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ABSTRACT 

In manufacturing applications, a large number of data can be collected by experimental 

studies and/or sensors. This collected data is vital to improving process efficiency, scheduling 

maintenance activities, and predicting target variables. This dissertation explores a wide range of 

numerical modeling techniques that use data for manufacturing applications. Ignorance of 

uncertainty and the physical principle of a system are shortcomings of the existing methods. 

Besides, different methods are proposed to overcome the shortcomings by incorporating 

uncertainty and physics-based knowledge. 

In the first part of this dissertation, artificial neural networks (ANNs) are applied to 

develop a functional relationship between input and target variables and process parameter 

optimization. The second part evaluates the robust response surface optimization (RRSO) to 

quantify different sources of uncertainty in numerical analysis. Additionally, a framework based 

on the Bayesian network (BN) approach is proposed to support decision-making. Due to various 

uncertainties, estimating interval and probability distribution are often more helpful than 

deterministic point value estimation. Thus, the Monte Carlo (MC) dropout-based interval 

prediction technique is explored in the third part of this dissertation. A conservative interval 

prediction technique for the linear and polynomial regression model is also developed using 

linear optimization. 

Applications of different data-driven methods in manufacturing are useful to analyze 

situations, gain insights, and make essential decisions. But, the prediction by data-driven 

methods may be physically inconsistent. Thus, in the fourth part of this dissertation, a physics-

informed machine learning (PIML) technique is proposed to incorporate physics-based 

knowledge with collected data for improving prediction accuracy and generating physically 
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consistent outcomes. Each numerical analysis section is presented with case studies that involve 

conventional or additive manufacturing applications.       

Based on various case studies carried out, it can be concluded that advanced numerical 

modeling methods are essential to be incorporated in manufacturing applications to gain 

advantages in the era of Industry 4.0 and Industry 5.0. Although the case study for the advanced 

numerical modeling proposed in this dissertation is only presented in manufacturing-related 

applications, the methods presented in this dissertation is not exhaustive to manufacturing 

application and can also be expanded to other data-driven engineering and system applications. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

In today’s technological era, the current trend of manufacturing industries is moving 

toward the fourth industrial revolution or Industry 4.0. In recent years, data-driven methods have 

significantly progressed due to cutting-edge technologies and high computational power. 

Industry 4.0 explores the internet of things (IoT), big data and data analytics, augmented reality, 

cybersecurity, collaborative robots, cloud computing, additive manufacturing (AM), artificial 

intelligence (AI), and finally, 5G networks in manufacturing for improving quality, increasing 

flexibility, reducing product launching time, and developing automated controlled systems [1]. 

Data is the primary driving fuel for Industry 4.0. The manufacturing data is collected, 

stored, processed, and analyzed using advanced technologies and data-driven methods [2]. 

Generally, data-driven numerical modeling techniques (e.g., machine learning algorithms) are 

applied to analyze the situations, gain insights, and make essential decisions from data. Data-

driven methodologies can be used for diverse manufacturing purposes, such as online condition 

monitoring, remaining useful life predictions, remote device control, process parameters 

estimation, product quality improvement, and reduced downtime [3, 4]. 

Nowadays, manufacturing industries are slowly implementing data analysis algorithms to 

cope with Industry 4.0 and gain competitive advantages. The objectives of applying data-driven 

methods in manufacturing industries are machine anomalies detection, predictive maintenance, 

product inspection, cyber threat detection, etc. The experimental investigation, expert opinions, 

and sensors can be used to collect the data relevant to a target of interest. The collected data is 

further utilized for training (or estimating model parameters in) a numerical model. 
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The applications of data-driven methods are still limited in manufacturing due to the lack 

of data collection facilities on manufacturing floors, shortage of artificial intelligence (AI) and 

data science knowledge, and the complexity and diversity of machinery types. Most of the data-

driven methods are not developed for specific manufacturing applications. It is also necessary to 

combine a data-driven approach with other algorithms. For example, data preprocessing and 

feature extraction algorithms can be applied to prepare a dataset. Besides, uncertainty 

quantification techniques can be applied to improve prediction accuracy and make a robust 

prediction. It is inevitable to use data-driven methods in the future as big data and analytics are 

integral parts of Industry 4.0 [3, 4]. 

The overarching goals of this dissertation aim to: (1) explore different data-driven 

numerical methods for various manufacturing processes, (2) modify data-driven methods to 

make them applicable for both conventional and additive manufacturing processes, (3) combine 

different data-driven methods that can be implemented in various manufacturing processes, and 

(4) develop holistic advanced data-driven algorithms that involve process parameter optimization 

as well as condition monitoring. 

1.2. Current Limitations 

Manufacturing systems are becoming complex and dynamic day by day. Adopting 

cutting-edge manufacturing technologies, utilizing AI systems, sustainability of manufacturing 

processes, and high demand for customized products are critical challenges for manufacturing 

industries [5-7]. Advanced numerical modeling is a viable option to overcome these challenges 

[8]. Currently, there are many data-driven methods available, including support vector machine 

(SVM), decision tree, Naive Bayes, k-nearest neighbor (k-NN), linear regression, artificial neural 

network (ANN), convolutional neural network (CNN), Bayesian network (BN), radial basis 
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function neural network (RBFNN), and long short-term memory (LSTM). These data-driven 

methods can be applied to aid in decision-making in manufacturing applications for several 

purposes, such as predictive maintenance, fault diagnosis, and scheduling optimization. 

Applying data-driven methods is also essential to improve efficiency and effectiveness. 

The accuracy of predictions is measured by comparing the predicted values with measured 

values of leveled data [9]. But there are some limitations to applying data-driven methods. 

1. Due to different data sources, a plethora of data is available.  High computational 

power is necessary to handle a plethora of data, and it is also essential to select the 

correct data information for a specific purpose.  

2. Data quality is another vital factor for reliable and accurate predictions. The 

prediction from poor data quality may lead to a less reliable decision and eventually 

leads to loss of resources, competitiveness, and time. In many cases, decision-makers 

blindly rely on the prediction by data-driven methods. Another vital factor that 

impacts the performance of the manufacturing process and the data-driven methods is 

uncertainty.  

3. Uncertainty is everywhere, and it is not possible to avoid uncertainty in real-life 

practices [10, 11]. Environmental noise, human error, measurement error, and natural 

randomness are potential sources of uncertainty in manufacturing data collection. 

Instead, uncertainty can be reduced by identifying the sources of uncertainty and 

taking appropriate corrective action. Additionally, uncertainty quantification can be 

incorporated into a decision-making process, and the impacts of uncertainty should be 

analyzed before making a decision. 
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4. Besides, data-driven models are developed under certain assumptions. Those model 

assumptions can affect the accuracy of predictions [11-15]. Data normality 

assumptions, linearity relation assumptions, convergence assumptions, small data 

size, and idealizing representations of actual performances are sources of model 

uncertainty. 

5. Generally, data-driven algorithms rely on collected data for decision-making, not on 

the physics of a system from which the data is collected. The ignorance of physics-

based knowledge may result in infeasible estimation by data-driven numerical 

models. Therefore, incorporating the physical principles of a system in data-driven 

methods is necessary to achieve better and more consistent predictions. 

Data-driven methods involve some parameters, and the other parameters are often 

assumed to be constant and insignificant for the target variable. This limitation can cause the 

prediction results to be misleading when analyzing parameters that do not show the complete 

story of an analyzed target variable. Although there are several limitations, data-driven methods 

have many prospects, especially in manufacturing applications.  

1.3. Dissertation Objective and Scope 

This dissertation makes several contributions to the overall manufacturing applications 

objectives by proposing various advanced numerical methodologies to solve particular problem 

statements. The primary objectives of this dissertation are to: 1) develop and apply data-driven 

numerical modeling in various manufacturing processes for decision-making by analyzing the 

experimental and sensor data, 2) incorporate uncertainty in data-driven methods to make more 

robust decisions, and 3) propose a PIML for additive manufacturing applications. 
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This dissertation makes several contributions in the manufacturing sectors toward 

fulfilling the objectives. The scope of this dissertation includes the proposed methodology for the 

following problem statements (PSs): 

 PS 01: RSMs are widely applied to develop a functional relationship between inputs 

and a target variable. Generally, RSMs are used to develop first-order, second-order, 

and third-order polynomial functional relationships that assumptions often result in 

poor performance and infeasible solutions. ANN is applied instead of RSM to 

overcome the shortcomings as ANN is flexible and capable of capturing complex 

functional relationships. In addition, multiobjective optimization formulations are 

developed for comparison purposes with ANN and RSM models used as the objective 

functions. The proposed methods for this problem statement fulfill this dissertation's 

first objective to explore the advanced numerical analysis models in manufacturing. 

The detail of the proposed methods will be detailed in Chapter 2. 

 PS 02: The manufacturing environment has different sources of uncertainty. For 

instance, it is implausible that two products produced with identical parameters with 

the same machine and from the same raw materials have identical characteristics 

(e.g., mechanical properties and dimensions) due to different sources of uncertainty. 

RSM and ANN explored in the first problem statement do not incorporate uncertainty 

for prediction. The predicted values of a target variable by RSM and ANN are 

deterministic point values, which do not always represent the actual manufacturing 

systems due to several sources of uncertainty. Besides, the data-driven methods are 

developed under certain assumptions, such as the sigmoid activation function used in 

the ANN model to capture non-linearity.  
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To minimize the impact of uncertainty in predictions, the second scope of this 

dissertation seeks to apply various uncertainty quantification techniques such as 

Monte Carlo (MC) dropout and Bayesian network (BN) for condition-based data-

driven maintenance and process parameter analysis. In Chapter 3, a robust response 

surface optimization (RRSO) technique, which includes model parameter uncertainty, 

is proposed for the distribution estimation of a target variable for a set of input 

variables. Moreover, the uncertainty integration for robust decision analysis for both 

numerical and categorical variables with BN will be covered in Chapter 3. 

Interval prediction is a statistical estimate of an interval that incorporates uncertainty. 

This prediction estimates an interval or range instead of a point value in which a 

future observation will fall with a certain probability or confidence interval level. To 

incorporate model uncertainty in decision-making, Chapter 4 elaborates on the 

proposed data-driven interval prediction based on MC dropout for tool wear and the 

proposed conservative interval prediction technique for linear and polynomial 

regression.  

 PS 03: A significant limitation of most traditional data-driven algorithms is that the 

physical phenomena of a system are not considered for model training and a target 

variable estimation [12, 13]. Thus, the physics-based knowledge can be incorporated 

during training data-driven models to make a physically consistent prediction by 

overcoming the limitation of traditional data-driven methods. This concept is known 

as physics-informed machine learning (PIML). PIML is a relatively new concept 

compared to traditional machine learning and is rarely explored for AM processes.  
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In this dissertation, a PIML is developed to predict the surface roughness of a fused 

filament fabrication (FFF) build part. This corresponds to the third objective of the 

overall research. In the proposed method, the physics-based empirical model 

prediction of the surface roughness has been used as input along with other inputs. 

The goal of the proposed concept is to make physically consistent predictions and 

improve prediction efficiency and accuracy. In addition, a customized loss function 

has been introduced based on physics-based constraints.  

The proposed PIML model is a hybrid model that combines data-driven methods and 

physics-based models. A radial basis function neural network (RBFNN) model is 

trained by considering physics-based knowledge about the target variable as an input 

along with other input variables by minimizing the proposed customized loss 

function. In addition, four performance evaluation metrics are used for performance 

analysis. The proposed PIML model that incorporates physics-based knowledge is 

demonstrated in Chapter 5. 

In short, this dissertation explores and improves the different advanced numerical models 

for manufacturing applications. For instance, ANN, MC dropout, and RSM models are employed 

to support the decision-making process in the manufacturing environment. As the shortcoming of 

the numerical models is identified, different methods such as RRSO, conservative interval 

estimation techniques, and the PIML approach are proposed to overcome the current 

applications’ drawbacks. 

1.4. Dissertation Organization 

The organization of the dissertation and the major contributions to fulfill the four 

objectives are summarized in Figure 1.1. 
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Figure 1.1. Dissertation organization 

 

In Chapter 2, the details of different data-driven methods and optimization techniques 

applied in an FFF dataset have been discussed. The data collection procedure is also introduced 

in this chapter. The advantages of using ANN over RSM are demonstrated by applying them to 

the collected dataset. Chapter 3 provides the proposed RRSO technique, which can estimate the 

distribution of a target variable for a combination of input variables by multiobjective 

optimization. Besides, a Bayesian network-based approach to analyzing both numerical and 

categorical variables has also been introduced in Chapter 3.  

Two interval prediction techniques demonstrate in Chapter 4. One interval prediction 

technique is proposed to predict conservative intervals and applied to an FFF dataset. The second 

proposed interval prediction technique is developed based on MC dropout and demonstrated by 
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applying the proposed framework to a real-world computer numerical control (CNC) milling 

machine dataset to predict tool wear as intervals.  

A PIML approach is proposed in Chapter 5 to predict surface roughness to improve 

prediction accuracy by incorporating physics-based knowledge. An RBFNN is trained using 

physics-based inputs and other input variables to estimate surface roughness.  The performance 

of the proposed method is compared with other existing applied physics-based and data-driven 

approaches. Finally, Chapter 6 summarizes the work and describes the future research directions.  
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CHAPTER 2. NUMERICAL MODELING PROCESS FOR MULTIOBJECTIVE 

DECISION-MAKING 

2.1. Overview 

The response surface model (RSM) is a widely applied statistical technique that 

represents the relationship between some input variables (design parameters) and a target 

variable (response). RSM aims to analyze the impacts of input variables on the response and 

optimize responses to select an optimum combination of input variables. A combination of 

design parameters is estimated for an optimum response value by optimizing the developed 

response surface model under certain constraints. In developing a functional relationship, it is 

assumed a linear, quadratic, or third-order relationship exists between input variables and 

response. This assumption is not always valid, as the actual functional relationship may be more 

complex than the one obtained with the RSM method. Thus, this assumption may result in poor 

performance and infeasible solutions. 

To overcome this problem, artificial neural networks (ANNs) are proposed. ANN has a 

flexible architecture. Any level of complexity can be captured by changing the number of hidden 

layers and the number of neurons in each hidden layer. In this work, ANN is used as an 

alternative to RSM, and the performance of ANN is compared with RSM. Both ANN and RSM 

surrogate models are used to develop the functional relationship between input variables and a 

target variable. When two objective functions are optimized simultaneously, the optimization is 

known as multiobjective optimization. Generally, RSMs are used as objective functions to 

determine the values of input variables through optimization. The developed surrogate models 

with RSM and ANN are further used as objective functions in the multiobjective optimization 

(MOO) process. In multiobjective optimization, two responses are optimized simultaneously. 
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Numerous algorithms can be employed to solve MOO formulations. Here, genetic algorithm 

(GA), non-dominated sorting genetic algorithm (NSGA-II), and particle swarm optimization 

(PSO) are applied to solve the MOO problem. MOO generates a set of non-dominated solutions, 

and the set of solutions is called Pareto optimal solution set. A decision-maker then chooses a 

solution from all non-dominated solutions based on requirements. A fused filament fabrication 

(FFF) dataset is collected, and the algorithms mentioned above are applied to analyze and 

compare the performance of ANN and RSM. 

2.2. Methods Introduction 

In this section, all methods applied for optimization are discussed. ANN and RSM are 

used to develop a functional relationship between inputs and output, also called the surrogate 

models. The MOO approach is used to optimize the outputs. The explored MOO techniques are 

GA, NSGA-II, and PSO. 

2.2.1. Response Surface Model 

The response surface model (RSM), often interchangeably known as the response surface 

method, is a statistical approach that explores the relationships between one or more input 

variables and a response (or target variable) [14]. RSM has been widely used in the area of 

reliability analysis [14], quality improvements  [15], structural analysis [16], and many more, 

including FFF process parameter optimization [17, 18]. The actual functional relationship 

between input variables and the response is generally unknown but can be approximated by 

lower-order polynomial functions. The first-order RSM, which is based on linear approximation, 

can be expressed as: 

                                                              𝑦 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜖                                                                 (2.1) 
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And the quadratic RSM, which is based on the polynomial approximation, can be 

formulated as: 

                                    𝑦 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

+ 𝜖                                  (2.2) 

In the above equations, 𝑦 𝑖𝑠 the response variable; 𝑥𝑖 and 𝑥𝑗 are the input variables, where 

𝑖 < 𝑗. 𝛽0 is a regression coefficient for the intercept, whereas 𝛽𝑖, 𝛽𝑖𝑖 and 𝛽𝑖𝑗 are the coefficients 

of linear, quadratic, and other interaction terms, respectively. k is the number of input variables. 

𝜖 is an error term. The second-order RSM is preferred to the first-order RSM when presenting 

real-life applications. Each term of a mathematical model may not be significant. Different 

techniques such as forward selection and backward elimination are applied in developing RSM 

to remove insignificant terms from RSM.  

2.2.2. Artificial Networks 

The artificial neural network (ANN), simply called a neural network, is a multi-layered 

network architecture vaguely modeled based on the functionality of biological neurons in the 

brain. ANN has become a popular data analysis approach for various purposes, for example, 

classification, clustering, prediction, and pattern recognition [19]. ANN is widely used as it is 

flexible and can represent complex relationships between variables [20]. A significant advantage 

of using ANN is that in-depth knowledge about the physics of a system is not entirely necessary. 

Typically, ANN consists of three layers: an input layer, hidden layers, and an output layer. A 

general ANN architecture is given in Figure 2.1. 

The ANN architecture varies. It can take different shapes and structures based on the 

number of neurons in each layer. In ANN, neurons, layers, and activation functions represent a 

mathematical relationship between input and output variables (responses). Each unit of a layer is 
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called a neuron. In an ANN, a neuron of a layer is fully connected with all neurons of prior and 

post layers, and a neuron of a layer is not associated with any other neurons of the same layer. 

The output of a neuron acts as an input to the next layer. Figure 2.1 NN has one input layer with 

four input neurons, one hidden layer with seven neurons, and one output layer with one output 

neuron. The purpose of the activation function is to introduce non-linearity into the output of a 

neuron.  

 

Figure 2.1. Artificial neural network 

 

Figure 2.2 describes operations performed in a neuron. The neuron has three inputs 

(𝑥1, 𝑥2, 𝑎𝑛𝑑 𝑥3). The weights of three inputs 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 are 𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3, respectively, and 

𝑏 is the bias term. 𝑦 = 𝑓(𝑧) is the activation function that introduces non-linearity. Commonly 

used activation functions are sigmoid, tanh, relu, elu, and others [21]. 𝑦 is a input for neurons of 

the next layer. 
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Figure 2.2. Operations performed in a neuron 

 

To apply ANN, it is required to estimate weights and biases by minimizing loss function 

from data to predict the output for new observations. The least-square loss function is the most 

widely applied and can be defined as the summation of errors (losses) between the output of 

ANN and the given target value for all training data. The mathematical form of the least square 

loss function is given as 

                                                                 ℒ(𝑋, 𝑌) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                                      (2.3) 

where,{𝑦1, 𝑦2 , 𝑦3, ……𝑦𝑛} are the output of n observations, and {𝑦̂1, 𝑦̂2, 𝑦̂3, …… 𝑦̂𝑛} are predicted 

values by the ANN model corresponding to inputs {𝒙1, 𝒙2, 𝒙3…𝒙𝑛}. The above formula is 

applicable for any regression model, including RSM for estimating model parameters. Different 

algorithms such as gradient descent, stochastic gradient descent, and Levenberg-Marquardt 

algorithm are applied to minimize the loss function. The value of weights and biases are updated 

by different algorithms until a desired level of accuracy is achieved. In many cases, ANN is 

expected to perform well for training data, and prediction accuracy is low for new observations. 

This limitation is known as overfitting. This limitation can be overcome by applying different 

regularization techniques to avoid the risk of overfitting. Dropouts, 𝐿1 regularizations, and 𝐿2 

regularizations are some examples of the popular regularization techniques [22]. 
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2.2.3. Multiobjective Optimization 

Multiobjective optimization involves two or more objective functions to be optimized 

simultaneously to make multi-criteria decisions. Unlike single-objective optimization, 

multiobjective optimization generates a set of non-dominated solutions, the set of solutions is 

called Pareto optimal solution set. A non-dominated solution is the improvement of one solution 

that results in at least one other worse solution [23]. In other words, the resulting solutions from 

multiobjective optimization are often called non-dominated solutions, meaning that there is no 

single solution that can simultaneously optimize all objectives [23, 24]. A decision-maker then 

chooses a solution from all non-dominated solutions based on requirements. The weighted sum 

approach, weighted metric method, Ɛ-constraint method, and goal programming are a few well-

known techniques for solving multiobjective optimization problems [25]. Nowadays, different 

evolutionary algorithms (e.g., genetic algorithm (GA) and non-dominated sorting genetic 

algorithm (NSGA-II)) and biologically-inspired Optimization (e.g., particle swarm optimization 

(PSO) and bacterial foraging optimization (BFO)) are also used to get Pareto optimal solution set 

[26, 27]. 

2.3. Data Collection Details  

An FFF dataset is collected for comparisons of ANN and RSM models. The impacts of 

four process parameters on compressive strength and build time are analyzed, and an 

experimental dataset is collected for this. The details of the data collection procedure are given in 

the following two subsections. 

