanical loads. The work performed by Volkersen (1938) introduced the concept of 

differential shear. In this model, the adhesive layer was only allowed to deform in shear, 

while the adherends were treated as linearly elastic tension bars. However, this analysis 

ignored the moment induced by the eccentric load path of the single lap joint. Go land and 

Reissner (1944) furthered the single lap-joint analysis by considering the joint under the 

influence of both in-plane tension and bending moment. In order to account for the 

resulting nonlinearity, two correction factors were introduced for the transverse force and 

bending moment. Unfortunately, these models violate the shear stress-free conditions by 

locating the maximum values of interfacial shear stress at the free edges of the adherends. 

Further improvements to the bonded joint models continued over decades. Among 

others, Hart-Smith (1973) developed an elastoplastic joint model that accounted for the 

large deflection of adhesively bonded joints with the plastic deformation of the adhesive 

layers, and allowed for individual deformation of the upper and lower adherends. This 

elastoplastic model also contained the failure criterion of the adhesive layer based on 

maximum shear strain. The study by Erdogan and Ratwani ( 1971) utilized classic beam 

theory and accounted for adherend rotation in order to formulate a set of governing 

equations to solve for the debonding stresses of several types of joints. However, due to 

the limitations of classic beam theory, the shear stress-free condition remains broken at the 

adherend ends, just as it did with many other models reported in the literature. In addition, 

joint models that consider the adhesive layer as a shear-spring (such as the Volkersen 
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model, for one) also violate generalized Hooke's law of the adhesive layer. There have 

been many, varied models available in the literature: Delale, et al. (I 981) produced a 

generalized model considering the adherends as flexural beams; Her (1999) devised a 

tension-bar model to analyze adhesive lap joints; Lee and Kim (2005) modeled adhesive 

layers as distributed linearly elastic springs. An exhaustive review of some of the most 

important analytical models for the stress analysis of bonded joints and relevant 

comparison in stress analysis has been made recently by da Silva et al. (2009). 

Furthermore, one improved model of note was developed by Chen and Cheng (1983), 

which utilized 2D elasticity and the theorem of minimum complementary strain energy to 

find stresses in the adhesive and substrate layers of an adhesively bonded single-lap joint. 

Two major assumptions made in the work were firstly that, based on classical beam-plate 

theory, the longitudinal normal stresses in the adherends vary linearly with respect to the 

thickness coordinate y. Secondly, it was assumed that the shear stress in the adhesive layer 

remained constant across the layer thickness, due to it being very thin compared to the 

adherends. Based on the first assumption, the longitudinal normal stresses in the adherends 

were defined as linear combinations of arbitrary axial stress functions in the length 

coordinate x. The moment reduction factor k from the work of Go land and Reissner ( 1944) 

was used in the determination of the bending moment and transverse shear force at the free 

edges of the joint. Minimization of the strain energy of the joint was carried out to 

determine the governing set of OD Es for the axial stress functions of the joint, which were 

used to define the remaining stress components according to elasticity. The maximum 

interfacial stress predicted by Chen and Cheng was found to occur at a distance of 

approximately 20% the adherend thickness from the free edges; this result is in a close 
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agreement with those based on finite element analyses (FEAs ), examples of which can be 

found in Diaz et al. (2009), Lee & Kim (2005), and Mortensen & Thomsen (2002). By 

comparison, the current work, detailed in Chapters 3 and 4, makes use of the flexural stress 

formula for Euler-Bernoulli beams to directly write the axial normal stress in terms of two 

independent unknown interfacial stress functions. In addition, it is not necessary to 

introduce the artificial Goland and Reissner bending moment factor k in the present 

formulation and all the stress equilibrium equations are satisfied exactly. The present 

model can be easily extended for stress and failure analysis of a variety of bonded joints 

( e.g. adhesively bonded multi-material composite joints) and coating systems. 

Parallel to the broad structural applications of bonded joints in engineering, joining 

technology has also been in use in microelectronics packaging. In particular, with the 

advent of microelectronics fabrication techniques, thermal stress-induced failure of bonded 

microelectronic components has gained importance. Better understanding of the failure 

mechanisms of these microstructures in thermal and electric fields, as well as more 

accurate prediction of the interfacial thermal stresses will greatly assist in the design and 

durability analysis of such microelectronic devices. This development has been 

accompanied by much research (Chen & Nelson, 1979; Ru, 2002; Suhir, 1986, 1989, 1991, 

2001; Suhir & Vujosevic, 2010; Suo, 2003; Tsai et al., 2004). Besides, there has been 

much recent development in the field of flexible electronics consisting of rigid silicon 

structures deposited on compliant polymeric substrates. The mechanical durability and 

lifetime of these devices are highly influenced by the interfacial stresses present in the 

system. Accurate estimation of these stresses is crucial to the commercial development of 
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flexible electronics (Jiang et al., 2007, 2008; Khang et al., 2006, 2009; Kim & Rogers, 

2008; Lu et al., 2007; Song et al., 2008; and Sun et al., 2006). 

Obviously, the desired understanding of the interfacial stresses in bonded joints is 

not just limited to electronics and mechanical engineering. In fact, it has been continuously 

researched for decades in the vein of structural engineering. The strength and durability of 

structures utilizing bonded joints on any scale is dependent on the interfacial stresses 

present in those joints. For instance, Yuan et al. (2004) and Lorenzis and Teng (2007) have 

performed stress and durability analyses on fiber-reinforced polymer matrix composites 

(PMCs) and concrete joints. The analysis performed by Yuan et al. (2004) considered a 

single-lap model of a fiber-reinforced polymer (FRP) sheet adhesively bonded to a concrete 

prism. A local bond strength parameter and the interfacial fracture energy were used in the 

derivation of the governing equation of interfacial stresses in the joint, which was solved 

with the definition of a local slip-bond curve relating the local interfacial shear stress to the 

local shear slip. Closed-form solutions were found for several loading stages: linear 

elastic, softening, debonding propagation, and linear unloading. However, the model was 

predicated on the assumptions that the adherends only deformed in axial tension, and the 

adhesive layer functions only in shear. Bending effects in the adherends were ignored, and 

shear stress was assumed constant throughout the adhesive layer. Lorenzis and Teng 

(2007) reviewed much of the existing work on near-surface mounted FRP reinforcements, 

and found that further research was needed for better understanding of the debonding 

failure mechanisms and the interaction between fracture and interfacial bond stress. 

Moreover, research has also been performed by Pugno and Surace (2000, 2001), 

Pugno and Carpinteri (2003), and Carpinteri et al. (2009) on debonding failure of 
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reinforced concrete and tubular adhesive joints. The analyses of tubular adhesively bonded 

joints subjected to torsional (Pugno and Surace, 2000, 2001) and axial loadings (Pugno 

and Carpinteri, 2003) utilized the assumptions that the shear stress in the adhesive layer 

remained constant, and that only shear stresses in the adhesive and the adherends had an 

appreciable effect on deformation. The maximum shear stress in the joint was located at 

the ends of the adhesive layer, with the high stress concentration at the end of the stiffer 

adherend. A fracture mechanics approach involving the fracture energy and strain energy 

of the joint has been used to examine the joint failure. Carpinteri et al. (2009) further 

examined two differing failure criteria for these types of tubular joints: a bond stress-based 

criterion and an energy method based on fracture mechanics. By assuming a modification 

of the classical equivalent beam theory involving a shear-lag representation of the adhesive 

layer, a link was established between the two failure criteria. Discussion of additional 

models can be found in the above-mentioned review paper dedicated by da Silva et al. 

(2009). Yet, most of the above models share a common technical deficiency in their 

assumptions of a shear-lag model for the adhesive layers; this, as already mentioned, 

violates generalized Hooke's law. 

Another area in which the stress analysis of bonded joints is particularly useful is 

the study of cracking in bonded layers such as failure analysis of composite laminates, 

surface coatings, microelectronics, etc. In fracture mechanics of layered materials, much 

work has been done to analyze the cracking behavior in bonded layers subjected to given 

loads (Suo and Hutchinson, 1990; Hutchinson and Suo, 1992; Li, 2001; Li & Lee, 2009; 

Sih, 1973; Tada et al., 1973; Yu et al., 2001; Yu & Hutchinson, 2003; Wu & Dzenis, 2002a 

& 2002b; and Wu et al., 2003a, 2003b, & 2004; etc.). Improved stress analyses of bonded 
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joints can enhance the accuracy of the effective loads estimated by other classic methods 

which will be beneficial to better understanding of the failure mechanisms and the fracture 

analysis of bonded joints. 

To date, several improved models for the stress analysis of bonded joints have been 

developed. For instance, the earlier work by Chang (1990, 1993) was able to arrive at 

expressions of joint stresses that satisfied all the traction BCs by expressing the interfacial 

shear and normal stresses as Fourier series and using the minimization of complementary 

strain energy of the joint to fully determine the coefficients. However, the oversimplified 

assumption of the adherend deflection leads to interfacial stress predictions of low accuracy 

at the interface away from the adherend ends when compared to those based on purely 

numerical methods ( e.g. FEA). Furthermore, models developed by Yin ( 1994a & 1994b) 

and Wu and Dzenis (2005) directly introduced interfacial stress functions to satisfy all 

stress equilibrium equations and stress continuity across layer interfaces of laminated 

composites. In these formulations, deformation compatibility was satisfied in the weak 

form in the sense of minimization of the complementary strain energy of the laminates, 

which led to a system of coupled ODEs solved efficiently by using eigenfunctions. These 

analyses resulted in complete satisfaction of all free-edge traction BCs, as well as a close 

agreement to results obtained from detailed FEAs at the regions out of a ply-thickness from 

the free edges. 

In this work, a novel bonded joint model is developed for joint stress analysis, in 

which the joint (either single-sided bonded joint, single-side strap joint, or single-lap joint 

herein) is considered being made of slender isotropic, linearly thermoelastic adherends. 

Two unknown interfacial shear and normal (peeling) stress functions are introduced and 
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used in conjunction with the stress equilibrium equations to determine the stress resultants. 

Stress-equilibrium equations of 2D elasticity and the Euler-Bernoulli axial flexural stress 

formula lead to expressions of all the planar stress components in the joints, which are used 

to formulate the complementary strain energy of the joint. By invoking the theorem of 

minimum complementary strain energy, a set of two coupled 4th-order ODEs is derived 

which can be solved by application of traction BCs (i.e. the equivalent edge forces and 

moments) to give the interfacial stress distribution in the entire bonded joint. 

2.4 Outstanding Problems 

Based on the above review, a few outstanding problems remain regarding stress 

analysis of bonded joints. Firstly, the stress-free BCs at free edges of the bonded joint 

model must be strictly upheld, and stresses in the adhesive layers of bonded joints need to 

be properly addressed. Furthermore, a generalized method would be derived which is 

capable of accurate stress analysis of various joint configurations with arbitrary sets of 

geometric parameters, material properties, and loading conditions. 

The formulation of the bonded joint models in the following work is planned as 

follows. 

Chapter 3 will introduce an analytic model for bonded joints made of a slender 

substrate reinforced with a cover layer. Two interfacial stress functions are directly 

introduced, representing the interfacial normal and shear stresses along the bond line of the 

joint. As the first such approach, to simplify the derivation, an approximate deformation 

compatibility constraint (i.e. equal curvature of adherends) is enforced to correlate the two 

stress functions. The entire stress field of the joint is then defined in terms of the unknown 
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interfacial shear stress function. The strain energy of the entire joint is expressed in terms 

of the interfacial shear stress function, and the theorem of minimum complementary strain 

energy is invoked. The strain energy of the joint is minimized using the variational 

operator with respect to the interfacial shear stress function, resulting in the governing 4th
-

order ODE of constant coefficients. 

