

A STUDY ON DEEP LEARNING FOR PROGNOSTICS AND HEALTH MANAGEMENT APPLICATIONS:

AN EVOLUTIONARY CONVOLUTIONAL LONG SHORT-TERM MEMORY DEEP NEURAL NETWORK

DATA-DRIVEN MODEL FOR PROGNOSTICS OF AIRCRAFT GAS TURBINE

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Phattara Khumprom

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Industrial and Manufacturing Engineering

April 2022

Fargo, North Dakota

North Dakota State University

Graduate School

Title

A Study on Deep Learning for Prognostics and Health Management Applications:

An Evolutionary Convolutional Long Short-Term Memory Deep Neural Network

Data-Driven Model for Prognostics of Aircraft Gas Turbine

 By

Phattara Khumprom

 The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Dr. David Grewell

 Chair

Dr. Lokesh Karthik Narayanan

Dr. Chad Ulven

Dr. Supavich Pengnate

 Approved:

 April 12, 2022 Dr. David Grewell

 Date Department Chair

iii

ABSTRACT

The fundamental concept of prognostics and health management (PHM) within the scope of

Condition-Based Maintenance (CBM) is to find an approach to evaluate the system health and predict its

remaining useful life (RUL). Many methods and algorithms have been proposed for PHM modeling, most

of which have been proven to perform relatively well. One of the leading algorithms in the current data-

driven technology era is a deep learning approach, which is based on the concept of multiple hidden

layers in a neural network. RUL prediction is an important part of PHM, which is the science that is aimed

at increasing the reliability of the system and, in turn, reducing the maintenance cost and potential failure.

The majority of the PHM models proposed during the past few years have shown a significant increase in

the number systems that are data-driven. While more complex data-driven models are often associated

with higher accuracy, there is a corresponding need to reduce model complexity. One possible approach

is to reduce the complexity of the model is to use the features (attributes or variables) selection and

dimensionality reduction methods before the model training process. In this work, the effectiveness of

multiple search-based methods that seek for the best features set to perform model training, which

included, filter and wrapper feature selection methods (correlation analysis, relief forward/backward

selection, and others), along with Principal Component Analysis (PCA) as a dimensionality reduction

method, was investigated. A basic algorithm of deep learning, Feedforward Artificial Neural Network

(FFNN), was used as a benchmark modeling algorithm. It is believed that all of those approaches can

also be applied to the prognostics of an aircraft engine. The aircraft engine data from NASA Ames

prognostics data repository was used to test the effectiveness of the filter and wrapper feature selection

methods. The findings show that applying feature selection methods helps to improve overall model

accuracy by 3% to 5% compared to other existing works and significantly reduces the complexity by using

7 out of 21 less input nodes for the deep learning type of models.

iv

ACKNOWLEDGMENTS

Throughout my Ph.D. journey, there had been several changes and adjustments. There were

both things I had to learn and unlearn through the years, but it was the support and guidance from many

people that made all the difference. I could not have overcome many difficulties if it were not because of

them.

Firstly, I definitely could not make it without the kind support and understanding from my advisor,

Dr. David Grewell. I would like to express my appreciation and gratitude to him and to all my Ph.D.

committee members. I would also like to thank the Industrial and Manufacturing Engineering department

at NDSU for providing resources, opportunities, and flexibilities during the time that I attended the

program. Much appreciation for the NDSU Graduate School for their help along the process and answers

to all questions throughout my studies. I also would like to thank Dr. Nita Yodo for her guidance during my

early years at North Dakota State University.

Additionally, I would like to extend my thanks and gratitude to my master’s degree advisor at

Robert Morris University, Dr. Sushil Acharya, for his sincerity and dedication in providing all the help I

needed during my first journey in the U.S. His kindness and words are what I will always hold onto

wholeheartedly. I wish to also thank my NDSU colleagues, especially Dr. Alex Davila Frias for his

friendship and mentorship during our final years in the Ph.D. program. I appreciated the times that we

hung out in his last year at NDSU.

Next, I would like to thank all my family members for their great patience and for trying their best

to be understanding of the path I chose. Especially my aunt, Ms. Patchareeya Coomprom, the biggest

sponsor who always stepped in whenever financial support was needed, not only for myself but for the

whole family over the years, I am tremendously grateful for her help.

Lastly, many thanks go to my best friends, Mr. Kittiwate Dechrungruang and Mr. Narupot

Piampanya, for bringing laughter and joy to my life and never criticizing whatever I do. Many seemingly

trivial conversations with them actually meant a lot during my difficult times. I wish to also thank Dr.

Sansiri Tarnpradab. Her inspiration and counsel both personally and academically are the crucial part of

my success. I certainly cannot make it this far without her. I thank her for always being there every step of

the way and staying with me through all my journeys.

v

DEDICATION

To my parents and grandparents.

Thank you for all their life lessons that I have always brought along with me through my journey.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

DEDICATION .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xii

LIST OF APPENDIX TABLES ... xv

LIST OF APPENDIX FIGURES .. xvi

1. INTRODUCTION ... 1

1.1. Background .. 1

1.1.1. PHM Definition .. 2

1.1.2. Deep Learning Algorithms .. 10

1.1.3. Performance Measurement Metrics for PHM ... 15

1.1.4. Initial Framework for PHM Data Modeling Using Deep Learning ... 18

1.2. Research Objective and Contribution .. 19

1.2.1. Objectives and Tasks .. 20

1.2.2. Deliverables .. 21

1.2.3. Contributions ... 22

1.3. Chapter Summary .. 22

2. A SURVEY OF DEEP LEARNING APPROACH FOR PROGNOSTICS AND HEALTH
MANAGEMENT APPLICATIONS ... 23

2.1. Deep Learning Paradigm in PHM Tasks .. 23

2.2. Research Application of PHM Domain Using Deep Learning Algorithms 25

2.2.1. PHM Models Using DNN .. 26

2.2.2. PHM Models Using CNN .. 27

2.2.3. PHM Models Using RNN-LSTM .. 28

2.2.4. PHM Models Using Hybrid Deep Learning Layers .. 30

vii

2.3. Some of the Challenges of Deploying Deep Learning for PHM Applications 31

2.3.1. Data Challenges ... 31

2.3.2. Uncertainty .. 35

2.3.3. Difficulty to Train Models ... 36

2.3.4. The Proposed Framework for Deploying Deep Learning in the PHM Domain 38

2.4. Chapter Summary .. 38

3. A DATA-DRIVEN PREDICTIVE PROGNOSTICS MODEL FOR LITHIUM-ION BATTERIES
BASED ON A DEEP LEARNING ALGORITHM ... 39

3.1. Data-Driven Prognostics Approach for Lithium-ion Battery ... 39

3.1.1. Overview of Data-Driven Prognostics ... 39

3.1.2. Prognostics of the Lithium-ion Battery .. 41

3.2. Data-Driven Predictive Prognostics Model for Lithium-ion Batteries Based on A Deep
Learning Algorithm .. 45

3.2.1. Related Works... 45

3.2.2. Deployment of Deep Learning for Prognostics Model of Lithium-ion Battery Data 46

3.2.3. The Proposed Deep Neural Network Prognostics Model for Lithium-ion Battery 47

3.2.4. Results for Model’s SoH Estimation ... 48

3.2.5. Results for Model’s RUL Estimation ... 53

3.3. Result Discussion ... 55

3.4. Chapter Summary .. 56

4. DEEP NEURAL NETWORK FEATURE SELECTION APPROACHES FOR DATA-DRIVEN
PROGNOSTIC MODEL OF AIRCRAFT ENGINES .. 58

4.1. Deep Neural Feature Selection Approach for Modeling RUL Prediction of Aircraft Engines
Data ... 58

4.1.1. Feature Selection Methods for Neural Network Architectures .. 59

4.1.2. C-MAPSS Aircraft Engines Data ... 61

4.1.3. Related Works... 66

4.2. Methodology ... 67

4.2.1. Problem Statement ... 68

4.2.2. Deep Neural Network Architecture ... 68

viii

4.3. Experiment and Result ... 72

4.3.1. Training Procedure and Hyperparameters Selection ... 72

4.3.2. Experiment Setup and Results ... 73

4.4. Result Discussion .. 77

4.5. Chapter Summary .. 87

5. AN EVOLUTIONARY CONVOLUTIONAL LONG SHORT-TERM MEMORY DEEP NEURAL
NETWORK DATA-DRIVEN MODEL FOR PROGNOSTICS OF AIRCRAFT GAS TURBINE 88

5.1. Hybrid Deep Neural Network Layers Approach for Modeling RUL Prediction of Aircraft
Engines Data .. 88

5.2. Methodology ... 89

5.2.1. Problem Statement ... 89

5.2.2. Sliding Time Window Processing.. 90

5.2.3. Defined Convolutional Neural Network ... 91

5.2.4. Defined Long Short-Term Memory Recurrent Neural Network .. 93

5.2.5. CNN-LSTM Hybrid Architecture .. 96

5.3. Experiment and Result ... 97

5.3.1. Evolutionary CNN Model ... 98

5.3.2. Hybrid Evolutionary CNN-LSTM Model .. 100

5.4. Result Discussion ... 106

5.5. Chapter Summary .. 107

6. GENERAL SUMMARY .. 108

REFERENCES .. 110

APPENDIX .. 128

A1. Adaptive Moment Estimation. ... 128

A2. Pearson Correlation Matrix .. 129

A3. Principle Components Matrix .. 130

A4. Evolutionary DNN Model Description ... 131

ix

LIST OF TABLES

Table Page

1. PHM performance metrics. .. 16

2. Summary of prognostics application research using deep learning. ... 32

3. Difference between data-driven and physics-based models for PHM. .. 40

4. RMSE results of each stacked hidden layer model. .. 48

5. RMSE results of 10 trials for a model with three stacked hidden layers. 48

6. RMSE of the SoH estimation by using DNN and traditional machine learning algorithms. 50

7. Models created from the lithium-ion battery training dataset. .. 52

8. The error of RUL estimation by using DNN and traditional machine learning algorithms. 53

9. C-MAPSS dataset description [38]. ... 61

10. Hyperparameters values evaluated in the proposed DNN model for C-MAPSS data. 73

11. C-MAPSS attribute values from different filter methods. ... 76

12. Best RMSE and prediction score results of RUL prediction from all DNN models. 77

13. Mean RMSE from all DNN models. ... 79

14. The best DNN Models for FD002 test data. ... 84

15. The notation of the symbol in the LSTM memory cell. ... 94

16. Hyperparameters values evaluated in the proposed CNN model. .. 99

17. RMSE and prediction score for RUL prediction from different CNN configurations. 99

18. Hyperparameters values evaluated in the proposed hybrid CNN-LSTM model. 101

19. RMSE and prediction score for RUL prediction from different CNN-LSTM configurations. 101

x

 LIST OF FIGURES

Figure Page

1. Roles of diagnostics and prognostics scheme in the maintenance scenarios [22]. 4

2. The phase of prognostics and its transition from diagnostics [22]. .. 5

3. Illustration of some important prognostics time definitions and concepts [27]. 8

4. Trajectory prediction that can be modified corresponding to the estimation of RUL [27]. 9

5. Comparison of RUL predictions from ground truth [27]. .. 10

6. Example of standard Artificial Neural Network structure. .. 11

7. Convolutional layers. .. 14

8. Unfolded Recurrent Neural Network [34]. .. 14

9. The process of the prognostics framework using machine learning in general [48]. 20

10. Tasks in PHM [50]. ... 23

11. Proposed prognostics framework using a deep learning algorithm. .. 37

12. The schematic diagram of the tested battery. .. 42

13. The current and voltage during the discharging and charging of battery No. 05. 43

14. Predicted state of health of battery No. 05... 44

15. Dropout in deep neural network model. ... 47

16. The proposed Deep Neural Network model for lithium-ion battery data. 50

17. The SoH estimation with all algorithms for battery No. 06, 07, and 18. ... 51

18. The RUL estimation of battery No. 05 using different learning algorithms.. 54

19. Role of feature extraction and feature selection in the prognostics modeling process. 61

20. Engine and sensor points and engine parts modules connections [172]. 63

21. Example of sensor signals (NRc and Ps30) and all feature descriptions. 63

22. Example of before and after z-normalization. .. 63

23. RUL curve of all testing engines FD002 and FD004. .. 64

24. Example of RUL curve of one testing engine FD002 and FD004. ... 65

25. Auto-encoder Deep Neural Networks construction. ... 68

26. The proposed Deep Neural Networks model architecture for C-MAPSS data. 71

xi

27. Validation result using evolutionary selection from C-MAPSS data. ... 75

28. All RUL prediction curves for FD002. ... 80

29. All RUL prediction curves for FD004. ... 81

30. RUL prediction points for one engine of FD002 test data. ... 82

31. RUL prediction points for one engine of FD004 test data. ... 83

32. RMSE fluctuation for FD002 and FD004 test data. ... 85

33. Prediction error distributions from feature selection methods. ... 86

34. The defined Convolutional Neural Network architecture. .. 91

35. LSTM memory cell [190].. .. 94

36. The defined Long Short-Term Memory Network architecture.. 95

37. The proposed evolutionary hybrid CNN-LSTM deep neural network model architecture. 97

38. Evolutionary CNN RUL prediction curves for FD002 test data.. .. 102

39. Evolutionary CNN RUL prediction curves for FD004 test data. ... 103

40. Hybrid evolutionary CNN-LSTM RUL prediction curves for FD002 test data. 104

41. Hybrid evolutionary CNN-LSTM RUL prediction curves for FD004 test data. 105

xii

LIST OF ABBREVIATIONS

PHM ... Prognostics and Health Management.

CMS ... Condition Monitoring System.

RUL .. Remaining Useful Life.

ANN .. Artificial Neural Network.

FFNN .. Feedforward Artificial Neural Network

SVM .. Support Vector Machine.

LoR ... Logistic Regression.

EOL .. End-Of-Life.

EOP .. End-Of-Prediction.

UTT .. Unit Under Test.

DNN .. Deep Neural Network.

CNN .. Convolutional Neural Network.

RNN .. Recurrent Neural Network.

LSTM .. Long Short-Term Memory network.

ROC ... Receiver Operating Characteristic.

ROI ... Return Of Investment.

FP ... False Positives.

FN ... False Negatives.

MAPE ... Mean Absolute Percentage Error.

ACC .. Anomaly Correlation Coefficient.

MSE .. Mean Squared Error.

MAE .. Mean Absolute Error.

RMSE ... Root Mean Squared Error.

RMSPE ... Root Mean Squared Percentage Error.

SSD .. Sample Standard Deviation

AD .. Mean Absolute Deviation from the sample median

MAD ... Median Absolute Deviation from the sample median.

xiii

CRISP-DM.. Cross-Industry Standard Process for Data Mining.

AI .. Artificial Intelligence.

GA ... Genetic Algorithm.

DBN .. Deep Belief Networks.

MLP .. Multi-Layer Perceptron.

SVR .. Support Vector Regression.

RVR .. Relevance Vector Regression.

PCoE .. NASA Ames Prognostics Center of Excellence.

C-MAPSS ... Commercial Modular Aero-Propulsion System
Simulation.

PSO .. Particle Swarm Optimization.

MDSVC ... Multimodal Deep Support Vector Classification.

GDBM ... Gaussian-Bernoulli Deep Boltzmann Machine.

DRFF .. Deep Random Forest Fusion.

MHMS .. Machine Health Monitoring Systems.

CBLSTM ... Convolutional Bi-directional Long Short-Term Memory
networks.

GRU ... Gated Recurrent Units.

BiGRU .. Bidirectional Gated Recurrent Units.

LFGRU ... Local Featured-based Gated Recurrent Units.

CNNHMMs .. Convolutional Neural Network-based Hidden Markov
Models.

t-SNE .. t-distributed Stochastic Neighbor Embedding.

CNC .. Computer Numerical Control.

MAR ... Missing at Random.

ARMA ... Auto-Regressive Moving Average.

AANN ... Auto-Associative Neural Networks.

ELM .. Extreme Learning Machine.

ESNs .. Echo-State Networks.

xiv

MODE ... Multi-Objective Differential Evolution.

SaNSDE ... Self-adaptive Differential Evolution with Neighborhood
Search.

TOPSIS .. Technique for Order of Preference by Similarity to Ideal
Solution.

SoC ... State of Charge.

SoH .. State of Health.

EIS .. Electrochemical Impedance Spectroscopy.

AIC ... Akaike Information Criterion.

LR .. Linear Regression.

k-NN .. k-Nearest Neighbors algorithm.

GHPF ... Gauss-Hermite Particle Filter.

ReLU ... Rectified Linear Unit.

tanh ... Hyperbolic Tangent.

xv

LIST OF APPENDIX TABLES

Table Page

A1. The Pearson correlation matrix (for C-MAPSS dataset).. .. 129

A2. The Principle Components (PC) matrix (for C-MAPSS dataset). .. 130

xvi

LIST OF APPENDIX FIGURES

Figure Page

A1. The proposed evolutionary DNN model description (for C-MAPSS dataset). 131

1

1. INTRODUCTION

1.1. Background

In an era of information technology, data are being generated, collected, and accumulated across

all fields at an incredible rate. To extract useful knowledge of these rapidly growing volumes of data,

computational tools that can analyze big data are needed. This requirement has les to developments in

data mining, for various fields of applications.

Data mining is the process of discovering and extracting a pattern from data [1], which generally

involves characterization, generalization, classification, clustering, association, pattern matching, and

visualization of large quantities of data [2]. The area of Prognostics and Health Management (PHM) is

included as a part of a Condition Monitoring System (CMS) systems, which usually collects massive data

from equipment during system operations. This large collection of data in PHM makes it beneficial to

employ data mining approaches. Additionally, the prognostics domain also involves forecasting and

predicting failure precursors to determine the time span of a system until it reaches the system’s end-of-

life. The operational life of a system until its end-of-life in PHM is usually known as the Remaining Useful

Life (RUL) of the system, which is one of the key indicators of the system’s health status.

Currently, there are challenges in predicting RUL using traditional approaches, such as the

traditional regression model or statistical analysis approach. First, the traditional approaches are

incapable of accurately predicting the RUL when having little or no prior knowledge of the system’s

physical behaviors. Second, the traditional approaches often fail to analyze the system that has complex

or multiple fault conditions and/or features. Third, the accuracy of traditional methods, which provided the

prediction accuracy around 45% to 50%, is still unsatisfactory. And fourth, is the lack of general

performance metrics for PHM that can be used in a standardized manner in comparing multiple PHM

models. The data mining methodology is grounded by multi-disciplines such as probability [3]], statistics

[4], machine learning [5], and artificial intelligence (AI) [6] However, of these, the data mining disciplines

that are believed to address the major challenges in PHM are machine learning and artificial intelligence

algorithms. The traditional machine learning methods also called shallow learning models, such as an

artificial neural network (ANN) [7], support vector machine (SVM) [8], logistic regression (LoR) [9], and

others. Though these traditional methods have already been shown to have great performance over the

2

years, they still fail to overcome those challenges in estimating RUL. This opens an opportunity for a

modern machine learning approach namely, deep learning, to be adopted in PHM applications.

The early concept of deep learning was first initiated by Geoffrey Hinton in 2006 as the product of

improving the higher dimensionality of an existing ANN [10]. Deep learning has the potential to overcome

many shortcomings of the shallow learning methods, as it uses multiple non-linear transformation

functions to capture more complex representative information from the raw data [11]. Deep learning

approaches also have been proven to successfully construct good prediction models that use smaller

knowledge of past behaviors and yet are still able to provide an acceptable level of prediction accuracy

[12]. The only major challenge that possibly remains as an area of development is the standardized

metric for evaluating the performance of employing deep learning in PHM, which will also be addressed in

this dissertation as well as machine learning and deep learning approach in PHM applications.

1.1.1. PHM Definition

This section describes the development of PHM ideology. Some predefined terms and definitions

of PHM will be discussed to establish a fundamental understanding of the PHM area and its predecessor

methodology as part of the literature survey. This section also provides initial links between PHM and

deep learning approaches that will be discussed in the later parts of this thesis.

1.1.1.1. General Ideology of PHM

Activities of the system’s health analysis are essential to support the critical decision-making

process in engineering systems. Most of the engineering systems are composed of complex,

interconnected, multiple components and materials that must be maintained and/or replaced within a

certain operating time. To maintain the operation of a system, the run to failure scenario of the system

should be avoided, in most cases. One of the solutions to this scenario is by performing maintenance of

the system’s components while the operation is still running. This maintenance scheme not only

guarantees that the operation is performing properly, but also has a great economic impact in terms of

reducing the operation, production, and support costs. Diagnostics usually plays a role in identifying the

types of a particular failure that might occur, while prognostics is used to evaluate the health state of the

system. The operational time of the system’s components is usually called time until end-of-life. As the

main focus of this dissertation is regarding prognostics of the system, the term EOL, RUL, and system

3

health projection or prediction will occur multiple times. As the root of prognostics came from aspects of

system diagnostics, some parts and applications of diagnostics that relate to prognostics will also be

mentioned and discussed in this introduction part.

The term PHM was introduced and developed as a method to enable proactive maintenance

decisions that involved not only monitoring the health condition, but also predicting the RUL of the system

[13-17]. PHM technology can transform the passive system’s reliability into adaptive while also reducing

the system’s life cycle cost [18, 19]. This makes prognostics, a growing field, as one of the core

components within CBM as part of the CMS of critical systems. The prognostics of a system are defined

by the ability to evaluate and estimate the RUL of the system. Traditionally, the prognostics method for

the prognostics system focuses on only the accuracy of RUL estimation for certain applications [20].

However, after many studies have been employed by PHM over the years, some other challenges are to

be found in PHM as well. This is because prognostics is not fully developed compared to diagnostics.

Additionally, prognostics studies have put more effort into developing and employing new methods to

fulfill only requirements of particular end-users [21], rather than evaluating and comparing performances

among those methods from wide perspectives. This leaves gaps for new methods as well as precise

standard performance metrics to be deployed in PHM. Note that in this dissertation, the terms prognostics

and PHM might be used interchangeably from time to time.

To illustrate the importance of CBM, a proposed system’s operation maintenance procedure is

seed as in Figure 1. Diagnostics and prognostics are essentially involved in CBM. As mentioned

previously, diagnostics is the process of identification of faults or failures, whereas prognostics is the

process of identifying health states and making a prediction of the time to failure in the system [22]. The

time left before observing a failure is described as the RUL of the system [23].

The prognostics process also involves two phases as shown in Figure 2, fault prognostic and

diagnostics. The current system’s health state is assessed and evaluated in the first phase. This phase of

prognostics overlaps with diagnostics. Again, diagnostics and prognostics are both critical in system

health analysis, and in many cases, do not distinguish from each other. Classification or clustering

techniques are utilized within this phase for pattern recognition. This is the part that data mining

techniques, such as machine learning, and deep learning can be employed. The goal of the second

4

phase is to predict the time to failure of a system or a component by identifying, forecasting, or projecting

the RUL. Projection trends, tracking techniques, and time series analysis are utilized in this phase.

Figure 1. Roles of diagnostics and prognostics scheme in the maintenance scenarios [22].

In addition to the phase and roles of prognostics, modeling techniques must be established to

analyze the health state of the system and RUL. There are two types of modeling techniques generally

used for prognostics data. The first is, the data-driven model, and the second is, the physics-based

model. To construct a data driven model, requires sufficient run to failure samples data from the system,

whereas the physics-based model considers the physics of failure progression in the system must be well

understood. Some detailed definitions of data-driven and physics-based models for prognostics analysis

are as described next.

The data-driven model aims to model system behavior using collections of censoring data instead

of relying on system physicality or domain experts that understand the fundamentals of the systems [24].

Data-driven approaches are generally categorized into two types. The first one is from the statistical

approach and the second one is from the machine learning approach. The models using statistical

approaches are generally built upon a probabilistic and deterministic method from the available data.

While the goal of machine learning approaches is to recognize and capture complex patterns based on

5

historical data. The deep learning technique that will be the main discussion of the dissertation falls into

the machine learning approach.

Figure 2. The phase of prognostics and its transition from diagnostics [22].

The physics-based model requires knowledge or understanding of the system’s fundamental

physics to generate a model that can estimate the system’s RUL. The degradation or run to failure data

does not play an important role in the physics-based model. Therefore, in this case, the physical rules

within the system must be substantially known beforehand, which means, the domain expert is essentially

required to generate the physics-based model. The early step in a physics-based model is to exploit the

known relationship of physical parameters that represent the health state of the systems [25].

In physics-based prognostics models, two challenges must be considered: 1) the physics of

degradation of some systems may be very difficult to determine or in many cases can be unknown, and

2) the value of parameters in such a system might be impossible to obtain or evaluate. A physics-based

model requires vast information and a deep understanding of the failure mechanism of the system as well

as a high level of quality control. Therefore, skilled-well-knowledge personnel of particular systems or

subject matters is essentially required to construct and determine the physics-based model [26]. These

challenges of the physics-based model led to the development of a data-driven model that will come to

replace the physics-based model in the future.

One of the data-driven models approaches for prognostics that will be the main discussion is

machine learning approaches. The advancement of computational tools has largely impacted the

6

development of this approach. The complex machine learning algorithm requires capable computational

power. Because of the better computational power of a modern computing machine, the machine learning

algorithms have been proven to be able to empirically learn and recognize more complex patterns of the

system’s data. In most cases, it is believed it will replace the existing physics-based model. Deep learning

is a machine learning algorithm that has been proposed and proven to outperform other traditional

learning algorithms. Deep learning algorithms will be discussed more in detail in further sections. While

some terms and definitions of prognostics must be described to have a clear understanding of PHM

before any deeper discussion in the next section.

1.1.1.2. Prognostics Terms and Definitions

All commonly used terms in prognostics found in the literature are described in this section. Many

similar terms have been interchangeably used within the PHM research community. As well as in some

cases, the same terms have been referred to different notions. Thus, this list aims to help in clarifying

some discrepancies that might have been caused by some non-standardized use cases outside of the

PHM community [27].

Assumptions

• Prognostics can detect the failure precursors and predict RUL. The prediction of RUL is heavily

based on the current state of health and the future operating conditions of the system.

• A health index is defined as the identification of the health state of a system. Health index can be

considered because of the aggregated from a system’s features and conditions.

• RUL estimation is a forecasting, prediction, and extrapolation procedure.

• For comparison, the employed algorithms can generate a single RUL value for each prediction.

Algorithms that produce RUL distributions can also be compressed to one estimated number.

• All systems usually stay under continuous monitoring activities as part of the Condition Monitoring

System and have the capability to measure and acquire data from the system as the system’s

fault evolves.

7

Common Terminologies

• EOL: End-Of-Life, is the time index of the actual end of life.

• RUL: Remaining Useful Life, is the amount of time left before system health drops under the

failure threshold.

• EOP: End-Of-Prediction, is the earliest time index, i, when the prediction has reached the defined

failure threshold.

• UUT: Unit Under Test.

• I, is the index for time instant ti.

• 0, is the time index for the time of the birth of the system, t0.

• F, is the time index for the time when a fault starts to occur, tF.

• D, represents the time index when the diagnostics system detects the fault within the system, tD.

• P, represents the time index when the prognostics system makes the first prediction, tP..

• f nl (i), is the value of the nth feature for the lth UUT at time index i.

• cn
l (i), is the value of the nth operational condition for the lth UUT at time index i.

• rn
l(i), is the RUL estimation at time ti, when given that the data is available up to time ti for the lth

UUT.

• πl(i | j), is the prediction at time index i for the given data up to time tj for the lth UUT. Prediction

can be made in any domain.

• Πl (i), represents the trajectory of predictions at time index i for the lth UUT.

• hl (i), represents the health of a system for the lth UUT.

Figure 3 illustrates the common time terminologies used in prognostics. These terms will be

constantly used for the rest of the paper. The red-dotted line represents the actual behavior or the

prognostics system while the blue line represents the prediction value from the prognostics model.

Terms Definitions

• Time index: In a prognostics application, time can be either discrete or continuous. Somehow,

time index i is used instead of the actual time, likewise, considering time index as a discrete

measurement. This is useful in cases when the sampling time does not fall into the same pattern.

Time indexes describe in this paper also do not depend on or vary to time scales.

8

Figure 3. Illustration of some important prognostics time definitions and concepts [27].

• Health index: hl(i) is a health index at the time i for UUT, when l = 1, 2, …, L. Normalized

aggregate of health indicators in operational conditions is also considered as h.

• Time of detection of fault: D is the time index (tD) when faults are detected in the system. This

triggers the algorithm to begin performing RUL predictions as soon as enough data is collected

from the system’s fault state. For the applications, such as battery PHM, the prognosis is

employed as a degradation or decaying process. The faulty state may not be detected. For this

case, tD might be considered to be equal to t0.