2.3.1. Data Overview 

An FFF process dataset is collected to demonstrate the effectiveness of ANN and to 

compare ANN with RSM. The applications of FFF-produced parts are limited due to high 
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surface roughness, low dimensional accuracy, and inconsistent mechanical properties [27]. The 

inconsistency results in repeatability are also a restriction for applications of FFF build parts. It is 

known that the FFF process parameters have significant impacts on part properties [28, 29]. In 

the dataset, compressive strength and build time are considered as responses. The effects of four 

FFF process parameters, namely layer thickness, build orientation, infill density, and extrusion 

temperature, on the two responses are analyzed.  Acrylonitrile butadiene styrene (ABS) and 

polylactic acid (PLA) are the two most widely used materials for the FFF filament [30]. This 

research uses non-toxic and biodegradable bioplastic PLA as the filament material. PLA is also 

used for producing functional parts such as medical devices. The specimen is built according to 

ASTM D695, the international standard for compressive properties of thermoplastics [31]. The 

dimension of the rectangular-prism-shaped specimen is 12.7 mm × 12.7 mm × 25.4 mm is 

selected according to ASTM D695, and the specimen is shown in Figure 2.3. 

 

Figure 2.3. Specimen according to ASTM D695 

 

To estimate the compressive strength and build time, the test specimen is initially 

designed in the Fusion 360 environment, a cloud-based computer-aided design (CAD) modeling 

software. A MakerBot Replicator Z18 is used to produce PLA samples from a CAD design. 
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MakerBot recommends using a smart extruder with a nozzle diameter of 0.4 mm for printing 

parts from PLA filament. The black color PLA filament with a diameter of 1.75 mm 

manufactured by 3D Solutech is used in the experiments.  The compressive strength of the 

specimen is evaluated by an INSTRON compressive strength testing machine with a load of 

30kN moves uniformly speed of 1.3mm/min. The chronological steps of data collection are 

represented as a flow diagram in Figure 2.4. 

 

Figure 2.4. Data collection for process parameter combinations 

 

Layer thickness and build orientation are the two most analyzed process parameters and 

significantly impact different part properties [27]. It is known from existing research on process 

parameter analysis that layer thickness and build orientation impact substantially on compressive 

strength and build time [32]. For this, layer thickness and build orientation are selected as 

process parameters to analyze the effect on compressive strength. The mechanical properties of a 

material and build time to print a layer depend on its density.  The impact of infill density on FFF 
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build parts' compressive properties is still unknown as infill density is one of the least analyzed 

process parameters. Like infill density, extrusion temperature is also the least analyzed process 

parameter, and the impact on compressive strength and build time is unknown [27]. The four 

different types of process parameters are selected in this research because the impact of those 

process parameters combination on compressive strength and build time is rarely analyzed. The 

levels of four (04) process parameters are given in the following table. For each process 

parameter, we are considering three levels (low, center, and high).  The center level is the 

average of the high and low levels. 

Table 2.1. Investigated parameters and their levels 

Parameters 
 

Units 

Level 

Low (-1) Center (0) High (+1) 

1. Layer thickness, 𝑥1 millimeters (mm) 0.1 0.22 0.34 

2. Build Orientation, 𝑥2 Degree 0 45 90 

3. Infill Density, 𝑥3 Percentage 20 50 80 

4. Extrusion Temperature, 𝑥4 
○C 200 215 230 

 

2.3.2. Experimental Design 

The design of experiment (DoE) approach aims to obtain the possible maximum amount 

of information from a smaller number of experiments. As part of the DoE approach, the faced-

centered central composite design (FCCCD) is used to reduce part production as the 

experimental run is costly and time-consuming. Central composite design (CCD) is a 

mathematical and statistical DoE tool used to develop a non-linear model from a reduced number 

of experiments. In CCD, the rotatability of design points is incorporated by a constant value, α 

[33]. When α=1, it is called FCCCD. FCCCD requires parameters with three levels: low (-1), 

center (0), high (+1). In this experimental design, -1, 0, and +1 are the coded levels of 

parameters. We considered four (04) parameters, and each has three (03) levels. Total design 



 

19 

 

points consist of two-level full factorial design points (2𝑘), axial design points (2𝑘), and center 

design points (6 or more). Here, k=4 and is representing the number of factors (process 

parameters).  

In this research, the influence of four (k=4) process parameters is investigated, and a total 

of 30 combinations of process parameters is generated according to two levels of full factorial 

design (16), axial (8), and center (6) design points. The total number of experiments with coded 

values of levels of process parameters using FCCCD is given in Table 2.2. 

The actual levels of parameters can be converted into coded values using the following 

formula. This is called normalization, and the range of coded variables from -1 to +1 [34].   

                                                      𝑥𝑖𝑐 =
2𝑥𝑖 − (𝑥𝑖𝑙 + 𝑥𝑖𝑢)

𝑥𝑖𝑢 − 𝑥𝑖𝑙
, 𝑖 = 1,2,… 𝑘                                              (2.4) 

In Equation (2.4), 𝑥𝑖𝑐 is the coded level of 𝑖𝑡ℎ parameter, 𝑥𝑖𝑙 is the lower (uncoded) level 

of an 𝑖𝑡ℎ parameter, 𝑥𝑖𝑢 is the upper level of an ith parameter and 𝑥𝑖 is the uncoded level of the 

𝑖𝑡ℎ parameter that is intended to convert to the coded level. 

According to experimental design, three (03) sets of parts, a total of 90 parts, are 

produced. The build time is recorded directly from the FFF machine dial box for each part. Then, 

the compressive strength of PLA parts is evaluated with an INSTRON compression testing 

machine. The average values of build time and compressive strength of the three specimen 

samples are used for further analysis. The measured values of compressive strength and build 

time for different combinations of process parameters are given in Table 2.2. 
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Table 2.2. Experimental data obtained by FCCCD 

 
SL. 

No. 
𝑥1 𝑥2 𝑥3 𝑥4 

Compressive Strength 

(MPa) 

Build time (min) 

1 -1 -1 -1 -1 16.88 25.85 

2 -1 -1 -1 1 17.64 25.85 

3 -1 -1 1 -1 18.79 44.08 

4 -1 -1 1 1 18.39 44.53 

5 -1 1 -1 -1 28.52 35.13 

6 -1 1 -1 1 29.00 35.12 

7 -1 1 1 -1 28.01 50.28 

8 -1 1 1 1 27.13 50.28 

9 1 -1 -1 -1 20.22 9.74 

10 1 -1 -1 1 21.20 9.62 

11 1 -1 1 -1 32.98 14.70 

12 1 -1 1 1 34.24 14.70 

13 1 1 -1 -1 17.46 12.25 

14 1 1 -1 1 19.48 12.22 

15 1 1 1 -1 27.86 16.48 

16 1 1 1 1 30.12 16.48 

17 -1 0 0 0 15.98 49.78 

18 1 0 0 0 18.68 15.41 

19 0 -1 0 0 23.28 18.52 

20 0 1 0 0 22.75 20.85 

21 0 0 -1 0 11.32 15.70 

22 0 0 1 0 22.10 23.83 

23 0 0 0 -1 13.24 20.38 

24 0 0 0 1 18.45 20.39 

25 0 0 0 0 16.58 20.39 

26 0 0 0 0 18.05 20.39 

27 0 0 0 0 16.36 20.40 

28 0 0 0 0 14.80 20.39 

29 0 0 0 0 16.68 20.38 

30 0 0 0 0 17.91 20.39 
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2.4. Results and Discussions 

Based on the experimental data, quadratic response surface and ANN models for 

compressive strength and build time are developed. The coded levels of process parameters are 

used for surrogate models. For the rest of the chapter, the coded levels of variables is referred to 

instead. 

2.4.1. Compressive Strength 

Based on the experimental data, a quadric model for compressive strength is developed 

that represents the relationship of compressive strength with a layer thickness (𝑥1), build 

orientation (𝑥2), infill density (𝑥3), and extrusion temperature (𝑥4). For this, a response surface 

quadratic equation for compressive strength is generated using MINITAB 18 software. In a 

mathematical model, not all terms are always significant. In this case, all insignificant terms are 

eliminated by the backward elimination method with a 95% confidence level. The terms with p-

values less than 0.05 are considered significant terms. Other than that, the t-value of all 

significant terms is determined at a 95% confidence level.  

The coefficient, t-value, and p-value of all significant terms are given in the following 

Table 2.3. From Table 2.3, it is visible that extrusion temperature is not significant for 

compressive strength. Therefore, we do not need to consider extrusion temperature as a variable 

for further analysis of compressive strength. There are some square terms (𝑥1
2  and 𝑥2

2) and 

interaction terms (𝑥2𝑥3) also insignificant. All insignificant terms are eliminated by the 

backward elimination method. Using a low extrusion temperature (in the range of 190𝑜𝐶), is 

recommended as it will reduce extruder preheating time. A low extrusion temperature also 

increases dimensional accuracy and surface finishing, but the bond between layers becomes 

firmer at a high temperature. 



 

22 

 

The quadratic model of compressive strength (CS) is given in Equation (2.5). 

     CS = 16.679 + 1.217x1 + 1.483x2 + 3.216x3 + 7.430x2
2 − 3.418x1x2 + 2.910x1x3      (2.5) 

Table 2.3. Compressive strength analysis 

Term Coefficient t-value p-value 

Constant 16.679 37.09 0.000 

𝑥1 1.217 3.31 0.003 

𝑥2 1.483 4.04 0.001 

𝑥3 3.216 8.76 0.000 

𝑥2
2 7.430 12.80 0.000 

𝑥1𝑥2 -3.418 -8.78 0.000 

𝑥1𝑥3 2.910 7.47 0.000 

R2 0.9457 

Adjusted 𝑅2 0.9315 

Predicted 𝑅2 0.9163 

 

In Table 2.3, R2, adjusted R2, and predicted R2 values are given as 0.9456, 0.9315, and 

0.9163, respectively. The high values represent that the mathematical model has good agreement 

with experimental data. 

 

Figure 2.5. Normal probability plot of residuals for compressive strength 
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Another verification method is the normal probability plot used to determine the 

quadratic model’s statistical significance. The fitted linear line in the normal probability plot 

shown in Figure 2.5 indicates that residuals are approximately normally distributed, and the 

predictions by this model have good agreement with experimental results. 

Similarly, the ANN model is used to develop mathematical models representing the 

relationships of compressive strength and four process parameters. For compressive strength, the 

simplest ANN structure with only one hidden layer to capture non-linearity is considered. The 

rest of the ANN model parameters used to develop the surrogate models are as follows. The 

number of input variables (process parameters) is 4. The number of neurons in the hidden layer 

is 11. The activation function used in the hidden layer is the sigmoid function for compressive 

strength. Further, the Adam optimizer is used to train the network with a learning rate of 0.001, 

exponential decay control parameters of 0.99 and 0.999, and a smoothing term of 10-8. The 

learning rate for ANN models is set as 0.003. The details of the Adam optimizer can be found in 

Ref. [35]. The RSM and ANN models for compressive strength are used as objective functions in 

multiobjective optimization.  

2.4.2. Build Time 

A response surface quadratic model for build time is also developed using experimental 

results from Table 2.2. The model became statistically insignificant as the normal probability 

plot is not linear, and errors are not random. For this reason, we collected more data for build 

time, the levels of process parameters for additional experimental runs, and the build time 

represented in Table 2.4. 
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Table 2.4. Experimental data for build time 

 

Using all experimental data for build time from Table 2.2 and Table 2.4, a quadratic 

model generated consists of all significant terms at 95% confidence levels. The extrusion 

temperature is insignificant for build time, like compressive strength. Some square terms (𝑥3
2) 

and interaction terms (𝑥2𝑥3) are also insignificant. The backward elimination method eliminates 

all insignificant terms from the mathematical model. The results of the t-test and p-values with 

coefficients of all significant terms are given in Table 2.5.  

 

SL. No. 𝑥1 𝑥2 𝑥3 𝑥4 Build time (min) 

1 1 -1 0 -1 12.46 

2 0 -1 0 1 18.31 

3 -1 0 0 1 46.98 

4 1 0 1 1 17.35 

5 1 1 0 1 14.60 

6 -1 0 1 0 54.52 

7 0 -1 -1 0 13.30 

8 0 1 -1 -1 17.07 

9 0 -1 1 -1 21.60 

10 -1 0 -1 1 38.35 

11 -1 1 0 0 43.72 

12 0 1 1 0 23.98 

13 1 0 -1 1 12.93 

14 -1 -1 0 -1 37.32 

15 -0.50 -0.33 -0.67 -0.33 25.88 

16 -0.50 -0.33 0.67 -0.33 32.63 

17 -0.50 0.33 -0.67 -0.33 26.43 

18 -0.50 0.33 0.67 -0.33 32.43 

19 0.50 -0.33 -0.67 0.33 15.13 

20 0.50 -0.33 0.67 0.33 19.08 

21 0.50 0.33 -0.67 0.33 15.30 

22 0.50 0.33 0.67 0.33 19.67 
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Table 2.5. Build time analysis 

Term Coefficient T-Value P-Value 

Constant 21.362 49.47 0.000 

𝑥1 -13.680 -40.28 0.000 

𝑥2 2.014 5.81 0.000 

𝑥3 4.863 14.48 0.000 

𝑥1
2 8.865 14.96 0.000 

𝑥2
2 -3.441 -6.01 0.000 

𝑥1𝑥2 -1.286 -3.17 0.003 

𝑥1𝑥3 -2.965 -7.42 0.000 

R2 0.981 

Adjusted R2 0.977 

Predicted R2 0.973 

 

The quadratic mathematical model for build time (BT) is given in Equation (2.6).  

BT = 21.362 − 13.680x1 + 2.014x2 + 4.863x3 + 8.865x1
2 − 3.441x2

2… 
                                                         … − 1.286x1x2 − 2.965x1x3                                                         (2.6) 

In Table 2.5, the high value of R2, adjusted R2, and predicted R2 indicates that the 

experimental data are well-fitted with the quadratic model.  

 

Figure 2.6. Normal probability plot of residuals for build time 



 

26 

 

In Figure 2.6, it is shown the normal probability plot of build time, and the linearity of the 

graph represents that the distribution of residuals is normal. 

Similar to compressive strength, an ANN model is developed for build time. In the ANN 

model, the number of the hidden layer is 1, and the number of neurons in the hidden layer is 11. 

The activation function used in the hidden layer is the tanh activation function for build time. 

The Adam optimizer is applied to train the ANN model of build time, and the learning rate for 

ANN models is set as 0.003.  

The surrogate models represent the relation of the analyzed process parameters with 

responses. The four developed mathematical models are employed as the objective functions in 

the multiobjective optimization problem that are solved by genetic algorithm (GA), non-

dominated sorting genetic algorithm (NSGA-II), and particle swarm optimization (PSO). Before 

the surrogate models can be implemented as in the optimization formulations, the RSM models 

of compressive strength and build time are compared with the ANN models of compressive 

strength and build time. 

2.4.3. Comparisons Results 

Many metrics are available to evaluate the performance of surrogate models. In this 

research, the performance of RSM and ANN is compared using prediction accuracy. The mean 

squared error (MSE), the mean absolute error (MAE), and 𝑅2 values are calculated for 

performance analysis. MSE measures the squared average error between actual data and the 

predicted data, whereas MAE measures the magnitude of average errors in a set of predictions by 

taking the average of the absolute difference between prediction and actual data. Besides, 𝑅2-

value is a measurement of the goodness of fit of a regression model. The formulations for both 

MSE, MAE, and 𝑅2 values are given in the equations below.  
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                                                                    𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                                       (2.7) 

                                                                       𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                                                       (2.8) 

                                                                   𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝜇𝑦𝑖)
2𝑛

𝑖=1

                                                   (2.9) 

where 𝑦𝑖 is the measured value of the target variable at 𝑖𝑡ℎ observation, ŷ𝑖 is the predicted value 

at 𝑖𝑡ℎ observation, and 𝜇𝑦𝑖  is the mean of measured values. 𝑖 =  1,2,3,…  𝑛. 𝑛 is the total number 

of data points. MSE and MAE can range from 0 to ∞, with lower values preferred, representing a 

smaller margin of error. 𝑅2-value lies between 0 and 1, and the higher value indicates a better 

model fit. 

Table 2.6. MSE and MAE values 

Properties of Printed 

Part (Target Variables) 

MSE MAE 𝑅2-value 

RSM ANN RSM ANN RSM ANN 

Compressive Strength 1.861 0.582 1.040 0.509 0.946 0.983 

Build Time 2.825 0.518 1.297 0.460 0.981 0.996 

 

The results of MSE, MAE, and 𝑅2 values obtained for RSM and ANN are shown in 

Table 2.6. It should be noted that the ANN shows a smaller degree of errors compared to RSM. 

It could also mean that the surrogate models obtained by ANN are more accurate than the RSM. 

The scatter plots in Figures 2.7 (a) and 2.7 (b) present the predicted versus actual 

measured values for compressive strength for the RSM and ANN methods, respectively. For the 

scatter plot of the ANN model, coordinate points are close to the diagonal line compared to the 

scatter plot of the RSM model. It indicates that the ANN model is fitted well for compressive 
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strength. Besides, the higher R-value for the ANN model demonstrates that the prediction 

performance overweighs the RSM model.  

 

Figure 2.7. Scatterplots of predicted vs. actual measured values for compressive strength 

prediction by (a) RSM and (b) ANN 

 

 

Figure 2.8. Scatterplots of predicted vs. measured values build time by (a) RSM and (b) ANN 
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Similar to the compressive strength prediction results, the ANN model for build time is 

fitted better than the RSM model, as shown in scatted plot in Figure 2.8.  The high-value R2 value 

of 0.996 for the ANN model proved that the ANN model fitted well, better than the RSM model.  

2.4.4. Multiobjective Optimization Formulations 

After the surrogate models have been developed, they can be incorporated into the MOO. 

The general MOO formulation to optimize compressive strength and build time, based on 

process parameters in the FFF process, is given below. 

Max
𝒙
𝐶𝑆 

min
𝒙
𝐵𝑇   

subject to, −1 ≤ 𝑥𝑗 ≤ 1, 𝑗 = 1,2,3,4 

 𝐵𝑇 ≥ 0, 𝐶𝑆 ≥ 0  (2.10) 

where 𝑥𝑗 is the process parameters. To be more precise, 𝑥1 is layer thickness, 𝑥2 is build 

orientation, 𝑥3  is infill density, and 𝑥4 is extrusion temperature. In this case study, two models 

developed by ANN and RSM are used as objective functions for the optimization problem. 

Further, three types of optimization algorithms, GA, NSGA-II, and PSO, are applied to optimize 

compressive strength and build time simultaneously for RSM and ANN models. There is a total 

of six combinations of hybrid methods compared in the case study. The combinations are listed 

in Table 2.7. The detail of the algorithm parameters and the discussion of the results is explained 

in the following section. 

Table 2.7. Various approaches employed in the case study 

Surrogate 

models 

Optimization algorithms Hybrid methods (surrogate models + 

Optimization algorithms) 

RSM GA RSM-GA ANN-GA 

ANN NSGA-II RSM-NSGA-II ANN-NSGA-II 

- PSO RSM-PSO ANN-PSO 
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2.4.5. Optimization Results 

The formulated MOO in this case study deals with optimizing conflicting objectives, 

where the increase in one objective decreases the other objectives. Thus, there is no one unique 

global solution to the MOO problem; instead, the optimal solution is represented by a set of non-

dominated optimal solutions called the Pareto frontier. This Pareto frontier contains a set of 

solutions that describe the Pareto optimal solutions, often shown graphically as a chart. The 

Pareto frontier obtained from the six approaches listed in Table 2.7 is also detailed in this 

subsection. 

GA is a widely used evolutionary algorithm for optimization problems in general. To 

solve the MOO formulations, the GA parameters used to maximize compressive strength and 

minimize build time are set as follows. Population size: 50, the number of generations: 100, 

mutation rate: 0.01, crossover rate: 0.8, and chromosome length: 24. The Pareto frontier 

diagrams generated for RSM and ANN models with GA are shown in Figure 2.9. 

 

Figure 2.9. Pareto frontier by GA for (a) RSM and (b) ANN 

 

NSGA-II is another evolutionary algorithm used to solve the multiobjective optimization 

problem in general. The Pareto frontier charts generated for RSM and ANN models by 
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employing NSGA-II are shown in Figure 2.10. In this case study, the parameters considered for 

NSGA-II are the population size of 50, the maximum generation of 100, the crossover rate of 

0.95, and the mutation rate of 0.1. 

 

Figure 2.10. Pareto frontier by NSGA-II for (a) RSM and (b) ANN 

 

 

Figure 2.11. Pareto frontier by PSO for (a) RSM and (b) ANN 

 

PSO is a popular biologically-inspired algorithm often employed to solve multiobjective 

optimization. In this case study, the parameters used for PSO algorithms are the population and 

repository size of 50, and the maximum generation is set to 200. The personal learning 
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coefficient and global learning coefficient are adjusted to 2. Moreover, the mutation rate, inertia 

weight, and inertia dumping weight are 0.1, 0.5, and 0.99, respectively. The Pareto frontier 

graphs generated for RSM and ANN models obtained from the PSO approach are shown in 

Figure 2.11. In addition to the Paetro frontier, the quantitative results are obtained based on the 

maximum and minimum values and range values. The quantitative results for all combinations 

from the two surrogate models and three optimization models are summarized in Table 2.8. 