In Chapter 4, a general stress-function variational method is developed for a single

sided strap joint consisting of two identical slender substrate layers and a slender cover 

layer. Two interfacial stress functions are directly introduced; however, the approximate 

deformation compatibility adopted above is eliminated. Due to symmetry of the joint, a 

reduced half-joint model is analyzed, and the stress components and stress resultants are 

determined in terms of the two unknown interfacial stress functions. Once again, the strain 

energy is determined in terms of the unknown interfacial stress functions and minimized 

according to the theorem of minimum complementary strain energy. In this case, the 

resulting governing equations consist of a system of two coupled 4th-order ODEs of 

constant coefficients, which are further converted into a generalized eigenvalue problem 

and solved numerically by designing a robust, efficient computational package using 

MATLAB™. This generalized method is further applied to a single-lap joint model, 

resulting in a more generalized system of two coupled OD Es to govern the stress field in 

the joint. In this way, the generality of the stress-function variational method and its 

potential application in a variety of bonded joint configurations is demonstrated. 

In Chapter 5, the general stress-function variational method formulated in Chapter 4 

is further employed to study progressive cracking in surface coatings. A cracked stiff, thin 

coating layer (e.g. ceramic/diamond coating) on a compliant substrate (e.g. steel) is 
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modeled as a single-sided bonded joint, allowing for accurate determination of the stress 

field and strain energy stored in the system during cracking. In this way, the important 

cracking criteria and relevant critical loading parameters are determined, i.e. the critical 

thermal and/or mechanical load for initial and progressive cracking, as well as crack 

density for a given set of load parameters. 

Chapter 6 summarizes the present research and expects the future work in this field. 

Further research in this particular area includes stress and failure analysis of generalized 

multi-layered adhesively bonded joints, as well as adhesively bonded composite joints of 

generally anisotropic adherends. 
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3. STRESS ANALYSIS OF SINGLE-SIDED BONDED JOINTS 

3.1 Problem Formulation and Solution 

3.1. l Model Formulation 

In this chapter, a generalized stress-function variational method is formulated and 

used to determine the entire stress field of single-sided bonded joints subjected to 

mechanical and thermomechanical loadings. Based on the assumption of approximately 

equivalent curvature of the adherends, the stress field can be expressed explicitly and 

compared with those based on classic beam theory and FEM (i.e. ANSYS™), respectively. 

Consider the model of a single-sided bonded joint consisting of a straight tension 

bar with a reinforcing patch as shown in Figure 3. l. The reinforcing patch has length L and 

thickness h1, while the tension bar has thickness h2 and length much larger than L; both 

beams have uniform width b. The coordinate systems are defined such that the x-axis is 

directed along the axis of the bar from the symmetric mid-plane, while y 1 and Y2 are 

directed vertically from the centroids of the cross-sections of the reinforcing patch and the 

tension bar, respectively. Uniform axial tension p0 is applied to the tension bar far from the 

reinforcing patch. In addition, the whole joint is also subjected to uniform temperature 

change 6.T (relative to the temperature of the thermal stress-free state). As already 

discussed, the mismatch of material properties at the interface leads to high interfacial 

stresses near the edges of the overlap region of the joint; this also causes the joint ends to 

be in a complicated three-dimensional stress state. To simplify the subsequent analysis, the 

joint will be considered in one of two limiting two-dimensional (2D) stress states: either 

plane-stress, or plane-strain. Both joint components are considered isotropic, linearly 
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thermoelastic materials. For reference, all following subscripts I and 2 refer to the 

reinforcing patch and straight tension bar, respectively. 

Po ;=) 
1 · 

L 

n (a) 

(J 

t t t t 
(J 

t t t t 

Figure 3.1. Schematic of a bonded joint, consisting of (a) a straight tension bar with 
reinforcing patch and (h) illustration of the interfacial stress distribution. 

3.1.2 Static Equilibrium Equations and Deformation Compatibility 

The loss of lateral symmetry of the joint results in deformation that is a combination 

of in-plane elongation and lateral deflection. The tension bar and reinforcing patch are 

considered slender enough to be treated as Euler-Bernoulli beams. Stress components and 

resultants are shown in the free-body diagrams of representative segmental elements of the 

reinforcing patch and tension bar (Figure 3.2). The equilibrium equations for such an 

element of the reinforcing patch are given below: 

(3.1) 
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Figure 3.2. Free-body diagrams (FBDs) of representative segmental elements of (a) the 
reinforcing patch and (h) the tension bar. 

I.F = 0 : dQ1 = -ha 
y dr 

Similarly, the equilibrium equations for the tension bar are: 

I.F, = 0 : dQ~ = ba 
dx 

dM, h, 
I.Af=O: -- =Q,-----=-(br) 

dt - 2 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

To simplify the derivation, we introduce the assumption: an approximate deformation 

compatibility constraint is imposed in the form of equal radius of curvature between 

tension bar and reinforcing patch: 

(3.7) 
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where 

(3.8) 

3.1.3 Stress Resultants 

The interfacial shear stress 1: and normal stress cr are defined as two unknown 

functions to be determined: 

r f(x) and a= g(x). (3.9) 

Due to the symmetry of the joint across the y-axis,j{x) must be an odd function while g(x) 

must be even: 

f(-x) = - f(x) and g(-x) = g(x). (3.10) 

At the ends of the overlap region of the joint (free edges of the reinforcing patch) the shear 

stress-free conditions yields 

f(-L/2)=/(L/2)=0 (3.11) 

Stress resultants of the adherends can be expressed in terms of the unknown functions f and 

g by the following procedure. Integration of (3 .1) with respect to x from x -L/2 yields 

By utilizing the traction-free boundary condition at x = -L/2 (that is, S1(-L/2) = 0) the 

normal stress resultant can be expressed as 

(3.13) 

Integrating (3.2) with respect to x from x = -L/2 yields 
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The shear stress-free boundary condition at x -L/2 (such that Q 1(-L/2) 0) similarly leads 

to the shear stress resultant being written as 

(3.15) 

Similarly for the moment, integration of (3.3) gives 

(3.16) 

This, by applying the moment-free condition at x=-L/2 reduces to the expression for the 

bending moment: 

(3.17) 

This same procedure can be used on the tension bar: integrate Eqs. (3.4) through (3.6), 

apply the proper boundary conditions, and arrive at the following stress resultants: 

(3.18) 

(3.19) 

(3.20) 

Furthermore, the stress functions / and g can be correlated through the deformation 

compatibility constraint of equal curvature (3.7): 

(3.21) 
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The expression in (3 .21) can be reduced by differentiating both sides of the equation and 

simplified to get 

(3.22) 

moments to be rewritten as 

(3.23) 

(3.24) 

3 .1. 4 Stress Components 

The components of the joint are considered slender enough to be modeled 

according to Euler-Bernoulli beam theory; therefore the axial normal stress in the 

reinforcing patch can be found using the Euler-Bernoulli flexural stress formula: 

(3.25) 

The shear stress in the reinforcing patch is found via integration of the elasticity 

equilibrium equation 

(3.26) 

with respect to Y1 from an arbitrary choice of y to y 1==h 1/2 

(3.27) 
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Solving this equation for r;:~ and utilizing the traction-free condition at the top surface, 

<:.~(~ I 2) = 0, gives the shear stress in the reinforcing patch: 

(3.28) 

Again, integration of the equilibrium equation (2D elasticity) 

(3.29) 

with respect to Y1 from y to y,=hi/2 gives 

a ni a 01 r,11 (J'vv r/1 '•v 
__ .[._l dy + _·._! dy -0 

I ;:),, I v a I -
.l uy1 ·' X 

(3.30) 

Solving for the normal stress and applying the traction-free condition at the top surface of 

the reinforcing patch gives the result: 

(3.31) 

The same approach can be applied to find the stresses in the tension bar. The 

flexural stress formula for the tension bar gives 

Next, the equilibrium equation 

can be integrated from the bottom (free) surface at y2=h2/2 to an arbitrary point y2: 
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(3.34) 

Using the traction-free condition <:; (-h2 I 2) = 0 on the bottom surface, this equation can 

be solved to give the shear stress in the tension bar: 

(3.35) 

To determine the normal stress, the equilibrium equation 

a (2) a (2) 
(j'h)lo 'xv, --·--- +-·-- =0 
B.Y2 ax 

(3.36) 

is integrated with respect to Yi from the bottom surface: 

(3.37) 

Applying the stress-free condition aty2=-h2/2 yields the normal stress in the tension bar: 

(3.38) 

3.1.5 Governing Equation of Interfacial Stresses 

The theorem of minimum complementary strain energy is used to determine the 

stress distribution of the bonded joint problem. For the case of linearly thermoelastic 

materials considered here, the strain energy of the entire joint can be expressed as 
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br,12 r,12 {l [ (ll n> m <i>] l+v1 ( <2))
2rd + - a E +a E +-- r y 

f,/2 hi 12 2 xx xx ,~Y yy E X:V2 2 
I 

(3.39) 

where the normal strains 

(3.40) 

are defined according to generalized Hooke's law for isotropic, linearly thermoelastic 

solids in plane-stress, a,, (i I, 2) are the coefficients of thermal expansion, and !1T is the 

uniform temperature change from a thermal stress-free state. The above expressions can be 

conveniently converted to the corresponding plane-strain case by replacing Young's 

moduli Ei by E1 I ( 1 - v:), Poisson's ratios v, by v, I (1 v,), and thermal expansion 

coefficients a; by (1 + v, )a;. The theorem of minimum complementary strain energy 

states that the strain energy of the joint reaches a stationary point at the state of static 

equilibrium. The above strain energy expression is a functional with respect to the 

unknown stress function/, so the application of this theorem yields the requirement 

(3.41) 

where o is the variational operator with respect to f, This leads to 
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The stress components from (3.25), (3.28), (3.31), (3.32), (3.35), and (3.38) can be 

substituted into (3.42) and the variational operations is performed on the strain energy 

expression. After simplification, the interfacial shear stress function f satisfies a 4th -order 

ODE of constant coefficients, given for the plane-strain case as 

(3.43) 

where 

F(I;) = F(x I h,) = -(-
1-J [ f(x) dx 

Pok. rn 
(3.44) 

(3.45) 

(3.46) 

(3.47) 

V2 + P2v2) (3.48) 

(3.49) 

(3.50) 

(3.51) 

Because the stress function f(_x) is required to be an odd function ( due to symmetry 

across the y-axis), F( I;) must be an even function. In general, there are two meaningful 

solution cases for the above ODE: the case that q > p, and p > q . 

