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ABSTRACT 

The FRA mandated railroad companies to install a new monitoring system known as 

Positive Train Control (PTC). This system overlays sensors, signals, and transponders over 

existing track and other wayside infrastructure. Technologists designed the system to prevent 

accidents mainly caused by human negligence and communications. However, PTC will not 

address track-related defects, which is the second dominant cause of accidents. 

A new track monitoring system called Railway Autonomous Inspection Localization 

System (RAILS) was proposed to address track-related accidents. RAILS is based on low-cost 

sensor technology that identifies defect symptoms, ranks their severity, classifies defect types, 

and localizes their positions. So, RAILS technology can augment the PTC by identifying track-

related issues. 

The main objectives of this dissertation are: (1) To compare the potential performance of 

RAILS with traditional inspection methods based on its fundamental theory of operation; (2) To 

identify factors contributing to railroad accidents; and (3) To determine and rank factors 

responsible for severe financial damages caused by railroad accidents. 

The first two objectives will help compare the proposed technology and identify the 

major factors responsible for causing train accidents. The final objective will help to categorize 

accidents based on the potential financial damage severity. Categorizing such incidents would 

help to create a database that prioritizes issues and suggest possible countermeasure based on the 

problems. 

The study's key findings are as follows: (1) RAILS is more efficient in conducting 

continuous inspection and identifying potential defects than traditional systems by 33%, with 

only two trains per day and a 50% first-pass detection probability; (2) Nonparametric methods 
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provide implicit information about rail accidents and function better than parametric methods by 

highlighting factors that are responsible for causing accidents rather than identifying the cause-

and-effect relationship; (3) The most significant reasons for causing the financial damages are 

the number of derailed freight cars and the absence of territory signalization; and (4) 

Nonparametric methods automatically categorize rail accidents and, using text narratives, 

highlight causative factors responsible for a train derailment. 
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1. INTRODUCTION AND OBJECTIVES 

1.1. Background and Motivation 

The U.S. railway network spans seven Class I railroads (railroads with operating 

revenues of $433.2 million or more), 21 regional railroads, and 547 local railroads that operate 

140,000 miles of tracks [1]. This vast connected rail network is a vital infrastructure and the most 

prominent mode of long-haul transportation because of its capacity, reliability, and efficiency. 

Today, more people and goods are moving through railroads than in the past. Consequently, the 

traffic increase exacerbates track geometry irregularities, which increases the risk of incidents 

and accidents over time. Hence, continuous track maintenance is necessary but increases 

maintenance costs. 

FRA has distinctive practices, procedures, and guidelines for track inspections to achieve 

the timely detection and rectification of defects and maintain a safe rail network. However, 

current maintenance procedures include visual inspections and several automated techniques that 

require vast resources and increase the duration of traffic interruptions. It also limits the ability of 

FRA resources to enforce safety compliances with federal laws by monitoring the railway track 

geometry more frequently and across the entire network. Hence, more advanced and cost-

effective inspection technologies are necessary for achieving the FRA’s zero accident vision. 

Railroad companies are currently working to implement a new mandated inspection 

system based on the intelligent condition monitoring known as Positive Train Control (PTC). 

PTC aims to reduce train accidents due to human error by improving communications between 

the system and train engineers. Hence, these technologies do not necessarily address accidents 

that occur from track related issues. In the last decade, derailments alone accounted for nearly 

60% of the accidents, of which 42 % occurred because of track related issues [2]. 
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There is a new advanced monitoring system proposed called Railway Autonomous 

Inspection Localization System (RAILS) to address accidents from track related issues [3]. The 

proposed RAILS system avoids expensive bogie sensor installation and adaptive sensor 

configurations. The sensors are similar to those available in smartphones, hence attachment 

direct to the train cars will enable low-cost and robust data collection. The sensors will compress 

and upload their geo-tagged inertial data periodically to a cloud-based system. Remote 

algorithms will combine and process the data from multiple train traversals to extract features. A 

statistical model built from the extracted features will estimate track geometry measurements 

such as profile, alignment, and warp. A central database will store and maintain all such 

information to help compare the current and the past track geometry conditions. The RAILS 

system will identify defect symptoms, rank their severity, classify defect types, and localize their 

positions in case of any discrepancy. 

Some of the potential benefits of the RAILS system are defect classification, efficient 

screening, resource optimization, maintenance cost reduction, and enhanced railway safety. 

Other anticipated additional benefits are time savings, risk reduction, and a safer work 

environment for inspection personnel [4]. 

The proposed RAILS system aims to increase the defect identification rate and help to 

divert existing resources towards remediation. Subsequently, the railroads will be in a position to 

scale the RAILS system deployment over time to close the gap between defect formation and 

remediation rates to realize benefits in terms of accident risk reduction. 

The main aim of this dissertation is to compare the potential performance of RAILS 

based on its fundamental theory of operation compared with traditional inspection methods and 

to evaluate how the system could use different methods to achieve its objective. 
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1.1.1. Overview 

In this dissertation, I attempt to address the following three questions: 

(1) How is the RAILS system more effective than traditional railway inspection methods 

based on their fundamental theory of operations? 

(2) How to identify factors contributing to the significant railroad accidents?  

(3) How to determine and prioritize factors responsible for severe financial damages 

caused by railroad accidents? 

The introductory chapter provides an overview of the three essays 

1.2. Research Objectives 

1.2.1. Essay 1:  Autonomous Railroad Track Monitoring System: An Onboard 

Instrumentation Technique 

The USA’s 140,000 miles rail network requires efficient track maintenance to minimize 

the risk of accidents. Federal Railroad Association (FRA) has distinctive practices, procedures, 

and guidelines for track inspections to timely detection and rectification of defects and to 

maintain a safe rail network. The significant challenges involved in following maintenance 

guidelines are limited finances, workforce & equipment, and a vast network to cover regularly. 

Rail companies use nondestructive evaluation (NDE) technologies (including 

electromagnetic, acoustic, optical, and inertial sensing) to conduct track inspections for locating 

different abnormalities. The NDE methods are expensive, labor-intensive, slow, complicated, 

require vast resources, and increase the duration of traffic interruptions. Also, they have 

significant shortcomings in accuracy, precision, size, and costs limiting their deployment to 

specially constructed automated inspection vehicles that locate internal rail flaws and irregular 
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track geometry. Additionally, the amount of data these systems generate increases computational 

complexity and requires significant energy.  

Moreover, FRA mandates railroads companies to install another technology known as 

Positive Train Control (PTC). Peters [5] explained early PTC designs intended to prevent train-

to-train collisions, over-speed derailments, limit work zone accidents, and train movement 

through a switch left in the wrong position. Later, FRA requires companies to include Global 

Positioning System (GPS) under PTC, which helps distribute the train whereabouts to the entire 

network using digital signals. These instruments help locate trains with more precisions and 

improve coordination and communication.  

Even with an improvised version of the technology, PTC is limited to improving 

communication between the system and training engineers to prevent accidents and minimize 

their severity caused by human-related factors or signal and communication problems. But these 

technologies will not address the defects related to the Track, Roadbed, and Structure (TRS), 

which are the second dominant cause of accidents. These growing numbers of TRS accidents 

necessitate more effective inspection and maintenance in less time by optimizing and automating 

these activities where possible [6].  

A group of authors proposes a new sensor-based autonomous track geometry monitoring 

system called Railway Autonomous Inspection Localization System (RAILS). RAILS system 

uses inertial sensors on rolling stock to detect track irregularities automatically and continuously 

and characterize potential defects by analyzing the inertial dynamics of rolling stock. The sensors 

periodically compress and upload their geo-tagged data to a cloud-based system using the 

installed PTC communications network. Remote algorithms combine and process the data from 

multiple train traversals to extract features that identify defect symptoms, rank their severity, 
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classify defect types, and localize their positions. Also, RAILS proposes a methodology that can 

handle and analyze a massive amount of data with low computational complexity and high 

stability for practical use.  

Consequently, this study aims to examine the accidents that occurred due to TRS and to 

extrapolate the potential of the proposed Railway Autonomous Inspection Localization System 

(RAILS) to reduce financial losses. The main contribution of this paper is a probabilistic method 

of comparing the performance of RAILS and its advantages over current NDE methods. RAILS 

is based on multiple passes or scans of railroad track segments per week, unlike traditional 

methods. The former uses specially equipped inspection cars with data post-processing and 

human evaluations, whereas the latter uses onboard sensors with real-time signal processing. 

To achieve the objective, this study uses data from multiple scans of a track segment for 

the analysis and applied probabilistic models based on the theory of operations. Findings suggest 

that RAILS have the potential to outperform traditional NDE conditional monitoring systems by 

33%, with only two trains per day and a 50% first-pass detection probability. The probability of 

detection advantage increases to 165% with 14 trains per week when the first-pass probability of 

detection drops to only 20%. A scenario analysis based on the proportion of track and roadbed 

problems that can generate a detectable inertial event suggests that the RAILS approach would 

have saved the industry $259 million in accident prevention over ten years. 

1.2.2. Essay 2: Using Non-Parametric Methods to Identify Factors Contributing to Rail 

Derailment  

The FRA requires companies involved in train accidents exceeding damages above the 

$10,700 threshold (2019, inflation-adjusted) to complete and submit detailed reports, which 

include numerous standardized fields that describe the accident conditions (temperature, time & 
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date, etc.), location (state, county, etc.), operations (speed, number of cars, etc.), and probable 

cause. Moreover, the reports also include a comprehensive text narrative for each accident, 

providing additional information about the accident's actual cause, responsible factors, and 

circumstances. 

Previous research has statistically analyzed qualitative and quantitative data to highlight 

reasons for accidents, including derailments. These studies were limited by (i) data availability, 

(ii) details captured by the data, (iii) how the data are coded, and (iv) the assumptions of the 

statistical models. However, they overlooked detailed text narratives to determine causal factors. 

Analyzing these narratives using nonparametric machine learning models provides explicit 

information about these accidents as they are free from statistical assumptions, thus preventing 

limited and biased results [7] [8]. This study explicitly analyzed the text narratives using natural 

language processing techniques and machine learning models to determine train derailment 

causes based on each type of five accident categories. 

My results indicate that the supervised algorithm and the random forest model performed 

best for conducting text-based classification and are used to identify local explanations 

highlighting factors associated with train derailments. Text explaining the local explanations 

does not necessarily have the same impact on the global corpora. Thus, I propose a new approach 

called GLIME, which converts the local explanations into the global explanations by aggregating 

the individual LIME explanation multiplied by the global TF-IDF values. I used these global 

explanations to conduct the association analysis on the top global words and the text narratives to 

find out the most frequent word pair used in a text narrative describing the accidents. My results 

indicate a strong association among a set of terms for each sub-category of the accidents. For 

instance, the correlation between the words 'journal', 'burn (0.46),' and overheat (0.27)' represents 
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that while defining the accidents related to axel and journal bearing, journal and bearing are 

generally used 46% of the time in the narration together and 27% times of with the word 

overheat. In addition, this methodology also provides solutions to counter errors, including 

typographical errors and data inconsistencies. Another significant contribution of this research is 

that it will help researchers and other personnel use this methodology to determine the causes of 

rail accidents and develop countermeasures at the micro and macro levels. 

1.2.3. Essay 3: Ranking Risk Factors in Financial Losses from Railroad Incidents: A 

Machine Learning Approach 

For a decade prior to 2019, nearly 25,000 accidents caused 446 deaths, 5,137 injuries, 

and more than $4.11 billion in financial loss seasonally adjusted to 2018 dollars [2]. Class I 

railroads accounted for 78% of those accidents, more than 72% of the resulting injuries and 

fatalities, and 81% of the total financial loss.  

The consistently large number of accidents and the injuries and fatalities they cause place 

a substantial social and economic burden on the industry, environment, and society. Hence, it is 

vital to understand the dominant accident causes to guide strategies and policies that could 

minimize financial losses from accidents. Subsequently, this paper aims to apply data mining and 

machine learning techniques to 15 years of railroad accident data from 2004-2018 to reveal 

insights into the major contributing factors to financial losses from class I freight train accidents. 

The finding of this study provides the basis for developing effective maintenance strategies and 

efficient budget allocation. This research extends previous work in railroad safety in the 

following three ways: 

• Considers 15 years of accident data reports, which is longer than the periods that 

other studies covered. 
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• Isolates factors that lead to financial losses from railroad accidents. 

• Ranks the importance of the major factors in financial losses from railroad accidents. 

Data between 2004 and 2018 from the railroad equipment accident (REA) database 

provided inputs to achieve the objective. The analysis compared results of six machine learning 

models, including Random Forest (RF), Gradient Boosting Model (GBM), eXtreme Gradient 

Boosting Model (XGBM), clustering with k-nearest neighbors (KNN), Support Vector Machine 

(SVM), Simple Linear Regression (SLR) using K-cross validation (K=10) with 3 repeats to 

improve the generalization. The final evaluation metric is a root-mean-squared error (RMSE) 

and means absolute error (MAE), which are the standard criterion for model selection. 

Results showed that tree-based tree-based ensemble models performed best. Particularly, 

XGBM proved to be the best model for analyzing railroad accident data that is highly 

imbalanced. The XGBM model identified the significant contributors to railroad accidents. The 

results indicate that LOADF2 (number of derailed loaded freight cars), SIGNAL (Type of 

territory – signalization), and EMPTYF2 (number of derailed empty freight cars) are the top 

three significant factors that account for financial loss severity with the gains of 57.46%, 

20.22%, and 10.12% respectively. 
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2. AUTONOMOUS RAILROAD TRACK MONITORING SYSTEM: AN ONBOARD 

INSTRUMENTATION TECHNIQUE 

2.1. Abstract 

Human-Related Factors (HF) and Track, Roadbed, and Structure (TRS) related issues are 

the two primary causes of railroad accidents. Large railroad companies are installing a new 

wireless sensor-based system called Positive Train Control (PTC) to reduce accidents. However, 

PTC is limited to preventing accidents related to human factors or signal and communication. 

This paper reports on a new low-cost onboard system to identify consistent inertial events from 

locations that pose potential risks of TRS related accidents. The Rail Autonomous Inspection 

Localization System (RAILS) uses inertial sensors on rolling stock to continuously assess track 

irregularities and to characterize and categorize potential defects by analyzing the inertial 

dynamics of rolling stock. The system can communicate sensory data using the installed PTC 

communications infrastructure. Railroads are required to inspect all tracks in operation as often 

as twice per week; whereas the RAILS accomplish several scans based on the number of trains 

passing over a track segment of track each day. The primary contribution of this study is a 

probabilistic analysis that quantifies the effectiveness of RAILS over the current railway 

inspection methods. A scenario analysis found that when the first-pass fault detection probability 

of the sensor is 50%, the RAILS achieve 33% better chance of detecting a fault with only two 

train traversals per day. With a much lower first-pass fault detection probability of 20%, the 

RAILS advantage was 165% at 14 scans per week. 

2.2. Introduction 

The U.S. rail network is the most prominent mode of long-haul transportation, which is 

vital for the U.S. transportation system and economy. Currently, U.S. railroads deliver five 
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million tons of freight and carries approximately 85,000 passengers each day, which is expected 

to increase by 40% by 2040 [1]. Consequently, the traffic increase exacerbates track geometry 

irregularities, increasing the risk of incidents and accidents over time. Timely detection and 

rectifications of track irregularities and track defects are vital for maintaining a safe rail network. 

To comply with safety standards, railways spend close to 40% of their total revenue on 

inspections, capital expenditure, maintenance, and condition monitoring each year [2]. Despite 

those huge investments, there were still nearly 19,000 accidents that cost railroads $3.10 billion 

over the last decade. Human-Related Factors (HRF), and Track, Roadbed, And Structure (TRS) 

related issues are the two primary causes of accidents. HRF and TRS accidents accounted for 

more than 37% and 25% of the total number of accidents from 2009 to 2018, respectively. HRF 

and TRS accidents were responsible for approximately 33% and 30% of the total financial 

losses, respectively [3]. Figure 2.1 summarizes total number of pre-pandemic accidents from 

2009 to 2018, due to different causes.  

In recent years, many authors raised concerns about such a large number of accidents in 

spite of considerable investments in railway infrastructure [4], [5], [6]. Those authors highlighted 

that the traditional and existing Nondestructive Evaluation (NDE) methods (including 

electromagnetic, acoustic, optical, and inertial sensing) are expensive, labor-intensive, slow, 

complicated, requires vast resources, and increase the duration of traffic interruptions. The NDE 

methods also limit the ability of FRA personnel (and other resources) to enforce safety 

compliances with federal laws by monitoring the railway track geometry more frequently and 

across the entire network. Hence, more advanced and cost-effective inspection technologies are 

necessary for achieving the FRA’s zero accident vision. These new technologies should comply 
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with the industry’s current practices, facilitate inspections, help to better allocate budgets, 

provide efficient use of resources, and allow for uninterrupted railway services. 

 

Figure 2.1. Factors responsible for causing rail accidents from 2009 to 2018  

One technology that many of the large railroad companies implemented is Positive Train 

Control (PTC). As explained by Peters [7], early PTC designs intended to prevent train-to-train 

collisions, over-speed derailments, limit work zone accidents and the movement of a train 

through a switch left in the wrong position. Conversely, the system had some functional 

boundaries which limited the benefits. Such limitations include 1) the operating system does not 

track the real-time train location, 2) can only communicate when a train passes the wayside 

infrastructure, 3) limited data rates because the use of Wi-Fi is not practical in the PTC. 

Consequently, a more sophisticated and expensive variant of the early PTC system, 

Communications-Based Train Control (CBTC), emerged.  CBTC is a more advanced system in 

which train information is sent to a central location which then distributes this information to the 

entire network.  In this architecture, the installation of a Global Positioning System (GPS) helps 

to track the train location and speed, along with the other instrumentation. These instruments 

help to locate trains even in GPS denied environments. Similar to cell phone technology, the 
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advanced infrastructure communicates continuously using the digital signals which provide 

greater precision. The FRA later mandated railroads to install a CBTC system and placed all 

such safety technologies under the PTC umbrella. 