• Time to start prediction: Normally, there is a difference between the time when the system starts

making a prediction (tP) and the time when a fault state is detected (tD). Generally, tP ≥ tD as the

algorithms required some time to fine-tune and adjust with additional input data before starting to

predict RUL. However, for some cases that data is collected in the system continuously before

faults are detected. There might be enough available data to start predicting RUL anytime, hence

tP = tD.

• Prognostics features: Given that fnl (i) is a feature at the time i, where n = 1, 2, …, N is the feature

number, and l = 1, 2, …, L is the UUT index. In most of the prognostics domains, features usually

change their behaviors over time. Features can take many forms such as system parameters,

system attributes, component variables, or other quantities that can measure, calculate, or

compute from any aspects of the system’s operating conditions that relate to the system’s

prognostics. Features can also be referred to as a feature vector Fl(i) of the lth UUT at the time i.

9

• Operational conditions: Given that cl
m(i) is one of the operational conditions at the time i, where m

= 1, 2,…,M is the condition number, and l = 1, 2, … , L is the UUT index. The load can also be

referred to as one of the operational conditions, which can also be referred to as a vector Cl(i) of

the lth UUT at the time i.

• Point prediction: Given that πl (i | j) is a point of prediction at the time i. Normally, the information

is provided at until time tj, where tj ≤ ti. This case πl (i | j) for i = EOL, is a health indicator at a

critical threshold. In some cases, the first step is to extrapolate the features, then, aggregate

those features to calculate the health status of the system. For other cases, the features are

aggregated to the health state to predict RUL.

• Trajectory prediction: Πl(i) is the trajectory of RUL predictions at time i. Πl (i) = {πl (i | i), πl (i +1|

i),...,πl (EOL | i)

• RUL estimation: Given that rl(i) be the remaining useful life estimation at the time i. The system’s

conditions and system’s features are provided until the time i assume that the future operational

profile of the system is available. As illustrated in Figure 5, the prediction has drawn at time ti and

it predicts the RUL from the given information until the time i. For the lth UUT, RUL will be predicted

as rl = arg{h(z) = 0} – i. Note that the subscript of the star symbol (*) indicates the best belief to be

the true value of the system variable. This condition is described as Ground Truth in the literature

[27].

Figure 4. Trajectory prediction that can be modified corresponding to the estimation of RUL [27].

10

Figure 5. Comparison of RUL predictions from ground truth [27].
When, tp [70, 240], tEOL = 240, tEOP > 240.

1.1.2. Deep Learning Algorithms

The reason that the machine learning approach works well with the prognostics data, in general,

is because it is possible to collect the massive data when performing system’s condition monitoring.

Although there are multiple machine learning algorithms that have been used in the PHM model over the

years, the main focus of this thesis is the concept of deep learning which will be discussed in this section.

As the deep learning concept was developed based on the Artificial Neural Network [7, 28-31], the first

discussion in this section will be an initial description of ANN. After that, the deep learning algorithms and

how they apply to prognostics prediction will be discussed.

1.1.2.1. Artificial Neural Networks

An ANN or a “neural network”, is a computational model inspired by the structural and functional

aspects of biological neural networks [7]. A single neural network, or a perceptron, has an interconnected

group of artificial neurons, which processes computational information through inter-connections

approaches from node to node. An ANN is an adaptive system, which means, it can change its

connections based on the different information during the learning phase. There are two configuration

modes in ANN. The first configuration mode is the feed-forward, and the second is the backpropagation.

For the feed-forward network, the connections between the units or nodes do not form a completed back-

and-forth cycle. Instead, the information in the network moves only one way forward from the input units,

through the hidden units, to the output units. While backpropagation moves the information backward to

update weights and connections in the network.

11

Backpropagation is a supervised learning method that has two phases, propagation phase and

weight update phase [28]. These two phases are repeatedly performed until the performance requirement

of the model is fulfilled. In backpropagation algorithms, the output values from the network are compared

to the actual or correct value through the calculation of the error-function value. This error-function value

is fed back through the network as a reference to make an appropriate adjustment of the weights of each

connection. The goal is to reduce the value of the error function by selecting proper weights. This process

is repeatedly performed in the training cycle until the condition is satisfied. Usually, the network will

converge to a certain state in which the calculated error is sufficiently small. This scenario can be

considered as if the network can learn a certain target function.

A sigmoid function is usually used as the activation function in ANN. The activation function is

basically the function that ‘activate’ the learning capability of the neural network. However, other

activation functions can be implemented in ANN, for example, linear or identity function, binary step

functions, hyperbolic tangent function, sigmoid function. A sigmoid function is a type of Gaussian spheroid

function, expressed as follows:

𝑦(𝑥) = 𝑒
−(

‖𝑥−𝑐‖2

2𝜎2)
 (1)

The output of the hidden neuron gives a measure of distance between the input vector x and the

centroid c of the data cluster. The σ parameter represents the radius of the hypersphere, which is

normally determined by using the iterative process of selecting the optimum width. The general structure

of the ANN is as described in Figure 6.

Figure 6. Example of standard Artificial Neural Network structure.

12

In addition to the activation function of the neural network, another condition that needs to be

considered to construct the classification model is the learning or training algorithm of the neural network.

A learning algorithm is a systematic step-by-step procedure through which the connection weights among

neurons are adjusted to minimize the difference between the predicted and actual values of an output

variable [29]. This adjustment was performed in this study using the most popular method of training,

known as the back-propagation learning algorithm. In addition to its broad employments in various

applications, the backpropagation learning algorithm is more efficient than other learning algorithms for

solving most of the regression problems [30].

There are three advantages to the backpropagation learning algorithm. First, this learning

algorithm is straight forward and easy to program. Second, the backpropagation learning algorithm can

provide reasonably accurate results for complicated applications in which the input and output

relationships are nonlinear [31]. Finally, and most importantly, the backpropagation learning algorithm has

revealed an acceptable level of generalization ability. The performance of neural networks trained by the

backpropagation learning algorithm is usually controlled by mainly two parameters, namely, learning rate

and momentum. At the start of the learning process, the learning rate will be varied in a range between 0

and 1. The learning rate is a parameter that affects how connection weights within a network are updated.

These updates also include a portion of the last weight change to accelerate the training convergence

and improve the training precision. This portion is defined by the second key parameter of the learning

algorithm, which is, momentum. Momentum is variant of the stochastic gradient descent that helps the

weight update to avoid getting stuck in local minima. This consequently helps to accelerate the learning

speed. Similar to the learning rate, the momentum will generally be varied in a range of 0–1. A specific

rule that determines the best values for the learning rate and momentum has not yet been proposed in

the literature. One of the common practices is by examining different values from 0–0.9 with a constant

step size of 0.1. Equation 2 and 3 describe the process of momentum and weight update in the neural

network. Equation 2 is the initialize step of identifying weight. While equation 3 shows the effect of the

momentum in the process. Where, ∆𝑊𝑖𝑗 represents weight increment and ∆𝑊𝑖𝑗
𝑡−1 represents the weight

increment from the previous iteration, 𝜂 is the learning rate,
𝜕𝑌

𝜕𝑤𝑖𝑗
 is the weight gradient variated by the

output 𝑌, and 𝛾 represents momentum.

13

∆𝑊𝑖𝑗 = 𝜂 ×
𝜕𝑌

𝜕𝑤𝑖𝑗
 (2)

∆𝑊𝑖𝑗 = (𝜂 ×
𝜕𝑌

𝜕𝑤𝑖𝑗
) + (𝛾 × ∆𝑊𝑖𝑗

𝑡−1) (3)

1.1.2.2. Overview of Deep Learning Concept

The concept of deep learning suggested by Geoffrey Hinton in 2006 has gained interest by

academia and industry [10]. Deep learning is based on ANN with a strong power of representation, which

holds the potential to overcome the deficiencies in traditional intelligent methods [32]. The representation

in neural network means the ability or how well that the output of network can mimic or ‘represent’ the

pattern of the actual data. The prominent advantage of deep learning is being able to capture the

information from raw data through multiple non-linear transformations and approximate complex non-

linear functions.

The main algorithms of deep learning include the Deep Neural Network (DNN), the Convolutional

Neural Network (CNN), the Recurrent Neural Network (RNN), the expansion of CNN and RNN, such as

Long Short-Term Memory network (LSTM), and the hybrid network which is the combination of different

type of stacked layers [11]. The following are the characteristics of each deep learning algorithm:

A Deep Neural Network is generally a stack of multiple hidden layers instead of only one hidden

layer in the standard ANN architecture. The DNN hidden layers are the multiple feed-forward layers that

are trained with back-propagation stochastic gradient descent (SGD). The hidden layers consist of

neurons nodes with hyperbolic tangent activation function (tanh), rectified linear unit activation function

(ReLU), and maxout function. DNN has additional parameters to the vanilla ANN, such as adaptive

learning rate, rate annealing, dropout, and regularization. These parameters can be fine-tuned and

believed to enable higher predictive accuracy than the vanilla ANN.

Convolutional Neural Network is layers of convolution function consisting of neurons with tanh,

ReLU applied to the results. CNN uses convolutions over the input layer to compute the output. An

individual layer of CNN applies different types of filters. The edges of layers capture the shape of data

and then use these shapes to deter higher-level features. The last layer classifies the output using these

high-level features. The general idea of convolutional layers in CNN is as shown in Figure 7.

14

Figure 7. Convolutional layers.

Recurrent Neural Network makes use of sequential information. RNN defines input and output as

dependent variables based on a time sequence. RNN performs the same task for every element of a

single sequence, with output at the end of the last time step depending on the previous computations.

RNN may consider having “memory” as it can capture information about the calculation in the past

sequence. However, RNN has a limitation in capturing the length of data. This leads to the development

of the LSTM network which can capture the longer sequence of information [33]. Figure 8 shows an RNN

being or unfolded into a full network [34]. The formulas that are used for RNN computation are as follows:

Figure 8. Unfolded Recurrent Neural Network [34].

• xt: input at the time step t.

• st: hidden state at the time step t. This might be considered as ‘memory’ of the network. st can be

calculated based on the previous hidden state and the input of the current step: 𝑠𝑡 = 𝑓(𝑈𝑥𝑡 +

𝑊𝑠𝑡−1).. The function f usually is normally non-linear such as tanh or ReLU.

• s-1: an initial hidden state that is required for the first hidden state typically initialized to zero.

• on: the output at step n

15

1.1.3. Performance Measurement Metrics for PHM

Many PHM performance metrics have been reported in the literature. A particular metric was

employed based on different prognostics application domains and algorithms that were used to construct

the model as described in Table 1. Part of the dissertation will only focus on what is called “algorithmic

performance metrics” as machine learning and deep learning approaches are based on this type of

performance evaluator [27]. There are mainly three categories of algorithmic performance metrics found

in the literature, 1) accuracy-based metrics, 2) precision-based metrics, and 3) robustness-based metrics.

The majority of the literature employed accuracy-based and precision-based metrics. Several cases used

robustness-based metrics but there is a limited formal definition found for robustness-based metrics,

which are Brier Score, Receiver Operating Characteristic (ROC), and sensitivity, as described in Table 1.

However, the robustness metrics may lead to the measurement of model stability against the other

metrics. The measurement of robustness and stability of the PHM model is needed to be explored in the

future because there are limited works that have performed a detailed study on the subject.

Generally, algorithmic performance can be evaluated by measuring the difference of errors

between the actual and predicted RUL. Other performance characteristics such as statistical,

convergence, moment, etc., can also use errors to quantify. However, one of the most important notions

is that the errors can be calculated if there is actual data available, which might not be the case. When

actual data is unavailable, historical, or past data may be generated to draw corresponding inferences.

However, this is only valid for the case when assuming that the current process similar distribution

compared to past data.

The list and descriptions of the three types of metrics are included in Table 1. It was found that

trajectory prediction metrics were not explicitly well defined in much literature. Some literature discussed

other types of metrics such as, “similarity measure” [20] and “prediction behavior error” [35]. These

metrics might be possibly adapted as trajectory prediction metrics. However there is no clear discussion

regarding trajectory prediction performance evaluations found [27].

Machine learning and deep learning approaches are heavily computational. It was suggested that

some computational metrics such as complexity [36], specificity [37], as well as computational time and

memory space, might need to be measured and included in the final results. The popular term to measure

16

computational performance is called “Big O” [38]. This notion describes the amount of time algorithm

needed to run the relative size of the input data or function.

In addition to PHM metrics related to the deep learning approach, other PHM performance

metrics that might be beneficial for further discussion as well is, “cost-benefit metrics” [39-41]. This group

of metrics focuses on how operation cost can be reduced if RUL can be predicted beforehand and how

the accuracy of RUL prediction impacts the cost to operate the system. The measurements are mostly

found to inform of return of investment (ROI) per operation. More details can be found in references work

by D. L. Goodman, S. Vohnout, and S. M. Wood [39-41]. Table 1 summarized most of the PHM matrices

having been found in the literature that well suited the deep learning approach and use cases.

Table 1. PHM performance metrics.

Metric Definition Description Reference

A
c
c

u
ra

c
y
-B

a
s

e
d

 M
e

tr
ic

s

Error ∆𝑙 (𝑖) = 𝑟∗
𝑙 − 𝑟𝑙(𝑖)

The error is the basic notion defined as the
difference or diversion of the prediction result
when compared to actual data. The majority of
the accuracy-based metrics are directly or
indirectly an error measurement.

[20]

Average
scale-
independent
error

𝐴(𝑖) =
1

𝐿
∑ 𝑒𝑥𝑝 {−

|∆𝑙(𝑖)|

𝐷0

}

𝐿

𝑙=1

where D0 is a normalizing constant value

The weighs exponentially scale the errors of RUL
predictions and average RUL result over several
UUT

[20, 42]

Average bias 𝐵𝑙 =
∑ {∆𝑙(𝑖)}𝐸𝑂𝑃

𝑖=𝑃

(𝐸𝑂𝑃 − 𝑃 + 1)

The averages of the prediction errors can be
made at all and any time from the beginning of
the prediction at the lth UUT. This metric can also
be extended to calculate the average of biases
overall UUT index and total bias in an application.

[20]

Timeliness

𝐴(𝑖) =
1

𝐿
∑ 𝜑{∆𝑙(𝑖)}

𝐿

𝑙=1

where,

𝜑(𝑧) = {
𝑒𝑥𝑝{|𝑧|/𝑎1} − 1, 𝑖𝑓 𝑧 < 0

𝑒𝑥𝑝{|𝑧|/𝑎2} − 1, 𝑖𝑓 𝑧 ≥ 0

and 𝑎1 > 𝑎2 > 0

The exponentially weighs calculate RUL
prediction errors via a type of asymmetric
weighting function. This usually penalizes late
predictions rather than early predictions.

[20]

False
Positives (FP)

𝐹𝑃 (𝑟∗
𝑙(𝑖)) = {

1, 𝑖𝑓 ∆𝑙> 𝑡𝐹𝑃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, 𝑡𝐹𝑃= user-defined acceptable early
prediction

The FP aims to determine unacceptable early
predictions, while FN is used to determine
unacceptable late predictions. Acceptable ranges
(tFN and tFP) must be set before prediction. This is
to address the early predictions that are the result
of the redundant lead time that usually causes
unnecessary corrections. The prediction that
comes later after critical threshold time units (tc)
will not be considered as a prediction result.

[43]

17

Table 1. PHM performance metrics (continued).

 Metric Definition Description Reference

A
c

c
u

ra
c

y
-B

a
s

e
d

 M
e

tr
ic

s

False
Negatives
(FN)

𝐹𝑁 (𝑟∗
𝑙(𝑖)) = {

1, 𝑖𝑓 −∆𝑙> 𝑡𝐹𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, 𝑡𝐹𝑁= the defined acceptable point in
time for an early prediction

Mean
absolute

percentage
error

(MAPE)

𝑀𝐴𝑃𝐸(𝑖) =
1

𝐿
∑ |

100∆𝑙(𝑖)

𝑟∗
𝑙(𝑖)

|

𝐿

𝑙=1

The averages of the absolute percentage errors
in the predictions are calculated for multiple UUT
at the same prediction time. Instead of the mean,
median, this metric can also be used to compute
the Median absolute percentage error (MdAPE).

[42-44]

Anomaly
correlation
coefficient
(ACC)

𝐴𝐶𝐶 =
∑(𝜋𝑙(𝑖|𝑗 − 𝑧#(𝑖))(𝑧∗(𝑖) − 𝑧#(𝑖))

√∑(𝜋𝑙(𝑖|𝑗) − 𝑧#(𝑖))2 ∑(𝑧∗(𝑖) − 𝑧#(𝑖))2

where, 𝑧∗(𝑖) is a prediction variable, and

𝑧∗(𝑖) is the corresponding history data.

The ACC measures the difference between the
prediction and observations phase. This can be
done by subtracting the historical mean at each
prediction point. The advantage of ACC is that it
is not sensitive to bias or error. However, a good
anomaly correlation does not guarantee
prediction accuracy. ACC is normally computed
over a few time-steps after tP. This can be used
to modify long-term predictions. Note that the
computation of baseline from historical data is
required for ACC.

[45]

Mean squared
error (MSE)

𝑀𝑆𝐸(𝑖) =
1

𝐿
∑ ∆𝑙(𝑖)2

𝐿

𝑙=1

The averages of the squared prediction calculate
the error for multiple UUT at the same prediction
horizon. A derivative of MSE is Root Mean
Squared Error (RMSE) which is also popular
among many PHM application

[42]

Mean
absolute error
(MAE)

𝑀𝐴𝐸(𝑖) =
1

𝐿
∑|∆𝑙(𝑖)2|

𝐿

𝑙=1

The averages of the absolute prediction also
calculate the error for multiple UUT at the same
prediction horizon but use median instead of
mean.

[42]

Root mean
squared
percentage
error
(RMSPE)

𝑅𝑀𝑆𝑃𝐸(𝑖) = √
1

𝐿
∑ |

∆𝑙(𝑖)

𝑟∗
𝑙(𝑖)

|

2𝐿

𝑙=1

The square root of the average percentage
calculates the error of the prediction from multiple
UUT. A similar metric is the Root median squared
percentage error (RMSPE).

[42]

P
re

c
is

io
n

-B
a
s
e
d

 M
e

tr
ic

s

Sample
standard
deviation
(SSD)

𝑆𝑆𝐷(𝑖) = √
∑ (∆𝑙(𝑖) − 𝑀)2𝑛

𝑙=1

𝑛 − 1

where M is the sample mean of error

The sample standard deviation measures the
spread of the error with respect to the sample
mean. This metric is restricted to the normal
distribution of the error. The result of this error is
usually recommended to be plotted when
reporting this type of error.

[20]

Mean
absolute
deviation from
the sample
median (AD)

𝐴𝐷(𝑖) =
1

𝑛
∑|∆𝑙(𝑖) − 𝑀|

𝑛

𝑙=1

where M = median
𝑙

(∆𝑙(𝑖)) and the median is

the (
𝑛+1

2
)

𝑡ℎ

 order statistic

This is an estimator of the spread of error. It is
normally being used when the plot of error is not
a normal distribution, and when there is a small
number of UUT.

[46]

Median
absolute
deviation from
the sample
median (MAD)

𝑀𝐴𝐷(𝑖) = median
𝑙

(|∆𝑙(𝑖) − 𝑀|)

where M = median
𝑙

(∆𝑙(𝑖)) and the median is

(
𝑛+1

2
)

𝑡ℎ

 order statistic

This is also an estimator of the spread of error. It
is also normally used when the plot of error is not
a normal distribution, and when there is a small
number of UUT or single UTT but focuses more
on median measurement rather than average of
error.

[46]

18

Table 1. PHM performance metrics (continued).

1.1.4. Initial Framework for PHM Data Modeling Using Deep Learning

In general, a machine learning framework for PHM data was developed based on a cross-

industry standard process for data mining (CRISP-DM) [48] and consisted of five phases: definition states

phase, pre-processing phase, training phase, testing phase, and evaluating phase. The standard

framework is illustrated in Figure 9. However, because of the high complexity of deep networks, it has

been often found that deep networks are harder to train to compare to vanilla neural networks or other

machine learning algorithms [49]. To guarantee that the deep networks can be successfully trained and

overcome the learning difficulty, additional steps (such pre-training, feature selection, dimensionality

reduction, and etc.) might need to be added into the standard machine learning framework. These issues

will be further addressed in more detail in the next chapter and one of the possible new frameworks of

PHM application using deep learning will be initially proposed.

 Metric Definition Description Reference

R
o

b
u

s
tn

e
s

s
-B

a
s
e

d
 M

e
tr

ic
s

Reliability
diagram, Brier
Score

The Brier Score computed as

𝐵𝑆 =
1

𝐾
∑ (𝑝𝑘 − 𝑜𝑘)2𝐾

𝑘=1 is a measure of the

deviation from diagonal

The reliability diagram plots are used to observe
the prediction frequency against the predicted
probability of the RUL of a system in the
condition that RUL must be within a given
interval, or the health index is crossing a
threshold. The prediction of RUL is not
considered as an event (in probability). In this
case, the prognostics problem must be converted
to the classification domain. The range of
probabilities that prognostics event occurs is
divided into K probabilities. The proximity of the
plotted curve to the diagonal indicates “reliability”.
The deviation from the diagonal indicates
conditional bias. The curve is below the diagonal
line, which means, it is over-forecasting or too
high of prediction probabilities, in opposition,
points above the line indicate under-forecasting
or too low prediction probabilities.

[45]

Receiver
Operating
Characteristic

(ROC)

The area under
the ROC curve
can be used as a
score

The ROC provides an overview tradeoff between
false positives (FP) and false negatives (FN).
That curve that has zero false positives and zero
false negatives is an ideal curve. Such a curve
may not be able to achieve. As a result, tuning
the prognostics algorithm based on only ROC
may not be practical in practice.

[45, 47]

Sensitivity

𝑆(𝑖) =
1

𝐿
∑ {

∆𝑀𝑙(𝑖)

∆𝑖𝑛𝑝𝑢𝑡

}

𝐿

𝑙=1

where,

ΔM is the distance measure between two
successive outputs for metric M’s value and
Δinput is a distance measure between two
successive inputs

Sensitivity measures how sensitive a prognostics
algorithm is to the variations of input or
disturbance signal. Sensitivity can be evaluated
along with any performance metrics.

[20]

19

Most of the prognostics models that employed machine learning were developed based on the

aforementioned framework. The experiment with data was mostly constructed by varying the hyper-

parameters depending on the algorithm. The hyperparameters are the modeling parameters that can be

fine-tuned. For deep learning algorithms, the hyper-parameters to experiment are the number of layers,

type of activation functions, momentum, epoch, batch size, etc. All these hyperparameters can cause the

variation of the deep learning architecture configurations for each PHM application domain.

The performance metrics are calculated and measured first during the training phase until the performance

result is satisfied and again during the testing phase to measure model performance against unknown or

new data or a set of validation data. Multiple performance metrics might be used to draw a more complete

assumption of the experiment. As briefly discussed in the previous section, the stability of these models

have not been widely addressed in many published pieces of literature. The stability of the model might be

improved by evaluating the uncertainties associated with the training parameters. This might involve

additional tasks within or before the preprocessing phase. While this issue is not the main focus of this

dissertation, it will be briefly discussed in the next chapter and one of the possible new frameworks that

might help to overcome some aspects of stability will be introduced.

1.2. Research Objective and Contribution

In this research work, the goal was to develop a modeling algorithm to accurately predict the

lifespan of certain PHM applications, in this case is, the gas turbine aircraft engines. The lifespan

prediction can be used to determine when maintenance should be performed. This not only saves the

cost of operating and maintenance of such systems, but also to help save the lives of the people by

avoiding a catastrophic failure. In addition, this dissertation also defines a baseline or generic results for

implementing and developing predictive models for PHM applications in general. Thus, the dissertation

also includes the experiment results for additional deep learning predictive models of another popular

PHM application, which is, a PHM of lithium-ion battery as well as proposing a general modeling

framework for using deep learning in PHM. This promotes the concept of using deep learning algorithms

that can be generalized across multiple PHM applications and provide a benchmark for PHM modeling

scheme in general. To achieve all those goals, below is the list of objectives, tasks, and contributions that

this dissertation aims to fulfill.

20

Figure 9. The process of the prognostics framework using machine learning in general [48].

1.2.1. Objectives and Tasks

Objective 1: Perform a literature survey for the PHM applications that deployed deep learning

algorithms.

• Review comparative literature in the ongoing PHM areas that applied deep learning or neural

networks as a modeling algorithm.

• Suggest a possible general framework to deploy deep learning algorithms for PHM

applications.

Objective 2: Perform preliminary data-driven model experimentation on PHM data.

• Generate PHM predictive models with multiple data mining or machine learning algorithms

and compare their performance with the model constructed with deep learning algorithms in

other existing works and the experiments using basic or vanilla deep learning or neural

network algorithms.

21

• Use the most popular PHM dataset–lithium-ion battery data, as a benchmark dataset to test

the assumption and develop preliminary deep learning data-driven predictive models for the

PHM dataset.

Objective 3: Extract meaningful features for deep learning data-driven models from the aircraft

gas turbine engine dataset to improve neural network-based feature selection method for aircraft gas

turbine engines RUL prediction.

• Evaluate the features/attributes from the dataset first. Not only to develop high accuracy

models but also to reduce the complexity of the models by selecting only meaningful

features/attributes from the dataset.

• Use evolutionary selection (applied Genetic Algorithm (GA)) as a feature selection algorithm

to extract the meaningful feature from the aircraft gas turbine engines dataset based on deep

neural network modeling algorithms.

• Compare results from evolutionary selection to other models using other neural network-

based feature selection approaches in other existing works and the experiments using basic

or vanilla deep learning or neural network algorithms.

Objective 4: Develop/Propose a data-driven model using deep learning algorithms for the

prognostics of aircraft gas turbine engines.

• Use the Hybrid Convolutional Deep Neural Network as a modeling algorithm

• Compare results from the Hybrid Convolutional Deep Neural Network to other models using

other neural network-based algorithms

1.2.2. Deliverables

The final model(s) that was developed demonstrated improvement of deep learning model by

reduced complexity or increased accuracy over existing models in other literature.

Deliverable 1: Reduce complexity; by performing features selection, dimensionality reduction, and

data compression.

Deliverable 2: Increase accuracy; by using suitable deep learning algorithms, and hybrid

modeling algorithm schemes.

Deliverable 3: Faster convergence; by using optimized hyper-parameters tuning.

22

1.2.3. Contributions

Contribution 1: Introduce a better prognostics model(s) of aircraft gas turbine engines to the PHM

research communities and/or aerospace communities.

Contribution 2: Draw a conclusion on which features/attributes in the aircraft gas turbine engines

dataset that increase the efficiency of implementing data-driven deep learning prognostics models.

Contribution 3: Validate the developed methodology can improve the RUL prediction model for

gas turbine engines by comparing its performance/error and complexity to the model derived from original

features and existing models in other literature.

Contribution 4: Provide baseline/benchmark results for predicting the lifespan of PHM data for

such aircraft engines.

1.3. Chapter Summary

In this first chapter of the dissertation, this work looked at presenting the concept of applying a

new deep learning science and approaches to PHM applications. There are attempts in the past to

emerge those two fields with limited success. Thus, more studies are needed in this field. This

dissertation serves as a part of the studies in the aforementioned topic by focusing on developing a deep

learning model for a specific PHM application, which in this case is, the PHM of aircraft gas turbine

engines. In addition, the goal is to provide the general outlook for using deep learning within the PHM

scheme. This will be achieved by providing a general concept of using deep learning for PHM application

along with some preliminary experiments as well as fine-tuning the deep learning data-driven predictive

models for aircraft gas turbine engines. The following chapters of the dissertation (Chapter 2-5) are

organized by the four specific objectives mentioned previously in Chapter 1. The dissertation concludes in

Chapter 5 with the end results and finally deep learning PHM model of aircraft gas turbine engines along

with the summary and future directions of Deep Learning for Prognostics and Health Management

Applications topic.

23

2. A SURVEY OF DEEP LEARNING APPROACH FOR PROGNOSTICS

AND HEALTH MANAGEMENT APPLICATIONS

2.1. Deep Learning Paradigm in PHM Tasks

PHM is a computation-based application that elaborates on physical knowledge, information, and

data [50] of structures, systems, and components operation and maintenance, to detect anomalies of

equipment and process, diagnose and evaluate degradation states and faults, as well as predict the

progression of degradation to failure and estimate the remaining useful life. The PHM task is illustrated in

Figure 10. As mentioned in more detail in Chapter 1, the outcomes of the PHM elaboration are used to

support condition-based and predictive maintenance decisions for efficient, reliable, and safe operations.