Table 2.8. Maximum, minimum, and range values for all presented hybrid combinations 

 RSM 

GA NSGA-II PSO 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Min 20.329 8.5786 20.327 8.536 20.503 8.630 

Max 33.365 14.269 33.387 14.276 33.387 14.276 

Range 13.039 5.691 13.059 5.739 12.884 5.645 

 ANN 

GA NSGA-II PSO 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Compressive 

Strength 

(MPa) 

Build 

Time 

(min) 

Min 20.911 9.196 20.172 9.443 20.922 9.119 

Max 36.117 16.687 36.156 16.666 36.142 16.561 

Range 15.205 7.490 15.984 7.223 15.220 7.441 

 

2.4.6. Discussions 

From the optimization results presented, it should be noted that the results vary for 

different hybrid approaches employed. Based on Table 2.8, the minimum value for compressive 

strength varies around 20 -20.9MPa for all combinations. In contrast, the maximum value for 

compressive strength is around 33.3MPa for all optimization algorithms that employed RSM for 

surrogate models and about 36.1MPa for those based on ANN as its surrogate models. Similarly, 
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for the build time results, the minimum values for algorithms using RSM are around 8.5-8.6 

minutes and 9.1-9.4 minutes for the ANN approach. The maximum values for build time with 

RSM as surrogate models are approximately 14.2 minutes and 16.6 minutes for ANN as 

surrogate models. 

Although there are some deviations in maximum and minimum values, the range values 

for both part properties remain the same for all three optimization algorithms using the same 

surrogate models. The results also point out that GA, NSGA-II, and PSO, work comparatively 

well in this case study. The deviations in the results are more noticeable when comparing the two 

surrogate models, RSM and ANN. It can be further interpreted that surrogate models play a 

significant part in multiobjective optimization problems. 

Qualitative results from Figure 2.9 to Figure 2.11 note that the Pareto frontier for all 

optimization algorithms follows the same pattern. However, the Pareto frontier patterns for RSM 

and ANN are different. This is because RSM and ANN developed different surrogate models. 

Although the Pareto frontier patterns are not precisely the same for RSM and ANN, both Pareto 

frontier charts show the same increasing trend. This trend also means a longer build time is 

required to achieve higher compressive strength. As the objective is also to minimize the build 

time, it should be noted that the points obtained and plotted on all the Pareto frontier charts are 

the non-dominated solutions. It is also essential to involve the decision-makers or implement 

another decision-making analysis to decide on the best combination of process parameters for 

compressive strength and build time from the non-dominated solutions obtained. 

2.5. Summary 

In this chapter, two approaches introduced to develop the surrogate model are RSM and 

ANN. MSE and MAE matrices are used to compare RSM and ANN. It has been shown that 
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MSE and MAE are the lowest for ANN. Therefore, the prediction accuracy obtained is better for 

ANN because ANN can capture complex functional relationships between process parameters 

and part properties. In addition, three evolutionary (or nature-inspired) algorithms, GA, NSGA-

II, and PSO, are also presented to solve optimization problems with the surrogate models 

obtained by RSM and ANN approaches. The demonstrated case study aims to optimize 

compressive strength and build time by optimizing four process parameters: layer thickness, 

build orientation, infill density, and extrusion temperature. The optimization results from all 

hybrid combinations of surrogate models and optimization algorithms exhibit minimal 

deviations. It is also concluded that generating an accurate surrogate model is essential before 

employing it in any optimization solver. In addition to the FFF application, the proposed 

framework and algorithms presented in this chapter can be applied to other fields. 
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CHAPTER 3. UNCERTAINTY INTEGRATION FOR ROBUST DECISION-MAKING 

PROCESS 

3.1. Overview 

Continuing from the previous chapter, a response surface model (RSM) that explores the 

relationship between input variables (design parameters) and a response can be developed from 

the experimental outcomes. A combination of input variables is estimated for an optimum 

response value by optimizing the developed response surface model under certain constraints. In 

optimization, it is assumed that the response surface model parameters are deterministic, but 

model parameters are not deterministic in many real-world applications. To close this gap, a 

robust response surface optimization (RRSO) approach is proposed for optimizing the 

distribution of a response by considering response surface model parameter uncertainty. In the 

proposed framework, the mean and variance of response are optimized simultaneously, and the 

robustness of the response is achieved using the variance to measure the variation of the 

response. The proposed framework generates a Pareto frontier that consists of a set of non-

dominated solutions and represents a tradeoff between mean and variance of compressive 

strength. The proposed method is more practical instead of a deterministic response surface 

model when a response is uncertain due to different factors such as environmental noise and 

natural randomness. 

Different mathematical models such as RSM and ANN can be used to develop functional 

relationships between input variables (design parameters) and response. These mathematical 

models analyze quantitative (numerical) input variables. But, in experimental investigation, the 

input variables can be quantitative, qualitative (categorical), and a combination of both types. 

The information obtained from different sources, such as experimental data or expert knowledge 
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(user experience), should be considered to make a relatively sound decision. Besides, selecting 

the optimal combination of process parameters is complicated further by uncertainties in 

different stages of the additive manufacturing processes. A framework based on the Bayesian 

network (BN) approach is proposed to enhance the decision-making process in determining the 

optimum combination of input variables for a desired level of response. The proposed approach 

has several advantages: 1) account for uncertainties, 2) incorporate information from multiple 

sources, and 3) analyze both quantitative and qualitative input variables. A FFF dataset is used to 

demonstrate the robust response surface optimization and Bayesian Network techniques. 

3.2. Robust Response Surface Optimization 

The response surface model (RSM) is a widely applied collection of statistical techniques 

that represents the relationship between some input variables (design parameters) and one or 

more output variables (responses). The concept of RSM was introduced by Box and Wilson in 

the 1950s [36]. RSM is now used in diverse fields, including manufacturing, biological and 

clinical science, and pharmaceutical science [37]. The goal of using RSM is to analyze the 

impacts of input variables on the response and optimize responses to select an optimum 

combination of input variables. In RSM, the coefficients of different terms (e.g., first-order, 

polynomial, and interaction terms) and intercept are known as RSM parameters. In the 

optimization of response by using RSM and experimental constraints, it is assumed that RSM 

parameters are fixed and deterministic [38]. But the deterministic assumption is not always 

accurate due to different sources of uncertainty in the experimental data collection environments 

[10]. Environmental noise, human error, measurement error, and natural randomness are possible 

sources of uncertainty in data collection.  
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More than one sample is produced for a combination of input variables to reduce the 

impacts of uncertainty sources. The average value of the response is used in developing RSM 

[39]. But still, model parameters are constant, and the estimated value of a response by an RSM 

is a deterministic point value for a combination of input variables. On the other hand, when an 

experiment is repeated several times for the same combination of input variables, it is unlikely 

that the response will be exactly the same for all experimental runs due to uncertainty. Therefore, 

the uncertainty aspect should be incorporated in optimizing a response with the RSM approach to 

obtain a more robust decision. The interval estimation and estimation of a probability distribution 

of a target variable are superior to deterministic point value estimation [40, 41].  

Here, a robust response surface optimization (RRSO) approach that optimizes the 

distribution of the response to incorporate the model uncertainty is proposed. In the proposed 

method, the mean and variance of response are optimized simultaneously using a multiobjective 

optimization approach. In developing RSM, it is assumed that the error is normally distributed 

with a zero mean.  The distribution of RSM parameters can be estimated from the distribution of 

the error. Further, the mean and variance of the response can be estimated from the distribution 

of model parameters. In the proposed RRSO approach, the mean of the response is optimized, 

and the variance of the response is minimized simultaneously, assisting in risk-informed 

decision-making while selecting input variables for a response. 

3.2.1. Proposed Method 

RSM is a mathematical model used to develop a functional relationship between input 

variables and response. In general, the actual functional relationship between input variables and 

the response is unknown but can be approximated by lower-order polynomial functions. RSM is 

represented as follows 
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 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝐼. , 𝑥𝑘, 𝜷) + 𝜖  (3.1) 

In Equation (3.1), y is the response, 𝑥1, 𝑥2, 𝑥3, 𝐼. , 𝑥𝑘 are input variables, and 𝜷 is the 

coefficient vector of different terms (e.g., first-order terms, interaction terms, and polynomial 

terms), including the intercept. 𝜖 is an error term. It is assumed that error is normally distributed 

with a zero mean and  𝜎2 variance. First-order, quadratic and third-order RSMs are applied in 

diverse fields based on the functional relationship between input variables and the response.  In 

this research, the proposed model is developed for a quadratic RSM. The proposed RRSO 

approach can be applied to other RSMs as well. Generally, a quadratic RSM can be written as  

                           𝑦 = 𝛽0 +∑𝛽𝑗𝑥𝑗

𝑘

𝑗=1

+∑𝛽𝑗𝑗𝑥𝑗
2

𝑘

𝑗=1

+∑ ∑ 𝛽𝑗𝑙𝑥𝑗𝑥𝑙

𝑘

𝑙=𝑗+1

𝑘

𝑗=1

+ 𝜖 = 𝒙𝜷 + 𝜖                       (3.2) 

where, 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝐼, 𝛽𝑘, 𝛽11, 𝛽22, 𝐼, 𝛽𝑘𝑘 , 𝛽12, 𝛽13, 𝐼, 𝛽(𝑘−1)𝑘) 
𝑇. 𝛽0 is an intercept, and 𝛽𝑗 𝛽𝑗𝑗 , 

𝛽𝑗𝑙  are the coefficients of linear, quadratic, and interaction terms, respectively. 𝑘 is the number of 

input variables and, 𝒙 = (1, 𝑥1, 𝑥2, 𝐼, 𝑥𝑘, 𝑥1
2, 𝑥2

2, 𝐼. , 𝑥𝑘
2, 𝑥1𝑥2, 𝑥1𝑥3, 𝐼, 𝑥𝑘−1𝑥𝑘). 𝜖~𝑁(0, 𝜎

2) is 

normally distributed with a zero mean and  𝜎2 variance. 

In Equation (3.2), 𝜷 is unknown and can be estimated from a collected dataset. The 

model parameters, 𝜷 can be estimated by minimizing the least square error and can be expressed 

as  

 𝜷̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒀 (3.3) 

where, 𝜷̂ is the least square estimator of 𝜷, and 𝑿 ∈ 𝑹𝒏×𝒑, where n is the number of 

observations, p is the number of terms in RSM, and each row of 𝑿 represents an observation. 𝒀 ∈

𝑹𝒏 is the measured values of the response. The proposed method assumes that the error is 

normally distributed, and the error variance can be estimated using the following formula. 

 𝜎̂2 =
1

𝑛−𝑝−1
(𝒀 − 𝒀̂)

𝑻
(𝒀 − 𝒀̂) (3.4) 
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where, 𝒀̂ = 𝑿𝜷̂ is the estimated value of 𝒀. The mean of 𝜖 is zero, and the estimated variance is 

𝜎̂2. Now, the distribution of 𝜷 can be estimated as 

 𝜷~𝑁(𝜷̂, 𝜎̂2(𝑿𝑇𝑿)−1) (3.5) 

The response y is a function of 𝜷. Therefore, the first two moments of y can be 

approximated from the distribution of 𝜷 by using a first-order Taylor series approximation as 

follows [42]: 

Performance function: 

 𝑍 = 𝑓(𝑧1, 𝑧2, 𝑧3, ⋯ 𝑧𝑚) (3.6) 

First-order approximation of mean:  

 𝐸(𝑍) ≈ 𝑓(𝜇𝑧1 , 𝜇𝑧2, ⋯ , 𝜇𝑧𝑚) (3.7) 

First-order approximation of variance:  

                           𝑣𝑎𝑟(𝑍) ≈ ∑(
𝜕𝑓

𝜕𝑧𝑝
)

2𝑚

𝑝=1

𝑣𝑎𝑟(𝑧𝑝) + 2∑ ∑
𝜕𝑓

𝜕𝑧𝑝

𝜕𝑓

𝜕𝑧𝑞
𝑐𝑜𝑣(𝑧𝑝, 𝑧𝑞)

𝑚

𝑞=p+1

𝑚

𝑝=1

                  (3.8) 

The mean and variance of the function Z given in Equation (3.6) can be estimated by 

using the first-order Taylor series approximation formulae given in Equations (3.7) and (3.8), 

respectively. In Equation (3.8), the covariance, 𝑐𝑜𝑣(𝑧𝑝, 𝑧𝑞), is zero when 𝑧𝑝 and 𝑧𝑞 are 

independent. The mean and variance of a quadratic RSM can also be estimated using the first-

order Taylor series approximation. In the proposed method, it is assumed that all model 

parameters are independent. Therefore, the covariance terms are ignored for the variance 

approximation. 

All terms in Equation (3.2) may not be significant for a response, and the stepwise 

elimination techniques are applied to remove the insignificant terms from an RSM. For 

estimating the mean and variance of y, only the significant terms obtained after applying a 
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stepwise elimination technique are used, and the coefficients of insignificant terms are set to 

zero. The estimated RSM is used to optimize response and determine the optimum level of input 

variables. The traditional formulation for optimizing response from RSM is given in Equation 

(3.9). 

max/min
𝒙

  𝑦           

subject to, 𝐿𝐵𝑗 ≤ 𝑥𝑗 ≤ 𝑈𝐵𝑗     ∀𝑗 = 1,2,… , 𝑘 

 𝑔𝑖(𝑥) ≤ 0, ∀𝑖 = 1,2,… , 𝑙 (3.9) 

In the above optimization formulation, Equation (3.9), the response y is optimized under 

some constraints. 𝐿𝐵𝑗 and 𝑈𝐵𝑗 represent the lower and upper bounds of 𝑗𝑡ℎ input variable, 

respectively, and 𝑔𝑖(𝑥) is an inequality constraint. 𝑘 is the number of input variables, and 𝑙 is the 

number of inequality constraints. In most RSM optimization, inequality constraints are not 

present; in such cases, the constraints are only the range of the input variables.  

A limitation of the above optimization is that the optimized value of 𝑦 is a deterministic 

point value, and the uncertainty impacts are ignored in the above optimization. But this 

deterministic assumption may lead to an inaccurate or infeasible estimation in many real-life 

problems.  

In this research, the RRSO approach is proposed to incorporate uncertainty in RSM’s 

response optimization. In the proposed method, the mean and variance of the response are 

optimized simultaneously to determine the distribution of the response. The robustness of the 

RRSO approach is achieved by using the variance to measure the variation of the response. The 

mathematical formulation of the proposed RRSO method is given in the following equation.  
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Max/min
𝒙

𝐸(𝑦) 

min
𝒙
  𝑣𝑎𝑟(𝑦) 

subject to, 𝐿𝐵𝑗 ≤ 𝑥𝑗 ≤ 𝑈𝐵𝑗 ∀𝑗 = 1,2,… , 𝑘 

 𝐸(𝑔𝑖(𝑥)) + 𝑘1√𝑣𝑎𝑟(𝑔𝑖(𝑥)) ≤ 0, ∀𝑖 = 1,2,… , 𝑙  (3.10) 

In the above optimization formulation, Equation (3.10), 𝐸(. ) and 𝑣𝑎𝑟(. ) are the mean 

and variance of response y, respectively. In the proposed method, the mean and variance of 

response are optimized instead of a deterministic point value estimation. A multiobjective 

optimization approach can be applied to solve the proposed RRSO. The multiobjective 

optimization formulation generates a set of non-dominated solutions that represent a trade-off 

between the mean and variance of the response. From all non-dominated solutions, users will 

select a solution based on their requirements and the level of uncertainty that the users consider 

acceptable. The proposed method is applied to a FFF dataset to demonstrate its effectiveness of 

the proposed method. A Pareto frontier is generated for the dataset, where each point represents a 

non-dominated solution.  

3.2.2. Case Study: Experimental FFF Dataset 

To demonstrate the proposed RRSO method, the FFF dataset described in Chapter 2 is 

used. In the dataset, the FFF process is used to print parts from different combinations of four 

FFF process parameters. The compressive strength and build time are measured for each build 

part. To analyze the effectiveness of the proposed RRSO, the compressive strength is considered 

as the party property. The mean and variance of compressive strength are optimized 

simultaneously. Same as in the last chapter, a quadratic RSM is developed from the collected 

dataset by minimizing the least square error given in Equation (3.3). The quadratic RSM in 

Equation (3.11) consists of only significant terms, and y is the compressive strength. All other 
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terms are insignificant and removed from the quadratic RSM. The backward elimination 

technique is used to reduce insignificant terms with a 95% level of confidence. 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽22𝑥2
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3  (3.11) 

By using the formula given in Equation (3.5), the estimated distribution of 𝛽 is given 

below. 

𝛽~𝑁

(

 
 
 
 

[
 
 
 
 
 
 
16.6792
1.2167
1.4839
3.2167
7.4292
−3.4175
2.9100 ]

 
 
 
 
 
 

, 𝑑𝑖𝑎𝑔(0.2023, 0.1349, 0.1349,0.1349,0.3372, 0.1517, 0.1517) 

)

 
 
 
 

 (3.12) 

In this research, it is assumed that all model parameters are independent, and all 

covariance terms are ignored and assumed to be zero. Thus, 𝑣𝑎𝑟(𝜷) is a diagonal matrix.  

Coded levels of process parameters between -1 and +1 are used to estimate the 

distribution of 𝜷. Therefore, the range of process parameters is between -1 and +1, and there are 

no other constraints for multiobjective optimization.  

Table 3.1. The optimal solution set 

𝑥1 𝑥2 𝑥3 
Compressive Strength (MPa) 

Mean Variance 

-0.037 0.008 -0.074 16.417 0.203 

0.480 -0.369 0.612 21.158 0.326 

0.694 -0.692 0.923 26.530 0.621 

0.864 -0.806 0.949 29.184 0.830 

0.935 -0.910 0.999 31.454 1.039 

1.000 -1.000 1.000 33.385 1.248 

 

The mean of compressive strength is maximized, and the variance of compressive 

strength is minimized simultaneously by the proposed RRSO formulation given in Equation 

(3.10). The ε-constraint method is employed to solve the multiobjective optimization problem 
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formulated by the proposed method. The outcomes of the optimization are summarized in Table 

3.1. 

 

Figure 3.1. Pareto frontier 

 

The Pareto frontier represents the trade-off between the mean and variance. The Pareto 

frontier for this case study is given in Figure 3.1. In the above figure, the mean is increasing with 

the increase of the variance. This phenomenon is expected as the goal of the optimization is to 

maximize the mean and minimize the variance of compressive strength.  

The same problem is solved in Chapter 2 without considering the variance of 

compressive strength [18]. The compressive strength and build time are optimized 

simultaneously, and the obtained maximum value of the compressive strength is approximately 

33.385 MPa when no weight is given to build time. In Table 3.1, the maximum compressive 

strength value is 33.385 MPa with a maximum variance of 1.248 MPa. In traditional RSM, the 

influence of the variance is ignored for compressive strength optimization. It indicates that 

ignoring variance generates a highly optimistic solution and does not always represent real-world 

situations that inherently have a high variance. The proposed RRSO method optimized the mean 
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and variance with different combinations of input variables. The estimation of the distribution 

(mean and variance) gives additional information for selecting input variables for a response. 

The solution set generated by the proposed approach helps choose a solution with corresponding 

levels of input variables from all Pareto optimal solutions based on requirements and tolerance 

level compressive strength variation. In the following section, the Bayesian network (BN) is 

proposed to analyze input variables' impacts on responses. The proposed BN-based method 

incorporates uncertainty in estimating a combination of input variables for one or more 

responses. 

3.3. Decision Analysis with Bayesian Network Approach 

Generally, RSM is widely used for process parameter analysis. Additionally, it has been 

analyzed that ANN can be used over RSM for optimization, and a comparison study is 

performed in Chapter 2. Besides, an RRSO model is proposed in Chapter 3.2 for incorporating 

uncertainty in design parameter optimization. These methods are mainly useful only for 

quantitative variables. But, in the actual manufacturing environments, categorical design 

parameters also exist along with quantitative variables [43]. Thus, this section proposes a BN-

based framework to estimate the levels of both quantitative and qualitative design parameters. In 

addition, the proposed framework also incorporates uncertainty in decision-making. 

3.3.1. Bayesian Network Overview  

Bayesian network (BN) is a directed acyclic graph (DAG) that represents the dependent 

relationships among variables through conditional probability distributions[44]. A simple BN 

with two levels is presented in Figure 3.2. In Figure 3.2, each node represents a random variable, 

and the edges (or arcs) show the dependent relationship among the variables. Figure 3.2 can be 
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interpreted as random variables Yj depend on all random variables xi, where I = 1,2,3,…k and j = 

1,2,3,…m. 

 

Figure 3.2. A representative of a two-level BN  

 

Mathematically, based on the graphical representation above, the joint probability 

distribution can be represented as: 

                                                    𝑃(𝑥, 𝑌) =∏𝑃(𝑌𝑗|𝑝𝑎(𝑌𝑗))∏𝑃(𝑥𝑖)

𝑘

𝑖=1

𝑚

𝑗=1

                                           (3.13) 

where 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑘), 𝑌 = (𝑌1, 𝑌2, … 𝑌𝑚), 𝑝𝑎(𝑌𝑗) is the set of parent nodes of 𝑌𝑗. In this case, 

𝑥𝑖 are parent nodes of 𝑌𝑗. 𝑃(𝑥𝑖) is the probability of the random variable 𝑥𝑖 . 𝑃(𝑌𝑗|𝑝𝑎(𝑌𝑗)) is the 

conditional probability of 𝑌𝑗 given 𝑝𝑎(𝑌𝑗). To calculate 𝑃(𝑥, 𝑌), 𝑃(𝑥𝑖) for all 𝑖 and 𝑃(𝑌𝑗|𝑝𝑎(𝑌𝑗)) 

for all 𝑗 must be determined. 