In the case of q > p, the solution (3.44) has the form 
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F( c;) C1 cosh(fic;) cos(yc;) + C2 sinh(fic;) sin(yc;) 

+[e;1
1 ~ (a1 -a2 )tiTE1 I Po }(q2

A11 ) 

(3.52) 

where P= ✓(p+q)/2, r=-J(q-p)/2, and Ci and C2 are unknown constants. From 

(3.52), the interfacial shear stress function can be defined by 

f(x) = Po~ dF(c;) 
dx 

= Po [ (CJJ + C2y)sinh(/Jx I~ )cos(y I~) 

+(-C1y + C2/J)cosh(/Jx I~ )sin(yx I~)] 

(3.53) 

A relationship between the constants Ci and C2 can be established by applying the shear 

stress-free condition at x =±LI 2: 

C1 ysinh[fiL / (2~ )]cos[r LI (2~ )] + /Jcosh[fiL I (2~ )]sin[yl I (2~ )] K=-=----_;_-----'--'--------'----'---~ 
C2 ycosh[fil I (2~ )]sin[yl I (2~ )]- /Jsinh[/JL I (2~ )]cos[yl I (2~ )] 

(3.54) 

Substituting (3.54) into (3.53) and (3.52) and rearranging gives 

f(x) C2Po [ (Kj] + y)sinh(fix I~ )cos(yx I~ )+(-KY + fi)cosh(fix I~ )sin(yx I hi)] (3.55) 

and 

F(x) = C2 [ Kcosh(fix I~ )cos(yx I~) +sinh(/Jx / ~ )sin(yx / ~)] 

(3.56) 

By applying the axial traction-free and moment-free conditions at x ±L/2, the constant 

C2 can be determined: 

_ [-e;1
1 +½(a1 -a2 )tiTE1 I Po }<lAu) 

Cz------=---------'=-----------
Kcosh[fiL I (2~ )]cos[yl/ (2~ )]+sinh[fil I (2~ )]sin[yl I (2~ )] 

(3.57) 

Alternatively, in the case of p > q, the solution takes the form 
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(3.58) 

coefficients to be determined. Now the expression offbecomes 

(3.59) 

where the ratio of the unknown constants has again been determined by applying the shear

free condition at the adherend ends: 

r sinh[y LI (2hi )] 

fi sinh[fiL I (2hi )] 

and the traction- and moment-free conditions yield the constant C2: 

[-e~i' + ~ (a1 a2 )!1TE1 I Po} (q2 A11 ) 

C2=~--------~---
K cosh[fi L I (2hi)] + cosh[y L I (2hi)] 

(3.60) 

(3.61) 

For both of the cases above, the interfacial normal stress function g is found according to 

(3.22) as 

g(x) = f (x) 
21'/o 

3.2 Results and Discussion 

3.2.1 Comparison with Elementary Beam Theory 

(3.62) 

Now that the interfacial shear and normal stresses of the bonded joint have been 

explicitly determined by (3.55), (3.59), and (3.62), these solutions can be validated by 

several means. First, consider the shear force transferred by the interface of the left half of 

28 



the reinforcing patch. According to static equilibrium and Eq. (3.13), this force should 

equal the axial force of the reinforcing patch at the mid-span of the adherend: 

S10 = h [ 
2 
f(x) dx (3.63) 

Furthermore, this axial force at the mid-span should be approximately equal to that 

predicted by the transjhrmed section technique of composite beams (Beer et al.. 2009) 

from elementary mechanics of materials. Consider the half-joint shown in Figure 3.3, and 

L/2 

P=po(bh2) 
E V 

E2, Vi -
(u) 

y 
(h) 

Figure 3.3. FBDs of the half-joints for determination of stress resultants at mid-span for (a) 
the centroid of the whole cross-section and (h) the individual adherends. 

let the reinforcing patch be the reference material. Then the location of the centroid of the 

joint C0 is given by 

v = h, (h1 12 + '½) + e,J~ 12 
. h

1 
+e.j'l:!_ 

(3.64) 

The effective area moment of inertia of the transformed cross-section is calculated as 

bh
1 ' 

I - j hh h I h - 2 e21hh; - 2 ,.,,.,..,,, . ., --+ 1( 1 2+ , -y) +--+e, 1bh,(h, 12-y) 
12 - 12 - - -

(3.65) 

and the effective bending moment at ( '0 is 

(3.66) 
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Therefore the flexural stress in the reinforcing patch can be described by 

c;<ll = Poh2 Moy 
xx tli + e2,hi l,,rrsc11ve 

(3.67) 

Substituting (3.64), (3.65), and (3.66) into (3.67) and integrating with respect toy over the 

thickness of the cover layer yields the effective axial force 

(3.68) 

To compare the results from the present model to those predicted by (3.68), consider a 

bonded joint consisting of an aluminum tension bar (E2 = 70 GPa, v2 = 0.34) with a steel 

reinforcing patch (E1 = 200 GPa, v1 0.29). The geometric parameters of the joint are 

hi/h2 = 114 and Llh2 20. Substituting these variables into the present formulation yields 

the following parameters: 

p =0.865787 
p=0.430357 

r =0.565005 
q = 1.06882 K = -2.4 7821 

Now (3.53) and (3.62) can be expressed as 

f(x) -7.24913x 10-16 p0 (2.26599cosh(0.865787x)sin(0.565005x) 

-l .58059sinh(0.865787x)cos(0.565005x)] 

g(x) = -7.12512 x 10-17 p0 [-0.0881639cosh(0.865787)cos(0.565005x) 

+ 2.85491 sinh{0.865787 x) sin(0.565005x)] 

(3.69) 

(3.70) 

(3.7 l) 

Substituting (3.70) into (3.63) gives the shear force transferred by the reinforcing patch as 

(3.72) 
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The corresponding calculation of force by the transformed section technique (3.68) gives 

the axial force at the reinforcing patch mid-span as 

These results show the axial tensile force at the mid-span of a long (Llh2 20) reinforcing 

patch obtained by the present method are accurate, despite being far removed from classic 

beam theory. 

The effect of length ratio on the transferred axial force is examined in Table 1, 

which shows the relative deviation of axial force at the mid-span for varying length ratios. 

The same joint parameters (Young's moduli, Poisson's ratios, thickness ratio) used above 

were substituted into (3.55), (3.59), and (3.63) with varying length ratios to compare with 

(3.68). Table 3.1 shows a clear dependence on the length ratio for the deviation between 

the two models: the present method covers the classic beam theory predictions well for a 

longer reinforcing patch, while the deviation grows for shorter lengths. This can be 

attributed to the tendency of classic beam theory to break down for shorter and thicker 

beams. 

Table 3.1. Comparison of the relative deviation between the axial forces at the mid-span of 
the reinforcing patch determined via the present method vs. the transformed section 
technique. 

Len h ratio Llh2 2 3 4 5 
Relative deviation(%) 3.57 1.47 0.332 3.49xlff 7.02xI0 

3.2.2 Comparison with FEM 

To further validate the results, comparison is made with those obtained by 

commercial FEA package, ANSYS™. The joint is constructed of an aluminum substrate 

with a steel reinforcing patch, with the same Young's moduli and Poisson's ratios as 

detailed above. The thickness of the reinforcing patch is hi 2 mm, and the aluminum 
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substrate has thickness h2 = 4 mm; the length of the patch is L = 40 mm ( see Figure 3. 1) 

and the width of the adherends is taken as unity. The joint is considered in a plane-stress 

state and subjected to uniform axial tensile stress po 1 MPa. The model was constructed 

in AN SYS™ using four-node elements (PLANE 182) with a mapped uniform quadrilateral 

mesh. In order to address the stress singularity near the free edges of the joint, several 

different mesh configurations were utilized. The uniform mapped quadrilateral mesh was 

employed at four different sizes (0.4x0.4 mm, 0.2x0.2 mm, 0. 1 x0.1 mm, and 0.05 x0.05 

mm), so that the sensitivity of the free-edge stress to mesh size could be captured. An 

element plot showing the meshing at 0.2x0.2 mm for the ANSYS model is shown Figure 

3.4. Note that a symmetry BC has been applied along the left edge representing the vertical 

axis of symmetry for the bonded joint, and a uniform pressure of 1 MPa has been applied 

as the axial load; a single comer node has been constrained to prevent deflection in the 

vertical direction near the applied load so as to mimic the realistic loading conditions of the 

joint subjected to tensile strength testing. 

The results of the analysis are found in Figures 3.5 through 3.7, which show the 

interfacial shear stress (Figures 3.5 a, 3.6 a and 3.7 a) and interfacial normal stress (Figures 

3.5 b, 3.6 band 3.7 b) near the right free edge of the joint. The stress singularity near the 

free edge of the joint is evidenced in the FEM analysis by the rapidly increasing peak 

interfacial stress with decreasing mesh size. Like other analytic models available in the 

literature, the present semi-analytic model is unable to predict the stress singularity near the 

free edge, while it does fit the growth tendency of interfacial stresses predicted by FEM 

reasonably well. This result verifies that the current method is accurate enough to be used 

for simple scaling analysis and general optimization of joint design. 
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Figure 3.4. Element plot for the single-sided bonded joint model in ANSYS™; full model 
(top), symmetry BCs (middle), and applied load (bottom). 
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Figure 3.5. FEA contour plots showing the (a) shear and (b) normal stress distributions in 
ANSYS™. 
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present method with those obtained via finite element analysis (ANSYS™). 
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3 .2.3 Interfacial Stresses Due to Thermal Loads 

The single-sided bonded joint of this analysis subjected to purely thermal loads is 

equivalent to a bimaterial thermostat. The following will consider an 

aluminum/molybdenum thermostat such as those studied by Suhir ( 1989 a & b ), Eischen et 

al. (l 990) and Ru (2002). The joint parameters for this study are as follows: E1 70 GPa, 

v1 = 0.345, h1 2.5 mm for the cover layer, and E2 325 GPa, V2 0.293, and h2 = 2.5 mm 

for the substrate layer. Thermal expansion coefficients for the materials are 

a 1 = 23.6 x t o-6 
/ °C and a 2 4.9 x t o-6 

/ °C; the joint is L 50.8 mm long and subjected 

to uniform temperature change !).T = 240 °C in plane-strain. The interfacial shear and 

normal stresses (rand O', respectively) are calculated from (3.59) and (3.62) as 

r = 6.60932x 10-9 
[ 2.33459sinh(0.933937x)-l.04659x 10-9 sinh(l.7813x)] MPa (3.74) 

CY 5.24334x 10-9 
[ 2.18013cosh(0.933937x)- l.86429x 10-9 cosh(l.7813x)] MPa (3.75) 

Figure 3.8 shows the distribution of interfacial shear and normal stresses in a bimaterial 

thermostat (single-sided bonded joint) subjected purely to uniform temperature change. As 

expected, the figures show high stress concentration near the free edges of the joint; these 

stresses are in a good agreement with those found in the literature. For instance, the 

present model predicts a peak value of interfacial normal stress O'max 103. 7 MP a very 

close to the value predicted by Eischen et al. ( 1990) of O'max = 102.8 MPa. Also, the 

location of the peak value of interfacial shear stress is found at a distance of approximately 

L/25 from the free edges; this value is close (although slightly further from the free edges) 

to those found in the literature [ e.g. the Chen and Cheng (l 983) result that located the peak 

stress at a distance of approximately 20% the adherend thickness from the edge]. 
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3 .2.4 Conclusions 

This chapter has presented a novel analytic approach to the interfacial stress 

analysis of bonded joints subjected to axial tension and uniform temperature change. All 

planar stress components were defined in terms of two unknown interfacial stress functions 

f and g using classic Euler-Bernoulli beam theory and 2D elasticity. An approximate 

deformation compatibility constraint was introduced to correlate the stress functions f and g 

in the form of equal curvature of the adherends. Through minimization of the total 

complementary strain energy of the joint, a governing 4th-order ODE of constant 

coefficients in the shear stress function/ was determined and solved explicitly. 

There are several technical advantages of the current model; the first of these is that 

the interfacial stresses are explicitly determined in the analytic solution. Also, all BCs are 

satisfied in the derivation, including the shear stress-free condition at the free edges of the 

adherends. Furthermore, all pertinent material and geometric parameters (Young's moduli, 

Poisson's ratios, thickness ratios, etc.) have been fully incorporated into the solution, 

yielding a model well-suited to scaling analysis and joint design that gives insight into the 

variational behavior of interfacial stresses in bonded joints. The method has been validated 

by comparison with finite element models, and it has been shown to agree with elementary 

mechanics of materials in the asymptotic case (sufficiently long and slender joints). 

There remain some technical deficiencies in the present model, including the 

approximate deformation compatibility constraint. Equating the curvatures of the 

adherends of a bonded joint allows for the interfacial stress functions f and g to be 

correlated, but this requirement is a weak approximation which may lead to noticeable 

deviation in refined stress analysis of bonded joints as seen above. Furthermore, while the 
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FEA comparison did provide evidence for the validation of the model, the noticeable 

deviations of results between the FEM and analytic methods indicate that further 

refinements to the process can be made. 