The ability to deploy these maintenance strategies provides the opportunity of setting efficient, just-in-

time, and just-right maintenance strategies [51, 52]. This can help to maximize the production profits and

minimize all costs and losses. As a result, PHM research and development has intensified, both in

academia and industry, involving various disciplines of mathematics, computer science, operation

research, physics, chemistry, materials science, engineering, etc.[53, 54].

Figure 10. Tasks in PHM [50].

The practical implementation of PHM includes data acquisition to enable detection, diagnostics

and prognostics tasks, and maintenance decision-making [55]. The supporting PHM framework and its

requirements must be properly defined to perform well in real industrial scenarios. Given the increasing

24

complexity, integration, and informatization of modern engineering, PHM can no longer be an isolated

addition for supporting maintenance but must be closely linked to the other structure, power,

electromechanical, information and communication technology, control parts of the systems. PHM must

be included at the beginning of the system conceptualization and carried through its design and

development in an integrated framework capable of satisfying the overall operation and performance

requirements [56, 57]. The development of PHM in practice also involves other aspects, including design

(e.g. the use of smart components may lead to different reliability allocation solutions), and impacts

various work units involved in maintenance decisions and actions (e.g., workers can use smart systems,

maintenance engineers can analyze big data), including the supporting logistics (spare parts availability

and warehouse management can be driven by the PHM results) [58]. This is where new techniques such

as machine learning and deep learning paradigm can improve and make PHM smarter and predict the

outcomes more accurately and more reliably.

Methods of fault detection, fault diagnostics, and failure prognostics within the PHM framework

are continuously being developed. The advance ‘smarter’ data analytics (also including image processing

and text mining) are mostly based on the newly developed artificial intelligence, machine learning, and

deep learning paradigms with the adoption of more computational power systems. The objective of

performing each task in diagnostic and prognostic is different. The objective of fault detection is to

recognize anomalies behavior. The objective of fault diagnostics is to identify the degradation states and

the causes of degradation. Prognostics aims at predicting the RUL, which is the main focus of the

experiments and models proposed in this dissertation All fault detection and diagnostics, and failure

prognostics combined can be an enabler of condition-based and predictive maintenance, which offers

major opportunities for Industry 4.0 and smart structures, systems, and components operation and

maintenance, as they can allow reducing failures, increasing infrastructure usage, and reducing operation

and maintenance costs, with tangible benefits of reduction of production downtime, risk and asset losses,

and consequent increase of production profit [59]. All these are where machine learning and deep

learning paradigms can be integrated into PHM systems to improve the main 3 tasks; anomaly detection,

degradation level assessment, and prognostics, in PHM as described in Figure 10. The new deep

learning technique has proven to be able to handle all these tasks but still needs more studies.

25

In this chapter, a summary of research works in PHM as part of the survey and address some of

the challenges within this domain are provided. Additionally, an improved frameworks (initial framework

mentioned in Chapter 1 section 1.1.4) for using Deep Learning in PHM applications will be proposed.

2.2. Research Application of PHM Domain Using Deep Learning Algorithms

Deep learning is considered a relatively new approach for research application in the PHM area,

with promise to improve current outcomes of PHM. There are limited recent works that employed deep

learning to PHM data. The majority of the works were published between 2014 to 2019. Table 2 provides

a summary list of prognostics and some related diagnostics research using deep learning based on the

application area.

The brief discussions of the applied research for each deep learning algorithm are described

next. However, there is one deep learning algorithm, namely, Deep Belief Networks (DBN), that is

discussed in this chapter because of its long history of being studied. DBN is not considered to be a

recent algorithm for the deep learning approach. The new trend of deep learning recently leans toward

more on newly developing types of deep layers, such as CNN, RNN-LSTM, and hybrid methods.

Additionally, the improved DBN has already appeared within the hybrid methods area. Most of the

interesting improved versions of DBN will also be discussed in hybrid allocation approaches. More

information on PHM research applications using DBN can be found in [32].

Comparing the advantage and limitations between these deep learning algorithms (DNN, CNN,

and RNN-LSTM), it was discovered that DNN is more suitable to tackle single-dimensional constructed

data. While CNN is suitable to deal with multidimensional data, such as image data, or data with

two/three-dimension (2D or 3D) construction. This is because a convolutional technique that has been

used in CNN layers. This is due to the fact that CNN can help to expand the feature of the data in the

higher level to better recognize patterns from those higher-level features. It is worth to also notice that

DNN is usually employed to extract the global feature from fault data, while, CNN has outstanding

performance for local feature extraction. The local feature is feature from the higher dimension which

usually represent what was obtained from the raw data. Though there is limited works that have used

RNN-LSTM, it has been shown that RNN-LSTM is efficient at handling the degradation dataset with a

timespan and can recognize and capture a repetitive degradation pattern related to time better than other

26

deep learning algorithms. Also, CNN and RNN-LSTM algorithms are more complex than DNN. This

causes CNN and RNN-LSTM to require more training the final model and require more computational

resources compared to DNN. Group of prognostics models using each deep learning algorithm are as

described in the next subsection. This is to determine the research gap in each prognostics area and

provide a general idea of where this work can contribute to the PHM community.

2.2.1. PHM Models Using DNN

In 2003, Samanta, B., et al. is one of the early adopters employing vanilla artificial neural network

to estimate the fault state of the bearing elements. This work did not aim to improve the prediction

accuracy but only aimed to set an example of how ANN can be employed (train and test) for fault

diagnostic and prognostics application [60]. Ma, Y., et al. (2014), a proposed architecture for fault

diagnosis of visual images and structured data based on the deep auto-encoder neural network [61].

Fink, O., et al. (2014) used multilayer feedforward neural networks based on multi-valued neurons for the

railway turnout application, multilayer feedforward neural networks confirms the good performance in the

long-term prediction of degradation and does not show accumulating errors for multi-step ahead

predictions [62]. Weining Lu et al. (2015) developed a feature extraction method based on DNN using the

bearing system as a case study [63]. Jingwei Qiu et al. (2015) proposed a full features extraction method

using DNN combined with state analysis of the hidden Markov model to improve the diagnostics and

prognostics analysis with the inseparable fault. This development leds to the innovation of the early-

warning fault model. This method can effectively deal with the multi attributes-multi features prognostics

data [64]. Li, K., & Wang, Q. (2015) designed a multi-class classification model using the auto-encoder

stacked neural networks. The proposed method can identify fault characteristics for various diagnosis and

prognosis issues [65]. Yaguo, L., et al. (2015) employed DNN to mine available fault characteristics [66].

Sarkar, S., et al. (2015) used DNN to classify greyscale flame images from the combustion chamber of

the gas turbine engine whether the engine is in a stable stage or unstable regions [67]. Feng Jia et al.

(2016) used DNN to develop an intelligent method for fault diagnosis diagnosing through the prognostics

of rotating machinery dataset [68]. Liu, H., et al. (2016) proposed a new rolling bearing fault diagnosis

method using the sound signal. The modeling method was based on short-time Fourier transform and

stacked sparse auto-encoder DNN [69]. Sun, W., (2016) presented a DNN approach for fault diagnosis

27

of an induction motor by utilizing the sparse auto-encoder to extract features [70]. Lei, Y., et al used two

stages-two layers DNN to develop a classification model for fault diagnostic of bearing equipment based

on the vibration signal data of the bearing system [71]. Zhou, F., et al. (2017) propose a multimode

classification method based on deep learning by constructing a hierarchical DNN model for mode partition

of bearing [72]. Ma, K., et al. (2017) trained auto-encoder DNN model using fiber-optic acoustic data from

a pipeline system and developed a multi-step method for pipeline anomaly detection [73]. Jiang, G., et al.

(2017) proposed a fault detector model based on an unsupervised learning method, denoising auto-

encoder deep network, which can capture nonlinear data patterns against noise and input fluctuation [74].

Bangalore, P., et al. applied an artificial neural network with Mahalanobis distance to develop a model for

anomaly detection in wind turbine gearboxes [75]. Zhao, Z., et al. used an improved back propagation

neural network as a modeling algorithm for predicting the RUL of multiple aircraft engines [76]. Xiao, H.,

et al. (2017) proposed a fault diagnosis framework using auto-associative neural networks for wastewater

process. The framework has been validated by process data collected from two wastewater treatment

plants with different dynamic characteristics [77]. In 2018, Chemali, E., et al. successfully employed DNN

to predict the multi-state of charge or health state of the lithium-ion battery system [78]. In 2019, Tolo, S.,

et al., developed a robust on-line fault detection tool for the early accident detection for nuclear

powerplant heavy-water reactor with artificial neural network architectures through the use of Bayesian

statistics as a modeling algorithm [79]. Pliego, A., et al. (2019) used two real dataset from a wind turbine

to train the false alarm model. Their proposed model was compared against the prediction result using

fuzzy logic model [80].

2.2.2. PHM Models Using CNN

Generally, new configurations or new constructions of the proposed neural network layers,

including CNN, is rather new and can help to improve some aspects of the models over the years. Each

configuration of the CNN layer provides different end results that might rather better in terms of prediction

accuracy, complexity, or robustness of the models. Chen Zhiqiang et al. (2015) suggested a configuration

of a deep Convolutional Neural Network (CNN) for fault identification and classification. The experiment

had shown that the suggested model had outstanding performance compared to base algorithms [81].

Babu, G. S., et al. (2016) proposed another deep CNN based on the regression approach. The proposed

28

CNN model was compared to three regression algorithms including Multi-Layer Perceptron (MLP),

Support Vector Regression (SVR), and Relevance Vector Regression (RVR). Results showed that the

proposed CNN could deliver better results across multiple datasets [82]. Janssens, O., et al (2016)

proposed a feature learning model for condition monitoring based on convolutional neural networks to

autonomously learn useful features for bearing fault detection from several types of bearing faults data

such as outer-raceway faults and lubrication degradation [83]. Ince, T., et al. (2016) developed a fast and

accurate motor condition monitoring model as an early fault-detection system using one-dimension CNN

with an adaptive design for the feature extraction and classification of the motor fault detection in a single

learning body [84]. Dong, H.Y., et al (2016) developed a small fault diagnosis method using CNN trained

by vibration data under several different small fault patterns of front-end controlled wind generators [85].

Gibert, X., et al. (2016) used CNN to generate a multi-task learning framework for detecting possible

different failure modes of railway track from its image [86]. Lu, C. et al. (2017) also employed hierarchical

CNN to develop a fault classification model of rolling bearings. Their model reduced learning computation

requirements in the temporal dimension, and an invariance level of working condition fluctuation and

ambient noise was provided by identifying the elementary features of bearings [87]. Xia, M., (2017)

developed a CNN-based approach for fault diagnosis of rotating machinery. This work took advantage of

the CNN structure to achieve higher and more robust diagnosis accuracy [88]. Janssens, O, et al. (2017)

investigated if and how CNN can be applied to the infrared thermal video data to automatically determine

the condition of the servo-motor [89]. In 2018, Xiang Li, et al. applied CNN as a time window approach to

generate a feature extraction model of C-MAPSS aero-engine data [90].

2.2.3. PHM Models Using RNN-LSTM

Xuhong, W., et al (2005) presented a diagonal RNN based approach for detecting fault in the

induction motors. In this work, two diagonal recurrent neural networks were employed to detect turn fault

of the induction motors. Turn fault is a type of electrical fault occur in the induction motor that might

happen either in stator or rotor in the indiction motor. One was used to estimate the fault severity, the

other was used to determine the exact number of faults turns [91]. In 2007, Qingpei Hu, et al. applied

RNN for software reliability. RNN applied to model fault detection, and fault correction process within the

software packet [92]. Oliver Obst (2014) deployed an RNN that can learn spatiotemporal correlations

29

between different sensors and maked use of the learned model to detect faulty sensors within a system

[93]. Yuan, M. et al. (2016) applied the RNN-LSTM network for fault diagnosis and estimation of the

remaining useful life of aircraft engines. Results showed that the performance of the LSTM model with

modifications outperformed other peer algorithms [94]. Tim de Bruin, et al. (2016) used LSTM to learn

dependencies within railway track circuits data to timely detect and identify the faults in railway track [95].

Guo, L., et al. (2017) proposed a data-driven model using RNN for remaining useful life prediction of

bearing dataset [96]. Zhang, S. et al. (2017) develop a method for data-based line trip fault prediction in

power systems using LSTM compared against support vector machine [97]. Zhang, Y. et al. (2017) used

a simple one-layer RNN-LSTM to construct the RUL prediction model for lithium-ion battery from NASA

Ames Prognostics Center of Excellence (PCoE) and compare the result with Support Vector Machine

[98]. In 2018, Zhang, Y. et al. used RNN-LSTM to make predictions of the remaining useful life of the

lithium-ion battery dataset. The experiment demonstrated that LSTM was able to capture the underlying

long-term dependencies or variables among the degraded capacities lithium-ion battery datasets. The

experiment was contrasted to the support vector machine model, the particle filter model, and the simple

RNN model for RUL prediction. RNN-LSTM was, again, outperformed every other baseline models [99].

Nguyen, K., et al. developed the prognostics step, based on the Long/Short-Term Memory network,

oriented towards the requirements of operation planners. Their approach provided the probabilities that

the system can fail in different time horizons to decide the moment for preparing and performing

maintenance activities. The proposed framework was validated on a real application case study using the

C-MAPSS aircraft dataset [100]. Again, a popular C-MAPSS aircraft dataset has been used by da Costa,

P., et al. (2020) to develop the RUL prediction model. In this work, a Domain Adversarial Neural Network

(DANN) approach was applied to training LSTM models. The results showed that their method provided

more reliable RUL predictions than models trained only on source data for varying operating conditions

and fault modes [101]. Recently in 2021, Shi, Z., et al. proposed a new dual-LSTM framework ideology to

predict the life span of an aircraft engine using a popular C-MAPSS dataset. They used the LSTM

network in two training states (change point prediction state and prediction state.) The result using their

framework has proven to achieve higher precision compared to the existing benchmark results using the

traditional LSTM framework [102].

30

2.2.4. PHM Models Using Hybrid Deep Learning Layers

Wang, P., et al. (2015) improve the accuracy of fault recognition by developing a new

identification method called, PDBN, which is a hybrid method that combines the particle swarm

optimization (PSO) algorithm with the Deep Belief Network (DBN) [103]. Shao, H., et al. (2015) employed

the optimization DBN model for fault diagnosis and prognosis, where PSO was additionally used to

decide the optimal structure of DBN. The results confirmed that the suggested hybrid method was better

performed in terms of accuracy when compared to SVM, ANN, and Boosting methods [104]. Zhiqiang, C.,

et al. (2015) presented multi-classifier models using a multi-layer neural network (MLNN) for fault

diagnosis of vibration signals. The new learning architecture using Deep Belief Network (MLNNDBN) was

proposed and tested in their work [105]. Chuan Li et al. (2015) experimented on a multimodal deep

support vector classification (MDSVC) model to diagnose faults by employing Gaussian-Bernoulli Deep

Boltzmann Machine (GDBM) [106]. Sanchez et al. (2016) addressed the use of the Deep Random Forest

Fusion (DRFF) method for fault diagnosis and prognosis performance of gearboxes. They employed two

independent DBNs to extract the features of an acoustic emission sensor and an accelerometer. This was

an improvement of the vanilla random forest method [107]. Jha, D.K., et al. (2016) used CNN to extract

spatial features from individual combustion wind turbine images and employed a Gaussian process to

model the temporal dynamics of the spatial features extracted from CNN [108]. Zhao, L. et al. (2017)

combined the CNN and LSTM to generate Machine Health Monitoring Systems (MHMS) model. In this

work, Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) have been particularly

designed to handle raw sensory data from MHMS. The first step of CBLSTM was to use a regular CNN

layer to exploit local features from raw data that were robust and informative features. Next was using a

bi-directional LSTM layer to encode temporal information. In this work, LSTM was used to capture long-

term dependencies and sequential data, while bi-directional network layer is capable to capture the

information within the past and future contexts from the raw data [109] Zhao, R. et al. (2017) employed

multiple extensions of RNN, including, Gated Recurrent Units (GRU), and Bidirectional Gated Recurrent

Units (BiGRU), against their proposed local featured-based Gated Recurrent Units (LFGRU), again, for

Machine Health Monitoring Systems. LFGRU proposed in this work was a hybrid approach that combined

handcrafted feature design with automatic feature learning for machine health monitoring. First, features

31

from windows of input time series were extracted. Then, an enhanced bi-directional GRU network was

designed and applied to the generated sequence of local features to learn the representation. A

supervised learning layer was finally trained to predict machine conditions [109]. Wang, S., et al. (2018)

used convolutional neural network-based hidden Markov models (CNNHMMs) to classify multi-faults in

mechanical systems. In this work a CNN and the t-distributed stochastic neighbor embedding (t-SNE)

technique was first employed to learn data features from raw vibration signals data, then, HMMs was

employed as a tool to classify faults [110]. Ellefsen, A., et al. (2019) used Convolutional Neural Network

and Long-Short Term Memory with the utilization of Genetic Algorithm (GA) for fine-tuning hyper-

parameters to generate the RUL prediction model for C-MAPSS aircraft engine data [111]. Li, X., et al.

(2019) also deployed a hybrid CNN and LSTM layer to implement the multi-scale feature extraction model

for bearing data [112].

2.3. Some of the Challenges of Deploying Deep Learning for PHM Applications

As mentioned in the previous chapter, prognostics aim at predicting RUL, i.e., the time left before

the system or components can no longer be able to perform its intended function. This prediction fits into

a regression scheme when deploying deep learning. However, many challenges remain and are still in

discussion within the PHM communities. The challenges arise from the complexity of the physics, the

data available, and requirements to the PHM for practical solutions. These are only the challenges within

the applications themselves, some of which, are directly related to the challenges of using deep learning

in the PHM domain as well.

After a literature survey, we detail such challenges into three categories: 1) Data challenges, 2)

Uncertainty and 3) Difficulty to train models. This section will go through these challenges. Additionally,

we also propose one of the possible new frameworks for deploying deep learning in the PHM domain

which can possibly address these issues based on those challenges.

2.3.1. Data Challenges

Prognostics is concerned with the prediction of the future evolution to the failure state. It involves

the processing of data to predict the future degradation and functional attributes, based on estimation of

failure probability and RUL. The prognostic outcomes are used for the health management of which,

using the RUL prediction to decide on and actuate operational actions and maintenance interventions.

32

Table 2. Summary of prognostics application research using deep learning.

It is important to note there are uncertainties within the data available from the sensors. For

example, the uncertainties in the data collected from sensors, such as noise, interference of the

environment, some operational errors, and etc. affect the degradation state prediction. This makes it

practically impossible to precisely predict the future evolution of the state of health and it is necessary to

account for the different sources of uncertainty that affect prognostics [113].

Algorithm Application field Reference

DNN

Bearing components
Power transformers
Railway
Pipeline monitoring system
Spacecraft
Multistage gear system
The combustion chamber of a gas turbine
Rotating machinery
The sound signals from the rolling bearing
Induction motor
Vibration from bearing equipment
Wind turbine
Gearboxes in wind turbine
Aircraft engine
Wastewater process
Lithium-ion battery
Nuclear powerplant reactor

[60, 63, 72]
[61]
[62]

[64, 73]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[74, 80]
[75]
[76]
[77]
[78]
[79]

CNN

Gearboxes
Aircraft engine
Rolling bearing
Motor
Front-end controlled wind generator
Railway track inspection
Rotating machinery
Servo-motor

[81]
[82, 90]
[83, 87]

[84]
[85]
[86]
[88]
[89]

RNN-LSTM

Induction motor
Software reliability
Sensor system
Aircraft engine
Railway track circuits
Bearing
Power system
Lithium-ion battery

[91]
[92]
[93]

[94, 100-102]
[95]
[96]
[97]

[98, 99]

Hybrid

Industrial fault
Bearing
Gearbox
Wind turbine
Computer Numerical Control (CNC) milling machine
Rolling bearing
Aircraft engine

[103]
[104, 112]
[105-107]

[108]
[109]
[110]
[111]

33

Traditional fault prognostics methods face the challenge of dealing with incomplete and noisy

data collected at irregular time steps in correspondence with the occurrence of triggering events in the

system. For example, for monitoring the degradation and failure processes of bearings in large turbine

units, signal measurements collection (e.g., vibration signals measured) is only triggered by abnormal

behaviors of the units, such as large noise and anomalous vibration behavior. These “snapshot” datasets

are often encountered in industrial applications, dominated by the necessity of cost-saving in storing and

managing the databases, and of reducing energy consumption and bandwidth resources.

Because failure events are rare event-based datasets, these datasets are dominated by missing

measurements, where the values of all signals are often missing at the same time. With these

characteristics, traditional methods for missing data management, such as case deletion [114], imputation

[115-117], and maximum likelihood estimation [118], are difficult to apply. For instance, case deletion

methods discard patterns, whose information is incomplete, they are not useful in the case of event-

based datasets where the pattern is either present or absent for all signals [118]. Imputation techniques,

which are based on the idea that a missing value of a signal can be replaced by a statistical indicator of

the probability distribution generating the data, such as, the signal mean value [119] or a value predicted

by a multivariable regression model [114], have been shown inaccurate in case of large fractions of

missing values in the dataset [120, 121]. Maximum Likelihood methods use the available data to identify

the values of the probability distribution parameters with the largest probability of producing the sample

data [120]. They normally require the Missing At Random (MAR) assumption [122]. Few research works

have considered fault prognostics in presence of missing data. A model based on Auto-Regressive

Moving Average (ARMA) and Auto-Associative Neural Networks (AANN), has been developed for fault

diagnostics and prognostics of water process systems with incomplete data [77]. An integrated Extreme

Learning Machine (ELM)-based imputation-prediction scheme for prognostics of battery data with missing

data [117] and a hybrid architecture of physics-based and data-driven approaches have been proposed to

deal with missing data in a rotating machinery prognostics application [123]. In the medical field, a

Bayesian simulator has been used to generate missing data for developing prognostics models [124] and

a Multiple Imputation approach has been embedded within a prognostics model for assessing overall

34

survival of ovarian cancer in presence of missing covariate data [125]. It is important to note that all these

methods are based on the two successive steps of missing data reconstruction and prediction.

Advancements in technology and new methods are still needed to enable predicting the RUL

based on measurements collected when only triggering events occur, such as system faults or extreme

operational conditions, and providing an estimate of the uncertainty affecting the RUL prediction. As an

example, M. Xu, et al. [126] had developed a method based on Echo-State Networks (ESNs) to directly

predict the RUL without requiring reconstructing the missing data. ESNs are considered to use for the

experiment because of their ability to maintain information about the input history. The main difficulty is

that, contrarily to the typical applications of ESNs, the time intervals at which the data become available

are irregular. Two different strategies have been considered to address the event-based data collection.

In one strategy, the ESN receives an input pattern only when an event occurs. The pattern is formed by

the measured signals and the time at which the event has occurred. In a second strategy, the reservoir

states are stimulated at each time step. If an event has occurred, the reservoir states are excited both by

the previous reservoir states and the measured signals, whereas, if an event has not occurred, they are

excited only by the previous reservoir states. By so doing, the connection loops in the reservoir allow

reconstructing the dynamic degradation behavior at those time steps in which events do not occur. Multi-

Objective Differential Evolution (MODE) algorithm based on a Self-adaptive Differential Evolution with

Neighborhood Search (SaNSDE) [127] is used to optimize the ESN hyper-parameters. The Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS) [128] is, then, used to select the optimal

solution from the obtained Pareto solutions. Furthermore, a bootstrap aggregating (Bagging) ensemble

method is applied to improve the RUL prediction accuracy and estimate the RUL prediction uncertainty.

Given that ESNs cannot be fed by random sequences of patterns, the traditional Bagging sampling

mechanism used to create the bootstrap training sets has been modified. In the proposed solution, the

bootstrap training sets are obtained by concatenating entire run-to-failure trajectories, randomly sampled

with replacement. The benefits of the proposed methods are shown by application to the prediction of the

RUL of a sliding bearing of a turbine unit.

35

2.3.2. Uncertainty

Uncertainty is intrinsically present in the PHM tasks of detection, diagnostics, and prognostics,

and may adversely affect their outcomes, so to lead to an imprecise assessment of the state and

prediction of the behavior of such systems, which could lead to wrongly informed system health

management decisions with possibly costly, if not catastrophic, consequences. For practical deployment,

it is necessary to be able to estimate the uncertainty and confidence in the outcomes of detection,

diagnostics, and prognostics activities, for quantifying the risk associated with the PHM decision-making

on the operation of engineering systems. Despite the recognition of the importance of uncertainty in PHM

[129], work is still needed to concretely address the impact of uncertainty on the different PHM tasks and

to effectively manage it [130]. Not only uncertainties from the occurrence of abnormally from PHM tasks

itself but also the uncertainties from the data collected as mentioned in the previous section.

The challenge comes from the fact that there are different sources of uncertainty that affect PHM,

whose interactions are not fully understood and, thus, it is difficult to systematically account for them in

the PHM tasks. While some sources are internal, others are external, and all must be accounted for in the

different activities of PHM. There is uncertainty in the physical behavior of ones’ system and epistemic

uncertainty in the model of them, which developed based on sensors data, and the associated

parameters. As mentioned earlier, there is uncertainty in the sensor’s measurements and their processing

tools. For the prognostics task, there is also uncertainty on the future system’s operation profile and state

evolution.

Given the relevance of uncertainty in the PHM tasks, it becomes necessary to develop systematic

frameworks to account for such uncertainty in practical applications, to enable the robust verification and

validation of the solutions developed, concerning the requirements for their use for decision-making and

their contribution to the risk involved in such decisions. Such frameworks must enable the systematic

identification, representation, quantification, and propagation of the different sources of uncertainty.

Therefore, any PHM outcome is also provided with uncertainty, which needs to be considered for robust

decision-making [131].

36

2.3.3. Difficulty to Train Models

Even though the deep learning approach can be perfectly fit for the PHM task, there are a few

potential issues that could cause difficulties for deep learning to be implemented in current prognostics

works. The most significant issue that has been addressed in the literature so far is the complexity of

training the deep network. As commonly known, the goal of training the network is to enable its learning

behavior so that the network can capture the pattern data and perform the prediction task effectively. The

shallow network was found to be easier to be trained compared to the deep network. For most cases, the

deep network is unable to learn or recognize the pattern of data with the simple training scheme while the

shallow network can learn when the same task is assigned. To solve this issue, it has been suggested

that one extra step might need to be performed before effectively generating the prediction model with the

deep network. This step has been suggested in the literature called “unsupervised pre-training” [49]

which is the method to train (or pretrain) the training data without using the target variable prior to the

actual model training phase. This is to ensure that the deep architecture network can adaptively learn and

successfully perform the prediction task effectively. It has also been believed that the pre-training process

can help to improve the robustness of deep learning architecture as well as its performance, especially,

when increasing the depth of the network. The result from the literature shows that the increasing depth

of the network also causes a higher probability of finding poor local minima [49]. The pre-training step can

solve this issue and gives consistently better generalization to the deep network. The better

generalization is also believed to help when some of the new input attributes of the prediction task are not

within the range of the training data which is a common problem found in PHM data as mentioned in the

previous section as well.

Another issue found when employing a deep learning algorithm is the instability of prediction

results. This can be observed when the prediction result has a wide range of distribution. The unstable

behavior of the prediction results is believed to be caused by the randomness of initialization when the

deep layer model is constructed. It has also been shown in the experiment result that the more layers

added to the deep architecture, the more unstable results can occur. This is the reason that most of the

work that employs deep learning often reports the average results or best result from the final output

distribution. This makes the deep learning model become harder to evaluate or compare to other data

37

mining algorithms. In other words, we may consider this as one of the modeling “Uncertainties” mentioned

in the previous section as well.

Currently, there is a very limited solution to improve algorithm stability. One approach is to

perform a stability training approach [132]. However, this additional step of learning may not be favored in

the PHM area. To solve some issues in the deep learning model, new steps of the modeling framework

must be introduced. The uncertainty quantification of training attributes or modeling parameters might be

the starting point of the study.

Figure 11. Proposed prognostics framework using a deep learning algorithm.

38

2.3.4. The Proposed Framework for Deploying Deep Learning in the PHM Domain

Our ultimate goal is to introduce a general universal framework for using deep learning in the

prognostics domain and also, to have an organized procedure to generate a deep learning model for

prognostics data in the future. One of the possible new frameworks is as illustrated in Figure 11.

Preprocessing, feature engineering, and pre-training steps have been emphasized in this framework.

These three steps are commonly performed when training a deep learning network for prognostics

applications. However, this is only one example of a deep learning framework. More studies must be

made, and new steps are added to address all aforementioned issues.