Even with an improvised version of the technology, PTC is limited to improving 

communication between the system and train engineers to prevent accidents and minimize their 

severity when caused by HRF or signal and communication problems. But these technologies 

will not address the TRS related issues, which are the second dominant cause of accidents. 

Figure 2.2 summarizes the annual railroad accidents due to TRS and the resulting financial losses 

for the decade prior to 2019. Consequently, the goal of this study is to examine the accidents that 

occurred due to TRS, and to extrapolate the potential of the proposed Railway Autonomous 

Inspection Localization System (RAILS) to reduce financial losses due to those accidents. 

 

Figure 2.2. Railroad incidents due to TRS from 2009 to 2018 and the reported financial loss 

A large number of TRS related issues necessitates more effective inspection and 

maintenance in less time by optimizing and automating these activities where possible [8]. In the 

recent past, many authors have proposed intelligent condition monitoring systems (ICMS). Such 
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methods include ultrasonic signaling [9] [10], vision-based inspections [11] [12], Ground-

Penetrating Radar (GPR) [5], and wireless sensor-based systems that include fuzzy logic and 

surveys [4], [13], [14]. But these techniques require huge installation capital and maintenance 

costs. Also, most of these methods cannot classify and prioritize defects based on need. 

The RAILS proposed in this research can utilize the installed PTC communications 

networks [15], [16]. RAILS will use inertial sensors on rolling stock to assess track irregularity 

automatically and continuously. Further, the system will characterize and categorize potential 

defects by analyzing the inertial dynamics of rolling stock. Defect classification will enable asset 

managers to allocate the appropriate specialists to scrutinize the location of the defect. This 

would help railroads focus inspections on high-risk areas without closing lines to search for 

developing issues. Efficient screening, optimized usage of resources, reduced maintenance costs, 

and improved railway safety are some of the key potential benefits of the RAILS  [16].  

The core focus of RAILS is to improve fault screening by identifying defects at the 

primitive stage and increasing the fault identification accuracy over time. Subsequently, the main 

contribution of this paper is a probabilistic method of comparing the potential performance of 

RAILS based on its fundamental theory of operation as compared with traditional NDE 

inspection methods. RAILS is based on multiple passes or scans of railroad track segments per 

week whereas traditional methods of inspections are based on substantially fewer scans per 

week. The former uses on-board sensors with real-time signal processing whereas the latter uses 

specially equipped inspection cars with data post processing and human evaluations.  Other 

works by the authors describe in greater detail how the sensors combined with the algorithms 

detect and report on specific track defects [17], [18], [19], [20]. Rather, the focus of this work is 

to characterize the probabilistic performance difference between RAILS and current NDE 
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methods of track inspection. The remainder of the paper is structured as follows: the literature 

review discusses some of the previous related work. The methodology section presents the 

architecture and operational characteristics of RAILS. The experiment section quantifies the 

benefits of using RAILS over existing NDE methods. The conclusion section presents the final 

remarks and describes future work.  

2.3. Literature Review 

A condition monitoring tracks divergence from normal operating conditions to predict 

failures [21]. Over the years, condition monitoring techniques have evolved from measurement-

oriented to computer-based strategies. Researchers have started placing more emphasis on an 

early warning system based on Wireless Sensor Networks (WSNs) for condition monitoring. 

WSN is a cooperatively wireless network of spatially distributed and autonomous devices that 

monitor infrastructure, structures, and machinery. WSNs facilitate low-cost monitoring of 

extensive infrastructure at a faster pace, require less infrastructure and maintenance, provides 

autonomous and near real-time data acquisition, and improve data management and accessibility 

[8]. Consequently, practitioners have begun to consider WSN as potential substitutes for the 

traditional tethered railway track monitoring system [22]. Important considerations for WSN 

installations are (i) sensor location and (ii) data analysis methods. The following subsections 

describe literature that considered those two decisions. 

2.3.1. Sensor Types, Quantity, and Location 

Many previous studies have conducted their research by using different sensors ranging 

from uniaxial accelerometer/gyroscopes to Inertial Measurement Units (IMUs) with 6 degrees of 

freedom, also by applying different numbers of sensors, including 3 [23], [24], 4 [25], 8 [26], 9 

[27], and 15 [28] either on the track or on the vehicles. 
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Track-based monitoring systems have sensors installed at fixed locations such as bridges, 

tunnels, rail tracks, rail track beds, and other infrastructure locations. Some authors highlighted 

the importance of using fixed sensors to identify at specific areas of a rail infrastructure. For 

instance, Jang et al. [29], Moreu et al. [14], and Kołakowski et al. [30] used sensors to detect 

cracks and other internal structural damage to bridges. Zan et al. [31]; and Jenkins et al. [32] 

used WSNs to examine the health of tunnels. Wei et al. [33], Kouroussis et al. [34], and 

Filograno et al. [35] examined wheel condition with sensors embedded in rail tracks. Hodge et al. 

[4] covered numerous other related studies. However, there are a few functional limitations of 

track-based sensor systems. One is that the system functions only when a vehicle passes over the 

embedded sensors, which limits the detections to fixed locations. Hence sensors mounted on in-

service vehicles are a solution to this functional problem. 

Modern electronics, along with the development of robust sensors, facilitate constant 

condition monitoring through compact WSNs that can be installed on in-service vehicles [36]. 

Vehicle-based sensors collect data continuously. Sensors, typically include accelerometers, 

gyros, noise sensors (e.g., microphones) and GPS. Such sensors can identify track irregularities, 

dynamic vehicle behavior, vehicle location, and speed [37]. WSNs facilitate timely maintenance 

intervention and allows early detection of faults, which helps in effective planning for future 

track maintenance [26]. Many others authors have recommended different locations such as the 

train shell, wagon, bogies, axles, wheels, brakes, and pantographs. Installations included sensors 

for measuring track irregularities [36], [26], temperature sensors for evaluating anomalies [38], 

[39], and fiber Bragg grating sensors for analyzing bogie vibration [34], [40]. Some authors have 

applied sensors to monitor the stress on axels [41], [42] and on wheels [43], [44]. Ngigi et al. [8], 

Hodge et al. [4], and Chia et al. [45] highlighted many other studies that used WSNs. 
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However, none of the reviewed articles highlighted variations or impacts in their findings 

based on the type of sensors and the number of sensors used. Interestingly, some studies have 

found that the following factors are essential when selecting the sensor's location. 

The linkage between sensor measurement and the train speed. Because the characteristics 

and the angular velocity would always be different from location to location, even traveling at 

the same speed. So in such cases, the sensor location is essential. The wheel's vibration may add 

more noise to the sensor data, resulting in false-positive or missed detection [45]. So the sensor's 

location could help avoid unnecessary corruption of the data.  

Most previous studies highlighted that using the appropriate signal processing technique 

could help deal with the above two factors. As suitable signal filtering algorithms help reduce or 

eliminate unwanted signals features in some frequency ranges, that could help in further analysis. 

RAILS systems developed, applied, verified, and validated all algorithms required to process the 

sensor data and provide suitable results [17], [46], [47]. 

2.3.2. Analytical Methods 

A reliable condition monitoring system requires maintaining proper coordination between 

data generation, data processing, and producing meaningful output. The sensors generate 

enormous amounts of data which often contains noise and other unwanted signal elements. 

Hence, it is crucial to select an appropriate technique for the successful implementation of a safe 

and functional condition monitoring system. In the previous related studies, authors have also 

provided some insight into using different techniques for various aspects of railway inspection 

and partitioned them into (i) model-based, and (ii) signal-based techniques. 

Model-based techniques rely on mathematical models that characterizes a relationship 

between the input signals and signals from the vehicle response. In this method, sensor data are 
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used as an input to predict vehicle system dynamic behavior and then compared with the real-

time measurements. The difference between predicted and measured data is used to find faults 

and anomalies. The accuracy of these models depends upon “the selection of the initial values 

during partial linearization (or other approximation methods); unknown noises; model 

uncertainty caused by the nonlinear suspension parameters and structure flexibility” [48]. 

Commonly used methods include Kalman filters [44], [49], [50], extended Kalman filter [51], 

[52], inverse modelling [53], [54], unscented Kalman filter [55], [56], Rao–Blackwellised 

particle filter [57], [58], and sequential Monte Carlo method  [59], [8]. 

Signal-based methodologies apply where only output signals from vehicle response are 

available for analysis in response to some disturbance. The functioning of the system depends on 

the pre-built fault database through which signals compare the fault features and classify most 

similar fault conditions for identifying the fault type and level. Li et al. [48] suggested that many 

authors analyze the signal-based techniques in many ways including time-domain [26], [60], 

frequency- domain [60], [61], time-frequency approach [62], [63], correlation analysis [64], and 

simple peak magnitudes thresholding.  

2.4. Proposed Methodology 

In many cases, it would be impractical to install sensors on each vehicle. For example, 

the cost of monitoring the condition of a bogie could be more than the expense of repairing a 

fault [8], [65]. The proposed RAILS methodology does not rely on expensive bogie sensor 

installations and adaptive sensor configurations. The sensors, which are similar to those available 

in smartphones, may be installed directly in the train cars for low-cost and robust data collection. 

Also, the technology will use the installed PTC communications infrastructure to transmit the 

inertial and geospatial position data to a cloud-based system for subsequent analysis. Hence, 
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RAILS investments will develop PTC compatible equipment for installation, data processing, 

data handling, and maintenance [66], [67]. 

Major track surface abnormalities produce accelerated car movements in all directions 

[68]. Inertial sensors that monitor Vehicle-Track Interactions (VTI) can detect such responses 

from a railcar to help identify potential defects at a primitive stage. VTI sensors are widely used 

due to their small size, low cost, low power consumption, and robustness but they still have 

limitations [48], [15]. VTI sensors do not support two-way communication, which is crucial for 

classifying faults and identifying their location. In existing systems, inertial sensors detect 

symptoms of possible track and equipment defects through the inertial response of a railcar. 

These inertial sensors will only raise an alarm when acceleration magnitudes exceed a fixed 

threshold. However, there is no standard procedure to pre-configure the threshold values, and the 

system requires a technician to define such values based on their experience or intuition. 

Threshold adaptation is a complex process because the inertial responses of vehicles will vary 

with train speed, gross weight, suspension system design, and weather conditions. Hence, fixing 

thresholds must account for these exogenous circumstances to improve accuracy and reduce false 

positives and false negatives. 

2.4.1. System Architecture 

RAILS sensors on train cars or hi-rail vehicles compress the inertial data, geo-tag their 

inertial samples, and upload the data every second to a centralized processor. Figure 2.3 

represents the operation of the RAILS currently under test at a local railroad. It shows steps to 

detect and classify possible track defects. Railway engineers, practitioners, or railroad companies 

can use the data to understand an enhanced situation to optimize inspection and maintenance 
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practice. Therefore, it will minimize the cost and safety risks while maintaining reliable track and 

equipment condition information. 

 

Figure 2.3. RAILS operating system architecture 

Remote algorithms combine and compress three-dimensional linear acceleration, angular 

acceleration, and geospatial data from multiple train traversals to extract features that identify 

defect symptoms, rank their severity, classify defect types, and localize their position. This 

extracted feature helps to identify the fixed threshold values, which can be visualized based on a 

pre-defined color-coding scheme. Subsequently, a wide range of data mining techniques, such as 

machine learning, genetic algorithms, feature correlation, Bayesian analysis, and maximum 

likelihood, will perform the signal classification to determine the probable cause of the fault. The 

authors will extend the proposed algorithms to detect and classify a wide variety of possible 

track defects, such as broken rail, irregular geometry, fastening system defects (e.g. missing 
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spikes, displaced anchors), support structure defects (deteriorated ballast, mud spots, weak sub-

grade), and vehicle defects (e.g. sticking brakes, wheel wear, suspension system misalignment) 

[15]. 

2.4.2. Theory of Operations 

RAILS sensors onboard in-service vehicles will detect a variety of kinetic energy 

responses, speed, and position coordinates from a GPS receiver. Combining data across multiple 

train traversals will significantly enhance the Signal-To-Noise Ratio (SNR) by ensemble 

averaging. A higher SNR ratio will reduce false positive and false negative detections. The 

underlying theory is as follows. Let Ps be the probability of detecting a fault during the first pass 

scan. Therefore, the probability of not detecting the fault on the same attempt would be Pnd = 1 – 

Ps. Given that each future scan does not depend on the results of previous scans, the results are 

independent. Therefore, the probability of not detecting a fault after N scans would be the 

product of the individual probabilities such that 

 𝑃𝑛𝑑𝑛 = (1 − 𝑃𝑠)𝑁 (1) 

and the probability of detecting the same fault after N attempts must be 

 𝑃𝐷 = 1 − (1 − 𝑃𝑠)𝑁 (2) 

The equation evaluates to PD = 1 as a function of N. Note that the extreme case of PS = 1 

represents the presence of a fault that produces a sufficiently high SNR for detection in a single 

attempt. Conversely, when a fault is not present (PS = 0), the equation evaluates to zero as 

expected.  

Federal track safety regulations require railroads to inspect all tracks in operation as often 

as twice weekly; whereas the number of scans with RAILS will be based on the number of trains 

passing over a segment of track each day. For example, if two trains per day traverse a segment 

of the track that contains a fault, then the system would have conducted 14 scans of the segment 
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per week without requiring track closure. Given the same probability of detection with a single 

attempt for both methods, RAILS will produce a higher probability of detection each week 

because of the larger number of scans conducted. 

Figure 2.4 shows the impact of inspections with different probabilities of PS ranging from 

0 to 1.  The probability of detecting faults with several values of N (trains per day) is compared 

with the results of two inspections per week using NDE methods (NDE2). RAILS14 represents 

two trains per day traversing a segment, thus resulting in 14 scans weekly. Similarly, RAILS21, 

RAILS28, RAILS35, represent scenarios of 21, 28, and 35 weekly scans, respectively. The 

results demonstrate that both methods provide identical results when the value of Ps is close to 

one. However, RAILS produce significantly better results when the chance of fault detection 

with a single scan is below 80%. For example, for a scenario where the success of fault detection 

is random (50%), RAILS produces a 33% better chance of detecting the fault with traversals of 

two trains per day across the segment. If the first-pass success of fault detection further reduced 

to 20%, RAILS has a 165% better chance of detecting a fault with 14 scans per week.  

The percentage of the TRS related accidents that RAILS can address is 

 𝐴𝑅𝐴𝐼𝐿 = 𝐴𝑇𝑅𝑆 × 𝜂𝑇𝑅𝑆 × 𝑃𝐷 (3) 

where ARAIL is the proportion of TRS related accidents that produce inertial events and ηTR is the 

proportion of those inertial events that RAILS can detect.  In the decade between 2009-2018, 

TRS-related issues caused more than 6,500 accidents. Appendix B contains the list of factors 

responsible for causing these accidents. All these issues have the potential to generate inertial 

signals in the early stages, which could peak when the fault gets worst. However, with the usage 

of RAILS, combining multiple inertial events from several traversals helps detect the faults 

before they potentially cause an accident.  
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Figure 2.5 illustrates the three types of movements that mostly generates high enough 

PIEs that the RAILS system can detect to predict the type and severity of track and roadbed 

problems. Profile irregularities are vertical deviations from a flat surface. Alignment 

irregularities are lateral deviations from a straight line. Warp irregularities are uneven vertical 

displacements between the two rails that can cause rocking motion and lead to derailments. 

Table 2.1 contains the list of five possible issues that would generate at least one of those 

movements that RAILS could detect during the first scan. The statistics from Table 2.1 and 

Table B1 for the study period of a decade suggest that irregularities that generate PIEs causes 

almost 62% (4099/6555) TRS related accidents. For a scenario, ηTR = 60%, this yields PD = 0.84 

at two trains per day. Hence, ARAIL = 0.62 x 0.60 * 0.84 = 0.3125. This result indicates that 

RAILS could have detected more than 31% of the TRS issues that produced detectable inertial 

events. Figure 2.6 plots ARAIL as a function of the full range of ηTR scenarios and with N = 3, 4, 

and 5 scans. 

Table 2.1. TRS potential issues generating PIEs  

S.No Factor Description Count 

1 Broken Rail (because of any reason) 1,794 

2 Wide gage (because of any reason) 1,699 

3 Defective or missing crossties 106 

4 Cross level of track irregular  279 

5 Track alignment irregular (buckled/sunkink)  221 

 Total 4,099 
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Figure 2.4. Fault detection rates based on different frequency of weekly inspection 

 

Figure 2.5. Movement detections due to track and roadbed problems 
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Figure 2.6. Accidents addressed by RAILS for a range of N values and ƞTR 

In the last decade, the railroad industry has lost more than $830 million due to TRS 

related accidents. Based on the above scenario of ηTR = 60%, RAILS would have resulted in a 

financial savings of $830 million × 0.312 = $259 million. 

2.5. Conclusion 

The railway industry would like to do track maintenance more efficiently by maximizing 

the use of limited resources to minimize the risk of accidents. The significant challenges 

involved in efficient maintenance are limited finances, workforce & equipment, and a vast 

network to cover at a regular interval of time. Along with these difficulties, the industry also 

requires continuous maintenance of rail geometry as tracks deteriorate due to weather, traffic 

density, and heavy load movements. Different track types and classes have distinct deterioration 

rates, which makes their maintenance more challenging. Unattended defects increase the risk of 

an accident over time. To minimize accident risk, the rate of detection and remedial measures 
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should be at least equal to the rate of defect formation. The rate of detection can improve with a 

quality inspection system that provides low false positive and low false negative detection rates. 