In the following chapter, refinements to the stress-function variational method are 

made and applied to the analyses of single-sided strap joints and single-lap joints under 

mechanical and thermal loads. The approximate deformation compatibility constraint (i.e. 

equal curvature of adherends) is removed from the derivation, leading to a system of two 

coupled 4th-order ODEs in terms of the interfacial stress functions/and g. The improved 

method is validated through comparison with detailed FE analyses of the joints, and scaling 

analyses are performed to provide insight into the scaling behavior of interfacial stresses 

with changing joint parameters. 
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4. GENERALIZED STRESS-FUNCTION VARIATIONAL 

METHOD 

4.1 Problem Formulation-Single-Sided Strap Joint 

4.1.1 Model Formulation 

To begin, consider the single-sided strap joint shown in Figure 4.1 consisting of two 

identical slender substrate layers and a slender cover layer. The thicknesses of the upper 

and lower adherends are h 1 and h2, respectively; the length of the cover layer is L and all 

adherends have width b. The x-coordinate is taken from the symmetric mid-span of the 

joint and directed along the axis, while the vertical coordinates Yt and y2 are directed 

upward from the centroids of the cross-sections of their respective layers. The joint is 

subjected to uniform tensile stress p 0 on the substrate layer far from the cover layer and a 

uniform temperature change AT from the temperature of a thermal stress-free state. 

Subsequent analysis of the joint will consider only the right half-portion due to the 

symmetry of both the joint geometry and loads (see Figure 4.2 for representative segmental 

elements of the cover layer and right substrate). As in the analysis of the previous chapter, 

the joint is in a complicated 3D stress state due to the mismatch of material properties 

across the interface; to simplify the derivation, two limiting planar cases are to be 

considered, i.e. the plane-stress or plane-strain state. As before, the adherends are taken to 

be isotropic, linearly thermoelastic solids. For convenience, all subsequent variables with 

subscripts l and 2 refer to the cover layer and substrate, respectively. 
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2L 

Po 

(c) 
Figure 4.1. Schematic of a single-sided strap joint consisting of (a) two identical substrate 
layers and a slender cover layer; the reduced right half-joint (based on symmetry) is shown 
in (b), and (c) depicts the interfacial stresses in the joint. 
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Figure 4.2. FBDs of representative segmental elements of (a) the cover layer and (b) the 
right substrate. 

42 



4.1.2 Static Equilibrium Equations 

The loss of lateral symmetry of the single-sided strap joint results in a combination 

of in-plane elongation and lateral deflection under the influences of axial tension and/or 

uniform temperature change. Because the joint adherends are considered to be slender 

enough, they may be analyzed as Euler-Bernoulli beams. Figure 4.2 shows free-body

diagrams (FBDs) of representative elements of the cover layer and substrate; note that the 

stresses, forces and moments are defined according to standard sign conventions from 

elementary Mechanics of Materials (Beer et al., 2009). For the element of the cover layer, 

the static equilibrium equations are: 

"i.F =0· X • 

"i.M=0: 

dS 
-

1 =-br 
dx 

dQI =-bo
dx 

dM, =Q _!!J_(br) 
d.x I 2 

Similarly, the relevant static equilibrium equations for the right substrate layer are: 

Z:.F, =0: 

"i.F =0· y • 

"i.M=0: 

dS 
-

2 =hr 
dx 

dQ2 =bo
dx 
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(4.6) 



4.1.3 Stress Resultants 

The interfacial shear ( r) and normal ( a) stress are defined as two independent, as

yet-unknown functions: 

r = f(x) and a-= g(x) (4.7) 

The shear stress-free condition at the free edges of the adherends requires that: 

f(O) = f(L) = 0 (4.8) 

Furthermore, the physical conditions of the axial traction, transverse shear force and 

bending moments at the joint free edges can be expressed as: 

S1 (0) = Pobhi (4.9) 

S1(L)=0 (4.10) 

Ql(O) = 0 (4.11) 

Ql(L)=O (4.12) 

M1(0)=M0 = p0blti(h, +"2)/2 ( 4.13) 

M1(L)=O (4.14) 

S2(0) = 0 (4.15) 

S2(L) = p0b"2 (4.16) 

Qi(O)=O (4.17) 

Q2 (L) = 0 (4.18) 

M2(0) 0 (4.19) 

M2(L)=0 (4.20) 
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Two important notes about the above BCs: firstly, of the fourteen BCs listed in ( 4.8) 

through ( 4.20), only eight are linearly independent (this will be dealt with in Section 4.1.5). 

Furthermore, for the case of the bonded joint subjected only to uniform temperature 

change, the BCs in (4.9), (4.13), and (4.16) would all become trivial, resulting in the 

problem being reduced to that of the bimaterial thermostat such as those studied by 

Timoshenko ( 1925) and Suhir ( 1986, 1989a & 1989b ). 

Just as in the preceding chapter, the stress resultants for segmental elements of both 

adherends can be expressed in terms off and g by integrating Eqs. ( 4.1) through ( 4.6) with 

respect to x and applying the pertinent BCs as follows: for example, integrating ( 4.1) from 

x O yields 

( 4.21) 

By applying the BC at the left edge of the upper adherend [which is Eq. (4.9)], the axial 

normal force in the cover layer is determined to be 

(4.22) 

Similarly, the shear force in the cover layer is found via integration of ( 4.1) with respect to 

x: 

(4.23) 

Applying the BC from Eq. ( 4.11) gives: 

Ql(x) = -b r g(i;) dg (4.24) 

Integration of ( 4.3) with respect to x yields 

(4.25) 
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Once more, applying the bending moment condition from (4.13) gives the bending moment 

for the cover layer as 

(4.26) 

By using the same procedure outlined above, the resultants in the right substrate layer can 

be determined as: 

(4.27) 

(4.28) 

(4.29) 

4.1.4 Stress Components 

Because the adherends of the joint under consideration are slender enough, they 

may be modeled as Euler-Bernoulli beams. Therefore, the axial normal stress in the 

components of the joint can be described by the Euler-Bernoulli flexural stress formula; for 

the cover layer, this is expressed as 

(4.30) 

Subsequently, the shear stress z-;:.! can be found using the equilibrium equation (2D 

elasticity) of a representative element: 

(4.31) 
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Integration of ( 4.31) with respect to y 1 from an arbitrary choice of y to the top surface of 

the adherend: 

(4.32) 

and applying the traction-free BC <:.~(}7i / 2) = 0 at the free surface of the adherend leads to 

the shear stress in the cover layer: 

(4.33) 

Similarly, the 2D equilibrium equation 

(4.34) 

can be integrated with respect to y, from an arbitrary location in the adherend to the top 

free surface as follows: 

~ (I) ~ (I) 

r.,:2 uCT,, v r•,!2 uTrv 
--·'·-' dy + -··-' dy =0 , a 1 ~ I 

• 1 Yi Yi ux 
(4.35) 

to give the transverse normal stress in the cover layer: 

(4.36) 

This same method can be applied to the substrate layer to obtain the corresponding 

stress components. The axial normal stress is found using the flexural stress formula for 

Euler-Bernoulli beams: 

er:;)= :~2 -M;:2 = ~2 1 /(I;,) di;, - 1~2 [ 11 g(~) d~ di;, - 'i 1 /(I;,) di;,] (4.37) 
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Once again, the 2D equilibrium equation is integrated with respect to Y2 to determine the 

shear stress in the substrate layer; however, in this case the integration is carried out from 

the bottom surface aty2 -h2/2 (stress-free surface) to an arbitrary choice of Y2 as follows: 

(4.38) 

Solving ( 4.38) for the shear stress in the substrate layer yields 

<2l l [( h2 ) 3 ( 2 h; )] 6 ( :: h; ) 1, , ==-- y +- +- y -- f(x)+- y, - ge=)d,i: 
y,x h

2 
2 2 ~ 2 4 h; - 4 ':> i:, 

(4.39) 

The transverse normal stress a~:;
2 

in the substrate layer is determined by integrating the 

corresponding equilibrium equation with respect to Y2 from the bottom surface to an 

arbitrary y2: 

(4.40) 

This leads to the transverse normal stress in the substrate 

(4.41) 

4.1.5 Governing Equations of Interfacial Stresses 

With the stress components in the cover and substrate layers defined by (4.30), 

(4.33), (4.36), (4.37), (4.39), and {4.41), the strain energy of the right half-joint can be 

defined as 
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(4.42) 

where the axial and transverse normal strains in the adherends are defined according to 

generalized Hooke's law for isotropic, linearly thermoelastic solids (plane-stress): 

(4.43) 

where <Xi (i 1, 2) are the thermal expansion coefficients for the upper and lower 

adherends, respectively; !),.T represents the uniform temperature change from the thermal 

stress-free state. Due to the removal of the approximate deformation compatibility 

constraint (equal adherend curvature) from the previous chapter, the strain energy is now a 

functional with respect to the two unknown interfacial stress functions, both f and g. The 

theorem of minimum complementary strain energy is again invoked such that oU = 0, or 

(4.44) 

where o is the variational operator with respect to for g. 

Now the stress expressions (4.30), (4.33), (4.36), (4.37), (4.39), (4.41) and (4.43) 

are substituted into (4.44), and the appropriate variational operations are performed. After 

integration of the strain energy and some simplification, the governing equation of 
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interfacial stresses is determined: a system of two coupled 4th-order ODEs of constant 

coefficients: 

where 

F(.;) = F(x I hJ = __ l_ r f(() d( 
Poh2 

G(.;)=G(x/~)=~ r f g(17)d17d( 
Poh2 

C1 I = 4('1i~I + e12 ) 

c,2 6(-'1i~2 + e,2) 

C22 = 12('1i-i' +e12 ) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 
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(3+4'1i2)!;";2 +½(al -a2)aTE1 I Po, 

(for combined mechanical and thermal loads--plane - stress) 

(3 + 4'1i 2 )'1i~2 + i[(I + v1 )a1 (I+ v2 )a2 ]aTE1 I p0 , 

D
1 
= (for combined mechanical and thermal loads--plane- strain) (4.50) 

(3 + 4'1i 2 )'1i-2
2

, ( for pure mechanical load--either plane stress or plane - strain) 

1 
-(a1 - a 2 )aTE1 I Po, (for pure thermal load--plane- stress) 
2 

i[(l + v1 )a1 (1 + vi}a2 ]aTE1 I p0 , (for pure thermal load--plane-strain) 

D
2 

= {-6(1 + h,2)/f}, (for pure mechanical or combined mechanical and thermal loads) 

0, (for pure thermal loads) 
( 4.51) 

Also in the above, there are two parameter ratios defined: '1i 2 = '1i / ~ and e12 = E1 I E2 • It 

is important to note that when pure thermal loads (uniform temperature change) are 

considered in the analysis, the stress p0 in ( 4.50) and ( 4.51) is taken as a reference stress for 

dimensionless analysis, as is its purpose in ( 4.46). Another feature to note is that the 

governing equations can be readily converted to the plane-strain case by replacing the 

parameters Ei with E; I (1 v/), v; with v, I (I-v,), and a; with a, (1 + v,). 