Another minor challenge is the unity of PHM performance metrics. As mentioned in the previous

chapter, there are so many performance metrics used in PHM works. However, there are no general

metrics aimed to measure the effectiveness of deep learning for prognostics data that can be used for all

and every prognostics application. It might be true that the error measurements have already been used

to evaluate the accuracy of the deep learning model for PHM but there is still no direct measurement for

generalization, robustness, and stability of the deep learning model. To precisely evaluate the model, new

measurement metrics might also be introduced to the deep PHM model as well as a new framework in

which all angles of performance measurements are considered.

2.4. Chapter Summary

Degradation patterns prediction and recognition play a great deal in PHM application. Many

frameworks and algorithms have been introduced over the years in PHM studies. There is still no one

perfect algorithm that can guarantee to deliver the best result for every prognostic application. However,

the deep learning approach is believed to be able to outperform many conventional prediction algorithms,

which can be extended to PHM applications. Although deep learning seems to be a promising approach

for prognostics applications, there are still some challenges and issues (such as difficulties in training the

deep learning algorithms) that should be addressed and studied more. This chapter gathered useful initial

information and highlights some key issues of deploying deep learning in PHM areas. We believe that

addressing these issues will engage the PHM community to employ more deep learning in the PHM

domain from this point onwards.

39

3. A DATA-DRIVEN PREDICTIVE PROGNOSTICS MODEL FOR

LITHIUM-ION BATTERIES BASED ON A DEEP LEARNING

ALGORITHM

3.1. Data-Driven Prognostics Approach for Lithium-ion Battery

Historically, nickel-cadmium batteries were generally the only common electrical power source for

various portable equipment, until nickel-metal hybrid and lithium-ion batteries were developed in the

1990s [133]. Currently, lithium-ion battery technology is rapidly growing, and it is the most reliable

portable electrical power source for numerous appliances. Lithium-ion batteries are extensively used in

both high and low-power products, such as hybrid-motor engines, electric cars, smartphones, tablets, and

laptops. To date, lithium-ion technology is considered to be a standard electrical storage system, and its

performance continues to improve. The main focus of the ongoing technology remains to improving the

lithium-ion system in terms of both its performance and reliability. The following are the main advantages

of lithium-ion batteries: (1) high energy density (up to 23–70 Wh/kg), (2) high efficiency (~90%), and (3)

long life cycle (provides 80% capacity at 3,000 cycles) [134].

To ensure that the lithium-ion battery system performing reliably, there must be a method that

helps track and determine the state of health (SoH) of the battery system, along with its RUL (Remaining

Useful Life). This method provide insight when the battery should be replaced. This type of evaluation

falls into the PHM paradigm.

3.1.1. Overview of Data-Driven Prognostics

Similar to other applications within the PHM paradigm, the PHM of batteries must be included as

part of the CBM (Condition-Based Maintenance) plan of the system. The CBM plan is considered a

preventive strategy, which means that maintenance is be performed only when the need arises. This

need can be determined by continuously evaluating the health status of a particular system’s

components, or the health state of the system as a whole [135]. CBM has included two major tasks:

diagnostics and prognostics. Diagnostics is the process of the identification of faults and part of the

current health status of the system, which is described as a SoH, whereas prognostics is the process of

forecasting the time to failure. The time left before observing a failure is described as the RUL of such a

40

system [136]. To avoid catastrophic failure, the maintenances must be performed when the system is

operational. These types of maintenance require early plans and preparation [22]. Thus, CBM can be

included as part of the system’s operation, especially for the critical systems. The prognostic of the

system is a crucial factor in CBM.

The prognostic process additionally involves two phases. The first phase aims to assess the

current SoH. Terms that are usually used to describe this phase in most of the literature are severity

detection and degradation detection, which can also be considered under diagnostics. Classification or

clustering techniques can be utilized to perform tasks such as pattern recognition in this phase. The

second phase aims to predict the failure time by forecasting the degradation trend, and by identifying the

RUL. Trend projection, tracking techniques, or time series analysis are included in this phase. Most of the

articles regarding prognostics analysis only consider the first phase [137]. This paper aims to construct

and analyze both SoH and RUL, in which focus is made on both the first and the second phase of

prognostics for the battery system.

Table 3. Difference between data-driven and physics-based models for PHM.

Generally, there are two existing major approaches for prognostics evaluation; the data-driven

model, and physics-based models. Data-driven methods require adequate data or samples from systems

that were run until failure, while physics-based methods evaluate the system’s failures through the

physics of failure progression. Both the data-driven and physics-based models also require different input

 Data-Driven Model [24] Physics-Based Model [25, 26]

Based on
The empirical lifetime data and
the use of previous data of the
operation of the system

Physical understanding of the physical rules
of the system, the exact formulas that
represent the system

Advantages

The real behavior of the complex
physical system is not required.

Higher accuracy because the model is based
on an actual (or near-actual) physical system

Models are less complex, easier
to employ in a real application

The model represents a real system, the
model can be observed and judged in a more
realistic manner

Limitations

Needs a large amount of
empirical data to construct a high
accuracy model

Highly complex requires extensive
computational time/resources, which may not
be very suitable for employment in real-world
applications

The models do not represent the
actual system, it requires more
effort to understand the real
system behavior based on the
collected data

Limitations in modeling, especially in cases
of large and complex systems with non-
measurable variables

41

and apply to different scenarios. Both have different advantages and limitations. Table 3 summarizes the

information on the differences and advantages of each model.

One of the data-driven model approaches for prognostics and diagnostics mentioned earlier in

the previous chapters are machine learning approaches, which will be used to generate the prognostics

model for lithium-ion battery used in this chapter.

3.1.2. Prognostics of the Lithium-ion Battery

The lithium-ion battery data used in the prognostics analysis of this work was from the NASA

Ames Prognostics Center of Excellence (PCoE) data repository [138]. This dataset contains the test

results of commercially available lithium-ion 1850-sized rechargeable batteries, and the experiment has

been performed under controlled conditions in the NASA prognostics testbed [139].

Experimental data were obtained from three different lithium-ion battery-operational test

conditions: charge, discharge, and impedance. All experiments were performed at room temperature. The

charge was performed at a constant current of 1.5 A until the voltage reached 4.2 V, and then it continued

charging at a constant voltage until the charge current dropped to 20 µA. The discharge was also

performed at a constant current of 2 A until the voltage dropped to 2.7 V, 2.5 V, 2.2 V, and 2 V. These

same tests were performed for batteries No. 05, No. 06, No. 07, and No. 18. The impedance test was

completed using EIS (Electrochemical Impedance Spectroscopy) frequency adjustment from 0.1 kHz to 5

kHz. Repeatedly performing charge and discharge tests in multiple cycles accelerated the aging

characteristics of the batteries. This aging effect of the lithium-ion battery is related to physics-based

model established in work by W. He, et al [140]. The tests were stopped when the batteries reached the

end of life criteria, which was defined as a 30% loss of the rated charge capacity.

Figure 1 is the schematic diagram of the tested battery. The parameters of the schematic diagram

included the Warburg impedance (RW) and the electrolyte resistance (RE), the charge transfer resistance

(RCT), and the double-layer capacitance (CDL). The two parameters RW and CDL showed a negligible

change over the aging process of the battery, and these were excluded from further analysis [141]. Figure

13 shows a typical response of the current and voltage behaviors during the charging and discharging

cycles of battery No. 05.

42

In order to evaluate the prognostics of the battery, the SoH of the battery must be defined.

Therefore, it is important to understand the clear definition of SoH, as the SoH will be the main prediction

attribute of the proposed data-driven model, along with RUL. It is also important to note that in this work,

all attributes from the test data were used as training attributes.

Figure 12. The schematic diagram of the tested battery.

The SoC of the battery indicates the reliability of the battery system. In the literature, the ratio

between the available amount of charge and the maximum amount of charge is commonly referred to as

the SoC [142]. In some cases, the available amount of charge can also be replaced by the rated capacity

(or nominal capacity) provided by battery manufacturers. The SoC can be mathematically expressed as:

𝑆𝑜𝑐 =
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐶𝑁
 (4)

where 𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 represents the available amount of charge and 𝐶𝑁 represents the rated capacity from

battery manufacturers.

However, there are problems using SoC as battery health measurement. First, the only way to

derive the rated capacity of a battery is through experiments under a constant discharge rate within a

controlled experimental environment. This reason explains the difficulty in using a rated capacity as a

reference point in real-world applications [143]. As all conditions must be controlled in order to derive the

capacity directly, is difficult to measure the capacity data from the battery sets. Second, SoC is not

considered to have a strong correlation with battery capacity. This is important to note for making a long-

term estimation of the battery’s health because the capacity is the main indication of the battery’s health,

which fades over time.

43

(a) (b)

(c) (d)

Figure 13. The current and voltage during the discharging and charging of battery No. 05.
(a) Current of discharge, (b) Current of charging, (c) Voltage of discharging, and (d) Voltage of

charging.
Many alternative SoC definitions have been studied to address the aforementioned issues. One

definition is practical state-of-charge, or SoCN [144]. This definition uses the maximum practical

operational capacity, instead of the manufactured rated capacity, as the maximum amount of charge.

SoCN can be expressed as:

𝑆𝑜𝐶𝑁 =
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐶 𝑚𝑎𝑥,𝑝
 (5)

where 𝐶𝑚𝑎𝑥,𝑝 represents the maximum practical capacity as measured from the operating battery at the

current time. 𝐶𝑚𝑎𝑥,𝑝 may fade over time, because of the effect of battery aging. It is important to note that

𝐶𝑚𝑎𝑥,𝑝 can only be measured directly from the battery while it is operating.

For batteries, SoH can be generally defined as:

𝑆𝑜𝐻 =
𝐶𝑚𝑎𝑥,𝑝

𝐶𝑁
 (6)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200

V
o
l
t
a
g
e

(
V
)

Sampling point

0

1

2

3

4

5

0 500 1000

V
o
l
t
a
g
e

(
V
)

Sampling point

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

0 100 200

C
u
r
r
e
n
t

(
A
)

Sampling point (s)

-3.5

-2.5

-1.5

-0.5

0.5

1.5

0 500 1000

C
u
r
r
e
n
t

(
A
)

Sampling point (s)

44

One of the most important tasks in prognostics health management of a battery is to accurately

estimate the 𝐶𝑚𝑎𝑥,𝑝, as 𝐶𝑚𝑎𝑥,𝑝 is required in both Equations (5) and (6) for SoC and SoH, respectively.

The battery dataset used in this study, contained all the aging information of the battery, and the battery

SoH was calculated from cycle 0 to cycle 168. As shown in Figure 14, the predicted SoH of battery No. 05

exponentially degraded as the cycle number increased. The acceptable predicted results must be within

the 95% confidence bound [145]. The regression model for SoC and SoH estimation, which aimed to

perform similar tasks, was also proposed by S. C. Huang, et al. [146]. This work introduced a new

variable called, unit time voltage drop or V′ to directly indicate the voltage drop of the battery cell as the

prediction variable. This work delivered very interesting results. However, it is not within the scope of our

deep learning approach. The work presented here aimed to use only existing test variables to train and

generate the deep learning model for the SoH and RUL estimation of lithium-ion batteries based on

equation (4).

Figure 14. Predicted state of health of battery No. 05.

To evaluate the performance of the prediction model in this work, the root means square error

(RMSE) was used for SoH, and the error of RUL cycle (ERUL) was employed for RUL. The following are

the formulas of RMSE and ERUL:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑[𝑥𝑖 − 𝑥̅𝑖]

2

𝑛

𝑖=1

(7)

𝐸𝑅𝑈𝐿 = |𝑅𝑈𝐿𝑟𝑒𝑎𝑙 − 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| (8)

60

65

70

75

80

85

90

95

100

105

0 20 40 60 80 100 120 140 160

S
O
H

(
%
)

CYCLES

45

where 𝑛 is the number of prediction datasets, 𝑥𝑖 is the real value of testing and monitoring the battery

capacity, and 𝑥̅𝑖 is the prediction value. RMSE and ERUL are used as the key performance measures of

the performance of all traditional machine learning approaches and the proposed deep learning algorithm.

RMSE and ERUL will be calculated within the testing phase of the modeling framework (as in Figure 9 from

Chapter 1).

3.2. Data-Driven Predictive Prognostics Model for Lithium-ion Batteries Based on A Deep Learning

Algorithm

Data-driven PHM models, require large empirical data to create a high accuracy model of the

systems. Traditional machine learning methods are called ‘shallow’ learning models. To compare deep

learning or neural network-based algorithms to traditional ‘shallow’ learning algorithms, this work use

shallow learning modeling algorithms with the lithium-ion battery data as well. The results will be

illustrated later in this chapter. The algorithms used, include: Linear Regression (LR) [147] with the Akaike

Information Criterion (AIC) [148, 149], k-Nearest Neighbors algorithm (k-NN) [150], SVM [151], and one

layer ANN [7, 28-31].

3.2.1. Related Works

There have been many advancements from various disciplines to the PHM of lithium-ion batteries

using various methods using both physic-based and data driven approach. Downey et al. proposed a

physics-based prognostic approach that considered multiple concurrent degradation mechanisms [152].

Susilo et al. studied the estimation of the lithium-ion battery SoH with the combination of Gaussian

distribution data and the least square support vector machines regression approach [153]. Mejdoubi et al.

employed the Rao–Blackwellization particle filter to evaluate the aging condition of lithium-ion batteries,

and to estimate the SoH and RUL of the battery system [154]. Bai et al. developed a generic model-free

approach based on ANN and the Kalman filter, to help to improve the health management system of the

lithium-ion battery [142]. Other filtering techniques, for example, particle filtering [155] or its variation of

the unscented particle filtering technique [156] had been employed in the PHM aspect for lithium-ion

batteries. Recently, Li et al. proposed the Gauss-Hermite particle filter (GHPF) technique for battery state-

of-charge estimation, which is another extension of the particle filter technique, which not only improves

the estimation accuracy but also reduces the number of sampling particles, which reduces the complexity

46

of the algorithm [157]. Another interesting work also aims to predict the health state of the lithium-ion

battery, as proposed by Wang et al. This work employed the Brownian motion technique, which is the

combination of the Kalman filter and the Gaussian distribution state-space technique, to determine battery

prognostics based on the drift coefficient [158].

3.2.2. Deployment of Deep Learning for Prognostics Model of Lithium-ion Battery Data

In the diagnostics and prognostics fields, the developing trend of employing the deep learning

approach has evolved from fault detection and failure diagnosis to degradation pattern recognition and

time series predictive analysis. The modeling methods have grown from using only a single algorithm

such as DNN, CNN, and RNN, to the Hybrid model (or a combination of multiple layer types and

traditional algorithms, as previously discussed in Chapter 2. The application range of using deep learning

has also been expanding continuously over the years, from machinery, electrical, and electronics

systems, to wind-power and high-end aerospace equipment.

For the experiment in this chapter, only DNN was employed to model the SoH and RUL of the

battery data compared to traditional machine learning algorithms. Each of these deep learning algorithms

has its own advantages and limitations. It has reported that ANN and DNN are more suitable for tackling

one-dimensional data. CNN is able to make predictions relative well with multidimensional data, as it has

adopted types of convolutional techniques. RNN is suitable for applications that deal with time series or

time dependent data, and DNN is usually employed for extracting global features from fault data, which

will be suitable for the lithium-ion battery data. Additionally, as aforementioned, the layers of CNN and

RNN are more complex than those of DNN. Therefore, CNN and RNN require additional learning, which

is their major drawback. These reasons make DNN more suitable for employment in real applications for

most cases.

The prognostic model of the battery data using DNN was developed based on the basic

framework from Chapter 1 (Figure 9). The experiment with the data was constructed by varying the

number of dense layers in DNN. In this experiment, the number of hidden layers was varied to analyze

the SoH of battery data until it delivered the minimum RMSE error. In addition, the dropout layer was also

applied as the last layer before the output layer, to prevent the “overfitting” issue in the model. When the

overfitting occurs, this means the model tend to “remember” instead of “learning” the pattern from the

47

actual data. Dropout is applied to the neural network so that some information is randomly removed and

to prevent the network to copy the same information from the original data. The dropout layer is applied to

the last layer of DNN, to randomly drop neurons during the model training, as shown in Figure 15. Each

neuron is retained with a fixed probability, p, which is independent of other neurons. The neural network

after being sampled, the so-called “thinned” network, will contain only the surviving neurons (Figure 15b).

By training a neural network with some dropouts, the whole network can be trained faster than

training regular networks without dropout, because the network is thinned and requires less training time.

The network then becomes less sensitive to some specific weights. This results in the network being

better at generalization. In this work, a p-value of 0.25 is applied to the network, as suggested, to be the

optimal dropout rate for the network to avoid overfitting but to still maintain the best prediction accuracy

[159].

In this section, an analysis of battery No. 06, No. 07, and No. 18 degradation datasets obtained

from the NASA Ames Prognostics Center of Excellence (PCoE) database [138] was studied to validate

the effectiveness of using the DNN approach. The dataset of battery No. 05 was used as a training

dataset for all algorithms.

(a) (b)

Figure 15. Dropout in deep neural network model.
(a) A standard network with two hidden layers, and (b) the network after applying dropout.

3.2.3. The Proposed Deep Neural Network Prognostics Model for Lithium-ion Battery

By varying the number hidden layers of DNN from two layers to four layers, the RMSE results

from Table 2 show that the best formation of DNN consists of three stacked dense or fully-connected

hidden layers, with the Rectifier Linear Unit or ReLU activation function described as:

48

𝑓(𝑥) = 𝑥+ = max (0, 𝑥) (9)

where 𝑥 is the input to a neuron, and + represents the positive part of its arguments.

The proposed model architecture is illustrated in Figure 16. Additionally, it is important to note that

there are some prediction fluctuations in the DNN model that are implemented by using the Keras library

[160], which is the open-source neural network library that is employed in this experiment. To show the

level of prediction fluctuations, each DNN experiment was performed with 10 trials then the reported RMSE

was averaged. The RMSE results of the final model (three dense layers) are as shown in Table 4. The best

result from the three layers trials was chosen to be the final model.

Table 4. RMSE results of each stacked hidden layer model.

Table 5. RMSE results of 10 trials for a model with three stacked hidden layers.

The preliminary model of deep learning for PHM of the lithium-ion battery was developed, based

on the deep neural network. The model architecture is illustrated in Figure 16. The objective of the

experiment is to prove that the deep learning algorithm outperformed other traditional machine learning

algorithms, and to provide a complete benchmark of SoH and RUL prediction for the lithium-ion battery.

3.2.4. Results for Model’s SoH Estimation

In this experiment, the discharge data for all 164 cycles and 11,345 sample points from battery

No. 05 were used for training. The SoH was calculated from the initial capacity at 1.9 AHr. Figure 17a–c

shows the SoH estimation performance for batteries No. 06, 07, and 18, using k-NN, LR, SVM, ANN, and

DNN respectively. The x-axis represents the cycles, and the y-axis represents the SoH. The triangle

marked with a light blue line curve shows the true SoH, and the balance of the curves show the predicted

SoH by the k-NN, LR, SVM, ANN, and the developed DNN.

It is important to note that the SVM formulation used in this work was based on the radial basis

kernel function, with a regularization parameter of 200, and tolerance-of-loss function of 0.1. LR employed

No. of Hidden
Layers

RMSE

2 3.815

3 3.247

4 3.275

Trials 1 2 3 4 5 6 7 8 9 10

RMSE 3.917 3.877 3.667 3.507 3.487 3.321 3.296 3.253 3.249 3.247

49

the greedy algorithm with 0.1 minimum tolerance parameters. Additionally, k-NN employed the Euclidean

distance measurement to evaluate distances among the neighbor data points.

Both the curve fitting of the trained DNN model and the RMSEs of the SoH estimated by the

proposed model are better compared to the ones estimated by k-NN, LR, SVM, and ANN. In addition,

after the batteries aged from the first cycle to the 164th cycle, it is seen that the proposed DNN approach

could capture the degradation pattern better than the other algorithms. The input capacity in the

developed DNN model could provide sufficient information for the stability of the SoH estimation when the

batteries were aged. However, the lack of knowledge of other approaches resulted in an increasing error

for the SoH estimation in the aged cycles. In addition, the performance of the capacity convergence by

the proposed DNN approach was better, because the knowledge of capacity fade could be captured

better by using the DNN model. Considering the result illustrated in Figure 17, it is also important to note

that the results from batteries No. 06 performed slightly worse when compared to batteries No. 07 and 18.

This could be because of the aging pattern of battery No. 06 being slightly different from the training

dataset. Additionally, there was a greater distribution of the data of battery No. 06, compared to the other

batteries.

The RMSE results between traditional machine learning, k-NN, LR, SVM, and ANN, along with

the developed DNN, are shown in Figure 17 and Table 6. When comparing other algorithms to DNN,

DNN was shown to perform the best among the four approaches in terms of predicting both data patterns

and minimizing the RMSE. Additionally, the models constructed from each algorithm could also be

observed in detail, from Table 7.

Other aspects of the DNN that should considered further, are the optimizer of the network, and

the loss function. DNN in this work was performed by employing “Adam” or Adaptive Moment Estimation,

as an optimizer (see Appendix for more details). Additionally, based on the nature of the battery dataset

in this work, the absolute error function was used as the loss function [161]. Absolute errors measured the

mean absolute value of the difference between predicted and actual value. Absolute error loss is not the

same as RMSE. While the RMSE measured the error from the whole SoH curve, the absolute error loss

measured the different between the actual and the prediction point only ‘at the end of life’ cycle. The

absolute error formula used as the loss function can be expressed by equation (10):

50

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠 =
1

𝑘
∑ |𝑦𝑖 − 𝑦̅𝑖|

2𝑘
𝑖=1 (10)

where 𝑦𝑖 and 𝑦̅𝑖 are, respectively, the predicted data and the input data of each iteration or epoch 𝑖, and k

is the number of iterations. In this work, the total number of iterations was set to be equal to 1024, as

suggested in reference [162].

Table 6. RMSE of the SoH estimation by using DNN and traditional machine learning algorithms.

Figure 16. The proposed Deep Neural Network model for lithium-ion battery data.

RMSE
k-NN LR SVM ANN DNN

5.598 4.558 4.552 4.611 3.427

51

(a) Battery No. 06

(b) Battery No. 07

(c) Battery No. 18

Figure 17. The SoH estimation with all algorithms for battery No. (a) 06, (b) 07, and (c) 18.

50

60

70

80

90

100

110

0 20 40 60 80 100 120 140 160

S
O
H

(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR prediction

k-NN prediction

60

70

80

90

100

110

0 20 40 60 80 100 120 140 160

S
O
H

(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR predictiom

k-NN prediction

60

70

80

90

100

110

0 20 40 60 80 100 120 140

S
O
H

(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR prediction

k-NN prediction

52

Table 7. Models created from the lithium-ion battery training dataset.

Algorithm Model Description

k-NN
22-Nearest Neighbor model for regression

The model contains 624 examples with seven dimensions

LR
228.765 * Voltage_measured + 237.439 × Current_measured − 1.495 *

Temperature_measured − 1098.506 × Current_charge + 50.156 * Capacity − 918.727

SVM

Total number of Support Vectors: 613
Bias (offset): −85.065

w[Voltage_measured] = 42686654.125
w[Current_measured] = –17208.396

w[Temperature_measured] = 243822393.316
w[Current_charge] = 3952.097

w[Voltage_charge] = 0.000
w[Time] = 0.000

w[Capacity] = 16430099.458
number of classes: 2

number of support vectors: 613

ANN

Node 1 (Sigmoid)
Voltage_measured: −0.172
Current_measured: −0.448
Temperature_measured:

2.894
Current_charge: −1.458
Voltage_charge: 0.005

Time: 0.042
Capacity: −0.155

Bias: −2.726

Node 2 (Sigmoid)
Voltage_measured: 1.954
Current_measured: 0.328
Temperature_measured:

−1.124
Current_charge: −0.397
Voltage_charge: 0.036

Time: −0.014
Capacity: 0.943

Bias: −1.930

Node 3 (Sigmoid)
Voltage_measured:

0.406
Current_measured:

1.254
Temperature_measured:

1.472
Current_charge: 1.391

Voltage_charge: −0.049
Time: −0.036

Capacity: 1.107
Bias: −1.055

Node 4 (Sigmoid)
Voltage_measured: −3.468
Current_measured: −0.975
Temperature_measured:

0.080
Current_charge: −0.018
Voltage_charge: 0.044

Time: −0.020
Capacity: 2.457

Bias: −0.108

Node 5 (Sigmoid)
Voltage_measured: −7.072
Current_measured: −0.455

Temperature_measured: 2.095
Current_charge: 2.091

Voltage_charge: −0.004
Time: 0.045

Capacity: −0.464
Bias: −4.078

Output
Regression (Linear)

Node 1: 1.278
Node 2: 1.460
Node 3: 0.865
Node 4: 1.214

Node 5: −1.134
Threshold: −0.819

Neural Network created:

DNN

Layer (Type)
No. of
Hidden
Nodes

No. of
Parameters Total parameters: 217

Trainable parameters:
217

Non-trainable
parameters: 0

dense_1 (Dense) 8 64

dense_2 (Dense) 8 72

dense_3 (Dense) 8 72

dropout_1 (Dropout) 8 0

dense_4 (Dense) 1 9

53

3.2.5. Results for Model’s RUL Estimation

In addition to the SoH prediction of the batteries from the previous section, another aspect of the

prognostic analysis of the battery data was to predict the RUL of the batteries. RUL prediction focuses on

projecting the degradation results from a certain cycle until the EOL of the batteries, which is different

from that of the SoH prediction, which focuses on detecting the pattern of degradation. In this experiment,

the goal was to compare the RUL prediction result by using k-NN, LR, SVM, and ANN to the proposed

DNN algorithm.

The RUL predictions experiments were performed from three different starting points, which were

at the 40th cycle, 80th cycle, and the 120th cycle of battery No. 05. The threshold of the EOL of the

battery data was set to be 30% remaining capacity or the 164th cycle. This was deemed to be best

practices of the EOL threshold, for the battery to remain active. The data before the starting cycle was

used as a training dataset to predict each starting cycle, and the error of RUL (Equation (8)) was

calculated to compare the accuracy of each machine learning algorithm. The accumulated errors of the

RUL results are as shown in Table 6, and the projection results of RUL are as shown in Figure 8. Note

that the RUL results focus on projects, not to recognize the data’s pattern

The results from Table 8 and Figure 18 show that, overall, the proposed DNN algorithm had a

smaller error compared to the other machine learning algorithms. The prediction result at the 120th cycle

of DNN and ANN are similar. However, DNN did performed better than ANN in terms of smaller error

while having a smaller set of training data, i.e., when start the prediction at the later cycle mean more

training data was used. As seen in the result, DNN provided a slightly better result when starting at the

40th cycle and the 80th cycle. Additionally, the trend of the results also showed that having more training

data improves the prediction result for every algorithm in this experiment.

Table 8. The error of RUL estimation by using DNN and traditional machine learning algorithms.

Error of
RUL

Starting
Points

k-NN LR SVM ANN DNN

40th cycle 24 19 12 6 5

80th cycle 17 12 10 3 2

120th cycle 19 9 4 1 1

54

(a) The RUL estimation using k-NN

(b) The RUL estimation using LR

(c) The RUL estimation using SVM

(d) The RUL estimation using ANN

Figure 18. (a - d) The RUL estimation of battery No. 05 using different learning algorithms.

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0 30 60 90 120 150

C
a
p
a
c
i
t
y
(
A
h
)

Cycles

End of Life

End of Prediction at Cycle 40th

End of Prediction at Cycle 80th

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0 30 60 90 120 150

C
a
p
a
c
i
t
y
(
A
h
)

Cycles

End of Life

End of Prediction starting at Cycle 40th

End of Prediction starting at Cycle 80th

End of Prediction starting at Cycle 120th

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0 30 60 90 120 150

C
a
p
a
c
i
t
y
(
A
h
)

Cycles

End of Life

End of Prediction starting at Cycle 40th

End of Prediction starting at Cycle 80th

End of Prediction starting at Cycle 120th

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0 30 60 90 120 150

C
a
p
a
c
i
t
y
(
A
h
)

Cycles

End of Life

End of Prediction at Cycle 40th

End of Prediction at Cycle 80th

End of Prediction at Cycle 120th

55

(e) The RUL estimation using DNN

Figure 18. (e) The RUL estimation of battery No. 05 using different learning algorithms (continued).