This study describes a proposed RAILS system that use inertial sensors on rolling stock 

to detect track irregularities automatically and continuously, and to characterize potential defects 

by analyzing the inertial dynamics of rolling stock. The sensors used are similar to those 

available in smartphones, thus enabling low-cost and robust data collection. The sensors 

compress and upload their geo-tagged data periodically to a cloud-based system by using the 

installed PTC communications network. Remote algorithms combine and process the data from 

multiple train traversals to extract features that identify defect symptoms, rank their severity, 

classify defect types, and localize their positions. Defect classification will enable asset managers 

to allocate the appropriate specialists to scrutinize the high-risk locations flagged. Therefore, 

RAILS will transform existing condition monitoring strategies from “find and fix” to “predict 

and prevent” by focused follow-up inspections to fewer locations. Hence, the anticipated 

additional benefits of using RAILS are time savings, risk reduction, and a safer work 

environment for inspection personnel. 

A probabilistic analysis based on the theory of operations from multiple scans of a track 

segment suggests that RAILS have the potential to outperform traditional NDE conditional 

monitoring systems by 33% with only two trains per day and a 50% first-pass detection 

probability. The probability of detection advantage increases to 165% with 14 trains per week 

when the first-pass probability of detection drops to only 20%. A scenario analysis based on the 

proportion of track and roadbed problems that can generate a detectable inertial event suggest 

that the RAILS approach would have saved the industry $259 million in accident prevention over 

ten years. 
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Future work will explore and evaluate an aggregated benefit-cost model for the 

deployment of RAILS on rolling stock. The results would provide some ground for assessing the 

financial viability of RAILS.  
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3. USING NON-PARAMETRIC METHODS TO IDENTIFY FACTORS 

CONTRIBUTING TO RAIL DERAILMENTS 

3.1. Abstract 

Derailments are the most common rail accidents, accounting for more than 71% of freight 

train accidents in the United States between 2005 to 2019. A careful analysis of these accidents 

will provide essential information for developing safety countermeasures. However, most 

previous research has focused primarily on applying statistical analysis using quantitative data 

and often overlooked detailed text narratives. Analyzing such narratives can provide detailed 

information about the accidents and determine causal factors for these accidents. This study 

explicitly analyzed text narratives using natural language processing techniques and machine 

learning models to determine factors responsible for causing derailments based on each type of 

accident. Here, we compared supervised and semi-supervised machine learning algorithms with 

various models, including random forest, support vector machine, extreme gradient boosting, and 

K-nearest neighbor. Our results indicate that random forest was the best model in both 

algorithms but performed better with the supervised technique for text classification and 

predictions. We tested the validity of our model to analyze narratives' local interpretability by 

using the Local Interpretable Model-Agnostic Explanations (LIME). Furthermore, we propose a 

new method of converting and comparing the local results into global interpretability (GLIME) 

to identify possible causality factors responsible for a freight train derailment. We conducted the 

association analysis on the top global words and the text narratives to find out the most frequent 

pair of words used most often in a text narrative describing the accidents. Our results indicate a 

strong association among a set of terms for each sub-category of the accidents. For example, 

there are strong associations among journal, burn, and overheat; sill, break, and old; switch, 
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point, and gapped; between improperly and load; and many others. The results also suggest that 

the proposed methodology has great potential benefits for classifying rail accidents and 

developing countermeasures based on factors responsible for causing derailments. 

3.2. Introduction 

Freight train accidents are more frequent than those in passenger trains [3]. Derailments 

are the most common type of accident, accounting for more than 71% of U.S. freight train 

accidents from 2005 to 2019. Most of these accidents were not serious. However, some of these 

accidents caused more than $1M in losses and severe damages to railway infrastructure and 

rolling stock, resulting in long-time service disruptions [4]. There are many reasons for 

accidents, but they can be classified into five major causes. Table 3.1 includes the number of 

total accidents, freight train-related accidents, and freight train derailments from 2005 to 2019 by 

accident cause. 

Table 3.1. Derailments by major cause from 2005 to 2019 

Cause 

Total 

Accidents % 

Freight 

Train 

Accidents % 

Freight 

Train 

Derailment % 

Mechanical and electrical failures 4,614 10.64 2,603 15.03 2,111 17.02 

Miscellaneous 9,553 22.02 3,861 22.29 1,329 10.75 

Track, roadbed, and structures 11,587 26.71 6,152 35.52 6,032 48.79 

Signal and communication 1,052 2.43 100 0.58 77 0.62 

Train operation - human factors 16,572 38.20 4,605 26.59 2,813 22.76 

Total 43,378 100.00 17,321 100.00 12,362 100.00 

 

The Federal Railroad Administration (FRA) requires involved companies to complete 

and submit a detailed report of all the rail accidents that exceed a specified monetary damage 

threshold (inflation-adjusted 2019 threshold - $10,700) [5] [6]. These accident reports include 

various standardized fields that describe the accident conditions (temperature, time & date, etc.), 

location (state, county, etc.), operational factors (speed, number of cars, etc.), and cause. The 
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reports also include a comprehensive narrative for each accident that provides more information 

about the actual cause, responsible factors, and circumstances under which the accident occurred. 

However, these narratives include railroad jargon that non-industry personnel will find difficult 

to understand [4]. 

Most previous studies have mainly focused on applying various statistical analyses using 

qualitative and quantitative data published in FRA accident reports to analyze and highlight 

reasons for derailments. Although such findings emphasize the causal effect based on 

explanatory variables, those studies were limited by (i) details captured by the data, (ii) data 

availability, (iii) how the data are coded, and (iv) the assumptions of the advanced statistical 

models. All these factors limit the use of quantitative data reports to highlight derailment causes. 

In contrast, research has overlooked detailed text narratives to determine causal factors not 

captured in the quantitative coded data. Analyzing these narratives using nonparametric machine 

learning models provides explicit information about these accidents. As the nonparametric 

machine learning algorithms are free from statistical intricacies or assumptions, thus preventing 

limited and biased results [1] [2]. By not making assumptions about data distribution, these 

algorithms are prepared to select any functional forms from the training data. Russell and Norvig 

[7] mentioned that non-parametric methods are useful for big data which do not have any prior 

knowledge about the nature of the data.  

 Another concern with previous research is that the work used comprehensive accident 

data as input to draw final conclusions addressing issues related to derailments. Such findings 

cannot be applied to all accident causes as each cause has a different frequency, severity, 

responsible factors, consequences, and distinctive level of risk. Individually evaluating and 

understanding each of the five classes of derailment causes would provide additional insight into 
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developing policies and safety countermeasures. Subsequently, this study aims to answer the 

following two research questions: (1) What factors play important roles in resulting derailment 

for each type of accident? (2) How can text narrative be used as data to reveal undiscovered 

issues, identify causal factors, and highlight problems related to data structuring? 

The main challenge of dealing with accident narrative reports is their unstructured and 

qualitative nature which precludes statistical analysis and the time required to interpret the 

implicit meaning of the report. Text mining is at the interface of information systems and 

linguistics that converts qualitative data into a quantitative form using Natural Language 

Processing (NLP) techniques. This converted unstructured quantitative data is then used to drive 

machine learning algorithms for discovering and extracting implicit information to perform 

operations like retrieval, classification, and summarization [8]. Ge et al. [9] emphasized that, 

based on data type and research objectives, machine learning algorithms can be classified as 

unsupervised learning, supervised learning, semi-supervised learning, and reinforcement 

learning. The supervised learning technique trains on the labeled data and then applies the 

trained models to unseen data to predict labels. In unsupervised learning, the model trains on 

unlabeled data to classify observations. Semi-supervised models use both labeled and unlabeled 

data for training and prediction. Reinforcement Learning (RL) develops in an interactive trial and 

error environment and learns through rewards and penalties for correct and incorrect responses, 

respectively. RL is useful for gaming, navigation, and robotics, whereas the other three machine 

learning models are commonly used to facilitate text/data mining and analytics in various 

industries. In this study, unsupervised learning would not be useful because the accident data has 

suitable labels. Subsequently, this study utilizes supervised and semi-supervised methods which 
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will provide supportive evidence to answer the two research questions posed above by evaluating 

the following four objectives: 

1. To extract patterns and implicit information from text narratives of freight train 

derailments from 2005 to 2019. 

2. To compare, evaluate, and identify the best techniques between supervised and semi-

supervised learning for text classification and predictions. Text classification will 

help automatically categorize all the future relevant text about train accidents, which 

would help determine the related root cause using the methodology described in the 

study. 

3. To explore the factors causing train derailment using local level interpretability of 

different causes individually and comprehensively using LIME and comparing those 

results with global interpretability results. 

4. To determine how different reporters, narrate similar accidents and highlight some 

possible limitations of describing and entering accident verbiages into the database. 

The findings would help facilitate the processing of text descriptions in different ways to 

draw conclusions that would be impossible by merely looking at the accident fields. Also, 

identifying the inconsistencies in accident reporting would help to improve data recording 

procedures. The next section will discuss the studies that have used accident narratives to extract 

insights in various fields using supervised and semi-supervised techniques. Also, the next section 

will include some studies explaining the functionality of LIME and text narratives.  

3.3. Literature Review 

Data collection is exponentially increasing. Recent estimates suggest that up to 90% of 

the collected data is stored in semi-structured and unstructured forms such as text [9]. Thus, 
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novel approaches are needed to analyze and interpret ever-expanding data into meaningful 

information. Text mining is one such technique that has become prevalent, especially in 

industries where unstructured qualitative data could help provide implicit information that is 

useful for decision-making, such as in the fields of security [10, 11], risk management [12], and 

healthcare [13, 14]. On the other hand, only a handful of studies have applied text data mining 

techniques in the transportation sector, such as maritime [15, 16, 17, 18]; airline [19, 20]; road 

traffic, and road conditions [2, 21, 22]. However, the use of text mining in the railroad 

transportation industry, especially pertaining to railroad accidents, is limited. Thus, studying and 

evaluating text data provides a unique opportunity to gain insights into transportation operations, 

policy issues, and accidents.   

3.3.1. Text Mining of Railroad Accidents 

Soleimani et al. [23] analyzed railroad accident narratives related to Highway-Rail Grade 

Crossings (HRGCs) to classify the train-vehicle crashes into "train struck car" and "car struck 

train" using topic modeling and machine learning. Zhao et al. [24] used topic modeling to extract 

the fault feature from maintenance records with the arbitrary  uncertainty and complexity of fault 

diagnosis using the Bayesian Network (BN). The study aimed to propose a fault diagnosis 

method for onboard vehicle equipment of a high-speed railway. Williams and Betak [25] used 

two distinct methods of topic modeling, Latent Semantic Analysis (LSA) and Latent Dirichlet 

Allocation (LDA), to identify themes in railroad accidents. They concluded that identified 

switching accidents, hump yard accidents, and grade-crossing accidents were major accident-

type topics. Brown [4] applied topic modeling to U.S. railway accident descriptions from 2001 to 

2012. The aim was to demonstrate that the combination of text narrative with ensemble machine 

learning methods could improve the accuracy of accident severity prediction. The “number of 
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topics” selection, used as an input for running ensemble models, was arbitrary, but the final 

findings showed that the result was better than using a similar model on a single quantitative data 

set. In another similar study, Heidarysafa et al. [26] applied deep learning methods together with 

powerful word embedding on the U.S. railway accident text narrative that occurred between 

2001 to 2016. The study's main aim was to extract simpler terms for describing the primary 

cause of accidents to improve the label accuracy. The results showed that the proposed 

supervised methodology could classify the cause of a reported accident with an overall 75% 

accuracy. However, the study did not highlight the root causes of the accidents. 

3.3.2. Text Classification Using Supervised Learning 

Text classification is one of the various ways of performing text mining. Text 

classification is a process of assigning text documents into pre-defined classes based on their 

content. In this process, textual data is initially labeled into pre-defined categories or classes; a 

learning algorithm is then used to learn a function from this labeled data to assign classes to 

unseen/unlabeled documents [27]. This approach of building a classifier using pre-labeled data to 

predict classes to future documents is called supervised learning [28]. Many authors have used 

supervised text classification to perform operations like topic modeling [29, 25], spam filtering- 

SMS [30] and email sorting [31], and sentiment analysis [32, 33]. Only a few authors have 

applied supervised text classification to classify accidents in various industries. For instance, text 

classification has been used for construction site accident classification [34, 35, 36], secondary 

crashes classification on roads [21], road accident severity [37, 38], and railway accident 

classification [4, 23, 26]. All these studies, including many others, have found that supervised 

machine learning models are efficient in performing text classification. Thus, given the 

availability of large text data and commonality of classification identifier (accident, cause, etc.), 
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we compared random forest, SVM, extreme gradient boosting, and KNN supervised machine 

learning algorithms to evaluate our model's performance.  

3.3.3. Text Classification Using Semi-Supervised Learning 

The two significant limitations of supervised learning are that it requires a large number 

of labeled training documents to build an accurate classifier [28], which leaves limited data to 

make predictions and validate findings, and  it requires verification of pre-assigned labels for text 

classification. Consequently, the semi-supervised classification method in text classification 

becomes relevant. 

Semi-supervised learning is a branch of machine learning which combines the 

functionality of unsupervised and supervised learning, where the classifier learns from both 

labeled and unlabeled data. The main objective of the semi-supervised method is to harness un-

labeled data for the construction of better learning procedures. A variety of semi-supervised 

techniques have been applied for classification, clustering, and regression in the past. Also, some 

previous studies have mentioned that, under certain assumptions and with the limitations of 

supervised learning methods, semi-supervised learning performs better than supervised learning 

which is trained on the labeled data alone [39, 40]. Thus, studies have used semi-supervised text 

classification in various disciplines to provide solutions like automatic bug triage [41], automatic 

law text classification [42], cross-language text classification [43], identification of 

transportation mode [44], and anomaly detection in-flight data [45]. However, further research is 

needed to evaluate the effectiveness of supervised and semi-supervised learning because un-

labeled data only performs better if it contains information that is not included in the labeled data 

or cannot be easily extracted from it [40]. Thus, this study will compare and evaluate the findings 

of semi-supervised and supervised learning algorithms to identify the best-performing model to 
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classify rail accidents. The authors are unaware of any research that previously compared the 

results of these two methods for classifying rail accidents. 

3.3.4. Text Mining Using LIME 

LIME, proposed by Ribeiro et al. (2016), is an algorithm that tries to explain the black 

box methods of machine learning at the local level [46]. One of the major challenges associated 

with machine learning is an incomplete understanding of the model's functionality, limiting 

confidence in the results. However, LIME uses a model-agnostic approach to perturb the data to 

generate an output and then, based on proximity, weighs the new data points to fit a local model 

to explain each local data point. Thus, the model becomes self-explanatory and does not rely on 

assumptions or the model choice. 

LIME has already been applied by various researchers in different disciplines [47, 48, 

49], but only a few have used LIME in machine learning-based text classification studies. Sari et 

al. (2018) applied text mining to reveal the authorship of the documents based on writing style. 

Along with the ML models, LIME was used to highlight factors associated with classifiers' 

predictions  [50]. Arteaga et al. [2] proposed an analysis approach using similar techniques to 

identify factors associated with injury severity levels in traffic crashes. The study used yearly 

data from 2007 to 2017 of heavy vehicle crashes in Queensland, Australia. In their research, the 

data was initially transformed into vector format using text mining and then compared to the 

results of six machine learning algorithms. Finally, results showed Neural Networks 

outperformed the other algorithms, which were further used as a base model to apply global 

cross-validation-LIME (GCV-LIME). These results helped determine the factors associated with 

injury severity levels in traffic crashes at the local and global levels. 
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These previous studies, including others, have shown that LIME helps evaluate the 

problems at the local level. However, to the authors' best knowledge, no previous study has 

applied LIME to accident narratives to find the factors responsible for rail accidents. This study 

is intended to bridge this gap in the literature. 

3.4. Methodology 

This study consists of five different stages. The first one is cleaning and converting the 

text narrative into a structured qualitative format to be used as an input for performing machine 

learning models. The second stage is known as text weighting using The Term Frequency-

Inverse Document Frequency (TF-IDF). The third stage consists of running, evaluating, and 

comparing different models using supervised and semi-supervised machine learning techniques. 

Subsequently, this part also includes a comparison of the overall performance between 

supervised and unsupervised results for the purpose of identifying the best classification 

techniques. In the fourth stage, the contribution of major variables (words, in this case) will be 

identified. In the final stage, these contributions will be compared with a local explanation using 

LIME which collectively coalesces to make the global variable important. An overview of the 

methodology used to perform each of the five stages is illustrated in Figure 3.1. 
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Figure 3.1. Study architecture 

3.4.1. Data 

The FRA maintains yearly accident data reports on all types of railroad accidents that 

exceed a specified monetary damage threshold. These reports are maintained in three significant 

databases. This study uses freight train derailment data from 2005 to 2019 extracted from the 

Rail Equipment Accidents Database. The extracted data is numeric, alphanumeric, binary, 

categorical, and free text form collectively recorded in 146 variables. Finally, the study uses text 

narratives and four-digit alphanumeric codes representing the cause behind these accidents. FRA 

publishes a separate file explaining the details of each code. The 389 unique codes have an 

individual description; these descriptions club into 28 different categories and further clustered 

into five accident cause categories. However, each accident cause does not occur that frequently, 

and some accidents tend to happen more than others. Subsequently, rare accident categories 

(frequency less than 100) were excluded from the analysis from all titles. Table 3.2 contains 

accident categories' names merged into each title and frequency of the freight train derailment in 
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the last 15 years. Category ID represents a code used in the analysis for the corresponding 

category under each title. Some of the accident categories were Not-Included (NI) in the analysis 

because of the rarity of the accidents. Henceforth, accidents related to title 4 (Signal and 

Communication) were also excluded from the analysis because of the low count. Finally, a 

complete dataset of 11,955 accidents was used for four titles of accidents. 

3.4.2. Text Processing 

Like any other text data, railway narratives are unstructured and cannot be used directly 

as an input for the machine learning models; hence it requires some pre-data processing and 

some post-structuring scientific adjustments to convert data into a qualitative format. The 

following are the steps required for the conversion. 

