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ABSTRACT

We define P-strict labelings for a finite poset P as a generalization of semistandard Young
tableaux and show that promotion on these objects is in equivariant bijection with a toggle action
on B-bounded Q-partitions of an associated poset ). In many nice cases, this toggle action is
conjugate to rowmotion. We apply this result to flagged tableaux, Gelfand—Tsetlin patterns, and
symplectic tableaux, obtaining new cyclic sieving and homomesy conjectures. We then study cases
in which P is a finite, graded poset other than a chain, yielding new results for products of chains
and new perspectives on known conjectures. Additionally, we give resonance results for promo-
tion on P-strict labelings and rowmotion on Q)-partitions and demonstrate that P-strict promotion
can be equivalently defined using Bender—Knuth and jeu-de-taquin perspectives. Finally, we ex-
plore conjectures, related and unrelated to our main theorems, on objects that promise beautiful

dynamical properties.
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1. INTRODUCTION

One of the primary goals of algebraic combinatorics is to use combinatorial objects in order
to gain a more intuitive understanding of complex algebraic structures. These objects, often able
to be represented pictorially, allow abstract interactions to be illustrated as games with clear rules.
In this way, we can arrive at algebraic results through a more straightforward manipulation of
combinatorial objects, yielding proofs that are satisfying not only for their mathematical content,
but for their visual, simple beauty as well. The objects that arise in these proofs are often compelling
in their own right and inspire further questions without necessarily being tied to their algebraic
counterpart. This is the perspective of this thesis. We will primarily draw on objects used in fields
such as representation theory, but this context is not required for the enjoyment of the material.
We derive our results using only the combinatorial objects and rules for their associated games,
and will provide frequent figures in order to present these results in their intended manner.

More specifically, our results lie in the field of dynamical algebraic combinatorics, which aims
to find beauty in the behavior of certain actions on combinatorial objects. We are most interested
in objects that have some sort of canonical action associated with them. A good first question to
consider is that of order: how many times must we apply an action to get back to the same object we
started from? (In this thesis, we will only work with finite sets of objects and invertible actions, so
this question will always have an answer). A similar idea is determining the cardinality of all orbits,
or the partitioning of all the objects into sets where each element can be obtained from another
by repeated application of the associated action. In addition to these periodicity questions, there
are more subtle phenomena such as homomesy [40], which considers combinatorial statistics across
orbits, or the cyclic sieving phenomenon [41]. Additionally, dynamical algebraic combinatorics
suggests another desirable condition for the explicit bijection of enumerative combinatorics, which
gives a clear process to correspond two disparate objects with each other: that the explicit bijection
must also be equivariant. That is, the bijection additionally preserves the orbit structure of an
action on one set of objects with that of the associated action on the corresponding set of objects.

This notion of an equivariant bijection motivates the majority of the content of this thesis.



Briefly, this thesis is organized as follows: Chapters 2 and 3 are complete papers coauthored
with J. Striker and C. Vorland. Chapter 2 introduces a new set of combinatorial objects, P-strict
labelings, as well as an equivariant bijection to known objects, Q-partitions. This paper also finds
applications of this bijections to other known objects, namely certain classes of semistandard Young
tableaur. Chapter 3 aims to find additional cases where this bijection applies, especially for non-
tableaux objects. Finally, Chapter 4 is a short exploration into independently pursued topics, still
with a focus on bijections and dynamical results.

The purpose of the next two sections is to motivate the main results of Chapter 2 through
two different paths. The first places our results a well-known combinatorial context, that of semis-
tandard Young tableaux and Gelfand—Tsetlin patterns. The second frames the content of Chapters 2
and 3 as the fourth and fifth in a series of papers authored by Striker and collaborators. Because
Chapters 2 and 3 are complete papers, they each contain some introduction to their respective
content as well as preliminary definitions. So, we will use this “bonus” introduction to present
this material alongside additional background information of use to those who do not work in this
specific corner of the field. Additionally, some definitions in the following two sections may be
stated differently than in their Chapter 2 and 3 counterparts. This is due to a difference of priority;
the conventions chosen here are to describe the context in which we discovered our results, while
the conventions in Chapters 2 and 3 are chosen both to serve the new definitions and results and
avoid overlapping notation.

1.1. Semistandard Young tableaux and Gelfand—Tsetlin patterns

We begin with the definition of a popular combinatorial object, the semistandard Young
tableau. See [48, Chapter 7] for a standard reference. For the material in this section, a partition
A is an ordered tuple (A1, Ag,..., An) with Ay > Ay > -+ > \,,, and we will associate a partition
with the shape of its Young diagram, consisting of n upper-left-justified rows of boxes with A;

boxes in row 3.

Definition 1.1.1. Let A = (A, A\2,...,A,) with all parts nonzero. A semistandard Young
tableau of shape A is a filling of the Young diagram of A with positive integers such that the
rows weakly increase from left to right and the columns strictly increase from top to bottom. Let

SSYT (A, m) denote the set of all semistandard Young tableau with entries at most m.



An example of a semistandard Young tableau can be found in the top left of Figure 1.3.

These tableaux are notable for their use in providing a combinatorial definition of the symmetric

Schur polynomials. In the definition below, we use the weight o« = (a1, ..., o) of a tableau T' €
SSYT(A, m), where a; is the number of i entries in 7. Then, we write 27 = 2@ = 2{'z5? - - - 2%m.

Definition 1.1.2. Define the Schur polynomial sy(z) as

S)\(.Tl,.%'g,...,.ﬁm) = Z xT'

TEeSSYT(A,m)

Of related interest, then, is the so-called Jacobi—Trudi identity given below, which gives
the Schur polynomial above as a determinant in terms of the homogeneous symmetric polynomials.
Here, the polynomial denoted by hy(x) is the sum of all monomials in the variables z = (x1,...,2p)

with degree exactly k.

Theorem 1.1.3 (Jacobi-Trudi identity). Let A = (A1, Aa, ..., Ay) be a partition. Then

sx(z) = det |:h)\ii+j($):|

1<i j<n

Finally, while we certainly could enumerate SSYT(\, m) by computing the above determi-
nant with x = (1,1,...,1) := 1™, there is a nice product formula that we give below. Critical to
this formula is the notion of the hook length h(i,j) of a box (i, ) in the Young diagram of A\. The
hook length of (7, j) is the number of boxes in row i to the right of (4, ) plus the number of boxes
in column j below (i,7), plus 1 (to include the box itself). Note this is an entirely different use of

the letter A than above.

Theorem 1.1.4 (Hook-content formula, see [48], Theorem 7.21.2).

m—1t+7

sx(1™) = [SSYT(\,m)| = ][] )

(6:5) €A

In the above, the numerator is sometimes written as m — ¢, where the content c is defined
asi—j.

We can also define a class of Schur functions using semistandard Young tableaux of skew

shape where, instead of an upper-left-justified Young diagram of A, we consider the set of boxes in

3
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Figure 1.1. A jeu-de-taquin slide

a partition A but not in a second partition g C A, resulting in a shape such as in the bottom left
of Figure 1.3. As before, we define these skew semistandard Young tableaux SSYT(\/u, m)
as fillings of this shape that weakly increase along rows and strictly increase down columns. More-
over, there is an associated Jacobi—Trudi identity, indicating that these tableaux are a natural
generalization of SSYT(A, m).

Importantly for dynamical algebraic combinatorics, there is a well-studied action on (skew)
semistandard Young tableaux known as promotion. Promotion is often described in terms of jeu-de-
taquin slides, which are easier to understand when we do not allow duplicate labels in our tableau.
As such, we will first define promotion using jeu-de-taquin on standard Young tableaux, or
fillings of a partition shape A using each of the numbers {1,2,...,m} exactly once that strictly
increase along rows and columns, where m is the total number of boxes in A\. Denote these tableaux

as SYT(A), noting that the value m is implicit in A.

Definition 1.1.5. Promotion on 7" € SYT()) (denoted Pro(7)) is performed as follows. First,
remove the 1 label from the top left corner. Next, we perform a jeu-de-taquin slide (see [48, Chapter
7: Appendix 1]): determine which of the filled boxes adjacent to the right and below the empty
box contains the lower value, and then swap the two boxes. (After the first slide, there will be a 2
in the top left corner and an empty box either to its right or below). Continue performing these
slides until there are no filled boxes to the right or below the empty box. Fill this box with m + 1.

Finally, subtract 1 from all entries.

Figure 1.1 demonstrates a single jeu-de-taquin slide in the process of promotion on the given
tableau. Because the physical notion of a “slide” breaks down somewhat when working with more
complex objects, we give an alternate definition of promotion using Bender—Knuth involutions.
First, we will define them in the context of standard Young tableaux, and then, shortly after,

provide the full original definition on semistandard Young tableaux.

4
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Figure 1.2. The Bender—Knuth involution py

Definition 1.1.6. Let 7" € SYT()A). Let the ith Bender—Knuth involution p; act on 7' by
increasing the label ¢ to ¢ + 1 and decreasing the label i + 1 to ¢, if the resulting tableau would be

in SYT(M).

Figure 1.2 demonstrates a Bender—Knuth involution on a standard Young tableau. Now,

we give the equivalent definition of promotion using p;.
Definition 1.1.7. Promotion on 7' € SYT()) is given by Pro(T) = py—10-+- 0 pao p1(T).

With a slight adjustment in the definition of p;, this new definition of promotion is the
same as the definition of promotion on SSYT(A/u, m) (and, indeed on any object for which we can
devise an appropriate definition of p;). The Bender—Knuth involutions on SSYT(A/p, m) are given

below.

Definition 1.1.8. Let 7' € SSYT(\/u, m). Let the ith Bender-Knuth involution p; act on T' as
follows: comnsider all ¢ and 7 4+ 1 labels. If i + 1 does not appear directly below an 4, that is, if 4
could be incremented in its column to i+ 1 without violating the strict increase condition, call this
i label “free.” Similarly, call an ¢+ 1 label “free” if ¢ does not appear directly above the ¢+ 1 label.
Suppose there are a free ¢ labels and b free i + 1 labels in row k, necessarily all adjacent. Then, for

each row, p; replaces these a + b total labels with b ¢ labels and a ¢ + 1 labels.

To give a taste of the sort of result we look for, we present the following widely-known
fact that entirely classifies the size of promotion orbits acting on rectangular semistandard Young

tableaux.
Theorem 1.1.9 ([42]). Let A be of rectangular shape and let T € SSYT(A\,m). Then Pro™(T) =T.

A nice periodicty result such as this is somewhat rare. For example, promotion on the
tableaux SSYT((5,5,3,2),5), (an example of such a tableaux is pictured in Figure 1.3) has an orbit

of size 40, much larger than 5, as well as an orbit of size 7, relatively prime to 5.

5



Next, we take a look at another, related, combinatorial object called a Gelfand—Tsetlin

pattern.

Definition 1.1.10. [48, Chapter 7] A Gelfand—Tsetlin pattern (GT-pattern) is a triangular

array G of nonnegative integers indexed as follows:

an1 an2 Gn3 cee Gnn

a21 a22

ail

with the additional conditions that G' weakly decreases along rows and the value of a;; is weakly
between its two upward neighbors. That is, a;j+1 < a;—1; < a;; whenever these numbers are

defined.

There is a straightforward bijection between GT-patterns and semistandard Young tableaux.
For T' € SSYT(A,m), let A<; be the partition shape consisting of boxes with labels less than or
equal to 7. Then, in the associated GT-pattern G, the ith row is given by A<;, appending zeroes
as necessary to create a triangular array. See Figure 1.3 for an example of this bijection.

With this bijection in mind, we can slightly revise the definition of GT-patterns such that it
accommodates skew semistandard tableaux. For this, we consider a GT-pattern as a parallelogram-
shaped (or trapezoidal, as in Chapter 2) array with n + 1 rows, including a bottom row indexed
api, - . ., apn, with the same inequalities as before. Now, T' € SSYT(A/u,m) corresponds to a
parallelogram-shaped GT-pattern with top row A and bottom row u, where each row is made the
same length by appending zeroes as needed.

Such a bijection is an example of an explicit bijection, demonstrating that SSYT (A, m) and
GT-patterns with m rows whose top row is A are equinumerous. As noted earlier, we aim to find
equivariant bijections that additionally preserve the behavior of particular actions on both involved
objects. It turns out that due to work by A. Kirillov and A. Berenstein [31], we have such a
bijection, involving the earlier-defined action of Bender—Knuth involutions on skew semistandard

Young tableaux and elementary transformations on GT-patterns.



1112213 5 5 3 2 0
5 5 2 0
41415 4 1
5|5 2
5 5 3 2
2|4 5 3 3 2
1 5 4 3 3 2
- 4 3 3 0
3 3 2 0
3|3 3 3 2 0

Figure 1.3. Top: an element of SSYT(A,5) for A = (5,5,3,2) and its associated GT-pattern.
Bottom: an element of SSYT(A\/u,5) with the same A and p = (3,2,2) and its associated
(parallelogram-shaped) GT-pattern.

Definition 1.1.11. Let G be a GT-pattern. For 1 < k < n — 1, define the elementary transfor-

mation ¢;(G) over all elements of G by

Qij 1#£k
tr(aij) =
min(awl,j, ai,u,l) + max(aiH’jH, ai,l,j) — Q5 otherwise,

where we ignore any undefined arguments of max and min.

The following proposition, labeled so because of its original source, gives us our equivariant

bijection.

Proposition 1.1.12 ([31, Proposition 2.2]). Let T € SSYT(A\/u,m) and G the corresponding

GT-pattern. The Bender—Knuth involution pr on T corresponds to t on G.

What could we try to generalize from this context? One direction could consider restrictions
on the values of T other than just bounding all entries by m. For example, flagged tableaux
impose a bound for each row of the tableau. Another possible generalization lies in changing the
entire construction of a tableau shape. Instead of pasting strictly increasing columns together
to form weakly increasing rows, the columns could be a different shape, such as an array, that
strictly increases in some way (more specifically, a poset shape, defined in the next section). Then,

from these generalizations on the tableaux side, what adjustments can be made to keep a similar

7
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Figure 1.5. An illustration of the equivariant bijection from J([a] x [b] X [¢]) to increasing tableaux
of shape a x b with entries no greater than a + b+ ¢ — 1. Here, a = 2,b = 3, and ¢ = 4. We also
include, on the far left, the plane partition corresponding to the order ideal.

tionally show that multiple hyperplane sweeps share this characteristic, demonstrating a variety of
“promotions” conjugate with rowmotion.
1.2.3. Rowmotion and increasing labeling promotion

In [13], Dilks, Striker, and C. Vorland generalize the result stated in the previous subsection.
Beginning on the increasing tableaux side, we first generalize to increasing labelings, which are not

tied to partition shapes.

Definition 1.2.7. Let P be a poset. We call a labeling f of P with positive integers no greater
than m an increasing labeling of P if f(p) < f(p) whenever p <p p’. Denote the set of these

increasing labelings as Inc™(P).

Pursuing full generality, the authors additionally define increasing labelings in which one can
specify exactly which values are permissible for a particular poset element. We call this specification
of values a restriction function R : P — P(Z), and the set of all increasing labelings of P
satisfying this restriction function Incf(P).

After generalizing this half of the bijection of [12], what remains is to determine the order
ideals in correspondence with Inc®(P). The poset T'(P,R), defined in detail in Chapter 2, is
constructed in order to be precisely the poset whose order ideals are in bijection with Incf(P).
An example of an order ideal of I'(P, R) along with its associated increasing labeling are shown in
Figure 1.6

Most importantly, the bijection to order ideals of I'(P, R) is equivariant. For an adjusted

definition of Bender-Knuth involutions, Pro on Inc?(P) is in equivariant bijection with J(I'(P, R))

11
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Definition 1.2.8. A @-partition is an order-preserving labeling of a poset () using nonnegative

integers that weakly increase up the poset.

We can consider these as a generalization of order ideals, since a @-partition with a maxi-
mum label of 1 corresponds to the order ideal with elements labeled by zero. We also have a notion
of toggling on posets labeled with integers, piecewise-linear toggling, in which toggling a particular
element “flips” its value in the interval determined by the minimum label of its upper covers and
the maximum label of its lower covers. This is rigorously defined in Chapter 2, as it is exactly
this toggle action that drove our interest. Because of [13], we understand order ideal toggling on
I'(P,R) and its relation to Inc®(P). So, if we instead considered Q-partitions with Q = I'(P, R),
what action on which objects would piecewise-linear toggles correspond with? This is the question

that is answered in depth in the chapters to follow.
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detail in Section 2.4.2. See Corollaries 2.4.28 and 2.4.30 for these specific results and Figure 2.1 for

an example of the bijection.

{6
6
1[1[1]2]<? o ’,
2[2[3]3]|<4 , §o
4]5(6(6|<6 @ 1D
L

/4\ 4 4%1
p2, -1 p3,3
AN e 250 i
1 O 2 1 p1,1 0 p2,3 2 P3,5
Op1,2 Op2,4 OP3,6

O p1,7 p2,8 P3,9

Figure 2.1. A motivating example of the bijection of this paper, relating flagged tableaux of shape £"
with flag (2,4,6,...,2n) to /\,,-partitions with labels at most £. See Corollaries 2.4.28 and 2.4.30,
which imply the order of promotion on these flagged tableaux is 8.

2.1.2. Promotion on P-strict labelings

Promotion is a well-loved action defined by M.-P. Schiitzenberger on linear extensions of a
finite poset [46]. On a partition-shaped poset, linear extensions are equivalent to standard Young
tableaux. Promotion has been defined on many other flavors of tableaux and labelings of posets
using jeu de taquin slides and their generalizations. Equivalently (as shown in [20, 50, 12, 13]),
promotion may be defined by a sequence of involutions, introduced by E. Bender and D. Knuth on
semistandard Young tableaux [4]. This will be our main perspective; we discuss the jeu de taquin
viewpoint further in Section 2.3.

Below, we define P-strict labelings, which generalize both semistandard Young tableaux and

increasing labelings. We extend the definition of promotion in terms of Bender-Knuth involutions
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to this setting. We show in Theorem 2.3.10 in which cases promotion may be equivalently defined

using jeu de taquin.

Definition 2.1.1. In this paper, P represents a finite poset with partial order <p, < indicates a
covering relation in a poset, £ and ¢ are positive integers, [¢] denotes a chain poset (total order) of
¢ elements (whose elements will be named as indicated in context), and P x [¢(] = {(p,i) | p € P,i €

N, and 1 < i </} with the usual Cartesian product poset structure.

Below, we define P-strict labelings on convex subposets of P x [¢]. A convex subposet is
a subposet such that if two comparable poset elements a and b are in the subposet, then so is
the entire interval [a,b]. This level of generality is necessary to, for instance, capture the case of

promotion on semistandard Young tableaux of non-rectangular shape.

Definition 2.1.2. Given S a convex subposet of P x [{], let L; = {(p,i) € S | p € P} be the ith

layer of S and F, = {(p,i) € S | 1 <i < ¢} be the pth fiber of S.

Convex subposets of P x [¢] have a predictable structure, as we show in the following

proposition.

Definition 2.1.3. Let v : P — {0,1,...,¢} and v : P — {0,1,...,¢} with u(p) + v(p) < ¢ for
all p € P and v(p1) < v(p2) and u(p1) > u(pz) whenever py <p ps. Then define P x [(]) as the

u

subposet of P x [¢] given by {(p,i) € P x [{] | u(p) <i<{+1—wv(p)}.

Proposition 2.1.4. Let S be a convex subposet of P x [¢]. Then there exist u and v such that
S=P x|

Proof. Since S is convex, along any fiber F), we have (p,i) € S with iy < i < i for some iy > 0
and some i1 < ¢+ 1. If F, # 0, let u(p) = ip and v(p) =€+ 1 — ;. If w >p p, then u(w) < u(p),
otherwise (p, u(w)), (w, u(w)+1) € S but (w,u(w)) ¢ S, contradicting the convexity of S. Similarly,
v(w) > v(p). If F, = 0, then F,, = 0 for all w >p p by convexity. For all p € P with F, = 0,
set u(p) = min{u(q) | F, # 0} and v(p) = £ — u(p). Thus u(p) + v(p) = £ and, over all of P,
w(p1) > u(p2) when p; <p pa. Moreover, since for all p with F), # 0 we have v(p) < £ — u(p),

v(p1) < v(p2) for all p1 <p po. O

17



Example 2.1.5. Let A = (A1,...,\,) and g = (u1, ..., pn) be partitions. Consider the case where
P = [n], u(p) = pp, and v(p) = £ — A, for all p € P. In this case, the convex subposet is a skew

tableau shape \/u that fits inside an n x ¢ rectangle.

Definition 2.1.6. Let P(Z) represent the set of all nonempty, finite subsets of Z. A restriction

function on P is amap R: P — P(Z).
In this paper, R will always represent a restriction function.

Definition 2.1.7. We say that a function f : P x [¢]) — Z is a P-strict labeling of P x [(]!,

with restriction function R if f satisfies the following on P x []}:

1. f(p1,i) < f(p2,i) whenever p; <p po,

2. f(p,i1) < f(p,i2) whenever i; < ig,

3. f(p,i) € R(p).

That is, f is strictly increasing inside each copy of P (layer), weakly increasing along each copy of
the chain [¢] (fiber), and such that the labels come from the restriction function R.
Let Lpyg(u, v, R) denote the set of all P-strict labelings on P x [£];, with restriction function

R. If the convex subposet is P x [{] itself, i.e. u(p) = v(p) = 0 for all p € P, we use the notation

EPX[Z] (R)

The following definition says that R is consistent if every possible label is used in some

P-strict labeling.

Definition 2.1.8. Let R : P — P(Z). We say R is consistent with respect to P x [¢]} if, for every
p € Pand k € R(p), there exists some P-strict labeling f € Lpyg(u, v, R) and u(p) < i < {+1—v(p)
such that f(p,i) = k.

We denote the consistent restriction function induced by (either global or local) upper and
lower bounds as RZ, where a,b : P — Z. In the case of a global upper bound ¢, our restriction
function will be R{, that is, we take a to be the constant function 1 and b to be the constant
function ¢. Since a lower bound of 1 is used frequently, we suppress the subscript 1; that is, if no

subscript appears, we take it to be 1.
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Remark 2.1.9. If £ =1, Lp,g(R) = Inc®(P) from [13]. A notion of consistent R for this case

was defined. This coincides with the above definition.
We will use the following two definitions in Definition 2.1.12.