All marginal and conditional probabilities can be determined from historical data, 

experimental data, expert opinion, or their combinations. In this research, all prior probabilities 

are determined from experimental data. Knowing the conditional probabilit ies between input 

variables and responses is necessary to develop a proper BN. The conditional probabilities 

represent the strength of dependency between input variables and responses. If prior information 

is available, various dependency tests can be employed before developing the BN. The selection 
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of proper methods depends on the types of data and whether the variables are quantitative and/or 

qualitative (categorical) data. Dependency between two variables can be determined by different 

approaches such as Pearson correlation, point biserial correlation, Chi-squared test, or Cramer’s 

V [45-47]. For instance, Pearson correlation is used to determine a linear correlation between 

two quantitative variables. The dependency between two categorical variables can be estimated 

by the Chi-squared test and Cramer’s V. On the other hand, the biserial point correlation is used 

to estimate the dependency between a quantitative variable and a qualitative variable. All 

variables are quantitative in the dataset used to demonstrate the proposed BN. Therefore, Pearson 

correlation is used to find dependency relationships between input variables and response. The 

dependency relationship between an input variable and the response is determined through their 

Pearson correlation coefficient. Pearson correlation coefficient between two random variables (x 

and Y), 𝑟𝑥𝑌, can be defined as: 

                                                    𝑟𝑥𝑌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2

𝑛
𝑖=1

                                        (3.14) 

where 𝑥̅ and 𝑌̅ are the sample means of two random variables 𝑥 and 𝑌, respectively. I is the 

index of individual sample points. The total number of sample sizes or possible pairs between 

𝑥 and 𝑌 is n. The Pearson correlation coefficient lies between -1 and +1, where -1, 0, and +1 

indicate a strong negative correlation, no correlation, and a strong positive correlation, 

respectively. In this research, it is assumed that a process parameter and a part property are 

independent if the Pearson correlation is lesser than 0.1, |𝑟𝑥𝑌| ≤ 0.1.  

3.3.2. Case Study: Experimental FFF Dataset 

In this section, to analyze the proposed method’s effectiveness, the impacts of four 

process parameters (layer thickness, build orientation, infill density, and extrusion temperature) 
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on two-part properties, namely compressive strength and Young’s modulus, are analyzed. The 

collection process is described in Chapter 2. From the collected data, quadratic RSMs for both 

compressive strength and Young’s modulus are generated. The compressive strength and 

Young’s modulus can be estimated for any values of process parameters from the RSM. Since 

each process parameter has three (03) levels, and there is a total of four (04) process parameters, 

the total possible combinations are 34 or 81 combinations. For each possible combination, two to 

five data points are randomly produced. In data generation, a random value from a 95% 

confidence interval is picked for both part properties instead of estimating a constant value. The 

generated large dataset from small experimental data is used in the rest of the chapter. 

For simplification purposes, all process parameters are assumed to be independent. Thus, 

as depicted in Figure 3.2, there are no edges between random variables 𝑥𝑖. All four process 

parameters and the two-part properties are quantitative. The dependency relationship between a 

process parameter and a part property is determined through their Pearson correlation coefficient. 

Based on the experimental data, the Pearson correlation coefficient for each possible 

combination of x and Y is summarized in Table 3.2. 

Table 3.2. Pearson correlation coefficients 

Process Parameters Compressive Strength, MPa 

(𝑌1) 
Young’s Modulus, MPa 

(𝑌2) 

1. Layer thickness, 𝑥1 0.17 -0.14 

2. Build orientation, 𝑥2 0.22 -0.14 

3. Infill density, 𝑥3 0.52 0.36 

4. Extrusion temperature, 𝑥4 0.05 0.13 

 

From Table 3.2, it can be further interpreted that the compressive strength does not highly 

depend on extrusion temperature as the correlation coefficient found is 0.05. The most 
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significant process parameter for both part properties is infill density. The updated BN, based on 

the outcomes of Pearson correlation, is demonstrated in Figure 3.3. 

 

Figure 3.3. The BN structure obtained after Pearson correlation analysis 

 

There is no arc between compressive strength (𝑌1) and extrusion temperature (𝑥4) as 

both random variables are assumed to be independent. Therefore, compressive strength (𝑌1) has 

only three parent nodes, layer thickness (𝑥1), build orientation (𝑥2) and infill density (𝑥3). On 

the other hand, Young’s modulus (𝑌4) has four (04) parent nodes. Young’s modulus depends on 

all four (04) process parameters, layer thickness (𝑥1), build orientation (𝑥2), infill density (𝑥3), 

and extrusion temperature (𝑥4). The joint probability distribution of process parameters and part 

properties can be mathematically formulated based on the updated BN, as: 

    𝑃(𝑌1, 𝑌2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑃(𝑥1)𝑃(𝑥2)𝑃(𝑥3)𝑃(𝑥4)𝑃(𝑌1|𝑥1, 𝑥2, 𝑥3)𝑃(𝑌2|𝑥1, 𝑥2, 𝑥3, 𝑥4) (3.15) 

In this scenario, the data is collected considering three levels of process parameters, high, 

center, and low. The continuous process parameters are converted into discrete parameters or 

random variables. In this way, the optimum combinations of both discrete and continuous 

process parameters can be determined together. The chance of selecting each level is equally 

likely for all parameters as a manufacturer can select any level of each parameter based on their 

requirements. Each level for all process parameters is assumed to be independent. Therefore, the 
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probabilities of 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are assumed to be equal for all three levels, 𝑃(𝑥1) = 𝑃(𝑥2) =

𝑃(𝑥3) = 𝑃(𝑥4) =
1

3
. Thus, Equation (3.15) can be rewritten as Equation (3.16) to account for the 

prior probability.  

 𝑃(𝑌1, 𝑌2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∝ 𝑃(𝑌1|𝑥1, 𝑥2, 𝑥3)𝑃(𝑌2|𝑥1, 𝑥2, 𝑥3, 𝑥4) (3.16) 

The probability of achieving the desired requirement for compressive strength and 

Young’s modulus simultaneously for each combination of 𝑥1, 𝑥2, 𝑥3, and 𝑥4 can be evaluated by 

Equation (3.16). The combination of process parameters with the highest probability may be 

regarded as the possible optimum combination to achieve desired levels of part properties. The 

optimum levels of 𝑥1, 𝑥2, 𝑥3, and 𝑥4 for 𝑌1and 𝑌2 can be determined by Equation (3.17).  

 𝑋𝑌1,𝑌2 = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑥1,𝑥2,𝑥3,𝑥4

𝑃(𝑌1, 𝑌2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) (3.17) 

where, 𝑋𝑌1,𝑌2 represents the selected combination of process parameters 𝑥1, 𝑥2, 𝑥3, and 𝑥4 that 

result in the highest probability of achieving the required Y1 and Y2. To demonstrate the proposed 

BN-based method for process parameter analysis, five (05) scenarios with different desired 

requirements for compressive strength and Young’s modulus are considered. Compressive 

strength and Young’s modulus must be achieved simultaneously with one combination of 

process parameters to mimic the actual printing process. Before the actual printing process, 

process parameters have to be predetermined. Changing any process parameter in the middle of 

the printing process is not recommended. All prior probabilities are determined based on the 

collected experimental data.  

To determine the optimum combination of process parameters for all scenarios, the 

probabilities 𝑃(𝑌1, 𝑌2, 𝑥1, 𝑥2, 𝑥3, 𝑥4) for all combinations (81) of 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are initially 

evaluated with Equation (3.16). Further, the optimum level for 𝑥1, 𝑥2, 𝑥3, and 𝑥4 is obtained from 

Equation (3.17). A combination of process parameters is optimal for which the probability is 
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maximum. In this research, the optimal combination of process parameters is determined for five 

scenarios; the different compressive strength requirements and Young’s modulus. For each 

scenario, the selected level of process parameters is shown in Table 3.3. For instance, in the first 

scenario, the target value of compressive strength should be greater than or equal to 30MPa 

(𝑌1 ≥ 30𝑀𝑃𝑎), and the target value of Young’s modulus should be greater than or equal to 

900MPa (𝑌2 ≥ 900𝑀𝑃𝑎). For all 81 combinations of process parameters, the probability of 

Y1≥30MPa and Y2≥900MPa is determined from experimental data.  

Table 3.3. The selected levels of process parameters for compressive strength and Young’s 

modulus 

Scenarios 
Targeted values of part properties 

(MPa) 

The selected level of process parameters 

Probability 

P(.) 
Layer 

thickness, 

𝑥1 

Build 

orientation,

𝑥2 

Infill 

density,

 𝑥3 

Extrusion 

temperature, 

𝑥4 

1 𝑌1 ≥ 30 &  𝑌2 ≥ 900 0.34mm 0o 80% any levels 0.917 

2 20 ≤ 𝑌1 ≤ 25 &  𝑌2 ≥ 900 0.22mm 0o 80% any levels 0.500 

3 25 ≤ 𝑌1 ≤ 30 &  𝑌2 ≥ 900 0.1mm 90o 20% 230o 0.875 

4 25 ≤ 𝑌1 ≤ 30 &  700 ≤ 𝑌2 ≤ 800 0.1mm 90o 50% 200o 0.917 

5 20 ≤ 𝑌1 ≤ 30 &  700 ≤ 𝑌2 ≤ 800 0.1mm 90o 50% 200o 0.917 

 

The optimal combination is also given in Table 3.3. For example, in Scenario 1, the 

results can be further interpreted as there is a probability of around 92% to produce a part with 

compressive strength Y1 ≥ 30MPa and Young's modulus Y2 ≥ 900MPa, simultaneously, if the 

layer thickness is set at 0.34 mm, build orientation is set at 0o, infill density is set at 80%, and at 

any levels of extrusion temperature. Similarly, the selection of the level of process parameters for 

the remaining four scenarios can be interpreted. 

From Table 3.3, it is clear that the selected levels of process parameters and the resulting 

probability depend on the target values for compressive strength and Young’s modulus. Beyond 

the five scenarios in Table 3.3, the levels of process parameters with probabilities for any 
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targeted values of compressive strength and Young's modulus can be determined. In addition, 

since the prior probabilities for BN construction are obtained from experimental data, the 

specimen design and the process parameter levels can impact the resulting probability. Thus, to 

ensure the accuracy of the resulting likelihood, the BN should be periodically updated when 

there is any new relevant information.  

3.4. Summary 

In this chapter, RRSO and BN are proposed for analyzing relationships between input 

variables and responses. Both methods have their advantages and are applied to FFF datasets.  

The proposed RRSO approach is capable of optimizing the distribution of a response 

instead of optimizing the deterministic point value. In multiobjective optimization, the mean is 

optimized, and the variance is minimized to generate a set of Pareto optimal solutions. The 

RRSO incorporates model parameter uncertainty in determining an optimum combination of 

process parameters. 

The FFF process has some qualitative process parameters, such as infill pattern and the 

number of shells. Thus, the BN approach is explored to enhance the decision-making process in 

selecting an optimum combination of process parameters that accounts for uncertainties. One of 

the advantages of BN is that it can handle both quantitative and qualitative input variables 

together. The BN is useful to determine optimum levels of quantitative and qualitative process 

parameters. The expected probability of achieving multiple part properties simultaneously can be 

evaluated by setting the desired target value for each part property. 



 

52 

 

CHAPTER 4. INTERVAL PREDICTION FOR MODEL UNCERTAINTY IN 

DECISION-MAKING 

4.1. Overview 

Data-driven algorithms (e.g., neural networks) have been widely applied in predicting 

tool wear because of the high prediction performance of the algorithms, availability of data, and 

advancements in computer powers in recent years. Although most algorithms are supposed to 

generate outcomes with high precision and accuracy, this is not always true in practice. 

Uncertainty exists in different phases of applying data-driven algorithms due to noises and 

randomness in data, the presence of redundant and irrelevant features, and model assumptions. 

Data uncertainty and model uncertainty in applying data-driven methods are the two most 

common types of uncertainty. To incorporate both types of uncertainties, empirical mode 

decomposition (EMD) is applied to reduce uncertainty from signal data. The model uncertainty 

is estimated by applying the MC dropout in the neural network algorithm. The unique feature of 

the proposed method is that it can predict the interval of tool wear. A neural network model can 

predict different tool wear values for a new observation by employing MC dropout. The 

predicted tool wear is represented in an interval, and the interval range represents the degree of 

uncertainty. The proposed method is applied in a real-world manufacturing dataset for tool wear 

prediction as intervals. 

Other types of data-driven methods, such as linear and polynomial regression, are also 

widely used for target variable prediction. The MC dropout is only applicable for neural 

networks where neurons exist. Here, linear optimization-based techniques are proposed to 

predict conservative confidence intervals for linear and polynomial regression models. Two 

linear optimization models are proposed, one for ordinary least squares (OLS) regression and the 
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other for weighted least squares (WLS) regression. The proposed methods are implemented on 

an experimental FFF dataset to demonstrate the effectiveness of the proposed methods for 

conservative interval prediction.  

4.2. Interval Tool Wear Prediction by MC Dropout 

A smart manufacturing system is a technology-driven approach that utilizes sensors, the 

internet of things (IoT), artificial intelligence, and data analysis algorithms to improve the 

efficiency and effectiveness of the production processes [48]. In many manufacturing industries, 

such as aerospace and automobile, different types of sensors (e.g., vibration and acoustic 

sensors) are installed to collect real-time data for condition monitoring and maintenance 

decision-making. Various data analysis approaches are applied to use the collected sensor data to 

support the decision-making processes in engineering maintenance and prognostic applications 

by predicting different target variables from the data. The goals of using data analysis in 

condition monitoring of a system are to avoid unscheduled failures, reduce spare parts inventory, 

and minimize maintenance costs.  

The machining processes are widely used to produce the desired form of parts from 

different materials in different industries. Tool failure is one of the common reasons for the 

quality degradation of machined parts. Tool flank wear is a common failure affecting tool and 

workpiece properties [49, 50]. Different types of sensors (e.g., vibration sensors) are used to 

monitor the condition of cutting tools for tool flank wear analysis. Predicting tool flank wear 

from sensor data can reduce unscheduled shutdown by estimating tool changing time earlier. Due 

to the availability of data collected by sensors and different advanced algorithms, data-driven 

approaches are considered the new trend for tool condition monitoring. Data-driven methods 

such as support vector machine (SVM) and neural networks (NNs) have been used for tool flank 
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wear estimation from condition monitoring data. In-depth knowledge about the physics of a 

system is not entirely necessary for data-driven methods [51]. A large volume of relevant 

historical data is required to train a data-driven model, and the accuracy of the prediction 

depends on the quantity and quality of data. Data-driven methods can be modified easily to 

capture non-linearity and apply to different systems.  

In most cases, the prediction by data-driven methods is a deterministic point value, and it 

is assumed that models predict with high accuracy. However, real-life problems are not 

deterministic due to different sources of uncertainty, and this deterministic prediction may lead 

to infeasibility or poor performance [25, 52]. Therefore, a target variable's interval prediction or 

probability distribution estimation is preferable to deterministic point value estimation. The 

uncertainty arises due to incomplete information and the random nature of a system [53]. The 

sources of uncertainty significantly impact processes, products, and collected data. Different 

artificial assumptions to develop a mathematical model are considered a source of uncertainty. 

Limited historical data to represent a system by a mathematical model is also a source of 

uncertainty. Product quality, experiment results, production cost, and financial decisions are 

directly impacted by these sources of uncertainty. The cost of ignorance of these sources of 

uncertainty is high, leading to wrong conclusions.  

Similarly, a prediction by applying data-driven methods also consists of uncertainty due 

to the randomness of data, the noise in data collection, and model selection assumptions [54]. 

Model uncertainty and data uncertainty are the two most common sources of uncertainty in 

applying data-driven prediction models [55]. The prediction accuracy deteriorates due to 

different sources of uncertainty. Model uncertainty arises due to model selection error, lack of 

sufficient training data, model bias, or model variance. The sensor imperfections, signal wire 
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noise, and irrelevant and redundant features are common sources of data uncertainty. Both 

uncertainties are epistemic as they are reducible by collecting more data, undergoing data 

preprocessing steps, and selecting appropriate models. The accuracy and reliability of prediction 

by data-driven methods are influenced by uncertainty. Therefore, the interval prediction and 

prediction of a probability distribution of a target variable are superior to deterministic point 

value prediction to incorporate the influence of uncertainty in the application of data-driven 

methods.  

A good standard or recommended method for considering uncertainty in tool wear 

prediction has not been established yet. Research on tool wear prediction under uncertainty is 

still in the beginning stage. Thus, a novel method for accounting uncertainty during tool wear 

prediction is proposed to contribute to the research area under the umbrella of data-driven tool 

wear prediction. Here, a dropout-based method for interval prediction by neural networks is 

proposed that can predict several values of a target variable (e.g., tool flank wear) for a new 

observation (e.g., sensor data) by applying a random dropout approach on a trained NN model. 

From the several predicted values, the prediction interval can be estimated. In the proposed 

method, the collected data from sensors are denoised using empirical mode decomposition 

(EMD) to reduce data uncertainty. And, MC dropout is applied to predict tool wear as intervals. 

MC dropout considers model uncertainty. 

4.2.1. Proposed Dropout-based Prediction Framework 

The MC dropout is used to predict tool flank wear in intervals by considering data and 

model uncertainty. The steps of the proposed framework are given in Figure 4.1. 

The data collected from different sensors, such as vibration and force sensors, are used to 

tool flank wear prediction. In the first step, the collected sensor data are denoised by using EMD 
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to reduce data uncertainty arising due to several reasons such as sensor noise, signal wire noise, 

and signal conditioners noise. In the next step, a total of eleven (11) time-domain statistical 

features are extracted from the denoised sensor data. After feature extraction, principal 

component analysis (PCA) is used to reduce the dimension of features and convert data with 

linearly independent features. Further, a NN model with a dropout approach is trained using the 

new data obtained from PCA. For the next step, the dropout approach is additionally applied to a 

new observation known as the MC dropout to get multiple tool wear values. In the final step, the 

interval of tool flank wear can be determined for the new observation from the predicted values. 

The details of each step are introduced in the following subsections.  

 

Figure 4.1. The flow diagram of the proposed method 

 

4.2.1.1. Empirical Mode Decomposition 

The accuracy of prediction by NN significantly depends on the data quality. Several 

reasons that may cause sensor data to become uncertain are sensor noise, signal wire noise, and 

signal conditioners noise. This data uncertainty can be reduced by applying different data 
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denoising algorithms. As this uncertainty is reducible, it is categorized as epistemic uncertainty.  

EMD method introduced by Huang et al. [56] is a well-known algorithm used for data denoising, 

reducing data's uncertainty (noise) to improve data quality. The EMD is an unsupervised data-

driven signal decomposition algorithm and does not need any prior defined basis system. EMD 

decomposes a signal into a collection of intrinsic mode functions (IMFs) and a final residual 

[57]. An IMF must satisfy both of the following two criteria: 

 For a given signal vector, the number of extrema and the number of zero crossings 

must either be equal or differ by at most one. 

 At any point, the mean value of the envelope defined by the local maxima and the 

local minima is zero. 

 

 

Figure 4.2. A flow diagram of EMD 
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Some IMFs from all decomposed IMFs consists of noise, and the goal is to identify and 

subtract those IMFs from the original signal to get a noiseless signal. Before discussing the IMFs 

identification procedure, the signal decomposition algorithm to extract IMFs is given in Figure 

4.2. 

The extraction of IMFs is stopped when one of the following two conditions is satisfied: 

(1) a predefined number of IMFs are being extracted, or (2) the residual becomes monotonic 

from which no more IMF can be extracted [58]. In this research, it is assumed that the predefined 

maximum number of IMFs extracted is m=10. 

When all IMFs are extracted, the signal can be expressed as, 

                                                             𝑥(𝑡) =∑𝐼𝑀𝐹𝑖(𝑡)

𝑚

𝑖=1

+ 𝑟𝑚(𝑡)                                                       (4.1) 

where, m is the number of IMFs extracted from the original signal x(t). rm(t) is the residual 

obtained after extracting the mth IMF. 

Consider the original signal x(t) is a collection of the noiseless signal 𝑥̃ (𝑡) and noise η(t) 

as, 

                                                                      𝑥(𝑡) = 𝑥̃(𝑡) + 𝜂(𝑡)                                                              (4.2) 

The target is to estimate the denoised signal 𝑥̃ (𝑡) from the original signal x(t) by 

removing the noise η(t). In the decomposed signal, the first IMF contains the high-frequency 

terms, and the last IMF has the low-frequency terms [59]. It is also well-established and well-

proven that high-frequency terms consist of more noise than low-frequency terms. 