3.4.2.1. Text Data Cleaning 

Cleaning the raw data is the first step for any analysis as it strengthens data quality. 

Standard text cleaning begins by deleting unimportant typescripts (punctuations, numbers, and 

extra white spaces); and converting abbreviations, contractions, and symbols. Further, in the 

accident's narrative, some words add sense to the verbiage but do not contribute much to 

quantitative text analysis, commonly known as stop words. A list of pre-defined words from the 

English language (e.g., and, the, of, for) and the words that might have a distinct meaning for the 

railway expertise but do not have a general sense were combined as stop words and removed 

from the text. Excluding such words improves the quality and reduces the size of the data. 

3.4.2.2. Normalization: Lowercasing and Lemmatization 

Normalization for text processing refers to the transformation of words into a more 

uniform structure. This is essential in the text mining analysis as it requires algorithms to 

recognize when two words have a similar meaning, even if they are used differently or with a 
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different part of the speech [51]. Normalization begins with converting text into lowercase. It is 

essential; because without this conversion, algorithms would consider two identical words 

differently if one (capitalized) appears at the beginning of the sentence and another (lowercased) 

in the middle.  

Table 3.2. Accident titles, categories, and frequency from 2005 to 2019 

Title ID Title Name  Categories Counts Category ID 

1 
Mechanical and Electrical 

Failures 

Axles and Journal Bearings 461 10 

Body 157 11 

Brake 176 12 

Coupler and Draft System 207 13 

Doors 42 NI* 

General Mechanical Electrical Failures 7 NI* 

Locomotives 38 NI* 

Trailer Or Container On Flatcar 2 NI* 

Truck Components 462 18 

Wheels 559 19 

   Total  2,111  

2 
Miscellaneous Causes Not 

Otherwise Listed 

Environment Conditions 381 20 

Loading Procedures 948 21 

   Total  1,329  

3 
Rack, Roadbed, and 

Structures 

Frogs, Switches, and Track Appliances 918 30 

Other Way and Structure 85 NI* 

Rail, Joint Bar and Rail Anchoring 2414 32 

Roadbed 307 33 

Track Geometry 2308 34 

   Total  6,032  

4 Signal and Communication Signal and Communication 77 NI* 

   Total  77  

5 
Train operation - Human 

Factors 

Brakes, Use of 107 50 

Employee Physical Condition 1 NI* 

Flagging, Fixed, Hand and Radio Signals 66 NI* 

General Switching Rules 604 53 

Main Track Authority 13 NI* 

Miscellaneous 76 NI* 

Speed 263 56 

Switches 829 57 

Train Handling / Train Make-Up 854 58 

 Total  2,813  

*Not Included (counts <100) 
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The other normalization technique is to convert words into their base forms (stems), and 

the process of performing such conversion is known as stemming. Stemming is a rule-based 

technique that converts words into their base by removing the process of eliminating affixes, 

prefixes, suffixes, and prepositions. Another form of normalization is lemmatization, which 

works similar to stemming, but instead, it uses a dictionary to replace terms with their 

morphological root form [51]. In this study, the usage of stemming, lemmatization, and a 

combination of stemming and lemmatization were applied, but normalization with only 

lemmatization outperformed the other two possible methods. 

3.4.2.3. Tokenization 

Tokenization is a process of dividing the text into individual terms called tokens. 

Generally, tokens are a group of words represented by n-consecutive words or n-grams [52]. 

Creating a Document-Term Matrix (DTM) is the process of converting the text into a bag-of-

words format. It is a matrix based on a one-row-per-document configuration, i.e., each row 

represents an individual document, each column with separate terms, and cells indicate 

frequency describing the number of times each word appears in each document. This procedure's 

main objective is to transform quantitative data into a categorical format that can then be 

analyzed using matrix algebra and advanced statistical techniques. However, converting text into 

a matrix has some challenges including the processing of low-frequency documents. Ignoring 

such words could result in the overfitting of models. Consequently, eliminating such words 

would improve the model performance, reduce the dimension of the DTM, and help generalize 

the results. In this study, the sparse argument is used to remove the lower frequency terms. 

Sparsity refers to the threshold above which the term will be deleted. The study uses 
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sparse=0.99, which would remove any tokens missing from 99% of the documents. In other 

words, each token must appear in at least 1% of the documents to retain. 

3.4.3. Feature Extraction Using TF-IDF Term Weighting 

DTM converts the data to binary term vectors; i.e., a vector element sets to “one” if the 

corresponding word appears in a document; zero if it does not. But, converting the words to 

boolean will make all the words equally important, and in the unstructured text format, all 

words/tokens are not equally informative for all documents, thus impacting the analysis and 

findings. Some tokens could also not appear across many documents, which creates a difference 

between corpora and increase model complexity. Subsequently, to improve the models’ 

efficiency, it is vital to identify words based on their potential influence on the analysis and 

assign weights accordingly. 

Weights can be assigned in two ways: the first is by the number of times a term appears 

in a document, known as Term Frequency (TF). In this method, each term is important 

proportional to the number of times it occurs in the text. But in such a weighting scheme, large 

weights will be assigned to words that appear more frequently but might contain lesser 

information than the rare ones. The second focuses on the inverse occurrence of the terms across 

a collection of texts known as Inverse Document Frequency (IDF). This method is based on the 

belief that terms that rarely occur over a collection of texts have higher importance. 

Subsequently, each word’s importance is inversely proportional to the number of texts 

containing the term [53]. In other words, if a word frequently appears in one article and rarely in 

others, that word has good classification capabilities. Cai-zhi et al. [54] explain TF and IDF in 

their study. 
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Salton and Buckley [55] combined the concepts of TF and IDF to weight terms and 

concluded that TF-IDF performs better than using one of the two approaches. The main idea is 

that if a word or phrase frequently appears in an article and is rarely found in the other article 

within the same body of work, then the word has distinct classification capabilities. 

 𝑇𝐹 − 𝐼𝐷𝐹 = 𝑡𝑓 × 𝑖𝑑𝑓 (4) 

This study also followed the TF-IDF mainly because of its characteristics of considering 

each word’s frequency in every document, which reduces the effect of low-importance words for 

the classification task. 

3.4.4. Supervised and Semi-Supervised Machine Learning  

3.4.4.1. Supervised Learning 

For supervised learning, data must be split into a training dataset and a test dataset. The 

training dataset contains pre-labeled data, which helps in building a classifier, and the test data 

act as new data, which is used to provide an unbiased evaluation of the classifier that is built 

using the training dataset. The cross-validation procedure is also used to avoid over-fitting and 

under-fitting test data. Arteaga et al. [6] explained that a larger number of cross-validation folds 

should not use in applying machine learning models because it would leave a very small number 

of records for the testing set. Subsequently, results were generated using cross-validation folds 

(k=5). This implies that 80% of the data is used for training at every fold, and 20% of the data is 

used for generating test data. Figure 3.2 displays the structure of the supervised machine learning 

followed in the analysis. 

3.4.4.2. Semi- Supervised Learning 

The basic concept behind semi-supervised learning is that a classifier learns from 

unlabeled data as much as from the labeled data to obtain more accurate models [56, 57]. There 

are many methods to perform semi-supervised learning for either classification or clustering. In 
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this paper, we use a wrapper method for the multi-classification task. Keyvanpour and Imani [58] 

explained that the wrapper method is based on the self-training technique in which the classifier 

first trained with the reduced set of labeled data to classify the unlabeled instances in the training 

sample. Pise and Kulkarni [27] further explained that these unlabeled points, together with their 

predicted labels, are added to the training set. The classifier is then re-trained to predict the labels 

on unseen or future test data. The first stage setting in the self-training technique is classed as 

transductive learning, and the second stage is inductive learning [39]. Figure 3.3 represents the 

functionality for performing the semi-supervised self-training method.    

 

Figure 3.2. Supervised machine learning structure 
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Figure 3.3. Semi-supervised machine learning structure 

After the initial split of data into 80% training (Train) and 20% testing (Test), the classes/ 

labels were separated from the training and test sets and categorized as Y-Train and Y-Test, 

respectively. Next, both sets of the training dataset are further divided with an equal split of 50-

50 again, such that 50% instances have labels and the other 50% becomes unlabeled. Using X-

train and corresponding labeled Y-train, label propagation was conducted on the unlabeled data 

using scikit-learn from python (python-sklearn).  

The newly labeled transductive predictions then combined with the initial labeled data to 

create a new class set called Y_train_mixed, and the corresponding data is then concatenated into 

X-train data to form X_train_mixed. The Y_train_mixed and X_train_mixed are two matrices 

that are finally used to perform inductive learning, i.e., testing the final prediction capabilities of 

the model. Similar to supervised learning, the k-cross-validation procedure is also used to avoid 

overfitting (k=5). 
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3.4.5. Machine Learning Algorithms 

Machine learning techniques are based on the artificial intelligence system, which seeks 

to extract patterns from the historical data – known as learning, to make a prediction about the 

new/unseen data. In many previous research studies, machine learning models were shown to be 

efficient and effective for performing text classification. This study used several variant 

techniques for the analysis like random forest, support vector machine, extreme gradient 

boosting, and k-nearest neighbor. 

3.4.5.1. Random Forest 

Random forest is a supervised learning technique based on a bagging method in which 

decision trees are used as a base classifier. The basic concept behind RF is that the crowds' 

wisdom increases the overall results, i.e., aggregating the predictions of a large number of weak 

and uncorrelated decision trees will improve the prediction results. 

In standard decision trees, each node is split by the best feature, among all other features, 

using splitting criteria. However, the RF algorithm first selects a random subset of 𝑘 features for 

each node and then decides on the best split among these randomly chosen subsets of features. 

For unknown cases, the prediction is made by aggregating decision tree results using majority 

voting for classification and averaging for regression tasks [59]. Also, RF is strongly resistant to  

overfitting because of randomness applied in both sample and feature space [60]. 

3.4.5.2. Support Vector Machine (SVM) 

As explained by Bridgelall [61], a SVM is a supervised non-probabilistic binary linear 

classifier. Unlike the probabilistic classifiers, where the model considers all data to provide a 

solution as the probability distribution for each class, SVM uses a small subset of the data 

(feature vectors) to separate data objects into only two classes -  a positive class 𝑦𝑖= +1, and a 
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negative class 𝑦𝑖= -1. During training, the SVM classifier uses optimization techniques to find 

the decision boundary (a linear hyperplane) in the feature space to facilitate maximum separation 

between two classes.  

3.4.5.3. Extreme Gradient Boosting (XGBoost) 

Boosting algorithms were introduced by the machine learning community mainly to solve 

classification problems. The main characteristic of boosting is to combine several simple models 

(week learners) and convert them to a strong and robust classifier. Friedman [62] extended the 

boosting to the regression and developed a gradient boosting method (GBM). It is a sequential 

training method focusing on the gradient reduction of the loss function at each stage by adding a 

new decision tree. The algorithm continues until a given number of iterations is reached [63]. 

Chen and Guestrin [64] further extended the concept of GBM and introduced extreme 

gradient boosting (XGBoost). The core improvement is the normalization of the loss function to 

reduce the model variance [65]. Also, XGBoost has other advantages over the GBM. For 

instance, XGBoost is fast and more reliable than other decision tree-based machine learning 

techniques [65], less prone to overfitting [66]; and supports a linear classifier instead of a 

decision tree, which applies to both the classification and regression. 

3.4.5.4. K-nearest neighbor (KNN) 

KNN is a lazy learning technique that explores the group of K objects in the closest 

neighbors among the training data (similar) to objects in the new or test data [67]. Similarly, in 

the text classification, KKN classifiers discover closest neighbors within learning texts based on 

the classes defined and then compare them with the test text to give weighting to the texts for 

identifying their classes [68]. In general, K-NN uses Euclidean distance to categorize the texts 

into one or more pre-defined classes. 
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3.4.6. Model Selection 

Although we have used a few different machine learning models for making predictions, 

each model's performance is unique and could be affected by factors like data structure, 

characteristics of the data, type of the analysis, data volume, and related complexities and many 

more. The selection of a particular model is by comparison of a selected performance metric 

required. Subsequently, we use the confusion matrix and a Receiver Operative Curve (ROC) for 

each set of classes and subclasses to evaluate model performance. The next subsections 

summarize the details of the confusion matrix and ROC. 

3.4.6.1. Confusion Matrix 

A confusion matrix is a standard machine learning phenomenon to measure any model's 

accuracy by comparing predictions versus actual values. In a binary classification problem 

(which has only two classes to classify), a confusion matrix consists of True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative(FN), which helps in calculating the 

performance measures including precision, recall, accuracy, and F-1 Score.  

• Accuracy: fraction of the total number of samples correctly classified by the model.  

• Precision: fraction of positive predictions that are correct. 

• Recall: fraction of all positive samples predicted as positive; also known as sensitivity 

or true positive rate (TPR)  

• F1 Score: the harmonic mean of precision and recall. The value of the F-1 score lies 

between 0 and 1.  

In multi-class classification, where the matrix has more than two classes to classify, there 

are no positive or negative classes. Instead, the above features are calculated based on the one-

vs-rest transformation, which involves training a single classifier per class, with the samples of 
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that class as positive and the collective sample of all other classes as negative. The technique 

requires the base classifier to produce a real-values confidence score for its decision rather than 

just a class label [69] and can be presented as a micro F1 score.  

3.4.6.2. Area Under the Curve (AUC) and Receiver Operative Characteristic (ROC) 

In general, ROC is the probability curve, and AUC represents separability measures [69]. 

In classification problems, AUC- ROC is a performance indicator to visualize the quality of 

models graphically at various threshold settings. The graph is plotted to indicate the dichotomy 

of True Positive Rate (TPR) from the positive samples on the y-axis and False Positive Rate 

(FPR) from the negative samples on the x-axis [59]. Bridgelall [59] explained the concept of 

ROC in his study and highlighted that less than 0.5 AUC is worse than assigning the classes 

based on random guessing. Thus, the classifier's main objective is to maximize the AUC and 

move the operating point as close to the perfect classification as possible. 

3.4.6.3. Matthews Correlation Coefficient (MCC) 

Accuracy, recall, and F1-score computed on confusion matrices are appropriate methods 

to evaluate model performances, especially for a binary classification problem. However, such 

statistical measures make over-optimistic predictions/estimations on the multiclass dataset 

because of the imbalanced data set between classes (where the number of samples is not the 

same). An effective solution to overcoming the class imbalance problem is the Matthews 

Correlation Coefficient (MCC). The MCC calculates the Pearson product-moment correlation 

coefficient between actual and predicted values ranging from -1 and +1 [70]. A coefficient of +1 

represents a perfect classification, -1 as perfect misclassification, and MCC = 0 is as good as 

random predictions and is calculated using the following equation.  

 𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (5) 
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The MCC considers the balanced ratios of all categories of the confusion matrix (TP, FP, 

TN, FN) and generates a higher score only if the majority of the positive instances are predicted 

as positives and negatives instances as negative.  

3.4.7. Local Interpretable Model-Agnostic Explanations (LIME) 

LIME provides instance-based explanations to the prediction of a classifier 𝑓 by fitting a 

simpler, interpretable explanation model 𝑔 locally around the data point 𝑥 on which 

classification is to be explained [71]. In other words, this algorithm provides an explanation of 

every record in the dataset. The output of each class is predicted using machine learning models, 

then a simpler model is fitted, and the attributes of this simple model are used as explanations. 

The simple learned model has a good local approximation of the machine learning model 

predictions but does not have a good global approximation [72].  

For the text classification, LIME basically tests the changes to classification when 

introducing variations of the data into machine learning models. Variation of the data is 

generated by randomly removing words from the original text and tracking the performance. The 

model returns each word's predictive probability in each of the sentence variations, known as the 

LIME score, along with each word's frequency.  

Local explanations are useful in many ways, but in the perspective of the study's 

objective, identifying keywords that could highlight the factors responsible for causing accidents, 

the global explanation is more important and adds more logic to the conclusion. LIME has an 

option of a sub-modular pick (SP-LIME) that offers a global explanation. SP-LIME is the 

process of running the explanation model on a diverse but representative set of instances that 

could be considered a global representation of the model. However, for the text analysis of the 

rail accidents, estimating the true global representation would be more useful than using the 
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representative sample. Arteaga et al. [2] proposed a new global cross-validation LIME (GCV-

LIME) technique for estimating the global explanation. In their study, GCV-LIME is based on an 

intuitive aggregation strategy of the individual LIME scores, as mentioned in equation 6. 

 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑡) =  ∑ 𝛼(𝑡, 𝑒)𝑒∈𝐸  (6) 

The overall importance of word 𝑡  in the set of LIME explanation 𝐸 is calculated as the 

aggregation of the individual LIME score 𝛼(𝑡, 𝑒) for word 𝑡 in explanation 𝑒 ∈ 𝐸. Arteaga et al. 

[2] concluded that this aggregation strategy is ultimately combining the word frequency and the 

average of the individual LIME score returned by the LIME explanations and can be represented 

as equation 7.  

 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑡) =  ∑ 𝐼(𝛼(𝑡, 𝑒)𝑒∈𝐸 ≠ 0)  ×
∑ 𝛼(𝑡,𝑒)𝑒∈𝐸

∑ (𝛼(𝑡,𝑒)≠0)𝑒∈𝐸
  (7) 

Where 𝐼(𝛼(𝑡, 𝑒)  ≠ 0 is the indicator function that returns one when the LIME score of 𝑡 

in 𝑒 is non-zero. Thus, the first half of equation 7 aggregates the value representing the number 

of times a word was returned as an explanation. The second half of equation 7 calculates the 

average of the individual LIME scores.  