Now the system of governing equations can be recast in matrix form: 

(4.52) 

or, in a more concise form: 

[A]{<IliV)} +[B]{<D11
} +[C] {<D} + {D} = {O} (4.53) 

where [A], [B] and [C] are symmetric, real 2x2 matrices: 

(4.54) 
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and { (1)}, { D}, and { 0} are the vectors: 

{0}={0,0}7' 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

Now the solution of (4.53) can be expressed as the superposition of the general solution 

{\fl} of the corresponding homogeneous system and the particular solution {«1>0} such that 

(4.60) 

where 

( 4.61) 

and 

(4.62) 

The homogeneous system of ( 4.61) is solved by assuming the general solution must be of 

the form 

(4.63) 

where A and {\f'o} are the eigenvalue and eigenvector, respectively, of the corresponding 

characteristic equation for ( 4.61 ): 

(4.64) 

We can convert the problem of (4.64) to a generalized eigenvalue problem by introducing 
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(4.65) 

such that the system can be rearranged as 

(4.66) 

This generalized eigenvalue problem can be solved efficiently by any of several robust 

numerical algorithms available in the literature [ for example the "eig( )" function in 

Matlab™]. Now the expression of the general solution (4.60) becomes 

4 

{cf>}= L[ ck {'P~} exp(Ak~) + dk {'P;} exp(-lk~)] + {<f>0 } (4.67) 
k=I 

In (4.67), note that {'¥~} (k = 1, 2, 3, 4) are the eigenvectors associated to the eigenvalues 

).k (k 1, 2, 3, 4); ck and dk are the constants (may be real or complex) to be determined by 

the BCs from (4.8) through (4.20). During the application of these BC equations, it is 

found that only eight are linearly independent; the system reduces to the following eight 

BCs to determine the constants ck and dk: 

F(0) =0 

G(0)=0 

G( L I hi) = 1 / 2 
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(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 



Substituting these BCs into (4.67) yields the following set of linear algebraic equations: 

(4.76) 

4 4 

'z:c/P~·1 exp(AkL I hi)+ 'z:d/¥~·1 exp(-AkL I hi)= -[1 +<t>~
1l] (4.77) 

k•I k=I 

4 4 

'z:ckAk '1'~·1 
- 'z:dkAk '¥~,1 = 0 (4.78) 

k=l k=I 

4 4 

'z:ckAk '¥~,1 exp(AkL I hi)- 'z:dkAk '¥~,1 exp(-AkL I hi)= 0 (4.79) 
k~ k~ 

(4.80) 

4 4 "c 'l'k,
2 exp(A LI h,)+ "d 'l'k,

2 exp(-A LI h,) = l/ 2-<t>(2
> L., k O k _ L., k O k - 0 ( 4.81) 

k=l 

4 4 

'z:ckAk 'l'~,2 - 'z:dkAk 'l'~,2 = 0 (4.82) 
k=l k•I 

4 4 

'z:ckAk '¥~,2 exp(AkL I hi)- 'z:dkAk '1'~'2 exp(-AkL I hi)= 0 (4.83) 
k=I k=I 

Note that 'I'~·• and 4'~·2 (k I, 2, 3, 4) are the first and second elements, respectively, of 

the k-th eigenvector; similarly, ¢61
> and <t>b2

l are the first and second elements of the 

particular solution vector {<1> 0 }. Once again it bears mentioning that for pure thermal 

loads, the BCs (4.69) and (4.73) should become zero; this will in tum influence the BCs 

(4.77) and (4.81). 
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Numerically solving the above set of linear algebraic equations results in the full 

determination of the coefficients ck and dk; once these constants have been defined, the 

interfacial stress functions f and g are completely described by: 

4 4 

f(x)I p0 Lc/¥~JAk exp(Akxl hi)- Ld/¥~JAk exp(-Akxl hi) (4.84) 
k=l k=I 

4 4 

g(x) I Po= Lc/¥~'2 ,,t; exp(Akx I hi)+ Ld/¥~'2 ,,t; exp(-Akx I hi) (4.85) 
k=l k=l 

With the stress functions! and g explicitly defined by (4.84) and (4.85), all planar stress 

components from Section 4.1.4 can also be fully determined. One critical aspect of the 

stress-function variational method developed in this chapter is that all the derivations to 

this point, with the exception of the traction BCs, are completely independent of joint 

configuration. This means that this method is easily and efficiently generalized to virtually 

any statically equivalent bonded joint made of two adherends; this generalization will be 

explored at the end of this chapter by applying the present method to the single-lap joint 

model. 

4.2 Model Validation 

4.2.1 Interfacial Stresses in a Single-Sided Strap Joint Due to Mechanical Loads 

Validation of the current model formulation begins with an analysis of the single

sided strap joint subjected to uniform axial tension (plane-stress); the results of the present 

method are compared with those obtained by FEM (ANSYS™). The joint parameters are 

identical to those defined in the previous chapter: £ 1 = 200 GPa, v, 0.29, h, 2 mm, 

£2 = 70 GPa, v2 = 0.34, h2 = 4 mm, and L 20 mm (see Figure 4.1 ). The adherends have 
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identical width, b, taken as unity; the uniform tensile stress applied to the substrate is 

p0 = I MPa. The finite element model is constructed in ANSYS™ using four-node 

(PLANE182) elements and mapped uniform quadrilateral meshes. Just as in Section 3.2.2 

of the previous chapter, four mesh sizes of increasing levels of refinement were applied to 

the model to illustrate the behavior of the stress singularities near the free edges of the 

joint. Figure 4.3 shows element plots of the relevant regions of the ANSYS™ model; 

symmetry BCs are applied to the left edge of the upper adherend while the lower adherend 

edge remains free, and a pressure of 1 MP A is applied to the line of the right edge to 

represent uniform tensile stress. The contour stress plots created using ANSYS™ are 

shown in Figure 4.4. 
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Figure 4.3. ANSYS™ element plots depicting the symmetry BCs at the joint mid-span 
(top) and the applied tensile load (bottom). 
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Figure 4.4. ANSYS™ contour stress plots depicting the shear (a) and normal (b) stresses in 
the single-sided strap joint. 
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Interfacial shear and normal stress distributions predicted by the present model, 

compared with the FEA results, are shown in Figure 4.5. It is clear from the figure that the 

highest interfacial stresses occur near the left edge of the reduced half-joint (that is, at the 

center of the full strap-joint model); this stress concentration can be attributed to the 

bending moment at the mid-span of the joint. Once again, as in Chapter 3, it should be 

noted that the interfacial stresses scale up rapidly with decreasing mesh size due to the 

stress singularity near the free edges. However, despite the failure of the current method to 

address this singularity (like most other analytic models in the literature), the otherwise 

very close agreement between the FEA results and those of the new semi-analytic model 

seem to validate the new stress-function variational method. 

4.2.2 Interfacial Stresses in a Single-Sided Strap Joint Due to Thermal Loads 

It was mentioned in Section 4.1.3 that for the single-sided strap joint subjected 

purely to uniform temperature change, the system was analogous to that of a bimaterial 

thermostat. In order to further validate the interfacial stress solutions of this model, the 

pure thermal loading scenario is subsequently compared to the bimaterial thermostat 

analysis of Suhir (1989a & 1989b), Eischen et al. (1990), and Ru (2002). The joint 

parameters remain identical to those given in the thermal analysis of the previous chapter 

(Section 3.2.3), and the joint is considered in plane-strain. Figure 4.6 shows the interfacial 

shear and normal stress distributions across the joint under the thermal load. Just as in the 

previous chapter, the interfacial stresses are concentrated near the free edges of the joint; 

the peak interfacial shear stress value (rmax = 69.32 MPa) is located at a distance 

approximately L/20 from the free edges, a result in close agreement with Ru's (2002) 
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Figure 4.5. Comparison of the interfacial shear (a) and normal (b) stresses predicted by the 
current method with results obtained by FEM (ANSYSTM). 
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Figure 4.6. Thermomechanical interfacial shear (a) and normal (b) stresses m a 
bimaterial thermostat subjected to uniform temperature change 11T = 240°C. 
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solution of rmax 70 MPa. The maximum value of the interfacial normal stress, 

O'max = 117. 70 MPa, lies between the data found in the literature (specifically, this value is 

higher than the results by Ru (2002) and Eischen et al. (1990), yet lower than those found 

by Suhir ( 1989a & 1989b) ). These findings indicate the reliability of the current model. 

4.3 Scaling Analysis 

4.3 .1 Scaling Analysis of Interfacial Stresses Due to Mechanical Loads 

One of the strengths of the present method is that all pertinent joint parameters and 

material properties (i.e., Young's moduli, Poisson's ratios, thicknesses of the adherend, 

etc.) are fully incorporated into the formulation; this sheds some insight onto how the 

interfacial stresses scale with various model parameters. To begin with, a set of four 

differing adherend thickness ratios (h1/h2 = 0.2, 0.5, 1, and 2), two length ratios (Llh2 5 

and 10), and two modulus ratios (£1/ £ 2 = 3 and I 0) are considered. Poisson's ratios are 

maintained at the constants v1 = 0.293 and v2 0.34, and the joint is considered in plane

stress. For the scaling analysis, the dimensionless interfacial shear and normal stresses, 

r/po and O'lpo respectively, are examined over the dimensionless distance from the joint 

mid-span, xlh2. Figures 4.7 through 4.12 show the variation of the shear stress distribution 

with respect to changing length and thickness ratios. Note that the interfacial stresses 

satisfy the shear-free BC perfectly at the adherend ends. Also notice the high concentration 

of interfacial stresses near the interior edges of the joint; this, as previously mentioned, is 

caused by the bending moment induced at the joint mid-span. These high stress 

concentrations strongly indicate that debonding failure caused by high peeling (normal) 

stress at the joint mid-span is likely the main failure mode for single-sided strap joints. 
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Figure 4.7. Variations of the dimensionless interfacial shear stresses in the single-sided 
strap joint over dimensionless distance from the mid-span: (a) the shear stress for length 
ratio Uh2 = 5, (b) the shear stress for length ratio Uh2 = 10. The modulus ratio for both 
cases is E1IE2 = 3. 
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Furthermore, it can be observed from Figures 4. 7 through 4.12 that the length ratio 

L/h2 does not have a pronounced effect on the interfacial stress distribution, while both the 

adherend thickness and modulus ratio appreciably alter the interfacial stresses. The data 

suggest that for a given length ratio, increasing either the modulus ratio or adherend 

thickness ratio will decrease the value of maximum interfacial stress in the joint. This 

phenomenon can be described as increasing the effective flexural rigidity of the cover layer 

(making it thicker or stiffer), which tends to suppress the large deflections at the joint mid

span that cause the high concentrations of interfacial stresses near the interior joint edges. 

As these mid-span stress concentrations have already been identified as the leading cause 

of debonding failure in the joint, it can be concluded that stiffer or thicker cover layers will 

increase the strength and durability of single-sided strap joints. 

4.3.2 Scaling Analysis of Interfacial Stresses Due to Pure Temperature Change 

As Section 4.2.2 explained, the stress analysis of the single-sided strap joint 

subjected to uniform temperature change is equivalent to that of a bimaterial thermostat; to 

that end, the joint parameters from Section 4.2.2 will continue to be used in the scaling 

analysis of the joint due to thermal loads. The joint is still considered in the plane-strain 

state for the thermal scaling analysis, and the dimensionless interfacial shear and normal 

stresses are now taken to be and 

cr/{£2[(l+v1)a1 (l+v2)a2]~T}. Similar to the previous section, stress variation over 

the dimensionless length coordinate xlh2 with respect to variable thickness, length and 

modulus ratios is studied. Just as in the previous section, the thickness ratio appears to 
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have little effect on the stress distribution, while the thickness and modulus ratios have an 

appreciable impact on the magnitude of the interfacial stresses. 

Figures 4.13 through 4.16 show the stress distributions for varying modulus and 

length ratios. There are several important differences between the scaling behavior of the 

interfacial stresses from the previous (mechanical) section and this bimaterial thermostat 

analysis which should be noted. The first is the scaling behavior of interfacial stresses with 

thickness ratio: all other parameters being held constant, decreasing the thickness ratio 

leads to lower values of interfacial shear stress, but increased values of interfacial normal 

stress. This can be explained as follows: the thicker cover layer results in a higher bending 

stiffness in the joint. This increased stiffness causes higher bending flexural stress which 

directly influences the interfacial normal stress. Furthermore, the increased bending 

stiffness also acts to suppress shearing strain at the joint interface (resulting in lower shear 

stress). 

The second notable trend in the thermomechanical scaling behavior of the joint 

stresses concerns the modulus ratio. For a given thickness and length ratio, an increase in 

the modulus ratio of the joint results in a marked increase in the value of both interfacial 

shear and normal stresses. This is because the mismatch of thermal expansion properties of 

the adherends directly influences the mismatch of thermal strains when the joint is 

subjected to a uniform temperature change. These thermal strain mismatches, in tum, 

affect the bending of the joint, and therefore the interfacial stresses induced by that 

bending. In general, the greater the discrepancy between Young's moduli for the 

adherends of the joint, the greater the expected thermomechanical interfacial stresses. 
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Lastly, the figures show that for all the given cases of thickness and modulus ratios, 

the maximum value of the interfacial normal stress is greater than that of the interfacial 

shear stress. This characteristic phenomenon indicates that debonding failure caused by 

high peeling (normal) stress is the primary mode of failure for bimaterial thermostats. 