3.3. Result Discussion

From the experimental results in the previous sections, it is seen that the proposed DNN

algorithm predict SoH and RUL with smaller error compared to k-NN, LR, SVM, and ANN in these specific

lithium-ion battery datasets. However, two points should be addressed. First, the DNN proposed in this

work can use (learn) the degradation pattern to predict the SoH. However, the DNN method was

comparable to ANN for predicting the RUL. This is expected because of the fundamentals of DNN being

based on ANN. It is also important to note the smaller training dataset for DNN, the DNN performed better

overall. In more detail, from the RUL prediction results, the DNN provided better results when started from

the smaller amount of training data at the 40th and 80th cycles, compared to the typical neural network.

The results obtained from this work show that the deep learning algorithm is effective and suitable

for predicting prognostic and diagnostic data modeling, particularly in the prognostics of the battery data

set. The prognostic results can eventually aid in condition-based monitoring of maintenance activities, to

obtain the best time to replace the batteries without causing a long downtime in the main systems. Based

on this experiment, the downsides of using a deep learning algorithm include: (1) a higher computational

time and (2) more computational resources are required by DNN than for the other two algorithms. These

drawbacks are also true for other deep learning algorithms as well. This conclusion is that deep learning

is more suitable for studies that require higher accuracy, however, may not be suitable for applications

that need real-time processing. In the battery PHM application, real-time processing is typically not

critical, because the prediction should be before the end-of-life of the batteries. In addition, with the

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0 30 60 90 120 150

C
a
p
a
c
i
t
y
(
A
h
)

Cycles

End of Life

End of Prediction at Cycle 40th

End of Prediction at Cycle 80th

End of Prediction at Cycle 120th

56

advancement of the computational tools, the real-time processing issue could be minimized, and the

computational time will be improved.

The deep learning model in this paper was only developed based on the Deep Neural Network

algorithm (DNN). Other more complex deep learning algorithms have been developed over the years,

such as the Convolutional Neural Network (CNN), the Recurrent Neural Network (RNN), and the Long

Short-Term Memory network (LSTM). It is important to note that some researchers have used the LSTM

network for similar battery prognostic data, to predict the remaining useful life (RUL) of the battery [98].

Although this has already been done, it is incomparable to the experiments in this work. Based on the fact

that the experiment on LSTM in the literature implemented a different dataset. More importantly, the

experiment only focused on testing the LSTM network in the model and did not provide a complete

comparison to other models that use traditional machine learning algorithms. This leaves gaps to be

explored in the future, particularly with benchmarking all deep learning algorithms.

In addition to benchmarking deep learning approaches with other machine learning algorithms, in

the future, physical experiments can also additionally be explored to bridge the gap between data-driven

models and physics-based models for PHM applications. Applying physical understanding to data-driven

approach can help to identify the crucial parameters that effect the aging behavior of the batteries as well

as help to better interpret the data-driven models that only directly derive from the data points or raw data.

Then, data-driven models will be employed to help in easing the modeling complexity in physics-based

models of lithium-ion batteries. Thus, accurate battery models that mimic physical operation of the battery

in real-world applications could be obtained without the need for extensive expense of time and

computational resources.

3.4. Chapter Summary

This work aims to accomplish two tasks. First, a complete benchmarking of the data-driven model

by using a machine learning algorithm with the battery prognostic data is made. Second, a preliminary

data-driven model is developed by using a deep learning algorithm for the prognostic data. This paper

presented as a benchmark, the prognostic data-driven model for battery data using machine learning

algorithms and based on the results from the case studies. In more detail it has been shown that the deep

learning algorithm provides a promising prediction tool and modeling of prognostic data, especially in the

57

battery prognostic. Based on the accuracy archived, it has been shown that the traditional physics-based

model may be replaced by data-driven models in the near future, in various fields and applications. The

reliable data-driven model has many advantages over a traditional physics-based model. The first major

advantage is that it overcomes the complexity of the physics-based model. In the future, the predictive

models may be able to predict the health of batteries without experts in the field. The second advantage

is that data-driven models can be employed in real-time situations, because of their shorter computational

time, when compared to physics-based models in general. The last point is that the data-driven model is

more cost-effective to construct and to employ in real applications. As an example, a data-driven model

can be generated and monitored by using only regular personal computing devices, without the need for

exclusive and excessive expert resources. This future trend of data-driven models is in line with the

recent achievement of deep learning algorithms and artificial intelligence. These methodologies are

believed to be the main approaches in the further development of data-driven models. However, the

accuracy of prediction and the higher performance of using deep learning algorithms also come with the

drawback of higher computational time. With rapid advancements in technology, the computational time

could be substantially reduced. The future direction of this work will focus on developing a hybrid-deep

learning model that could be universally applicable to multiple types of prognostic data.

58

4. DEEP NEURAL NETWORK FEATURE SELECTION APPROACHES

FOR DATA-DRIVEN PROGNOSTIC MODEL OF AIRCRAFT ENGINES

4.1. Deep Neural Feature Selection Approach for Modeling RUL Prediction of Aircraft Engines Data

Modern computational capability has become more powerful over the past decades. This has

induced a new trend of using various data-driven models in many fields. Even though modern computers

can complete complex tasks, researchers are still searching for solutions to reduce the computational

time and complexity of the data-driven models to increase the likelihood that the models can be applied in

real-time operations.

The same challenge has also been applied to a certain type of aerospace data, which in this

case, is the estimation of Remaining Useful Life or RUL of the aircraft gas turbine engines. The main

purpose of this work is to prove that a particular group or a set of prognostics features (attributes or

variables) from the aircraft gas turbine engines data can be selected before the training phase of Artificial

Neural Network (ANN) modeling in order to reduce the complexity of the model. The same assumption

may be applicable to the Deep Neural Network (DNN) models. For example, it might also be applied to

other complex deep learning models, i.e., Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN), and their variations as well.

To validate this theory, the prognostics of aircraft gas turbine engines dataset or Commercial

Modular Aero-Propulsion System Simulation (C-MAPSS) dataset derived from NASA Ames Prognostics

Center of Excellence (PCoE) [163] was used to develop preliminary vanilla ANN models with selected

features using different feature selection methods. In addition, to prove that similar assumptions can also

be deployed to other deep learning algorithms, the Deep Neural Network or DNN models have also been

developed based on selected features derived from the ANN validation models. The final goal was to

determine which feature selection method was the most suitable for the deep learning model in general to

predict prognostics state or remaining useful Llife for aircraft gas turbine engines data. Results from

various future selection methods were compared to the one that is using original features. The ANN and

DNN models with selected features were studied and compared based on their performance.

59

Based on the aforementioned goal, the summary of the main contributions of this experiment are:

1. Extract meaningful features for neural network-based and deep learning data-driven models from

the C-MAPSS dataset.

2. Suggest the novel neural network-based feature selection method for aircraft gas turbine engines

RUL prediction.

3. Develop deep neural network models from selected features.

4. Show how the developed methodology can improve the RUL prediction model by comparing its

performance/error and complexity to the model derived from original features.

4.1.1. Feature Selection Methods for Neural Network Architectures

In prognostic AI predictions with large data, feature extraction of raw data from the sensors can

reduce enhance learning of the system. The feature extraction usually involves signal processing and

analysis in the time or frequency domains. The purpose is to transform raw signals into more informative

data [164]. In more detail, feature extraction is the process of sensor signals into data that results in

proper training of AI systems. In contrast, the purpose of feature selection is to extract a particular set of

features in the dataset that is believed to be more relevant for modeling. These feature selection

processes are typically executed after the feature extraction and occur in between pre-processing and the

training or pre-training phase of the data modeling framework.

Three common feature selection strategies have been discussed in the literature: (1) filter

approach, (2) wrapper approach, and (3) embedded approach. This paper will only discuss the filter and

wrapper approaches. Figure 3 shows the processes flow and role difference role of feature extraction and

feature selection in the data modeling process.

Filter methods use statistical, correlation, and information theory to identify the importance of the

features. The performance measurement metrics of filter methods usually use the local criteria (which is

the different statistical matric from each algorithm) that do not directly relate to model performance [165].

There are currently multiple baseline filter methods commonly sued for feature selection

processes. However, the result from the experiments showed in section 4.3 that only the correlation-

based methods were suitable for the case study data. This is because correlation-based methods

evaluate the feature with a direct relationship to the target variable. In more detail, the correlation-based

60

filter methods make selections based on the modeling objectives, which can lead to better filtering of

suitable to the data with the target variable. The correlation-based filter method included in this work is

Pearson correlation [166, 167]. Additionally, the result from other statistical-based methods, namely Relief

algorithm, Deviation selection, SVM selection, and PCA selection [168], was also included to provide

comparison.

Wrapper methods use a data-driven algorithm that performs the modeling for the dataset to select

the set of features that yield the highest modeling performance [169]. Wrapper methods are typically

more computationally intensive compared to filter methods. There are four main baseline wrapper

methods [169]: (1) forward selection, (2) backward elimination, (3) brute force selection, and (4)

evolutionary selection.

Forward selection and backward elimination are search algorithms with different starting and

stopping conditions. The forward selection starts with an empty selection set of features, then adds an

attribute in each searching round. Only the attribute that provides the highest increase in performance is

retained. Afterward, another new searching cycle is started with the modified set of selected features. The

searching of forward selection stops when the added attribute in the next round does not further improve

the model performance. The best way to actually search or select the best set of features or attributes is

to use the method called “Brute Force” selection. Unlike forward selection and backward elimination,

brute force selection will not stop searching based on any criteria other than getting the best performance.

However, it is unlikely to test on all combination of features or attributes in practical application as it is

required computational time and resource. Therefore, it is uncommon to use brute force selection in a

larger dataset or typical real-world dataset.

In contrast, the backward elimination method performs in the reverse process. Backward

selection starts with a set of all attributes, and then the searching processes continue to eliminate

attributes until the next set of eliminated attributes does not provide any further improvements in modeling

performance. The brute force selection method uses search algorithms that try all combinations of

attributes. evolutionary selection employs a genetic algorithm to select the best set of features based on

the fittest function measurement [170]. Because of computational and time limitations, brute force

61

selection could not be included in this experiment. Only forward selection, backward elimination, and

evolutionary selection were implemented [171].

Figure 19. Role of feature extraction and feature selection in the prognostics modeling process.

4.1.2. C-MAPSS Aircraft Engines Data

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is a simulation tool that

was used to generate the turbofan engine degradation run-to-failure test dataset. This test dataset was

derived from the NASA Ames prognostics data repository [163]. The C-MAPSS dataset is one of the most

popular benchmark datasets used in the prognostics and diagnostics research community. This dataset

provides a set of editable input parameters to simulate various operational conditions for aircraft gas

turbine engines [38]. Note that varying or adjusting the simulated input parameter is beyond the scope of

this work. All the experiments performed in this work only used the existing simulation data provided by

NASA Ames. The operational conditions include sea-level temperature, Mach number, and altitude. The

C-MAPSS dataset includes four sub-datasets described in Table 9.

Table 9. C-MAPSS dataset description [38].

Each sub-dataset FD001, FD002, FD003, and FD004 contains several training engines with run-

to-failure information and several testing engines with information terminating before failure is observed.

In reference to the operating conditions, each dataset can have one or six operational conditions based

on altitude (0–42,000 feet), throttle resolver angle (20–100°), and Mach (0–0.84). As for fault mode, each

dataset can have one mode or two modes, which are, High Pressure Compressor (HPC) degradation and

Fan degradation.

Description
C-MAPSS

FD001 FD002 FD003 FD004

Number of training engines 100 260 100 248

Number of testing engines 100 259 100 248

Operational conditions 1 6 1 6

Fault modes 1 1 2 2

62

Sub-dataset FD002 and FD004 are generated with six operational conditions, which are believed

to be a better representation of general aircraft gas turbine engines operation compared to FD001 and

FD003, which could be generated from only one operational condition. In this study, the data from the

FD002 set was selected as a training dataset. In the model validation set-up (which will be described in

Section 3.2), the wrapper methods required roughly 2 to 3 weeks to complete the run. In addition, the

number of data points used in feature selection validations and model training–in both ANN feature

selection validation and DNN model training was kept constant. The experiments have been designed to

demonstrate the effectiveness of the feature selection methods used for neural network-based

algorithms.

There are 21 features included in the C-MAPSS dataset for every sub-dataset. These attributes

(note that the word ‘attribute’ and ‘feature’ might be used interchangeably throughout the dissertation)

represent the sensor signals from the different parts of the aircraft gas turbine engines, as seen in Figure

5 [172]. Short descriptions of the features and the plots of all 21 sensor signals of sub-dataset FD002 are

seen in Figure 21.

It has been suggested by multiple literature references to normalize the raw signal before

performing modeling and analysis [90, 94, 173]. Figure 22 shows the data signals before and after

applying z-normalization:

𝑥̃𝑡
𝑖𝑗

=
𝑥𝑡

𝑖𝑗
−min(𝑥𝑗)

𝑚𝑎𝑥(𝑥𝑗)− 𝑚𝑖𝑛(𝑥𝑗)
 (11)

where, 𝑥𝑡
𝑖𝑗

denotes the original 𝑖-th data point of 𝑗-th feature at time 𝑡 and 𝑥𝑗 is the vector of all inputs of

the 𝑗-th feature. Each attribute value was normalized individually and scaled to the same range across all

data points.

From the dataset, aircraft gas turbine engines start with various initial wear levels, but all are

considered to be at a “healthy state” at the start of each record. The engines begin to degrade at a point

in time at higher operation cycles until they can no longer function normally. This is considered as the

time when the engine system is being in an “unhealthy state”. The training datasets have been collected

over the time of run-to-failure information to cover the entire life until the engines fail.

63

Figure 20. Engine and sensor points (left) and engine parts modules connections (right) [172].

Figure 21. Example of sensor signals (NRc and Ps30) and all feature descriptions.

Figure 22. Example of before (left) and after (right) z-normalization.

64

Figure 23. RUL curve of all testing engines FD002 (top) and FD004 (bottom).

The RUL curves of all unseen or test data sets containing testing engines from FD002 and FD004

datasets illustrates in Figure 23. The unseen data contained the new set of input data that can be used to

validate the model. Figure 24 show the example of RUL curves from one degradation engine from the

FD002 and FD004 dataset. The same degradation behavior is also applied to the training set. These RUL

curves represent the health state or prognostic of the aircraft gas turbine engines over cycles until the

end-of-life or the point that the aircraft gas turbine engines can no longer operate normally degradation

behavior of the aircraft gas turbine engines can be seen clearer from Figure 24. It noted that the RUL is a

constant cycle until it reaches a critical point, Rth,,when the performance of the engine starts to degrade. In

the degradation phase, the RUL is represented by a linear function. Thus, the entire RUL curve is

identified as a piece-wise linear degradation function. The critical points of the aircraft gas turbine engines

were predefined based on the condition described by the data source–NASA Ames prognostics data

repository [163].

0

50

100

150

200

0 5000 10000 15000 20000

R
U
L

Cycles

0

50

100

150

200

0 5000 10000 15000

R
U
L

Cycles

65

Figure 24. Example of RUL curve of one testing engine FD002 (top) and FD004 (bottom).

To measure and evaluate the performance of the models with selected features, root means

square error (RMSE) and the scoring algorithm were used[172] .

RMSE is commonly used as a performance indicator for regression models. The following is the

formula of RMSE:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑥𝑖 − 𝑥̅𝑖]

2𝑛
𝑖=1 (12)

where 𝑛 is the number of prediction datasets, 𝑥𝑖 is the real value, and 𝑥̅𝑖 is the prediction value. In this

case, the 𝑥 parameters refer to the data points in the RUL curve while 𝑥𝑖 is the actual RUL value and 𝑥̅𝑖 is

the RUL value predicted by our models.

The scoring algorithm is as described in the formula below:

𝑠 = {
∑ 𝑒

−(
𝑑

𝑎1
)

− 1 𝑓𝑜𝑟 𝑑 < 0𝑛
𝑖=1

∑ 𝑒
−(

𝑑

𝑎2
)

− 1 𝑓𝑜𝑟 𝑑 ≥ 0𝑛
𝑖=1

 (13)

where 𝑠 is the computed score, n is the number of units under test (UTT), 𝑑 = 𝑡̂𝑅𝑈𝐿 − 𝑡̂𝑅𝑈𝐿 or Estimated

RUL—True RUL, while 𝑎1 = 10 and 𝑎2 = 13.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

R
U
L

Cycles

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

R
U
L

Cycles

Rth

Rth

66

Note that the value of 𝑎1 and 𝑎2 here are standard value that have been used in all other works

performing similar experiments. In summary, 𝑎𝑖 is the difference between predicted and observed RUL

values and 𝑠 is summed over all examples. From the formula, the scoring matric penalizes positive errors

more than negative errors as these have a higher impact on maintenance policies. Also, note that the

lower score reflect a better prediction performance of the model [172].

4.1.3. Related Works

Multiple deep learning algorithms have been used to generate data-driven models to predict RUL

for C-MAPSS aircraft gas turbine engines data. It seen from the literature [90, 94, 111, 173, 175-179] that

the most suitable deep learning algorithm for training the high accuracy C-MAPSS models is the Long-

Short Term Memory Recurrent Neural Network (LSTM). The hybrid deep neural network layers with

LSTM is also an ongoing investigation and experiment on the C-MAPSS dataset. This approach believes

to achieve higher accuracy among other algorithms that have been employed. The most important

drawback of the hybrid models is the high complexity of the model architectures. These models can also

have vast variations and architectures. To reduce the complexity of the model it is possible to limit the

number of input nodes. In addition, feature selection methods can be used to reduce the complexity.

There are many publications on applying ANN-based or deep learning algorithms to C-MAPSS aircraft

gas turbine engines data. However, all previous works have never introduced the feature selection

approaches into their model architectures. Also, the usefulness of any particular feature selection

methods has not been addressed in any prior works.

Chen Xiongzi, et al., (2011) conducted a comprehensive survey of the three main data-driven

methods for aircraft gas turbine engines, namely particle filtering methods, neural network, and relevant

vector machine methods. They comprehensive study showed that the neural network perform best [175].

Mei Yuan, et al., (2016) applied RNN network methods for fault diagnosis and estimation of the remaining

useful life of engines [94]. Faisal Khan, et al., (2018) used particle filter algorithms to generate the

arbitrary input data points before training their models with neural networks. Unlike, the vanilla neural

network algorithm, their models employed radial basic function (RBF) as activation function instead of the

original sigmoid function the result from using RBF as activation function was better compared to sigmoid

function [173]. Xiang Li, et al., (2018) applied the Convolutional Neural Network (CNN) as a time window

67

approach to generate a feature extraction model of engine data [90]. Ansi Zhang et al., (2018) proposed a

supervised domain adaptation approach by exploiting labeled data from the target domain that aims to

fine-tune a bi-directional Long-Short Term Memory Recurrent Neural Network (LSTM) previously trained

on the source domain [176]. Zhengmin Kong et al., (2019) also developed the models based on CNN.

They employed CNN as part of the network layers in their experiment and proposed the hybrid models by

combining the CNN layers with LSTM layers. Their approaches achieved relatively high accuracy in SoH

predictions over the other standard methods [177]. Other works previously published [111, 177, 179]

mostly focused on adopting the LSTM network and proposing new models without addressing the

complexity reduction in their approaches. While each work proposed the different network architectures

and the performances of the models have been improved over time, there remains the need to reduce the

complexity of ANN-based models. This work aims to address the issue of a selection approach to reduce

learning times.

4.2. Methodology

In this section, the details of the auto-encoder deep neural network used in this work will be

discussed. The problem will be defined, and all notations will also be defined, as well as the illustration of

how the proposed deep neural network architecture can be applied to predict RUL of aircraft gas turbine

engines with feature selection and neural network modeling framework mentioned in Figure 11 Chapter 2.

The experiment only used DNN with auto-encoder as a modeling algorithm. All encoded and

decoded processes were designed to occur inside the hidden layers of the network through

parameterized functions [10, 11]. The construction of DNN with auto-encoder is detailed in Figure 25.

Unlike the ANN that uses the sigmoid function as an activation function, the proposed DNN layers used

Rectified Linear Units (ReLU) as an activation function. The ReLU function has demonstrated to achieve

better general regression training for deeper networks compared to other activation functions such as the

logistic sigmoid and the hyperbolic tangent (tanh) [11]. Therefore, the ReLU function was selected for

modeling Remaining Useful Life (RUL) prediction for our PHM data while the ANN with sigmoid function

has been used as a validation algorithm for feature selection methods.

68

Figure 25. Auto-encoder Deep Neural Networks construction.

4.2.1. Problem Statement

Starting with the raw data, which is denoted as, 𝐷𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}
𝑖=1

𝑁𝑠
, the data contains 𝑁𝑠 training

sample where 𝑥𝑆
𝑖 ∈ 𝒳𝑆 is a feature with a length of 𝑇𝑖 and 𝑞𝑆 is the number of features, in which, xS

i = =

 {xt
i}

t=1

Ti ∈ RqS×Ti. In addition, 𝑦𝑆
𝑖 ∈ 𝒴𝑆 is denoted as Remaining Useful Life (RUL) also with the length 𝑇𝑖

(feature space and RUL space are within the same length) with 𝑦𝑆
𝑖 = {𝓎𝑡

𝑖 }
𝑡=1

𝑇𝑖 ∈ ℝ≥0
𝑇𝑖 . where 𝑡 ∈

{1, 2, … , 𝑇𝑖}, 𝓍𝑡
𝑖 ∈ ℝ𝑞𝑆, and 𝓎𝑡

𝑖 ∈ ℝ≥0, represent the 𝑡-th measurement of all variables and RUL label,

respectively. Similarly, the estimated target domain, 𝐷𝒯 = {𝑥𝒯
𝑖 }

𝑖=1

𝑁𝒯
 where 𝑥𝒯

𝑖 ∈ 𝒳𝒯 and 𝒳𝒯 ∈ ℝ𝑞𝒯×𝑇𝑖with no

labels. The source and target domain, 𝐷𝑆 and 𝐷𝒯, are assumed to possibly have a different probability

distribution, 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝒯). The primary goal is to define a function 𝑔 that can derive or learn from the

source data that can approximate the corresponding RUL for the target domain at the testing time, such,

𝑦𝒯
𝑖 ≈ 𝑔(𝑥𝒯

𝑖), with the preliminary assumption that mapping between input (𝑥) and output (𝑦) is somehow

similar across all domains.

4.2.2. Deep Neural Network Architecture

While there are existing deep learning algorithms that have been proposed to predict PHM of

aircraft gas turbine engines data modeling [90, 94, 111, 173, 175-179], this work focuses on using a deep

neural network with an auto-encoder.

69

The DNN used in this work focused on the feedforward architecture by the H2O package in

Python API [21]. H2O is based on multi-layer feedforward neural networks for predictive modeling [180].

The following are some of the H2O DNN features used for this experiment.

• Supervised training protocol for regression tasks

• A multi-threaded and distributed parallel computation that can be run on a single or a multi-node

cluster

• The automatic, per-neuron, adaptive learning rate for fast convergence

• Optional specification of the learning rate, annealing, and momentum options

• Regularization options to prevent model overfitting

• Elegant and intuitive web interface (Flow)

• Grid search for hyperparameter optimization and model selection

• Automatic early stopping based on the convergence of user-specified metric to a user-specified

tolerance

• Model check-pointing for reduced run times and model tuning

• Automatic pre- and post-processing for categorical numerical data

• Additional expert parameters for model tuning

• Deep auto-encoders for unsupervised feature learning

In the proposed DNN model, deep neural network layers are used to extract the temporal

features from the time length, 𝑇𝑖. The hidden state units of the neural consist of, the hidden state vector

ℎ𝑡−1 ∈ ℝℎ, input vector, xt
i ∈ ℝi, and the activation function, 𝑓, where ℎ is the dimension of hidden state

layers. All operations in DNN layers can be written as:

𝑖𝑡 = 𝑓(𝑊𝑖𝓍𝑡
𝑖 + 𝑊𝑖

′ℎ𝑡−1 + 𝑏𝑖) (14)

𝑜𝑡 = 𝑓(𝑊𝑜𝓍𝑡
𝑖 + 𝑊𝑜

′ℎ𝑡−1 + 𝑏𝑜) (15)

where 𝑖 and 𝑜 represent input and output states. 𝑊 and 𝑊′ are matrices of updated weights and weights

from the hidden state, and 𝑏 is the bias vector.

Unlike in vanilla ANN, in the proposed DNN, the activation function 𝑓 is the Rectifier Linear Unit

or ReLU function [23] instead of the sigmoid function. The DNN activation function can be represented as;

70

𝑓(𝛼) = max(0, 𝛼) ∈ ℝ+ (16)

where, in this case, 𝛼 represents the state functions (Formulas (14) and (15)) that firing into the input

neural.

Another important aspect of the DNN model architecture is the loss function, denoted by, ℒ. For

this work, the Huber loss function was selected because it [181] has been shown to work best in terms of

accurately projecting the RUL, 𝑦𝑆
𝑖 ∈ 𝒴𝑆, of the source domain, 𝐷𝑆. The Huber loss function can be

described as;

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) = {

1

2
‖𝓎̂𝑡

𝑖 − 𝓎𝑡
𝑖 ‖

2

2
 , 𝑓𝑜𝑟 ‖𝓎̂𝑡

𝑖 − 𝓎𝑡
𝑖 ‖

1
≤ 1

‖𝓎̂𝑡
𝑖 − 𝓎𝑡

𝑖 ‖
1

−
1

2
 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17)

where, 𝜃𝑓 is the space representation of the target input that mapped through the feature extraction layers

into a new space. In addition, 𝜃𝑦 is the domain regression space generated by logistic repressor [181],

and, 𝓎̂𝑡
𝑖 is RUL prediction from the source domain.

The objective in training DNN is to minimize the prediction loss, ℒ𝑦
𝑖 , which can be described by;

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)
𝑁𝑠
𝑖=1] (18)

The DNN model used in this work is depicted in Figure 26. This DNN model architecture is

trained to predict for each input, 𝑥𝑖, real value 𝑦𝑖 and its domain label 𝑑𝑖 for the source domain and only

the domain label for the target domain. The first part of the DNN architecture is the feature extractor, 𝑔𝑓,

that decomposes the inputs and maps them through the hidden state to form the outputs, ℎ𝑡−1 ∈ ℝℎ. The

model then embeds the output space as a feature space 𝑓 of the deeper layers and repeats this process

as needed. As previously detailed, this vector space parameter that is the result of feature mapping is, 𝜃𝑓

i.e., 𝑓 = 𝑔𝑓(𝜃𝑓). This feature space 𝑓 is first mapped to a real-value 𝓎𝑡
𝑖 variable by the function, 𝑔𝑦(𝑓; 𝜃𝑦),

which is composed of fully-connected neural network layers with parameter, 𝜃𝑦. The dropout layer with a

rate of 0.4 was applied to avoid the overfitting issue [159].

71

Another goal of this work was to find the feature space that is domain invariant, i.e., finding a

feature space 𝑓 in which 𝑃(𝑋𝑆) and 𝑃(𝑋𝒯) are similar. This is one of the challenges in training, which can

be improved by applying the “feature selection” before training (detailed in the further section). Another

objective was to minimize the weights of feature extractor in the direction of the regression loss, ℒ𝑦
𝑖 . In

more detail, it is proposed that the model loss function can be used to derive the final learning function, 𝑔,

through parameter 𝜃, which means the RUL prediction result (described in Equation (17)), 𝓎̂𝑡
𝑖 =

 𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦).

Figure 26. The proposed Deep Neural Networks model architecture for C-MAPSS data.

The way the DNN algorithm update its learning weights, 𝜃, is through the gradient descent update

[26] in the form of;

𝜃𝑓 ← 𝜃𝑓 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (19)

𝜃𝑦 ← 𝜃𝑦 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (20)

Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the Equations (19)

and (20). The learning rate, 𝜆, represents the learning steps taken by the SCG as training processes.

72

4.3. Experiment and Result

The first part of the experiment was designed to compare the effectiveness of using different

feature selection methods and filtering for ANN modeling of the prognostics dataset. The aircraft gas

turbine engines dataset with 21 attributes was fed into different filter and wrapper feature selection

methods to identify particular sets of features before the model training phase. The selected sets of

features were then used as training features or training attributes for the ANN model. The second part

was to test the feature selected using ANN modeling with the DNN architecture. The results from different

sets of features were compared to determine the most suitable set of selected features. Finally, the final-

best DNN model for predicting the RUL of aircraft gas turbine engines was determined.

4.3.1. Training Procedure and Hyperparameters Selection

For training, the data from input sensors, operational setting, and labeled RUL value from the

source data, and only sensors and settings from the target dataset were used. The raw data were

normalized, and the feature selection was applied before the start of all models training. For the training

process, the training dataset (as a source) from dataset FD002 was used. The FD002 and FD004 test

dataset were used to validate (RMSE and Score). In reference to the wrapper methods, we used ANN as

a validation algorithm for our wrapper methods. The cross-validation within the FD002 training data was

employed for measuring the performance of the wrapper algorithms. The set-up parameters for ANN

validation were fine-tuned based on the best model that was derived from complete attributes (21

features) modeling.