Although equation 7 helps convert local explanations to the global scale, such results are 

inappropriate to be considered global influence scores to rank the terms as performed by Arteaga 

et al. [2]. Such a score represents each word's average impact in local explanations based on each 

local record. Thus, each word's predictive probability in each sentence variation does not 

necessarily have the same effect over the variation in the global dataset. Also, in a global dataset, 

each word's importance is inversely proportional to the number of texts containing the term. 

Hence, this study will expand the work of Arteaga et al. [2] by including the global word 

importance (TF-IDF) within the context body of words and called GLIME, which is represented 

as equation 8 
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 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑡) =  ∑ 𝐼(𝛼(𝑡, 𝑒)𝑒∈𝐸 ≠ 0)  ×
∑ 𝛼(𝑡,𝑒)𝑒∈𝐸

∑ (𝛼(𝑡,𝑒)≠0)𝑒∈𝐸
 × 𝑇𝐹 − 𝐼𝐷𝐹𝐺    (8) 

Where 𝑇𝐹 − 𝐼𝐷𝐹𝐺  is the global inverse weight of each term within the corpus identified 

in stage 3. Including global inverse weights would provide the two benefits. First, the output will 

represent the importance of each word to a document in a collection or corpus (globally). 

Second, the findings will be compared in the true sense with the results of the other machine 

learning models' variable importance at a global scale which otherwise is not possible.  

3.5. Results 

3.5.1. Influential Words Based on TF-IDF 

The TF-IDF weights define the importance of the words in the corpus. However, initial 

results highlighted some obvious words, including but not limited to “the,” “found,” “see,” and 

“more” as the most important; however, they have no actual contribution to the analysis. Thus, 

removing such prominent discriminate words is recommended to evaluate the impact of unique 

words as factors associated with accidents [2]. Figures 3.4, 3.5, 3.6, 3.7, and 3.8 represent the top 

5 tokens/words based on the TF-IDF weights for title 1, title 2, title 3, title 5, and collective data.  

The results show that the TF-IDF weights are independent of the number of observations. 

Additionally, most words appropriately represent their sub-category of accident classes and can 

be used as tags to categorize the content. For instance, tornado, weather, and gust represent 

category-20 (environmental conditions); and the coupler, gear, and drawbar symbolize category-

13 (coupler and draft systems). Moreover, a few words highlighted the plausible cause of the 

issue like tread, buildup for causing wheel related accidents. And other several words do not 

provide any insights or information which could be helpful in either categorizing the accidents or 

identifying the potential cause. For instance, words such as amt, downloaded, web, and brc.   
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Figure 3.4. Title 1 most influential words based on tf-idf weights 

 

Figure 3.5. Title 2 most influential words based on tf-idf weights 

 

Figure 3.6. Title 3 most influential words based on tf-idf weights 
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Figure 3.7. Title 5 most influential words based on tf-idf weights 

3.5.2. Machine Learning Algorithm Selection 

A python library, Scikit-Learn, was used to compare the effectiveness of RF, SVM, 

XGBoost, and KNN for semi-supervised and supervised techniques. Different hyper-parameters 

were tuned using a grid search process for the different algorithms. We used stratified splitting 

for each category to ensure the same proportion of samples were available for the training and 

testing data.  

Table 3.3 compares the predictive performance of supervised and semi-supervised 

machine learning algorithms using Micro F1, averaged ROC, and MCC. Results are consistent 

for the different classifiers. There are no explicit explanations available for using the averaged 

ROC to evaluate algorithm performances for classifying multiclass imbalanced data, hence the 

final evaluation was deemed to be based on the Micro F1 and MCC.  

As per the results in Table 3.3, supervised learning techniques performed better than 

semi-supervised learning, indicating that the inclusion of unlabeled data in the classifier degrades 

the algorithms' prediction performances. The prevalence of such performance degradation is 

likely under-reported due to publication bias [73, 40]. Additionally, RF models outclassed all 

other algorithms in every category; therefore, this technique was used to perform LIME analysis.  
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3.5.3. Lime 

The local explanations were generated using RF and k= 5 as the cross-validation folds. 

The train and test dataset split ratio is consistently maintained as 80-20%. Figure 3.8 shows an 

example of the prediction of an individual explanation using LIME. The output in this figure 

includes the prediction probability of an observation belonging to a correct class (positive) or 

otherwise (negative). In addition, the explanation includes the words contributed in favor of and 

against the overall prediction probabilities and their weights. For instance, in Figure 3.8, we can 

see that the words “winds,” “severe” “weather,” and “articulated” all contributed to the final 

prediction score of 0.58.  

 

Figure 3.8. Prediction results of an individual explanation using LIME 

Similarly, in figure 3.9, “lateral,” “forces,” “vertical,” and “pulling” contributed against 

the prediction probabilities for the positive classification, which means that this single variable (a 

text explanation in this case) should not be classified under the tested category.  
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Figure 3.9. Prediction results of an individual explanation using LIME 

Table 3.3. Machine learning algorithm results 

  Supervised Learning Semi-Supervised Learning 

Cause 1 
      

  Micro F1 MCC Avg ROC Micro F1 MCC Avg ROC 

RF 0.71 0.66 0.86 0.66 0.59 0.9 

SVM 0.63 0.56 0.86 0.58 0.5 0.9 

XGBoost 0.68 0.62 0.86 0.63 0.56 0.9 

KNN 0.58 0.49 0.86 0.51 0.41 0.9 

Cause 2 
      

  Micro F1 MCC Avg ROC Micro F1 MCC Avg ROC 

RF 0.86 0.71 0.89 0.78 0.56 0.78 

SVM 0.83 0.65 0.88 0.77 0.54 0.79 

XGBoost 0.86 0.7 0.89 0.8 0.59 0.79 

KNN 0.74 0.47 0.89 0.76 0.53 0.78 

Cause 3 
      

  Micro F1 MCC Avg ROC Micro F1 MCC Avg ROC 

RF 0.71 0.61 0.86 0.7 0.6 0.86 

SVM 0.68 0.58 0.86 0.69 0.59 0.86 

XGBoost 0.69 0.6 0.86 0.68 0.58 0.86 

KNN 0.61 0.48 0.86 0.62 0.49 0.86 

Cause 5 
      

  Micro F1 MCC Avg ROC Micro F1 MCC Avg ROC 

RF 0.71 0.64 0.87 0.62 0.53 0.85 

SVM 0.65 0.57 0.88 0.62 0.52 0.87 

XGBoost 0.69 0.61 0.88 0.64 0.54 0.87 

KNN 0.61 0.51 0.88 0.53 0.42 0.87 

 

Table 3.4 shows the sample of aggregation of LIME explanations for each type of 

accident. The actual results include words, the number of times each word is returned as an 
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explanation from all of the folds (count), the summation of the LIME score (sum), and an 

average of the LIME score. Note that due to space limitations, Table 3.4 shows only the top five 

words of each rail accident category. However, the complete list of words would be able to 

highlight more insights highlighting different causes of rail accidents.  

The global scores for each subcategory were calculated using Equation 4 and are 

represented in Table 3.5.  Several independent words are sufficient enough to highlight the real 

issues, as shown in Table 3.5. For instance, “extreme,” “gust,” “tornado,” and “weather” are 

clearly highlighting the accidents associated with the bad weather. Similarly, “settle,” “washout,” 

“flood,” and “soft” are highlighting the impact of floods on the track conditions.  On the other 

hand, there are some ambiguous words that do not provide additional insights about the core 

issues. For example, “protect,” “stand,” and “pass.” One of the possible reasons is that the study 

is using word frequency to extract explanations which could be improved in the future by 

implying more semantic information, as highlighted by Arteaga et al. [2] and Cambria and White 

2014 [74] .  

To add significance to the analysis, this study also found the commonly associated terms 

frequently used with each other. Although various correlation coefficients were tested, 0.2 was 

used as the threshold. A lower threshold resulted in identifying relationships mainly with 

misspelled words (spelling mistakes, short forms, jargon) which were not useful for 

understanding the causal variables. Greater than 0.2, we risk losing the significant hidden 

relationships between words. Due to space limitations, Table 3.6 represents only a sample of the 

most significant words (from the LIME results) and their relationships with two variables 

(words). The full list of the top LIME words and associated variables are presented in appendix.  
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The results in Table 3.6 highlight some words, when used together or in a single sentence 

that are useful in identifying the cause of train accidents. For instance, the, the words “journal,” 

“burn,” and “overheat” represent the accidents that happened because of the problem of 

overheating, which resulted in burnt journal and caused the derailment. These narratives from the 

raw data could help us understand this relationship better. 

• Narrative 1 “DERAILMENT OF CSX DETOUR TRAIN DTR-29 AT MP 101.9 

BECAUSE OF BURNT OFF JOURNAL (ROLLER BEARING-FAILURE FROM 

OVERHEATING)” 

• Narrative 2 “MRVP0T-17 TRIPPED THE DRAGGING EQUIPMENT DETECTOR 

AT MILE POST 372.9. UPON INSPECTION, IT WAS DISCOVERED THAT CAR 

UTLX640581 HAD DERAILED AND HAD AN AXLE JOURNAL BURNED OFF.” 

Similarly, “stiff,” “bolster,” and “improper” represents derailment due to stiff bolster and 

improper swiveling (refer to appendix). The narratives from the raw data could also help in 

relating the words with the accident narratives.  

• Narrative 3 “GSC5TU-25 HAD LEADING WHEELS ON CAR UP72635 DERAIL 

DUE TO A TRUCK BOLSTER STIFF, IMPROPER SWIVELING.” 

• Narrative 4 “CREW DERAILED ONE CAR WHILE DRAGGING OUT OF YARD 

BECAUSE DERAILED CAR HAD A STIFF BOLSTER AND WAS NOT SWIVELING 

PROPERLY. TRACK IS NOT CWR.” 

The other group of words mentioned in table 3.6 also highlights valuable information 

about factors that are responsible for causing the derailment. These results could be useful in 

many different ways. The first is that results could be useful in categorizing the accidents based 

on each subcategory. Second, the results help in creating a database of the factors responsible for 
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causing derailments based on micro level. The database could be useful in developing some 

countermeasures to reduce the number of accidents and the severity of these accidents. The third 

methodology could also be helpful in identifying mistakes while labeling the accidents categories 

by the engineer. For instance, the text description in narrative 5 is labeled under C558 (Train 

handling/Train-Makeup), but the text highlights a different reason for the accident.  

• Narrative 5 “BURNT OFF JOURNAL ON 65TH CAR CAUSED DERAILMENT OF 

CARS.” 

All the analyses done in the study helped illustrate the benefits of conducting text mining 

and helped in answering the first three objectives of the study. So, now we can proceed to the 

final question of the study to determine how different reporters highlight the same factors 

differently and how this study is useful in handling a different part of speech challenge. For 

instance,  

• Narrative 6 “GSBWMD-17 SPOTTING TRAIN TO FRONTIER COOP (GRAIN 

ELEVATOR) WHEN FCTX1028 CLIMBED THE SWITCH POINT AND DERAILED.  

4 MORE CARS ALSO DERAILED. FRONTIER COOP MAINTANS TRACK. UP'S 

ML TRK ALSO DAMAGED BY JACKKNIFED CARS.” 
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Table 3.4. Aggregation of LIME explanations for each type of accident 

LIME Results for C110   LIME Results for C220   LIME Results for C550 

Words Count Average 
 

Words Count Average 
 

Words Count Average 

journal 46 0.1630 
 

wind 20 0.1546 
 

roll 29 0.0794 

axle 38 0.1201 
 

snow 9 0.1219 
 

hand 14 0.0640 

burn 25 0.1545 
 

extreme 8 0.1319 
 

secure 8 0.0895 

bear 27 0.0791 
 

release 30 0.0295 
 

handbrake 8 0.0805 

failure 24 0.0882 
 

high 14 0.0527 
 

sufficient 4 0.0882 

LIME Results for C111   LIME Results for C221   LIME Results for C553 

Words Count Average 
 

Words Count Average 
 

Words Count Average 

sill 11 0.1668 
 

switch 54 0.0334 
 

shove 201 0.0482 

ton 18 0.0319 
 

active 1 0.0215 
 

track 287 0.0117 

plate 13 0.0315 
 

force 10 0.0206 
 

fail 73 0.0313 

body 3 0.0657 
 

bottom 1 0.0195 
 

control 25 0.0563 

old 5 0.0282 
 

yard 28 0.0185 
 

protect 18 0.0723 

LIME Results for C112   LIME Results for C330   LIME Results for C556 

Words Count Average 
 

Words Count Average 
 

Words Count Average 

brake 31 0.0867 
 

switch 185 0.0838 
 

speed 34 0.0985 

rig 7 0.1732 
 

point 111 0.0788 
 

restrict 14 0.0767 

air 21 0.0483 
 

yard 207 0.0139 
 

run 117 0.0083 

hose 8 0.1244 
 

climb 32 0.0585 
 

mph 23 0.0309 

valve 4 0.1020 
 

shove 150 0.0124 
 

failure 32 0.0208 

LIME Results for C113   LIME Results for C332   LIME Results for C557 

Words Count Average 
 

Words Count Average 
 

Words Count Average 

drawbar 19 0.1598 
 

rail 408 0.0713 
 

switch 239 0.0809 

coupler 8 0.1461 
 

break 285 0.0934 
 

run 124 0.0523 

pin 8 0.1093 
 

emergency 176 0.0176 
 

pull 199 0.0237 

fall 13 0.0482 
 

head 161 0.0169 
 

line 142 0.0313 

miss 10 0.0533 
 

car 653 0.0041 
 

movement 70 0.0275 

LIME Results for C118   LIME Results for C333   LIME Results for C558 

Words Count Average 
 

Words Count Average 
 

Words Count Average 

truck 61 0.0628 
 

roadbed 23 0.0842 
 

brake 60 0.0757 

side 66 0.0317 
 

soft 18 0.0900 
 

excessive 39 0.0662 

climb 23 0.0851 
 

settle 11 0.1320 
 

slack 27 0.0838 

pull 68 0.0274 
 

rain 14 0.0569 
 

use 33 0.0677 

car 285 0.0055 
 

heavy 11 0.0296 
 

curve 29 0.0741 

LIME Results for C119   LIME Results for C334         

Words Count Average 
 

Words Count Average 
    

wheel 106 0.0779 
 

wide 98 0.0891 
    

break 93 0.0512 
 

gage 69 0.0771 
    

rim 14 0.1598 
 

gauge 53 0.0782 
    

tread 18 0.1238 
 

irregular 32 0.0984 
    

flange 18 0.1216 
 

level 28 0.0814 
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Table 3.5. Results of word association based on the global LIME score 

C110 C220 C550 

journal 
burn 

(0.46) 

overheat  

(0.27) 
extreme 

velocity 

(0.71) 

environmental 

(0.65) 
hand 

brake 

(0.88) 

apply 

(0.45) 

burn 
journal 

(0.46) 

mile 

(0.26) 
velocity 

extreme 

(0.71) 

environmental 

(0.46) 
secure 

properly 

(0.5) 

sufficiently 

(0.44) 

C111 C221 C553 

sill 
break 

(0.48) 

old 

(0.38) 
improperly 

load 

(0.34) 
  failure 

control 

(0.72) 

improperly 

(0.42) 

plate 
rigid 

(0.59) 

center 

(0.42) 
load 

improperly 

(0.34) 

empty 

(0.35) 
Shove 

track 

(0.33) 

protect 

(0.32) 

C112 C330 C556 

hose 
air 

(0.78) 

separation 

(0.56) 
gapped 

point 

(0.62) 

switch 

(0.42) 
speed 

excessive 

(0.44) 

rock 

(0.37) 

valve 
malfunction 

(0.81) 

tread 

(0.37) 
stock 

rail 

(0.73) 

point 

(0.56) 
improperly 

line 

(0.66) 

switch 

(0.63) 

C113 C332 C557 

gear 
draft 

(0.85) 

broken 

(0.8) 
break 

rail  

(0.62) 

bar 

(0.41) 
switch 

line 

(0.48) 

point 

(0.4) 

yoke 
broken 

(0.72) 

drawbar 

(0.62) 
bar 

joint 

(0.57) 

break 

(0.41) 
through 

run 

(0.74) 

previously 

(0.31) 

C118 C333 C558 

stiff 
bolster 

(0.45) 

improper 

(0.41) 
settle 

roadbed 

(0.49) 

single 

(0.38) 
buff 

force 

(0.49) 

excessive 

(0.34) 

insufficie

nt 

clearance 

(0.57) 

bear 

(0.51) 
temporary 

speed 

(0.45) 

mph 

(0.33) 
brake 

use 

(0.53) 

dynamic 

(0.48) 

C119 C334      

buildup 
slag 

(0.45) 

tread 

(0.4) 
thermal 

misalignment 

(0.82) 

traverse 

(0.32) 
     

tread 
build 

(0.52) 

buildup 

(0.4) 
buckle 

track 

(0.41) 

sunkink 

(0.35) 
      

 

• Narrative 7 “MAMSKCK1 08A CREW WAS IN THE PROCESS OF SETTING OUT 

57 CARS FROM 8102 TRACK TO 8101 WHEN CEFX 350002, B-END WENT 

BEHIND THE SWITCH POINT OF THE 8106 TRACK SWITCH. IT 

ENCOUNTERED THE 8105 SWITCH POINT AND THE OUTSIDE WHEEL 

STRUCK THE SWITCH POINT CAUSING SWITCH TO BE LINED FROM 8105 

TRACK. CEFX 35 0002 STRATTLED THE TRACKS FROM THE LEAD TO 8105 

DERAILING THE WWLX 961142, NO HAZARDOUS MATERIALS LE AKING.” 

Narrative 6, and Narrative 7describe the same subcategory of the accident but very 

differently. Without a careful reading of these narratives or without talking to the safety 
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engineer, it would be difficult to examine the reasons behind these accidents. Consequently, a 

further micro-level analysis, as presented in this study, is required. Also, the results herein help 

in identifying many typographical errors, incomplete descriptions, overuse of jargon, and even 

missing text information which requires specific attention to improve the identification of causal 

factors resulting in these accidents.   