Definition 2.1.10. Let R(p)s) denote the smallest label of R(p) that is larger than k, and let

R(p)<k denote the largest label of R(p) less than k.

Definition 2.1.11. Say that a label f(p,i) in a P-strict labeling f € Lpyg(u,v, R) is raisable

(lowerable) if there exists another P-strict labeling g € Lpyjg(u,v, R) where f(p,i) < g(p,i)
(f(p,i) > g(p,9)), and f(p',7') = g(p',7') for all (p',i") € P x [{]5, p" # p.

It is important to note that the above definition is analogous to the increasing labeling case
of [13], so raisability (lowerability) is thought of with respect to the layer, not the entire P-strict

labeling.

Definition 2.1.12. Let the action of the kth Bender—Knuth involution p; on a P-strict labeling
[ € Lpxjg(u,v, R) be as follows: identify all raisable labels f(p,i) = k and all lowerable labels
f(p,i) = R(p)>k (if k£ = max R(p), then there are no raisable or lowerable labels on the fiber F,).
Call these labels ‘free’. Suppose the labels f(F),) include a free k labels followed by b free R(p)>k
labels; pi changes these labels to b copies of k followed by a copies of R(p)~j. Promotion on P-
strict labelings is defined as the composition of these involutions: Pro(f) =---opgopgsopjo---(f).
Note that since R induces upper and lower bounds on the labels, only a finite number of Bender-

Knuth involutions act nontrivially.

We compute promotion on a P-strict labeling in Figure 2.2. We continue this example in

Figure 2.5.

Example 2.1.13. Consider the action of p; in Figure 2.2. In the fiber Fj,, neither of the 1 labels
can be raised to R(a)>1 = 3, since they are restricted above by the 3 labels in the fiber F,. However,
the 3 label in F, can be lowered to a 1, and so the action of p; takes the one free 3 label and replaces
it with a 1. Similarly, in F,, the 2 is lowered to a 1. In F}p, the 1 can be raised to a 3 and the 3 can
be lowered to a 1. Because there is one of each, p; makes no change in Fj.

After applying p2, we look closer at the action of ps. In F,, there are no 3 labels or

R(a)s3 = 4 labels, so we do nothing. In F}, however, there are three 3 labels that can be raised to
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R(b)>3 = 5 and one 5 that can be lowered to 3. Thus p3 replaces these four free labels with one 3

and three 5 labels.

Remark 2.1.14. In the case ¢ = 1, Lp,q(R) equals Incf(P), the set of increasing labelings of
P with restriction function R. So the above definition specializes to generalized Bender-Knuth
involutions and increasing labeling promotion IncPro, as studied in [13]. If, in addition, P is
(skew-)partition shaped, these increasing labelings are equivalent to (skew-)increasing tableau,
and the above definition specializes to K-Bender-Knuth involutions and K-Promotion, as in [12].

If we restrict our attention to linear extensions of P, the above definition specializes to
usual Bender-Knuth involutions and promotion, as studied in [50].

If P = [n] and ¢ is arbitrary, Lpq(R?) is equivalent to the set of semistandard Young

tableaux of shape an n x ¢ rectangle and entries at most g, and Lp, (u,v, R?) is the set of

v

(skew-)semistandard Young tableaux with shape corresponding to P x [{]Y,

and entries at most q.
In these cases, the above definition specializes to usual Bender-Knuth involutions and promotion.
We give more details on this specialization in Section 2.4.1.

Given that Definition 2.1.12 specializes to the right thing in each of these cases (including
linear extensions and semistandard Young tableaux), we will no longer use the prefixes K-, in-

creasing labeling, or generalized, and rather call all these actions ‘Bender—Knuth involutions’ and

‘promotion’, letting the object acted upon specify the context.

2.1.3. Rowmotion on @Q-partitions

Rowmotion is an intriguing action that has recently generated significant interest as a
prototypical action in dynamical algebraic combinatorics; see, for example, the survey articles
[43, 53]. Rowmotion was originally defined on hypergraphs by P. Duchet [14] and generalized
to order ideals J(Q) of an arbitrary finite poset (Q,<g) by A. Brouwer and A. Schrijver [7].
P. Cameron and D. Fon-der-Flaass [8] then described it in terms of toggles; thereafter, Williams
and the second author [54] related it to promotion and gave it the name ‘rowmotion’. Rowmotion
was further generalized to piecewise-linear and birational domains by D. Einstein and J. Propp
[15, 16]. In this paper, we discuss toggling and rowmotion on @Q-partitions, as a rescaling of the

piecewise-linear version.
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Figure 2.2. Promotion on a P-strict labeling of a convex subposet of P x [5], where the poset
P = {a,b,c,d} along with the restriction function R are given at the top. Each Bender-Knuth
involution p; is shown.

In light of our use of P for P-strict labelings, we use () rather than P when referring to an

arbitrary finite poset associated with the definitions of this section.

Definition 2.1.15. A Q-partition is a map o : Q — N>¢ such that if z <g 2/, then o(x) < o(2’).
Let Q denote @Q with 0 added below all elements and 1 added above all elements. Let A (Q) denote

the set of all Q-partitions o with ¢(0) = 0 and o(1) = ¢.

Remark 2.1.16. In [49], Stanley uses the reverse convention: that a ()-partition is order-reversing
rather than order-preserving. We choose our convention to match with the order-preserving nature

of points in the order polytope, on which the toggles of Einstein and Propp act [15, 16].

In Definition 2.1.17, we generalize Definition 2.1.15 by specifying bounds element-wise.
Then in Definition 2.1.19, we define our main objects of study in this section: B-bounded Q-

partitions.
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Definition 2.1.17. Let d,¢ € A%(Q). Let A%(Q) denote the set of all Q-partitions o € A(Q) with

e(x) < o(x) < §(x). Call these (J,€)-bounded Q-partitions.
Remark 2.1.18. If §(z) = £ and ¢(z) = 0 for all z € @, then A2(Q) = AY(Q).

Definition 2.1.19. Let B € AY(W) where W is a subset of @ that includes all maximal and
minimal elements. Let AZ(Q) denote the set of all Q-partitions o € AY(Q) with o(z) = B(z)
for all x € W. Call these B-bounded Q-partitions. We refer to the subset W as dom(B), the

domain of B.

The next two remarks note that Definition 2.1.19 contains Definitions 2.1.15 and 2.1.17 as

special cases.

Remark 2.1.20. If B is defined as B(0) = 0, B(1) = ¢, then AP(Q) is equivalent to A/ (Q).

Remark 2.1.21. Let Q" be the poset @@ with two additional elements added for each z € Q:
a minimal element 0, covered by z and a maximal element 1, covering z. If B is defined as

B(Ox) = e(x), B(ix) = §(x), then AB(Q') is equivalent to A2(Q).

Remark 2.1.22. Note that B-bounded Q-partitions correspond to rational points in a certain

marked order polytope, though this perspective is not necessary for this paper.

In Definitions 2.1.23 and 2.1.25 below, we define toggles and rowmotion. In the case of
A(Q), these definitions are equivalent (by rescaling) to those first given by Einstein and Propp on
the order polytope [15, 16]. By the above remarks, it is sufficient to give the definitions of toggles

and rowmotion for AZ(Q).

Definition 2.1.23. For o € A%(Q) and = € Q \ dom(B), let a,(x) = min{o(y) | y € Q covers z}

and B, (z) = max{c(z) | z € Q is covered by x}. Define the toggle 7, : A%(Q) — AZ(Q) by
o(x) x#£a
ao(2') + Bo(2)) —o(2)) x=2a.

Remark 2.1.24. By the same reasoning as in the case of order ideal toggles, the 7, satisfy:

1. 72 =1, and
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2. 7, and 7,» commute whenever x and 2’ do not share a covering relation.

Definition 2.1.25. Rowmotion on A”?(Q) is defined as the toggle composition Row := 7, 07, 0

-+ 01Ty, where x1,xa,...,Z,, is any linear extension of @ \ dom(B).

Remark 2.1.26. It may be argued that we should call these actions piecewise-linear toggles and
piecewise-linear rowmotion as defined in [15, 16], but as in the case of promotion on tableaux and
labelings, unless clarification is needed, we choose to leave the names of these actions adjective-free,

allowing the objects acted upon to indicate the context.

2.1.4. Summary of main results

Our first main theorem gives a correspondence between P-strict labelings £p (¢ (u, v, R) un-
der promotion and specific B-bounded Q-partitions .Aé (@) under a composition of toggles, namely,
the toggle-promotion TogPro of Definition 2.2.6. Here @ is the poset T'(P, ]A%) constructed in Sec-
tion 2.2.1 and B depends on u, v, and R. The bijection map ® is given in Definition 2.2.9. See

Figure 2.5 for an illustration of this theorem and Figure 2.6 for an example of ®.

Theorem 2.2.8. The set of P-strict labelings Lpyy(u, v, R) under Pro is in equivariant bijection
with the set AB(I‘(P,R)) under TogPro. More specifically, for f € Lpy(u,v,R), ® (Pro(f)) =
TogPro (®(f)).

Our second main theorem specifies cases in which toggle-promotion is conjugate in the

toggle group to rowmotion, namely, when AB (I'(P, R)) is column-adjacent (see Definition 2.2.19).

Theorem 2.2.20. If AE(F(P, R)) is column-adjacent, then AE(F(P, R)) under Row is in equiv-

ariant bijection with Lpyg(u,v, R) under Pro.

Column-adjacency holds in many cases of interest, including the case of restriction functions

induced by global or local bounds, such as the various sets of tableaux discussed in Section 2.4.

Our third main theorem states that in the case of a global upper bound ¢, P-strict promotion

can be equivalently defined in terms of jeu de taquin; see Definition 2.3.1 and Figure 2.7.
Theorem 2.3.10. For f € Lpyg(u,v, R?), JdtPro(f) = Pro(f).

In this same special case, we define and study P-strict evacuation; see Section 2.3.2.
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(@)
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Figure 2.3. The diamond-shaped poset P = {a, b, ¢,d} is shown on the left along with a consistent
restriction function R, where R(p) is displayed as a set next to the corresponding element. The
poset I'(P, R) defined in Definition 2.2.2 is shown on the right.

Example 2.2.3. Refer to Figure 2.3. The poset I'( P, R) consists of four chains corresponding to
each element a,b, ¢, and d, where each chain contains one less element than R(p). For instance,
R(a) = {1,3,4}, so, by (1) in Definition 2.2.2, I'(P, R) contains the chain (a,3) < (a,1). There is
no element (a,4) since 4 = max R(a) and is therefore not in R(a)*. We indicate this omission by
writing a, 4 beneath the element (a, 3). The covering relations between the elements in these chains
are described by (2) in Definition 2.2.2. For example, (b,1) < (d,2) since b < d and 1 is the greatest
element of R(b) that is strictly less than 2. Note (d,6) does not cover (b,3) since 5 € R(b) is the

greatest element less than 6, not 3.

In [13, Theorem 4.31] it is shown that if R consistent on P, increasing labelings on P under
increasing labeling promotion are in equivariant bijection with order ideals of I'(P, R) under toggle-
promotion. This correspondence drives our first main theorem. In order to apply this result from
[13] to P-strict labelings, we need a restriction function that is consistent on P, not just on P x [{]7.

The next definition constructs such a restriction function.

Definition 2.2.4. Suppose R is a consistent restriction function on P x [(]. Denote the number
of elements less than or equal to p in a maximum length chain containing p as h(p) and the number

of elements greater than or equal to p in a maximum length chain containing p as ﬁ(p) Define a
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new restriction function R on P given by

R(p) = R(p) U { min | J R(q) — h(p), max |_J R(q) + h(p)
qeP qeP

Proposition 2.2.5. If R is a consistent restriction function on P x [(]\, then R is consistent on P.

Proof. If p1 <p p2, then minl{J, . p R(q) — h(p1), an element of R(p;), is less than all elements of
R(pg) and max qup R(q)+ h(p2), an element of R(pg), is greater than all elements of R(p;). Thus,

for any p’ € P and any element k of R(p'), the labeling f of P given by

;

k p=7p

f(p) = §minU,ep R(g) — h(p) ' <p

max J,ep R(q) +h(p) »' >p

is an element of EPXM(R) = IncE(P) (see Remark 2.1.9). Since for all p € P and k € R(p) there

exists a labeling f with f(p) =k, R is consistent on P. O

We use the structure of I'( P, R) in our main result. While any consistent restriction function
on P constructed by adding a new minimum and maximum element to each R(p) would serve our
purposes, we choose to use R for the sake of consistency.

2.2.2. First main theorem: P-strict promotion and toggle-promotion
Below, we state and prove our first main result, Theorem 2.2.8. First, we define an action

on B-bounded I'(P, R)-partitions.

Definition 2.2.6. Toggle-promotion on AP(T'(P, R)) is defined as the toggle composition
TogPro := ---omom omoT_107 90 -+, where 7, denotes the composition of all the 7, 1)

over all p € P such that (p, k) ¢ dom(B).

This composition is well-defined since the toggles within each 7, commute by Remark 2.1.24.

~

Definition 2.2.7. Given Lp,q(u,v, R), define B (on I'(P, R)) as B(p, min R(p)*) = £ — u(p) and

B(p, max R(p)*) = v(p).
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To see an example of toggle-promotion on a B-bounded I'(P, R)—partition, refer to Fig-
ure 2.4. See Figure 2.5 for an example illustrating Theorem 2.2.8.

In Theorem 2.2.8 below, ® is the bijection map given in Definition 2.2.9.

Theorem 2.2.8. The set of P-strict labelings Lpyy (u,v, R) under Pro is in equivariant bijection
with the set AB(F(P,]%)) under TogPro. More specifically, for f € Lpyj(u,v,R), ® (Pro(f)) =
TogPro (®(f)).

The proof will use the following definitions and lemmas. We first define the bijection map.

Definition 2.2.9. We define the map ® : Lp,y(u,v, R) — .AB(I‘(P, R)) as the composition of
three intermediate maps ¢1, ¢2, and ¢3. Start with a P-strict labeling f € Lpyg(u,v, R). Let

oi(f)=fe £px[g](f%) where f is given by:

min R(p) i < u(p)

[, 1) =9 F(p,i) u(p) <i<L+1-uv(p)

max R(p) £+ 1—v(p) <i.

Next, ¢2 sends f to the multichain Op < Op_; < --- < Oy in J(I'(P, R)) layer by layer, that
is, f(L;) is sent to its associated order ideal ©; € J(I'(P, R)), where O; is generated by the set
{(p,k) | p € P, f(p, i) = k}. Lastly, ¢35 maps the above multichain to a T'(P, R)—partition o, where

o(p,k)={i| (p,k) ¢ O;}|, the number of order ideals not including (p, k). Let ® = ¢3 0 ¢ 0 ¢;.

The map ¢y in Definition 2.2.9 is the main bijection used in [13, Theorem 2.14], and the

map ¢3 is the usual bijection between multichains of J(Q) and @Q-partitions (see [49]).
Lemma 2.2.10. The map ® is well-defined and invertible.

Proof. Since P x [{] is a convex subposet of P x [(], f € L pxm(f%). Therefore, since f is weakly
increasing across layers, Oy < Qp_; < --- < Oy is a multichain in J(I'(P, R)).

For invertibility, ¢; is invertible by removing the labels of f that are not in R, and ¢9
is invertible by [13]. Given o € AB (T'(P, R)) we can recover the associated multichain by O; =

{(p,k) | o(p, k) > i}, so ¢3 is invertible.
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Figure 2.4. Toggle-promotion on a B-bounded (P, R)—partition, where the poset P = {a,b,c,d}
along with the restriction function R are given at the top. Each toggle 7; is shown.
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Figure 2.5. An illustration of Theorem 2.2.8. Promotion on the P-strict labeling of Figure 2.2
corresponds to toggle-promotion on a B-bounded (P, R)—partition. The poset P = {a,b,c,d}
along with the restriction function R are shown in the center. See Figure 2.4 for the steps in
calculating TogPro in this example.

What remains to show is that ®(f) € AE(F(P, R)) for all f € Lpyg(u,v, R). We verify
®(f)(p, min R(p)) = € — u(p) and (f)(p, max R(p)*) = v(p) for all p € P. Suppose ¢1(f) = f
and qbg(f) is the multichain Oy < --- < ;. From the definition of ¢, the number of min I:Z(p)
labels in f(F}), or the number of order ideals in ¢o( f) containing (p, min R(p)), is u(p). Therefore,
®(f)(p, min R(p)) = £ — u(p). Next, (p, max R(p)*) is included in every order ideal associated to a
layer where p is not labeled by max R(p). Since there are v(p) such layers, v(p) order ideals do not

contain (p, max R(p)*), so ®(f)(p, max R(p)*) = v(p). O
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Figure 2.6. An example of the map ® = ¢3 0 ¢2 0 ¢1 beginning with f € Lp, 4 (u, v, R5) on the left

and ending with o € AE(F(P, R?)) on the right, where P is the chain a <b< ¢, u(a,b,c) = (2,1,0),
and v(a,b,c) = (0,0,1).

Lemma 2.2.11. The bijection map ® equivariantly takes the generalized Bender-Knuth involution
pi to the toggle operator Ty.
The following notation will be useful for the proof of this lemma.

Definition 2.2.12. We consider the label at (p,i) € P x [{]), to be in position i, and the first

(last) position satisfying a particular condition is the least (greatest) such position.

Definition 2.2.13. For f € Lpyq(u,v, R) and k € Z, let

min{j | f(p,j) >k} 3Ibe f(F),) such that b > k

oSt

—v(p)+1 otherwise

That is, ji is the first position in the fiber Fj, with label greater than k, where we may consider a

label at (p,¢ — v(p) + 1) that is greater than all other labels.
Example 2.2.14. In Figure 2.6, we have j§ = 3,j{ = 5, and jgl = 2.
We can now write the bijection ® in terms of jj.
Lemma 2.2.15. Let f € Lpy(u,v, R) and ®(f) =0 € AB(F(P, R)). Then a(p,k)=€+1— 47

Proof. From the definition of ®, in the multichain ¢2(¢1(f)), (p,k) € O; for 1 < i < j7 and
(p, k) ¢ O; forjg <1</l Thus o(p, k) =#{i| (p,k) ¢ O;} =0+1 —jg. O
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Proof of Lemma 2.2.11. We prove this lemma by showing ® equivariantly takes the action of p; on
f(F,) to the toggle 74 at (p, k) € T(P, R). Let f € Lpxig(u,v, R) and &(f) =0 € AB(I(P,R)).

Consider the action of p, on f(F,). If k ¢ R(p)*, then pj acts as the identity on f(F})
and 7 acts as the identity on o(p, k), so we are done. Therefore, let k € R(p)*. We aim to count
the number of raisable k labels and lowerable R(p) labels in f (Fp). We begin with finding the
number of raisable k.

Using Lemma 2.2.15, the total number of (not necessarily raisable) k labels is given by

Ik =T, = L+ 1=0@k) = (L+1 = o(p, R(p)<k)

A~

=o(p, R(p)<k) — o(p, k). (1)

Now, we determine which of these labels are raisable. We consider three cases based on the upper
covers of (p, k) in I'(P, ]%) associated to a different element of P. We denote this set in the upcoming
cases by U = {(w,¢) € (P,R) | w>p p and (w,¢) >1p ) (p,k)}.

Case U # (: For (w,c) € U, by construction of T'(P, R), k = R(p)<. and c is the largest
such ¢ € R(w). Equivalently, ¢ is the greatest element of R(w) that is less than or equal to R(p)sr.
Thus, since R(w)se > R(p)si, the first position in f(F),) that is not restricted above by labels in
f(F,) is j¥. Therefore the first position in f(F,,) that can be raised to R(p)sy is max, oyey Jo » SO
the number of labels in f(F}) that can be raised to R(p)sy (that are necessarily less than R(p)y)
is

Jk — Jax () = (E 41— o(p,k)) = max (41— 0(w,c))

=—o(p, k) — (glc?gu(—a(wm))

- m ) — a(p, k).
(wrfgrelu(a(w c)) —o(pk)

Case U = ) and w >p p for some w € P: This implies that k # R(p)<. for any ¢ € R(w)
for any w »>p p. Thus, if ¢ > k, then we also have ¢ > R(p)>k. Since f is strict on layers, if

f(p,i) =k, all f(w,i) are greater than R(p)sj. Therefore all k labels in f(F},) are raisable.
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Case U = () and p has no upper covers in P: In this case, f(F}) is not restricted above,
and again all k labels in f(F),) are raisable.

The number of raisable k is the lesser of the number of k labels and the number of labels
less than R(p)sy that can be raised to R(p)si. Let Y = {y | y covers (p, k) in I'(P, R)}. Then, by
the above cases, the number of raisable k in f(F}) is given by

min (o(2)) — o (p, k).

If Z = {z | zis covered by (p,k) in T'(P, R)}, by a similar argument we obtain that the

number of lowerable R(p)sy, labels in f(F,) is

o(p, k) — max (o(2)).

Suppose there are a raisable k and b lowerable R(p)sj, in f(Fy). Apply pi to f(F}p), and
let a’,; be the I'( P, R)—partition corresponding to this new P-strict labeling. For all d # k, the first
position in f(F),) with a label greater than d is unchanged after applying py. Thus the only label
that differs between o and o}, is the label at (p, k). Since there are b raisable k in py(f(F})), with

Y and Z defined as above we have

o(p,k) ~ max(o(2)) = b= min(a(y)) — o (p, k).

Therefore,

ok(p, k) = min(o(y)) + max(o(z)) — o(p, k),

which is exactly 7(, 1) (o) (p, k).

Thus, pg on f corresponds to toggling on o over all elements (p, k) with p € P. O
In the following, we give an example of each case from the previous proof.

Example 2.2.16. Refer to the poset I'(P,R) from Figure 2.5. For the element (a,1) we have
U ={(b,3),(c,2)}, for the element (a,3) we have a <b and a < ¢ but & = ), and for the element

(d,6) we have U = () and d has no upper covers in P.
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Example 2.2.17. Figure 2.6 shows an example of the bijection map; the number of 3 labels in
f(Fp) is 2 = 0(b,2) — o(b,3) and the number of 4 labels is 1 = o0(b,3) — o(b,4). The number of
positions where a 3 could be raised to a 4 is 1 = o(c,4) — o (b, 3) and the number of positions where

a 4 could be lowered to a 3is 0 = o(b,3) — o(a, 2).
We now prove our first main theorem.