• 5 Folds Cross-Validation

• 1000 Training cycles

• 0.001 Learning rate

• 0.9 Momentum

• Linear sampling.

For the DNN hyperparameters selection, the model parameters in the H2O DNN algorithm varied

as detailed in Table 10. The grid search to identify the range of the learning rate, λ, was performed after

fine-tuning the remaining parameters manually. Additionally, the training sample per iteration was set to

auto-tuning, and batch size was set to 1 for all variations.

73

The best-case scenario is the combination of following hyperparameters; Epoch = 5000, Learning

rate = 10−8, Momentum = 0.99, L1 = 10−5, L2 = 0, and Max w2 set to infinity. These are all

hyperparameters employed in the final DNN model proposed.

Table 10. Hyperparameters values evaluated in the proposed DNN model for C-MAPSS data.

Hyperparameters Range

Epoch {100, 1000, 5000, 7000, 10000}

Training sample per iteration AUTO

Batch size 1

Leaning rate annealing {10−10, 10−8, 10−5, 10−1}

Momentum {0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 0.99}

L1: Regularization that constraint the absolute value {10−20, 10−15, 10−10, 10−5, 10−1, 0}

L2: Regularization that constraint the sum of square weights {10−20, 10−15, 10−10, 10−5, 10−1, 0}

Max w2: Maximum sum of square of incoming weight into the
neuron

{0, 10, 100, 10000, ∞}

4.3.2. Experiment Setup and Results

All experiments were implemented on an Intel® Core i7 10th generation i7–10510U 4 cores

processor with 8 MB Cache, 1.8 GHz clock speed, and up to 4.9 GHz boost speed with 16 GB RAM and

Intel® UHD integrated graphic. The DNN architecture was implemented using Python 3.6 with the H2O

library/package [180]. The experimental results presented in this section will be separated into three

parts: (1) Feature selected using feature selection methods, (2) Results and models from ANN with the

selected feature, and (3) Proposed DNN model. All RMSE and all performance measurements of DNN

models reported in this paper are the average results from 20 trials.

4.3.2.1. Feature Selection for Aircraft Engine Dataset

All possible feature selection methods were used with the C-MAPSS dataset. Filter methods

include, Deviation selection, PCA selection, Relief algorithm selection, selection, SVM selection, and

Pearson correlation selection. Only three wrapper methods were implemented: forward selection,

backward elimination, and evolutionary selection.

Table 11 detail the ranking of attributes based on coefficients and weights calculated from each

filter feature selection method. It is important to note that the ranking of the attributes based on different

methods is dependent upon the statistical measures or weights obtained from each method.

For the Pearson correlation, the attributes were not selected if the coefficient was less than

−0.01based on the work of others [166, 167]. For PCA, the features were selected based on weight

74

(selected if weight is more than 0.2) and the PCA matrix [168]. For the Relief algorithm, the attributes

were not selected if the calculated weight was below zero [168]. For deviation selection, the feature was

selected if the weights were higher than 1 [168]. It is important to note that the weights of the attributes

calculated using the Relief algorithm were unacceptably low (less than 10−12) suggesting little learning

and in addition there were large gaps between calculated weights. Similar results were observed with

other filter selection methods, including the SVM. It was found that by using the filter methods that

provided statistically low weight for selecting features, the models trained from those features were

unable to provide usable prediction results.

The following are the features selected based on these two filtering methods. In addition to the

feature weights from Pearson correlation selection and PCA selection in Table 11, the Pearson

correlation matrix and PCA matrix are also provided in Appendix.

• Pearson correlation; 8 attributes: T30, T50, Ne, Ps30, NRc, BPR, farB, and htBleed.

• Relief algorithm; 2 attributes: P15 and Nf_dmd.

• SVM selection; 11 attributes: T2, T24, P30, Nf, epr, phi, NRF, Nf_dmd, PCNfR_dmd, W31, and

W32.

• PCA selection; 17 attributes: T2, T24, T30, T50, P2, P15, P30, Nf, Ne, epr, Ps30, phi, farB,

htBleed, Nf_dmd, W31, and W32.

• Deviation selection; 11 attributes: T2, T24, T50, P2, P15, Ne, epr, Ps30, farB, PCNfR_dmd, and

W32.

In reference to the wrapper methods study, below are the sets of features selected from each

method. It is important to note that for the wrapper methods, ANN validation with the modeling set-up, as

mentioned in Section 3.2 was used. Figure 27 shows the validation process using ANN for evolutionary

selection.

• Backward elimination; validate RMSE 46.429 from 19 attributes; T2, T30, P2, P15, P30, Nf, epr,

Ps30, phi, NRF, NRc, BPR, farB, htBleed, Nf_dmd, PNCfR_dmd, W31, and W32.

• Evolutionary selection; validate RMSE 46.451 from 14 attributes; T2, T30, T50, P2, Nf, Ne, epr,

Ps30, NRc, BPR, farB, htBleed, W31, and W32.

75

• Forward selection methods; validate RMSE 46.480 from 11 attributes; T2, T30, T50, P2, P15,

Ps30, NRc, BPR, farB, htBleed, and Nf_dmd.

Unlike forward selection and backward elimination methods, which are both based on search

algorithms [169], selection is based on genetic algorithms [182]. However, instead of using fitness

function from genetic theory, the evolutionary selection method used ANN validation as fitness

measurement. The parameters set-up in this experiment were; population size = 10, maximum number of

generation = 200, using tournament selection with 0.25 size, initial probability for attributes (features) to

be switched = 0.5, crossover probability = 0.5 with uniform crossover, and mutation probability =

1

number of attributes
.

It is also important to note that, in this case, the brute force algorithm was not used. The brute

force algorithm is the selection algorithm that can derive the best features set from the data. However,

with limited computational capability, it cannot be used in real-time. Therefore, it was not included in this

experiment.

Figure 27. Validation result using evolutionary selection from C-MAPSS data.

76

Table 11. C-MAPSS attribute values from different filter methods.

4.3.2.2. DNN Models and Results

Table 12 summarizes RMSE and prediction score results from all of the DNN models. The

complete RUL best fit prediction curves for testing data of all feature selection methods are shown in

Figure 28 for FD002 test data, and in Figure 29 for FD004 test data, respectively. The blue curves

represent the actual RUL from the dataset, and the red lines/dots are the prediction points from our

feature selection DNN models. For illustration purposes, Figures 30 and 31 include the prediction curve

from one engine of each testing data FD002 and FD004 to demonstrate the prediction of the DNN model

of one degradation cycle. Additionally, Table 14 includes all DNN models and all prediction error values

measured from the DNN models using the FD002 test dataset, i.e., absolute error, relative error, relative

error lenient, relative error strict, normalized absolute error, root relative squared error, squared error,

correlation, squared correlation, prediction average, spearman rho, and Kendall tau. The number of

hidden nodes in the DNN layers was identified based on the best models fine-tuned from one-layer ANN

models for each feature selection method. The same number of hidden nodes from the best ANN models

were used to construct the DNN model layers. Note that only the DNN models from feature selection

Pearson Correlation Relief Algorithm SVM PCA Deviation

Attributes Weight Attribute Weight Attribute Weight Attribute Weight Attribute Weight

farB −0.0648807 P15 2.55555E-05 epr 28.062965 htBleed 0.24226001 PCNfR_dmd 1.00002156

Ps30 −0.0426395 Nf_dmd 4.29878E-13 T2 24.031467 T30 0.24219398 farB 1.00000884

T50 −0.0377657 farB −1.76803E-13 Nf_dmd 15.921074 Ne 0.24213648 P15 1.00000751

BPR −0.0320325 T2 −3.5083E-13 Nf 15.293535 T50 0.24212279 epr 1.00000215

NRc −0.0308729 P2 −1.41209E-12 T24 11.169562 T24 0.23799320 P2 1.00000079

htBleed −0.0254014 PCNfR_dmd −3.58802E-12 W31 9.070028 epr 0.23251894 T2 1.00000049

T30 −0.0253007 phi −8.18383E-07 W32 8.806654 Ps30 0.23247642 Ne 1.00000022

Ne −0.0133643 Nf −1.94057E-06 PCNfR_dmd 6.597514 phi 0.22942893 T50 1.00000016

T24 −0.0063673 NRF −2.22812E-06 NRF 5.849870 P30 0.22931342 Ps30 1.00000013

P2 −0.0031016 P30 −3.43389E-06 P30 5.529144 W31 0.22654883 W32 1.00000013

P15 −0.0028634 T24 −3.2525E-05 phi 5.262733 W32 0.22654313 T24 1.00000011

T2 −0.0023212 W31 −6.1066E-05 Ne 0.026252 P15 0.21870245 T30 1.00000000

phi −0.0004811 W32 −6.76249E-05 P15 −0.151776 Nf 0.21427293 P30 0.99999998

P30 −0.0003329 epr −9.125E-05 P2 −0.726430 Nf_dmd 0.21420247 NRF 0.99999993

epr 0.0013847 Ne −0.00017538 farB −16.274719 T2 0.21253812 BPR 0.99999985

Nf 0.0026742 BPR −0.000324083 T30 −24.291950 P2 0.20884536 NRc 0.99999984

W32 0.0029798 NRc −0.000344686 htBleed −24.530502 farB 0.20473956 phi 0.99999978

Nf_dmd 0.0030117 Ps30 −0.000364589 NRc −32.369914 NRc 0.18353047 Nf 0.99999973

W31 0.0030517 T50 −0.000397835 T50 −40.853420 NRF 0.14637480 W31 0.99999957

NRF 0.0044269 T30 −0.000422547 Ps30 −53.894591 PCNfR_dmd 0.14634719 htBleed 0.99999829

PCNfR_dmd 0.0048232 htBleed −0.000613424 BPR −65.865476 BPR −0.21428742 Nf_dmd 0.99998466

77

methods that provided usable prediction results are presented. Therefore, the results from Relief

algorithms and SVM selection are not presented.

Table 12. Best RMSE and prediction score results of RUL prediction from all DNN models.

Because of the fluctuations in the prediction results from the DNN algorithm, the experiments

(training and testing) were ran 100 times for each model. The result in Table 12 is the best prediction

result. The fluctuations across 100 iterations for FD002 and FD004 are presented in Figure 32. In addition

to the best prediction, the mean RMSE and error distributions from the 100 times testing are seen in

Table 13 and Figure 33. These fluctuations in prediction errors are commonly found in most deep learning

algorithms because of the random initial training weights assignment and the amplification effect from the

optimizer function in deeper networks. The fluctuations in the prediction result can be more obvious when

models are more complex and take a large number of input attributes.

4.4. Result Discussion

As mentioned in the related works (section 4.1.3), there have been several efforts in developing

deep learning models for a C-MAPSS aircraft gas turbine engines dataset [90, 94, 111, 173, 175-179].

Currently, the deep learning model with the highest accuracy was proposed by Zhengmin Kong et al.

[177]. Their deep learning architecture consists of CNN and LSTM-RNN combined layers and were able

to achieve a RMSE of 16.13, while the best previously reported evolutionary DNN model was a RMSE

value of 44.71. This indicates that the performance of our DNN models is less accurate than the modern

hybrid deep learning models developed in recent years.

However, no work has addressed the complexity of the models and the computational

requirement for model training. All hybrid deep neural network layers are generally overly complex and

require exponentially more computational time and resources compared to the proposed evolutionary

Methods
RMSE Score

FD002 FD004 FD002 FD004

Original data 45.439 45.302 645,121 427,968

SVM
Unusable

Relief algorithm

Backward elimination 45.121 45.436 645,132 211,129

Deviation 45.374 45.630 740,936 256,776

Evolutionary Selection 44.717 44.953 518,025 355,458 Best Overall

Forward selection 45.242 46.505 1,353,749 423,997

PCA 45.368 45.108 1,450,397 406,872

Pearson correlation 45.272 46.216 502,579 338,400

78

DNN. All proposed models in recent years also took all features from the C-MAPSS dataset and disregard

the features performance benchmark. Different from those models, the proposed approach applies the

feature selection prior to the model training phase to help reduce the number of input attributes, and to

reduce the model complexity as a result. The reduction in the complexity when using fewer input features

is more evident for the high complexity hybrid deep neural network layers.

Additionally, as seen in Figures 32 and 33, prediction error fluctuations can be noticed when

training deep learning models. This effect has occurred not only in DNN but also in other types of network

layers, such as LSTM-RNN, CNN, and other modern hybrid layers. Based on the results as seen in Table

13 and Figures 28 to 33, the key observations of such an effect include:

First, utilizing fewer features to train the model has been shown to lower the error distribution

range, compared to using more features. This is because the initial random weights assigned to the

hidden nodes are smaller when using fewer features in model training. The reduction in the error may

also be result of eliminating irrelevant (or less important) training the data and allow those features that

are actually relevant to increase model learning. In more detail, the models are more robust and reliable

when using fewer features. The same observation is also applied for the fluctuation of the prediction

errors, in that the prediction results are more stable when using fewer features in model training.

Second, in reference to model performance and accuracy, although using selected features from

some feature selection methods does not promote better results, the feature selection methods can

reduce the computational burden while offering better prediction performance. In this experiment, the

evolutionary selection can achieve both better performance and complexity reduction.

It is important to note that the current goal is not to improve model performance compared

against other existing works; rather, the aim is to provide baseline results and demonstrate the feature

selections on deep learning models, can reduce learning times. It is believed that the results can be

further improved when applying the proposed feature selection results in the modern hybrid deep neural

network architectures.

The experimental results in general, the best accuracy based on the RMSE results in Table 4

were generated from the evolutionary method. The complexity of the model was improved using a

reduced set of features, from 21 attributes to only 14 attributes.

79

When considering the complexity and computational time, the filter methods were less complex

and learning time was reduced because they do not require train-and-test multiples of ANN model

validation in the process. In this study, when performing the selection process, most of the filter methods

required only 5–10 min while wrapper methods required 10 h to 10 days to complete.

It is also important to note that the curve fitting and pattern recognition were improved, as can be

seen when comparing the RUL prediction curves in Figures 30 to 31. In greater detail, the DNN model

from most of the selected features can reasonably capture the trend of both before and after aircraft gas

turbine engines’ degradation intervals as illustrated in Figure 30 and 31, the curve fitting is better for both

interval before Rth and after.

In summary, the evolutionary DNN model architecture performs best as a simplified deep neural

network data-driven model for C-MAPSS aircraft gas turbine engines data. The feature selection phase

(as described in the modeling framework in Figure 11 Chapter 2) should be included as a standard in the

modeling framework for such a PHM dataset. This presents a potential improvement to the overall

performance for RUL prediction for the prognostics of aircraft gas turbine engines data as well as other

prognostic datasets.

Table 13. Mean RMSE from all DNN models.

Average RMSE

Original Data BW Elimination Deviation Evo Selection FW Selection PCA Pearson
FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004

48.398 50.541 47.907 50.331 48.160 50.081 47.452 49.650 48.434 50.708 48.072 49.737 49.203 52.111

80

Figure 28. (a - g) All RUL prediction curves for FD002.

81

Figure 29. (a - g) All RUL prediction curves for FD004.

82

Figure 30. (a - g) RUL prediction points for one engine of FD002 test data.

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(a) Original Data FD002

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(b) Backward Elimination FD002

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(c) Deviation Selection FD002

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(d) Evolutionary Selection FD002

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(e) Forward Selection FD002

0

40

80

120

160

200

0 50 100 150

R
U
L

Cycles

(f) PCA Selection FD002

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(g) Pearson Correlation Selection FD002

Actual RUL DNN Prediction

83

Figure 31. (a - g) RUL prediction points for one engine of FD004 test data.

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(a) Original Data FD004

0

40

80

120

160

0 50 100 150

R
U
L

Cycles

(b) Backward Elimination FD004

0

100

200

0 50 100 150

R
U
L

Cycles

(c) Deviation Selection FD004

0

100

200

0 50 100 150

R
U
L

Cycles

(d) Evolutionary Selection FD004

0

100

200

0 50 100 150

R
U
L

Cycles

(e) Forward Selection FD004

0

100

200

0 50 100 150

R
U
L

Cycles

(f) PCA Selection FD004

0

200

0 50 100 150

R
U
L

Cycles

(g) Pearson Correlation Selection FD004

Actual RUL DNN Prediction

84

Table 14. The best DNN models for FD002 test data.

Feature
Selection
Method

Model Output Weights Errors

Original
(All 21

Attributes)

Layer

Unit

Type
----------- Layer 2:

−0.389707
Layer 3:

−0.954436
Layer 4:

−0.798112
Layer 5: 1.135641

root_mean_squared_error: 45.439 +/− 0.000
absolute_error: 37.062 +/− 26.289
relative_error: 285.29% +/− 1071.56%
relative_error_lenient: 40.87% +/− 26.92%
relative_error_strict: 290.30% +/− 1070.51%
normalized_absolute_error: 0.933
root_relative_squared_error: 0.963
squared_error: 2064.669 +/− 2549.829
correlation: 0.426
squared_correlation: 0.182
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.406
kendall_tau: 0.28

1
2
3
4

5

21
12
12
12

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Backward
Elimination

Layer

Unit

Type
----------- Layer 2:

−0.383010
Layer 3:

−0.791862
Layer 4:

−0.706631
Layer 5: 1.064392

root_mean_squared_error: 45.121 +/− 0.000
absolute_error: 36.707 +/− 26.240
relative_error: 275.51% +/− 1043.67%
relative_error_lenient: 40.75% +/− 26.64%
relative_error_strict: 281.59% +/− 1042.46%
normalized_absolute_error: 0.924
root_relative_squared_error: 0.956
squared_error: 2035.929 +/− 2509.247
correlation: 0.417
squared_correlation: 0.174
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.399
kendall_tau: 0.278

1
2
3
4

5

19
11
11
11

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Deviation
Selection

Layer

Unit

Type
----------- Layer 2:

−0.274669
Layer 3:

−0.962801
Layer 4:

−0.156934
Layer 5: 0.528834

root_mean_squared_error: 45.374 +/− 0.000
absolute_error: 37.420 +/− 25.662
relative_error: 283.25% +/− 1026.67%
relative_error_lenient: 41.82% +/− 26.69%
relative_error_strict: 290.19% +/− 1025.24%
normalized_absolute_error: 0.942
root_relative_squared_error: 0.962
squared_error: 2058.794 +/− 2489.328
correlation: 0.383
squared_correlation: 0.147
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.375
kendall_tau: 0.261

1
2
3
4

5

11
7
7
7

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Evolutionary
Selection*

Layer

Unit

Type
----------- Layer 2:

−0.820539
Layer 3:

−0.729643
Layer 4:

−1.375567
Layer 5: 1.658891

root_mean_squared_error: 44.717 +/− 0.000
absolute_error: 36.402 +/− 25.971
relative_error: 271.60% +/− 1022.51%
relative_error_lenient: 40.89% +/− 26.50%
relative_error_strict: 278.38% +/− 1021.18%
normalized_absolute_error: 0.917
root_relative_squared_error: 0.948
squared_error: 1999.604 +/− 2499.212
correlation: 0.415
squared_correlation: 0.172
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.401
kendall_tau: 0.280

1
2
3
4

5

14
9
9
9

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Forward
Selection

Layer

Unit

Type
----------- Layer 2:

−0.598193
Layer 3:

−1.333539
Layer 4:

−1.583420
Layer 5: 0.341112

root_mean_squared_error: 45.242 +/− 0.000
absolute_error: 36.817 +/− 26.294
relative_error: 275.71% +/− 1038.01%
relative_error_lenient: 41.12% +/− 26.56%
relative_error_strict: 282.81% +/− 1036.64%
normalized_absolute_error: 0.927
root_relative_squared_error: 0.959
squared_error: 2046.830 +/− 2564.139
correlation: 0.403
squared_correlation: 0.163
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.390
kendall_tau: 0.272

1
2
3
4

5

11
7
7
7

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

85

Table 14. The best DNN models for FD002 test data (continued).

*Note: Complete model layers for the proposed evolutionary selection DNN model will be
described in detail in Appendix.

Figure 32. (a, b) RMSE fluctuation for FD002 and FD004 test data.

44

49

54

59

0 20 40 60 80 100

R
M
S
E

Iterations

(a) Prediction Error Fluctuation for FD002

Original Data

BW Elimination

Deviation Selection

Evo Selection

FW Selection

PCA Selection

Pearson Corrrelation

44

49

54

59

64

0 20 40 60 80 100

R
M
S
E

Iterations

(b) Prediction Error Fluctuation for FD004

Original Data

BW Elimination

Deviation Selection

Evo Selection

FW Selection

PCA Selection

Pearson Corrrelation

Feature
Selection
Method

Model Output Weights Errors

PCA
Selection

Layer

Unit

Type
----------- Layer 2:

−0.022651
Layer 3:

−1.327223
Layer 4:

−1.541491
Layer 5: 1.298059

root_mean_squared_error: 45.368 +/− 0.000
absolute_error: 36.694 +/− 26.680
relative_error: 264.95% +/− 1016.32%
relative_error_lenient: 41.31% +/− 26.37%
relative_error_strict: 275.07% +/− 1014.64%
normalized_absolute_error: 0.924
root_relative_squared_error: 0.962
squared_error: 2058.300 +/− 2623.562
correlation: 0.390
squared_correlation: 0.152
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.382
kendall_tau: 0.266

1
2
3
4

5

17
10
10
10

1

Input
Rectifier
Rectifier
Rectifier

0.4 Dropout
Linear

Backward
Elimination

Layer

Unit

Type
----------- Layer 2:

−0.853966
Layer 3:

−1.340343
Layer 4:

−0.972141
Layer 5: 0.786599

root_mean_squared_error: 45.272 +/− 0.000
absolute_error: 37.002 +/− 26.084
relative_error: 269.63% +/− 1010.61%
relative_error_lenient: 41.23% +/− 26.36%
relative_error_strict: 277.67% +/− 1009.11%
normalized_absolute_error: 0.932
root_relative_squared_error: 0.960
squared_error: 2049.533 +/− 2474.691
correlation: 0.382
squared_correlation: 0.146
prediction_average: 68.095 +/− 47.177
spearman_rho: 0.364
kendall_tau: 0.253

1

2

3

4

5

8

6

6

6

1

Input

Rectifier

Rectifier

Rectifier

0.4 Dropout

Linear

86

(a) RMSE Distribution for Original Data

(b) RMSE Distribution for Backward Elimination

(c) RMSE Distribution for Deviation Selection

(d) RMSE Distribution for Evolutionary Selection

(e) RMSE Distribution for Forward Selection

Figure 33. (a - e) Prediction error distributions from feature selection methods.

0%

50%

100%

0

5

10

15

20

4
5
.
4
3
9

4
6
.
1
7
9
6

4
6
.
9
2
0
2

4
7
.
6
6
0
8

4
8
.
4
0
1
4

4
9
.
1
4
2

4
9
.
8
8
2
6

5
0
.
6
2
3
2

5
1
.
3
6
3
8

5
2
.
1
0
4
4

M
o
r
eF
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
5
.
3
0
2

4
6
.
6
4
8
1

4
7
.
9
9
4
2

4
9
.
3
4
0
3

5
0
.
6
8
6
4

5
2
.
0
3
2
5

5
3
.
3
7
8
6

5
4
.
7
2
4
7

5
6
.
0
7
0
8

5
7
.
4
1
6
9

M
o
r
e

F
r
e
q
u
e
n
c
y FD004

0%

50%

100%

0

5

10

15

20

4
5
.
1
2
1

4
5
.
6
8
7

4
6
.
2
5
3

4
6
.
8
1
9

4
7
.
3
8
5

4
7
.
9
5
1

4
8
.
5
1
7

4
9
.
0
8
3

4
9
.
6
4
9

5
0
.
2
1
5

M
o
r
e

F
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
5
.
4
3
6

4
6
.
4
3
6
7

4
7
.
4
3
7
4

4
8
.
4
3
8
1

4
9
.
4
3
8
8

5
0
.
4
3
9
5

5
1
.
4
4
0
2

5
2
.
4
4
0
9

5
3
.
4
4
1
6

5
4
.
4
4
2
3

M
o
r
e

F
r
e
q
u
e
n
c
y

FD004

0%

50%

100%

0

5

10

15

20

4
5
.
3
7
4

4
5
.
8
6
0
8

4
6
.
3
4
7
6

4
6
.
8
3
4
4

4
7
.
3
2
1
2

4
7
.
8
0
8

4
8
.
2
9
4
8

4
8
.
7
8
1
6

4
9
.
2
6
8
4

4
9
.
7
5
5
2

M
o
r
e

F
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30
4
5
.
6
3

4
6
.
7
3
6
2

4
7
.
8
4
2
4

4
8
.
9
4
8
6

5
0
.
0
5
4
8

5
1
.
1
6
1

5
2
.
2
6
7
2

5
3
.
3
7
3
4

5
4
.
4
7
9
6

5
5
.
5
8
5
8

M
o
r
e

F
r
e
q
u
e
n
c
y

FD004

0%

50%

100%

0

5

10

15

20

4
4
.
7
1
7

4
5
.
2
2
2

4
5
.
7
2
7

4
6
.
2
3
2

4
6
.
7
3
7

4
7
.
2
4
2

4
7
.
7
4
7

4
8
.
2
5
2

4
8
.
7
5
7

4
9
.
2
6
2

M
o
r
e

F
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
4
.
9
5
3

4
5
.
8
9
6
3

4
6
.
8
3
9
6

4
7
.
7
8
2
9

4
8
.
7
2
6
2

4
9
.
6
6
9
5

5
0
.
6
1
2
8

5
1
.
5
5
6
1

5
2
.
4
9
9
4

5
3
.
4
4
2
7

M
o
r
eF
r
e
q
u
e
n
c
y

FD004

0%

50%

100%

0

5

10

15

20

4
5
.
2
4
2

4
6
.
0
1
3
1

4
6
.
7
8
4
2

4
7
.
5
5
5
3

4
8
.
3
2
6
4

4
9
.
0
9
7
5

4
9
.
8
6
8
6

5
0
.
6
3
9
7

5
1
.
4
1
0
8

5
2
.
1
8
1
9

M
o
r
eF
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
6
.
5
0
5

4
7
.
3
6
8
6

4
8
.
2
3
2
2

4
9
.
0
9
5
8

4
9
.
9
5
9
4

5
0
.
8
2
3

5
1
.
6
8
6
6

5
2
.
5
5
0
2

5
3
.
4
1
3
8

5
4
.
2
7
7
4

M
o
r
e

F
r
e
q
u
e
n
c
y

FD004

87

(f) RMSE Distribution for PCA Selection

(g) RMSE Distribution for Backward Elimination

 Figure 33. (f - g) Prediction error distributions from feature selection methods (continued).

4.5. Chapter Summary

While there has been a review of the work on deep neural network algorithms and proposed new

DNN model architecture, in this chapter, the features selected, and other new deep learning algorithms

and methods were reviewed. As demonstrated in the related works [90, 94, 111, 173, 175-179], their

RNN, LSTM, and CNN have been shown to result in more accurate RUL predictions when compared to

shallow DNN models. However, as seen in this work, further improvements can be achieved by applying

new algorithms to the selected features. One of the aspects that can improve such selected features that

can accelerate machine learning through less complex models. The result in this chapter detailed a

preliminary study on selecting features to generate a data-driven neural network model for the prognostic

of aircraft gas turbine engines data. More complex deep learning algorithms; however, still need to be

performed and tested for the effectiveness of such a feature selection technique. These are the key

aspects that should be tested and experimented with in the future.