3.6. Summary and Conclusion  

This study uses a text narratives-based analytical approach using text mining 

applications, machine learning models, and interpretable machine learning for each sub-category 

to identify factors responsible for rail accidents. Thus, we propose a new approach called 

GLIME, a technique used to convert the local into the global explanations by aggregating the 

individual LIME explanation multiplied by the global TF-IDF values.  

Using different machine learning models, we used text narratives describing freight train 

derailments of Class I railroad accidents from 2005 to 2019 to compare supervised and 

unsupervised machine-learning algorithms. Our results indicate that the supervised algorithm and 

the random forest model performed best for conducting text-based classification. A plausible 

reason that Random Forest was the best model is that it uses both ensemble methods and feature 

randomness to create an uncorrelated forest of decision trees. Both procedures collectively add 

more randomness to the model and allow splitting the node based on the best feature among a 

random subset of features while growing the trees. This reduces the propensity to overfit to the 

training data, which yields a more generalized model for improved predictions on unseen data. 

Then, we used the best-performing algorithm and model in running LIME to identify 

local explanations highlighting factors associated with train derailments. LIME results are 

helpful in explaining the words’ weights and level of effects at the local level. Still, these words 
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do not necessarily have the same impact on the global corpora, and thus, we used GLIME to 

explain the importance of each word to a document in a collection or corpus (globally). In 

essence, we found a correlation between the top variable (Table 3.4) and global explanatory 

variables (Table 3.6). For instance, the correlation between the words “journal,” “burn” (0.46), 

and “overheat” (0.27) represents that while defining the accidents related to axle and journal 

bearing, journal and bearing are generally used 46% of the time in the narration together and 

27% times of the time with the word overheat. It also helps understand that the occurrence of 

accidents because of overheating, which resulted in a burnt journal, is relatively high.  

A possible limitation of the study is using TF-IDF weights for the analyses rather than 

schematics from the narrative, which could highlight some unimportant words to be significant 

in predicting classification tasks. In the future, we will counter this issue by transforming the text 

narrative into more structured data or by using further advances in natural language processing 

(NLP). Another challenge is the variation and uncertainty inherent with machine learning, text 

mining techniques, and LIME. To minimize the variation, we will use tabular data and text 

narratives to formally characterize the results.  

Importantly, this study showed that as compared to previous methods, text narratives can 

more robustly identify accident contributors even at the local level, as there is a lower systemic 

error rate in the text narrative compared to tabular data. In addition, the methodology also 

provides solutions to counter errors, including typographical errors and data inconsistencies. 

Moreover, this methodology will help researchers, industry engineers, and other personnel 

identify the main factors responsible for causing rail accidents and develop better-targeted 

countermeasures to prevent these accidents to move toward achieving FRA's zero accident 

vision.  
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4. RANKING RISK FACTORS IN FINANCIAL LOSSES FROM RAILROAD 

INCIDENTS: A MACHINE LEARNING APPROACH 

4.1. Abstract 

The reported financial losses from railroad accidents since 2009 have been more than 

$4.11 billion dollars. This considerable loss is a major concern for the industry, society, and the 

government. Hence, identifying and ranking the factors that contribute to financial losses from 

rail accidents would inform strategies to minimize them. To achieve that goal, this paper 

evaluates and compares the results of applying different non-parametric statistical and regression 

methods. The models compared are random forest, K-nearest neighbors, support vector 

machines, stochastic gradient boosting, extreme gradient boosting, and stepwise linear 

regression. The results indicate that these methods are all suitable for analyzing non-linear and 

heterogeneous railroad incident data. However, the extreme gradient boosting method provided 

the best performance. Hence, the analysis used that model to identify and rank factors that 

contribute to financial losses, based on the gain percentage of the prediction accuracy. The 

number of derailed freight cars and the absence of territory signalization dominated as 

contributing factors in more than 57% and 20% of the accidents, respectively. Partial dependence 

plots further explore the complex non-linear dependencies of each factor to better visualize and 

interpret the results. 

4.2. Introduction 

Every year, railroads invest an average of 40% of their revenue on capital expenditures, 

maintenance, and condition monitoring [1].  In spite of these investments, the high number of 

accidents falls far short of the ultimate goal of the Federal Railroad Administration (FRA) to 

reduce rail-related accidents, injuries, and fatalities to zero [2]. For a decade prior to 2019, nearly  
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25,000 accidents caused 446 deaths, 5,137 injuries, and more than $4.11 billion in financial loss 

seasonally adjusted to 2018 dollars [3]. Class I railroads accounted for 78% of those accidents, 

more than 72% of the resulting injuries and fatalities, and 81% of the total financial loss. Figure 

4.1 summarizes the annual class I railroad accidents and the financial losses for the decade prior 

to 2019. 

 

Figure 4.1. Class I railroad incidents from 2009 to 2018 and the reported financial loss 

The consistently large number of accidents and the injuries and fatalities they cause place 

a huge social and economic burden on the industry, environment, and society. Hence, it is vital to 

understand the dominant accident causes to guide strategies and policies that could minimize 

financial losses from accidents. Subsequently, the goal of this paper is to apply data mining and 

machine learning techniques to 15 years of railroad accident data from 2004-2018 to reveal 

insights about the major contributing factors to financial losses from class I freight train 

accidents. 

The FRA maintains historical data of railway accidents in three primary databases. These 

datasets are huge and have grown far beyond the ability of humans and commonly used software 
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tools to capture, manage, and process data within a “tolerable elapsed time” [4]. The available 

accident data are in non-uniform formats. The data includes heterogeneity, variety, unstructured 

features, missing values, incorrectly formatted values, and redundancy [5], [6]. Hence, it is not 

possible to apply standard statistical methods directly to the raw data. Therefore, advanced 

techniques such as data mining (DM) and machine learning (ML) are necessary to prepare the 

data for processing. 

DM is helpful in analyzing vast amounts of data by using many different techniques to 

discover useful patterns and relationships among features [7], [8]. Kohavi [9] specified that 

insight and prediction are the two primary goals of DM. Insights identify patterns and trends that 

are useful, whereas prediction leads to the identification of a model that provides reliable 

forecasts based on new input data. Many researchers have applied different DM/ML 

methodologies to analyze factors that cause accidents on roadways [10], [11], [12], at highway 

rail-grade crossings (HRGC) [13], [14], and  [15], and on railways [16], [17]. For instance, Sohn 

and Lee [12] compared the results of neural networks, Bayesian fusion, decision tree, bagging, 

and clustering models on Korean road accident data. Their results indicate that the clustering-

based classification works better than the other methods. Depair et al. [11] also examined 

clustering techniques to identify homogenous accident types. They used vehicle types as the 

basis for segmentation and evaluated the relationship to injuries caused by different segments.  

Some researchers used DM techniques to analyze road-related factors and linked them to 

accident severity. Beshah and Hill [18] compared different DM models to investigate the role of 

road-related factors in accident severity in Ethiopia and concluded K-nearest neighbors 

performed best. Mousa et al. [19] compared ability of tree-based ensemble methods to predict the 

onset of lane changing maneuvers using connected vehicle data and found that extreme gradient 
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boosting (XGBM) was the best models. The highest accuracy was 99.7%, and that was better 

than methods using decision trees, gradient boosting, and (random forest) RF ensemble methods.  

Other related areas of research focused on HRGC accidents. Hu et al. [20] evaluated the 

relationship between crash frequency and the relevant attributes of highway and railroad 

systems. Ghomi et al. [13] used DM techniques to identify some of the main factors associated 

with injury severity of road users involved in HRGC accidents. Kang and Khattak [14] 

investigated the severity of HRGC accidents by clustering the data using a combination of DM 

and statistical methods. Researchers also use DM/ML techniques to examine railroad accident 

data. Brown  [16] conducted text mining for identifying the contributors to rail accidents. 

Mirabadi and Sharifian [17] used association rule mining to reveal the relationships and patterns 

in Iranian Railway accident data. Many other researchers have conducted studies that use other 

analytical criteria to discover relationships between accident risk and contributing factors [8], 

[21], [22], and [23].  

All research that analyzed rail or road accidents using DM techniques focused on 

identifying contributing factors that relate to attributes of the respective infrastructure. There is a 

gap in research to identify and rank risk factors in financial loss from railroad accidents. 

Subsequently, the main contribution of this research is a comparison of the ability of different 

non-parametric, tree-based DM methods, and a regression model to identify the risk factors for 

the financial loss by analyzing 15 years of railroad class I freight train accident data. The authors 

then use the best predictive model to rank the major factors based on their influence on financial 

loss. This research extends previous work in railroad safety in the following two ways: 

1. It isolates factors that lead to financial losses. 

2. It ranks the importance of the major contributors. 
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The remainder of the paper is structured as follows:  Section 2 introduces the models 

used to identify the factors that influence financial loss. Section 3 describes the data structure, 

variables, cleaning, and handling. Section 4 compares the model outputs for selection, variable 

ranking, and the marginal effect of the variables. Section 5 presents the final remarks and 

describes future work. 

4.3. Model Development 

The ML methods use tree-based models (random forest, stochastic gradient boosting 

method, and extreme gradient boosting method), K-nearest neighbor method, and support vector 

machine to classify the data according to the selected features or factors. In addition, stepwise 

linear regression provides a baseline for comparison because of its proven effectiveness in 

previous research [24], [25]. This sections will provide basic descriptions of the six models, all 

of which are available from the caret package of the R Project for Statistical Computing. 

4.3.1. Model Regularization 

Model regularization involves trading off training data bias for a reduced variance on 

new data. This is achievable by partitioning the data appropriately into development and test sets. 

The former is used for cross-validation while tuning the model, and the latter is used to test the 

final regularized and tuned model [26]. Running the models with many different variations in 

partitioning revealed that a 70-30 split between development (training/validation) and testing 

datasets yielded the lowest variance. 

4.3.2. Machine Learning Algorithms 

4.3.2.1. K-Nearest Neighbor Method 

K-nearest neighbor (KNN) is a supervised learning algorithm that uses non-parametric 

algorithm that does not require any assumptions on the underlying data distribution. This 



 

81 

algorithm predicts the class of an observation by searching through the entire dataset to identify 

K other observations that are most similar to it, and then takes the class associated with the 

majority. The measure of similarity is based on one of several available distance measures [27], 

[28]. This analysis selects the Euclidean distance because it is the most common. 

4.3.2.2. Random Forest 

Standard decision trees split the dataset by selecting an attribute and a threshold that 

maximizes the purity of subtrees. The purity of a node increases as the class imbalance of the 

dataset within that node increases. However, this tree-splitting strategy results in trees that tend 

to over-fit the data and subsequently fail to regularize by exhibiting a high variance on new data. 

Random forest (RF) addresses the regularization issue by introducing two levels of 

randomness—namely the random selection of learning data and the random selection of decision 

attributes for tree splitting. Such an adjustment results in better performance than many other 

classifiers models, and improved robustness against over-fitting [29], [30]. 

RF learns an ensemble of trees by bootstrapping the same dataset through random 

sampling with duplication, and then randomly selecting a predetermined number of attributes for 

subsequent tree splitting [30]. The selected class of observation is the majority vote from all trees 

created—also referred to as aggregation. Subsequently, the literature often refers to the combined 

methods of bootstrapping and aggregation as the bagging method. Bagging does not require 

pruning for regularization because averaging the results of all bootstrapped samples reduces the 

variance [31]. 

4.3.2.3. Stochastic Gradient Boosting Method 

Stochastic gradient boosting (SGBM) is an extension of the Gradient Boosting (GB) 

technique. Gradient refers to model building optimization during the learning process. Boosting 
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refer to finding a more accurate hypothesis by combining the predictions of many weak 

hypotheses (learners), each of which is moderately accurate [32]. Most of the time, learners are 

nonlinear models (decision or regression trees), and for such cases, the literature refers to GB as 

“Gradient Tree Boosting” (GTB). The GTB algorithm builds an ensemble of weak prediction 

models by adding a sequence of trees, with successive trees grown on reweighted versions of the 

data. At each stage, GTB generates a new tree from the residual and adds to the existing group of 

trees. The algorithm builds the final ensemble with a weighted summation of the individual 

learners. 

Motivated by Breiman’s bagging phenomenon, Friedman [33], [34] augmented the 

gradient boosting procedure and incorporated randomness as part of the GB algorithm and called 

that phenomenon SGBM. Friedman recommended that instead of using the entire dataset to 

perform the boosting, it is more appropriate to select a random subsample from the training 

dataset at each step of the boosting process. The base learner then uses this randomly selected 

subsample. 

4.3.2.4. Extreme Gradient Boosting Method 

Extreme Gradient Boosting Method (XGBM) follows the gradient boosting method, but 

it is more efficient and accurate. Unlike the GB technique, the XGBM implements an additional 

regularization to avoid over-fitting by imposing additional control over model complexity [19]. 

The additional regularization term does not depend on the randomness. Instead, the focus of this 

additional term always remains on minimizing the model complexities based on some leaves and 

the sum-of-square scores of those leaves. For further reference, [35] presents a detailed study on 

XGBM.  
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4.3.2.5. Support Vector Machine 

A Support Vector Machine (SVM) is a non-parametric statistical learning technique that 

requires no assumption on the underlying data distribution. The concept is to separate data across 

a decision boundary (planes) determined by a small subset of the data (feature vectors). The data 

subset that supports the decision boundary is called the support vector [36]. SVM assumes that 

the multi-feature data are linearly separable in the input space. However, in practice, data points 

of different planes overlap, which makes linear separability challenging [37].  A “kernel trick” 

overcomes the problem of the linearity restriction on the decision boundary. The kernel trick 

uses a transformation function to map the input vector into a higher dimension space by 

introducing new parameters [36]. The “trick” part is that the SVM operates only on the vectors in 

their ambient space, without actually transforming the vector into a higher dimension. This 

analysis uses the radial kernel. Various authors [36], [35], and [38] explain the use of the kernel 

trick in more detail. 

4.3.2.6. Stepwise Linear Regression 

Stepwise Linear Regression (SLR) is the process of building a model by successively 

removing or adding feature variables based on their relationship with the response variable. In 

other words, SLR is a method of regressing multiple variables in multiple stages. In each stage, 

the method removes or adds variables based on their correlation with the response variable. 

4.3.3. Model Comparison 

To minimize the potential for over-fitting or under-fitting, the machine learning 

procedure incorporates a K-fold cross-validation process with N repeats to identify the best 

model parameters. As explained by Jhangiri and Rakha [38], the K-fold algorithm segments the 

training data randomly into K parts or folds of approximately equal size. Subsequently, the 
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algorithm builds a model from the union of the remaining K-1 folds and evaluates the model 

performance on the validation fold. The algorithm repeats the cross validation K times so that 

each fold serves as the validation data exactly once. The algorithm repeats the K-fold process N 

times to introduce further randomization. The algorithm builds the final model by using those 

parameters that produce the best average performance across the K validations. 

The K-fold cross-validation algorithm sets a uniform random seed before training each 

model to ensure consistency in the data partitions and repeats. Once trained, the process adds all 

the models to a list for re-sampling. This function verifies that the models are comparable and 

have used the same training scheme [39], [40]. Finally, the algorithm evaluates the performance 

of the models by comparing the Mean Absolute Error (MAE), the Root Means Squared Error 

(RMSE), and the R-squared metrics. The MAE is the unweighted average of the absolute 

differences between the predicted and actual observations. RMSE is the square root of the 

average of the squared differences between the predicted and actual observations. Hence, RMSE 

represents the average magnitude of the error. R-squared is a measure of the percentage of the 

variation in the response variable that the model explains. 

4.4. Data 

FRA requires that railroads maintain and submit a detailed report of all significant 

accidents or incidents associated with railroad operations. FRA compiles these reports into the 

Railway Equipment Accident (REA) database [94][94]. This study used 15 years of REA 

accident data from all railroads reporting all types of accidents between 2004 and 2018 [3]. This 

database records all accidents that exceed a specified financial cost (inflation-adjusted 2019 

threshold - $10,700) from damages to on-track equipment, signals, track, track structures, and 

roadbed [41]. However, study uses class I freight train accident data for the analysis. The data 
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consists of more than 145 variables, such as the railroad identifier, accident location, speed, and 

other attributes that attempt to describe the nature of the event. A possible limitation of this 

database is that it may not have captured all the underlying factors that contributed to the level of 

financial loss. However, the models are based only on the available factors, and is likely to 

expose factors that are dominant in causing financial loss. 

4.4.1. Cleaning and Structuring 

The data cleaning followed a three-step process. The first step deleted variables that were 

not appropriate, such as text narratives, dummy variables, and duplicate variables. The second 

stage removed variables such as “number of engineers” and “location,” that did not support the 

analysis objectives. The third stage modified some of the FRA-structured default variables as 

follows: 

1. TIMEHR– changed the specific hours and minutes of the incident from the standard 

12-hour, a.m.-p.m.” format to a single variable in 24-hour military time format. 

2. P_CARSDMG – a new variable that is equal to the percentage of cars carrying 

hazmat that were damaged or derailed.  

3. TRKCLAS – changed the FRA track classes of A-E to a numeric categorical variable 

for compatibility across the data mining techniques used.  

4. TRKDNSTY – imputed missing values and replaced zero values based on the 

maximum reported for that county.  

5. Ospeed – restructured “train speed” as a categorical variable over speed where the 

value is ‘1’ if the train was traveling faster than the track class limit, and ‘0’ 

otherwise.  
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6. P_LocoDe – a new variable that contains the percentage of locomotives derailed is 

estimated using the same dataset. 

7. Tloco – a new variable that contains the total number of locomotives is obtained 

using the same dataset. 

8. Cause – changed the primary cause of an accident to a categorical variable with five 

classes based on their alphabetic order. ‘1’ = ‘Mechanical and Electrical Failures’; ‘2’ 

= ‘Miscellaneous Causes Not Otherwise Listed’; ‘3’= Rack, Roadbed and Structures; 

‘4’=Signal and Communication; and ‘5’= Train operation - Human Factors. 