Proof of Theorem 2.2.8. By Lemma 2.2.10, ® is a bijection. By Lemma 2.2.11, ®(Pro(f)) = ®(---o

p2opropyop_ropgo---(f))=--o0T7g0730T90T0T20" - (P(f)) = TogPro(®(f)). O

2.2.3. Second main theorem: P-strict promotion and rowmotion
Our next main result, Theorem 2.2.20, says that for certain kinds of restriction functions,
promotion on P-strict labelings of P x [¢]) with restriction function R is equivariant with rowmotion

on B-bounded I'(P, R)-partitions.

Definition 2.2.18. We call an element p € P fixed in AP (P) if there exists some value a such

that o(p) = a for all 0 € AB(P).

Definition 2.2.19. We say that AP(I'(P, R)) is column-adjacent if whenever (p1, k1) < (p2, k2)
in I'(P, R) and neither of (p1, k1) nor (ps, ko) are fixed in AP (I'(P, R)), then |ky — k1| = 1.

We call this column-adjacent because it implies that the non-fixed poset elements (p, k) of
I'(P, R) can be partitioned into subsets indexed by k, called columns, whose elements have covering
relations with other non-fixed elements only when they are in adjacent columns. For many nice

cases, including the posets considered in Section 2.4, the word column is visually appropriate.

Theorem 2.2.20. If AE(F(P, R)) is column-adjacent, then AE(F(P, R)) under Row is in equiv-

ariant bijection with Lpyg(u,v, R) under Pro.

Proof. Let T'(P, R) be the poset with elements T'(P,R) \ {(p,k) | (p,k) is fixed in AB(T(P, R))}
where (p, k) < (p/, k') in T(P, R) if and only if (p, k) < (p/, k') in T(P, R). To any ¢ € Ag(F(P, R))
we associate a T'( P, R)-partition ¢ in A*(L(P, R)) where 6(p, k) = o(p, k). We define the toggle Tip,k)
on AYT'(P, R)) as usual with the added restriction that, if (p/, k') > (p, k) in I'(P, R) and (p/,¥) is

fixed in AP (T'(P, R)) with o(p/, k') = a for all &, then the minimum value of the upper covers of (p, k)
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may not exceed a, and, similarly, if (p/, k') < (p, k) in ['(P, R) and (p/, k') is fixed as a in AB (T(P, R)),
the maximum value of the lower covers must be at least a. Thus, 7, 1)(5)(p, k) = T(p.) (o) (D, k).
Since these toggles on f(P, ]%)—partitions share the same commutation relations as toggles
on J(T'(P, R)), as noted in Remark 2.1.24, we can apply a conjugation result from [13] as follows.
Because AE(F(P, R)) is column-adjacent, if (p, k) < (p/, k') in T(P, R), then |k — k| = 1. Now, if 7
is the composition over all p € P of 7(; x), TogPro="---07 07071 0--- is conjugate to Row on
[(P, R) by [13, Theorem 4.19]. Therefore, TogPro is also conjugate to Row on AE(F(P, R)), and

we obtain the result by Theorem 2.2.8. O

Remark 2.2.21. As long as a toggle order is a column toggle order, as defined in [13], the compo-
sition of toggles will be equivariant with rowmotion, so there are many more toggle orders besides
that of TogPro that are conjugate to rowmotion. We do not need this full level of generality of

toggle orders.

We show in the following proposition that for the case where our restriction function is
induced by upper and lower bounds for each element (this includes the case of a global bound ¢),

we have the column-adjacent property, so Theorem 2.2.20 yields Corollary 2.2.24.
Proposition 2.2.22. AE(F(P,]/%E)) is column-adjacent.

The proof of the above uses the following lemma.
Lemma 2.2.23. [fk € RY(p) and k + 1 ¢ R2(p), then (p, k) is fived in AP(D(P,RY)).

Proof. Let o € AB(F(P,I/%E)) and f = ® (o) € pr[g](u,v,Rg). Suppose k € RC(p) and k + 1 ¢
Rl (p). If k+1 > max R%(p), then k = max]/%jl;(p)*, so (p, k) is fixed by the definition of B. Suppose,
then, that k + 1 < max R%(p). Then there exists p’ >p p such that k + 1 € R%(p’). Otherwise, for
all p’ >p p, either k + 1 > max R%(p'), k+ 1 < ay, or there exists k' > k +2 € R5(p). In all cases,
we could have f(p,i) = k + 1 wherever f(p,i) = k, a contradiction.

If k+ 1 and k + 2 € RY(p'), then, because P x [{]" is a convex subposet, any position
in the fiber f(F,) that can be labeled by k + 1 can also be labeled by k 4+ 2. Thus, if £ + 1
and k +2 € RY(p') for all covers p >p p with k +1 € Rl(p/), then k 4+ 1 € Rl(p). Therefore,
there must exist p; of the covers p’ such that k + 2 ¢ R(p1). Moreover, if o(p, k) < o(p1,k + 1),

by Lemma 2.2.15, the first position greater than k + 1 in f(F},) occurs before the first position
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greater than k in f(F},). In this position, any values greater than k + 1 and less than R%(p1)>k41,
including k + 2, would be possible, a contradiction. Thus o(p,k) = o(p1,k + 1). Now, either
(p1,k + 1) is fixed by B and we are done, or, by the above reasoning, there exists ps >p p; such
that o(p1,k+1) = o(p2, k +2) and k + 3 ¢ R%(p2). We continue this until there exists a maximal
pm € P such that o(p,k) = o(p1,k+1) = --- = 0(pm,k +m) and k +m + 1 ¢ R%(p,,). Since
pm is maximal, k +m + 1 ¢ R%(p,,) only if k +m = max R?(pm), 50 0(pm, k +m) is fixed by B.
Therefore o(p, k) is always equal to the value of a fixed element, and since o was arbitrary, (p, k)

is fixed in AB(D(P, RD)). O

Proof of Proposition 2.2.22. We show that if (p1, k1) < (p2, k2) in I'(P, ]/%\2) and |k — k1| > 1, then
either (p1,k1) or (p2,ke) is fixed. Without loss of generality, let ko — k3 > 1. If py = po, then
k141 ¢ RY(p1), so (p1, k1) is fixed by Lemma 2.2.23. If p; <p po, then ky 4+ 1 ¢ R%(p1), otherwise
k1 would not be the greatest element in R(p1) less than kg by definition of T'(P, 1{272) Thus, by

Lemma 2.2.23 again, (p1, k1) is fixed. O

Corollary 2.2.24. The set of P-strict labelings Lpq(u,v, R?) under Pro is in equivariant bijec-

tion with the set AB(F(P, }/272)) under Row.
Proof. This follows from Theorem 2.2.20 and Proposition 2.2.22. [

Remark 2.2.25. Note that if RZ (p) is a non-empty interval for all p € P, then we obtain Corollary

2.2.24 by Corollary 4.22 in [13]. However, even though RZ is induced by lower and upper bounds,

v

v can result in

this is not always the case. The requirement that R be consistent on P x [{]
gaps in a particular RZ (p) depending on v and v. As an example, consider the semistandard Young
tableau with shape (4,4,4,4,2,2,2)/(2,2,2) and global maximum 5 (that is, P = [7] with restriction

function Ri’ and u, v determined by the shape). In this case, the fourth row of the tableau can only

be labeled by elements of {1,2,4,5}.

2.2.4. Special cases of AE(I‘(P, R))
In this subsection, we consider cases in which AB (T'(P, R)) from our main theorem can be
more nicely described by restricting certain parameters. We begin with two propositions that show

when AE(F(P, R)) is equivalent to AY(T'(P, R)) or A%(I'(P, R)) from Definitions 2.1.15 and 2.1.17,
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and conclude with a corollary of our main theorem in the case where AB (D(P, R)) is simply the

product of the poset P with a chain. We use these results several times in Section 2.4.

Proposition 2.2.26. If R is consistent on P, then AE(F(P, R)) is equivalent to AY(T'(P,R)),

where 6(p, k) =€ — u(p) and €(p, k) = v(p).

Proof. We first consider the covering relations of the elements (p, l;:) in I'(P, f%) given by condition
(2) in Definition 2.2.2, where k € R(p)* \ R(p)* = {min R(p)*, max R(p)*}. If p; <p po, then
min R(p1)* = R(p1)

<min R(pp)+ 20d, since R is consistent on P, ]%(pl)<minR(p2) > min R(p;)*, so

(p1, min R(p1)*) < (p2, min R(p)*) in T(P, R). Similarly, max R(p;)* is necessarily R(p1)<max R(pa)*
and since there is no larger k € R(p2)* than max R(p2)* we have (p1, max R(p1)*) < (p2, max R(p2)*).
Thus, if (p1,k1) < (p2,ke) in I'(P, ]A%) with p1 # p2, then either (p1,k1), (p2,k2) € I'(P,R) or
(p1, k1), (p2, k2) € T(P, R) \T(P, R).

Therefore the only covering relations in I'(P, R) between elements of I'(P, R) \ ['(P, R) and
I'(P, R) are given by (1) in Definition 2.2.2. Specifically, these are (p, min R(p)) < (p, min R(p)*)
and (p, max R(p)*) < (p, max R(p)) for all p € P.

The above shows that (py, k1) < (pa, k) in T'(P, R) if and only if (p1, k1) < (p2, k2) in T(P, R).
Let 0 € AE(F(P, R)). Then, since o(p, max R(p)*) = v(p), o(p,min R(p)*) = ¢ — u(p), and
(p,max R(p)*) <ppg) (pk) <peppy (pminR(p)*) for all k € R(p)*, we have v(p) < o(p,k) <
¢ — u(p) for all (p,k) € T(P,R). Thus the restriction of ¢ to I'(P, R) is an element of A%(T'(P, R))

where 0(p, k) = £ — u(p) and €(p, k) = v(p), and, since this restriction only omits the fixed values

of o, restriction to I'(P, R) is a bijection and we have the desired equivalence. O

Proposition 2.2.27. If u(p) = v(p) = 0 for all p € P, then AE(F(P, R)) is equivalent to
AYT(P,R)).

Proof. Since u(p) = v(p) = 0 for all p € P, P x [{]; = P x [{] by Definition 2.1.3. Since R is

consistent on P X [¢] it must also be consistent on P, and we can apply Proposition 2.2.26 where

d(p) = ¢ and €(p) = 0 for all p € P, which, by Remark 2.1.18, gives the result. O

See Figures 2.1 and 2.12 for examples of this equivalence.
For the following lemma and corollary of our main theorem, we consider a poset P to be

graded of rank n if all maximal chains of P have n + 1 elements.
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Lemma 2.2.28. Let P be a graded poset of rank n. Then I'(P, RY) is isomorphic to P x [¢ —n — 1]

as a poset.

Proof. Write P x [ —n—1] as {(4,7) | 1 <i<mn,1 <j<qg—mn—1}, where (p,j) < (p/,J’) if and
onlyif p=p and j =5 —1or j = j and p < p’ (that is, the usual ordering (p,j) < (p',j’) if and
only if p <p p/ and j < j').

Recall the definition of h(p) from Definition 2.2.4. Since u = v = 0, RP is consistent on
P, and, since P is graded, for all p € P we have R%(p) = {h(p),h(p) +1,...,q — n + h(p) — 1}.
By definition of I" (as noted in [13, Thm. 2.21]), (p,k) < (p, k") in T'(P, R?) if and only if either
p=p and k—1=Fk or p<p and k+ 1 = k’. Consider the map that takes (p, k) € I'(P, R?) to
(p,g—n+h(p)—k—1) € [P] x[¢—n—1]. This map is a bijection to the elements of [n] x [¢ —n —1],
since h(p) <k < qg—n+h(p) —2 implies 1 < g—n+h(p) —k—1 < g—n— 1. Moreover, the covers
of (p,k) in I'(P, R?) correspond exactly to the covers of (p,g —n+i—k—1)in P x [¢ —n — 1],
as (p,g—n+h(p)—k—1)<x e Px[g—n—1]if and only if z = (p,¢g —n+ h(p) — (k—1)) or
z=(p,q—n+(h(p)+1)—(k+1)), where p<p’ (and thus h(p) + 1 = h(p’)). Therefore I'(P, R?)

is isomorphic as a poset to P X [¢ —n — 1]. O

Corollary 2.2.29. Let P be a graded poset of rank n. Then Lp, g (R?) under Pro is in equivariant

bijection with A*(P x [q¢ —n — 1]) under Row.

Proof. By Corollary 2.2.24 and Proposition 2.2.27, Lp 4 (R?) under Pro is in equivariant bijection
with AY(T'(P, R7)) under Row which, by Lemma 2.2.28, is exactly A*(P x [¢ —n — 1]). O

2.3. P-strict promotion and evacuation

In this section, we define promotion on P-strict labelings Lp, ¢ (u, v, R?) via jeu de taquin
and prove Theorem 2.3.10, which shows this is equivalent to our promotion via Bender—Knuth
involutions from Definition 2.1.12. We also define evacuation on P-strict labelings and show some
properties of evacuation in this setting.
2.3.1. Third main theorem: P-strict promotion via jeu de taquin

We begin with the definition of jeu de taquin promotion on P-strict labelings £ p 4 (u, v,R?).

Definition 2.3.1. Let Zg(P x [¢]) denote the set of labelings ¢ : P x [¢]), — (Z U O). Define the

u

ith jeu de taquin slide jdt; : Zg(P x [{]y) — Zn(P x [£]%) as follows:
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i g(p,k) =0 and g(p', k) =i for some p’ >p p (2.1a)

; gp,k) =0, g(p,k+1)=1i,and g(p',k+ 1) # O (2.1b)
for any p' <pp '

jdti(g)(p, k) = { O 9(p,k) =i and g(p', k) = O for some p’ <p p (2.1c)
k) =i, g(p.k — 1) = O,and g(p/, k — 1) # i
- 9(p, k) =i, g(p, ) = O,and g(p', ) # 1 (2.1d)
for any p' >pp
g(p,k)  otherwise. (2.1e)

In words, jdt;(g) replaces a label O at (p, k) with ¢ if 4 is the label of a cover of (p, k) in its layer, or
if 7 is the label of a cover of (p, k) in its fiber and this cover does not also cover an element within
its own layer labeled by 0. Furthermore, jdt,(g) replaces a label ¢ by O if (p, k) covers an element
in its layer labeled by O, or replaces a label ¢ by O if (p, k) covers an element in its fiber labeled by
0O, provided said element is not covered by an element in its layer labeled with i. Aside from these
cases, jdt;(g) leaves all other labels unchanged.

Let jdt,,; : Zo(P) — Zp(P) be defined as

g(x) otherwise.

In words, jdt,_,;(g)(z) replaces all labels i by j.

For f € Lpyjg(u,v, RT), let jdi(f) = jdtg_(g11) © (jdb,) 0 (jdt,_1) o+ o (jdbs)’ o (jdty) o
jdt1_,o(f). That is, first replace all 1 labels with 0. Then perform the ith jeu de taquin slide jdt,
£ times for each 2 < ¢ < ¢. Next, replace all labels O with g + 1. Define jeu de taquin promotion
on f as JdtPro(f)(z) = jdt(f)(x) — 1.

Example 2.3.2. Figure 2.7 shows an example of JdtPro being applied to a P-strict labeling. In
this example, P is the Y-shaped poset on four elements and ¢ = 5. We perform JdtPro on the
P-strict labeling f € pr[g,}(u,U,R?’) where u(a,b,c,d) = (4,1,0,1) and v(a,b,c,d) = (0,0,0,1).
Observe that as part of JdtPro, we perform jdto_,, o (jdts)® o (jdts)® o jdt,_,5(f). However, in this
example, we do not show the applications of jdt, and jdt; that have no effect on the labeling. The

final step of JdtPro is to subtract every label by 1, yielding the new P-strict labeling JdtPro(f).
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= JdtPro(f)

Subtract by 1 - - //@ﬁ%/

Figure 2.7. We perform JdtPro on the P-strict labeling f € Lpy5(u,v,3) where u(a,b,c,d) =
(4,1,0,1) and v(a,b,c,d) = (0,0,0,1). For the sake of brevity, we do not show the applications of
jdty and jdts that do nothing.

In Proposition 2.3.5, we show that if we begin with a P-strict labeling f, JdtPro(f) is
always a P-strict labeling. In order to prove this, we need Lemmas 2.3.3 and 2.3.4, which give us

conditions that a labeling cannot violate when performing jeu de taquin slides.

Lemma 2.3.3. Let f € Lpyy(u,v, R?). When performing a jeu de taquin slide of JdtPro(f), no

integer labels can violate the P-strict labeling order relations.

Proof. Because we apply all jeu de taquin slides jdt,, then all jeu de taquin slides jdts, and so on

for each jdt; where 2 < i < g, each time O is replaced by a number, that number is the smallest
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label of its covers. As a result, no integer labels can violate the order relations after performing a

jeu de taquin slide. O

Lemma 2.3.4. Let f € Lpy(u,v,RY). If g € Zg(P x [{];) is obtained by performing jeu de

u

taquin slides on f, we can never have jdt,(g)(p, k) = jdt,(¢9)(p', k) = O when p’ >p p.

Proof. We show the claim by contradiction. Suppose jdt,;(g)(p, k) = jdt;(¢)(p', k) = O for some
p’ >p p. Furthermore, assume this is the first application of a jeu de taquin slide for which
this occurs. In other words, we do not have two comparable elements within the same layer
that both have a label of O prior to this application of jdt;. Suppose this occurs from (2.1c) of
Definition 2.3.1. This implies g(p”, k) = O for some p” < p p, which cannot occur by our assumption
that jdt;(¢9)(p, k) = jdt;(9)(p/, k) = O is the first application of a jeu de taquin slide for which we
have comparable elements within the same layer that are both labeled with OJ.

Now assume jdt;(g9)(p,k) = jdt;(9)(p',k) = O occurs after applying (2.1d) of Defini-
tion 2.3.1. For this to occur, we would need either g(p, k) =i and g(p', k) = O, or g(p, k) = O and
g(p', k) = i. However, by assumption, any element between (p, k) and (p/, k) cannot be labeled with
O. Furthermore, by Lemma 2.3.3, we cannot have any integer labels violate the order relations,
so any element between (p,k) and (p/, k) cannot be labeled with i. As a result, we may assume
p' >p p. We can eliminate g(p, k) = O and g(p, k) = i as a possibility, as (2.1a) of Definition 2.3.1
would be applied to g(p, k), resulting in jdt;(¢)(p, k) = i. Therefore, we may assume g(p,k) = i
and g(p', k) = O. We may also assume g(p,k — 1) = O in order for (2.1d) of Definition 2.3.1 to
be invoked. However, by our assumption, this means g(p’,k — 1) cannot have label O, implying
that g(p/,k — 1) = 4. By definition, (2.1d) of Definition 2.3.1 cannot be applied. We obtained
a contradiction with each of (2.1c) and (2.1d) of Definition 2.3.1, implying that we cannot have

jdti(9)(p, k) = jdt;(9)(», k) = O for some p’ >p p. O
Proposition 2.3.5. For f € Lpyg(u,v, R?), JdtPro(f) € Lpyg(u,v, R).

Proof. By construction, JdtPro(f) is a labeling of P x [¢]Y with integers in {1,...,q}. By the
definition of JdtPro(f), we perform each jeu de taquin slide ¢ times. Note that we only need to
perform each jdt; until the O labels are above the i labels in every fiber where both appear. This

is guaranteed to happen if we perform it ¢ times, as every fiber is of length at most £. We only
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need to verify that JdtPro(f) has the order relations of a P-strict labeling. By Lemma 2.3.3, no
integer labels of JdtPro(f) can violate the order relations after performing a jeu de taquin slide.
Additionally, by Lemma 2.3.4, if g € Z5(P x [(]%) is obtained by performing jeu de taquin slides on
f, we can never have jdt;(g)(p, k) = jdt;(g)(p', k) = O when p’ >p p. Because of this, we guarantee
that no ¢ + 1 labels violate the order relations after performing jdtn_,,41) as part of JdtPro. As
a result, this means the strict order relations of the P-strict labeling will be satisfied when we

perform jdtg_, (441 O

Our goal is Theorem 2.3.10, which states that jeu de taquin promotion from Definition 2.3.1
coincides with our definition of promotion by Bender-Knuth involutions. The crux of the proof is
Lemmas 2.3.6 and 2.3.8. The idea of Lemma 2.3.6 is as follows. By definition, when performing
JdtPro(f), we perform each jeu de taquin slide £ times. We observe that for f € Lpyjy(u,v, R?),
when we apply jdt;, cases (2.1a) and (2.1c) of Definition 2.3.1 can only be invoked on the first

application of jdt,.

Lemma 2.3.6. For f € Lpyq(u,v, RT), when applying jdt; in JdtPro(f) for any2 <i <gq, (2.1a)

and (2.1c) of Definition 2.5.1 can only be invoked on the first application of jdt;.

Proof. We begin by proving the result for jdt,. Suppose g(p,k) = O. If there is a cover (P, k)
of (p,k) in the kth layer of P x [¢]¥, then we must have g(p', k) = ¢, as g(p', k) could not be less
than ¢ nor could it be O by Lemma 2.3.4. Furthermore, if there does not exist a cover (p/, k) of
(p, k) in the kth layer, neither (2.1a) nor (2.1c) is invoked on O from g(p, k) when applying jdt,.
Therefore, we may assume a cover of (p, k) in the kth layer has a label of ¢q. In other words, we
assume there exists a p’ > p such that g(p’, k) = ¢. When applying jdt,, the first application of jdt,
will invoke (2.1a) and (2.1¢), resulting in g(p’, k) being labeled with O for any labels g(p/, k) such
that p’ > p and g(p’, k) = q. However, on subsequent applications of jdt,, (2.1a) cannot be invoked
to result in a O for any g(p”, k) where p” > p’. This is because g(p”, k), a label for a cover of (p', k)
in the kth layer, would need to be labeled with either ¢ or O, neither of which are possible due to
Lemma 2.3.4. This means there does not exist a cover (p”, k) of (p,k) in the kth layer at all, as
g(p”, k) also cannot be less than g.