0%

50%

100%

0

5

10

15

20

4
5
.
3
6
8

4
5
.
9
4
1
5

4
6
.
5
1
5

4
7
.
0
8
8
5

4
7
.
6
6
2

4
8
.
2
3
5
5

4
8
.
8
0
9

4
9
.
3
8
2
5

4
9
.
9
5
6

5
0
.
5
2
9
5

M
o
r
e

F
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
5
.
1
0
8

4
6
.
2
5
8
1

4
7
.
4
0
8
2

4
8
.
5
5
8
3

4
9
.
7
0
8
4

5
0
.
8
5
8
5

5
2
.
0
0
8
6

5
3
.
1
5
8
7

5
4
.
3
0
8
8

5
5
.
4
5
8
9

M
o
r
e

F
r
e
q
u
e
n
c
y

FD004

0%

50%

100%

0

5

10

15

20

4
5
.
2
7
2

4
6
.
0
7
3

4
6
.
8
7
4

4
7
.
6
7
5

4
8
.
4
7
6

4
9
.
2
7
7

5
0
.
0
7
8

5
0
.
8
7
9

5
1
.
6
8

5
2
.
4
8
1

M
o
r
e

F
r
e
q
u
e
n
c
y

FD002

0%

50%

100%

0

10

20

30

4
6
.
2
1
6

4
7
.
4
1
1
1

4
8
.
6
0
6
2

4
9
.
8
0
1
3

5
0
.
9
9
6
4

5
2
.
1
9
1
5

5
3
.
3
8
6
6

5
4
.
5
8
1
7

5
5
.
7
7
6
8

5
6
.
9
7
1
9

M
o
r
e

F
r
e
q
u
e
n
c
y

FD004

88

5. AN EVOLUTIONARY CONVOLUTIONAL LONG SHORT-TERM

MEMORY DEEP NEURAL NETWORK DATA-DRIVEN MODEL FOR

PROGNOSTICS OF AIRCRAFT GAS TURBINE

5.1. Hybrid Deep Neural Network Layers Approach for Modeling RUL Prediction of Aircraft

Engines Data

In the previous chapter, a benchmark was prepared using the C-MAPSS aircraft engines data

[163] with selected features using a deep neural network approach. However, the results from the vanilla

Deep Neural Network (DNN) model can be further improved. Developing a hybrid deep neural network

model and using the selected features from the previous experiments is a potential approach of improving

the predictions. An emerging scheme combining Convolutional Neural Network (CNN) and Long Short-

Term Memory recurrent neural network (LSTM) or CNN-LSTM has been suggested in several recent

articles [109, 183-186], most of which focuses on natural language processing, speech processing, video

processing task, and as a few examples. There is a good example of prognostics application using CNN-

LSTM ensemble on predicting RUL [187]. Also, another interesting article introduced a hybrid scheme to

predict residential energy consumption [188]. Both works relied on raw sensor data for the predictions.

However, in most of the published works in the past years in RUL data-driven prognostics, more features

or all features often used to describe equipment degradation [177]. This causes the training time or

running time of the modeling phase to increase exponentially. As the preliminary results from the previous

chapter showed, using selected features can help significantly reduce the complexity of the model and

reduce training time. In addition, the accuracy of the prediction model is slightly better or similar

compared to when using all features from raw data, less complexity and less training time can be

realized.

In this chapter, a novel scheme based on a hybrid deep neural network, namely CNN-LSTM model

is proposed to predict the RUL of aircraft engines. First, redundant features are removed using the result

of DNN evolutionary selection from the previous experiments. Secondly, the spatial-temporal features are

sequentially extracted by using CNN and multilayer LSTM from the preselected data. In addition, RUL is

predicted by a multilayer fully connected neural network at the end layer. Finally, the effectiveness and

89

accuracy of the proposed scheme are validated using RMSE and a scoring algorithm as suggested by F.

Khan, et al [172].

The main contributions of the experiments in this chapter are summarized as follows:

1. Design and execute a preselection of data with the evolutionary selection method which best

depicts aircraft engines' degradation model using DNN.

2. Propose a novel scheme based on hybrid deep neural CNN-LSTM layers to efficaciously predict

aircraft engines RUL collected in using C-MAPSS turbofan engine degradation simulation data.

3. Design a less complex with higher accuracy AI system compared with the non-hybrid models.

5.2. Methodology

Taking a similar approach detailed in Chapter 4 (section 4.2), the neural network modeling

framework mentioned in Figure 11 Chapter 2 was again used. The problem statement is again defined

including additional notations are also stated with the CNN and LSTM scheme described in Chapter 4 is

detailed.

Previously the experiments used a hybrid CNN-LSTM scheme. This chapter will further

investigate a hybrid an architecture of CNN and LSTM layers coupled with a sliding time window

processing approach, which is an essential data preprocessing method that can expand the dimensions

of the input data.

5.2.1. Problem Statement

The majority of the problem statement described in section 4.2.1 Chapter 4 can be used again for

the CNN-LSTM modeling scheme. This is because the DNN algorithm that has been used in the previous

experiments also falls into the same nature, in which, they are all based on neural network algorithm.

• The raw data is denoted as, 𝐷𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}
𝑖=1

𝑁𝑠
, the data contains 𝑁𝑠 training sample, where 𝑥𝑆

𝑖 ∈

𝒳𝑆 is a feature with a length of 𝑇𝑖 and 𝑞𝑆 is the number of features.

• xS
i = = {xt

i}
t=1

Ti ∈ RqS×Ti.and 𝑦𝑆
𝑖 ∈ 𝒴𝑆 is denoted as Remaining Useful Life (RUL) also with the

length 𝑇𝑖 (feature space and RUL space are within the same length)

• 𝑦𝑆
𝑖 = {𝓎𝑡

𝑖 }
𝑡=1

𝑇𝑖 ∈ ℝ≥0
𝑇𝑖 . where 𝑡 ∈ {1, 2, … , 𝑇𝑖}, 𝓍𝑡

𝑖 ∈ ℝ𝑞𝑆, and 𝓎𝑡
𝑖 ∈ ℝ≥0, represent the 𝑡-th

measurement of all variables and RUL label.

90

• The estimated target domain is denoted as, 𝐷𝒯 = {𝑥𝒯
𝑖 }

𝑖=1

𝑁𝒯
 where 𝑥𝒯

𝑖 ∈ 𝒳𝒯 and 𝒳𝒯 ∈ ℝ𝑞𝒯×𝑇𝑖with no

labels.

• The source and target domain, 𝐷𝑆 and 𝐷𝒯, are assumed to a different probability distribution,

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝒯).

• Function 𝑔 is assumed to be able to derive or learn from the source data that can approximate

the corresponding RUL for the target domain at the testing time, such, 𝑦𝒯
𝑖 ≈ 𝑔(𝑥𝒯

𝑖).

5.2.2. Sliding Time Window Processing

Sliding time window processing is essential data preprocessing approach to transform the raw

input data into a dimension that can recognize by CNN and LSTM layers. The dimension of the input data

is important because the CNN and LSTM layer generally operate in higher dimension or 3D. The layer

cannot read (or recognize) the input data if the data dimension does not fit with the layer scheme. The

window processing data isa technique that converts the time series data into the sequence data and

retains the local dependence of the series data. It is important to note that the time dimension is not loss,

instead the time dimension is transformed or reshaped. The data processed by the sliding time window

can be encapsulated in a time window with a fixed length. The window continues to be “sliding” through

the data continuously.

In the case of using this technique to predict the RUL, adapting different sequence lengths allow

information from the past multivariate temporal sequences to influence the RUL prediction at a point in

time. As mentioned earlier, the sequential input is assumed to be xS
i = = {xt

i}
t=1

Ti
 where 𝑇𝑖 denotes the

size of each sequence length. The hidden state function, ℎ is used to divide each sequence of size 𝑇𝑖 in

the sequential time window of size 𝑇𝑤 i.e. ℎ𝑡(𝑥𝑖) = {(xt−𝑇𝑤
i , … , xt−1

i)}
𝑡=𝑇𝑤−1

𝑇𝑖
. At time 𝑡 all previous sensor

data within the time window (xt−𝑇𝑤
i , … , xt−1

i) are transformed to a high-dimensional input vector i=used to

predict the target variable as previously defined as 𝓎𝑡
𝑖 If 𝑇𝑖 < 𝑇𝑤 the zero-padding will be applied to the

left size of 𝑥𝑖 until 𝑇𝑖 has size of 𝑇𝑤 + 1 to make each original time series have a training samples size,

𝑛𝑖 = 𝑇𝑖 + 𝑇𝑤. The updated number of examples is also defined as 𝑁̃𝑆 = ∑ 𝑛𝑖
𝑁𝑆
𝑖=1 and 𝑁̃𝒯 = ∑ 𝑛𝑖

𝑁𝒯
𝑖=1 for the

source and target domain respectively. In the experiment, 𝑇𝑤 was a fixed value at 30 for all domains to

91

allow consistency on the number of time steps seen by the CNN and LSTM neural network. Also, in this

case, the transformed input has a dimension of 𝑝 × 𝑞.

5.2.3. Defined Convolutional Neural Network

The Convolutional Neural Network or CNN, as briefly mentioned in Chapter 1, was introduced in

1982 by Fukushima and Miyake [189]. CNN was first introduced to perform pattern recognition and image

processing tasks which involved extracting high-level spatial patterns. This poses a potential using CNN

for sensor data which involved a similar task as well. In addition to the aspects of CNN that have already

been described in the previous chapter, there are mainly two types of CNN layer employed in this work:

convolutional layer, and pooling layer.

The convolutional layer convolves the feature map from the previous layer with convolution

kernels. The kernels are used for feature extraction and feature mapping, then the feature map of the

next layer is computed through a type of non-linear function or in this case, the ReLU function. These

functions can also call an activation function as in the vanilla DNN layer.

The pooling layer reduces the feature map resolution. The feature maps of the convolutional layer

are subsampling by a predefined factor. Maximum pooling and average pooling are the most commonly

used sampling approaches for the pooling layer. The pooling layer may also refer to as the subsampling

layer in some literature [189].

Figure 34. The defined Convolutional Neural Network architecture.

92

The defined CNN architecture is seen in Figure 34, which is constructed by using two one-

dimensional convolution layers stacked with the max-pooling layer. The flatten layer at the end is used to

reduce the dimension from the CNN layer and connected to the fully connected layer at the end to form a

proper regression output value. The input of CNN obtained from the transformed actual input data using

the sliding time window processing technique (previously described) to expand the input dimension into a

shape that the CNN layer can recognize. Similar to the formula used for DNN layers in the previous

chapter, the CNN layers are used to extract the spatial features. However, the features are contained in

the predefined time windows of size, 𝑇𝑤. Similar to DNN layers, the hidden state units of CNN consist of

the hidden state vector ℎ𝑡−1 ∈ ℝℎ, input vector, xt
i ∈ Rq, and the activation function, 𝑓. Where ℎ is the

dimension of the CNN layer. The CNN layers’ operation can be formulated as:

𝑖𝑡 = 𝜍(𝑊𝑖𝓍𝑡
𝑖 + 𝑊̂𝑖ℎ𝑡−1 + 𝑏𝑖) (21)

𝑜𝑡 = 𝜍(𝑊𝑜𝓍𝑡
𝑖 + 𝑊̂𝑜ℎ𝑡−1 + 𝑏𝑜) (22)

where 𝑖 and 𝑜 represent input and output states. 𝑊 and 𝑊̂ are matrices of updated weights and weights

from the convolutional state, and 𝑏 is the bias vector.

The activation function 𝜍 for CNN also used the Rectifier Linear function [23] which can be

represented as;

𝜍(𝛼) = max(0, 𝛼) ∈ ℝ+ (23)

The loss function (ℒ), was defined as a simple error (or regression loss) between the actual and

predicted output values from the RUL. The loss function can be expressed as:

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) = |𝓎̂𝑡

𝑖 − 𝓎𝑡
𝑖 |

𝑝
 (24)

The 𝜃𝑓 is the space representation of the target input that mapped into a new space (the denote,

𝑓 represents the feature space). The 𝜃𝑦 is the domain regression space and, 𝓎̂𝑡
𝑖 is RUL prediction from

the source domain. The objective in training DNN is to minimize the prediction loss, ℒ𝑦
𝑖 , which can be

described as:

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)

𝑁𝑠

𝑖=1

] (25)

93

Another objective is to minimize the weights in the direction of the regression loss, ℒ𝑦
𝑖 . The final

learning function, 𝑔, can also derive from the loss function through parameter 𝜃.The RUL prediction result

is 𝓎̂𝑡
𝑖 = 𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). The CNN update layers’ learning weights, 𝜃, through the gradient descent update

[26] in the form of;

𝜃𝑓 ← 𝜃𝑓 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (26)

𝜃𝑦 ← 𝜃𝑦 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (27)

However, in the case of CNN, Adaptive Moment Estimation (Adam) is used to optimize the weight

update (see Appendix for more details of Adam). The learning rate, 𝜆, also represents the learning steps.

5.2.4. Defined Long Short-Term Memory Recurrent Neural Network

The concept of Recurrent Neural Network (RNN) was briefly introduced in Chapter 1. Long Short-

Term Memory neural network (LSTM) is an extension or an improvement version of the RNN. One of the

obvious issues using RNN is that the original RNN can accumulate the derivatives of the activation

function during the backpropagation process which can cause of divergence from an accurate model.

More importantly, RNN is usually faced with the “fading memory” issue. This makes the “future” time-

steps of RNN can no longer contain the virtual memory of the first inputs. All of these issues occur when

the ‘number of time-steps’ in the RNN network becomes too large for the number of connections and

layers. Therefore, LSTM has been developed to improve on the issues that original or vanilla RNN has.

LSTM was introduced in 1997 by Hochreiter and Schmidhuber [33]. Instead of containing all data

in long time-steps, LSTM adopts the gating structure to control the flow of the information. The

corresponding structure diagram of the LSTM memory cell is seen in Figure 35. The memory cell of LSTM

consists of the forget gate, input gate, and output gate. Although these three gates of the memory cell of

LSTM can take the current input layer data and the recurrent state before, the corresponding functions

are different from each other. The forget gate identifies how many states of the memory cells at the last

moment that can be fed to the current state. This helps to shorten the virtual time-steps number and

makes the LSTM network capable of controlling how information flows within the memory cells by

updating the series of gates capable of learning long-term relationships in the input data.

94

+ +

Figure 35. LSTM memory cell [190].

Table 15. The notation of the symbol in the LSTM memory cell.

 In the proposed LSTM architecture seen in Figure 36, the LSTM layers take the input from the

reshaped-input data using sliding time window processing. The features were contained in the predefined

time windows of size, 𝑇𝑤. However, the input dimension was considered as an imaginary time dimension.

This allows the LSTM layers to separate the time dimension from the input data for the recurrent training

process. In the LSTM layer, a set memory cell consists of three non-linear gating units (Figure 35

illustrated a unit of LSTM memory cell) that update a cell state, 𝐶𝑡 ∈ ℝℎ′
 in each iteration, using a hidden

state vector, ℎ𝑡−1 ∈
′ ∈ ℝℎ′

 with input xt
i ∈ Rq, where ℎ, is the recurrent time dimension of the LSTM layer.

Operation formulas of the LSTM layers are defined as:

𝑓𝑡
′ = 𝜎(𝑊𝑓′𝓍𝑡

𝑖 + 𝑅𝑓′ℎ𝑡−1 + 𝑏𝑓′) (28)

𝑖𝑡
′ = 𝜎(𝑊𝑖′𝓍𝑡

𝑖 + 𝑅𝑖′ℎ𝑡−1 + 𝑏𝑖′) (29)

𝑜𝑡
′ = 𝜎(𝑊𝑜′𝓍𝑡

𝑖 + 𝑅𝑜′ℎ𝑡−1 + 𝑏𝑖′) (30)

Symbols

Notation
Element-wise
Multiplication

Sum
Sigmoid
Function

Hyperbolic
Tangent

x
0

+
0

95

where 𝑓𝑡
′, 𝑖𝑡

′, and 𝑜𝑡
′ are forget gate, input gate, and output gate respectively, 𝜎 is a sigmoid activation

function inside the LSTM cell (as described in Figure 35 and Table 15) used to scale the output to the 0-1

range, 𝑊 ∈ ℝℎ×𝑞 are input weight matrices, 𝑅 ∈ ℝℎ×ℎ are the recurrent weight matrices, and 𝑏 ∈ ℝℎ

are bias vectors.

 Figure 36. The defined Long Short-Term Memory network architecture.

All 𝑓𝑡
′, 𝑖𝑡

′, and 𝑜𝑡
′ erre first calculated and fed through the gate to compute the new cell state 𝐶̃𝑡

using hyperbolic tangent (tanh) activation function as follow:

𝐶̃𝑡 = tanh(𝑊𝐶𝑥𝑡
𝑖 + 𝑅𝐶ℎ𝑡−1 + 𝑏𝐶) (31)

 Then, the previous cell state 𝐶𝑡−1 were updated into the new cell state 𝐶𝑡 as seen in Figure 35

and Table 15, or as the formula:

𝐶̃𝑡 = 𝑓𝑡
′ ⊗ 𝐶𝑡−1 + 𝑖𝑡

′ ⊗ 𝐶̃𝑡 (32)

 As previously detailed (and described in the previous equation), the forget gate, 𝑓𝑡
′ decide on

which part of information vectors to keep or ignore from the cell state. Then, the input gate, 𝑖𝑡
′ decides part

of the state vectors that can be updated based on the candidate cell states. Then, the forget gates and

input gates are used to update the information for the new state in the next iteration steps. The last part is

the output gate, 𝑜𝑡
′ which decides on which information is output data. Then the new hidden state, ℎ𝑡 can

be calculated by employing hyperbolic tangent activation function to the current cell state times the result

from the output gate (also as described in Figure 35 and Table 15):

ℎ𝑡 = 𝑜𝑡 ⊗ tanh (𝐶𝑡) (33)

96

The rest of the formulation architecture is similar to the definition for CNN layers in the previous

section (equation 25 to 37). It is important to note that the 𝑓 represents the feature space while 𝑓′

represent the forget gate and there are not the same.

The loss function of LSTM can be expressed as:

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) = |𝓎̂𝑡

𝑖 − 𝓎𝑡
𝑖 |

𝑝
 (34)

The objective in training LSTM is to minimize the prediction loss which can be expressed as:

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)
𝑁𝑠
𝑖=1] (35)

Also, the weights in the direction of the regression loss must be minimized and the final learning

function, 𝑔, derives through the loss function through parameter 𝜃. And final the RUL prediction result is

𝓎̂𝑡
𝑖 = 𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). The gradient descent update [26] of the learning rate, 𝜆 (also using Adaptive

Moment Estimation) can be described as;

𝜃𝑓 ← 𝜃𝑓 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (36)

𝜃𝑦 ← 𝜃𝑦 − 𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (37)

5.2.5. CNN-LSTM Hybrid Architecture

The hybrid scheme combines the CNN and LSTM architectures. In the proposed hybrid scheme,

there are two layers of CNN with two pooling layers and one flatten layer stacked with two LSTM layers

and two fully connected at the end to form regressive RUL prediction output. The hybrid architecture

takes advantage of CNN’s spatiality and LSTM’s long-term temporal memory characteristics. If there are

high-frequency sensor measurements involved or there is an increase of variation in the sensor’s signals,

the CNN-LSTM hybrid architecture is able to process the tasks better than the traditional deep neural

layers. Additionally, the predicted results can have smaller errors compared to the homogenous neural

network scheme. CNN layers are interspersing with the pooling layer to reduce the computation time.

While LSTM layers can expose the shorter long-term temporal dependency features. It is important to

note that the fully connected layers are required at the output to better form the output mapping and

shape the regression RUL prediction result. One minor change is that the LSTM layers take the

97

information from the last layer of CNN layers as their input instead of the reshaped raw input data as

described previously. The proposed CNN-LSTM hybrid architecture is illustrated in Figure 37.

Figure 37. The proposed evolutionary hybrid CNN-LSTM deep neural network model architecture.

5.3. Experiment and Result

The processor used for CNN-LSTM experiments was an Intel® Core i7 10th generation i7–

10510U 4 cores processor with 8 MB Cache, 1.8 GHz clock speed, and up to 4.9 GHz boost speed with

16 GB RAM and Intel® UHD integrated graphic. Two model configurations were studied: one using only

CNN layers, and the newly proposed CNN-LSTM hybrid layers architectures. Both configurations were

implemented using Python 3.6 with Keras library/package [160]. The Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) data [163] with selected features using the evolutionary

selection (from Chapter 4) is used across all experiments. These are the 14 attributes from C-MAPSS

data we obtained using evolutionary selection that will also be used for the experiment in this section: T2,

T30, T50, P2, Nf, Ne, epr, Ps30, NRc, BPR, farB, htBleed, W31, and W32.

For training, the data from input sensors, operational setting, and labeled RUL value from the

source data, and only sensors and settings from the target dataset were used. The raw data were

normalized using equation (8) described in Chapter 4. For the training process, the training dataset (as a

source) from dataset FD002 was used. The FD002 and FD004 test datasets were used to validate the

models and calculate prediction errors, which are, RMSE (equation (9)) and Score (equation (10)). Note

that the “training” datasets of FD002 and FD004 are not the same dataset as “testing” dataset of FD002

and FD004 (as previously describe in Table 9–Chapter 4, section 4.1.2.)

98

The two models being presented here are Evolutionary CNN and Hybrid Evolutionary CNN-LSTM

as employed evolutionary Selection and Genetic Algorithm prior to the neural network model training

were used

5.3.1. Evolutionary CNN Model

Initially only with CNN layers were studied. Fourteen features obtained from the evolutionary

selection methods (from Chapter 4.) to develop the model were included in the model.

5.3.1.1. Evolution and Selection of CNN Hyperparameters

The list of CNN hyperparameters used for the experiments is detailed in Table 16. The grid

search was used to select the best model configuration. However, because CNN layers on Keras requires

more processing time to train compared to the basic DNN using H2O that has previously been

implemented in Chapter 4, the range and number of hyperparameters trained was limited due to only

vanilla deep neural network algorithm was employed. It is important to note that the H2O library [180] has

a very limited set of hyperparameters that we can adjust, unlike Keras library [160]. In addition, in Keras

library, the input shape that the CNN layers take must be predefined. The input shape of (30, 14) which is

the sliding time window dimension, and the number of features or attributes of the dataset respectively

were studied. Two CNN layers stacked with pooling layers for each CNN layer and flatten layer and fully

connected layer to form the RUL output shape at the end was used. The type of CNN layer was 1

dimensional CNN with 64 filter size and a kernel size of 2, and 1 stride. The ReLU function was used as

an activation function, with a dilation rate of 1, and the padding technique was applied for both layers. For

the pooling layer, max pooling, with a pool size of 2 and 2 strides was used. Padding was applied to both

pooling layers. The 0.25 dropout rate was applied for the dropout layer. The first fully connected layer (or

dense layer) took the reshaped output from the flatten layer using the ReLU activation function with 250

output space then feed information into one node dense layer at the end to form an RUL prediction output

for each vector space.

The CNN configuration based on the Keras library were; Epoch = 256, Batch size = 8, Callback

function = TensorBoard, Loss function = Mean Square Error, Optimizer function: Adam, Learning rate =

0.001, Beta 1 and Beta 2 parameter = 0.999 and 0.999, Epsilon parameter = 10-8, and Decay rate = 0.

99

Table 16. Hyperparameters values evaluated in the proposed CNN model.

5.3.1.2. Evolutionary CNN Results

The result of RMSE and prediction score from the various CNN model configurations are detailed in

Table 17. The best hyperparameters of 1 dimension 2 CNN layers as detailed in Table 16 and with 2

dimensions 2 CNN Layers, 1 dimension 3 CNN Layers, and 1 dimension 3 CNN layers respectively, were used.

It is seen that the lowest RMSE values were obtained from the base configuration-1 dimension 2 CNN layers. It

is important to note that the variations of model configurations were limited because of the training time for the

CNN algorithm. A better result may have been achieved with additional CNN model configurations. In these

experiments only the basic configuration was studied to test the premise that the hybrid scheme can have

smaller error compared to the homogeneous modeling scheme. The RUL prediction curves from the best CNN

model configuration (1 dimension 2 CNN layers) are shown in Figures 37 and 38 for FD002 and FD004 test data

respectively. The blue curves represent the actual RUL from the dataset, and the red lines/dots are the

prediction points from the CNN model.

Table 17. RMSE and prediction score for RUL prediction from different CNN configurations.

Model Configurations
RMSE Score

FD002 FD004 FD002 FD004

1 Dimension 2 CNN Layers 38.235 39.536 469,997 386,584 Best Overall

2 Dimension 2 CNN Layers 42.239 45.505 790,875 538,979

1 Dimension 3 CNN Layers 44.687 43.581 557,397 468,792

2 Dimension 3 CNN Layers 46.492 47.612 689,086 315,601

Hyperparameters Range

Epoch {64, 100, 256}

Batch size {8, 16, 32}

Callback function TensorBoard

Optimizer function Adam

Learning rate {0.001, 0.0001, 0.00001}

Beta 1 1

Beta 1 1

Epsilon 10-8

Decay rate 0

100

5.3.2. Hybrid Evolutionary CNN-LSTM Model

The hybrid evolutionary CNN-LSTM model includes the 14 features selected using the

evolutionary selection method as input data for CNN-LSTM stacked layers. The final model architecture is

seen in Figure 36. There are two CNN layers with two pooling layers stacked together and the output of

CNN is connected to the two LSTM layers and the fully connected layer is applied at the end to form RUL

output. The dropout layers were used at the end of both CNN layers and LSTM layers.

5.3.2.1. Hybrid Evolutionary CNN-LSTM Hyperparameters Selection

In addition to the hyperparameters selected for CNN from section 5.3.1.1, a sub-set of

hyperparameters sets for the FD002 were also used as detailed by P. R. d. O. da Costa, et al. [101]. The

work by da Costa [101] used only LSTM layers using the domain adaptation technique. In this case, the

feature of CNN layer using in section 5.3.1.1: 64 filter size, 2 kernel size, and 1 stride, with Max Pooling,

with a pool size of 2 and 2 strides for pooling layer, and same padding, were used. The adjustment

completed through the LSTM layer, and the number of units in the LSTM layers was varied between 32

and 64 based on work by P. R. d. O. da Costa, et al. [101]. Various optimizers were tested, including

Stochastic Continuous Greedy (SCG) and Adaptive Moment Estimation (Adam). The number of the batch

size experimented on has also been added. In this case, the batch size was varied from 8, 16, 32, 64,

256, 512, and 1,024 as additionally suggested by P. R. d. O. da Costa, et al. [101] respectively.

However, the best performance is still primarily based on the best model parameters obtained

from section 5.3.1.1 for CNN. The best hyperparameters were; Epoch = 256, Batch size = 8, Callback

function = TensorBoard, Loss function = Mean Square Error, Optimizer function: Adam, Learning rate =

0.001, Beta 1 and Beta 2 parameter = 0.999 and 0.999, Epsilon parameter = 10-8, Decay rate = 0, and

Number of LSTM units (for both LSTM layers) = 32. The sets of hyperparameters used in the Hybrid

CNN-LSTM experiment are detailed in Table 18.

101

Table 18. Hyperparameters values evaluated in the proposed hybrid CNN-LSTM model.

5.3.2.2. Hybrid Evolutionary CNN-LSTM Results

Only 4 alterations from LSTM layers are reported here. Based on the results of the previous

experiment, the CNN layers configurations were held constant with; 1 dimension 2 CNN layers. The

results of RMSE and prediction score from LSTM alterations are detailed in Table 19. The number of

LSTM units was 32 and 64, and the number of LSTM layers were varied from 1, 2, and 3 layers. The best

prediction result came from a configuration with 2 layers of LSTM with 32 units. The results from the

hybrid scheme are proven to be superior compared to what has been achieved from the homogenous

scheme or in our case CNN layers as RMSE and prediction score illustrated in Table 17 and 19, as well

as prediction curve in Figure 38, 39, 40 and 41.

The RUL prediction curves from the best Evolutionary Hybrid CNN-LSTM model (1 dimension 2

CNN layers, and 2 LSTM layers) are seen in Figures 39 and 40 for FD002 and FD004 test data. Same as

the previous curves, the blue curves represent the actual RUL from the dataset, and the red lines/dots are

the prediction points from the CNN model.

Table 19. RMSE and prediction score for RUL prediction from different CNN-LSTM configurations.

Model Configurations
RMSE Score

FD002 FD004 FD002 FD004

32 Units 1 LSTM Layer 30.938 32.856 500,139 436,584

64 Units 1 LSTM Layer 34.579 33.976 458,890 420,895

32 Units 2 LSTM Layers 15.376 16.743 306,768 331,852 Best Overall

64 Units 2 LSTM Layers 18.975 20.233 302,896 324,142

32 Units 3 LSTM Layers 22.491 25.154 422,679 464,280

64 Units 3 LSTM Layers 24.320 23.437 405,960 521,214

Hyperparameters Range

Epoch {64, 100, 256}

Batch size {8, 16, 32, 64, 256, 512, 1,024}

Callback function TensorBoard

Optimizer function Adam, SGD

Learning rate {0.001, 0.0001, 0.00001}

Beta 1 1

Beta 1 1

Epsilon 10-8

Decay rate 0

Number of LSTM units (for both LSTM layers) {32, 64}

102

Figure 38. (a, b, and c) Evolutionary CNN RUL prediction curves for FD002 test data.