Consider the first k IMFs consist of noise. Therefore, 𝑥̃ (𝑡) can be written as 

                                                                  𝑥̃(𝑡) = 𝑥(𝑡) −∑𝐼𝑀𝐹𝑖(𝑡)

𝑘

𝑖=1

                                                    (4.3) 

The value of k can be determined by the correlation coefficient, σ, which is defined as, 
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                                                              𝜎 =
𝑥(𝑡)′𝑥̃(𝑡)

√𝑥(𝑡)′𝑥(𝑡) √𝑥̃(𝑡)′𝑥̃(𝑡)
                                                     (4.4) 

Assume that the threshold value of σ is ρ. Then, the value of k can be determined by,   

 𝑘∗ = min{𝑘 ∣ 𝜎 ≤ 𝜌}  (4.5) 

when k* has been determined, 𝑥̃(𝑡) is further estimated from Equation (4.3) by 

considering k=k*. Generally, the threshold value of σ is assumed to be between 0.75 and 0.85 

[59].  Here, it is considered that the threshold value σ is ρ = 0.8. 

4.2.1.2. Feature Extraction 

Feature extraction is a process by which an initial raw data set is reduced to more 

manageable groups of features for processing. It is necessary to extract all possible relevant 

features to increase prediction accuracy. 

Time-domain, frequency-domain, and time-frequency domain features can be extracted 

from the denoised data. Among the three types of features, it is easy to extract time-domain 

features directly from denoised data [60]. Further data processing is required to extract the 

frequency-domain features [60, 61]. A high computation effort is necessary to extract time-

frequency domain features from denoised data [62]. In this section, 11 time-domain features are 

extracted from denoised data obtained after applying EMD. The extracted features are mean, 

standard deviation, root mean square, square mean root, skewness, kurtosis, crest factor, shape 

factor, impulse factor, marginal factor, and peak to peak. The mathematical formulae for all 

features are given in Table 4.1. 
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Table 4.1. Time-domain features extracted from denoised data 

Features Formula Features Formula 

1. Mean 

𝜇 =
1

𝑁𝑠
∑𝑥̃𝑖

𝑁𝑠

𝑖=1

 

7. Crest factor 
𝑓𝑐 =

max(𝑥̃𝑖)

𝑟𝑚𝑠
 

2. Standard 

deviation 𝜎 = √
 ∑ (𝑥̃𝑖

𝑁𝑠
𝑖=1 − 𝜇)2

𝑁𝑠 − 1
 

8. Shape factor 𝑓𝑠 =
𝑟𝑚𝑠

1
𝑁
∑ |𝑥̃𝑖|
𝑁𝑠
𝑖=1

 

3. Root mean 

square 
𝑟𝑚𝑠 = √

1

𝑁𝑠
∑𝑥̃𝑖

2

𝑁𝑠

𝑖=1

 

9. Impulse 

factor 𝑓𝑖 =
max(𝑥̃𝑖)

1
𝑁𝑠
∑ |𝑥̃𝑖|
𝑁𝑠
𝑖=1

 

4. Square mean 

root 
𝑠𝑚𝑟

= (
1

𝑁𝑠
∑√|𝑥̃𝑖|

𝑁𝑠

𝑖=1

)

2

 

10. Marginal 

factor 𝑓𝑚 =
max(𝑥̃𝑖)

𝑠𝑚𝑟
 

5. Skewness 

𝑓𝑠𝑘 =
 ∑ (𝑥̃𝑖 − 𝜇)

𝑁𝑠
𝑖=1

3

(𝑁𝑠 − 1)𝜎3
 

11. Peak to 

peak 
fpp = max(𝑥̃𝑖)-min 

(𝑥̃𝑖) 

6. Kurtosis 

𝑓𝑘 =
 ∑ (𝑥̃𝑖 − 𝜇)

𝑁𝑠
𝑖=1

4

(𝑁𝑠 − 1)𝜎4
 

- - 

 

4.2.1.3. Principal Component Analysis 

Principal component analysis (PCA) is one of the most widely used dimension reduction 

techniques that capture significant dataset variability and minimize the loss of information. The 

goal of PCA is to reduce the number of features with minimum loss of information. PCA is an 

unsupervised statistical technique that identifies new features along with new directions, which 

are linear combinations of the original features and uncorrelated. In this research, PCA is applied 

for two purposes: (1) to reduce the number of features and (2) to convert the features into 

linearly independent features. Reduced and uncorrelated features increase computational 

efficiency, model stability, and prediction accuracy. The steps of PCA are demonstrated as 

follows.  
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Step 1: Standardized data by subtracting the mean of features from all observations of the 

features.  

 𝑿̃ = 𝑿 − 𝟏𝑛𝑿 ̅ (4.6) 

where,  𝑿 ∈ 𝑹𝑛×𝑝 is the feature matrix (data) obtained by feature extraction, 𝑿̅ ∈ 𝑹1×𝑝 is the 

mean vector of features, 𝑿̃ ∈ 𝑹𝑛×𝑝 is the standardized data, and  𝟏𝑛 is a column vector with n 

elements. n and p are the number of observations and number of features, respectively. 

Step 2: Compute the covariance matrix, 𝑺 ∈ 𝑹𝑝×𝑝 of X. 

 𝑺 = 𝑿̃𝑇𝑿̃  (4.7) 

where, 𝑿̃𝑇 represents the transpose of the matrix 𝑿̃.  

Step 3: Compute the eigenvalues and eigenvectors of S. In PCA, eigenvectors are the 

principal components. Then, order the eigenvectors according to the descending order of 

eigenvalues. 

 𝑽 = [𝒗1 𝒗2 𝒗3…𝒗𝑝] (4.8) 

where, each column of 𝑽 ∈ 𝑹𝑝×𝑝 represents an eigenvector. 𝑣𝑖  (𝑖 = 1,2,3,… , 𝑝) is the 

eigenvector corresponding to the ith largest eigenvalue, 𝜆𝑖(𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝). In eigenspace, 

the direction of the eigenvector (𝑣1) corresponding to the largest eigenvalue (𝜆1) represents the 

direction along which the data variance is maximum.  

Step 4: Set a threshold value, τ of the explained variance, and determine a new 

dimension, d* by the following formula. 

  𝑑∗ = {min 𝑑 ∣
∑ 𝜆𝑖
𝑑
𝑖=1

∑ 𝜆𝑖
𝑝
𝑖=1

≥ 𝜏}                                                      (4.9) 

where, d*(d*˂p) is the reduced dimension. 

Step 5:  Determine the new matrix, 𝑉∗ ∈ 𝑅𝑝×𝑑
∗
  by taking the first d* columns of V. 

 𝑽∗ = [𝒗𝟏 𝒗𝟐 𝒗𝟑… . 𝒗𝒅∗] (4.10) 
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Step 6: Finally, the reduced dataset, 𝑿∗ ∈ 𝑹𝑛×𝑑
∗
 is computed by the formula given 

below. 

 𝑿∗ = 𝑿̃𝑽∗ (4.11) 

The dataset X* obtained by PCA is then used to train the NN employed in the tool flank 

wear prediction. 

4.2.1.4. Uncertainty Prediction with MC Dropout 

The NN approach is widely used as a prediction approach in different fields, including 

manufacturing, medicine, supply chain, and many others. Generally, model parameters (weights) 

are estimated by minimizing the loss function, and the most common loss function is the least 

square loss function. All models are developed under certain assumptions; for instance, the 

neurons within a layer do not interact with the other neurons of the same layer in a NN. But, real-

world situations do not always align with those assumptions. A great statistician of the 20th 

century, George Box, mentioned that all models are wrong, but some are very useful [63]. A NN 

is also considered a very useful model that has been known to predict with high accuracy. In 

most cases, a prediction obtained by a NN is a deterministic point value, and it is assumed that 

the level of prediction accuracy is relatively high. This deterministic prediction is highly 

optimistic, and the model uncertainty is often ignored. Thus, it is essential to know the level of 

uncertainty in a prediction to make decisions with high confidence. In this research, the MC 

dropout approach is employed to account for model uncertainty in predictions. 

Srivastava et al. [64] proposed a standard dropout technique to prevent overfitting, 

improve model stability, and efficiently combine different NN architectures. In a NN, a neuron 

of a layer is fully connected with all neurons of prior and post layers, as shown in Figure 4.3(a). 

Dropout can be defined as deleting a neuron from networks and all its associated connections 
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(Figure 4.3(b)). The dropout decision is binary. It is whether a neuron is retained in a NN or is 

dropped out from a NN. If the dropout probability is p, then the probability of a neuron retaining 

in the network is 1-p. Usually, dropout is applied to all neurons in a NN layer with the same 

probability. If the dropout is applied to q number of neurons, then the possible number of NN 

architecture is 2q . It is recommended to apply the dropout technique only in hidden layers as a 

dropout in the input layer results in loss of data information for some network architectures.  

 

Figure 4.3. (a) Standard NN and (b) NN after applying dropout 

 

Dropout is applied randomly until obtaining a desired level of accuracy. During training, 

the weights of the retained neurons update in each epoch, and the weights of dropped-out 

neurons remain unchanged. After training a NN with the dropout, a fully connected network is 

further applied to predict the target variable for a new observation. And the final weight is 

estimated as (1-p) w for applying a fully connected network. Although the dropout reduces 

overfitting, the prediction by incorporating the dropout technique is still a point estimation and 

does not consider uncertainty. Thus, to overcome this challenge, instead of predicting by 
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implementing a fully connected NN, a NN is employed to predict different values for test data 

(new observation) by applying dropout. This concept is known as MC dropout. 

Unlike standard dropout, MC dropout is applied for training and test data. During training 

a model, MC dropout is the same as the typical dropout. For a new observation, the dropout is 

applied to a trained NN to predict multiple values to get a distribution of a target variable. When 

dropout is applied in NN several times, some neurons are masked out. A slightly different 

network architecture is obtained for every time dropout. For a new observation, different target 

variable values are predicted from different network architectures. From different values, the 

distribution of the target variable is estimated. More details, including theoretical proof of MC 

dropout, can be found in Ref. [65]. Gal and Ghahramani [65] demonstrated that using MC 

dropout in neural networks is a Bayesian approximation of the Gaussian probability model. It is 

also shown that the prediction by MC dropout is equivalent to the prediction by the Bayesian 

neural network, where the distribution of weights is estimated by training. Therefore, the model 

uncertainty can be estimated by MC dropout [65].  

The model uncertainty is incorporated for tool flank wear prediction by applying MC 

dropout. When a NN model predicts different values of tool flank wear for a new observation, 

the first two moments (mean and variance) of the tool flank wear can be determined from the 

predicted values by following formulae. 

                                                                               𝜇 =
1

𝐷
∑𝑦̂𝑖

𝐷

𝑖=1

                                                               (4.12) 

                                                                   𝜎2 =
1

𝐷 − 1
∑(𝑦̂𝑖 − 𝜇)

2

𝐷

𝑖=1

                                                   (4.13) 
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where dropout is randomly applied D times for a new observation, µ and σ are the mean and 

standard deviation of different predicted tool flank wear. And ˆ
iy  is the predicted tool wear for ith 

dropout. When µ and σ are known, the prediction interval (PI) for a new observation for a certain 

level of significance (α) can be estimated as follows. 

 𝑃𝐼 = [𝜇 − 𝑧𝛼\2𝜎, 𝜇 + 𝑧𝛼\2𝜎] (4.14) 

where PI is the prediction interval and 
2

Z
 is the z-value for 𝛼 significance level. The range of 

PI represents the level of uncertainty. A narrower range of PI indicates a lower level of 

uncertainty, and a wider range represents a higher level of uncertainty. Based on the level of 

uncertainty, the maintenance decision will be taken to reduce unwanted failure. If the level of 

uncertainty is high, then manual monitoring can be performed by observing different process 

indicators in determining tool changing time. Therefore, interval prediction by considering data 

and model uncertainty provides more detailed information for decision-making like maintenance 

scheduling and tool changing. In the following section, the proposed tool flank wear prediction 

method is implemented on the 2010 PHM Challenge Dataset [66]. 

4.2.2. Case Study: Tool Wear Prediction 

In this section, the proposed method is applied to the 2010 Prognostic and Health 

Management (PHM) Challenge Dataset [66] to demonstrate the performance and applicability of 

the proposed method. Further, to verify the results, the performance of the proposed method is 

compared with other equivalent known methods.  

Seven sensors were installed on the Röders Tech RFM760 CNC milling machine to 

collect tool condition data of a tungsten carbide cutter with three (03) flutes. Feed rate (1555 

mm/min), Y-axis depth of cut (radial 0.125 mm), and Z-axis depth of cut (axial 0.2 mm) were the 

constant parameters. Among seven sensors, three (03) force sensors collected signals for force 
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along X, Y, and Z axes, and three (03) vibration sensors collected signals for vibrations along X, 

Y, and Z axes. The other sensor was an acoustic emission (AE) sensor. Tool flank wear was set 

as the target variable and measured for sensor data. The data of six cutters (c1, c2, c3, c4, c5, and 

c6) were collected. The data of 315 observations were collected for each cutter. The tool flank 

wear was measured for three cutters, c1, c4, and c6, and the measurement unit is 10-3 mm. Tool 

wear for all three flutes was measured for the three cutters, and the average tool flank wear was 

used as the target variable. The measured tool flank wear for the three cutters is shown in Figure 

4.4. 

 

Figure 4.4. The measured tool flank wear for cutters 𝑐1, 𝑐4, 𝑎𝑛𝑑 𝑐6 

 

Although the machining parameters are the same for all three cutters, the tool flank wear 

patterns are different for each cutter. Therefore, deterministic assumptions are not useful for this 

case as capturing the exact pattern of a tool flank wear from a cutter is hard. The sensor data of 

the cutters with known tool flank wear is used in this dissertation. Among three (03) cutters with 

known tool flank wear, the data of cutters 𝑐1 and 𝑐4 are used to train the NN with dropout, and 

the data of the third cutter 𝑐6 is used as test data to predict tool flank wear. Cai et al. [67] and 
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Zhao et al. [68]  predicted tool flank wear of cutter c1, c4, and c6. Both publications get the least 

prediction accuracy for the tool flank wear prediction of the cutter c6. For this, the tool flank 

wear of cutter c6 is predicted to demonstrate the proposed method. Therefore, the training dataset 

has 630 observations from cutter c1 and c4. The testing dataset consists of 315 observations from 

the cutter 𝑐6. 

In the first step, the data collected from seven (07) sensors are denoised by EMD to 

reduce data uncertainty. The IMFs are extracted from sensor data by using the EMD algorithm 

demonstrated in Figure 4.2. The IMFs extraction process is ended if the maximum number 

(n=10) of IMFs has been extracted or the residual becomes monotonic for a smaller number of 

IMFs. The threshold value of the correlation coefficient is ρ=0.8 for removing IMFs that consist 

of noise. After reducing data uncertainty by EMD, the 11 time-domain features listed in Table 

4.1 are extracted from the denoised data of each sensor. As there are seven (07) sensors, a total 

of 77 (7×11) features are extracted from all denoised sensor data for each observation. All 

extracted features may not be relevant to tool flank wear, and some features may linearly depend 

on each other. PCA is used for feature reduction and generation of independent features. For this 

dataset, the extracted 77 features are reduced to 25 features that capture 96.7% variation. The 

new 25 features are applied to train NN. According to eigenvalues of features obtained by PCA, 

sensor signals for force are most significant as 15 principal components among the 25 

components are obtained from force sensor signal-related data. 

The reduced dataset obtained after applying PCA is applied to train NN with dropout for 

interval prediction. For tool flank wear prediction, we considered NN with only one hidden layer 

to capture non-linearity. The activation function used is the exponential linear unit (ELU), and 

the number of neurons in the hidden layer is 20. Random dropout rates are applied for tool wear 
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prediction to determine the best dropout rate, and the prediction accuracy is found at its highest 

for the 0.1 dropout rate. For this research, a 0.1 (p=0.1) dropout rate is chosen. Adam optimizer 

is used to train NN with a learning rate of 0.001, exponential decay control parameters of 0.99 

and 0.999, and smoothing term of 10−8 [35]. By applying the dropout technique 50 times 

(D=50) on the trained NN, for new data, different tool flank wear prediction values can be 

obtained. The mean (µ) and standard deviation (σ) of all estimated values of tool flank wear are 

determined from Equations (4.12) and (4.13), respectively. Finally, the confidence interval is 

calculated from Equation (4.14) with a 95% confidence level.  

 

Figure 4.5. Interval prediction result for tool flank wear 

 

The result of the estimated interval tool flank wear with the MC dropout is shown in 

Figure 4.5. It is visible that the range of the intervals is different for different data points, as 

expected. Another important observation is that the tool wear prediction accuracy is 

comparatively low for the first few cycles. It is acceptable as the initial conditions of all cutters 

are not always the same because manufacturers sometimes use new tools or sharpen the current 

tools. If the initial conditions of the two cutters are not similar, then there is a high chance that 

sensor data will be different. In the dataset, there is no information about the cutters' initial 
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condition. Therefore, it is not possible to draw obvious conclusions. But it can still be concluded 

that with different initial conditions of cutters, the prediction accuracy is lower for the first 

(approximately) 125th cycles compared to the later cycles (after the 225th cycle in Figure 4.5).  

After machining for a certain amount of time, tool conditions are inspected to be the same 

for most cutters. The chance of tool failure is high for the later cycles, approximately after the 

200th cycle in Figure 4.5. Accurate predictions of tool flank wear are essential for these later 

cycles to estimate an optimum tool changing time and make other maintenance decisions to 

avoid significant downtime. The proposed model can capture this scenario, which is indicated by 

the increased prediction accuracy with an increase in the number of cycles.  

Another observation is that the prediction intervals are comparatively wider for the last 

few cycles (after the 295th cycle in Figure 4.5). The reason for this is the range of the tool wear is 

different for test and training data. The maximum tool flank wear in the training data is 203.08 

mm, whereas the maximum tool flank wear on the test data is 215.94 mm. For the test data that 

are further from the training data, the resulted interval is comparatively wider because the 

uncertainty is higher for extrapolation [65]. As the distance of the new data is further away from 

the training data, the interval will also be more expansive, and the degree of uncertainty will also 

be higher compared to the new data closer to the training data.  

Standard regression and classification algorithms do not capture uncertainty for point 

value prediction. However, this point value prediction is highly optimistic and often applied to 

support different decision-making. In such cases, it is assumed that a highly reliable model can 

predict with high confidence, but it is not always accurate [69]. An input may be subjected to 

noise and outliers, and model uncertainty may arise due to model parameters and structure [70, 

71]. Interval prediction is a way to represent these uncertainties in quantitative form. For 
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example, a 95% prediction interval for a new observation can be defined as 95% confident that 

the true value for the observation will fall within the upper and lower bounds of the interval. The 

mean value is the most likely predicted value, and the prediction interval determines the 

variability of prediction around the mean. A wider prediction interval represents the high 

prediction variability around the mean predicted value. A wider prediction interval is a less 

reliable prediction. Still, it is useful for analyzing a system as it explains its condition instead of 

solely relying on optimistic point value estimation as the point value estimation fails to explain 

variability. A narrower interval is preferable and indicates a low level of uncertainty. The 

corrective actions would be based on the prediction interval's mean and variance and a part 

requirement. The mean indicates the estimation of the true value, and an interval represents the 

degree of belief. To produce a high-quality product, the maintenance department can use the 

worst (upper bound) value of tool flank wear to take action. The interval prediction is helpful for 

robust decision-making based on diagnosis results. 

4.3. Conservative Interval Prediction by Linear Optimization 

Monte Carlo (MC) dropout technique applies only to neural networks with neurons. 

Other than neural networks, linear and polynomial regression models are widely used for various 

engineering applications [72]. Due to uncertainty in many applications, including additive 

manufacturing processes, when data collection is repeated several times for the same 

combination of input variables, there is a high likelihood that the target variable will differ for 

each data collection attempt. To cope with different sources of uncertainties, estimation of 

interval and probability distribution is often more valuable than deterministic point value 

estimation.  
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The MC dropout is not applicable for linear and polynomial regression. This section 

proposes linear optimization-based techniques to predict conservative confidence intervals for 

linear and polynomial regression models. Two linear optimization models are proposed, one for 

ordinary least squares (OLS) regression and the other for weighted least squares (WLS) 

regression. The results show that the proposed method is useful for applications where the level 

of uncertainty or the lack of knowledge of uncertainty sources is high. The proposed method can 

also be leveraged to the Bayesian neural network (BNN), where the optimization techniques for 

interval prediction will be non-linear optimization instead of linear optimization [73].  

Regression analysis is a machine learning algorithm that establishes relationships 

between a target variable and one or more input variables (features) [74]. Usually, the target 

variable depends on input variables, and the target variable is changed with the change of input 

variables. The purposes of applying regression analysis are to analyze relationships among 

variables, develop a fitted model for interpretation, and predict a target variable for new data for 

which the target variable is unknown for different decision-making. The regression analysis has 

been applied to many fields such as manufacturing [75], supply chain [76], and medicine [77] to 

predict the value of a target variable for new observations to aid decision-making processes. 

Generally, the regression models are developed by minimizing least-squares errors 

between fitted values and true values from a dataset. This model of regression is known as the 

ordinary least squares (OLS) regression. The coefficient of input variables and the intercept are 

estimated by minimizing the least-squares errors. The point value of the target variable is 

estimated for a new observation from the known coefficients and intercepts. The OLS regression 

assumes that the error is consistent for all observations, known as homoscedasticity [78]. 