9. EQATT – ‘1’ if someone was attending the equipment and ‘0’ otherwise. 

10. R_ Amount – a modified dependent variable containing the total reported financial 

damage. The modifications are as follows.  

a. Time value normalization: adjusted the total reportable damage from the variable 

ACCDMG to the average consumer price index seasonally adjusted amount of 

2018. 

b. The REA databases should include only those accidents that exceed financial 

losses of $5,000. Therefore, this adjustment deleted records with lower amounts 

because they would be outliers and not representative of the majority of accidents 

that occurred. 

c. Analysis of the distribution of the reported financial losses revealed that those 

beyond the 95-percentile are outliers and are eliminated.  

4.4.2. Handling Correlation and Missing Values 

Missing values do not cause a problem for Decision Tree (DT) models because the 

method imputes those values based on the values of other observations that are in similar classes. 
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However, models such as Linear Regression (LR) cannot use data that contain missing values, 

thereby making the size of the dataset inconsistent for uniform comparison of models [26]. 

Model comparison is most appropriate between models that are fitted using the same set of 

observations [26]. Hence, it is necessary to impute missing values before fitting models for 

comparison of performance. This analysis replaced missing values using an approach based on k-

nearest neighbors, referred to as KnnImputation. For each missing value, the model identifies ‘k’ 

(k=10) closest observations based on the Euclidean distance and computes the weighted average 

as the missing value. 

Highly correlated variables with the dependent variable are truly redundant and does not 

contribute additional information in the model [42]. Therefore, the procedure removed those 

variables that had a correlation coefficient above a commonly selected threshold of 0.75 [43]. 

4.4.2.1. Dataset for Model Comparison 

The final dataset contained 23 variables (Table 4.1) and approximately 12,500 

observations of the freight train accidents of the class I railroads.  

4.5. Results and Discussion 

4.5.1. Model Selection 

Table 4.2 summarizes the evaluation metrics for the six machine learning models, using 

10-Fold cross-validations with 3 repeats. In general, the ensemble tree-based models 

outperformed the other models. Among tree-based ensemble methods, XGBM provided the best 

predictive capability based on the lowest RMSE and MAE metrics, and the highest R-squared 

metric. 
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4.5.2. Variable Importance Using XGBM  

After identifying XGBM as the best model for the data, the analysis focused on 

identifying the significant contributors to the accident. Table 4.3 summarizes the results.  

Table 4.1. List of variables and their description 

Variable Description Variable Type 

R_Amount Seasonally adjusted financial loss based on 2018 prices (dependent variable) Continuous 

MONTH Month of incident Categorical 

DAY Day of the incident Categorical 

TIME Time of the accident (military standard time) Continuous 

TYPE Type of accident: (1-13) Categorical 

P_CARSDMG % of hazmat cars damaged or derailed Continuous 

TEMP Temperature in degrees Fahrenheit Continuous 

VISIBLTY Daylight period: (1-4) Categorical 

WEATHER Weather conditions (1-6) Categorical 

Ospeed Boolean of train traveling over the speed limit Categorical 

TONS Gross tonnage, excluding power units Continuous 

EQATT Boolean for equipment attended by a human Categorical 

TRKCLAS FRA track class (0-9) Categorical 

TRKDNSTY Annual track density - gross tonnage in millions Continuous 

POSITON1 Car position in train (first involved) Categorical 

POSITON2 Car position in train (causing) Categorical 

Tloco Total number of locomotives Categorical 

P_LocoDe Percent of locomotives derailed Continuous 

LOADF2 Number of derailed loaded freight cars Categorical 

EMPTYF2 Number of derailed empty freight cars Categorical 

CAUSE Primary cause of incident Categorical 

TOTKLD Total killed for the railroad as reported Categorical 

SIGNAL Type of territory – signalization Categorical 
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Table 4.2. Model comparison evaluation 

Models Label RMSE MAE R2 

GBM Gradient boosting model 87,131.87 139,295.8 0.4596048 

KNN K-nearest neighbors 122,391.3 189,069.6 0.0335639 

SVM Support vector machine 102,771.3 204,053.4 0.0476689 

RF Random forests 88,939.76 143,402.5 0.4534554 

STEPWISE Stepwise regression 95,392.14 149,052 0.3979852 

XGBM Extreme gradient boosting 85,989.11 137,646.9 0.4618731 

 

The results indicate that the number of loaded freight cars derailed is the most crucial 

factor in financial damages from accidents by a proportional contribution of 57%. Territory 

signalization (SIGNAL) is the second-best predictor contributing over 20%. The number of 

empty freight cars derailed is next, which improves the predictability by more than 10%. 

Accidents on track class 4 are the next factor associated with more than 4% of the total damage. 

Table 4.3 summarizes the rank of the other variables. 

Table 4.3. Results of variable importance 

Feature Description Gain Frequency Cover 

LOADF2 # of derailed loaded freight cars 0.57459 0.2900 0.51493 

SIGNAL1 Type of territory – signalization (mandatory) 0.20220 0.1700 0.05337 

EMPTYF2 # of derailed empty freight cars 0.10124 0.1366 0.26967 

TRKCLAS4 FRA track class: 1-9 0.06536 0.1726 0.02682 

TONS gross tonnage, excluding power units 0.02092 0.0757 0.06610 

TRKCLAS3 FRA track class: 1-9 0.01018 0.0460 0.00454 

TRKCLAS2 FRA track class: 1-9 0.01008 0.0320 0.00698 

TYPE3 type of accident: 03=Rear-end collision 0.00599 0.0197 0.02691 

P_LocoDe % of locomotive derailed 0.00370 0.0263 0.01545 

CAUSE Contributing cause of incident 0.00233 0.0091 0.00182 

POSITON1 Car position in train (first involved) 0.00194 0.0089 0.01257 

POSITON2 Car position in train (causing) 0.00069 0.0043 0.00037 

TRKDNSTY Annual track density-gross tonnage in 

millions 

0.00062 0.0063 0.00033 

MONTH12 month of incident 0.00014 0.0023 0.00012 

Tloco Total number of locomotive 0.00001 0.0003 0.00001 
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4.5.3. Marginal Effect of Predictor Variables 

Advanced machine learning models can significantly improve predictions and 

classifications, but understanding the impact of one or more predictor variables on the response 

variable is not feasible even with these advanced models. Partial-dependence plots (PDPs) can 

show the marginal effect of a single contributor on the predicted outcome of a machine learning 

model [45]. The PDPs show the distinct impact of the most influential variables after controlling 

for the average effects of all other variables in the model [46]. Therefore, this study uses PDPs to 

explore and visualize the complex non-linear global relationship between each factor and the 

predicted outcome. 

Figure 4.2 shows that, except for the effects of the binary signal variable, the PDPs from 

the XGBM model exhibits non-linear patterns. The yhat (�̂�) variable represents the predicted 

financial loss from a XGBM regression of each variable.  

Per results, Financial damage generally increased with the number of derailed cars 

(LOADF2) and peaked at 40. Non-signaled territories (SIGNAL = 2) are associated with higher 

financial losses than with territories that are signaled. The partial dependency on EMPTYF2 

suggests that financial damage could be most severe if 30 to 40 empty cars derail. Financial loss 

generally increases with track classification, and peaks for class 8 tracks. Trains that carry 

approximately 20,000 tons tend to have the most significant impact on the financial damage. 

Head-on collision (TYPE2) and Rear-end collision (TYPE3) are associated with higher financial 

losses than other accident types. Accident causes (CAUSE) category 5 (human factor related) are 

associated with the highest financial losses. P_LocoDe (percentage of locomotive derailed) 

exhibits a stepwise increasing trend in financial losses. POSITON1 (Car position in train (first 



 

91 

involved) and POSITON2 (causing car position in the train) from 125 to 135 are associated with 

the highest financial losses. These cars tend to be towards the rear of a typical Class I train [47]. 

By month (IMO), financial losses peak in the summer and subside in the winter. Grain 

harvesting and grain shipping generally peak in the summer when track conditions are favorable. 

Intuitively, peak demand leads to peak traffic with higher carloads and a resulting higher risk of 

accidents that contribute to losses. T_loco shows that accident damage increases with trains 

containing more than five locomotives. Weather shows that the financial impact of an accident 

increased by more than 0.03% while having snow compared to other weather conditions.  

 

Figure 4.2. Partial dependence plots of the predictor variables in the model 

4.6. Conclusion 

The primary objective of this study was to determine the significant contributing factors 

to Class I railroad financial losses from railway accidents and to rank those factors by using DM 
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and ML techniques. Data between 2004 and 2018 from the railroad equipment accident (REA) 

database provided inputs for the analysis. To achieve the primary objective of the study, a 

comparative analysis of six machine-learning algorithms determined the best model for the 

dataset. Finally, the best performing model showed that tree-based ensemble models performed 

best. Particularly, XGBM proved to be the best model for analyzing railroad accident data that is 

highly imbalanced. The XGBM model identified the significant contributors to railroad 

accidents. The results indicate that LOADF2 (number of derailed loaded freight cars), SIGNAL 

(Type of territory – signalization), and EMPTYF2 (number of derailed empty freight cars) are 

the top three significant factors that account for financial loss severity with the gains of 57.46%, 

20.22%, and 10.12% respectively. These results demonstrate the effectiveness of applying DM 

and ML techniques to high volume and non-uniform data formats. The results suggest that 

railroads should prioritize safety investments for situations where a greater number of trains 

carry freight and for infrastructure that implements signals. 

Future work will explore and evaluate additional exogenous contributors to rail accidents 

using a similar approach. The results of these two studies will provide an opportunity to conduct 

a comprehensive assessment of rail accident contributors.  
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5. SUMMARY  

The 49 Code of Federal Regulation (CFR) §213.233 includes guidelines for maintaining 

each railroad track class type and frequency of inspections. These standards include continuous 

inspections as frequent as twice weekly for most track classes, which requires efficient allocation 

and utilization of resources. In addition, increasing rail traffic exacerbates track conditions more 

rapidly and makes continuous monitoring more elusive. Hence, to comply with FRA's track 

safety standards and maintain safe traffic conditions, the railroad industry uses various NDE 

technologies on most tracks in operation each year. These NDE technologies include ultrasonic 

testing, magnetic particle testing, eddy current testing, microwave, millimeter-wave testing, 

radiography testing, penetrant testing, acoustic emission testing, and thermography which are 

explained in detail by ISU-Centers for Nondestructive Evaluations [1]. NDE technologies 

provide additional support to the visual inspection techniques for identifying and locating track 

abnormalities [2]. However, the size and cost of these technologies currently limit their 

deployment to specially constructed automated inspection vehicles that locate internal rail flaws 

and irregular track geometry, track modulus, and gauge restraint [3]. Moreover, NDE 

technologies often fail to detect defects, which increases the safety risk of workers and may lead 

to catastrophic failures and requires track closure [4]. 

Many railroad companies, along with the NDE technologies, have adopted machine-

vision inspection technologies to detect anomalies in the track structure [5]. Such technologies 

use optical sensors, which require light emitters to illuminate the surface, and image sensors to 

capture the reflected light. Light Detection and Ranging (LIDAR) is an optical laser 

measurement technique that uses ultraviolet and near-infrared light to generate high-resolution 

images for detecting track surface anomalies. To calculate distances and track geometric 
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parameters, the sensor emits a narrow beam of laser light towards the desired object and 

measures the time taken by the pulse to reflect off the target and return to the device [6]. 

Automated algorithms filter and extract the required information from high-resolution 2D or 3D 

images to estimate modulus by measuring the amount of rail displacement from a tangential 

horizontal plane above the wheel contact point. The laser scanning action produces transversal 

surface resolution at a relatively high speed but decreases the longitudinal resolution with 

increasing train speed which is a significant shortcoming. Manufacturers try to overcome this 

limitation by increasing the inspection speed beyond 40 mph, which requires extensive and 

expensive construction. Other shortcomings include the physical limitations in signal bandwidth, 

signal-to-noise ratio, power consumption, sample rate, potentially higher false positives, and 

slow processing speed provide a diminishing return on the investment of such systems.   

Another famous technique machine vision which uses an optical sensor with image 

capturing to identify and characterize surface abnormalities. The technique uses high-quality 

cameras to create a stereoscopic vision or 3D images for detailed analysis. Some systems 

combine an infrared filter with the high-quality image capturing to detect cold wheels, hot 

wheels, and hot journals that may cause problems. The main advantages of using machine 

vision-based inspection include greater objectivity and consistency than manual vision. 

However, there are numerous limitations of this system. For instance, this technique requires a 

large storage capacity, ample light source with a sun shield, and computationally intensive image 

processing. Xenon lights or lasers can improve some lightning-related problems but add cost, 

bulk, and power consumption. All these methods are useful for assessing irregular track 

geometry but they require expensive sensors, cameras, and other infrastructure, thus resulting in 

high maintenance cost, greater energy requirements, and low robustness. 
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Railroads are moving towards real-time condition monitoring that provides in-service 

measurements of the railway components because they can detect faults while in revenue service 

operation [6]. The practical application of condition monitoring of the train dynamics is made 

either by employing track-based or vehicle-based sensors. The track-based sensors focus on 

monitoring the local area infrastructure and passing train characteristics, whereas rolling stock-

based sensors continuously monitor the traveled infrastructure and vehicle for defects. Both these 

methods have their advantages and potential shortcomings, but the rolling stock-based sensors 

are more commonly used for tracking surface condition monitoring for their effectiveness. 

Modern rolling stock is fitted with high-capacity communication buses, inertial sensors, 

gyroscopes, and accelerometers. It also incorporates global navigation satellite systems, such as 

Global Positioning System (GPS), to record and identify the locations of the detected track 

anomalies. Moreover, these technologies require advanced processing units for collecting, 

processing, filtering, and managing signal data [7]. 

Implementing low-cost sensors and GPS receivers on rolling stock poses significant 

challenges and limitations in detecting signals at high accuracy and high precision. First, the non-

uniform sample rate of an accelerometer causes a problem in signal detection, which reduces the 

signal-to-noise ratio and increases the possibility of false-positive and false-negative results. 

Second, GPS receivers do not always provide reliable and accurate position information because 

of the following five reasons [2]. 

1. Standard low-cost GPS receivers provide position updates approximately once per 

second. Given an inertial sensor that samples at 64 hertz on average, the GPS 

coordinate will update after every group of 64 inertial samples. Therefore, the system 
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will, on average, tag blocks of 64 inertial samples with the same GPS coordinates. 

This causes low position resolution and consequently signal misalignment.  

2. Position updates in a traversal are spatially asynchronous. That means the GPS 

updates from an individual traversal will be at different geospatial points along the 

path. Therefore, some position updates will not tag some signal peaks.  

3. The geospatial position error is in two dimensions, causing deviation in position 

updates from the travel path.  

4. The standard deviation of the position estimates from GPS receivers is three to five 

meters along the travel direction.  

5. The non-Line-Of-Sight (non-LOS) condition triggered by clouds, trees, or tunnels 

could block the reception of GPS signals in some locations, causing non-uniform 

update rates.  

RAILS has the potential to overcome the problems listed above. The technique uses 

distance interpolation, heuristic, and correlation alignment to align the signals from multiple 

traversals. The advanced ensemble averaging aligned the signal data from multiple traversals to 

increase the rate of anomaly detection while minimizing the false positive and false negative. 

Hence, the system becomes more reliable, scalable, and effective. sections I, II, and III already 

discussed the other benefits, functionalities, and practices of RAILS.  

This study provides and highlights additional features of RAILS by developing a new 

method to categorize the accidents based on responsible factors and prioritize the accidents based 

on the potential for causing financial damages. Categorizing such incidents would help to create 

a database that prioritizes issues and suggest possible countermeasures based on the problems. 

This study has been conducted in three phases, focusing on comparing and developing new 
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supportive methods that could help the proposed technology achieve its objective. The objective 

of the first phase was to develop a probabilistic method for comparing the performance of 

RAILS and its advantages over current NDE methods. For the analysis, the study used data from 

multiple scans of a track segment and applied probabilistic models based on the theory of 

operations. The findings suggest that the proposed methodology has 165% better chances of 

detecting TRS-related faults with only two trains passing per day, for the scenario of a first-pass 

probability detection of only 20%. One of the benefits of RAILS is to classify the defects based 

on the potential symptoms so that specialists can focus inspections on critical areas without 

closing the lines for a longer period. The second phase of this research would help in achieving 

this objective. The second phase aims to develop a methodology for classifying and categorizing 

accidents, determining the potential reasons behind causing these events, and identifying 

additional possible threats associated with these accidents causing factors. The proposed 

methodology will help develop a database based on different factors responsible for causing 

accidents and highlight other associated threats with the key areas needing focus. The study 

applied and compared many different non-parametric models to achieve the study’s objective. 

The result suggested that studying the accident-causing factors at the micro-level is significant in 

identifying category-based factors responsible for causing accidents, which further helps develop 

core-level countermeasures. 

Phase I and Phase II of this research would help connect PIEs disturbance with the 

accident-causing factors to create a database. This will help achieve the main objective of 

classifying the potential defects based on the signal variations and identifying some additional 

threats at an early stage that otherwise could have led to another issue in the future. In short, this 

phase will help the proposed technology develop a methodology to change the system from find 
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and fix” to “predict and prevent.” The third phase of this research focused on identifying and 

categorizing the major contributing factors to financial losses from freight train accidents. 

Ranking the factors based on financial damage severity would help agencies prioritize the 

countermeasures that have the potential for causing severe damages and have railroads allocate 

budgets better, provide efficient use of resources, and prioritize safety investments. 