We might be concerned that subsequent invocations of (2.1b) or (2.1d) within the fiber F},

results in a [0 appearing in a layer with which (2.1c) can be invoked for a second time. However,
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because there is no (p”, k) € P x [(]?, there cannot be an element (p”, k') € P x [(]¥ in any layer £’
where k' > k by definition of v. Hence, subsequent invocations of (2.1b) or (2.1d) cannot position
a O into a separate layer such that (2.1c) can be invoked for a second time. As a result, for this
case, the label O of g(p, k) can affect the label of a separate fiber only on the first application of
jdt, via (2.1a) and (2.1c). An analogous argument shows that if we begin with g(p, k) = ¢, the
label of ¢ can only affect the label of a separate fiber on the first application of jdt,.

We have shown that when applying jdt, in JdtPro(f), (2.1a) and (2.1c) of Definition 2.3.1
can only be invoked on the first application of jdt,. To show the result for any jdt,, let f<; with
restriction R' denote the P-strict labeling f restricted to the subposet of elements with labels less
than or equal to i. Because f<; has restriction function R?, (2.1a) and (2.1c) of Definition 2.3.1 can
only be invoked on the first application of jdt; in JdtPro(f<;), which means these cases can only

be invoked on the first application of jdt; in JdtPro(f). O
In order to state Lemma 2.3.8, we need the following definition.

Definition 2.3.7. For f € Lp,q(u,v, R?), define JdtPro;(f) to be the result of freezing all labels of
f which are at least i+ 1, then performing jeu de taquin slides on the elements with labels less than
or equal to i. In other words, perform jdtD_>(i+1)(jdti)é o(jdt;_1)0--o(jdts)f o (jdty)  ojdty 5 (f),
then reduce all unfrozen labels by 1. We clarify that boxes labeled ¢ + 1 from the step jdto_, (1)

are considered unfrozen.

To prove Theorem 2.3.10, it will be sufficient to show that applying JdtPro,—; and the

Bender-Knuth involution p, yields the same result as JdtPro itself.
Lemma 2.3.8. For f € Lpyg(u,v, R?), JdtPro(f) = pg—1 o JdtProg—1(f).

Proof. Both JdtPro(f) and py—1 0JdtPro,_1(f) begin by applying (jdtq_l)go (jdtq_Q)eo- --o(jdtg)fo
(jdty)fojdty o to f. Let f' € Zo(Px[{]%) denote the labeling obtained after performing these jeu de
taquin slides. What remains to be shown is that performing jdt_,411)© (jdtq)e( /') and subtracting
1 from all labels results in the same P-strict labeling as performing jdto_, (f"), subtracting 1 from
all unfrozen labels, then performing the Bender-Knuth involution pg_1.

First, consider the case that there are no boxes OJ in f’. This implies that there were no

elements labeled 1 in f, so JdtPro(f) reduces all labels by 1. On the other hand, JdtPro,—1(f) will
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reduce all labels by 1 except labels that are g, as these labels are frozen. However, after reducing
unfrozen labels, there are no elements with a label of ¢ — 1, which means p,—; changes all labels of
q to ¢ — 1. The cumulative effect is that all labels in f are reduced by 1. Therefore, in this case,
we have JdtPro(f) = pg—1 o JdtProg_i(f).

We now consider the case where f’ has at least one element labeled 0. When applying
jdt,, a label can only change if it is O or ¢. By Lemma 2.3.6, when applying jdt,, (2.1a) and
(2.1c) of Definition 2.3.1 can only be invoked on the first application of jdt,. We now show that
when applying jdt,, the first application of jdt, places the correct number of elements labeled ¢
and O in each fiber. Suppose F), has a elements labeled with O and b elements labeled with g.
Additionally, suppose z of the elements that are labeled with O have a cover in a separate fiber
labeled with ¢ and suppose y of the elements that are labeled with ¢ cover an element in a separate
fiber labeled with a 0. When performing jdt,, the x labels of O in F}, change to ¢ and the y labels
of ¢ in F}, change to 0. Observe that the application of jdt, may cause some labels of ¢ and O to
change positions within F},. However, in Definition 2.3.1, jdt, prioritizes (2.1a) and (2.1c), so this
might not occur. Because we know a label remains in its fiber after the first application of jdt,,
the remaining applications of jdt, results in all labels O above all labels of ¢ in Fj,. Additionally,
we can determine that there are a — x 4+ y elements labeled O and b+ = — y labeled ¢ in F),. After
performing (jdtq)f for all fibers, we apply Jdtg_s(g+1) to replace all labels of O with ¢ 4+ 1, then
reduce every label by 1. The result in F}, is that we now have b + x — y elements labeled ¢ — 1 and
a — x + y elements labeled gq.

To determine what happens when we apply p,—1 o JdtPro,—1(f), we begin by performing
Jdtg (g f’) and subtracting 1 from all unfrozen labels. F}, will have a elements labeled with ¢ — 1
and b elements labeled with ¢. Furthermore, we know that z of the elements that are labeled with
g — 1 will have a cover in a separate fiber labeled with a ¢ and that y of the elements that are
labeled with ¢ will cover an element in a separate fiber that is labeled with a ¢ — 1. This means F),
has a — z labels of ¢ — 1 that are free and b — y labels of ¢ that are free. Performing p,_1 switches
these into a — = elements labeled with ¢ and b — y elements labeled ¢ — 1. Combining this with
the x fixed labels of ¢ — 1, we obtain b4+ x — y elements labeled ¢ — 1. Similarly, with the y fixed
labels of ¢, we obtain a — x + y elements labeled ¢g. This matches the JdtPro(f) case, allowing us

to conclude that JdtPro(f) = py—1 o JdtPro,—1(f). O

44



Subtract by 1

= JdtProg_1(f)

Unfreeze /////W/
®@\@/® B

= pg—1 0 JdtProg_1(f)

Figure 2.8. We perform p,_1 o JdtPro,—1(f) on f € Lpy5(u,v,3) from Figure 2.7. Labels colored
blue are frozen. For the sake of brevity, we do not show the applications of jdt, that do nothing.

Before presenting the main result of this section, we first give an example demonstrating

pg—1 © JdtPro,_1 and the result of Lemma 2.3.8.

Example 2.3.9. Figure 2.8 shows an example of p,_1 o JdtPro,_; being applied to the same
P-strict labeling from Figure 2.7 and Example 2.3.2. To perform JdtPros, we first freeze all
labels that are greater than 2. In Figure 2.8, these frozen labels are colored blue. We then apply
jdtg_5 o (jdt5)® o jdt,_,5(f). Note that in Figure 2.8, we do not show applications of jdt, that
do nothing. Following this, we subtract all unfrozen labels by 1. After this step, we have finished
applying JdtProg, so all labels are now considered unfrozen. We conclude by applying the Bender-

Knuth involution ps. Observe that the resulting P-strict labeling in Figure 2.8 is identical to the
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P-strict labeling in Figure 2.7 obtained by applying JdtPro. Lemma 2.3.8 ensures that this will

always be the case.

We proceed to the main theorem of this section, which states that P-strict promotion via
jeu de taquin and P-strict promotion via Bender-Knuth toggles are equivalent. Our proof uses

Lemma 2.3.8 and an inductive argument.
Theorem 2.3.10. For f € Lpyq(u,v, R?), JdtPro(f) = Pro(f).

Proof. Let f<; with restriction R’ denote the P-strict labeling f restricted to the subposet of ele-
ments with labels less than or equal to i. Observe that by Lemma 2.3.8, we have JdtPro(f<2) = p10
JdtPro; (f<2) = p1(f<2). Now suppose JdtPro(f<;) = pi—10---0p1(f<i). By applying Lemma 2.3.8,
we obtain JdtPro(f<;11) = pioJdtPro;(f<it+1). Observe that JdtPro;(f<i+1)<i = JdtPro(f<;). This
implies that JdtPro;(f<it1) = pi—1©--- 0 p1(f<it+1), as none of p1, ..., p;—1 affect i + 1. Therefore,
JdtPro(f<it1) = piopi—10---0pi(f<it+1). By induction, we know this holds for i = ¢ — 1, yielding

JdtPro(f<q) = pg—1 0 pg—2 0 -+ 0 p1(f<q), which is the desired result. O

2.3.2. P-strict evacuation

Evacuation has been well studied on both standard tableaux and semistandard tableaux.
In [6], Bloom, Pechenik, and Saracino provide explicit statements and proofs for several evacuation
results on semistandard tableaux. We define evacuation on P-strict labelings and investigate which

of those results can be generalized and which cannot.

Definition 2.3.11. For f € Lpy(g(u,v, R?), we define evacuation in terms of Bender-Knuth

involutions:

€ =(p1)o(p2opi)o---o(pg—20---0pyopi)o(pg—10---0pz0p1)

Additionally, define dual evacuation:

&' = (pg-1) © (pg—20pg—1) 0+ 0(p20 -0 pg_20pg_1) 0 (p10--+0 pg_20 pg_1)

Evacuation and dual evacuation have a special relation on rectangular semistandard Young

tableaux. We generalize that relation here.
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Definition 2.3.12. Fix the notation for the product of chains poset as: [a;] X [ag] X -+ X [ag] =
{(il,’iQ,...,ik) ‘ 1 S ij S aj,l S] § k‘}

Definition 2.3.13. Given (il,ig, .. ,ik) € [al] X [ag] X+ X [ak], let (a1 4+ 1 —11,a0 + 1 — 19,
...,ar + 1 — i) be the antipode of (i1, 12,...,i).

Definition 2.3.14. Suppose P = [a1] X [ag] x --- X [ag]. For f € Lpy(R?), we obtain a new

labeling by interchanging each label with the label of its antipode, then replacing each label ¢ with

g + 1 —i. Denote this new labeling as fT.
Lemma 2.3.15. Let P = [a1] X [ag] X --- X [ax] and f € Lpyq(R?). Then E'(f) = E(fF)".
Proof. This follows from the definitions of evacuation and dual evacuation as a product of Bender-

Knuth involutions. ]

Since P-strict labelings generalize both increasing labelings and semistandard Young tab-
leaux, a natural aim would be to generalize results from these domains. Bloom, Pechenik, and
Saracino found a homomesy result on semistandard Young tableaux under promotion [6, Theo-
rem 1.1]. A natural generalization to investigate would be to P-strict labelings under promotion,
where P is a product of two chains and £ = 2. We find that the result does not generalize due to
several evacuation results failing to hold. We note below two statements on evacuation which do

generalize and two examples showing statements that do not generalize.

Proposition 2.3.16. Let P be a poset. For f € Lpyy(u,v, R?), we have the following:
1 E(f) = f
2. £oPro(f) = Pro to&(f)

Proof. Both parts rely only on the commutation relations of toggles (see Remark 2.1.24), and

therefore follow using previous results on the toggle group. [

Remark 2.3.17. Pro?(f) = f does not hold for general f € L((q)x[3])x[2](2?). The P-strict labeling

fe E([g]x[g])xp](R?) from Figure 2.9 gives a counterexample.

Remark 2.3.18. £(f) = f* does not hold for general f € L(q]x[s])x[2](R?). The P-strict labeling

fe E([g]x[z])X[Q](R7) from Figure 2.10 gives a counterexample.
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Figure 2.9. By applying Pro” to the P-strict labeling f on the left, we obtain the P-strict labeling
on the right. We see that these are not equal and so Pro?(f) = f does not hold in general.

2.4. Applications of the main theorems to tableaux of many flavors

In this section, we apply Theorems 2.2.8 and 2.2.20 to the case in which P is a chain; in the
subsections, we specialize to various types of tableaux. We translate results and conjectures from
the domain of P-strict labelings to B-bounded T'(P, R)-partitions and vice versa.
2.4.1. Semistandard tableaux

First, we specialize Theorem 2.2.8 to skew semistandard Young tableaux in Corollary 2.4.3.
We relate this to Gelfand-Tsetlin patterns and show how a proposition of Kirillov and Beren-
stein, Corollary 2.4.6, follows from our bijection. Finally, we state some known cyclic sieving and
homomesy results and use Corollary 2.4.3 to translate between the two domains.

We begin by defining skew semistandard Young tableaux.

Definition 2.4.1. Let A = (A, A2, ..., \y) and p = (p1, g2, . .., ) be partitions with non-zero
parts such that © C A. Where applicable, define p; := 0 for j > m. Let A\/u denote the skew
partition shape defined by removing the (upper-left justified, in English notation) shape p from
A. A skew semistandard Young tableau of shape \/u is a filling of A/ with positive integers
such that the rows weakly increase from left to right and the columns strictly increase from top to
bottom. Let SSYT(A/u, q) denote the set of semistandard Young tableaux of skew shape \/u with

entries at most ¢. In the case u = (), the adjective ‘skew’ is removed.

In this and the next subsections, fix the chain [n] = p; <ps < -+ < p,. We also use the

notation ¢" for the partition whose shape has n rows and ¢ columns.
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Figure 2.10. By applying £ to the P-strict labeling f in the upper left, we obtain the P-strict
labeling in the upper right. Comparing £(f) to f*, shown in the bottom right, we see that these
P-strict labelings are not equal and so £(f) = f1 does not hold in general.

Proposition 2.4.2. The set of semistandard Young tableauzr SSYT(N/u,q) is equivalent to

Linxca] (ws v, RY), where u(p;) = pi and v(p;) = Ay — A; for all 1 <i <n.

Proof. Each box (7,7) of a tableau in SSYT(\/u, q) corresponds exactly to the element (p;,j) in
P x [f]i. The weakly increasing condition on rows and strictly increasing condition on columns in
SSYT(A/pu, q) corresponds to the weak increase on fibers and strict increase on layers, respectively,

in E[n}x[)\ﬂ(u,v,Rq). ]

We now specify the B-bounded I'(P, R)-partitions in bijection with SSYT(\/u,q). Recall

B from Definition 2.2.7.

Corollary 2.4.3. SSYT(\/u,q) under Pro is in equivariant bijection with AE(F([n],@)) under
Row, with £ = A1, u(p;) = wi, v(p;) = A1 — A\i for all 1 < i < n. Moreover, for T € SSYT(\/u,q),
® (Pro(T")) = TogPro (®(T)).
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Proof. By Proposition 2.4.2, P-strict labelings L) y,](u, v, RY) with u and v as above are exactly
semistandard Young tableaux of shape \/u with largest entry g, SSYT(\/u, ¢). Therefore, the first
claim follows from Corollary 2.2.24, where a(p;) = 1 and b(p;) = ¢ for all 1 < ¢ < n. The second

claim follows directly from Theorem 2.2.8. O

When P = [n], the lemma underlying our first main theorem is equivalent to a result
of Kirillov and Berenstein regarding the correspondence between Bender-Knuth involutions on
semistandard Young tableaux and elementary transformations on Gelfand-Tsetlin patterns. We
define these objects below and then state their result, Corollary 2.4.6, in our notation. We then
prove a more general result from which this follows, Theorem 2.4.8, as a corollary of our first main

theorem.

Definition 2.4.4. Given partitions A = (A1,...,Ay), = (l1,..., tm) such that © C A, and ¢, a
Gelfand—Tsetlin pattern from p to A with ¢ + 1 rows is a trapezoidal array of nonnegative

integers a = {a;j }o<i<q,1<j<i+m satisfying the following whenever the indices are defined:
L. aoj = py,
2. ajj > aj1,
3. a;j > a;y1,5+1, and
4. ag; = Aj, where if j > ||, we say \; =0
Let the set of Gelfand-Tsetlin patterns from p to A with ¢ + 1 rows be denoted GT(A, u, q).

Definition 2.4.5. Let a € GT(A, p1,q). For 1 < k < g—1, define the elementary transformation

te(a) : GT(A 1, q) = GT(A, p, ) as

ag, 5 1 75 k
tk(aij) =
min(a;—1,;—1, Git+1,5) + max(ai—1,j, @i+1,j+1) — a;; otherwise,

where we consider a;; = oo if j <1 and a;; =0 if j > ¢ +m.

We use the mechanism of our main theorem to prove Theorem 2.4.8, which yields the

following result. We prove this corollary right before Remark 2.4.11.
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Corollary 2.4.6 ([31, Proposition 2.2]). The set SSYT(\/u,q) is in bijection with GT(, i, q),
where \; := A\ — fn—it1 and fi; ;= X\ — Ap—iy1. Moreover, py on SSYT(N/p,q) corresponds to ty_
on GT(X, fi, q).

To put this corollary in the language of our main theorem, we show that GT(S\, i, q) is
equivalent to AB(T'([n], R)), where the restriction function R and the bounding function B are

defined below.

Definition 2.4.7. For any convex subposet P x [¢]2 and global bound ¢, let R be the (not necessarily

consistent) restriction function on P given by R(p) = {0,1,...,q+ 1} for all p € P, and let B be
defined on I'(P, R) as B(p,0) = £ — u(p) and B(p,q) = v(p).

Thus the structure of I'(P, R) consists of the chains (p,0) > (p,1) > --- > (p, ¢) and we have
(p, k) < (p',k+ 1) whenever p<pp’ and 0 < k < ¢ — 1. As we will see in the proof, these covering
relations provide the inequality conditions (2) and (3) from Definition 2.4.4 in AB(I'(P, R)) when
P = [n], and B gives conditions (1) and (4).

By generalizing semistandard tableaux to P-strict labelings, we are able to prove the equiv-
ariance result of Corollary 2.4.6 for any poset P. In this way, AB(I'(P,R)) can be considered a

generalization of Gelfand-Tsetlin patterns.

Theorem 2.4.8. The set Lpyy(u,v, R?) is in bijection with the set AE(F(P, R)) and py on

Lpyig(u,v, RY) corresponds to 11, on AB(T(P,R)).

We first define the bijection map using the value ji from Definition 2.2.13. Recall from

Definition 2.2.12 that we consider the label f(p,i) to be in position i.

Definition 2.4.9. Let ¥ : Lp,q(u,v, R?) — AB(L(P,R)) where U(f)(p, k) =£+1— Jr- We can
treat U(f)(p, k) as the number of positions j in the fiber F), such that f(p, ) is larger than k, where

we consider f(p,i) > k in the positions £ + 1 — v(p) < i < £ for which f is not defined.
Refer to Figure 2.11 for an example of the map W.

Lemma 2.4.10. ¥ s a bijection.

Proof. We begin by verifying that ¥(f) € AB(I'(P,R)). For 1 < k < q, (p, k) < (p,k — 1). Since

f is weakly increasing on fibers, we have W(f)(p,k) < ¥(f)(p,k — 1), as there must be at least
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as many positions greater than k — 1 as are greater than k. If p<pp’ and 0 < k < g — 1, then
(p, k) <r(p,ray (P, k 4 1). Since there are W(f)(p, k) positions greater than &k in f(F}), there must
be at least as many positions greater than k41 in f(F)) in order to accommodate those values in
f(Fp), as f is strictly increasing on layers. Thus W(f)(p, k) < U(f)(p',k+1), so U(f)(p, k) respects
all covering relations in I'(P, R). Moreover, ¥(f)(p,0) = ¢ — u(p) since the first position greater
than zero is at f(p,u(p) + 1) for all p, and ¥(f)(p,q) = v(p) since the only positions considered
greater than ¢ are those after the end of the fiber. Thus ¥(f) € AB(I'(P,R)).

For the reverse map, let & € AB(I'(P,R)) and let U~1(5)(p,£ + 1 — i) = k for i such that
a(p, k) < i <@(p,k—1). Since a(p,k) < 7(p,k — 1), Y~1(7) is weakly increasing on fibers, and
because 7(p, k) > &(p/,k — 1) for all p’ <p p, if ¥"1(7)(p,j) = k then U1(7)(p/,j) < k —1, so
U~1(7) is strictly increasing across layers. Thus ¥~1(7) € £ px(g(u, v, RY).

Now (VU ~1(7))(p, k) = 7 (k) since there are &(p, k) positions greater than k in ®~(7)(F,),
and, if f(p,i) =k, UL (U(f))(p,i) = k since ¥(f)(p,k) < £+ 1— (£ +1— i) =i. Therefore ¥ is a

bijection. ]

Proof of Theorem 2.4.8. Via the maps ® from Definition 2.2.9 and ¥ from Definition 2.4.9, the set
AB(D(P,R)) is in bijection with AB (T'(P, 1{271)) We wish to show this bijection ®¥~! is equivariant
under the action of 7, 1.

Let & € AB(T(P,R)), f = U=1(®) € Lpyjg(u,v, RY), and o = (f) € AB(T(P,R9)). By
Lemma 2.2.15, o(p, k) = {+1—j° = &(p, k) where k € R(p)* (that is, for (p, k) € T(P, R7)\domB).
Suppose k ¢ Ri(p)*. If k < min RY(p), then f(p,?) is always greater than k, so a(p, k) = ¢ — u(p).
If £ > max R%(p)*, then f(p,7) is always less than or equal to k, so @(p, k) = v(p). Finally, if k; is
the largest value in RY(p)* such that k; < k, then @(p, k) = &(p, k1), since the number of positions
greater than k; must be the same as the number of positions greater than k. By Lemma 2.2.23,
(p, k1) is fixed in AE(I’(P, ﬁl)) and therefore in AB(D(P,R)) since k1 € R%(p)*. Thus, whenever
k ¢ Ri(p)*, a(p, k) is fixed, so 7(;, 1) acts as the identity on AF(F(P, R)). Now, for equivariance,
we need only show that 7, 1) (o) (p, k) = T(.1) (@) (p, k) whenever k € RI(p)*.

Let k € Ri(p)*. If (p,k) covers and is covered by the same elements in I‘(P,}/?\q) as in
['(P, R), then we are done, so we will consider the cases in which these covers differ. Suppose

k1 > k+1 and either (p, k) > (p, k1) in I'(P, ]/%\q) or there exists p’ >p p such that (p, k) < (p/, k1). In
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each case, by definition of I', k+1 ¢ R%(p)* so, by Lemma 2.2.23, (p, k) is fixed in AE(F(P, ﬁl)) and
therefore in AF(F(P, R)). Now suppose k1 < k — 1 and either (p, k) < (p, k1) or there exists p’ <pp
such that (p,k) > (p/, k1). In the first case, o(p, k1) = T(p, k1) = &(p,k — 1). In the second case,
k—1¢ R(p'), otherwise we would have (p, k) > (p/,k — 1), so o(p/, k1) =5, k1) =5, k — 1).

In both cases where the covers in T'( P, Ri ) differ from I'(P, R), the minimum value of the up-
per covers and the maximum value of the lower covers of (p, k) is unchanged between AB (D(P, Ri )
and AP (T(P,R)). Thus, 71,4 (0)(p, k) = (1) (@) (p, k).