As the previous sections have demonstrated, the current stress-function variational 

method provides a robust and accurate model for the interfacial stresses of the single-sided 

bonded joint. However, it should be noted again that one of the strengths of the current 

model is its generality and applicability to other bonded joint configurations as well. The 

following section outlines how the method is applied to determine the stress solutions for a 

single-lap joint subjected to mechanical and thermal loads. 

4.4 Application of the Stress-Function Variational Method to Single

Lap Joints 

4.4.1 Model Formulation 

Consider a bonded single-lap joint (SLJ) shown in Figure 4.17 consisting of two 

isotropic, linearly thermoelastic adherends. Consistent with the previous derivation, the 

thicknesses, Young's moduli and Poisson's ratios for each of the adherends are hi, E1, and v1 

(i = 1, 2) where the subscripts 1 and 2 refer to the upper and lower adherend, respectively. 

As the figure shows, the overlap region of the joint has length L, and both 

adherends are assumed to have identical thickness b (assumed unit thickness). The x

coordinate is defined from the left edge of the lower adherend along the beam axis; the y

coordinates are directed vertically from the centroid of the cross-section of each adherend 
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respectively. In general, the joint is subjected to a combination of traction BCs of tensile 

force Po, transverse shear force Vo, and bending moments M1 and M2 as shown in Figure 

4.17, in addition to the uniform temperature change !l.T. 
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Figure 4.17. Schematic of the single-lap joint consisting of two slender adherends (a); FBD 
of the joint overlap region with effective traction BCs (b); and depiction of the interfacial 
shear and normal stresses ( c ). 
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4.4.2 Planar Stresses in the Single-Lap Joint 

Due to the universality of the present method, much of the problem derivation can 

be exactly repeated from the previous work. To begin with, representative segmental 

elements of the upper and lower adherends can be described exactly as in Figure 4.2; the 

corresponding static equilibrium equations may be directly used from ( 4.1) through ( 4.6). 

With the two unknown interfacial stress functions defined as in (4.7), the first modification 

of the SLJ-specific model is in the traction BCs, which are now: 

S1 (0) == p0hhi (4.86) 

S1(L) ==0 (4.87) 

QI (0) = tohhi (4.88) 

Q(L)=0 (4.89) 

M1(0)=M1h (4.90) 

M1(L) =0 (4.91) 

S~(0) == 0 (4.92) 

S2 (L) = p0hhi (4.93) 

Qi(0)=0 (4.94) 

Q2 (L) = t0hh2 (4.95) 

Mi(0)=0 (4.96) 

M1(L)=-M2b (4.97) 

where Po, to, M1, and M2 are the average normal stress, shear stress, and bending moments 

per unit width in the joint [Compare (4.88), (4.90), (4.95) and (4.97) to (4.11), (4.13), 
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(4.18) and (4.20) for the BC modifications]. Now by following the exact procedure 

outlined in Section 4.1.3, the stress resultants of the SLJ are determined as: 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

(4.102) 

(4.103) 

Here, note that the expressions of Q1 and M1 have altered from the previous formulation 

[Eqs. (4.24) and (4.26), respectively]. 

According to the method of Section 4.1 .4, using the Euler-Bernoulli flexural stress 

formula and integration of the static equilibrium equations, the stress components for the 

SLJ can be determined as: 

(4.104) 

(4.105) 

(4.106) 
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(4.107) 

(4.108) 

(4.109) 

Note that in the above, the expression for the axial normal stress in the upper adherend has 

taken into account the axial normal force, transverse shear force, and bending moment 

contributions; also note that due to the left-end BCs for the lower adherend remaining 

trivial, the stress expressions in (4.107) to (4.109) are the same as those in (4.37), (4.39), 

and (4.41). 

4.4.3 Governing Equations of lnterfacial Stresses in the Single-Lap Joint 

The strain energy of the SLJ is written according to (4.42) and (4.43), with the same 

variational constraint <JU 0 according to the theorem of minimum complementary strain 

energy. The variational operations on the single-lap joint result in Eqs. (4.45) through 

( 4.49) remaining exactly intact; however the constants D1 and D2 are now defined as: 
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D-1-

h,~1 +611,-2
2

( M\ +!.9._i;J+..!..(a1 a 2 )ATE1 I Po, 
Poh;, Po 2 

(for thermomechanical loads--plane- stress state) 

h,~1 +6h,~2
( M 1

2 
+!.9._i;J+..!..[a1(l+v1)-a2 (l+v2 )]ATE1 I P0 , 

Pok;_ Po 2 

( for thermomechanical loads--plane - strain state) 

h,~l +6h,}( M\ +!.9._i;J, 
Poh2 Po 

(for pure mechanical load--either plane - stress or plane - strain state) 

1 

2(a1 -a2 )ATE1 I p0 , (for pure thermal loads--plane stress state) 

I 

2[a,(l+v1)-a2 (1+v2)]6TE1 I p 0 , 

( for pure thermal loads--plane - strain state) 

{

-1211,-; ( M1, + !.9._ i;), (pure mechanical or thermomechanical loads) 
D2 = - Pohi. Po 

0, (pure thermal loads) 

(4.110) 

(4.111) 

This demonstrates the universality of the governing ODEs for the stress analysis of any 

bonded joint made of two adherends. Two notes must be made concerning the derivation 

above, however; for the SLJ subjected to loads excluding axial tension (any combination of 

bending and shearing), the term h1~
1 in the first three cases of D 1 should be discarded, and 

po should be taken as a reference stress for dimensionless analysis. 

The governing OD Es of the system are the same as (4.64) except for 

(4.112) 
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Note that in the above, the particular solution {<Do} is a linear function of~; this is due to 

the fact that [C] is a nonsingular matrix of constant coefficients, while [D] carries a linear 

dependence on ~- The general solution becomes: 

4 

{ <D} =})ck {4'~} exp(lk4) + dk {4' i} exp( -lk4)] + { <D0 ( 4)} (4.113) 
k=I 

with the constants ck and dk determined by the application of eight linearly independent BC 

equations. Most of the BCs from (4.68) to (4.75) remain intact; however, (4.73) is 

modified to now become 

(4.114) 

while (4.75), which before was trivial, now contains a shear-force contribution: 

(4.115) 

Substitution of the general solution (4.113) along with (4.112) into the traction BCs leads 

to the system of linear algebraic equations: 

(4.116) 

4 4 

L ck'¥~·' exp(lkL I h2 ) + L dk '¥~·' exp(-lkL I h2 ) =-[I+ <D~1l(L I h2 )] (4.117) 
k=I k=I 

(4.118) 

(4.119) 

4 4 "C q,k.2 +" d q,k.2 - -<1>( 21 (0) ~ k O ~ k O - 0 (4.120) 
k=I k=I 
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(4.121) 

(4.122) 

(4.123) 

In the above, 'P ;-1 and qi;· 2 (k = I, 2, 3, 4) are the first and second elements of the k-th 

eigenvector; also note that <1>~1
> and <I> ~2

i are the first and second elements of the particular 

solution vector {<1>0 } as mentioned in Section 4.1.5. For the SLJ subjected to a pure 

temperature change, all the traction BCs should become trivial; this will, in tum, affect the 

linear algebraic equations ( 4.116) to ( 4.123) accordingly. With all the coefficients Ck and dk 

fully determined by the BCs, the explicit solutions for the interfacial shear and normal 

stresses are: 

(4.124) 

4 4 

g(x) I Po = L ck '¥~·2 A} exp(Akx I h2) + L dk '11~·2 l; exp(-lkx I h2 ) (4.125) 
k=I k=I 

4.4.4 Validation of the Single-Lap Joint Model 

The current analysis of the single-lap joint has been based on a generalized version 

of the model created for a single-sided strap joint. In the limiting case that the transverse 

shear force to is discarded from the SLJ formulation (i.e., a cantilevered single-lap joint 

subjected to axial tension), all the formulas and relations derived above reduce to those of 

the single-sided strap joint considered already. The static equivalency of these two systems 
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is shown in Figure 4.18. Also consider that. just as with the previous model. the case of 

pure temperature change reduces any two-adherend bonded joint model to that of the 

simple bimaterial thermostat. Furthermore. the stress distribution solutions obtained from 

the single-sided strap joint model have been carefully validated in Section 4.2. Therefore, 

the validity of the present (SLJ) model has already been demonstrated for the case of 

applied uniform axial tension and pure temperature change. 

L 

Rigi 
Wall E1 , Vt h 

1-----,---------i----'-'---'---, 

E2, V2 h2 Po 

(a) 

L L 

Po Po 

(b) 

Figure 4.18. Static equivalency between (a) a cantilevered single-lap joint and (h) a single
sided strap joint subjected to axial tension. 

To further validate the current model, the case of the single-lap joint under shear 

loading will be examined. Consider the single-lap joint constructed of a steel upper 

adherend (£1 = 210 0Pa. v1 = 0.293) and an aluminum lower adherend (£2 = 70 0Pa, 
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v2 = 0.34); the adherends have identical width, thicknesses h1 = 2 mm and h2 = 4 mm, and 

L 20 mm (see Figure 4.17). An average shear traction of to 1 MPa is applied to the 

right end of the joint. As in the previous sections, the FEM model is constructed in 

ANSYS™ using four-node plane-stress (PLANE 182) elements and mapped uniform 

quadrilateral meshes of four different sizes. The interfacial stresses from the present model 

and the FEM simulations are plotted in Figure 4.19. The figure shows a close match 

between the present method and the FEM simulations; also note that the current model 

accurately predicts the shear stress-free condition at the adherend ends. 

One important feature of the stress distributions shown in Figure 4.19 is the 

concentration of interfacial stresses near the left end of the joint. Due to the non-identical 

thickness of the adherends, the effective neutral axis of the joint does not lie along the 

bonding line; this results in a bending moment which is responsible for an increase in shear 

stress along the interface (which is not located at the neutral axis of joint) as well as the 

concentration of stresses near the left joint edge. This indicates that debonding failure of 

this particular joint due to high interfacial stresses would most likely initiate at the left edge 

of the joint. 

One final note should be made concerning the preceding stress analysis of the 

single-lap joint: due to the assumptions made during formulation of this model 

(specifically, adherends of homogeneous, isotropic, linearly thermoelastic solids under 

small deformation), stresses in the joint obey superposition. In other words, the stress 

solutions for a joint subjected to any combination of tension, shear force, bending moment, 

or temperature change can be accurately represented as the sum of the interfacial stresses 

caused by each load separately. 
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Comparison of interfacial shear stresses 
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Comparison of interfacial normal stresses 
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Figure 4.19. Interfacial shear (a) and normal (h) stresses in a single-lap joint subjected 
to a transverse shear force: comparison of stresses predicted by the current method with 
FEM (ANSYS™). 
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4.5 Conclusions 

This chapter has developed a generalized stress-function variational method for the 

interfacial stress analysis of bonded joints, based on a single-sided strap joint model and 

then generalized to arbitrary joint configurations. Technical deficiencies of the model 

proposed in Chapter 3 have been remedied successfully; specifically, the approximate 

deformation compatibility has been removed, leading to a governing system of 4th-order · 

OD Es obtained via the theorem of minimum complementary strain energy. The system of 

ODEs was explicitly solved with the use of eigenfunctions, resulting in the complete 

satisfaction of all traction BCs at the joint ends; relevant compact robust computational 

codes have been developed. Numerical results of the model have been validated through 

comparison with those obtained by FEM. Scaling analysis has been performed to study the 

dependencies of interfacial stresses upon the joint parameters and adherend material 

properties. In the final sections of the chapter, the generality and reliability of the present 

method has been proven by applying the procedure to the stress analysis of a single-lap 

joint. Static equivalency of the two joint systems has been shown in a special limiting 

case; new results for the stress solution of the SLJ under the influence of a shear load have 

been compared to those based on FEM models. The close agreement between the results 

based on the current method and those based on FEM simulations indicates the validity of 

the model, as well as its general applicability for bonded joints of arbitrary configuration. 