Another commonly employed regression besides OLS regression is the weighted least squares 
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(WLS) regression. The WLS regression is an extension of the OLS technique that weighs the 

observations proportional to the reciprocal of the error variance. The WLS regression is preferred 

over OLS regression when the homoscedasticity assumption is violated. In WLS regression, the 

coefficients of input variables are estimated by minimizing the weighted least squares errors. 

Like OLS regression, WLS regression is also a point value prediction method. The point value 

estimation is an optimistic prediction under deterministic assumptions. 

Different methods have been applied to predict intervals by regression models to 

overcome the limitations of point value estimation. The regression coefficients and intersection 

distribution can be estimated by assuming that the noise is normally distributed with zero means 

[74]. From this, the distribution of the target variable for a new observation can be estimated. 

Several methods have been developed to estimate a confidence interval for a prediction. The 

most common method for confidence interval prediction is based on the variance of coefficients. 

The interval is predicted under the assumption that the noise is normally distributed. A large data 

set is required to meet normality assumptions, and the Type I error rate becomes close to the 

significance level.  

The normality assumption can easily be used to estimate the distribution of a target 

variable. Stine [79] proposed a bootstrapping resampling technique for interval prediction. The 

bootstrap is a simple and straightforward way to get an inference of the population standard 

deviation to form a sample by resampling. For bootstrap interval prediction, several datasets are 

generated from a dataset with the same size as the original dataset. For each set of the generated 

datasets, a regression model is trained. The mean and variance of the target variable are 

estimated for new observations from all outcomes of regression models. It is assumed that 
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predictions by the regression models are unbiased estimators of the true value and are normally 

distributed.  

The computation cost of training is high for resampling and training several regression 

models. Shrestha and Solomatine [80] proposed a fuzzy c-means clustering-based interval 

prediction method for regression models. One advantage of their method is that it does not 

require any prior distribution information for interval prediction and predicts asymmetric 

intervals. Another advantage of the method is that the predicted interval does not depend on the 

model structure applied to predict a target variable. Olive [81] proposed an asymptotic prediction 

interval estimation technique from the error percentile of a training dataset for multiple linear 

regression. The unique feature of the proposed method is that it does not require the normality 

assumption of error. 

The advantages and disadvantages of different interval prediction methods for regression 

models have been discussed above. To the best knowledge, none of the existing techniques 

predict conservative intervals at the time of writing. Two new methods are proposed to predict 

the conservative confidence interval. One method is for OLS regression, and the other method is 

for WLS regression. The conservative interval represents the possible lower and upper bounds 

for the best- and worst-case scenarios. In some cases, where the maximum value is better, such 

as profit, the lower bound of a conservative interval represents the worst-case solution. 

As the proposed methods estimate the possible lower and upper bounds, the proposed 

methods are useful when the level of uncertainty and lack of knowledge about the sources of 

uncertainty is high. On the other hand, when the lowest value is preferable, such as cost, the 

worst-case solution is the conservative upper bound. Thus, a conservative interval predicted by 

the proposed methods will help make robust decisions. 
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The linear optimization technique is applied to determine the upper and lower bounds of 

a confidence interval in the proposed methods. The first two moments (mean and variance) of all 

coefficients and the intercept can be determined from the training dataset. Further, the 

confidence intervals can be estimated from the first two moments for the desired confidence 

level. The linear optimization technique is then applied to determine confidence intervals. The 

regression model obtained by OLS or WLS regression is the objective function, and the 

confidence intervals of coefficients are the constraints for linear optimization models. The 

objective function and the constraints are the same for estimating the upper and lower bounds. 

The difference is that the objective function is maximized for the upper bound and minimized for 

the lower bound.  

4.3.1. Regression 

The regression analysis, a widely applied machine learning algorithm, is employed to 

represent a target variable as a function of input variables. The goal is to predict the target 

variable based upon the values of input variables from the mathematical function for that the 

value of the target variable is unknown. Suppose 𝑦 is a target variable, and k input variables are 

𝑥1, 𝑥2, 𝑥3, … , 𝑎𝑛𝑑 𝑥𝑘. The general form of the relationship between the target variable and the 

input variables is given as 

  𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3,⋯⋯𝑥𝑘) + 𝜖 (4.15) 

where, 𝑓 is a fixed but unknown function, and 𝜖 is random noise and independent of input 

variables. The noise term 𝜖 is also unknown. The regression analysis estimates 𝑓 to predict 𝑦 in 

the following form. 

 𝑦̂ = 𝑓(𝑥1, 𝑥2, 𝑥3,⋯⋯𝑥𝑘) (4.16) 
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where, 𝑓 is an estimator of 𝑓 and 𝑦̂ is the predicted value of 𝑦 for input variables. Linear 

regression is the most widely applied and known method in machine learning to predict a target 

variable. In linear regression, the target variable is a linear function of input variables. The target 

variable is represented as the following. 

 𝑌 = 𝛽0 + 𝑥1𝛽1 + 𝑥2𝛽2 +⋯⋯𝑥𝑘𝛽𝑘 + 𝜖 = 𝒙𝜷+ 𝜖 (4.17) 

where, 𝛽0 is intercept, and  𝛽1, 𝛽2, ⋯⋯ , 𝛽𝑘 are the coefficients of 𝑥1, 𝑥2, ⋯⋯ , 𝑥𝑘, respectively. 

And, 𝒙 = [1 𝑥1 𝑥2 ⋯⋯ 𝑥𝑘] ∈ 𝑹𝑘+1 and 𝜷 = [𝛽0 𝛽1 𝛽2 ⋯⋯ 𝛽𝑘]𝑇 ∈ 𝑹𝑘+1.  

Instead of only input variables, different intersection (𝑒. 𝑔., 𝑥𝑘+1 = 𝑥1𝑥2, 𝑥𝑘+2 = 4𝑥2 + 3𝑥5) 

and transformations (𝑒. 𝑔. ,  𝑥𝑘+1 = 𝑥2
3, 𝑥𝑘+2 = ln 𝑥2) of input variables can be used as input 

variables in linear regression. As a result, the curvature can be modeled by linear regression, but 

the regression model must be a linear function of the parameters, 𝜷. 

The least squares approach is widely used to estimate the regression coefficients by 

minimizing the least squares error [82]. The least squares estimation is a maximum likelihood 

estimation (MLE) if the noise is normally distributed. Most of the machine learning and deep 

learning algorithms, including the proposed methods, assume that the noise is normally 

distributed. With this assumption, the least squares approach is the same as MLE. Based on the 

dependency of errors on input variables and the consistency of errors, the least squares approach 

is divided into two broad categories: ordinary least squares (OLS) regression and weighted least 

squares (WLS) regression. The details of the two categories are given in the following 

subsections. 

4.3.1.1 Ordinary Least Squares (OLS) Regression 

OLS technique is a commonly used approach to estimate regression parameters, 𝜷. OLS 

regression assumes that the variance of residuals is consistent for all observations, and it is 
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known as homoscedasticity. The regression parameters are estimated by minimizing the least 

squares error. The parameters are estimated as [83] 

 𝜷̂ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 (4.18) 

where, 𝑿 = [𝟏   𝒙𝟏  𝒙𝟐  ⋯  𝒙𝒑] ∈ 𝑹
𝑛×(𝑝+1), 𝒀 ∈ 𝑹𝒏. 𝑿 and 𝒀 are input matrix and target variable 

vector, respectively, on the training dataset. And, p and n are the input dimension and the number 

of observations in a training dataset, respectively. 𝜷̂ is an unbiased estimator of 𝜷. 

Another assumption of OLS is the noise is normally distributed with zero mean and 𝜎2 

variance. The variance, 𝜎2, can also be estimated as follows [83]. 

                                                              𝜎̂𝟐 =
1

𝑛 − 𝑝 − 1
(𝒀 − 𝒀̂)

𝑻
(𝒀 − 𝒀̂)                                         (4.19) 

where, 𝒀̂ = 𝜷̂𝑿 ∈ 𝑹𝑛 is the predicted values of the target variable. 𝜎̂2 is an unbiased estimator of 

𝜎2 [82]. As the noise is normally distributed, 𝜷 also has a normal distribution with 𝜷̂ mean and 

 𝜎̂2(𝑿𝑻𝑿)−𝟏 covariance. The distribution of 𝜷 can be written as follows [83]. 

 𝜷~𝑁(𝜷̂, 𝜎̂2(𝑿𝑻𝑿)−𝟏) (4.20) 

In the proposed method, the conservative interval of the target variable is determined by 

using the distribution of 𝜷. The proposed method for confidence interval prediction for OLS 

regression is described in the following subsection. A dataset may not meet the homoscedasticity 

assumption. When the homoscedasticity assumption is violated, the WLS regression is applied to 

train a model. 

4.3.1.2 Weighted Least Squares (WLS) Regression 

The homoscedasticity assumption is not always valid for all datasets. When the 

homoscedasticity assumption is violated, the WLS regression is applied to train a regression 

model. In WLS regression, the weights are assigned to each observation to reduce the effects of 
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heteroscedasticity. In WLS, the parameters, 𝜷 is estimated by minimizing weighted least squares 

error, and it can be estimated as  

 𝜷̂𝑤 = (𝑿
𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒀 (4.21) 

where, 𝜷̂𝑤 is WLS estimator of 𝜷. 𝑾 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, 𝑤3,⋯⋯𝑤𝑛) ∈ 𝑹
𝑛×𝑛 is a diagonal matrix 

and 𝑤𝑗  (𝑗 = 1,2,3,⋯ 𝑛) is the weight of 𝑗𝑡ℎ  observation. The weights are inversely proportional 

to the estimated variance of errors that can be estimated from OLS regression.  

For WLS regression, the variance of errors and the distribution of 𝜷  are estimated as 

                                                       𝜎̂𝑤
2 =

1

𝑛 − 𝑝 − 1
(𝒀 − 𝒀̂𝑤)

𝑻
𝑾(𝒀 − 𝒀̂𝑤)                                   (4.22) 

 𝜷~𝑁(𝜷̂𝑤 , 𝜎̂𝑤
2(𝑿𝑇𝑾𝑿)−1) (4.23) 

where 𝒀̂𝑤 = 𝜷̂𝑤𝑿 ∈ 𝑹
𝑛 is the predicted values of the target variables obtained from the WLS 

regression model.  

In OLS regression, each data point has an equal impact on estimating model parameters. 

In other words, it is assumed that the variance of residuals is constant over all values of 

predictors. On the other hand, the impact of each data point is accounted for by weights in WLS 

regression. In most cases, the weights are unknown but can be estimated from the residuals of 

OLS regression. The steps for estimating weights by OLS regression are given as follows. 

Step 1: Determine absolute values of residuals, 𝝐∗ for an OLS regression.  

 𝝐∗ = |𝝐| = |𝒀 − 𝜷̂𝑿| (4.24) 

The residual can be defined as the difference between the true value and the predicted 

value for an observation. 

Step 2: Regress 𝝐∗ versus 𝜷̂𝑿 by considering 𝝐∗ as a dependent variable. The fitted 

values of 𝝐∗ is 𝝐̂∗ and estimated as follows. 

 𝝐̂∗ = [𝜖1̂
∗ 𝜖2̂

∗ 𝜖3̂
∗ ⋯ 𝜖𝑛̂

∗ ] (4.25) 
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Step 3: Estimate weights, 𝑾 from the fitted values, 𝝐̂∗.  

                                                     𝑾 = 𝑑𝑖𝑎𝑔(
1

𝜖1̂
∗2
,
1

𝜖2̂
∗2
,
1

𝜖3̂
∗2
,⋯

1

𝜖𝑛̂∗
2)                                                  (4.26) 

In the proposed method, the distribution of 𝜷𝑤 is used to determine the conservative 

interval of the target variable. The proposed method for confidence interval prediction for WLS 

regression is described in the following subsection. 

4.3.2. Conservative Interval Prediction Methods 

The OLS and WLS regressions are selected based on the homoscedasticity of error. The 

WLS regression is applied over OLS regression when the homoscedasticity assumption is 

violated. The distribution of parameters 𝜷 is changed based on the selection of regression 

models. The proposed methods are developed under two assumptions. Those are: 

 Noise, 𝜖 is normally distributed with a mean zero and 𝜎2 standard deviation. This is a 

common assumption for most machine learning and deep learning algorithms. 

 The second assumption is that all 𝛽𝑖(𝑖 = 0,1,2,⋯𝑝)’s are independent. In other 

words, the covariance between 𝛽𝑖’s is zero.  

 𝑐𝑜𝑣(𝛽𝑖 , 𝛽𝑗) = 0    ∀ 𝑖, 𝑗 = 0,1,2,⋯ 𝑝, 𝑖 ≠ 𝑗 (4.27) 

An assumption of developing a linear regression model is that the input variables are 

independent. If the assumption is true, and a transformed dataset is used instead of a collected 

dataset, then the covariances between 𝛽𝑖′𝑠 are also zero. The new form of a dataset is 

 𝑿̃ = 𝑿∗ − 𝑿̅∗ (4.28) 

where, 𝑿∗ ∈ 𝑹𝑛×𝑝 is the collected data, 𝑿̅∗ is the mean and 𝑿̃ is the new transformed dataset. 

Now, 𝑿 can be written as 

 𝑿 = [𝟏 𝑿̃] (4.29) 
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Data normalization or transformation is common for most machine learning and deep 

learning algorithms. It is also recommended to use various feature reduction techniques to reduce 

irrelevant and redundant features before applying a machine learning algorithm. Besides, 

principal component analysis (PCA) can also be used to generate linearly independent features 

and reduce the dimension of a dataset. Therefore, the assumptions of the proposed methods are 

the same as other machine learning algorithms, and these assumptions are not unique and new. 

The proposed methods can predict conservative intervals and aid in robust decision-making with 

the same assumptions. The proposed method is beneficial when there is a high lack of knowledge 

about uncertainty sources. The proposed methods for interval prediction by linear optimization 

are demonstrated in this section. 

4.3.2.1 OLS Interval Prediction 

In OLS regression, 𝜷 is estimated as 𝜷̂ by minimizing the least squares error, and the 

formula for estimating 𝜷 is given in Equation (4.18). Then, the distribution of 𝜷 can be estimated 

from Equation (4.20).  An assumption of the proposed method is that 𝛽𝑖’s are independent. 

Therefore, the covariance matrix of 𝜷 becomes a diagonal matrix and can be written as 

 𝝈̂𝛽
𝟐 = 𝜎̂2(𝑿𝑇𝑿)−1 ≈ 𝑑𝑖𝑎𝑔 (𝜎̂𝛽0

2 , 𝜎̂𝛽1
2 , ⋯ , 𝜎̂𝛽𝑝

2 ) (4.30) 

When the mean and variance of all 𝛽𝑖’s are known, the conservative confidence interval 

can be estimated from the linear optimization models for estimating lower and upper bounds are 

given in Equations (4.31) and (4.32), respectively. 

𝑦𝐿
∗ = min

𝜷
𝒙𝜷  

 s. t.   𝛽̂𝑖 − 𝑘1𝜎̂𝛽𝑖 ≤ 𝛽𝑖 ≤ 𝛽̂𝑖 + 𝑘1𝜎̂𝛽𝑖      ∀𝑖 = 0,1,… , 𝑝  (4.31) 

 

 



 

80 

 

𝑦𝑈
∗ = max

𝜷
𝒙𝜷 

 s. t.   𝛽̂𝑖 − 𝑘1𝜎̂𝛽𝑖 ≤ 𝛽𝑖 ≤ 𝛽̂𝑖 + 𝑘1𝜎̂𝛽𝑖      ∀𝑖 = 0,1,… , 𝑝  (4.32) 

In Equations (4.31) and (4.32), the constraints are the confidence intervals of 𝛽𝑖. 𝑘1is a 

constant, and it depends on the level of conservatism. 𝑘1 can be defined as the critical t value 

from T-distribution at (1 − 𝛼/2) level of confidence and  (𝑛 − 𝑝 − 1) the degree of freedom, 

𝑘1 = 𝑡1−𝛼/2
𝑛−𝑝−1

.  𝒙 = [1 𝑥1 𝑥2 ⋯ 𝑥𝑝] is a new observation for which the confidence interval 

of the target variable is estimated. In the above optimization formulations, the constraints and 

objective functions are both linear functions of  𝜷, and 𝜷 is a bounded variable. Therefore, the 

optimization models are convex, which guarantees that the proposed optimization models can 

estimate the minimum and maximum values of the objective functions. The proposed interval 

prediction models in Equations (4.31) and (4.32) are simple linear optimization models with 

bounded constraints. Therefore, the exact solution of the optimization formulation in Equations 

(4.31) and (4.32) can be obtained analytically. For instance, in estimating the lower bound of y in 

Equation (4.31), the objective function is minimum at the lower bound of a variable with the 

positive coefficient and the upper bound of a variable with the negative coefficient. Similarly, the 

upper bound of y can be estimated analytically. The proposed optimization approach is not 

computationally expensive. However, in many cases, additional constraints may require based on 

the target variables or others. For instance, the production time is always a positive value. Thus, 

when the production time is the objective function for optimization, another constraint (xβ ≥0) 

needs to consider in Equation (4.31) so that the solution is never a negative value. The analytical 

solution approach may not work well in such cases. 

The current most-employed procedure (in this work, it is defined as the traditional 

method) to predict a confidence interval of a target variable 𝑦 is with 
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 𝐶𝐼 = [𝑦𝐿 , 𝑦𝑈] = [𝐸(𝑦) − 𝑘1𝜎̂𝑦, 𝐸(𝑦) + 𝑘1𝜎̂𝑦] (4.33) 

The mean and variance of a function are estimated by using a first-order Taylor series 

approximation as follows [42].  

 Performance function:  

 𝑍 = 𝑓(𝑧1, 𝑧2, 𝑧3, ⋯ 𝑧𝑝) (4.35) 

 First − order approximation of mean:  

 𝐸(𝑍) = 𝑓(𝐸(𝑧1), 𝐸(𝑧2), ⋯ , 𝐸(𝑧𝑝)) (4.36) 

 First − order approximation of variance:  

                         𝜎̂𝑍
2 =∑(

𝜕𝑓

𝜕𝑧𝑖
)
2

𝑝

𝑖=1

𝑣𝑎𝑟(𝑧𝑖) + 2∑ ∑
𝜕𝑓

𝜕𝑧𝑖

𝜕𝑓

𝜕𝑧𝑗
𝐶𝑜𝑣(𝑧𝑖 , 𝑧𝑗)

𝑝

𝑗=𝑖+1

𝑝

𝑖=1

                    (4.37) 

Therefore, the mean and variance of 𝑦 can be estimated from the first-order Taylor series 

approximation, and the approximate mean and standard deviation of 𝑦 are given below. 

𝐸(𝑦) = 𝜇𝛽0 + 𝑥1𝜇𝛽1 + 𝑥2𝜇𝛽2 +⋯+ 𝑥𝑝𝜇𝛽𝑝  

 = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 +⋯ .+𝛽̂𝑝𝑥𝑝 (4.37) 

 𝜎̂𝑦
2 = 𝜎̂𝛽0

2 + 𝑥1
2𝜎̂𝛽1

2 + 𝑥2
2𝜎̂𝛽2

2 +⋯+ 𝑥𝑝
2𝜎̂𝛽𝑝

2  (4.38) 

For the variance, all covariance terms are removed as we are assuming that 𝛽𝑖’s are 

independent. Therefore, the lower bound of the confidence interval of 𝑦 in Equation (4.33) can 

be demonstrated as 

𝑦𝐿 = 𝐸(𝑦) − 𝑘1𝜎̂𝑦 

= 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 +⋯ .+𝛽̂𝑝𝑥𝑝 − 𝑘1√𝜎̂𝛽0
2 + 𝑥1

2𝜎̂𝛽1
2 + 𝑥2

2𝜎̂𝛽2
2 +⋯+ 𝑥𝑝

2𝜎̂𝛽𝑝
2  

≥ 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 +⋯ .+𝛽̂𝑝𝑥𝑝 − 𝑘1 (𝜎̂𝛽0 + 𝑥1𝜎̂𝛽1 + 𝑥2𝜎̂𝛽2 +⋯+ 𝑥̂𝑝𝜎𝛽𝑝) 

 = (𝛽̂0 − 𝑘1𝜎̂𝛽0) + (𝛽̂1 − 𝑘1𝜎̂𝛽1)𝑥1 +⋯+ (𝛽̂𝑝 − 𝑘1𝜎̂𝛽𝑝) 𝑥𝑝 (4.39) 
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The intercept and coefficients of 𝑥1, 𝑥2, ⋯ 𝑥𝑝 in Equation (4.39) are within the bounds of 

𝜷 in Equation (4.31). And the optimization problem introduced in Equation (4.31) is a convex 

optimization problem. Therefore, 𝑦𝐿
∗ ≤ 𝑦𝐿 . Now, the upper bound of the confidence interval of 𝑦 

can be written as 

𝑦𝑈 = 𝐸(𝑦) + 𝑘1𝜎̂𝑦 

= 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 +⋯ .+𝛽̂𝑝𝑥𝑝 + 𝑘1√𝜎̂𝛽0
2 + 𝑥1

2𝜎̂𝛽1
2 + 𝑥2

2𝜎̂𝛽2
2 +⋯+ 𝑥𝑝2𝜎̂𝛽𝑝

2  

≤ 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 +⋯ .+𝛽̂𝑝𝑥𝑝 + 𝑘1 (𝜎̂𝛽0 + 𝑥1𝜎̂𝛽1 + 𝑥2𝜎̂𝛽2 +⋯+ 𝑥̂𝑝𝜎𝛽𝑝) 

 = (𝛽̂0 + 𝑘1𝜎̂𝛽0) + (𝛽̂1 + 𝑘1𝜎̂𝛽1)𝑥1 +⋯+ (𝛽̂𝑝 + 𝑘1𝜎̂𝛽𝑝) 𝑥𝑝 (4.40) 

Similarly, the intercept and coefficients of 𝑥1, 𝑥2,⋯ 𝑥𝑝 are within the bounds of 𝜷 in 

Equation (4.32). The optimization model, Equation (4.32), for estimating the upper bound of 𝑦 is 

a convex optimization. Therefore, it can be concluded that  𝑦𝑈
∗ ≥ 𝑦𝑈. Thus, the proposed 

optimization models in Equations (4.31) and (4.32) guarantee that the estimated lower and upper 

bounds are, respectively, lower and greater than the bounds estimated from Equation (4.33). For 

this reason, the proposed method ensures that the predicted interval is conservative.  