By the above, 7, on .AE(F(P, R)) is equivalent to 7 on Aé(F(P,}/ZTI)). Thus, by Lemma

2.2.11, 7, on AB(I'(P, R)) corresponds to pj, on Lpyig(u,v, RT). O

In the following proof of the Kirillov and Berenstein result, we consider a Gelfand-Tsetlin
pattern as a parallelogram-shaped array {ai;}o<i<q1<j<n With the same properties described in

Definition 2.4.4.

Proof of Corollary 2.4.6. Following Proposition 2.4.2, given SSYT(A\/pu, q), define u(p;) = u; and
v(pi) = A1 — A for all 1 <4 < n. Then SSYT(M\/p, q) is equivalent to Ly, y,)(u, v, RY). Thus, to
apply Theorem 2.4.8, consider AB(T'([n], R)) where B is defined using the u and v above, that is,
B(pi,0) = A1 — p; and B(pi, q) = A\ — i for 1 <i <.

Let7 € .AE(F([n],F)). Then the array given by a;; = (ppy1—j,q—1i) for 0 <i < gand 1 <

J < nsatisfies the inequalities a;; > a;—1 j and a;; > a1 j+1, since (Ppt1—j,¢—1)> (Ppt1—j,¢—i+1)

and (pp41—j,q — 1) > (pn—j,q — i — 1) in I'([n], R). Additionally, ag; = F(pnt1—j,q) = A1 — tnt1—j
and aqj = 0(Pnt1—5,0) = A — Ang1—j. Thus {a;;} € GT(X, fi, q). Since the map 7 — {ai;} given
above is invertible (as it simply “rotates” the I'([n], R)-partition 7), AB(I'([n], R)) is equivalent to
GT(X, i, q).

By their respective definitions, the toggle 7(,, 1) at (pi,k) on .AE(F([n],E)) is exactly
the elementary transformation t,  at a, gq_; on GT(X,fi,q), so 7, on AB(T([n],R)) corre-

sponds to t,_j on GT(S\,[L, q). Thus, by Theorem 2.4.8, t,_; on GT(S\,[L,Q) corresponds to pg
on Lipx ] (u, v, RY) = SSYT(A/ 1, q). O

Remark 2.4.11. Note, Kirillov and Berenstein [31, Proposition 2.2] actually gave a bijection

between SSYT(A/u, ¢) and GT(A, p, ¢). Our bijection is dual to theirs, but this is an artifact of our
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conventions, not a substantive difference. See also [27] (Appendix A, especially Proposition A.7)

and [18].
313 2 2
4 2 1
1(3|4]|5 5 39 ¢
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Figure 2.11. The top row shows a skew semistandard tableau with maximum entry 5 and its
corresponding Gelfand—Tsetlin pattern in GT(A, &,5) where u = (3,1), 2 = (2,2),A = (5,5,3,3),
and X\ = (5,5,4,2). In the bottom row, the left is an element of AZ(I'([n], R?)) from our main

theorem, and on the right is an element of AB(I'([n], R)) from Theorem 2.4.8. If we rotate this
B-bounded I'([n], R)-partition 90 degrees counterclockwise, the labels coincide with those of the
Gelfand—Tsetlin pattern above.

In the case where ;= () and X is a rectangle, Corollary 2.4.3 specializes nicely.

Corollary 2.4.12. The set of semistandard Young tableauz SSYT (L™, q) under Pro is in equivariant

bijection with the set A*([n] x [¢ — n]) under Row.

Proof. By Proposition 2.4.2, SSYT(£", ¢) under Pro is equivalent to Ly, (¢ (12?) which, by Corollary

2.2.29, is in equivariant bijection with A([n] x [¢ — n]) under Row. O
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Figure 2.12. The correspondence in the top row is that of Proposition 2.4.2, the bijection in the right

column is our main theorem, and the bottom row more clearly shows the element of A”(I'([4], R7))
as an element of A°([4] x [3]). To emphasize the underlying shape of I'(P, R), in this and the

i

following figures we do not draw covering relations between the elements of I'( P, R) fixed by B and
grey out the covering relations between those elements and the rest of the poset.

We now discuss a cyclic sieving result of B. Rhoades on rectangular semistandard Young

tableaux and its translation via Corollary 2.4.12.

Definition 2.4.13 ([41]). Let C be a finite cyclic group acting on a finite set X and let ¢ be a
generator of C. Let ( € C be a root of unity having the same multiplicative order as ¢ and let
g € Qz] be a polynomial. The triple (X, C,g) exhibits the cyclic sieving phenomenon if for

any integer d > 0, the fixed point set cardinality | X Cd| is equal to the polynomial evaluation g(¢?).

Theorem 2.4.14 ([42, Theorem 1.4)). The triple (SSYT({",q), (Pro), X (z)) exhibits the cyclic

steving phenomenon, where
L n i+jt+q—n—1

11—z
X(@)=]]11 1 — 1

i=1j=1
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Corollary 2.4.15. Let 1 < n < q. Then the triple (A*([n] x [¢ — n]), (Row), X (x)) exhibits the

cyclic sieving phenomenon.

Proof. This follows from Theorem 2.4.14 and Corollary 2.4.12. Note that X(z) is MacMahon’s
generating function for plane partitions which fit inside a box having dimensions ¢ by n by ¢ — n.

These are in simple bijection with A%([n] x [¢ — n]). O

Remark 2.4.16. Corollary 2.4.15 has been noted in the literature, for example, by Hopkins [27]
and Frieden [18]. Note the fact that the order of rowmotion on A*([n] x [¢ —n]) divides ¢ (implicit
in the statement of cyclic sieving) also follows from the order of birational rowmotion on the poset
[n] x [¢ — n]. This was proved first by D. Grinberg and T. Roby [23] with a more direct proof by
G. Musiker and Roby [33].

We now turn our attention toward several homomesy results. Rather than present the most
general definition, this definition is given for actions with finite orbits, as this is the only case we

consider.

Definition 2.4.17 ([40]). Given a finite set S, an action 7 : S — S, and a statistic f : S — k
where k is a field of characteristic zero, we say that (5,7, f) exhibits homomesy if there exists

¢ € k such that for every r-orbit O

1
@Zf(x):c

zeO

where |O| denotes the number of elements in O. If such a ¢ exists, we will say the triple is c-mesic.

We state two known theorems below and prove their equivalence as a corollary of Theo-

rem 2.2.8.

Theorem 2.4.18 ([6, Theorem 1.1]). Let S be a set of boxes in the rectangle ¢ that is fized under
180° rotation and Y.g denote the sum of entries in the boxes of S. Then (SSYT(L", q),Pro,Xg)

exhibits homomesy.

Recall Definition 2.3.12, which specifies notation for [a] x [b], and Definition 2.3.13 of an-

tipode.

Definition 2.4.19. A subset S of [a] x [b] is antipodal if S contains the antipode of each of its

elements.
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Theorem 2.4.20 ([15] [16, Theorem 3.4]). Let S be an antipodal subset of [n] x [¢ — n| and Xg

denote the sum of labels of S. Then (A*([n] x [q¢ — n]), TogPro, Xg) exhibits homomesy.

Corollary 2.4.21. The previous two results, Theorem 2.4.18 and Theorem 2.4.20, imply each

other.

Proof. By Corollary 2.4.12, SSYT(#", ¢) under promotion is in equivariant bijection with A*([n] x
[¢ — n]) under rowmotion, and also TogPro, by conjugacy. By Corollary 2.4.3, for T € SSYT(¢", q),
® (Pro(T')) = TogPro (®(T)). Furthermore, we claim that Xg(T) = Xg(®(T)) + w. To show

this claim, observe that if T is the tableau with all 1’s in the first row, all 2’s in the second

In(n+1)
2

row, and so on, then ¥g(7T) = . Additionally, the corresponding Q-partition ®(7), where
Q@ = [n] x [¢ —n], is such that every label is 0. Increasing the entry of a box in 7" by 1 increases the
label of an element in ®(T") by 1, showing the claim. Because the statistic Xg under the bijection

differs by a constant, the corollary statement follows. ]

2.4.2. Flagged tableaux

In this section, we first specialize Theorem 2.2.8 to flagged tableaux and use this corre-
spondence to enumerate the corresponding set of B-bounded (P, fx’)—partitions. Then, we state
some recent cyclic sieving and new homomesy conjectures and use Theorem 2.2.8 to translate these

conjectures between the two domains.

Definition 2.4.22. Let A = (A, A2, ..., \n) and p = (p1, p2, - - -, pim) be partitions with g C A and
let b = (b1, b2,...,b,) where b; is a positive integer and by < by < ... < b,. A flagged tableau of
shape A\/p and flag b is a skew semistandard Young tableau of shape A/u whose entries in row ¢ do

not exceed b;. Let FT(\/u,b) denote the set of flagged tableaux of shape A/u and flag b.

Note that, depending on context, b represents either the increasing sequence of positive

integers (b1, ...,b,) or the function b : [n] — Z* with b(p;) = b;.

Proposition 2.4.23. The set of flagged tableauz FT(\/u,b) is equivalent to Ly (x,)(u, v, RY) where
u(pi) = i and v(p;)) = A1 — A for all 1 <i <n.

Proof. Since E[n]x[/\l](u,v,Rb) C E[n]X[AI](u,v,Rbn), by Proposition 2.4.2 we have that [n]-strict
labelings in L)y, (w, v, RP) correspond to semistandard Young tableaux whose entries in row 4

are restricted above by b;, which is exactly FT(\/u, b). O
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Definition 2.4.34. Let P be a ranked poset and let o € A’(P). Define rank-alternating label sum

to be R(9) = ¥, p(—1)*Po(p).

For the following conjecture, we use the rank function of 2\, defined by rk(p) = 0 if p is a

minimal element.

Conjecture 2.4.35. The triple (Ae(An), TogPro, R) is 0-mesic when n is even and g—mesic when

n is odd.

Using Sage [52], we have checked this conjecture for n < 6 and ¢ < 3. We have also verified
that a similar statement fails to hold for the Type B/C case when n = 2 and ¢ = 1, and the Type
D case when n =4 and £ = 1.

We use Corollary 2.4.28 to translate this to a conjecture on flagged tableaux.

Definition 2.4.36. Suppose 1" € FT(¢",(2,4,...,2n)). Let Rp denote the boxes in the odd rows
of T and let Rp denote the boxes in the even rows of 1. Furthermore, let O denote the set of
boxes in T' containing an odd integer and E denote the set of boxes in T" containing an even integer.
Then Y |[RoNE| =" |ReNO| denotes the difference of the number of boxes in odd rows of T' that

contain an even integer and the number of boxes in even rows of T' that contain an odd integer.

Conjecture 2.4.37. (FT(¢",(2,4,...,2n)),Pro,> |Ro N E| =Y |Rg NO|) is 0-mesic when n is

even and %-mesic when n 1s odd.

Theorem 2.4.38. The previous two conjectures, Conjecture 2.4.35 and Conjecture 2.4.37, imply

each other.

Proof. Corollary 2.4.24 shows that AB (F([n}j%\b)) under TogPro is in equivariant bijection with
FT(¢",(2,4,...,2n)) under Pro. Furthermore, recall that T'([n], R?) and /\,, are isomorphic as
posets by Lemma 2.4.27. As a result, by Proposition 2.2.27, the objects and the actions in these
conjectures are equivalent. What remains to be shown is that the rank-alternating label sum
statistic R on A(/\,) corresponds to the statistic > |RoNE|—Y_ |RgNO| on FT (4", (2,4, ...,2n)).

Let T € FT(¢™,(2,4,...,2n)) and consider an even row, say row 2m, of T. The allowable

entries in the boxes of row 2m are {2m,2m + 1,...,4m}. Using the notation of Definition 2.2.13,
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we can compute the negation of the number of boxes that contain odd entries in row 2m as:

.2 ) .2 ) ) .2
*(J4gz—1 - J4nn@l—2) - (34:77—3 - J4$—4) - (]2nnml+1 - J2ZZ)-

~ —

By (1) from the proof of Lemma 2.2.11, the corresponding calculation on ¢ = ®(T) € AP (T'([n], R?))

is:
o(2m,4m—1)—o(2m,4m —2)+o(2m,4m—3) —o(2m,4m—2)+---+o(2m,2m+1) —o(2m, 2m),

which is the statistic R on the diagonal i = 2m in 2\,,.
Now consider an odd row, say row 2m + 1, of T. The allowable entries in the boxes of row
2m+ 1 are {2m+1,2m+2,...,4m + 2}. We can compute the number of boxes that contain even

entries in row 2m + 1 as:

-2m—+1 -2m+1 -2m+1 -2m—+1 -2m—+1 -2m—+1
(Gimaa = Jami1) T Gam = Jimr1) + -+ (Gomia — Jami1)-

By (1) from the proof of Lemma 2.2.11, this computation on the corresponding o is:

(c@2m+1,4m+1) —o(2m+1,4m +2)) + (c(2m + 1,4m — 1) —o(2m + 1,4m)) + ...

+(c(2m+1,2m+1) —o(2m + 1,2m + 2)).
However, by construction we have o(2m + 1,4m + 2) = B(2m + 1,4m + 2) = 0. Thus, we obtain

c2m+1,4m+1)—oc(2m+ 1,4m)+o(2m+1,4m —1) —o(2m + 1,4m —2) + ...

—o(2m+1,2m+2)+o(2m+1,2m+1),

which is the statistic R on the diagonal i = 2m + 1 in 2\,,. As a result, by summing the statistic
Y |RoNE|—> |RgNO| over all rows in T, we observe the corresponding statistic is R, summed

over all diagonals of the poset /\,,. ]

Another set of flagged tableaux of interest in the literature is that of staircase shape sc, =

(n,m—1,...,2,1) with flagb= ({+1,£+2,...,¢+n). The Type A case of a result of C. Ceballos,
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J.-P. Labbé, and C. Stump [10] on multi-cluster complexes along with a bijection of L. Serrano and

Stump [47] yields the following result on the order of promotion on these flagged tableaux.

Theorem 2.4.39 ([10, Theorem 8.8|, [47, Theorem 4.7]). Letb= ({+1,{+2,...,£+n). Pro on

FT(scp,b) is of order dividing n + 1 + 2¢.

The following conjecture is given in terms of flagged tableaux in [47] and in terms of multi-

cluster complexes in [10].

Conjecture 2.4.40 ([47, Conjecture 1.7],[10, Open Problem 9.2]). Let b= ({+1,4+2,...,0+n)
and Caty(z) be as in Conjecture 2.4.31. (FT(scp,b), (Pro), Caty(z)) exhibits the cyclic sieving

phenomenon.

Note this is a set of flagged tableaux with different shape and flag but the same cardinality
as the flagged tableaux in Corollary 2.4.28, the same conjectured cyclic sieving polynomial, and a
different order of promotion. The case ¢ = 1 follows from a result of S.P. Eu and T.S. Fu [17] on
cyclic sieving of faces of generalized cluster complexes, but for £ > 1 this conjecture is still open.

We can translate this conjecture to rowmotion on @Q-partitions with the following corollary

of Theorem 2.2.8. Recall Definition 2.3.12, which specifies notation for [a] x [b].

Corollary 2.4.41. Let b = ({ + 1,0+ 2,...,£ +n). There is an equivariant bijection between
FT (scn,b) under Pro and A2([n] x [¢]) under Row, where for (i,5) € [n] x [€], 6(i,7) = n and
e(iyj)=1—1.

Proof. By Proposition 2.4.23, FT(scy,b) is equivalent to Lp,;)xn] (u,v, R®) where u(p;) = 0 and

v

v(p;) =i —1for all 1 < i < n. The restriction function R’ consistent on [n] x [n]Y

is given by
Rl(p;) = {i,i+1,...£4 i}, and so R’ is also consistent on [n]. Now, by Proposition 2.2.26 and
Corollary 2.4.24, FT(sc,, b) under Pro is equivalent to A?(I'([n], R?)) under Row where §(p;, k) = n
and €(p;, k) = i — 1. Thus what remains to show is that T'([n], R?) is isomorphic to [n] x [{] as a
poset, and, in order to respect the bounds § and e, for a given i we have (p;, k) € T'([n], R?) in
correspondence with (7, 7) € [n] x [¢] for some j.

R? is exactly the restriction function R‘™™ on [n] induced by the global bound ¢ 4 n, so,

by the map (p;, k) = (p,q — (n — 1) + h(p) — k — 1) from Lemma 2.2.28, T'([n], R®) is isomorphic
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to [n] x [({ +n) —n] = [n] x [¢] and we have the desired correspondence of elements. Therefore

AS(T([n], RY)) is equivalent to A%([n] x [€])) where 6(i,j) = n and (i, ) =i — 1 for all i. O
4 pa,0
4 ps, -1 4 pa, 4

ey : 41)2,—2 4[)3,3\4]14-,5
S XK
" .,E,‘ p1, -3 4 p2,2 4 ps, 4 3 pa, 6

©

— O @y == 350 353 3% 3
(3
D

' l ¢ \2{2\1é-4 6
©) N 2 b,

D 0.3 15
Op1-,4

|| W] =
|/\®wl—l

Figure 2.13. On the left is an element of FT (scq,b) and, in the center, its equivalent [4]-strict
labeling. The corresponding (4, €)-bounded [n] x [¢]-partition is shown on the right, using the poset

labels of T'([n], R?).

Corollary 2.4.41 implies the equivalence of this conjecture and the following new conjecture.

Conjecture 2.4.42. (A2([n] x [£])), (Row), Cat,(x)) exhibits the cyclic sieving phenomenon, where
8(i,7) =mn and €(i,j) =i — 1 for all i.

2.4.3. Symplectic tableaux

We begin by defining semistandard symplectic Young tableaux, following the conventions

of [9].

Definition 2.4.43. Let A = (A1, A2,..., \,) and p = (p1, 4o, - - ., bm) be partitions with non-zero
parts such that p C A. (Let p; := 0 for j > m.) A skew semistandard symplectic (Young)
tableau of shape A\/u is a filling of A\/u with entries in {1,1,2,2,3,3,...} such that the rows
increase from left to right and the columns strictly increase from top to bottom, with respect to
the ordering 1 <1 <2 <2< 3<3<...,and such that the entries in the ith row are greater than
or equal to i. Let Sp(A/u,2q) denote the set of semistandard symplectic tableaux of skew shape

A/p with entries at most g.

Proposition 2.4.44. The set of symplectic tableaux Sp(\/p, 2q) is equivalent to Lpy ;) (u, v, qu)

where a = (1,3,5,...,2n — 1), u(p;) = u; and v(p;) = A1 — N\; for all 1 <i <n.
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Proof. Since E[n]x[,\l](u,v,RZq) - E[n}x[)\ﬂ(u,v,R%), by Proposition 2.4.2 we have that [n]-strict
labelings in L) x,](u, v, RZq) correspond to semistandard Young tableaux whose entries in row
are restricted below by 2i — 1. Then, sending 2k to k and 2k — 1 to k for each 1 < k < ¢, we have

exactly Sp(A/u, 2q). O

We now specify the B-bounded T'(P, R)-partitions in bijection with Sp(\/s, 2¢). Recall B

from Definition 2.2.7.

—

Corollary 2.4.45. The set Sp(\/u,2q) under Pro is in equivariant bijection with AB(F([n], R2%)

under Row, where a = (1,3,5,...,2n—1) and £ = A1, u(p;) = pi, v(pi) = A1 — N\ for all1 <i <n.
Proof. This follows from Proposition 2.4.44 and Corollary 2.2.24. O

Remark 2.4.46. Symplectic tableaux in the case y = () are enumerated by an analogue of the
Jacobi-Trudi formula, due to M. Fulmek and C. Krattenthaler [19]. Thus the bijection of Corol-

lary 2.4.24 allows one to translate this to enumerate AE(F([n}, 29Y).

There is also a hook-content formula for symplectic tableaux, due to P. Campbell and A.
Stokke [9]. They proved a symplectic Schur function version of this formula, but we will not need

that here.

Theorem 2.4.47 ([9, Corollary 4.6]). The cardinality of Sp(\,2q) is

H 2Q+TA(iaj)

=
aoen M7

where h(i,5) is the hook length hy(i,5) = Xi + X —i — j + 1 and rx(i, j) is defined to be

o Ni+XNj—i—j+2 ifi>j
X (/L7 j) =
i+ =N =N if 1 <j
We use this formula to enumerate symplectic tableaux of staircase shape, finding a partic-

ularly simple formula.

Corollary 2.4.48. The cardinality of Sp(scp,2n) is o’
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Proof. This follows from Theorem 2.4.47 above. For A = s¢,, = (n,n — 1,...1), we have \; = A\l =
n — 1+ 1. First, we calculate the product of the numerator, where we always take (i, ) € [)\], i.e.

1<i<nand1<j<n—i+1.

[T 2n+mGg) =[] 20 +raGa) | | []2n+raGid)

(i,7)€N i>] ]

= ([J2@n-i-5+2) | [J]26G+j-1)

i>j i<j

We now rewrite by considering the products over the columns j < [ %] or the rows i < [Z]:

=206) [ T] on—i—j+2|( [T JI i+i-1

J<[ 2] i<i<n—j+1 i<[2]i<j<n—i+1
_5(3) H (2n —25+ 1)! H n!
B n! (20 —2)!

i<l i<[3]

Next, we find the product of the hook lengths, considered over the rows 1 < i < n:

I mGiH= ] I[ 2n—2i-2j+3

(i.5)EN 1<i<n 1<j<n—i+1

= [[ @n-2i+1)@2n-2i-1)---3-1

1<i<n
B H 2n—-2i+1)! 1 H (2n —2i+1)!
Finally,
H 2n + 7",\(7:,]')
i
aaie M0I)
2 nl 11 2k —2)! 11 k)
k<|%] E<[2] 1<k<n
=27 ()31 ] (n—k)!/ I @n-2k+1) I k-2
1<k<n 5] <k<n 1<k<[2]
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Finally, we determine these upper and lower bounds on the label of any element (i,7) €
N, by determining the corresponding bounds on the label o(p;, k) where o € AB (F([n],ﬁg\"))
and (p;, k) € F([n],ﬁg\”) \ dom(B). For the elements (p;, min Eg\”(pz)*) that are fixed, we have
B(pi, min }/%?l\”(pz)*) =n — u(p;) = n, so these elements induce an upper bound of n on all o(p;, k).
Next, the fixed elements (p;, max @(pz)*) = (ps,2n) induce a lower bound v(p;) = i — 1 on all
o(pi, k) and an equivalent upper bound on o(p;, k'), where (p;, k') < (p;,2n), which is the case
whenever ¢/ < i and k¥’ > 2n — (i — i’). Therefore, a generic o(p;, k) is bounded below by i — 1 and
above by at most n and, if k = 2n — (i — i) for any ¢ < i’ < n, then o(p;, k) is bounded above by
i’ — 1. Translating to A"(\,), o(i,j) = o(p;,2n — 1 +i — j) (we keep the notation o due to the
equivalence shown above) so o(i,7) is bounded below by i — 1 and above by at most n. We have
2n—14+i—j=2n—(j+1—1), so o(i,7) is bounded above by j for 1 < j < n — 1. Thus, if
d(4,7) = min(j,n) and €(i,5) = ¢ — 1, then AE(F([n], Eg\n)) is equivalent to A%(\,). O

3 p1, -2 3 p2, -1 3 p3,0

2]7171 3])2,3 2173,5
N,/

. 2p172 2?2,4 2})3,6
."-.‘: \ / \ p3,9
.-".~.' 1271,3 2 p2,5
’ @ @ Oéll 1 p2,6
/ \0 p175 p2,8

0 p176

p177

(\)
VAN
Nl
il IA
o8
)

W
A
w
AL ™

w||/\ Nl

Figure 2.14. On the left is an element of Sp(scs,6) (with entries in {1,1,2,2,3,3}), and in the
center is the equivalent [3]-strict labeling (with labels in {1,2,3,4,5,6}). The corresponding (9, €)-

bounded N,-partition is given on the right, shown as the equivalent element of AB (F([3],]/%\661)).