In the following chapter, this stress-function variational method will be further 

applied to study the phenomenon of cracking in hard coatings. The coating-substrate 

system will be modeled as a two-adherend bonded joint, allowing the current methodology 

to be used for accurate determination of the interfacial stresses and strain energy in the 
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coating-substrate system under thermal or mechanical loads. By incorporating the strain 

energy density and the fracture energy of the joint, the model will be used to determine the 

important cracking criterion, i.e. the critical load condition for initial crack in the coating, 

critical loads required for progressive cracking, and determination of crack spacing with 

respect to given loading conditions. This energy-based approach will lead to some physical 

insight into the physical phenomenon of progressive cracking in systems containing hard 

coatings. 
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5. ANALYSIS OF PROGRESSIVE CRACKING IN HARD 

COATINGS 

5 .1 Introduction 

Surface coatings have found broad applications in industry: from wear resistant 

coatings, solid lubricants, thermal protection, and many others. These coatings are 

generally found in the form of a hard thin-film on a compliant substrate; under external 

loads (e.g. tension, compression, bending, or temperature change) these systems typically 

experience cracking and debonding of the coating layer. It is therefore desirable to 

understand the progressive cracking and delamination behavior of these surface coating 

systems for improved design and health monitoring. 

The problem of cracking and buckling delamination has been the focus of much 

research in recent years (Chakravarthy et al., 2005; Faulhaber et al., 2006); Mishnaevsky 

and Gross, 2004, 2005; Hutchinson, 2001 ). A comprehensive review of many previous 

works on the subject has been made by Hutchinson and Suo (1992). These works 

considered the propagation of a "blister" along the thin-film/substrate interface, as well as 

the channeling behavior and mixed-mode nature of the cracks under external loads. In 

addition to cracking behavior, free-edge stresses of thin-film systems have also been 

studied: for laminated composites (Pipes and Pagano, 1970; Mittelstedt and Becker, 

2004a, b; Wu and Dzenis, 2005) and circular torsion bars (Wu et al., 2007). 

The following work will utilize the stress-function variational method developed in 

the preceding chapter to perform a stress analysis of a thin-film/substrate system under the 
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influence of externally applied loads ( e.g. tension, bending moments, or temperature 

change). By modeling the film/substrate system as an idealized bonded joint, the 

previously obtained solutions for the strain energy of the joint will be used to determine the 

strain energy released by the cracking event in the coating layer. Used in conjunction with 

a linear-elastic fracture mechanics (LEFM) approach, the progressive cracking behavior of 

thin-film/substrate systems can be examined. 

5.2 Problem Formulation and Solution 

5.2.1 Model Formulation 

Consider a system consisting of a hard coating deposited on a compliant substrate 

layer as shown in Figure 5.1. Subjected to any combination of axial tension, transverse 

bending, or temperature change, periodic cracks may form as the coating layer fails. Stress 

and failure analysis of this system can be achieved by idealizing the region between surface 

cracks as a single-sided bonded joint; such a representative section is shown in Figure 5.2. 

According to the stress-function variational method detailed in Chapters 3 and 4 of this 

work, the entire interfacial stress field of the joint as well as energy-based failure criteria 

can be determined. 

For the sake of simplifying the following derivation, it is assumed that the periodic 

cracks form instantaneously through the entire thickness of the coating layer; realistically, 

the surface crack propagation is not instantaneous and the system may experience a 

combination of surface cracking, substrate cracking, and interface debonding, but such 

considerations would make the model prohibitively complicated. 
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simplifications. the strengths of the present method lie in the general applicability of the 

analysis for the interfacial stress prediction and scaling analysis of hard coating systems. 

Begin by considering the single-sided bonded joint consisting of a slender substrate 

layer with a slender cover layer. Consistent with the derivation of previous chapters. the 

joint is assumed to carry the length L and width h. while the cover and substrate layers have 

thickness hJ and h2• respectively. The axes are defined. as before. with the x-axis directed 

Mo 
EJ , VJ /~?~/ 

Pu E2, V2 I h, Po 

L 
A (a) 

EJ , VJ 

Po E2, V2 h2 po 

L, 
A C B 

(h) 

Figure 5.1. (a) Through-thickness cracks in the coating layer of a thin-film/substrate 
system; ( b) formation of secondary crack at arbitrary location C between adjacent cracks. 

from the left edge along the joint axis: y 1 and y 2 are directed vertically from the centroids of 

cross-sections of the cover layer and substrate. respectively. The joint is assumed to be 

subjected to uniform tensile stress p 0• bending moment Mo. and uniform temperature 

change /j.T from a thermal stress-free state. As before. the mismatch of material properties 

across the interface yields a complicated 3 D stress state characterized by high 
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concentrations of interfacial shear and normal stresses near the free edges of the cover 

layer. 

5.2.2 Stress Analysis 

The stress analysis of the single-sided bonded joint has been carried out in detail in 

the preceding two chapters. The same analytic method is applied to the coating/substrate 

L 

h 

(a) 

L 

h 

(b) 

L 

(c) 
Figure 5 .2. Schematic of idealized region between two neighboring surface cracks in a 
periodically cracked coating layer: (a) the single-sided bonded joint model; (b) the reduced 
structure based on symmetry; (c) interfacial stresses present in the coating/substrate 
interface. 

model, with a proper modification of traction BCs. Specifically, note that in this case all 

traction BCs are trivial except for: 

(5.1) 
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(5.2) 

(5.3) 

(5.4) 

By following the same procedure outlined in Chapter 4, the planar stress components can 

be determined explicitly in terms of the interfacial shear and normal stress functions f and 

g, where the axial normal stresses vary linearly, shear stresses vary parabolically, and 

transverse normal stresses vary cubically across the substrate and cover layers. 

Writing the strain energy of the whole joint as 

(5.5) 

and applying the theorem of minimum complementary strain energy leads to the familiar 

system of coupled 4th-order ODEs: 

where all constant coefficients A, B, and C remain as they are given in (4.47) through 

(4.49); the remaining coefficients are: 

91 



6M0 1 'E I e12 --2 - (a1 -a2)!!.T I Po 
Poh; 2 

(for combined mechanical and thermal loads--plane - stress) 

e12 - :~ -½[a1(l + v1)-a/1 + v2 )]L\TE1 I Po 

(for combined mechanical and thermal loads-plane -strain) 

6M0 

D1 = e12 - Poh; 

(for pure mechanical load--either plane stress or plane -strain) 

I -2(a1 a 2 )L\TE1 I p0 

(for pure thermal load--plane - stress) 

I - 2[a1(1+v1)-a2(1+v2 )]t1.TE1 I p 0 

(for pure thermal load--plane strain) 

{

e12 

12
~ 0 (pure mechanical or combined mechanical/thermal loads) 

D2 Poh; 

0 (pure thermal loads) 

(5.8) 

(5.9) 

Note that in the above, for the case of pure temperature change the stress Po is considered a 

reference stress for dimensionless stress analysis. 

Following the solution procedure of the previous chapter, the governing ODE is 

recast as 

(5.10) 

where [A], [B], and [C] are the 2x2 real symmetric matrices of the constant coefficients, 

and 

{<I>} {F(;),G(;)}7 

{D} = {Di, D2}" 

{O} = {O,Of 

(5.11) 
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The solution is assumed to be a superposition of the general solution {\f} and the particular 

solution { <l>o}: 

where 

[A]{'l'([V)} +[B]{'l'11
} +[C]{'I'} = {O} 

{<1>0 } = -[Cr1{D} 

(5.12) 

(5.13) 

By converting the expression into a generalized eigenvalue problem, the final expression of 

the general solution is determined to be 

4 

{ <1>} = L [ ck {lJl~} exp(lk.;) + dk {lJl~} exp(-lk.;)] + { <1> 0 } (5.14) 
k=l 

In this case, the eight linearly independent BCs extracted from the original traction 

conditions [ see Eqs. ( 5 .1 )-( 5 .4)] are all trivial; note the deviation from the conditions of the 

previous derivation [Eqs. (4.68)-(4.75)]. Given this solution, the interfacial shear and 

normal stress functions are found to be 

4 4 

f(x)I Po= I:c/P~,1Ak exp(lkx/ h2 ) Ld/P~.1lk exp(-lkxl h2 ) (5.15) 
k=I 

4 4 

g(x) I Po= L ck 41~' 2 l; exp(A.kx I h2 ) + L dk q,~- 2 .-t.; exp(-A.kx I h2 ) (5.16) 
k=I k=l 

From these stress solutions, all planar stresses in the joint can be fully determined. 

5.2.3 Strain Energy and Surface Cracks 

By using the strain energy functional given above [Eq. (5.6)], the strain energy 

density of the coating layer (strain energy per unit length) can be expressed as 
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(5.17) 

Utilizing the same variation process as before and the solution already attained (5.14), the 

strain energy density per unit length is determined to be 

1 1. p 2 
i. 6 , h, 2 a h, 

e =-{<I>} {D}-0"-2+--M- +-- n +...2....::.8T]p 
2 E E,h:, 0 2E, ro 2 ° 

I - - -

(5.18) 

Alternatively, the full expression can be recast as 

(5.19) 

Note that in (5.19), the first term results from the stress concentrations near the free edges 

of the joint (coating layer cracks); the remaining terms indicate the strain energy density of 

an un-cracked coating/substrate system. This energy density is denoted e0: 

(5.20) 

Furthermore, consider the case of a single crack in the coating layer; setting the system 

origin at the location of the crack, the energy density in the right-half of the system is given 

by: 

e,, (,;)=_!_I dk {'P~ f { D} exp(-;{,k,;) p~h;i 
2k~ ~ 

_!_{D}r[c]-1{D} Pth2 +-6-M2 +_!!L_p2 + a2h:i 8 np 
2 El E211; 0 2 £2 0 2 0 

(5.21) 
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Here, Ak (k = 1, 2, 3, 4) are four eigenvalues with positive real parts, and dk are the 

constants determined by solving the reduced system of traction BCs; for the case of the 

single crack, terms with non-decaying exponentials ( corresponding to the stresses induced 

by the right free edge of the joint, non-existent in this case) are discarded. These reduced 

traction BCs are given by 

(5.22) 

(5.23) 

4 I dk i.p~,2 = -<1>~2) (5.24) 
k=I 

(5.25) 

5.2.4 Critical Loading and Temperature Change for Initial Cracking 

The cracking criterion is established within the framework of LEFM such that: 

given certain loading conditions, i.e., external loads A/0 or po or temperature change /J.T, the 

increase in strain energy (/J.U) due to cracking must equal the strain energy release /J.f: 

/J.U = /J.f = q,b~ (5.26) 

where Ge is the critical strain energy release rate for the crack in the coating layer; it is 

assumed that mode-I cracking occurs. The criterion for the initial cracking in the coating 

layer is 

Substitution of expressions (5.20) and (5.21) into (5.27) yields 
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4 2z,, 

G i, - "d A-1{\flk}l'{D}fu_ 
!C''l - ~ k k O £ 

k=I I 

(5.28) 

It can be shown that the right side of (5.28) has a quadratic dependence on the loading 

variables such that 

(5.29) 

where App, AMM, Arr, ApM, and AMT are coefficients which can be determined by the relevant 

material properties and geometric parameters of the coating/substrate system. 