4.3.2.2. WLS Interval Prediction 

Similar to OLS regression, for WLS regression, the 𝜷 is estimated as 𝜷̂𝑤 by minimizing 

the weighted least squares error. It is assumed that 𝛽𝑤𝑖’s are independent. Therefore, the 

covariance matrix of 𝜷 becomes a diagonal matrix and can be written as 

 𝝈̂𝛽𝑤
𝟐 = 𝜎̂𝑤

2(𝑿𝑇𝑾𝑿)−1 ≈ 𝑑𝑖𝑎𝑔 (𝜎̂𝛽𝑤0
2 , 𝜎̂𝛽𝑤1

2 , ⋯ , 𝜎̂𝛽𝑤𝑝
2 ) (4.41) 

From estimated mean 𝜷̂𝑤 and variance 𝝈̂𝛽𝑤
𝟐  of 𝜷, the conservative interval of a target 

variable for WLS regression can be estimated. The mathematical models for estimating 𝑾 and 𝜷 
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are given in Equations (4.26) and (4.21), respectively. The linear optimization models for 

estimating the lower and upper bounds of conservative intervals are given below. 

𝑦𝑤𝐿
∗ = min

𝜷
𝒙𝜷 

 s. t.   𝛽̂𝑤𝑖 − 𝑘1𝜎̂𝛽𝑤𝑖 ≤ 𝛽𝑖 ≤ 𝛽̂𝑤𝑖 + 𝑘1𝜎̂𝛽𝑤𝑖     ∀𝑖 = 0,1,… , 𝑝 (4.42) 

 

𝑦𝑤𝑈
∗ = max

𝜷
𝒙𝜷 

 s. t.,   𝛽̂𝑤𝑖 − 𝑘1𝜎̂𝛽𝑤𝑖 ≤ 𝛽𝑖 ≤ 𝛽̂𝑤𝑖 + 𝑘1𝜎̂𝛽𝑤𝑖      ∀𝑖 = 0,1,… , 𝑝 (4.43) 

In Equations (4.42) and (4.43), 𝛽̂𝑤𝑖 is the (i+1) element of 𝜷̂𝑤. Similar to Equations 

(4.39) and (4.40), it can be proved that the proposed method for WLS regression can also 

estimate conservative confidence intervals. Similar to optimization formulations in Equations 

(4.31) and (4.32), there may also have other constraints in Equations (4.42) and (4.43). In the 

following section, the proposed methods are implemented on three datasets to demonstrate the 

performance of the proposed methods.  

4.3.3. Case Study: Experimental FFF Dataset 

The proposed method is applied to the collected experimental FFF dataset. The data 

collection process, the initial study on the uncertainty in the FFF process, and the interval 

prediction results using the proposed method on the experimental FFF dataset are described in 

this section.  

The data collection procedure is described in Chapter 2. This chapter uses the original 

levels of process parameters instead of the coded levels. In addition to the dataset given in 

Chapter 2, ten (10) other combinations of process parameters are selected randomly for data 

collection to use a portion of collected data as test data for validation. Therefore, the data is 

collected for a total of 40 combinations of process parameters. Three parts are printed for each 
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combination of process parameters. Therefore, a total of 120 parts are produced. The 

compressive strength of the produced parts is obtained by testing the printed test specimen using 

the INSTRON compressive strength equipment with a load of 30kN, moving at a uniform speed 

of 1.3 mm/min. The maximum compressive strength before 10% compression along the 

compressive load direction is used as the target variable for the conservative interval prediction. 

The collected dataset has 120 observations, four input variables, and one target variable, 

compressive strength measured in the MPa unit.  

Table 4.2. Partial experimental data collection outcome 

Process Parameter Combination 1 Combination 2 Combination 3 

Layer Thickness, mm 0.22 0.34 0.28 

Build Orientation, degree 45 90 0 

Infill Density, % 20 50 65 

Extrusion Temperature, ℃ 215 215 200 

Compressive Strength (MPa) 

Part 1 9.964 23.033 27.62 

Part 2 10.845 28.500 28.365 

Part 3 13.139 29.007 32.132 

 

The objective of the experimental study is to analyze the effect of different process 

parameter combinations, namely, layer thickness, build orientation, infill density, and extrusion 

temperature with respect to compressive strength. Three identical parts of the FFF process are 

produced for one combination of process parameters. The compressive strength is measured as a 

target variable for each combination. There are 40 combinations of process parameters studied. 

Table 4.2 shows the numerical compressive strength results of three process parameter 

combinations.  

The variations of compressive strength of three identical parts for three (03) combinations 

in Table 4.2 are also portrayed as a bar graph in Figure 4.6. It is visible from Figure 4.6 that there 
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is a significant variation in part properties for the same combination of process parameters. This 

indicates that the impact of uncertainty is evident in the FFF part properties. 

 

Figure 4.6. Compressive strength variation for different combinations of process parameters 

 

Thus, the point value estimation for a combination of process parameters may not always 

be sufficient to predict the variation in the FFF process. To overcome this challenge, interval 

prediction or probability distribution estimation is more beneficial to capture variability in the 

FFF process. The proposed method can be employed to obtain the conservative interval 

prediction, and the results are detailed below. 

Generally, the relationships between FFF process parameters and part properties are 

quadratic polynomial relationships [84, 85]. In this research, polynomial regression is applied for 

interval compressive strength prediction. From the collected data for 40 combinations, 30 

combinations with 90 observations are randomly selected as the training data. The remaining 30 

observations from the leftover 10 combinations are used as the test data.  

To check the homoscedasticity assumption, the residual plot is used, and the residual plot 

for the training data is shown in Figure 4.7. It is visible that residuals are random and do not take 
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any definite shape or pattern. In other words, if a fitted line is drawn between residuals and fitted 

values, the fitted line will be horizontal. Therefore, the training dataset is deemed to meet the 

homoscedasticity assumption. For this, OLS regression is applied to the FFF dataset.    

 

Figure 4.7. Residual plot for training data 

 

The intercept and the coefficients of all first-order terms, second-order terms, and their 

interaction are estimated by OLS regression. The quadratic regression model for the FFF dataset 

is given in Equation (4.41).  

                                 𝑦 = 𝛽0 +∑𝛽𝑖𝑥𝑖

4

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

4

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

4

𝑗=𝑖+1

4

𝑖=1

= 𝒙𝜷                              (4.44) 

where 𝜷 = 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽11, 𝛽22, 𝛽33, 𝛽44 , 𝛽12 , 𝛽13, 𝛽14, 𝛽23 , 𝛽24, 𝛽34] 
𝑇. 𝛽0 is an intercept, 

and 𝛽𝑖 𝛽𝑖𝑖 , 𝛽𝑖𝑗 are the coefficients of linear, quadratic and interaction terms, respectively.  The 

input variables and the target variable are normalized for predicting regression parameters. The 

predicted intercept and coefficients are the mean values of 𝜷. Then, the residuals' variance is 

estimated using the formula given in Equation (4.19).  The covariance of 𝜷 is estimated from 

Equation (4.30) by using the estimated variance of residuals. The estimated mean and covariance 

of 𝜷 for the FFF dataset are given in Equation (4.45).  



 

87 

 

 𝜷 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.018
0.267
0.121
0.508
0.063
0.098
0.510
0.035
−0.063
−0.424
0.349
0.049
−0.082
0.050
−0.008]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑑𝑖𝑎𝑔 

(

 
 
 
 
 
 
 
 
 
 
 
 

 

0.0015
0.0016
0.0019
0.0019
0.0020
0.0026
0.0031
0.0028
0.0031
0.0020
0.0018
0.0020
0.0021
0.0018
0.0020)

 
 
 
 
 
 
 
 
 
 
 
 

𝑇

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.45) 

Infill density (𝑥3), the square of build orientation (𝑥2
2), the interaction between layer 

thickness and build orientation (𝑥1𝑥2), and interaction between layer thickness and infill density 

(𝑥1𝑥3) are four significant terms with a high mean value of coefficients. From an analysis of the 

distribution of model parameters, it can be concluded that extrusion temperature is the least 

significant process parameter for compressive strength.  On the other hand, three other process 

parameters and their interaction in some forms are significant for compressive strength.   

From the estimated distribution of 𝜷, the conservative intervals for all 10 combinations of 

test data are estimated by using the linear optimization models given in Equations (4.31) and 

(4.32). For estimating compressive strength by Equations (4.31) and (4.32), an additional 

constraint (𝒙𝜷 ≥ 0) is considered as it is commonly known as compressive strength should 

always be a positive value. The predicted intervals for test data are shown in Figure 4.8(a). 

As an experimental validation effort, three parts are printed and further tested for each 

combination to obtain the compressive strength. The measured compressive strength is also 

shown in Figure 4.8(a).  
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Figure 4.8. Interval prediction for FFF dataset (a) proposed method (b) traditional method and (c) 

bootstrap approach 
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The confidence intervals are predicted for a 95% confidence level in this case. As shown 

in Figure 4.8(a), although the ranges of measured compressive strength seem large for some 

combinations of process parameters such as 3rd, 4th, and 8th, the measured compressive strength 

for all parts is guaranteed within the conservative interval bounds. It is indicated that the 

proposed method can capture uncertainty and predict the conservative interval for the 

compressive strength of FFF build parts.  

As a comparison, the intervals are also predicted by the traditional interval prediction 

method and bootstrap approach. The predicted interval and the measured compressive strength 

obtained from the traditional interval prediction method and bootstrap approach are shown in 

Figures 4.8(b) and 4.8(c), respectively. Figure 4.8(b) shows that not all measured values are 

within the predicted intervals for all combinations, such as the 1st, 4th, 6th,7th, 8th, and 9th 

combinations. Figure 4.8(c) for the bootstrap approach shows that all measured values are not 

within the predicted intervals for some combinations, such as the 2nd, 5th, 6th, 7th, 9th, and 10th 

combinations. Therefore, the proposed conservative interval prediction methods are more 

suitable than the traditional interval and bootstrap approaches when the uncertainty is high. 

In addition, it is known that one of the limitations of the FFF process is inconsistent 

mechanical properties. This phenomenon is reflected in the collected data, as well. There is a 

significant deviation in part properties for two parts produced by the same values of process 

parameters. Due to sources of uncertainty, the point value estimation is not always suitable to 

predict part properties for the FFF process. When the uncertainty or inconsistency is high, the 

proposed interval prediction method can predict a conservative interval that guarantees that all 

the values are within the desired confidence level. Although the case study presented may not 

seemingly do justice to the importance of conservative intervals, FFF printed parts are slowly 
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being incorporated into systems that require exceptionally high reliability, such as in military or 

space applications. If the quality of the FFF printed part is not fully guaranteed, this can initiate a 

failure and jeopardize the entire system performance. 

4.4. Summary 

In real-world environments where the uncertainty is high due to different sources of 

uncertainty, it is encouraged to employ interval prediction methods. The MC dropout-based 

interval prediction framework is proposed for tool flank wear prediction under data uncertainty 

and model uncertainty. The data and model uncertainty are incorporated into two steps. The data 

uncertainty is reduced in the first step by using the EMD approach. In the second step, for a new 

observation (sensor data), the model uncertainty is incorporated in tool flank wear prediction as a 

prediction interval. 

Additionally, linear optimization-based conservative interval prediction techniques are 

proposed.  As the proposed methods are used to estimate conservative confidence intervals, the 

decision based on the interval predicted by the proposed methods will be more robust. The 

conservative interval plays an important role when a wrong prediction is costly or when there is a 

high level of uncertainty in data or systems from which the data is collected. The proposed 

method can estimate the best case and worst case values by the interval bounds. Sometimes, 

when the goal is to obtain a minimum value of a target variable (e.g., cost), the lower bound is 

the best case, and the upper bound is the worst case. In other cases, when the goal is to obtain a 

maximum value of a target variable (e.g., profit), the upper and lower bounds are the best case 

and worst case, respectively.  
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CHAPTER 5. PHYSICS INFORMED MACHINE LEARNING 

5.1. Overview 

Different advanced data-driven methods such as machine learning and deep learning 

algorithms have massive potential for applications in manufacturing. Now, applications of data-

driven approaches in manufacturing are increasing to make steps towards Industry 4.0. In 

Chapter 2, ANN and RSM are applied to determine combinations of the process parameters for 

multiple responses. In Chapter 3, the RRSO approach is proposed to incorporate uncertainty 

quantification with data-driven methods to make a robust decision and estimate the distribution 

of a response (target variable). Besides, a BN-based approach has been proposed to analyze 

numerical and categorical variables together with information from multiple sources. MC 

dropout-based approach to estimate a target variable as the interval is proposed in Chapter 4. 

Another interval prediction approach is proposed in Chapter 4 to estimate conservative intervals 

from model parameters distribution using a linear optimization approach. Incorporating 

uncertainty in prediction by a data-driven approach increases the robustness of prediction.   

Another major shortcoming of data-driven methods is that the physical principles of a 

system from which data is collected do not account for developing models to predict a target 

variable. It is essential to incorporate physical knowledge in data-driven methods to make more 

robust and physically consistent decisions based on data-driven methods' prediction. The limited 

availability of high-quality data is another obstacle to applying a data-driven method in 

manufacturing. A model can be pre-trained using physics-based knowledge to train an accurate 

model from a small collected dataset. Physics-informed machine learning (PIML) is a viable 

option for this. Incorporating physics-based knowledge in a data-driven method depends on the 

physics of a system and the physics-based constraints. This chapter proposes a PIML approach to 
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estimate the surface roughness of an FFF build part. Physics-based knowledge has been 

incorporated using a physics-based empirical model output as an input variable to train a data-

driven model. Besides, a customized loss function has been developed based on physics-based 

constraints to regularize the model and generate physically consistent outcomes. In this research, 

a radial basis function neural network (RBFNN) is trained by incorporating physics-based 

knowledge. In addition, the performance of the proposed PIML model is compared with other 

models using mean square error (MSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE) and 𝑅2 value. 

5.2. Physics Informed Machine Learning 

Nowadays, data-driven methods are applied to gain insights, monitor system 

performance, and support decision-making processes. Using data-driven algorithms to estimate a 

target variable from experimental and sensor data is getting significant attention from researchers 

to make steps toward Industry 4.0. An unforeseen amount of information is available in the 

manufacturing sector due to data availability, data collecting devices, and advanced equipment 

for experiments [86].  The flexibility and power of data-driven methods increase the usage of the 

methods in different fields, including manufacturing [87]. Besides, an exponential increase in 

computation power also accelerates the applications of data-driven algorithms [88].  

A limitation of the data-driven algorithms is that these algorithms merely rely on 

collected data for prediction, not on the physics of a system from which the data is collected 

[12]. The ignorance of the physical principles of a system may result in physical inconsistency in 

prediction by data-driven algorithms. It is difficult to interpret the prediction of a data-driven 

method. Besides, a large dataset is required to apply data-driven numerical modeling to make 

decisions [13]. In many cases, collecting a large dataset is time-consuming and costly. 
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In addition, prediction accuracy mainly depends on the quality and forms of data. Data 

can be available in different formats such as images, audio, videos, and numerical. Processing 

large datasets for training data-driven numerical models can be expensive in terms of time spent 

and memory used. Therefore, machine learning and deep learning algorithms are not always 

necessarily applicable and represent the physics of a system. PIML models are preferable to 

traditional data-driven numerical algorithms to overcome the above limitations of traditional 

data-driven methods. 

In PIML models, the physical phenomena of a system are embedded with data-driven 

algorithms. The physics-based model used the physical phenomena of systems to develop a 

mathematical model for predicting a target variable [86]. A physics-based model can predict a 

target variable accurately if the physical phenomena of a system are modeled precisely. 

Therefore, an in-depth understanding of the physical behavior of a system is essential [87]. It is 

not always possible to accurately develop physics-based models for a system as many sources of 

uncertainty, and uncontrollable parameters exist. Generally, physics-based models are developed 

under many assumptions, such as independence between system parameters and deterministic 

assumptions. It is easier to interpret physics-based models compared to data-driven models. A 

mathematical model is developed from historical sensor data and experimental data to predict a 

target variable by data-driven models. A goal of developing PIML models is to get advantages of 

physics-based and data-driven models for predicting a target variable.  

PIML models are physically consistent and scientifically sound predictive models. The 

prediction accuracy also can be achieved by training a model with fewer data points. Another 

advantage is that PIML enhances the interpretability of a model. There are many ways to 

incorporate physics-based knowledge in developing a PIML model. Physics-based knowledge 
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can be incorporated into the loss function. Physics-based constraints can be used as 

regularization terms in the loss function. As a result, the loss function has additional terms along 

with the traditional loss function [88]. Another approach to embedding physics-based knowledge 

in a data-driven method is to use the physics-based model’s output as an additional input with 

other input variables to training a model [89]. Data-driven models are required a lot of label data 

to develop an accurate model.  It is often not always feasible to collect much data due to cost and 

time. The computational expense increases exponentially when a large dataset is used to train a 

model. A simulated dataset can be generated based on a physics-based model to pre-train a data-

driven model. Then, a collected small dataset can be used to fine-tune a pre-trained model for 

obtaining an accurate model from a small dataset [90]. Another approach to incorporating 

physics-based features with other input variables is to train a data-driven model [91]. 

5.3. Physics Informed Machine Learning in Additive Manufacturing Applications  

In AM, machine and deep learning algorithms are increasingly used to optimize process 

parameters, examine powder spreading, and in-process defect monitoring [92]. The use of PIML 

in additive manufacturing processes is at the beginning stage. As AM experiments are time-

consuming and costly, generating a large dataset for training a machine learning model may not 

be feasible [93].   

Limited research has been carried out on applying PIML concepts in AM processes. Liu 

et al. [94] developed a PIML model to predict pore generation for the laser powder bed fusion 

metal AM process. A unique feature of the proposed model is that the model is a generalized 

model for any laser bed fusion-based AM machine. Besides, a model, a combination of data-

driven and physics-based models, was developed to predict melt pool width for the laser powder 

bed fusion process and compared with a computational fluid dynamics (CFD) model [95]. It was 
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shown that the proposed approach improves prediction accuracy without compromising 

computational expense. Du et al. [96] combined machine learning and mechanistic modeling to 

predict defects before experimentations for the same AM process. The authors identified 

important variables for defect formation and the physics behind each variable to identify and 

reduce defects.  

Zhu et al. [93] developed two PIML models for the metal AM process to accurately 

estimate the temperature and melt pool fluid dynamics from a small dataset. Kapusuzoglu and 

Mahadevan [89] used three strategies to develop PIML approaches for bond quality and porosity 

of FFF build parts. A total of eight deep learning models are trained for different combinations of 

three methods for both target variables.  A total of eight deep learning models are trained for 

different combinations of three strategies for both target variables. Wang et al. [97] proposed a 

PIML approach for uncertainty quantification for the metal AM process. Kats et al. [98] trained a 

PIML model to predict grain structure characteristics for the direct energy deposition process and 

physics knowledge considered in selecting features. Mondal et al. [91] used thermophysical and 

mechanical features along with process parameters to predict creak formation in the metal AM 

process. Ren et al. [99] also developed a PIML model for a metal AM process to predict thermal 

behavior.  

Most of the PIML approaches are developed for metal-based additive manufacturing. 

There are a few research works on PIML models for the FFF process. Data availability, physical-

based modeling limitations, data imbalance, and data preprocessing are several common 

problems in applying PIML in additive manufacturing [100].  This chapter proposes a PIML 

approach to predict the surface roughness of an FFF build part. The proposed approach uses the 

physics-based model output as an additional input to train a radial basis function neural network 



 

96 

 

(RBFNN). Besides, a physics-based constraint is used as another term with the MSE term in 

developing a customized loss function. The custom loss function is minimized to estimate the 

model parameters of an RBFNN.  

5.4. The Proposed PIML Model 

In this chapter, a PIML model is proposed to predict surface roughness of FFF build 

parts. PIML models can be used over traditional machine/deep learning algorithms to incorporate 

the physical phenomena of a system. In the proposed model, physics-based knowledge is 

incorporated in two ways 1) using physics-based model output as an input in the PIML model 

and 2) using a physics-based term in the loss function. An RBFNN is trained using the new 

physics-based input with other inputs by minimizing the customized loss function. The proposed 

PIML is demonstrated in this section.  