Here, the poset element (py,5) € T'([3], RS) corresponds to (1,1) € N, (p1,4) corresponds to (1,2),
and so on.

The corollary below follows directly from Corollaries 2.4.48 and 2.4.50.

Corollary 2.4.51. The cardinality of A2(N,) with 6(i,j) = min(j,n) and €(i,j) =i — 1 is 2"°.
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It would be interesting to see whether one can find a set of symplectic tableaux that exhibit
the cyclic sieving phenomenon with respect to promotion. A nice counting formula is generally a

necessary first step.
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3. THE GRADED CASE!

3.1. Introduction

Semistandard Young tableaux and Gelfand-Tsetlin patterns are well-loved combinatorial
objects with a nice, statistic-preserving bijection between them. In [5], we generalized this corre-
spondence to objects we called P-strict labelings of P x [¢] (analogous to semistandard tableaux)
for a finite poset P and ¢ € N, and B-bounded Q-partitions (analogous to Gelfand—Tsetlin patterns)
for related posets @ and bounding function B. In addition, we showed this bijection is equivariant,
mapping the well-studied promotion action on tableaux to a piecewise-linear toggle group action
on Q-partitions, which under a certain condition is equivalent to rowmotion, an important action
in dynamical algebraic combinatorics.

Informally, P-strict labelings of P x [¢] are labelings of P x [¢] with positive integers that
strictly increase on each copy of P and weakly increase along each copy of [¢]. Additional parameters
include a restriction function R, that specifies which labels are allowed in the P-strict labeling,
as well as functional parameters u and v. The case P = [n] corresponds to (skew) semistandard
Young tableaux of n rows, where ¢ is the number of tableau columns, and u and v determine the
shape of the skew tableau by specifying which partitions to remove from the upper left and lower
right of the n x £ bounding rectangle (the case of u = v = 0 corresponds to rectangular tableaux).
While the bijection of [5] allows for all of these parameters in full generality, our applications of
the general formula in that paper were in the case P = [n]. These included interesting results and
conjectures on flagged and symplectic tableaux.

In this paper, we apply the results of [5] to cases of interest beyond P = [n], with an
eye toward translating objects with known dynamical behavior through our bijection in order to
obtain new results and new perspectives on conjectures. Along with periodicity, we aim to describe
the behavior of promotion and rowmotion through the notions of homomesy and resonance. The

homomesy phenomenon, first described in [40], is where the average value of a given combinatorial

!The material in this chapter was coauthored by J. Bernstein, J. Striker, and C. Vorland. The preprint can
be found at https://arxiv.org/abs/2205.04938. The coauthors worked collaboratively on the main results of the
paper. Bernstein had primary responsibility for reframing the main theorems of Chapter 2 as well as for Subsec-
tions 3.4.2 and 3.4.3. Subsections of Section 3.3 which Vorland composed mostly independently have been omitted
(subsections 3.3, 3.4, and 3.5 in the preprint). All coauthors revised and proofread this chapter.
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statistic is the same across all orbits. For an overview of this phenomenon, including many examples,
see the survey of T. Roby [43]. Resonance, defined in [12], is a way to capture the structure of orbits
without requiring predictable periodicity, by projecting a more complicated object and action to a
simpler set that demonstrates cyclic behavior. The article [53] contains a more detailed description
of resonance, as well as a general survey of dynamical algebraic combinatorics, including homomesy.

This paper is organized as follows. In Section 3.2, we give relevant background definitions
and theorems from [5] at the level of generality necessary for this paper (v = v = 0) and state
Corollaries 3.2.25 and 3.2.26, which are consequences of these general results when P is graded. In
Section 3.3, we apply these results to the case where P is a product of chains, obtaining results
on symmetry. Section 3.4 considers the dynamics of P-strict labelings in cases where either P is
graded but not equal to a product of chains or the labels of P x [¢] are restricted by flags instead of
by a global bound. Finally, in Section 3.5, we prove Theorem 3.5.4, a resonance result on general
P-strict labelings with global bound gq.
3.2. Background and general results

In this section, we give relevant background and general results from [5]. In Subsec-
tions 3.2.1-3.2.3, we state definitions and theorems in the slightly less general case of u = v = 0.
Then in Subsection 3.2.4, we restrict our attention to the case where P is graded and state the
consequences of these theorems that will be of use in the remainder of the paper. For the definitions
and theorems in full generality, see [5].
3.2.1. Promotion on P-strict labelings

The definitions in this section are adapted from [5, §1.2]. We begin with the following

preliminary definitions.

Definition 3.2.1. In this paper, P and @ represent a finite posets with partial orders <p and <g,
respectively. Also, < indicates a covering relation in a poset, J(P) is the poset of order ideals of
P ordered by containment, ¢ and g are positive integers, [¢] denotes a chain poset of ¢ elements,
and P x [{] = {(p,i) | pe€ P,i € N, and 1 <i < {}. P(Z) represents the set of all nonempty, finite

subsets of Z.
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Let L; represent the ith layer of P x [¢], that is, the set of (p,i) € P x [¢] where p ranges
over all possible values and i is fixed. Let F}, denote the pth fiber of P x [{], that is, the set of

(p,i) € P x [¢] where i ranges over all possible values and p is fixed.

Definition 3.2.2. We say that a function f : P x [{] — Z is a P-strict labeling of P x [{] with

restriction function R: P — P(Z) if f satisfies the following:

1. f(p1,7) < f(p2,i) whenever p; <p po,

2. f(p,i1) < f(p,i2) whenever i; < ig,

3. f(p,i) € R(p).

That is, f is strictly increasing inside each copy of P (layer), weakly increasing along each copy of
the chain [¢] (fiber), and such that the labels come from the restriction function R. Let Lpy(q(R)

denote the set of all P-strict labelings on P x [¢] with restriction function R.

Definition 3.2.3. A restriction function R is consistent with respect to P x [{] if, for all p € P

and k € R(p), there exists some P-strict labeling f of P x [¢] with f(p,i) =k, 1 <1i < /.

Due to the strictly increasing condition on layers, a generic R : P — P(Z) may fail to be
consistent. This occurs when a set R(p) contains a label that can not be attained on the pth fiber
by any P-strict labeling.

We denote the consistent restriction function induced by (either global or local) upper and
lower bounds as Rg, where o, 8 : P — Z. In the case of a global upper bound ¢, our restriction
function will be R, that is, we take a to be the constant function 1 and 8 to be the constant
function ¢. Since a lower bound of 1 is used frequently, we suppress the subscript 1; that is, if no

subscript appears, we take it to be 1.

Example 3.2.4. The objects on the left half of Figure 3.1 are elements of £p4(R°), where P is
the X-shaped poset shown in the center. The labels on each of the four layers are strictly increasing
(from 1 up to the global maximum ¢ = 6) and are connected by solid lines, while the labels along

each of the five fibers are weakly increasing and connected by dotted lines.

Definition 3.2.5. Let R(p)>j denote the smallest label of R(p) that is larger than k, and let

R(p) <k denote the largest label of R(p) less than k.
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Say that a label f(p,i) in a P-strict labeling f € Lpyy(R) is raisable (lowerable) if

there exists another P-strict labeling g € Lpy[q(R) where f(p,i) < g(p,i) (f(p,i) > g(p,i)), and

f', i) = g(p', ) for all (p',i") € P x [{], p" # p.

Definition 3.2.6. Let the action of the kth Bender-Knuth involution pj; on a P-strict labeling
[ € Lpyxg(R) be as follows: identify all raisable labels f(p,i) = k and all lowerable labels f(p,i) =
R(p)>. Call these labels ‘free’. Suppose the labels f(F}) include a free k labels followed by b free
R(p)sx labels; pr changes these labels to b copies of k followed by a copies of R(p)~x. Promotion on
P-strict labelings is defined as the composition of these involutions: Pro(f) = ---opgopgopio---(f).
Note that since R induces upper and lower bounds on the labels, only a finite number of Bender-

Knuth involutions act nontrivially.

3.2.2. Rowmotion on Q-partitions

The definitions in this section are adapted from [5, §1.3].

Definition 3.2.7. A Q-partition is a map o : Q — N>¢ such that if x <g 2/, then o(z) < o(2’).
Let Q denote @ with 0 added below all elements and 1 added above all elements. Let A (Q) denote

the set of all Q-partitions ¢ with ¢(0) = 0 and o(1) = ¢.

Note we use ) for a generic poset in this context rather than P to avoid confusion when

we later relate these objects to the objects of the previous subsection.

Example 3.2.8. The objects on the right half of Figure 3.1 are elements of A*(P x [3]), where P

is the X-shaped poset shown in the center. In our visualizations, we omit the elements 0 and 1.

Remark 3.2.9. When ¢ = 1, AY(Q) = J(Q), the set of order ideals (or lower sets) of Q. The
set of order ideals forms a distributive lattice ordered by containment. This is the setting in which

rowmotion and toggles were originally studied [8, 54].

In Definitions 3.2.10 and 3.2.12 below, we define toggles and rowmotion in what is often
called the piecewise-linear context. These definitions are equivalent (by rescaling) to those first

given by Einstein and Propp on the order polytope [15, 16].
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Definition 3.2.10. For 0 € AYQ) and z € Q, let V,(z) = min{o(y) | y € Q covers z} and

Ay(z) =max{o(y) |y € Q is covered by z}. Define the toggle, 7, : AK(Q) — AZ(Q) by

o(x) x#a
7:(0)(2) ==
Vo(a')+ Ay(2') —o(2!) x=2a'.

Remark 3.2.11. By the same reasoning as in the case of combinatorial toggles, the 7, satisfy:
1. 72 =1, and
2. 7, and 7,y commute whenever x and z’ do not share a covering relation.

Definition 3.2.12. Rowmotion on A‘(Q) is defined as the toggle composition Row := 7, 0 7, 0

-+ 01Ty, Where x1,x9,..., 2, is any linear extension of Q.

3.2.3. P-strict promotion and I'(P, R) rowmotion

In this subsection, we give the main results of [5] in slightly less generality (the case where
u = v = 0), which is all we need for this paper. Since the statements do not match exactly the
statements in [5], we give the specific references of each statement from [5] for comparison. In the

next subsection, we further specialize these results to the case where P is graded.

Definition 3.2.13 ([13, Definition 2.10]). For p € P, let R(p)* denote R(p) with its largest element

removed.

Definition 3.2.14 ([13, Definition 2.11]). Let R : P — P(Z) be a consistent map of possible labels.
Then, define the gamma poset I'(P, R) to be the poset whose elements are (p, k) with p € P and

k € R(p)*, and covering relations given by (p1, k1) < (p2, k2) if and only if either
1. p1 = p2 and R(p1)sk, = k1 (i-e., k1 is the next largest possible label after k3), or

2. p1 <py (in P), k1 = R(p1)<k, # max(R(p1)), and no greater k in R(p2) has k1 = R(p1)<k.
That is, ki is the largest label of R(p1) less than ko (k1 # max(R(p1))), and there is no

greater k € R(p2) having k; as the largest label of R(p;) less than k.

Definition 3.2.15 ([5, Definition 2.6]). Toggle-promotion on A*(I'(P, R)) is defined as the toggle
composition TogPro:=---omorom9orT_107_90---, where 7 denotes the composition of all the

T(p,k) OVer all pe P, (p,k) € T(P,R).
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This composition is well-defined since the toggles within each 73, commute by Remark 3.2.11.

The first main result of [5], which we state below as Theorem 3.2.17, gives an equivariant

bijection between P-strict labelings and certain Q-partitions, via the map of Definition 3.2.16.

Definition 3.2.16 ([5, Definition 2.9]). We define the map @ : Lpy(q(R) — AY(I(P,R)) as the
composition of two intermediate maps ¢z and ¢3. Start with a P-strict labeling f € Lpyjy(R).
First, ¢ sends f to the multichain Oy < Oy < --- < Oy in J(I'(P, R)) where, for 1 < i < ¢ and
L; the ith layer of P x [{], ¢2 sends f(L;) to its associated order ideal O; € J(I'(P, R)) via the
bijection of [13, Theorem 2.14]. Then, ¢3 maps the above multichain to a I'(P, R)-partition o as

seen in [49, p. 11], where o(p, k) = #{i | (p,k) ¢ O;}, the number of order ideals not including

(p, k). Let @ = ¢30 ¢s.

Theorem 3.2.17 ([5, Theorem 2.8]). The set Lpy(g(R) under Pro is in equivariant bijection with
AY((P,R)) under TogPro. More specifically, for f € Lpy(R), ® (Pro(f)) = TogPro (®(f)).

The equivalence is not only of the actions Pro and TogPro, but is proved by corresponding

Bender-Knuth involutions with toggles.

Lemma 3.2.18 ([5, Lemma 2.11]). The bijection map ® equivariantly takes the generalized Bender-

Knuth involution py to the toggle operator Ty.

The second main result of [5], Theorem 3.2.20, involves rowmotion and requires the following

definition.

Definition 3.2.19 ([5, Definition 2.19]). We say that A*(T'(P, R)) is column-adjacent if whenever

(pl,kil) < (pg,k?g) n F(P, R), then |]€2 — k‘1’ =1.

Theorem 3.2.20 ([5, Theorem 2.20]). If A“(T(P, R)) is column-adjacent, then A*(T'(P, R)) under

Row is in equivariant bijection with Lp,(q(R) under Pro.

While the following proposition in full generality is proved in [5], for the specific case given
below (where u = v = 0), it is also implicit in [13]. See [5, Remark 2.25] for a more detailed

description of this difference.
Proposition 3.2.21 ([5, Proposition 2.22]). A‘(T'(P, Rg)) is column-adjacent.
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This proposition, combined with Theorem 3.2.20, yields the following corollary.

Corollary 3.2.22 ([5, Corollary 2.24]). A‘(T'(P, RE)) under Row is in equivariant bijection with

Lpy (Rg) under Pro.

3.2.4. The graded case: P-strict promotion and P x [¢ — n — 1] rowmotion

In the rest of the paper (with the exception of Section 3.5), we concentrate on the case
where P is a graded poset of rank n, meaning all maximal chains of P have n + 1 elements. This
condition simplifies matters significantly; in particular, it determines I'(P, RY), the gamma poset
with restriction function induced by a global bound ¢q. While Lemma 3.2.23 and Corollary 3.2.26
were stated and proved in [5], the other results of the subsection are new statements that follow

from the general theorems of [5]. These will be easier to apply to our cases of interest.

Lemma 3.2.23 ([5, Lemma 2.28]). Let P be a graded poset of rank n. Then I'(P, R?) is isomorphic

to P x [q —n — 1] as a poset.

Remark 3.2.24. The proof of the above uses the bijection from I'(P, R?) to P x [¢ —n — 1] that

sends (p, k) to (p,q — n + rank(p) — k), where the rank of a minimal poset element is zero.
We now state the versions of our main theorems we will use.

Corollary 3.2.25. Let P be a graded poset of rank n. Then Lpy g (R?) under Pro is in equivariant
bijection with A'(P x [¢—n —1]) under TogPro. More specifically, for f € Lpy(R), @ (Pro(f)) =
TogPro (®(f)).

Proof. This follows directly from Theorem 3.2.17 and Lemma 3.2.23. O

Corollary 3.2.26 ([5, Corollary 2.29]). Let P be a graded poset of rank n. Then Lpy (g (R?) under

Pro is in equivariant bijection with A*(P x [q¢ —n — 1]) under Row.
Proof. This follows directly from Theorem 3.2.20 and Lemma 3.2.23. [
Figure 3.1 showcases an example of the bijection from Corollary 3.2.25.

Remark 3.2.27. In the case £ = 1, the bijection degenerates to a correspondence from [13] between
order ideals A'(P x [a]) = J(P x [a]) and Lpy[)(R*T" 1), which has fibers of size 1 and is thus

equivalent to the set of strictly increasing labelings on P with labels between 1 and a+n+1. When
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Figure 3.1. An illustration of Corollary 3.2.25. Promotion on the P-strict labeling in the upper
left corresponds to toggle-promotion on the I'( P, R?)-partition in the upper right. The poset P of
rank n along with the parameters ¢ and ¢ are shown in the center. Since P is ranked, I'(P, RY)
is isomorphic to P x [¢ —n — 1] = P x [3]. The blue elements of P x [3] are the elements of the
subposet P x {2} described in the statement of Proposition 3.2.29.

P is graded, this is equivalent (by subtracting i from the labels in rank i) to the correspondence of

[51, Prop. 3.5.1] between order ideals and order-preserving maps. We will mainly focus on the case

{>1.

The characterization of the gamma poset in Lemma 3.2.23 allows us to give an explicit

description of the toggles in TogPro without reference to the gamma poset labeling.

Lemma 3.2.28. Let P be a graded poset of rank n. Then TogPro on I'(P, R?) is equivalent to the
toggle composition TogPro := 7,107, 90---0m 07 on AP x [¢—n — 1]), where 7, denotes the

composition of all the 7(, ;) over all p € P, where i =q—n + rank(p) — k.
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Proof. Apply the bijection from Remark 3.2.24 to Definition 3.2.15. ]

The following gives an equivalent toggle order for TogPro, which will be helpful in Corol-
lary 3.3.4.

Proposition 3.2.29. Let P be a graded poset of rank n. Denote by P x {j} the subposet of
P x [q —n — 1] consisting of all elements of the form (p,j), p € P. Then TogPro on I'(P, R?) is
equivalent to Row (P x {1})oRow 1 (P x{2})o---oRow }(Px {qg—n—2})oRow }(Px {qg—n—1}).

Proof. Let Py, denote the set of elements of P with rank m and, for some j € [¢ —n —1], let 7(p,, ;)
be the composition of all the toggles 7, ;) where p € P;,. Then Row (P x {j}) is given by the
toggle composition 7(p, j) © T(p,_, ;) O O (P, j) © T(Ry,j)» and we have that 7(p,, ;) commutes with
7(p,, ) Whenever |m —m/[ + |7 —j'| > 1.

Now, the 75 in Lemma 3.2.28 are given by

T = T(Py,q—n—1)
T2 = T(Py,q—n—1) ° T(Py,q—n—2)

T3 = T(Py,q—n—1) © T(P1,q—n—2) © T(Py,g—n—3)

Tn = T(Pnflvq_n_l) © T(P’n*27q_n_2) 00 T(POJI—Q”)
Tn+1 = T(P,,q—n—1) © T(Py_1,g—n—2) © """ O T(Py,q—2n—1)
Tn+2 = T(Py,q—n—2) © T(Py_1,¢—n—3) © """ O T(Py,q—2n—2)

Tn+3 = T(Py,q—n—3) © T(Py_1,g—n—4) © """ © T(Py,q—2n—3)

Tg—3 = T(Pp,3) © T(Ppn-1,2) © T(Py—2,1)
Tqg—2 = T(P,,2) © T(P,_1,1)

Tqg—1 = T(Pn,l)a

so we can rewrite TogPro in terms of the 7(p, ;. After doing so, we note that, for all m > 0,

T(Pp,g—n—1) commutes with everything to its right except for 7(p, _, 4—n—1). Therefore, we can
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reorder TogPro such that all of the 7p,, ,_n—1) are on the right as follows:

TogPro =7(p, 1) 0+ 0 T(B),g—n—2) © T(Pa,g—n—1) © T(Pu_1,g—n—1) © "~ © T(Py,g—n—1) © T(Py,q—n—1)

=T(P,,1) © "+ © T(Py,g—n—2) © Rowfl(P x {qg—mn—1}).

Similarly, 7(p,, q—n—2) commutes with everything to its right except for 7p, _, 4—n—2) and

Row }(P x {g —n —1}), so
TogPro = 7(p, 1) © -+ 0 T(Ry,g—n—3) © Row (P x {g—n—2})oRow (P x {g —n —1}),
and so on until we have
TogPro = Row (P x {1})oRow (P x {2})o---0cRow }(Px {g—n—2})oRow (P x {g—n—1})

as desired. [

3.3. Products of chains and multifold symmetry

Our motivation in this section is to explore the bijection of Corollary 3.2.25 further when P is
a product of chains. In Subsection 3.3.1, we begin with Corollaries 3.3.4 and 3.3.6, which specialize
Corollary 3.2.25 when P is a product of chains and states TogPro in terms of the hyperplane toggle
definition of [12]. In the rest of the section, we use symmetry to prove equivalences of P-strict
labelings and apply the resulting bijections to obtain order and homomesy results on the P-strict
labelings E([a]x[b])xm(Ra‘*'b). Specifically, in Subsection 3.3.2, we give multifold symmetry results
on P-strict labelings in Theorems 3.3.7 and 3.3.8.
3.3.1. Application of main result to P = [a] x [b]

Using the hyperplane toggle definition of [12], we can determine which hyperplane sweep

on the product of chains poset corresponds to TogPro.