Each section above discussed the limitation and challenges related to individual phases of 

this research. However, the research has overall limitations related to nonparametric machine 

learning algorithms. For instance, (i) the data in this study is limited to estimate the mapping 

function for some of the non-parametric models. In future, adding more data could provide better 

results. (ii) The models had far more parameters to train making the algorithms slower. (iii) 

Although cross validation helped to avoid the problem of overfitting, nonparametric machine 

learning algorithms always carry the overfitting risks, and it is even harder to analyze the reason 

behind specific predictions. (iv) The lack of uniformity in the qualitative and quantitative 

methods affected the accuracy of the results. All these shortcomings can be overcome in the 

future by incorporating more data and using advanced methodologies like deep learning. 

In summary, in a short experiment, RAILS technique can provide anomaly detection with 

higher accuracy, precision, and the consistency while minimizing the false positive and false 

negative. Subsequently, this technology can leverage the PTC network to communicate track and 

roadbed problems and reduce derailment risks. The benefit cost analysis study conducted by 

Bridgelall et al. [8] showed that RAILS can add additional benefits to the current PTC system 

and thus increase the ROI from the overall PTC investment. FRA and railroads can use this 

benefit-cost analysis to help analyze the tradeoff between technology costs, their potential 

benefits in accident prevention, and the payback period with different discount rate scenarios [8] 
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APPENDIX A. CAUSE I LIME RESULTS AND WORD ASSOCIATION FOR EACH 

SUB-CATEGORY 

Lime Results word (Corr) Word (Corr) Word (Corr) Word (Corr) Word (Corr) Word (Corr) 

Correlation  for C110 

journal burn 

(0.46) 

overheat  

(0.27) 

failure (0.20) 
   

burn journal 

(0.46) 

mile 

(0.26) 

side 

(0.26) 

drop 

(0.26) 

remain 

(0.26) 

 

roller bear 

(0.55) 

overheat 

(0.32) 

failure 

(0.27) 

defective 

(0.21) 

  

detector equipment 

(0.45) 

stop 

(0.42) 

drag 

(0.39) 

hot 

(0.31) 

box 

(0.29) 

defect 

(0.26) 

hot box 

(0.77) 

detector 

(0.31) 

receive 

(0.25) 

alert 

(0.22) 

defect 

(0.22) 

 

Correlation  for C111 

Sill break 

(0.48) 

old 

(0.38) 

center 

(0.35) 

apart 

(0.26) 

  

plate rigid 

(0.59) 

center 

(0.42) 

movement 

(0.42) 

equipment 

(0.37) 

  

draft head 

(0.31) 

fall 

(0.31) 

break 

(0.21) 

   

old break 

(0.43) 

force 

(0.41) 

roll 

(0.41) 

sill 

(0.38) 

action 

(0.33) 

separate 

(0.27) 

bar draw 

(1.00) 

pin 

(061) 

air 

(0.55) 

condition 

(0.46) 

hose 

(0.46) 

fail 

(0.40) 

Correlation  for C112 

hose air 

(0.78) 

Separation 

(0.56) 

uncouple 

(0.29) 

   

valve malfunction 

(0.81) 

tread 

(0.37) 

stick 

(032) 

buildup 

(0.23) 

brake 

(0.22) 

 

Slack action 

(0.65) 

adjuster 

(0.42) 

airbrake 

(0.34) 

   

rod bleed 

(0.88) 

gap 

(0.83) 

switch 

(0.77) 

point 

(0.77) 

bend 

(0.88)     

 

bleed gap 

(0.94) 

switch 

(0.88) 

rod 

(0.88) 

point 

(0.82) 

emergency 

(0.54) 
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Lime Results word (Corr) Word (Corr) Word (Corr) Word (Corr) Word (Corr) Word (Corr) 

Correlation  for C113 

gear draft 

(0.85) 

broken 

(0.8) 

block 

(0.68) 

force 

(0.48) 

brake 

(0.26) 

 

yoke broken 

(0.72) 

drawbar 

(0.62) 

system 

(0.6) 

fail 

(0.37) 

drop 

(0.23) 

 

drawbar Yoke  

(0.62) 

fall 

(0.42) 

cause 

(0.33) 

derailment 

(0.28) 

  

draft gear 

(0.85) 

broken 

(0.65) 

block 

(0.48) 

switch 

(0.3) 

coupler 

(0.25) 

 

miss retainer 

(0.36) 

key 

(0.31) 

pincross 

(0.29) 

inspection 

(0.28) 

  

Correlation  for C118 

Stiff bolster 

(0.45) 

improper 

(0.41) 

swivel 

(0.39) 

truck 

(0.28) 

  

insufficient clearnace 

(0.57) 

bear 

(0.51) 

    

climb flange 

(0.41) 

flange 

(0.39) 

top 

(0.3) 

curve 

(0.27) 

rail 

(0.22) 

 

friction wear 

(0.48) 

limit 

(0.25) 

undesired 

(0.23) 

wedge 

(0.22) 

plate 

(0.21) 

 

bear clearance  

(0.68) 

insufficient 

(0.51) 

side 

(0.33) 

excessive 

(0.25) 

  

Correlation  for C119 

buildup slag 

(0.45) 

tread 

(0.4) 

excessive 

(0.25) 

   

tread build 

(0.52) 

buildup 

(0.4) 

    

thin flange 

(0.36) 

pick 

(0.22) 

    

rim brake 

(0.39) 

traverse 

(0.3) 

railcar 

(0.3) 

single 

(0.23) 

  

flange wear 

(0.45) 

thin 

(0.36) 

point  

(0.29) 

sharp 

(0.26) 

adjacent 

(0.23) 

Switch 

(0.21) 
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APPENDIX B. CAUSE 2 LIME RESULTS AND WORD ASSOCIATION FOR EACH 

SUB-CATEGORY 

Lime Results Word  

(Corr) 

Word  

(Corr) 

Word  

(Corr) 

Word  

(Corr) 

Word 

(Corr) 

Word 

(Corr) 

Correlation  for C220 

extreme velocity 

(0.71) 

environmental 

(0.65) 

condition 

(0.46) 

wind 

(0.43) 

single 

(0.26) 

 

velocity extreme 

(0.71) 

environmental 

(0.46) 

wind 

(0.45) 

traverse 

(0.3) 

impact 

(0.22) 

 

tornado warning 

(0.44) 

pass 

(0.28) 

blow 

(0.23) 

warn 

(0.22) 

  

weather severe 

(0.32) 

warn 

(0.28) 

gust 

(0.28) 

temperature 

(0.25) 

wind 

(0.24) 

strong 

(0.21) 

gust wind 

(0.42) 

effect 

(0.40) 

mph 

(0.35) 

weather 

(0.28) 

high 

(0.21) 

 

Correlation  for C221 

improperly load 

(0.34) 

     

load improperly 

(0.34) 

empty 

(0.27) 

shift 

(0.26) 

car 

(0.22) 

  

harmonic rock 

(0.55) 

level 

(0.35) 

speed 

(0.29) 

lateralvertical 

(0.25) 

  

interaction lateralvertical 

(0.82) 

force 

(0.4) 

harmonic 

(0.21) 

rock 

(0.2) 

  

lateralvertical interaction 

(0.82) 

forces 

(0.39) 

harmonic 

(0.25) 
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APPENDIX C. CAUSE 3 LIME RESULTS AND WORD ASSOCIATION FOR EACH 

SUB-CATEGORY 

Lime Results Word (Corr) Word (Corr) Word (Corr) Word (Corr) Word (Corr) 

Correlation  for C330 

gapped point 

(0.62) 

switch 

(0.42) 

account 

(0.28) 

stock 

(0.21) 

  

stock rail 

(0.73) 

point 

(0.56) 

switch 

(0.43) 

gapped 

(0.21) 

worn 

(0.21) 

rod connect 

(0.76) 

yarding 

(0.22) 

old 

(0.21) 

switch 

(0.2) 

  

stand defective 

(0.43) 

switch 

(0.32) 

strike 

(0.22) 

adjacent 

(0.21) 

  

pass switch 

(0.52) 

point 

(0.38) 

break 

(0.26) 

strike 

(0.21) 

  

Correlation  for C332 

break rail  

(0.62) 

bar 

(0.41) 

fracture 

(0.31) 

veritcal 

(0.26) 

piece 

(0.25) 

bar joint 

(0.57) 

break 

(0.41) 

defect 

(0.34) 

angle 

(0.21) 

  

fracture detail 

(0.77) 

break 

(0.31) 

rail 

(0.25) 

curve 

(0.21) 

  

split vertical(0.62) head 

(0.25) 

  
  

piece rail(0.56) break 

(0.25) 

section 

(0.21) 

foot 

(0.2) 

  

Correlation  for C333 

settle roadbed 

(0.49) 

single 

(0.38) 

soft 

(0.37) 

material 

(0.35) 

traverse 

(0.33) 

temporary speed 

(0.45) 

mph 

(0.33) 

right 

(0.3) 

encounter 

(0.3) 

bridge 

(0.21) 

washout short 

(0.35) 

encounter 

(0.35) 

flood 

(0.32) 

heavy 

(0.26) 

rain 

(0.22) 

flood short 

(0.37) 

wash 

(0.35) 

washout 

(0.32) 

rain 

(0.27) 

heavy 

(0.2) 

soft roadbed 

(0.54) 

settle 

(0.37) 

bed 

(0.26) 

track 

(0.21) 

  

Correlation  for C334 

thermal misalignment 

(0.82) 

traverse 

(0.32) 

  
  

buckle track 

(0.41) 

sunkink 

(0.35) 

alignment 

(0.32) 

track 

(0.25) 

  

wide gage 

(0.67) 

gauge 

(0.5) 

miss 

(0.38) 

defective 

(0.26) 

crossties 

(0.22) 

alignment irregular 

(0.53) 

buckle 

(0.32) 

traverse 

(0.26) 

single 

(0.23) 

  

defective crossties 

(0.49) 

miss 

(0.46) 

wide 

(0.26) 

tie 

(0.2) 
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APPENDIX D. CAUSE 5 LIME RESULTS AND WORD ASSOCIATION FOR EACH 

SUB-CATEGORY 

Lime Results Word  

(Corr) 

Word 

(Corr) 

Word  

(Corr) 

Word  

(Corr) 

Word 

(Corr) 

Word 

(Corr) 

Word (Corr) 

Correlation  for C550 

thermal misalignment 

(0.82) 

traverse 

(0.32) 

    
  

buckle track 

(0.41) 

sunkink 

(0.35) 

alignment 

(0.32) 

track 

(0.25) 

  
  

wide gage 

(0.67) 

gauge 

(0.5) 

miss 

(0.38) 

defective 

(0.26) 

crossties 

(0.22) 

 
  

alignment irregular 

(0.53) 

buckle 

(0.32) 

traverse 

(0.26) 

single 

(0.23) 

  
  

defective crossties 

(0.49) 

miss 

(0.46) 

wide 

(0.26) 

tie 

(0.2) 

  
  

Correlation  for C553 

failure control 

(0.72) 

improperly 

(0.42) 

remove 

(0.31) 

derail 

(0.27) 

shove 

(0.23) 

 
  

Shove track 

(0.33) 

protect 

(0.32) 

end 

(0.3) 

control 

(0.24) 

failure 

(0.23) 

 
  

split reverse  

(0.27) 

point 

(0.22) 

switch 

(0.2) 

   
  

protect shove 

(0.32) 

point 

 (0.26) 

fail 

(0.23) 

move 

(0.22) 

  
  

remove derail 

(0.47) 

failure 

(0.31) 

derail 

(0.29) 

move 

(0.21) 

  
  

Correlation  for C556 

speed excessive 

(0.44) 

rock 

(0.37) 

harmonic 

(0.37) 

comply 

(0.37) 

excced 

(0.36) 

mph 

(0.29) 

restriction 

(0.35) 

improperly line 

(0.66) 

switch 

(0.63) 

failure 

(0.58) 

comply 

(0.52) 

speed 

(0.22) 

 
  

comply failure 

(0.92) 

restrict 

(0.74) 

improperly 

(0.52) 

speed 

(0.37) 

  
  

harmonic rock 

(0.77) 

mph 

(0.43) 

speed 

(0.37) 

exceed 

(0.25) 

curve 

(0.23) 

 
  

mph restriction 

(0.48) 

harmonic 

(0.43) 

rock 

(0.4) 

mile 

(0.37) 

speed 

(0.29) 

high 

(0.28) 

exceed 

(0.21) 

Correlation  for C557 

Switch line 

(0.48) 

point 

(0.4) 

run 

(0.37) 

through 

(0.3) 

crossover 

(0.21) 

 
  

through run 

(0.74) 

previously 

(0.31) 

switch 

(0.31) 

crossover 

(0.26) 

  
  

line Switch 

(0.48) 

movement 

(0.42) 

improperly 

(0.24) 

clear 

(0.21) 

  
  

pull track 

(0.33) 

start 

(0.33) 

car 

(0.28) 

back 

(0.25) 

tie 

(0.21) 

block 

(0.2) 

  

latch not 

(0.29) 

lock 

(0.28) 

secure 

(0.26) 

switch 

(0.22) 

properly 

(0.21) 
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Lime Results Word  

(Corr) 

Word 

(Corr) 

Word  

(Corr) 

Word  

(Corr) 

Word 

(Corr) 

Word 

(Corr) 

Word (Corr) 

Correlation  for C558 

buff force 

(0.49) 

excessive 

(0.34) 

action 

(0.22) 

   
  

brake use 

(0.53) 

dynamic 

(0.48) 

automatic 

(0.45) 

Slack 

(0.24) 

block 

(0.2) 

 
  

descend grade 

(0.42) 

bridge 

(0.26) 

train 

(0.22) 

trail 

(0.2) 

  
  

excessive action 

(0.39) 

slack 

(0.37) 

buff 

(0.34) 

force 

(0.29) 

  
  

dynamic break 

(0.48) 

slow 

(0.3) 

speed 

(0.27) 

throttle 

(0.25) 
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APPENDIX E. FACTORS RESPONSIBLE FOR CAUSING TRS-ACCIDENTS AND 

ACCIDENT COUNTS 

S.No Code Description Count 

1 T102 Cross level of track irregular (not at joints) 161 

2 T220 Broken Rail - Transverse/compound fissure   371 

3 T110 Wide gage (due to defective or missing crossties)  1057 

4 T101 Cross level of track irregular (at joints)  118 

5 T319 Switch point gapped (between switch point and stock rail) 180 

6 T311 Switch damaged or out of adjustment  195 

7 T404 Catenary system defect 253 

8 T001 Roadbed settled or soft  185 

9 T111 Wide gage (due to defective or missing spikes or other rail fasteners)  300 

10 T221 Broken Rail - Vertical split head   257 

11 T207 Broken Rail - Detail fracture from shelling or head check  480 

12 T315 Switch rod worn, bent, broken, or disconnected  12 

13 T201 Broken Rail - Bolt hole crack or break  90 

14 T399 Other frog, switch and track appliance defects (Provide detail 91 

15 T403 Engineering design or construction  64 

16 T210 Broken Rail - Head and web separation (outside joint bar limits)  241 

17 T206 Defective spikes or missing spikes or other rail fasteners (use code T111 if 

results in wide gage) 

77 

18 T299 Other rail and joint bar defects (Provide detailed description in narrative)   78 

19 T301 Derail, defective  11 

20 T309 Switch (hand operated) stand mechanism broken, loose, or worn  55 

21 T205 Defective or missing crossties (use code T110 if results in wide gage) 106 

22 T314 Switch point worn or broken  483 

23 T214 Joint bar broken (insulated)  12 

24 T002 Washout/rain/slide/flood/snow/ice damage to track  52 

25 T199 Other track geometry defects (Provide detailed description in narrative)  87 

26 T112 Wide gage (due to loose, broken, or defective gage rods)  41 

27 T212 Broken Rail - Horizontal split head  56 

28 T317 Turnout frog (self guarded), worn or broken 22 

29 T305 Retarder worn, broken, or malfunctioning  63 

30 T103 Deviation from uniform top of rail profile 41 

31 T308 Stock rail worn, broken or disconnected 35 

32 T499 Other way and structure defect (Provide detailed description in narrative) 37 

33 T202 .Broken Rail - Base 200 

34 T208 Broken Rail - Engine burn fracture  10 

35 T222 Worn rail  52 

36 T313 Switch out of adjustment because of insufficient rail anchoring  45 

37 T303 Guard rail loose/broken or mislocated  38 

38 T211 Broken Rail - Head and web separation (within joint bar limits)  35 

39 T099 Other roadbed defects (Provide detailed description in narrative)  18 

40 T217 Mismatched rail-head contour  47 

41 T204 Broken Rail - Weld (field)  40 

42 T108 Track alignment irregular (other than buckled/sunkink)  116 

43 T401 Bridge misalignment or failure  26 

44 T113 Wide gage (due to worn rails)  118 

45 T203 Broken Rail - Weld (plant)  12 

46 T316 Turnout frog (rigid) worn, or broken  30 

47 T109 Track alignment irregular (buckled/sunkink)  221 

48 T213 Joint bar broken (compromise)  19 

49 T106 Superelevation improper, excessive, or insufficient  43 
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S.No Code Description Count 

50 T307 Spring/power switch mechanism malfunction  17 

51 T216 Joint bolts, broken, or missing 21 

52 T215 Joint bar broken (noninsulated) 27 

53 T310 Switch connecting or operating rod is broken or defective  24 

54 T402 Flangeway clogged  15 

55 T304 Railroad crossing frog, worn or broken  7 

56 T312 Switch lug/crank broken  17 

57 T302 Expansion joint failed or malfunctioned  2 

58 T223 Rail Condition - Dry rail, freshly ground rail. 5 

59 T104 Disturbed ballast section  4 

60 T218 Broken Rail - Piped rail  2 

61 T219 Rail defect with joint bar repair  7 

62 T318 Turnout frog (spring) worn, or broken  4 

63 T107 Superelevation runoff improper  6 

64 T306 Retarder yard skate defective  12 

65 T105 Insufficient ballast section 4 

Total 6,555 

 