5.4.1. Physics-based Inputs 

A physics-based model’s prediction is used as an input with other input variables to 

develop a PIML model. A framework for incorporating physics-based knowledge in a data-

driven method is given in Figure 5.1.  

 

Figure 5.1. A framework of the PIML model 

 

In data-driven methods, experimental and sensor-based input variables, 𝑋, are used to 

train a model to predict a target variable.  In addition to 𝑋, another input variable, 𝑌̂𝑃𝐻𝑌, that is 

the output of a physics-based model has been used as an input to incorporate physics-based 

knowledge for more robust and physically consistent prediction. A physics-based model is 



 

97 

 

developed under many assumptions, and the data-driven part of the PIML reduces the impacts of 

the assumptions [89]. The physics-based model should be a function of at least one input variable 

and other process constants. The target variable can be estimated for each observation from the 

physics-based model to use as an input. In this work, the target variable is surface roughness, and 

a physics-based empirical model from Ref. [101] is used to estimate the surface roughness. The 

estimated surface roughness is used as an input in the PIML model.  The physics-based empirical 

model for the surface roughness estimation is given in Equation (5.1).  

 

𝑌̂𝑃𝐻𝑌 =  

{
 
 

 
 (69.28~72.36)

𝑡

cos 𝜃
𝑖𝑓  0𝑜 ≤ 𝜃 ≤ 70𝑜

1

20
(90𝑌̂𝑃𝐻𝑌70𝑜 − 70𝑌̂𝑃𝐻𝑌90𝑜 + 𝜃(𝑌̂𝑃𝐻𝑌90𝑜 − 𝑌̂𝑃𝐻𝑌70𝑜)) 𝑖𝑓 70𝑜 ≤ 𝜃 ≤ 90𝑜

117.6 × 𝑡 𝑖𝑓 𝜃 = 90𝑜

𝑌̂𝑃𝐻𝑌(𝜃−90)(1 + 𝑤) 𝑖𝑓  90𝑜 ≤ 𝜃 ≤ 180𝑜

 (5.1) 

where 𝑡 is the layer thickness and 𝜃 is the build orientation with the z-axis of an FFF machine’s 

build platform. 𝑌̂𝑃𝐻𝑌 is the estimated surface roughness by the physics-based empirical model, 

and 𝑌̂𝑃𝐻𝑌𝜃𝑜  is the estimated surface roughness at 𝜃𝑜 build orientation. To incorporate physics-

based knowledge in the proposed PIML, 𝑌̂𝑃𝐻𝑌 is be used as an input with other input variables. 

The inputs can be defined as 

                                              𝑋𝑃𝐼𝑀𝐿 = [𝑋, 𝑌̂𝑃𝐻𝑌]  (5.2) 

where, 𝑋𝑃𝐼𝑀𝐿 is the features for the PIML model, and 𝑋 can be process parameters, filament 

properties, and sensor data. 𝑌̂𝑃𝐻𝑌 is the physics-based knowledge that converts a data-driven 

model into a hybrid model, or the PIML model. In addition, a customized loss function is 

proposed to make a physically consistent prediction.   
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5.4.2. Customized Loss Function 

Another strategy for incorporating physics-based knowledge is to use a physics-based 

term in the loss function to develop a customized loss function. A physics-based term is a 

regularization to reduce overfitting and physical inconsistency. A physics-based term in loss 

function is developed based on physics laws and physical constraints. Surface roughness is 

estimated as the average heights and depths across the surface. According to the definition and 

formula of the surface roughness, it is always a positive value, and a data-driven method 

prediction cannot guarantee it. For this, physics-based terms can be introduced with a data-driven 

method’s loss function, for instance, mean square error (MSE). The generally used loss function 

to train a data-driven model is MSE, as given in Equation (5.3). 

                                                              𝕃(𝑌, 𝑌̂) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                                         (5.3) 

where, 𝕃(𝑌, 𝑌̂) is the MSE loss function. 𝑌 and 𝑌̂ are the measured and prediction values of the 

target variable, respectively. A physics-based loss function is proposed in this chapter that 

regularizes the data-driven loss function by the constraint shown in Equation (5.4). 

 𝑌 ≥ 0 (5.4) 

The measured value of the target variable, surface roughness, is 𝑌. A loss function is 

proposed that combines traditional loss function and physics-based regularization.    

                       𝕃𝑃𝐼𝑀𝐿(𝑌, 𝑌̂𝑃𝑀𝐼𝐿) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖𝑃𝐼𝑀𝐿)

2
𝑛

𝑖=1

+
𝜆

𝑛
∑𝑅𝑒𝑙𝑢(−𝑦̂𝑖𝑃𝐼𝑀𝐿)

𝑛

𝑖=1

                            (5.5) 

where, 𝕃𝑃𝐼𝑀𝐿(𝑌, 𝑌̂𝑃𝑀𝐼𝐿) is the proposed customized loss function that consists of MSE term and 

physics-based regularization. 𝜆 is a positive regularization hyper-parameter, and the value of 𝜆 is 

selected based on the importance of the physics-based loss function. Rectified linear unit (ReLU) 

function is used as regularization to incorporate physics-based knowledge. The output of 
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𝑅𝑒𝑙𝑢(−𝑌̂𝑃𝐼𝑀𝐿) is maximum between −𝑌̂𝑃𝐼𝑀𝐿  and 0. The PIML model is trained by minimizing 

the loss function, 𝕃𝑃𝐼𝑀𝐿(𝑌, 𝑌̂𝑃𝑀𝐼𝐿). The target is to minimize both MSE terms and physics-based 

terms. In the physics-based term, the output of 𝑅𝑒𝑙𝑢(−𝑌̂𝑃𝑀𝐼𝐿) is zero when 𝑌̂𝑃𝐼𝑀𝐿 is positive and 

−𝑌̂𝑃𝐼𝑀𝐿 when 𝑌̂𝑃𝐼𝑀𝐿 is negative. As the loss function is minimized during training, the physics-

based term tries to be zero to generate physically consistent results. The MSE term in the loss 

function reduces the difference between actual and predicted surface roughness values. The 

proposed loss function simultaneously minimizes the MSE and ensures 𝑌̂𝑃𝐼𝑀𝐿 is positive. An 

assumption of using the proposed PIML model is that the trained model will also generate 

physically consistent results for test data.  In other words, the predicted surface roughness for a 

new observation will also be positive if the PIML model is used to predict the surface roughness. 

In the proposed PIML model, the physics-based empirical model output is used as input 

to train a PIML model. Besides, a physics-based term in the loss function is integrated with the 

MSE loss function term to train the proposed PIML model. Based on the physics-based input 

with other inputs and customized loss function, an RBFNN model is trained as a PIML model. 

The proposed PIML is demonstrated on an FFF process dataset. 

5.4.3. Radial Basis Function Neural Network 

A radial basis function neural network (RBFNN) is a one hidden layer neural network. 

The RBFNN model developed for PIML purposes has three layers, including the input and 

output layers, as shown in Figure 5.2. Each hidden layer neuron consists of a radial basis 

function (RBF). RBF is a non-linear activation function that converts input data based on the 

parameters of the RBF. The output obtained after converting input data by the RBF is linearly 

connected with the output layer neuron. 
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Figure 5.2. Radial basis function neural network 

 

The training of RBFNN is two steps process. In the first step, the input data is converted 

by RBF, and the dimension of RBF layer output is the same as the number of neurons in the 

hidden layer. Usually, the number of neurons in the hidden layer is more than the number of 

input variables. The weights to connect RBF output with the target variable are estimated in the 

second step. This step can estimate the weights by simple linear regression or iteration. 

The location of the function center and the deviation of data points from the center are 

two parameters of an RBF. There are many RBFs used to convert input data. The most widely 

used RBF is the Gaussian RBF. The Gaussian RBF is defined as 

 𝜙𝑖 = 𝑒
−
∣∣𝒙−𝒄𝑖∣∣

2

2𝜎𝑖
2

  (5.6) 

In Equation (5.6), 𝜙𝑖 is the RBF. 𝑐𝑖 ∈ 𝑅
1×𝑚 and 𝜎𝑖 are the center and deviations, 

respectively, for 𝑖𝑡ℎ RBF neuron. 𝑥 ∈ 𝑅1×𝑚 is an observation, and m is the number of input 

variables. A clustering technique can be used to estimate 𝑐𝑖 and 𝜎𝑖. The K-means clustering 

technique is applied to estimate the RBF parameters in this work. In this technique, the input data 

is partitioned into K clusters, and the number of neurons in the RBF layer is the value of K. The 
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value of K is less than the number of observations (data points). The 𝑐𝑖 and 𝜎𝑖 of the  𝑖𝑡ℎ cluster 

can be determined using the following formulas.  

𝑐𝑖 =
1

𝑝
∑𝑥𝑗

𝑝

𝑗=1

                                                                    (5.7) 

𝜎𝑖 = √
1

𝑝
∑ ∣∣ 𝑥𝑗 − 𝑐𝑖 ∣∣2

𝑝

𝑗=1

                                                          (5.8) 

In the above equations, 𝑝 is the number of data points belonging to the 𝑖𝑡ℎcluster. And, 𝑥𝑗 

is the 𝑗𝑡ℎ  observation in the cluster. When, 𝑐𝑖 and 𝜎𝑖 are known for each cluster, the input 

variables are transferred by using RBF in the hidden layers. The new dimension is the same as 

the number of neurons in the hidden layer. The target variable, surface roughness, is a linear 

combination of the outputs of the RBF neurons. To estimate the 𝑐𝑖 and 𝜎𝑖 for each cluster, 

physics-based model output, 𝑌̂𝑃𝐻𝑌, is used as an input variable with 𝑋. The customized loss 

function given in Equation (5.4) is minimized to estimate the weights of the outputs of RBF 

neurons for the target variable. Using a FFF process surface roughness dataset, the RBFNN is 

trained as a PIML model by incorporating physics-based knowledge. This PIML model proposes 

a customized loss function by incorporating a physical constraint. In addition, a physics-based 

model estimation of the surface roughness is used as an input.   

5.5. Case Study 

In this section, the proposed PIML model is applied to an AM dataset to demonstrate the 

performance of the proposed method in terms of MSE, MAE, MAPE, and 𝑅2 value. The 

proposed method is also compared with other methods.   
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5.5.1. Data Description 

A real-world FFF process dataset is used to analyze the performance of the PIML model 

and compare the performance of the method with the physics-based model and data-driven 

RBFNN model. In the dataset, the input variables are layer thickness and build orientation. 

According to different studies, layer thickness and build orientation are the two most significant 

FFF process parameters for surface roughness [27, 102]. The data sources are given in Refs. 

[102, 103]. For the data collection, truncheon test parts are fabricated by the FFF process for 

different combinations of layer thickness and build orientation. The used dataset has a total of 

106 observations. The combinations of the process parameters and the measured surface 

roughness are known for all observations.  

The dataset is used to train the PIML model for performance evaluation. The RBFNN 

model is trained as a PIML model using physics-based input variables and customized loss 

function. A data-driven model, RBFNN, is trained without considering physics-based knowledge 

by the same dataset for comparison with the PIML model. The performance of the PIML model 

is compared with the physics-based model and the data-driven model in terms of MSE, MAE, 

MAPE, and 𝑅2 value. In the PIML model, 𝑌̂𝑃𝐻𝑌 estimated from Equation (5.1) is used as 

physics-based input with 𝑿. The customized loss function given in Equation (5.5) is minimized 

to train RBFNN. On the other hand, for the data-driven model, input is only 𝑿. The MSE loss 

function has been minimized to train the model. Equation (5.1) is used as a physics-based model 

to compare with the proposed PIML model. Besides, the PIML model is compared with a data-

driven model from a published article. 
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5.5.2. Model Training 

The dataset described in the above section is used to train RBFNN to estimate surface 

roughness. There are 106 observations (data points) in the dataset. For all observations, the 

physics-based model given in Equation (5.1) is used to estimate surface roughness, 𝑌̂𝑃𝐻𝑌. The 

estimated 𝑌̂𝑃𝐻𝑌 is used as an input with two other input variables, layer thickness and build 

orientation. Therefore, a total of three input variables are in the proposed model. In the next step, 

the dataset is divided into the test data and train data. Of the 106 observations, 86 observations 

are used to train the model, and the remaining 20 observations are applied to evaluate the 

performance of the proposed model. The number of neurons used in the hidden layer is 30. The 

training dataset is divided into 30 clusters to determine 𝑐𝑖 and 𝜎𝑖 for all neurons in the RBF layer. 

After determining the cluster for all the 86 observations, 𝑐𝑖 and 𝜎𝑖 for all neurons can be 

estimated by Equations (5.7) and (5.8), respectively. Then, the input variables' dimensions are 

expanded to 30 from 03 by RBF at the hidden layer. The constant value of the regularization 

hyperparameter is 0.01 (𝜆 = 0.1). The surface roughness is a linear combination of the RBF 

neurons’ outputs. The weights for the linear combination are estimated by minimizing the 

customized loss function given in Equation (5.5).  

The proposed PIML model's performance is further compared with the physics-based and 

data-driven models. MSE, MAE, and MAPE for unseen data or test data are estimated as the 

basis of comparison between the proposed PIML with other methods. The case study results are 

introduced and discussed in the following section.   

5.5.3. Results 

The proposed PIML is demonstrated by applying it to predict surface roughness. An 

RBFNN is trained as the PIML model using a physics-based input and customized loss function. 
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The performance of the proposed PIML model is compared with other methods using MSE, 

MAE, MAPE and 𝑅2 values.  

 

Figure 5.3. Surface roughness prediction by (a) proposed PIML model, (b) data-driven model, 

and (c) physics-based model 
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Table 5.1. Performance evaluation metrics for different models 

Models MAE MSE MAPE 

PIML model 1.731 5.129 7.398 

Data-driven model 2.270 6.608 10.533 

Physics-based model 12.240 250.242 55.909 

 

The minimum values of MAE, MSE, and MAPE indicate a low deviation of predicted 

values from the actual values. From Table 5.1, the values of all three-performance evaluation 

metrics are the lowest for the PIML model. The lowest values indicate the PIML predicted the 

surface roughness with high accuracy among the three models. The MAE, MSE, and MAPE of 

the PIML model are 24%, 22%, and 29%, respectively, lower than the data-driven model. The 

worst prediction accuracy for the physics-based model with the highest values for all three 

metrics. The low prediction accuracy of the physics-based model indicates the model is not able 

to estimate the surface roughness well. The data-driven model can predict well compared to the 

physics-based model. The data-driven model can estimate the surface roughness with a high 

level of accuracy. The prediction accuracy is further improved by adding embedding physics-

based knowledge. 

Besides, actual versus predicted scatter plots of surface roughness are further applied to 

compare the prediction performance of PIML and data-driven models. The actual versus 

predicted scatter plots for PIML, and data-driven models are shown in Figure 5.4. In Figure 5.4 

(a), all coordinate points are close to the diagonal line with a high 𝑅2-value, 0.865. It is visible in 

Figure 5.4 (b) that the model fitting is comparatively low with a 0.827 𝑅2-value. The higher R2-

value for the PIML model indicates high prediction accuracy and goodness of fit.  Overall, the 

proposed PIML model performance overweighs the other two models. 
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Figure 5.4. Scatterplots of predicted vs. measured surface roughness by (a) PIML model and (b) 

data-driven model 

 

A published article by Vahabli and Rahmati [102] used a data-driven model to the surface 

roughness for the same data. In the proposed data-driven model, RBFNN and imperialist 

competitive algorithm (ICA), RBFNN-ICA, are combinedly applied to predict the surface 

roughness. The performance of the proposed PIML method compared with the RBFNN-ICA 

model.  The MAE, MSE, MAPE, and 𝑅2 values for both models are summarized in Table 5.2. 

Table 5.2. Comparison between PIML model and RBFNN-ICA model 

Models MAE MSE MAPE 𝑅2-value 

RBFNN-ICA model 2.01 8.87 7.19 0.9325 

PIML model 1.73 5.129 7.398 0.865 

 

In Table 5.2, MAE and MSE are improved by approximately 14% and 42% by the PIML 

model. On the other hand, MAPE and 𝑅2 values are slightly worse than RBFNN-ICA for the 

PIML model. Overall, the prediction accuracy of the proposed method is slightly better than the 

RBFNN-ICA model.  
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The proposed PIML model is applied to predict the surface roughness for an FFF dataset. 

The PIML model is compared with three other methods. Overall, the prediction performance in 

terms of MAE, MSE, MAPE and 𝑅2 values are evaluated for all the methods. The accuracy of 

the PIML model has overweighed the other methods.  

5.6. Summary 

A PIML model is proposed to estimate the surface roughness for FFF build parts. The 

proposed PIML model combines a data-driven model and physics-based knowledge. A physics-

based model’s surface roughness prediction is used as an input in the PIML model. Moreover, a 

customized loss function is proposed to incorporate physics-based knowledge in the PIML 

model. The proposed customized loss function combines physics-based regularization and MSE 

loss function to generate physically consistent estimation. An RBFNN model is trained as a 

PIML model using the physics-based input variable and the customized loss function. A real-

world FFF process dataset is used to demonstrate the effectiveness of the PIML model. Besides, 

the MSE, MAE, MAPE, and 𝑅2 values are estimated to compare the PIML model with a 

physics-based model and RBFNN data-driven model. An advantage of the proposed method is 

that the prediction by the PIML is physically consistent. The prediction accuracy of the proposed 

methods is improved significantly compared to physics-based and data-driven methods. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

Advanced numerical modeling techniques play a vital role in analyzing situations, 

gaining insights, and making essential decisions. The applications of advanced numerical 

modeling techniques are increasing in different fields, including manufacturing, due to the data 

availability, data-collecting devices, advanced algorithms, and high computational power. 

Applying data-driven methods in manufacturing, especially AM, is essential to take steps toward 

Industry 4.0 as AM is a technology of Industry 4.0. In this dissertation, different advanced data-

driven numerical techniques are proposed and applied in manufacturing datasets for various 

purposes such as process parameter optimization, tool wear prediction, compressive strength 

estimation, and surface roughness estimation.  

First, ANN is applied as an alternative to RSM to determine optimum combinations of 

FFF process parameters by optimizing two responses simultaneously, compressive strength and 

build time, as ANN is flexible and capable of capturing complex functional relationships. It is 

shown that ANN outperformed RSM. Besides, it has been concluded that the development of 

surrogate models plays a vital role in estimating and optimizing responses.   

Second, an RRSO technique is proposed to estimate the distribution of a response instead 

of point value considering model parameter uncertainty. In addition, a BN-based approach is 

applied to determine an optimum combination of numerical and categorical process parameters 

to achieve desired requirements for one or more target variables.  

Third, two linear optimization-based approaches are proposed to estimate conservative 

intervals for OLS and WLS regression models. The proposed approaches are compared with 

other exiting interval prediction techniques. It has been shown by applying an FFF dataset that 
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the proposed conservative interval prediction methods are applicable when the level of 

uncertainty is high and wrong prediction is costly. Moreover, an MC dropout-based technique is 

applied to a CNC milling machine dataset to estimate tool wear as intervals by neural networks.  

Finally, a PIML model is proposed to estimate surface roughness for FFF build parts. In 

the proposed approach, physics-based knowledge is embedded with a data-driven method to 

improve the physical consistency of prediction. According to an investigation of a FFF process 

dataset, the PIML outperformed a physics-based model and data-driven model. 

Overall, there are many scopes of applying advanced numerical modeling techniques in 

manufacturing. This dissertation applies different approaches to predicting point values, 

approximating the intervals, and estimating probability distribution in additive manufacturing 

and traditional manufacturing datasets.  

6.2. Future Work 

Based on the conducted research in this dissertation, there are numerous scopes for 

further investigation and extensions in various domains. A list of further research scopes is given 

in the following. 

 Research on uncertainty quantification techniques to increase robustness in prediction 

will be continued.  The immediate plan is to develop a robust response surface model 

for multiple responses, and the distribution of model parameters will be used for 

robust estimation of the multiple responses. Additionally, other uncertainty sources in 

real-world manufacturing environments will be explored.  Finally, different sources 

of uncertainty will be incorporated in interval prediction or distribution estimation by 

data-driven methods for making robust decisions. 
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 A challenge in applying data-driven methods is using real-time different data sources 

and different data types simultaneously. Other data types like videos, images, and 

numerical will be used for real-time process monitoring and quality analysis (e.g., 

internal defects) of AM build parts. Besides, cyber-attack is a common challenge in 

wireless communication for Industry 4.0. A future plan is to develop data-driven and 

game theory-based models to identify cyber-attacks and defects on CAD models due 

to cyber-attacks. 

 Data-driven and hybrid condition monitoring techniques are currently applied to the 

energy sector. A limitation of the existing condition monitoring techniques is that 

these work for a system component. But, for better and more robust prediction, it is 

required to analyze the whole system. It is a plan to develop a condition monitoring 

setup to analyze a system instead of components individually. Besides, in the future, 

different data-driven methods will be explored to investigate the mechanical 

properties of composite materials and design composites with desired properties. 

Scopes to apply data-driven methods, physics-informed machine learning methods, and 

other numerical models in manufacturing applications such as condition monitoring, quality 

control, and cyber-attack detection are essential to ease 21st-century manufacturing challenges 

and transition toward the Industry 4.0 era. Additionally, the advanced numerical methods 

proposed and attempted in this dissertation can be leveraged for innovative manufacturing 

technology development and applied in other sectors. 
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