Definition 3.3.1. [12, Definition 3.13] We say that an n-dimensional lattice projection of a ranked
poset P is an order and rank preserving map 7 : P — Z™, where the rank function on Z" is the sum

of the coordinates and x < y in Z" if and only if the componentwise difference y — z is in (Z>¢)".
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Definition 3.3.2. [12, Definition 3.14] Let @ be a poset with an n-dimensional lattice projection
m and let v € {£1}". Let wa be the product of toggles t, for all elements x of () that lie
on the affine hyperplane (7(z),v) = 4. If there is no such z, then this is the empty product,
considered to be the identity. Define promotion with respect to m and v as the (finite) toggle

product Proy, = .. 727170 T1 T2

ctrotrmotTotTotTo ot

Remark 3.3.3. For a Q-partition A’([a1] x - - - x [az]), we will frequently use the identity map for
m; the identity map will be denoted with id. For Q)-partitions obtained from a I" poset construction,
the last coordinate decreases as we traverse up the poset. As a result, we use a non-identity map

m to compensate for this labeling. See Corollaries 3.3.4 and 3.3.6 for instances of this.

Corollary 3.3.4. L (g« x[q (R*T"T7Y) under Pro is in equivariant bijection with A" ([a] x [b] X [¢])
under Row. More specifically, for f € [,([a}X[b})x[g](R“‘Fbﬂ_l), @ (Pro(f)) = Prog (—1_1,1) (®(f))

where 7((i,7), k) = (4,4,i+j —k+c—1).

Proof. By setting P = [a] x [b] and ¢ = a + b + ¢ — 1, the existence of an equivariant bijection
follows directly from Corollary 3.2.25. To show that @ (Pro(f)) = Proy _1._1,1) (®(f)), we will
show that TogPro and Pro, _; ;1) have the same toggle order on I'(P, R?). By Theorem 23 of
[55], the toggles of Pro, (_; _; 1y can be reordered to Row ~!([a] x [b] x {1})oRow!([a] x [b] x {2}) 0
- oRow !([a] x [b] x {c —1}) o Row *([a] x [b] x {c}). By Proposition 3.2.29, this is equivalent
to TogPro. It follows that ® (Pro(f)) = Pros (_1,_1,1) (®(f)) from Corollary 3.2.25. O

Remark 3.3.5. In [12], K. Dilks, O. Pechenik, and Striker showed that if I is an order ideal of
[a] x [b] x [¢], the action Pro(; 1,1y on I corresponds to K-promotion on a corresponding increasing
tableaux. The reason Pro(;; _1) is used in their result is because of labeling conventions: an
element in an order ideal is labeled 1 and an element not in an order ideal is labeled 0. With

()-partitions, we are using the reverse convention, which is the reason for Pro, (_; ;1) appearing

in Corollary 3.3.4.

The following corollary extends Corollary 3.3.4 to products of more than two chains. Its
proof is nearly identical to the proof of Corollary 3.3.4, so we omit it here. By setting ¢ = Zf a;—1,

the existence of an equivariant bijection follows directly from Corollary 3.2.25.
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Corollary 3.3.6. Let P = [a1] X [ag] X -+ X [ag—1]. Then prm(RZf“ifl) under Pro is in
equivariant bijection with A*(P x [a}]) under Row. More specifically, for f € Lpx (RZ;C ai—1)
® (Pro(f)) = Pro(_y,.. —11) (®(f)) where (i1, 42, ... ik—1), k) = (i1,92, -, Gg—1,01 + - +ik_1 —
ik +ap —1).

3.3.2. Multifold symmetry
In this subsection, we use the product of chains results of Corollaries 3.3.4 and 3.3.6 to
show P-strict trifold symmetry and P-strict multifold symmetry in Theorems 3.3.7 and 3.3.8,

respectively. We also state a similar, more general equivalence in Theorem 3.3.9.

Theorem 3.3.7. There are promotion-equivariant bijections among the sets L(q)x b)) x[¢] (Rotbre1y,

Ll ex 0 (RHE), and L)y (REHH).

Proof. By Corollary 3.3.4, E([a]x[b])x[g](R“+b+C_l) under Pro is in equivariant bijection with
Af(la] x [b] x [c]) under Row, L(q)x(q)x(q(R*T*T¢™) under Pro is in equivariant bijection with
At([a] x [c] x [b]) under Row, and L p)x[)x[g(R*T"T*"") under Pro is in equivariant bijection with
AL([b] x [c] x [a]) under Row. The set of linear extensions of [a] x [b] x [c] is the same under any
permutation of a,b,c. As a result, all three sets under their respective promotion actions are in
equivariant bijection with A%([a] x [b] x [¢]) under Row, and so there are equivariant bijections

between the three sets under their respective promotion actions. O

We can extend this same idea to a more general product of chains in the theorem below.

Since the proof is nearly identical to the proof of Theorem 3.3.7, we give it in condensed form.

Theorem 3.3.8. Let P, = [a1] X [ag] X -+ X [a;—1] X [aj+1] X -+ X [ag]. For any 1 < 1,5 < k,
there is an equivariant bijection between the sets Lp, (RZf =1y and ;ijx[g](RZ? =1y ynder

their respective promotion actions.

Proof. Both sets are in equivariant bijection with A*([a1] x - - - x [a}]) under Row by Corollary 3.3.6.
D

In the case of the product of an arbitrary graded poset with a chain, we have a similar

symmetry, but the equivalence is between only two sets rather than three or more.
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Theorem 3.3.9. Let P be a graded poset of rank n. Then there is an equivariant bijection between

E(Px[a])x[q(Ra‘*'bJr”) under Pro and E(px[b])x[@(RanbJr”) under Pro.

Proof. By Corollary 3.2.25, both sets are in equivariant bijection with A‘([P] x [a] x [b]) under

Row. I

Remark 3.3.10. When a = 1, R restricts the labels of £(pyp))xjq(B™) to only two
possible values at any (p,i). Thus, we can think of the layers of f € £ px[b])x[g](R1+b+”) as order
ideals of P x [b] by considering all elements labeled by the lower of their two values as elements
of the corresponding order ideal. Then, f itself corresponds to a multichain of order ideals, and
we can therefore interpret the a = 1 case of Theorem 3.3.9 as an application of the intermediate

bijection ¢o from Definition 3.2.16.

3.4. Beyond the product of chains

The previous section studied P-strict promotion where P is a product of chains and the
restriction function is induced by a global bound. In this section, we apply our main theorem to
examples of interest where P is not a product of chains or the restriction function is not induced by
a global bound. In Subsection 3.4.1, we study the case of P a minuscule poset. In Subsection 3.4.2,
we let P = [a] x [b] but impose flags on our restriction function. Finally, Subsection 3.4.3 discusses
the case where P is the three-element poset V.
3.4.1. Minuscule posets

Minuscule posets are interesting families of posets arising from Lie theory. The product of
two chains [a] x [b] is a Type A minuscule poset, and thus, it is natural to ask which results of the
previous section extend to other types. The answer is: not many. A special feature of the Type A
minuscule poset is that it is constructed as a Cartesian product of chains, and many of the results
in Section 3.3 rely on the multifold symmetry of Corollary 3.3.7. Since the other minuscule posets
are not products of chains, we do not have an analogous result to use. But, our main bijection is
useful for translating results on Q)-partitions where @) is the Cartesian product of a minuscule poset
and a chain to obtain new results on P-strict labelings of minuscule posets. The new such result
of this section is Corollary 3.4.4.

Since the focus of this section is on translating known results about minuscule posets across

our bijection, we choose to give explicit descriptions of the minuscule posets rather than the full
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Lie-theoretic definitions. Rather, we refer the reader to the cited papers for further explanation of
the algebraic meaning.

The minuscule posets are the following three infinite families followed by two exceptional
posets. We follow the notation and definitions of minuscule posets found in [35]. For each, we
also give the Coxeter number h of the associated Lie algebra, which will be used in statements of
results. Let J* denote the order ideal functor applied k times. For example, J?(P) = J(J(P)) is

the poset of order ideals of the poset of order ideals of P.

1. Rectangles: [k] x [m], h =k + m,

[\)

. Shifted staircases: Si := {(x,y) | x <y € [k]}, h =2k

w

. Propellers: J*([2] x [2]), h = 2(k + 2),

W

. Cayley—Moufang: J2([3] x [2]), h = 12
5. Freudenthal: J3([3] x [2]), h = 18.

First, since all minuscule posets are graded, we can use Corollary 3.2.26 to construct an

equivariant bijection.

Corollary 3.4.1. Let P be a minuscule poset of rank n. Then A'(P x [a]) under Row is in

equivariant bijection with Lpyq(R*T" ) under Pro.

Proof. This follows directly from Corollary 3.2.26 and the fact that any minuscule poset is graded.
O

We state some known results on A’(P x [a]) and/or £ px[(R*T" 1) and their translations
via Corollary 3.4.1.

In the case ¢ = 1, the bijection of Corollary 3.4.1 was already known and used by H. Mandel
and Pechenik to obtain results on order and cyclic sieving in minuscule posets. We state these below,
together with previous results of D. Rush and X. Shi which used the order ideal perspective. (For
more on the £ =1 case for general P, see also Remark 3.2.27.)

Cyclic sieving is a dynamical phenomenon in which evaluation of a polynomial at certain

roots of unity completely describes the orbit structure of an action. Since we state no new cyclic
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sieving results here, we refer the reader to the foundational paper [41] and the papers cited in the

theorem below for the precise definition.

Theorem 3.4.2 ([44, a = 1,2 on order ideals], [32, other cases|). Let P be a minuscule poset

associated with a minuscule weight A of g, and let n denote the rank of P. FEach of
o the set of order ideals J(P x [a]) under Row and
e the set of increasing labelings Lpy (R 1) under Pro

have order dividing h and exhibit the cyclic sieving phenomenon with respect to the cardinality

generating function of J(P X [a]) for the values of a given below:
1. Rectangles: a = 1,2,
2. Shifted staircases: a =1,2,
3. Propellers: all a,
4. Cayley—Moufang: all a,
5. Preudenthal: a < 4.

The next theorem and translation allow for arbitrary ¢, but specify a = 1. The theorem

has appeared in the literature in several places; for more on these references, see the discussion in

[34, p. 3-5].

Theorem 3.4.3 ([21, 23, 24, 34]). Let P be a minuscule poset associated with a minuscule weight
A of g, and let n denote the rank of P. Then .AE(P) has order h under Row, where h is the Coxeter

number of g.
The following corollary is a translation of the above theorem, using our main bijection.

Corollary 3.4.4. Let P be a minuscule poset associated with a minuscule weight A of g, and let
n denote the rank of P. Then the set of P-strict labelings Lpy (R"*2) has order h under Pro,

where h is the Coxeter number of g.

Proof. By Corollary 3.4.1, A*(P x [1]) is in bijection with £Px[g](R”+2). Then the result follows

by Theorem 3.4.3. O
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calculations in SageMath, there may be a resonance result (see Definition 3.5.1) on the order ideals
AY( 4 x [b]). Unfortunately, any change to the parameters beyond those of the sets listed above
results in a breakdown of the orbit structure. As early as A%( 3 x [2]), we find an orbit of length
94. It could be said, however, that many of the orbits are of length 10, a notion which may be

worth future consideration.

8] x 4] ((3,3), )
3] x [4
(3.4) (2,8),4) ((3,2),9)
3,4
7 3 % [4] (3931 3),0) (2,2),0) (3,1, 4)
(2,4) (3,3) (2,8),3) ((3,2),3)
1,4 (2,3)  (3,2) ©32 (18,3 (22,9 1,3
b b 9
(2,8),2) ((3,2),2)
(1,3) (2,2) (3,1) (39D 8y,2) (2,2),2) (3,1, 2)
(172) (271) ((2,3),1) ((3,2),1) ((3,4),6)
(1,8),1) ((2,2,1) (3,1, 1)
(17 1) ((2,4),5)
(8, 4),7)
N xR oo
(1, 4), )
(2,4, 6)
((2,8), 4) o s
((3,2), ) '3
((1,3),3)
((2,8),5)
@ 0.7
(3, 1), 3) 20
((1,2),2)
((2,2), )
@vo .26
(@, 10, 1)
(2,1),3)
(3,1),5)

Figure 3.2. An example of the posets in Lemma 3.4.7 with @ = 3 and b = 4. The consistent
restriction function R® on [3] x [4] is induced by the flags 8, where 3(1,5) = 5, B(2,4) = 7, and
B(3,7) = 9. Note that this flag is not necessarily the greatest element of the induced R°(i, )
because of the strictly increasing requirement on layers in L((q]x [5])x[4] (RP).

3.4.3. The V poset

Corollaries 3.2.25 and 3.2.26 give us reason to pursue any cases where P is graded and
Row on A’(P x [m]) has noteworthy dynamical properties, as the translation through our bijection
produces an example in which Pro on Lp, g (R?) is also of dynamical interest. One such poset that

has caught recent attention is P =V x [m], where V is defined below.

Definition 3.4.11. Let V be the three-element poset {a,b, c} with a < b and a < c.
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As a result of M. Plante, we know the order ideals of V' x [m] have nice order under

rowmotion.
Theorem 3.4.12 ([38]). Row on J(V x [m]) has order dividing 2(m + 2).

Moreover, it is believed to be the case that piecewise-linear rowmotion on (V' x [m])-

partitions shares the same order.
Conjecture 3.4.13 ([29]). Row on AY(V x [m]) has order dividing 2(m + 2).

This conjecture has been experimentally verified for small m and ¢, and we have used our
SageMath code to check many particular examples with larger £ and m.
We apply Corollary 3.2.25 to Conjecture 3.4.13 (see Figure fig:Vstrict Vrow),noting that the

poset V is of rank n = 1, to obtain the following translated conjecture on V-strict labelings:

Conjecture 3.4.14. Pro on Ly (g (R?) is of order dividing 2q.

9 3

| 17

! ! 1.1 .3

1 1 |\1/|
' i)

A % 1\(|)/3

| | | |

. 1. ] .1

1 1

\O/

Figure 3.3. An element of EVX[g}(R7) and its corresponding (V' x [5])-partition

Remark 3.4.15. Hopkins and M. Rubey show in [30] that the order of promotion on linear exten-
sions of V' x [] is 6¢. Just as in the linear extension case, it seems to be true (experimentally) that
applying promotion ¢ times to some f € Ly, (q(R?) results in a reflection of the labels of f across
the vertical axis of symmetry. Therefore, it may be possible to devise a method similar to that in

[30] to accommodate V-strict labelings, proving Conjecture 3.4.14, and, in turn, Conjecture 3.4.13.

Finally, Conjecture 3.4.13 can be translated once more to an earlier case of interest, by

applying Theorem 3.4.6 with a = 2, noting /\, is the dual poset of V.
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Conjecture 3.4.16. For (i,j) € [2] x [b], let B(i,j) = b+ 2i — 1. Then Pro on L)xp))x (g (R") is

of order dividing 2(b+ 2).

3.5. Resonance on P-strict labelings

In dynamical algebraic combinatorics, we are often interested in when an action, such as
promotion or rowmotion, has a small, predictable order. Actions which do not have such an order
may still exhibit some nice dynamical behavior, such as orbit sizes that may be multiples of a
predictable number (or divisors of it). In [12], resonance was defined to explain this numerical

phenomenon when the action in question projects to an action with a small, predictable order.

Definition 3.5.1 ([12]). Suppose G = (g) is a cyclic group acting on a set X, C, = (c) a cyclic
group of order w acting nontrivially on a set Y, and ¢ : X — Y a surjection. We say the triple

(X, G, ) exhibits resonance with frequency w if, for all x € X, ¢- p(z) = p(g - ).

A prototypical example of resonance given in [12] was increasing tableaux under K-pro-
motion where the projection map ¢ was the binary content of the tableau. Here we give an
analogue of that theorem in the more general setting of P-strict labelings.

Though the previous sections of this paper deal only with the case Lp,[y(R), which in the
notation of [5] is Lpyg(u, v, R) with u = v = 0, the theorems of this section apply to the case
with general u and v. As the values of u and v play no role in the proof, we state the first few
results of this section at this greater level of generality. See [5, Definition 1.7] for the definition of
Lpyg(u,v, R).

We first extend the definition of binary content from increasing tableaux to P-strict label-

ings.

Definition 3.5.2. Define the binary content of a P-strict labeling f € Lpyg(u,v, R?) to be
the sequence Con(f) = (a1, a2,...,aq), where a; = 1 if f(p,i) = i for some (p,i) € P x [¢] and 0

otherwise.

We now give Lemma 3.5.3 showing that promotion cyclically shifts the binary content of a
P-strict labeling. This is an analogue of [12, Lemma 2.1]. Note the proof of Lemma 3.5.3 is not
directly analogous to the proof of [12, Lemma 2.1], as we use the Bender-Knuth definition of P-strict

promotion (Definition 3.2.6) rather than an analogue of jeu de taquin. In [5, Definition 3.1], we gave
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a definition of P-strict promotion via an analogue of jeu de taquin when the restriction function is
R? and showed these definitions are indeed equivalent [5, Theorem 3.10]. So we could have used

this approach instead, at the cost of stating this alternate definition for P-strict promotion.

Lemma 3.5.3. Let f € Lpyy(u,v,R?). If Con(f) = (a1,as,...,aq), then Con(Pro(f)) is the

cyclic shift (az, ..., aq,a1).

Proof. Suppose f € Lpyyy(u,v, R?), Con(f) = (a1,as,...,a,), and Con(Pro(f)) = (b1,ba,...,by).
We wish to show b; = a;41 for all 1 <4 < ¢ and b; = a;.

Suppose a; = 0, meaning 1 is not used as a label in f. Then all 2 labels in f will be
lowerable, leaving no 2 labels after the application of p;. Likewise, there are no ¢ + 1 labels in
pipi—1---p1(f), and there are no ¢ labels in Pro(f) = pg—1--- pap1. Thus ¢ is not used as a label
in Pro(f), therefore by =0 = a;.

Suppose a; = 1, meaning 1 is used as a label in f. Any 1 label is either fixed, meaning
there is a 2 above it in its layer, or free. If it is free, then either there are no 2’s in its fiber and the
1 changes to a 2, or there are 2’s in the fiber, meaning there will still be at least one 2 in the fiber
after the application of p;. The same reasoning holds for i, 2 < i < ¢ — 1. So there will be at least
one ¢ in Pro(f), therefore b; = 1 = a;.

Likewise, suppose ¢ > 1 and a; = 0, meaning ¢ is not used as a label in f. Then all ¢ — 1
labels in f will be raisable, leaving no i — 1 labels in p;p;—1--- p1(f), and therefore in Pro(f). So
bi_1=0=a;.

Finally, suppose ¢ > 1 and a; = 1, so there is at least one i used as a label in f. Thus, i is
fixed in p;_g - - p1(f) with respect to p;_1, meaning there is an i — 1 below it in its layer. In that
case, there is an ¢ — 1 in Pro(f). Alternatively, the i is free, meaning it will either change into an
1 — 1 when p; is applied, or there will be a ¢ — 1 labels and b i labels that change to b ¢ — 1 labels

and a ¢ labels. In either case, there is an ¢ — 1 in Pro(f). As a result, b;_1 = 1 = q;. 1
Theorem 3.5.4. (prm (u,v, R?),Pro, Con) exhibits resonance with frequency q.
Proof. This follows directly from Lemma 3.5.3. [

We now translate this resonance theorem to the realm of @-partitions via the bijections of

Theorems 3.2.17 and 3.2.20. Though we could state this result for arbitrary u, v through the general
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bijection of [5], it would use too much excess notation. Thus, we restrict to the case u = v = 0.

First, we define the analogue of Con in this realm.

Definition 3.5.5. For 0 € AY(I'(P, R?)), let Diff(c) be the sequence (ay, as, ... ,a,) where

0 ifo(p,k—1)=o0(pk)forallpeP
ap =

1 otherwise,

where we consider o(p,j) = £ if 7 < min R4(p) and o(p,j) = 0 if j > max R4(p).
Corollary 3.5.6. (AY(I'(P, R9)),Row, Diff) ezxhibits resonance with frequency q.

Proof. This follows from Corollary 3.2.22, Theorem 3.5.4, and the fact that, for any I'(P, RY))-
partition o, the difference o(p,k — 1) — o(p, k) gives the number of k labels in the fiber F}, for the

corresponding P-strict labeling f. O

In the case where P is graded, that is, where the poset I'( P, R?) is isomorphic to Px[¢g—n—1],
we can restate Corollary 3.5.6 in terms of the elements of P X [¢ —n — 1] through a reinterpretation

of Diff.

Definition 3.5.7. Let P be graded with rank n and let Hy be the set of all elements (p,i) in P X Z
with ¢ —n —i+rank(p) = k. For o € A*(P x [g—n—1]), let Diff(¢) be the sequence (a1, az, ... ,a,)
where

0 ifo(p,i) =0o(p,i+1) for all (p,i) € Hy
ap =

1 otherwise,

where we consider o(p,i) =¢ifi>qg—n—1and o(p,i) =0if i < 1.
Corollary 3.5.8. (AY(P x [¢ —n — 1]), Row, Diff) exhibits resonance with frequency q.

Proof. We have that I'(P, R?)) is isomorphic to P X [¢ —n — 1] as a poset by Lemma 3.2.23. The
conditions for ay = 0 and a; = 1 are identical to those in Corollary 3.5.6 under the bijection in
Remark 3.2.24, noting that Hys in P X [¢—n — 1] corresponds to the set {(p, k) € I'(P,RY) | k = k'}.

O
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Remark 3.5.9. In the case when P is graded, we can think of Diff(¢) as indicating when the
elements of consecutive hyperplanes in a lattice projection of P x [¢ —n — 1] share the same labels.
For example, in the top right of Figure 3.1, the two 4 labels at the top of P x {3}, the center 1
label in P x {2}, and the two 0 labels in P x {1} label the elements of Hj3, and these labels are the
same as those of Hy (where the elements “below” the poset are considered to be labeled by 0). In

this case, we have Diff(c) = (1,1,1,0,1,1).

91



4. OTHER RESULTS AND CONJECTURES

In this final chapter, we introduce an assortment of other results and conjectures that arose,
directly or indirectly, from working through the material in Chapters 2 and 3. We begin with an
enumeration result, and conclude with results with more dynamical flavor.