5.2.5 Progressive Cracking and Crack Density in the Coating Layer 

To study the phenomenon of progressive cracking in the coating layer, first consider a 

coating/substrate system in which periodic cracks already exist with spacing L 

(Figure 5.la). As the external load (e.g. tensile stress, bending moment, or temperature 

change) increases in magnitude, a critical load is reached at which a new through-thickness 

surface crack appears at a location C somewhere between A and B. Given (5.26), the 

cracking criterion is 

(5.30) 

where s1 L1lh2, s2 = L2lh2, s Uh2, and e(g is given by (5.19). The integrals in (5.30) 

can be evaluated and expressed explicitly, leading to the cracking criterion 

(5.31) 

where 
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nl ={t,sinh A,;1 [c,A;' exp( ~I ){4':J' +d,),;1 
exp(-~sl }'l':J']}1DJ pi: (5.32) 

n, = { t sinh A,;, [ c,A;1 exp ( \ 2 } 'I':)' + d,A; 1 exp ( - ~s, }'I': } ']} { D) Pi: ( 5 .33) 

n, = { t, sinh ~s [ c,);1 exp( ~s }'I':}' +d,A;1 exp(-~s }'I':}']} { D) Pi: (5.34) 

where the coefficients ck and dk are determined according to the eight linearly independent 

traction BCs from Section 5.2.2 with Llh2 =s1, s2, ands. Now Eq. (5.31) [with (5.32)

(5.34)] determines the critical load for progressive cracking of a system with specific single 

load or combination of loads with constant ratio. 

Generally speaking, the location C of the subsequent coating layer crack can be 

assumed to be a random variable (see Figure 5 .1 ). Therefore, a probability density function 

p is required to describe the location of the next cracking. Letting Tc denote the critical 

external load (e.g. tensile stress, bending moment, or uniform temperature change) required 

to cause the next cracking in a coating/substrate system of pre-existing crack density 

d = I IL, the expected value of Tc is 

(5.35) 

where Tc is given by (5.31). While the choice of probability density function will affect the 

results of the progressive cracking analysis, for the simplicity of the following analysis it is 

assumed that the next cracking will occur equidistant from the adjacent pre-existing cracks. 

This case can be represented by defining the probability density function with the Dirac 

delta function: 

(5.36) 
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5.3 Numerical Examples 

5.3.1 Interfacial Stresses in Cracked Surface Coatings 

Closed form solutions for the interfacial shear and normal stresses in a 

coating/substrate system are given by ( 5 .15) and ( 5 .16) with the application of appropriate 

boundary conditions. First consider the case of the interfacial stresses in a compliant 

substrate and hard coating layer with a single through-thickness crack in the coating. As 

mentioned in Section 5.2.3, the interfacial stresses are high near the free edges of the crack, 

and decay abruptly with increasing distance from the crack ends. Therefore, it is assumed 

that Ck= 0 for (k = 1, 2, 3, 4), and dk is found by solving the set of linear algebraic 

equations in (5.22H5.25). 

It is useful to examine the effects of material properties and geometric parameters 

on the stress distributions in these systems; to illustrate these effects, Figures 5.3 and 5.4 

show plots of the dimensionless interfacial shear and normal stresses with varying 

thickness ratio at two different modulus ratios. There are several features to note from this 

comparison. Firstly, increasing the Young's modulus of the coating layer relative to the 

substrate increases the magnitude of both the peak values of interfacial shear and normal 

stresses; the increase in modulus ratio also appreciably affects the distribution of these 

stresses: when E1IE2 = 1, the stresses are localized around a distance of approximately 

l .5h2, but when the ratio is increased to 5 the stress field spreads to a distance of roughly 

2.5h2. 

Next consider the coating/substrate system in which periodic cracks exist in the 

coating layer. The interfacial shear and normal stresses between two adjacent cracks with 

spacing Lare plotted in Figures 5.5 and 5.6 with various thickness and modulus ratios. 

98 



0.1 

0 

0 

?---...;._ 
I . 
I Thickness ratio: Ul 

-0.1 Ul 
<1.1 h1lh2 = 0.01 , 0.1, 0.2, 0.5, 1 ... -r/) Modulus ratio:E1 /E2 = 1 ... 
ro 
<1.1 

..c: 
r/) 

~ -0.2 
u 
~ ... 

h/h2 increases <1.1 -c:: -
-0.3 

0 xlh2 2 3 

(a) 

0.1 

0 
h/h2 increases 

~ --...;._ 

-0.1 I . 
I 

Ul 
Ul 
<1.1 ... -r/) 

Thickness ratio: ... 
ro -0.2 h / h2 = 0.01 , 0.1, 0.2,0.5 , 1 <1.1 

..c: 
r/) 

Modulus ratio : E/E
2 

= 5 
~ 
u 
~ -0.3 ... 

<1.1 -c:: 
Distance from crack 

-0.4 
0 xlh2 2 3 

(h) 

Figure 5.3. Variations of the dimensionless interfacial shear stresses over distance from 
the crack in a single-cracked hard coating/substrate system, including varying thickness 
and modulus ratios. 
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These plots indicate that, as with the single crack model shown in the previous figure, 

thicker coating layers lead to higher values of interfacial shear and normal stress. What 

these figures show is that increasing the effective stiffness of the coating (i.e., Young's 

modulus or the layer thickness) with respect to the substrate has the effect of increasing the 

magnitude of the interfacial shear and normal stresses. 

5.3.2 Crack Density in Hard Coating Layers 

Finally, consider the progressive cracking phenomenon in hard coatings. The initial 

through-thickness surface crack will appear in the hard coating on a compliant substrate 

once the condition of Eq. 5.31 is met. Following the initial crack, progressive surface 

cracking commences with increasing load; consider the dimensionless crack spacing as it 

varies with dimensionless critical load p0h/lGch, (for the case of uniform axial tension). 

This represents the dimensionless applied tension with respect to the cracking energy Gch1. 

As mentioned at the end of Section 5.2.5, the critical load is taken to be the expected value 

corresponding to the assumption that the progressive crack will occur equidistant from the 

existing cracks at spacing Llh2 [Eq. (5.36)]. Figure 5.7 depicts the crack spacing over the 

dimensionless critical load for varying thickness and modulus ratios. Again, the data 

indicate that for a given crack spacing, the thicker coating layers lead to lower critical load. 

Furthermore, stiffer coating layers (those with higher Young's modulus) show lower 

critical loads by comparison with those with a lower stiffness. These results are similar to 

those of the previous section: thicker, stiffer coating layers not only lead to higher values of 

interfacial shear and normal stresses (typically responsible for debonding failure of bonded 

joints) but also lower the resistance to mode-I cracking. 
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Figure 5.7. Variations of the dimensionless surface crack spacing vs. the dimensionless 
critical load at varying layer thickness ratios at two different modulus ratios. 
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5 .4 Conclusions 

In this chapter, the stress-function variational method for determination of 

interfacial stresses in bonded joints has been extended for surface cracking analysis of hard 

coatings. The strain energy expressions determined by the interfacial stress solutions have 

been used in conjunction with LEFM to construct energy-based criteria for initial and 

progressive cracking in the hard coating layers. Explicit criteria have been formulated and 

demonstrated for the determination of the critical load ( e.g. the tensile stress, bending 

moment, or temperature change) required for initial cracking in the hard coating layer, as 

well as progressive cracking. Effects on the critical load and crack spacing by thickness 

and modulus ratio have been examined. It has been indicated by the results of the 

dimensionless scaling analysis that thicker coating layers resulted in both higher interfacial 

stresses and lower critical load for given crack spacing. Furthermore, stiffer coating layers 

(higher Young's modulus) exhibit a similar trend. This analysis can be efficiently used in 

design and optimization of hard coating/compliant substrate systems and cracking 

prediction. 
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6. CONCLUSIONS 

In summary, bonded joints are commonly used structural components that have 

been extensively integrated into various engineering applications as load transfer elements, 

separated part connections, vehicular components, and microelectronics packaging. 

Besides, thin films of hard coatings on compliant substrates, such as those used for solid 

lubricants, thermal shielding, and wear and corrosion resistance, can also be analyzed using 

an idealized bonded joint model. 

In this study, we have successfully formulated a theoretical methodology for the 

stress analysis of bonded joints consisting of two arbitrary adherends. The main theoretical 

accomplishments achieved by the present thesis include: 

1. Formulation of a novel stress-function variational method for the stress analysis of 

bonded joints made of two arbitrary adherends, in which two interfacial stress 

functions are directly introduced. These stress functions can completely satisfy all 

relevant stress equilibrium equations for representative segmental elements of joint 

adherends. 

2. Satisfaction of all physical boundary conditions at the ends of the adherends. 

Deformation compatibility is enforced through minimization of the complementary 

strain energy of the joint. The resulting governing 4th-order ODEs are solved 

efficiently with eigenfunctions. 

The results of this analysis have been validated successfully through several means. 

In Chapter 3, a single-sided bonded joint has been analyzed, and the results of the present 

method have been compared with those obtained by elementary mechanics of materials. 
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The predicted stresses have been found to be in a close agreement for the case of long 

slender adherends, with larger deviation for shorter cover layers; this is likely due to the 

breakdown of classic beam theory for shorter and thicker beams. Comparisons with results 

of a detailed FEA of the joint have also supported the accuracy of the present model. 

Chapter 4 has examined two different joint configurations: the single-sided strap 

joint and the single-lap joint. These models have also been compared against FEA data; 

the models accurately predict the high interfacial stress concentrations near the free edges 

of the adherends with values close to those given by the FEA. Furthermore, analysis of the 

joints subjected purely to temperature change has yielded results in a close agreement with 

those found in the literature for bi-metal thermostats. 

Scaling analyses have also been performed on the bonded joint models to 

investigate the dependence of interfacial stress distribution on material properties and 

geometric parameters. Interfacial stress distributions have been modeled for varying 

thickness ratios, length ratios, and modulus ratios. It has been found that increasing the 

effective stiffness of the cover layer (or reinforcing patch) relative to the substrate (via 

increased thickness or increased Young's modulus) had the effect of lowering the values of 

interfacial stress in typical bonded joints. The ability of the current model to easily 

perform such detailed scaling analyses makes it well-suited for joint design and 

optimization. 

Chapter 5 studied the cracking behavior of hard coatings on compliant substrates. 

Cracking criteria have been developed using linear-elastic fracture mechanics (LEFM) 

considerations in conjunction with the stress analysis of the previous chapters. By 

idealizing the coating/substrate system as a two-adherend bonded joint model, criteria have 
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been developed to determine the critical load (e.g. uniform axial tension, bending moments, 

or uniform temperature change) to cause the initial crack and progressive cracking in the 

coating layer; this has allowed for an analysis of the behavior of the dimensionless crack 

spacing and its dependence on applied loads. 

The analysis developed in this work has the potential for broad application in 

engineering practices for efficient, robust scaling analysis and design optimization for 

bonded joint systems. For example, the analysis could be used to predict how variations in 

the thickness or rigidity of polymeric substrates affect the critical stresses present in 

flexible electronics applications. In the field of civil engineering, structures are often 

strengthened via the application of surface reinforcing patches on support components; the 

methods presented in this thesis could be utilized in the design of these reinforcing patches 

to optimize their strengthening characteristics while minimizing the addition of building 

material. Furthermore, the cracking analysis developed in Chapter 5 provides a basis for 

understanding how the health of hard, thin coatings depends on relative material/geometric 

properties between the coating and substrate (particularly in the specific failure scenario of 

through-thickness surface cracks). 

Despite the advances of the work presented in this thesis, further refinements to the 

process may be made: 

1. Generalizing the model for the analysis of bonded joints of arbitrary numbers of 

layers. The current method is only applicable to two-layer joint models; more 

complicated joint geometries, and joints in which the adhesive layer properties and 

influence need to be considered are outside the scope of the present formulation. 
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2. Adapting the model for anisotropic composite adherends. The present model 

assumes isotropic adherends, which limits the applicability of the analysis to other 

types of component materials. Adapting the formulation to anisotropic adherends 

would allow for the stress analysis of fiber-reinforced polymers and layered 

composites. 

Making the recommended modifications to the stress-function variational method would 

greatly enhance the strength of the formulation and create a robust model capable of 

handling a wide variety of physically meaningful bonded joint applications. 
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