4.1. A bijection on tableaux

We introduce a bijection on semistandard Young tableaux as a solution to the enumeration
problem of Corollary 4.1.6, though the map is given in larger generality that is not explored here.
For a semistandard Young tableau T, let T'(,5) be the entry in the box in the i row and j*
column of 7', and let )" denote the conjugate (see [48]) of a partition A = (A1, g, ..., A,), that is,
the partition whose Young diagram is the transpose of the Young diagram of \. We write the set

of all semistandard Young tableau with entries no more than m as SSYT (A, m).

Definition 4.1.1. Define a map F on SSYT(\,m) as F(T) = T', where T'(j,i) = T(4,j) — i + j.
In other words, F as subtracts ¢ from the i row of T', conjugates, and then adds j to the j™* row

of this result.

Proposition 4.1.2. F is a map from SSYT of shape X\ to SSYT of shape X .

24

<3
D

2
<

Ol bW
(@)}

Figure 4.1. An example of the map F' with A = (3,2,2,1). These two tableaux are in bijection by
Theorem 4.1.3. The tableau on the left is an element of SSYT(A, 6) and the tableau on the right is
an element of FT(X, (3,5,8))
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Proof. Let T € SSYT (A, m) with A = (A1, A2,...,\;) and let F(T) = T’. By definition of F', T" is

a filling of the partition shape X. Now, for 1 < j < \; — 1,

T'(j,i)=F(T(i,7)=T@,j) —i+ji <T@, j+1)—i+j<T@,j+1)—i+(j+1)

=F(T(i,j+1)) =T'(j + 1,4)
so we have T'(j,i) < T'(j + 1,i). Thus 7" is strictly increasing down columns. For 1 <i <k —1,

T'(j,i) = F(T(3,5)) =T(i,5) —i+j <T(i+1,j) =i+
T, j) =i+ <T@+ 1Lj)=(i+1)+i=F(T(i+17)=T(0i+1)
so we have T'(j,4) < T'(j,7+ 1). Thus T" is weakly increasing across rows.
Since T” weakly increases in rows and strictly increases in columns, 7" is a SSYT. O

Recall from Definition 2.4.22 that we denote set of flagged tableaux of shape A and flags b
by FT(A,b) (here, b = (by,...,b,), associating a b; with each part of \).

Theorem 4.1.3. F' is a bijection between SSYT (X, m) and FT(X,b), where b; =1+ m — ..

Proof. For a tableau T, let F(T) = T'. Then F (F (T(i,5))) = F(T'(j,i)) = T'(j,1) —j +1i =
(T(i,j)—i+j)—j+i=T(ij). Thus F is an involution.

Suppose T' € SSYT(A,m). Because T" is a SSYT by Proposition 4.1.2, to determine the
largest possible entries in the rows of T” (its flags) we need only consider the last, and therefore

greatest, entry in row 4 of 7”. So,
T'(i, A}) = F (T(X\j, 1)) = T(Nj, i) = Aj+i <m— \j + i

thus the largest possible entry in row i of 7" is i +m — X}, so T € FT (N, b).

(3

Next, suppose 77 € FT(X,b) for some \. Then, for any (i, j) of the shape A,

T@ﬁ:F@Kmn:me—ngu+m—&yq+igm—&+yzm
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since the maximum value of ¢ for any given j is )\9. Therefore the maximum entry of 7'(7, j) is no
greater than m, so T' € SSYT (A, m).
We have F~1 = F| F(SSYT(\,m)) C FT(X,b), and F (FT(X,b))) C SSYT(\,m), so F is

a bijection. O

Consult Figure 4.1 for an example of this theorem. Now, we look at a case where this
bijection yields an interesting enumeration result. Let sc, denote the staircase partition shape

(n,n—1,...,1). The following corollary is a direct application of Theorem 4.1.3.
Corollary 4.1.4. SSYT(scp,n + 1) is in bijection with FT(scy, (2,4,...,2n)).

We can enumerate the semistandard side of this bijection nicely using a hook-content for-

mula (Theorem 1.1.4), yielding the following.
Proposition 4.1.5. SSYT(sc,,n + 1) has cardinality 2(3).
Corollary 4.1.6. FT(scp, (2,4, ...,2n)) has cardinality 2(3).

The flags (2,4,...,2n) made an earlier appearance in Corollary 2.4.28, though in the case
when A is a rectangle. While this application is the extent of our use of the bijection F', it would
be interesting to know if it is useful in other contexts.

4.2. Order ideals of P x [n]

The material in this section arose largely from the pursuit of Conjecture 3.4.13, but includes
some related objects. We demonstrate new proofs of results implicit in other work, with the
notion that the included ideas represent small steps toward possible resolutions of more complicated
conjectures. We begin with a more thorough explanation of Remark 3.4.15 after first reiterating

the conjecture in question.
Conjecture 3.4.13. Row on AY(V x [m]) has order dividing 2(m + 2).

Because of the main results of Chapter 2, we have a new perspective on piecewise-linear
rowmotion on (V' x [m])-partitions, namely, that it is equivariant with Bender—-Knuth promotion
on V-strict labelings of V' x [¢]. It is often the case that promotion, rather than rowmotion, admits

a rotational representation, so it seems likely that progress towards proving Conjecture 3.4.13 will

94



come from analyzing promotion on Ly, 4 (R?) (Definition 2.1.7). Note that, in this correspondence,
we have ¢ = m +rank(V) +1=m + 2.

A first step in this direction is in the case ¢ = 1, corresponding to rowmotion on order
ideals of V' x [m]. Here, V-strict labelings of V', £i/(R9) in our notation, are the same as increasing
labelings of V', notated Inc?(V'). As stated in Theorem 3.4.12, the order of rowmotion in this case
is known to be 2(m + 2) and is proved by Plante using what are described in [38] as center seeking
snakes, though this idea can be generalized past the use of the word “center” and may thus appear
differently in future work of Plante [39]. However, we can arrive at the same conclusion on the

promotion side by using the method of Hopkins and Rubey from [30].
Theorem 4.2.1. Pro on Inc?(V') has order dividing 2q.

The proof of this theorem uses exactly the process from [30], except on Inc?(V') instead of
on the two linear extensions of V. To that end, we introduce the relevant definitions and results.

First, we call a word consisting of the letters A, B, and C (and later, blanks) a Kreweras
word w if there are equal amounts of A, B, and C and the number of the letters B or C never
exceeds that of A reading left to right. A nine letter Kreweras word consisting of three each of A, B,
and C, such as w = AACBCABCB, encodes a linear extension of V' x [3] by letting A represent the
minimal element of V and B and C represent one each of the maximal elements. For the example
AACBCABCB, the three elements of V' x [3] that are the minimal element of their respective V'
poset would have labels 1, 2, and 6, ascending. For an idea of this encoding in greater generality,
see Figure 4.4.

From a Kreweras word we can construct a Kreweras bump diagram D, by drawing blue
arcs atop the Kreweras word corresponding to the noncrossing matching indicated by the A entries
together with the B entries and drawing crimson arcs for the noncrossing matching indicated by
the A and C entries. “Crimson” (instead of the more typical “red”) is a reminder that these arcs
connect with the letter C. Conveniently, “blue” already suffices. See Figure 4.3 for examples of
bump diagrams, though in the context we will discuss later.

Finally, from D,, we can define the following, where S,, denotes the symmetric group.

Definition 4.2.2 ([30]). Define the trip permutation o, by assocating the numbers {1,...,q},

in order, to the places of w, and then creating a permutation by taking a trip along the nodes
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Figure 4.2. The rules of the road when taking a trip in a Kreweras bump diagram. The directions
at an internal crossing are shown on the right side and at a boundary on the left.

and arcs of D,, in the following manner. First, if we start at an A node, we travel right along
the innermost path to whichever is closest of the associated B or C and continue until we end at
another node. If we start at a B or C node, we travel left along the arc toward the associated A,
following the rules of the road shown in Figure 4.2 until we end at a node. For the purposes of
this section, we additionally note that a trip starting at a blank “—” begins and ends in the same

location. Then, o,,(7) is the value at the termination of the trip beginning in position i.

Note that we can recover the arcs, but not their color, just from o,,. To make a bijection,

we also need the following definition.

Definition 4.2.3. Define the map &,: {1,...,q} = {B,C,—} as

W, () if we, i) 7 A;

ew(l) =

Wo (o)) 1 Woy ) = A,
Now, we give the crucial lemma. Here, for o € S,, and using cycle notation, Rot(c) =
(1,2,...,n) tooo(1,2,...,n) and we consider -B = C, —C = B.
Lemma 4.2.4 ([30]). Let w be a Kreweras word of length 3n. Then,
1. opro(w) = Rot(ow);
2. Epro(w) = [Ew(2),6w(3), -, ew(q), —€w(1)].

This lemma is proved in [30] for Kreweras words without blanks. We reiterate the lemma

for our required case, considering the negation of a blank to be a blank.

Lemma 4.2.5. Let w be a word of length q in the alphabet {A, B, C, —} containing ezxactly one
each of A, B, and C, where B and C occur after the letter A. Then,

96



1. OPro(w) = Rot(ow);

2. €Pro(w) = [gw(2)7 Ew(?))? s 7€w(q)a _5w<1)]'

Proof. The introduction of the blank letter “—” does not interfere with the method of proof for
this lemma shown in [30]. We will record the differences that working on Inc?(V') adds, but will
not reiterate the content in their paper.

Because Pro moves blanks cyclically one step to the left, the fixed points of the permutation
ow induced by these blanks still satisfy 1 and 2. If w(1) = —, promotion acts by shifting all entries
cyclically to the left, again satisfying 1 and 2. Finally, if a label is repeated in the maximal elements
of V', the entire case reduces to promotion on Inc?([2] x [1]), which has order ¢. In the context of

D, we have a single arc connecting A to B, ignoring C, and 1 and 2 hold. ]

Now, for o, € Sy, Rot has order ¢ and Pro on ¢, has order 2¢, giving us Theorem 4.2.1.
See Figure 4.3 for a demonstration of promotion using bump diagrams. Note that this proof also
shows that the labels “reflect” across the vertical axis of symmetry, an idea we will revisit later in
this section.

This bump diagram approach can also be used on natural generalizations of the V' poset:

p-stars.

Definition 4.2.6. Let S(p) denote the p-star poset, the poset with one minimal element covered

by p maximal elements.
In this notation, V' is a 2-star. What, then, is the order of promotion on Inc?(S(p))?

Proposition 4.2.7. Pro on an increasing labeling f € Inc?(S(p)), in which the mazimal elements

are labeled by k unique labels, has order dividing kq.

Remark 4.2.8. Instead of an explicit proof, we appeal again to Hopkins and Rubey. Without loss
of generality, we can consider a p-star labeled by p unique maximal labels, as a smaller number
k of unique labels reduces to the above case with a k-star. In this case the “Kreweras word” will
consist of A and p more letters, which cycle to the next letter in line when they move from position
1 to position ¢ in g, under promotion. The usual “rules of the road” apply, so promotion acts on

the trip permutation by rotation, and thus the order of promotion must divide pq.
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3\ /5 2\ /4 5\ /3

[\
e
—

Pro Pro
° — * —» —
w=— A B — C A B - C — A C — B
S 1 2 3 4 5) (1 2 3 4 5) (1 2 3 4 5)
v 1 3 5 4 2 2 4 3 1 5 3 2 5 4 1
ew=— B C — B B C — B — Cc — B — C
4 5 3 4 5) 3
\./ \./ \./
2 1 2
Pro Pro Pro
— e —_— e —» o
— A — B C A — B C - — A C — B
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 4 3 5 2 3 2 4 1 5 1 3 5 4 2
- B — C B B — C B — — B C — B

Figure 4.3. Shown here is half of an orbit of an element of Inc®(V'). Also included are the associated
Kreweras word w (with blanks), the trip permutation oy, in two-line notation, and the map &,,.

Remark 4.2.9. The approach of Plante through rowmotion also applies nicely on S(p) x [m], and

so the rowmotion translation of Proposition 4.2.7 will appear in future work of Plante [39].

The bump diagrams of [30] can also be used to biject linear extensions of V' x [n] to webs, and
it is these webs that visually rotate. The optimism of Remark 3.4.15 stems from this perspective;
that a rotation object could be found to represent elements of Ly, ,(R?) instead of just linear
extensions. However, an initial foray into this idea hints that this may be challenging, as the “rules
of the road” that are sufficient for linear extensions and the £ = 1 case do not appear to be sufficient
for a more general V-strict labeling (see Figure 4.4).

It would be reasonable to conclude that the difficulty stated above is due to Ly q(R9)
being the incorrect generalization of linear extensions. The labelings Ly (¢ (R?) seem to skip over
one degree of weakening, as increasing labelings Inc?(V') maintain the strictly increasing condition
of linear extensions while allowing repeated labels, while V-strict labelings allow weak increase

along fibers. However, the order of promotion on Inc?(V x [3]) does not divide 2¢ (see below). This
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A2B B - C? - B
A C

Figure 4.4. A bump diagram for a generic element of EVX[g](R7). This object is conjectured to
have promotion orbits of cardinality 14.

parallels the known results on rectangles, where SSYT(¢", ¢) under promotion has order dividing
g, while Inc?([a] x [b]) does not for a or b greater than 3.

It is also possible to prove Theorem 4.2.1 using the remarkable result of H. Mandel and
Pechenik [32] which allows for the calculation of the period of promotion by analyzing only the
packed labelings, or those which use all integers in a particular range {1,...,q}. Since there are
finitely many packed labelings for a given poset, the order of all increasing labelings is a matter of

computation. In this way, we get the following proposition.
Proposition 4.2.10. Promotion on Inc?(V x [2]) has order 2q.

As a conclusion to the V poset, we note that there is an orbit of size 6 of promotion on
Inc’(V x [3]), notable as 6 is relatively prime to 7. This, as stated above, demonstrates that the
nice promotion order of linear extension appears to extend to Ly 4 (R?) instead of Inc?(V x [n]).
In this light, Proposition 4.2.10 seems to be a coincidence stemming from its small size.

For the remainder of this section, recall our definition of /\,, as a subset of [n] x [n] (see
Definition 3.4.5).

Besides p-stars and V' x [n], another way of generalizing the V' poset is to consider it as
/N, and see if the nice promotion order extends to Inc?(/\,). While the order of promotion

on Inc?(A\,) is not, in fact, 2q, it does share a similar trait in that the labels on the V-shaped
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behavior than, for example, a six element fence poset 1 <2 > 3 <4 » 5 < 6, which has promotion
orbits of cardinality 17 and 22 with ¢ = 5. It may be the case that more restrictive definitions such
as NRP will have the most success while other cases of interest will rely on pattern-finding such as
Conjecture 4.2.13 to demonstrate their beauty.

4.3. Order ideals of Raney posets

We begin this section by defining a new poset.

Definition 4.3.1. Let the Raney poset R(k,p,r) be the subposet of [k] x [(p—1)(k —2) +r —1]

with elements {(i,7) | j > (p — 1)(k —14)}.

See Figure 4.6 for examples of these posets and Figure 4.5 for the motivation behind the
definition. Note that the labels are not as described above, but of the poset I'([n — 1], R?) described
in Proposition 4.3.5.

The posets R(k,p,r) are enumerated by a known class of numbers that generalize Catalan

numbers (see Remark rem:FCnum).

Definition 4.3.2. The Raney numbers are given by

o kp+r
Rp’T(k)_kp—l—r( k >

Theorem 4.3.3. J(R(k,p,r)) is enumerated by R, (k).

While we do not claim this result is new or particularly difficult to demonstrate, we provide
a proof below for the sake of completeness. This proof bijects the order ideals J(R(k,p,r)) with
coral diagrams, which we will describe as in [57]. A coral diagram of type (k, p,r) is constructed
by repeatedly placing a total of k p-stars (see Definition 4.2.6) atop terminal vertices, starting with
a single r-star as a base. By [3, Theorem 2.5], the number of coral diagrams of type (k,p,r) is

given by R, (k).

Proof. First, we note that the poset R(k,p,r) can be represented by the whole 1 x 1 boxes in the
rectangle [0, (p — 1)k +r — 1] x [0, 4 1] € R? that lie above, or have a corner touching, the line
segments connecting (0,0) to (r — 1,1) and connecting (r —1,1) to ((p — )k +r — 1,k + 1) (see
Figure 4.5). From this perspective, we can represent an order ideal of R(k,p,r) as a lattice path

from (0,0) to ((p — 1)k +r — 1,k + 1) that stays above or on the aforementioned line segments.
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(1,1)
(0,0)

Figure 4.5. On the left is an element of J(R(4, 3,2)) and on the right is its associated coral diagram.

What remains is to show these lattice paths and coral diagrams are equinumerous. A slight
tweak to the usual bijection from binary trees to Dyck paths (as in [48, Chapter 5.3]) suffices .
Starting from the base vertex, traverse the leftmost edge to the next vertex, and again take the
leftmost edge. Upon reaching a terminal vertex, backtrack to the closest vertex with untraversed
children and take the path immediately to the right. If no such path exists, backtrack to the
next vertex, and so on. In this way, the entire coral diagram is traversed, ending at the rightmost
terminal vertex. Ignoring backtracking, this results in n + 1 leftmost edges and (p — 1)n +r — 1
non-leftmost edges traveled in a particular order. In this order, each traversal upon a leftmost edge
is a (0,1)-step and all other edges are a (1,0)-step of our lattice path. This construction is easily
reversed to associate a coral diagram to a given lattice path with the above restrictions. Thus, we

have |J(R(k7pa T))| = prr(k)' 0
See Figure 4.5 for an example of this bijection.

Remark 4.3.4. When r = 1, R, , (k) equals the Fuss—Catalan numbers, or the number of lattice
paths from (0,0) to ((p — 1)k, k) staying on or above the diagonal. The case when r =1 and p = 2
is the usual Catalan numbers. Note that R, ,(k) is a different generalization of the Fuss-Catalan
numbers than the rational Catalan numbers, which enumerate lattice paths above the single line
segment connecting (0,0) with any point (a,b). A geometric way to consider this difference is
that Raney numbers are Fuss—Catalan numbers with a shift, while rational Catalan numbers are

Fuss—Catalan numbers with any rational slope.

Recall the definition of the poset T'(P, R?) from Definition 2.2.2.
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Experimentally, it appears that A‘(R(k,p,r)) does not have predictable order in general,
or, in fact, even for small parameter values. However, the following conjecture has a similar flavor

to the above theorem, if for a less interesting poset.
Conjecture 4.3.10. Row on A“(R(2,2,7)) with r > 3 has order dividing (r + 1)(r + 2).

Translating this conjecture to a two-rowed flagged tableaux may open the door to a proof

using promotion.

Conjecture 4.3.11 (equivalent to 4.3.10). Pro on FT(¢2, (r,r +2)) with r > 3 has order dividing

(r+1)(r+2).

Remark 4.3.12. Note that r = 2 is covered under Theorem 4.3.9 and r = 1 reduces to the k — 1
case with r = 2. Any increase in k or p results in a failure as early as £ = 2. For clarity, the poset
R(2,2,r) is exactly [2] x [r] with the minimal element removed.
For the order ideal case, £ = 1, there is experimentally always one orbit of size r + 1, and,
r

if 7 is even, there is exactly one orbit of size § 4 1. Finally, there are [5] — 1 orbits of size r 4 2.

We have tested this through r = 50. For the general case, we have tested through r =9 for ¢ < 4.
We conclude with a known result and a new conjecture about rowmotion on J(R(k,p,7)).
Proposition 4.3.13 ([1, Proposition 5.2]). Pro on J(R(k,p,1)) has order dividing kp.

This is a statement about rowmotion as well as promotion, since the left to right toggle
action of Pro on J(R(k,p, 1)) is conjugate to Row as a result of [54].

The above proposition was proved using a rational Catalan perspective, and associated
promotion on the lattice paths with the rotation of a moncrossing partition. We again note that
this is a different generalization of the (Fuss—)Catalan numbers than the Raney numbers, though

it may be possible that their method of proof could be used for the following conjecture.
Conjecture 4.3.14. Let r | p— 1. Then Row on J(R(k,p,r)) has order dividing kp + r — 1.

Remark 4.3.15. Other values of r (i.e. 7 { p—1 or r > p) do not have predictable order, except in
the case of Conjecture 4.3.10. It is interesting to note that the periodicity in the above conjecture
does not coincide with Proposition 4.3.13 in the case where » = p. For this conjecture, we have
tested up to p = 13 for £ = 2,3, and up to p = 7 for k = 4,5, as well as many random large

examples.
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4.4. Future work

The previous two sections outline possible avenues of future exploration. Foremost from
Section 4.2 is resolution of Conjecture 3.4.13. Since many results on rowmotion can be described
rotationally by promotion on a corresponding object, this approach seems promising, even if the
bump diagram method is not tractable. However, given the work of Plante on rowmotion of order
ideals, and, for that matter, Grinberg and Roby on birational rowmotion, we should not discount
the idea of a direct rowmotion proof.

Besides this more general rowmotion result, there is still much to discover concerning row-
motion on J(P x [m]) with P graded, or, equivalently, promotion on increasing labelings of P.
Two phenomena, observed experimentally, need not only explanation, but a concrete definition.
The first being a firm categorization of “nice” orbit structure besides a strict periodicity result.
Notions such as resonance and NRP rowmotion begin to capture this, but are not well-explored.
The second gap in classification comes when “many” orbits have the expected size (where notions
of “expected” are a bit more robust!). While it is possible that this phenomenon occurs only for
the small values we are able to test, there may be objects on which “many orbits” has definable
meaning or gives rise to an asymptotic result.

Lastly, the conjectures that conclude Section 4.3 appear reasonable in nature, and can
hopefully be proved with only slight modification to existing methods. Unexplored in this section
is the possibility of homomesy results, which is worth future consideration.

As for the content of Chapters 2 and 3, future work should seek to firmly establish P-
strict labelings in the combinatorial object canon. Developing algebraic structure similar to that
of the semistandard Young tableaux they generalize (as well as flagged and symplectic tableaux),
including their associated symmetric functions, possible Jacobi—Trudi identity, or even an RSK-like
correspondence, would be of interest. Or, if promotion on P-strict labelings and the main bijection
of Chapter 2 could be used to prove a rowmotion result, such as for the A*(V x [m]) case, then
P-strict labelings could enjoy wider appeal.

Finally, considering the main bijection as a generalization of Gelfand-Tsetlin patterns al-
lows for possible exploration in that realm. Adapting known results on GT-patterns, such as the

construction of their associated polytope, to their B-bounded counterparts could prove fruitful.
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