0

50

100

150

200

250

0 5000 10000 15000 20000

R
U
L

Cycles

(a) Prediction Curve for all engines FD002

Actual RUL

Prediction

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

R
U
L

Cycles

(b) Prediction Curve for one engine FD002

Actual RUL

Prediction

y = 0.5443x + 38.628

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

P
r
e
d
i
c
t
e
d

R
U
L

Actual RUL

(c) Predicted RUL VS Actual RUL FD002

R-Squared = 0.7357

103

Figure 39. (a, b, and c) Evolutionary CNN RUL prediction curves for FD004 test data.

0

50

100

150

200

0 5000 10000 15000

R
U
L

Cycles

(a) Prediction Curve for all engines FD004

Actual RUL

Prediction

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

R
U
L

Cycles

(b) Prediction Curve for one engine FD004

Actual RUL

Prediction

y = 0.8454x + 21.172

0

20

40

60

80

100

120

0 20 40 60 80 100

P
r
e
d
i
c
t
e
d

R
U
L

Actual RUL

(c) Predicted RUL VS Actual RUL FD004

R-Squared = 0.8892

104

Figure 40. (a, b, and c) Hybrid evolutionary CNN-LSTM RUL prediction curves for FD002 test data.

0

50

100

150

200

250

0 5000 10000 15000 20000

R
U
L

Cycles

(a) Prediction Curve for all engines FD002

Actual RUL

Prediction

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

R
U
L

Cycles

(b) Prediction curve for one engine FD002

Actual RUL

Prediction

y = 1.038x - 0.2656

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

P
r
e
d
i
c
t
e
d

R
U
L

Actual RUL

(c) Predicted RUL VS Actual RUL FD002

R-Squared = 0.9812

105

Figure 41. (a, b, and c) Hybrid evolutionary CNN-LSTM RUL prediction curves for FD004 test data.

0

50

100

150

200

0 5000 10000 15000

R
U
L

Cycles

(a) Prediction curve for all engines FD004

Actual RUL

Prediction

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

R
U
L

Cycles

(b) Prediction curve for one engine FD004

Actual RUL

Prediction

y = 0.9716x + 4.8503

0

20

40

60

80

100

120

0 20 40 60 80 100

P
r
e
d
i
c
t
e
d

R
U
L

Actual RUL

(c) Predicted RUL VS Actual RUL FD004

R-Squared = 0.9735

106

5.4. Result Discussion

As seen in Table 19 in the previous section, the hybrid evolutionary CNN-LSTM model proposed

in this chapter has better prediction accuracy compared to the vanilla CNN model. The best CNN model

can only archive 38.24 RMSE, while the hybrid evolutionary CNN-LSTM can produce a prediction error at

15.38 RSME. In addition, when comparing the best result among all the deep neural models previously

proposed; Hybrid, CNN, and DNN (previously proposed Chapter 4), the vanilla DNN can produce the best

performance with a 44.71 RMSE, which is the largest error among the other two models.

While it has been seen from our baseline that the evolutionary hybrid approach can produce

predictions with smaller error compared to both DNN and CNN, it has also been seen to perform slightly

better than the hybrid architectures proposed in other literature as well. As mentioned in Chapter 4, there

are several efforts over the years to improve the deep learning models for predicting the RUL of the C-

MAPSS aircraft gas turbine engines dataset [90, 94, 111, 173, 175-179]. Based on this study, the best

result of the hybrid deep layers model was from Zhengmin Kong, et al. [177]. Their hybrid architecture

was constructed with CNN and LSTM-RNN combined and achieved error of 16.13 RMSE, while the

proposed evolutionary hybrid scheme achieved an error of 15.38 RMSE. Given that genetic algorithm

[182] or evolutionary selection has been applied to the input data to reduce the complexity before the

model training phase of or model, the evolutionary hybrid approach not only perform better but also

provide less complexity, which can consider being a significant improvement among other models

previously proposed. Additionally, when comparing R-Squared value between standard CNN and

evolutionary CNN-LSTM hybrid approach, the hybrid CNN-LSTM also perform better as illustrated in

Figure 38 through 41. For FD002 the R-Squared of CNN is 0.736 and hybrid CNN-LSTM is 0.981. While

for FD004 the R-Squared of CNN and hybrid CNN-LSTM are 0.889 and 0.974 respectively.

In summary the experiments and models introduced in this chapter are extensions from the

previous chapter. In Chapter 4, provided a baseline using a neural network-based feature selection

approach to improve on reducing the complexity of the model. The main goal of the experiments in

Chapter 4 was to demonstrate that feature selection to improve machine learning, In this chapter, both

feature selection and hybrid modeling was studied. It was seen that these models are able to predict

outcomes reasonably well with accelerated learning.

107

One aspect that has not been tested is the fluctuation in the prediction results or the “uncertainty”

in the model. The reported results were obtained from training and testing the model three times. While

we reported the RMSE average of one hundred trials and observed the fluctuation for DNN models in

Chapter 4, the reported RMSE of the CNN models and the hybrid CNN-LSTM models are from only three

trials. This is because of the limitation of running CNN and the CNN-LSTM algorithm. With the proposed

configurations of the model using the specified computing machine described in section 5.3, it took 4 to 5

hours on average per training and testing of a model. However, the RMSE results from the three times

training and testing were very close with only ±5% difference on average. The same effect occurred

across all experiments using both vanilla CNN and hybrid CNN-LSTM algorithms.

5.5. Chapter Summary

The work in this chapter was an extension of the experiment from the previous chapter. The set

of features using the evolutionary selection method has been used to develop models with better

prediction accuracy using deep Convolutional Neural Network (CNN.) and applied to a hybrid

Convolutional Long Short-Term Memory Neural Network (CNN-LSTM.) The results from both CNN and

CNN-LSTM are better compared to ones obtained from the previous chapter based on only DNN. The

result from CNN-LSTM has larger prediction error compared to existing models recently proposed by Z.

Kong, et al. [177] as well as being more complex. Despite the approaches used to implement the

“Evolutionary Convolutional Long Short-Term Memory Deep Neural Network Data-Driven Model for

Prognostics of Aircraft Gas Turbine” in this work might have already been outperformed other existing

works in the same nature in terms of prediction accuracy, the future tasks to further improve the work

within the same scope remains. Better fine-tuning methods to achieve better accuracy from the adjacent

or similar model architectures might be needed. Additionally, some aspects of dimensionality reduction

such as PCA might be included to reduce the model complexity. In this case, a model was tested using

PCA but the prediction results were unusable, which might need to investigate more in the future.

Moreover, more prognostics datasets might need to be tested and developed in order to have a definite

conclusion on what might be a universally best algorithm, or model, or architecture, ultimately suitable for

prognostics data.

108

6. GENERAL SUMMARY

This dissertation works as a part of ongoing studies on deep learning for prognostics and health

management applications and developed new deep learning models and approaches for prognostics and

health management applications. In the early chapters, the groundworks of both Prognostics and Health

Management (PHM) and Deep Learning (DL) were introduced and investigated. All the PHM matrices,

ideologies terms, and units were included in this chapter as well as the general concepts of DL. In

Chapter 1, the PHM and DL were introduced as non-related entities. In Chapter 2, the PHM and DL were

linked. The aspects of PHM that DL were applied to further investigate, the development of models to

predict the Remaining Useful Life (RUL). The challenges and research gaps in this have also been

addressed in this chapter. Additionally, an in-depth survey of the PHM approaches that applied DL

algorithms over the years were conducted in Chapter 2. Because DL is still relatively new to PHM

applications, there are areas that can be further investigated and improved for multiple PHM applications.

Two of which, PHM for Li-ion battery and aircraft gas turbine engine are possibilities. These two

applications are the most popular among many PHM applications and can be used to develop the

approach, that believes to possibly be, a universal schema in PHM research. In Chapter 3, the Li-ion

battery data was used to develop a basic PHM deep learning model. The work in this chapter was

dedicated to proving some examples that DL algorithms can most likely perform better compared to other

traditional Machine Learning (ML) algorithms in predictive regression tasks. The result from this chapter

showed that the model using DL is better in terms of predicting the RUL of Li-ion battery compared to

other ML algorithms. In Chapter 4, part of the proposed new framework (as in Figure 7) was tested as the

framework that potentially overcome some of the challenges of using DL in PHM addressed in Chapter 2.

The feature selection methods were applied to the development of PHM model for the C-MAPSS aircraft

gas turbine engine. The experiments in this chapter were limited to investigating the effect of feature

reduction approaches for neural network-based or deep learning-based algorithms. Therefore, only neural

network-based algorithms have been employed. The results showed that for PHM of aircraft gas turbine

engine, the genetic algorithm or evolutionary selection approach can perform best and able to select only

meaningful features or input data for DL-based modeling. However, the results were unsatisfactory when

compared to other works prior published using the same dataset in terms of accuracy prediction.

109

However, this part aimed to be a baseline for choosing an appropriate set of features to implement DL for

PHM of aircraft gas turbine engine data and provide concepts how to further improve the DL models

using similar approaches for PHM applications only. In Chapter 5, the assumption from Chapter 4 were

further improved for the DL model for aircraft gas turbine engines RUL predictions. The hybrid scheme

was applied to the selected data from Chapter 4 to develop hybrid DL models. The result using both

feature selection approach and hybrid scheme improved the prediction results in terms of both complexity

and accuracy. In this chapter, a proposed “An Evolutionary Convolutional Long Short-Term Memory Deep

Neural Network Data-Driven Model for Prognostics of Aircraft Gas Turbine” as the model was

implemented based on all combinations of aforementioned methods and approaches. This final model

outperformed the best existing models that fall within similar nature (based on the study between 2019

and 2020.) Lastly, as mentioned in Chapter 5, even though the final evolutionary CNN-LSTM proposed

here was the best one among others. Better fine-tuning or optimizing methods may be needed to further

improve the model. Additionally, more diverse PHM applications must be tested using similar approaches.

All things considered, the approaches and schema proposed in this dissertation believe to be able to

universally be used for most of the PHM datasets that employed DL as a modeling algorithm. The study

in this dissertation reduces dilemmas on using DL in PHM among prognostics and diagnostics research

communities.

110

REFERENCES

[1] R. Agrawal and G. Psaila, "Active Data Mining," in KDD, 1995, pp. 3-8.

[2] S.-H. Liao, P.-H. Chu, and P.-Y. Hsiao, "Data mining techniques and applications–A decade

review from 2000 to 2011," Expert systems with applications, vol. 39, no. 12, pp. 11303-11311,

2012.

[3] M. Karegar, A. Isazadeh, F. Fartash, T. Saderi, and A. H. Navin, "Data-mining by probability-

based patterns," in ITI 2008-30th International Conference on Information Technology Interfaces,

2008: IEEE, pp. 353-360.

[4] T. Hill, P. Lewicki, and P. Lewicki, Statistics: methods and applications: a comprehensive

reference for science, industry, and data mining. StatSoft, Inc., 2006.

[5] I. H. Witten and E. Frank, "Data mining: practical machine learning tools and techniques with

Java implementations," Acm Sigmod Record, vol. 31, no. 1, pp. 76-77, 2002.

[6] D. K. Bhattacharyya and S. M. Hazarika, Networks, data mining, and artificial intelligence: trends

and future directions. Narosa Pub House, 2006.

[7] B. Samanta, "Artificial neural networks and genetic algorithms for gear fault detection,"

Mechanical Systems and Signal Processing, vol. 5, no. 18, pp. 1273-1282, 2004.

[8] J. Yang, Y. Zhang, and Y. Zhu, "Intelligent fault diagnosis of rolling element bearing based on

SVMs and fractal dimension," Mechanical Systems and Signal Processing, vol. 21, no. 5, pp.

2012-2024, 2007.

[9] D. Liu, Y. Luo, Y. Peng, X. Peng, and M. Pecht, "Lithium-ion battery remaining useful life

estimation based on nonlinear AR model combined with degradation feature," in Annual

Conference of the PHM Society, 2012, vol. 4, no. 1.

[10] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural

networks," science, vol. 313, no. 5786, pp. 504-507, 2006.

[11] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural networks, vol. 61, pp.

85-117, 2015.

111

[12] D. S. Chaplot, C. MacLellan, R. Salakhutdinov, and K. Koedinger, "Learning cognitive models

using neural networks," in International Conference on Artificial Intelligence in Education, 2018:

Springer, pp. 43-56.

[13] C. Chen, B. Zhang, G. Vachtsevanos, and M. Orchard, "Machine condition prediction based on

adaptive neuro–fuzzy and high-order particle filtering," IEEE Transactions on Industrial

Electronics, vol. 58, no. 9, pp. 4353-4364, 2010.

[14] K. Medjaher, D. A. Tobon-Mejia, and N. Zerhouni, "Remaining useful life estimation of critical

components with application to bearings," IEEE Transactions on Reliability, vol. 61, no. 2, pp.

292-302, 2012.

[15] E. Ramasso and R. Gouriveau, "Prognostics in switching systems: Evidential Markovian

classification of real-time neuro-fuzzy predictions," in 2010 Prognostics and System Health

Management Conference, 2010: IEEE, pp. 1-10.

[16] L. Peel, "Data driven prognostics using a Kalman filter ensemble of neural network models," in

2008 international conference on prognostics and health management, 2008: IEEE, pp. 1-6.

[17] C. Hu, B. D. Youn, P. Wang, and J. T. Yoon, "Ensemble of data-driven prognostic algorithms for

robust prediction of remaining useful life," Reliability Engineering & System Safety, vol. 103, pp.

120-135, 2012.

[18] P. Wang, B. D. Youn, and C. Hu, "Concurrent design of functional reliability and failure prognosis

for engineered resilience," in International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, 2013, vol. 55881: American Society of

Mechanical Engineers, p. V03AT03A036.

[19] E. Scanff, K. Feldman, S. Ghelam, P. Sandborn, M. Glade, and B. Foucher, "Life cycle cost

impact of using prognostic health management (PHM) for helicopter avionics," Microelectronics

reliability, vol. 47, no. 12, pp. 1857-1864, 2007.

[20] G. J. Vachtsevanos, Intelligent fault diagnosis and prognosis for engineering systems. Wiley

Online Library, 2006.

[21] I. T. Jolliffe and D. B. Stephenson, Forecast verification: a practitioner's guide in atmospheric

science. John Wiley & Sons, 2012.

112

[22] O. Eker, F. Camci, and I. K. Jennions, "Major challenges in prognostics: Study on benchmarking

prognostics datasets," in PHM Society European Conference, 2012, vol. 1, no. 1.

[23] I. Jennions, Integrated Vehicle Health Management: Essential Reading. SAE, 2013.

[24] A. Heng, S. Zhang, A. C. Tan, and J. Mathew, "Rotating machinery prognostics: State of the art,

challenges and opportunities," Mechanical systems and signal processing, vol. 23, no. 3, pp. 724-

739, 2009.

[25] J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto, and S. Chigusa, "Model-based

prognostic techniques [maintenance applications]," in Proceedings AUTOTESTCON 2003. IEEE

Systems Readiness Technology Conference., 2003: Ieee, pp. 330-340.

[26] H. Zhang, R. Kang, and M. Pecht, "A hybrid prognostics and health management approach for

condition-based maintenance," in 2009 IEEE International Conference on Industrial Engineering

and Engineering Management, 2009: IEEE, pp. 1165-1169.

[27] A. Saxena et al., "Metrics for evaluating performance of prognostic techniques," in 2008

international conference on prognostics and health management, 2008: IEEE, pp. 1-17.

[28] T. Hegazy, P. Fazio, and O. Moselhi, "Developing practical neural network applications using

back‐propagation," Computer‐Aided Civil and Infrastructure Engineering, vol. 9, no. 2, pp. 145-

159, 1994.

[29] J. Jeon, "Fuzzy and neural network models for analyses of piles." (accessed 2020). Available:

https://repository.lib.ncsu.edu/bitstream/handle/1840.16/5156/etd.pdf

[30] M. W. Emsley, D. J. Lowe, A. R. Duff, A. Harding, and A. Hickson, "Data modelling and the

application of a neural network approach to the prediction of total construction costs,"

Construction Management & Economics, vol. 20, no. 6, pp. 465-472, 2002.

[31] D. P. Alex, M. Al Hussein, A. Bouferguene, and S. Fernando, "Artificial neural network model for

cost estimation: City of Edmonton’s water and sewer installation services," Journal of construction

engineering and management, vol. 136, no. 7, pp. 745-756, 2010.

[32] G. Zhao, G. Zhang, Q. Ge, and X. Liu, "Research advances in fault diagnosis and prognostic

based on deep learning," in 2016 Prognostics and system health management conference (PHM-

Chengdu), 2016: IEEE, pp. 1-6.

113

[33] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[34] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural

networks," in 2013 IEEE international conference on acoustics, speech and signal processing,

2013: Ieee, pp. 6645-6649.

[35] P. Wang and G. Vachtsevanos, "Fault prognostics using dynamic wavelet neural networks," AI

EDAM, vol. 15, no. 4, pp. 349-365, 2001.

[36] C. Byington, M. Roemer, P. Kalgren, and G. Vachtsevanos, "Verification and validation of

diagnostic/prognostic algorithms," in Machinery Failure Prevention Technology Conference

(MFPT 59), 2005.

[37] G. Vachtsevanos, "Performance metrics for fault prognosis of complex systems," in Proceedings

AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference., 2003: IEEE, pp. 341-

345.

[38] V. Aho Alfred et al., Data structures and algorithms. USA: Addison-Wesley, 1983.

[39] D. L. Goodman, S. Wood, and A. Turner, "Return-on-investment (ROI) for electronic prognostics

in mil/aero systems," in IEEE Autotestcon, 2005., 2005: IEEE, pp. 73-75.

[40] S. Vohnout, D. Goodman, J. Judkins, M. Kozak, and K. Harris, "Electronic prognostics system

implementation on power actuator components," in 2008 IEEE aerospace conference, 2008:

IEEE, pp. 1-11.

[41] S. M. Wood and D. L. Goodman, "Return-on-investment (ROI) for electronic prognostics in high

reliability telecom applications," in INTELEC 06-Twenty-Eighth International Telecommunications

Energy Conference, 2006: IEEE, pp. 1-3.

[42] R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy," International

journal of forecasting, vol. 22, no. 4, pp. 679-688, 2006.

[43] K. Goebel and P. Bonissone, "Prognostic information fusion for constant load systems," in 2005

7th International Conference on Information Fusion, 2005, vol. 2: IEEE, p. 9 pp.

[44] S. Makridakis et al., "The accuracy of extrapolation (time series) methods: Results of a

forecasting competition," Journal of forecasting, vol. 1, no. 2, pp. 111-153, 1982.

114

[45] B. Ebert, "Forecast Verification-Issues, Methods and FAQ," World Weather Research Programme

Joint Working Group on Verification, 2006.

[46] M. Stuart, "Understanding Robust and Exploratory Data Analysis," ed: Wiley Online Library, 1984.

[47] T. N. Palmer et al., "Development of a European multimodel ensemble system for seasonal-to-

interannual prediction (DEMETER)," Bulletin of the American Meteorological Society, vol. 85, no.

6, pp. 853-872, 2004.

[48] R. Wirth and J. Hipp, "CRISP-DM: Towards a standard process model for data mining," in

Proceedings of the 4th international conference on the practical applications of knowledge

discovery and data mining, 2000, vol. 1: Springer-Verlag London, UK.

[49] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, "The difficulty of training deep

architectures and the effect of unsupervised pre-training," in Artificial Intelligence and Statistics,

2009: PMLR, pp. 153-160.

[50] E. Zio, "Some challenges and opportunities in reliability engineering," IEEE Transactions on

Reliability, vol. 65, no. 4, pp. 1769-1782, 2016.

[51] S. T. Kandukuri, A. Klausen, H. R. Karimi, and K. G. Robbersmyr, "A review of diagnostics and

prognostics of low-speed machinery towards wind turbine farm-level health management,"

Renewable and Sustainable Energy Reviews, vol. 53, pp. 697-708, 2016.

[52] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, "Machinery health prognostics: A systematic review

from data acquisition to RUL prediction," Mechanical systems and signal processing, vol. 104, pp.

799-834, 2018.

[53] M. Compare, P. Baraldi, and E. Zio, "Challenges to IoT-enabled predictive maintenance for

industry 4.0," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4585-4597, 2019.

[54] C. L. Gan, "Prognostics and health management of electronics: Fundamentals, machine learning,

and the internet of things," ed: Springer, 2020.

[55] I. K. Jennions, O. Niculita, and M. Esperon-Miguez, "Integrating IVHM and asset design,"

International Journal of Prognostics and Health Management, vol. 7, no. 2, 2016.

115

[56] L. Yang, Q. Sun, and Z.-S. Ye, "Designing mission abort strategies based on early-warning

information: Application to UAV," IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp.

277-287, 2019.

[57] D. Han, J. Yu, Y. Song, D. Tang, and J. Dai, "A distributed autonomic logistics system with

parallel-computing diagnostic algorithm for aircrafts," in 2019 IEEE AUTOTESTCON, 2019: IEEE,

pp. 1-8.

[58] D. Kwon, M. R. Hodkiewicz, J. Fan, T. Shibutani, and M. G. Pecht, "IoT-based prognostics and

systems health management for industrial applications," IEEE Access, vol. 4, pp. 3659-3670,

2016.

[59] K. Goebel, M. J. Daigle, A. Saxena, I. Roychoudhury, S. Sankararaman, and J. R. Celaya,

Prognostics: The science of making predictions. 2017.

[60] B. Samanta and K. Al-Balushi, "Artificial neural network based fault diagnostics of rolling element

bearings using time-domain features," Mechanical systems and signal processing, vol. 17, no. 2,

pp. 317-328, 2003.

[61] Y. Ma et al., "Deep learning for fault diagnosis based on multi-sourced heterogeneous data," in

2014 International Conference on Power System Technology, 2014: IEEE, pp. 740-745.

[62] O. Fink, E. Zio, and U. Weidmann, "Predicting component reliability and level of degradation with

complex-valued neural networks," Reliability Engineering & System Safety, vol. 121, pp. 198-206,

2014.

[63] W. Lu, X. Wang, C. Yang, and T. Zhang, "A novel feature extraction method using deep neural

network for rolling bearing fault diagnosis," in The 27th Chinese Control and Decision Conference

(2015 CCDC), 2015: IEEE, pp. 2427-2431.

[64] J. Qiu, W. Liang, L. Zhang, X. Yu, and M. Zhang, "The early-warning model of equipment chain in

gas pipeline based on DNN-HMM," Journal of Natural Gas Science and Engineering, vol. 27, pp.

1710-1722, 2015.

[65] K. Li and Q. Wang, "Study on signal recognition and diagnosis for spacecraft based on deep

learning method," in 2015 Prognostics and System Health Management Conference (PHM),

2015: IEEE, pp. 1-5.

116

[66] Y. Lei, F. Jia, X. Zhou, and J. Lin, "A deep learning-based method for machinery health

monitoring with big data," Journal of Mechanical Engineering, vol. 51, no. 21, pp. 49-56, 2015.

[67] S. Sarkar et al., "Early detection of combustion instability from hi-speed flame images via deep

learning and symbolic time series analysis," in Annual Conference of the PHM Society, 2015, vol.

7, no. 1.

[68] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault

characteristic mining and intelligent diagnosis of rotating machinery with massive data,"

Mechanical Systems and Signal Processing, vol. 72, pp. 303-315, 2016.

[69] H. Liu, L. Li, and J. Ma, "Rolling bearing fault diagnosis based on STFT-deep learning and sound

signals," Shock and Vibration, vol. 2016, 2016.

[70] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, "A sparse auto-encoder-based deep

neural network approach for induction motor faults classification," Measurement, vol. 89, pp. 171-

178, 2016.

[71] Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, "An intelligent fault diagnosis method using

unsupervised feature learning towards mechanical big data," IEEE Transactions on Industrial

Electronics, vol. 63, no. 5, pp. 3137-3147, 2016.

[72] F. Zhou, Y. Gao, and C. Wen, "A novel multimode fault classification method based on deep

learning," Journal of Control Science and Engineering, vol. 2017, 2017.

[73] K. Ma, H. Leung, E. Jalilian, and D. Huang, "Deep learning on temporal-spectral data for anomaly

detection," in Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent

ISR VIII, 2017, vol. 10190: International Society for Optics and Photonics, p. 101900D.

[74] G. Jiang, P. Xie, H. He, and J. Yan, "Wind turbine fault detection using a denoising autoencoder

with temporal information," IEEE/Asme transactions on mechatronics, vol. 23, no. 1, pp. 89-100,

2017.

[75] P. Bangalore, S. Letzgus, D. Karlsson, and M. Patriksson, "An artificial neural network‐based

condition monitoring method for wind turbines, with application to the monitoring of the gearbox,"

Wind Energy, vol. 20, no. 8, pp. 1421-1438, 2017.

117

[76] Z. Zhao, B. Liang, X. Wang, and W. Lu, "Remaining useful life prediction of aircraft engine based

on degradation pattern learning," Reliability Engineering & System Safety, vol. 164, pp. 74-83,

2017.

[77] H. Xiao, D. Huang, Y. Pan, Y. Liu, and K. Song, "Fault diagnosis and prognosis of wastewater

processes with incomplete data by the auto-associative neural networks and ARMA model,"

Chemometrics and Intelligent Laboratory Systems, vol. 161, pp. 96-107, 2017.

[78] E. Chemali, P. J. Kollmeyer, M. Preindl, and A. Emadi, "State-of-charge estimation of Li-ion

batteries using deep neural networks: A machine learning approach," Journal of Power Sources,

vol. 400, pp. 242-255, 2018.

[79] S. Tolo et al., "Robust on-line diagnosis tool for the early accident detection in nuclear power

plants," Reliability Engineering & System Safety, vol. 186, pp. 110-119, 2019.

[80] A. P. Marugán, A. M. P. Chacón, and F. P. G. Márquez, "Reliability analysis of detecting false

alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering

& System Safety, vol. 191, p. 106574, 2019.

[81] Z. Chen, C. Li, and R.-V. Sanchez, "Gearbox fault identification and classification with

convolutional neural networks," Shock and Vibration, vol. 2015, 2015.

[82] G. S. Babu, P. Zhao, and X.-L. Li, "Deep convolutional neural network based regression

approach for estimation of remaining useful life," in International conference on database systems

for advanced applications, 2016: Springer, pp. 214-228.

[83] O. Janssens et al., "Convolutional neural network based fault detection for rotating machinery,"

Journal of Sound and Vibration, vol. 377, pp. 331-345, 2016.

[84] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, "Real-time motor fault detection by 1-D

convolutional neural networks," IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp.

7067-7075, 2016.

[85] H. Dong, L. Yang, and H. Li, "Small fault diagnosis of front-end speed controlled wind generator

based on deep learning," WSEAS Trans. Circuits Syst, vol. 15, no. 9, pp. 64-72, 2016.

[86] X. Gibert, V. M. Patel, and R. Chellappa, "Deep multitask learning for railway track inspection,"

IEEE transactions on intelligent transportation systems, vol. 18, no. 1, pp. 153-164, 2016.

118

[87] C. Lu, Z. Wang, and B. Zhou, "Intelligent fault diagnosis of rolling bearing using hierarchical

convolutional network based health state classification," Advanced Engineering Informatics, vol.

32, pp. 139-151, 2017.

[88] M. Xia, T. Li, L. Xu, L. Liu, and C. W. De Silva, "Fault diagnosis for rotating machinery using

multiple sensors and convolutional neural networks," IEEE/ASME transactions on mechatronics,

vol. 23, no. 1, pp. 101-110, 2017.

[89] O. Janssens, R. Van de Walle, M. Loccufier, and S. Van Hoecke, "Deep learning for infrared

thermal image based machine health monitoring," IEEE/ASME Transactions on Mechatronics,

vol. 23, no. 1, pp. 151-159, 2017.

[90] X. Li, Q. Ding, and J.-Q. Sun, "Remaining useful life estimation in prognostics using deep

convolution neural networks," Reliability Engineering & System Safety, vol. 172, pp. 1-11, 2018.

[91] W. Xuhong and H. Yigang, "Diagonal recurrent neural network based on-line stator winding turn

fault detection for induction motors," in 2005 international conference on electrical machines and

systems, 2005, vol. 3: IEEE, pp. 2266-2269.

[92] Q. Hu, M. Xie, S. H. Ng, and G. Levitin, "Robust recurrent neural network modeling for software

fault detection and correction prediction," Reliability Engineering & System Safety, vol. 92, no. 3,

pp. 332-340, 2007.

[93] O. Obst, "Distributed fault detection in sensor networks using a recurrent neural network," Neural

processing letters, vol. 40, no. 3, pp. 261-273, 2014.

[94] M. Yuan, Y. Wu, and L. Lin, "Fault diagnosis and remaining useful life estimation of aero engine

using LSTM neural network," in 2016 IEEE international conference on aircraft utility systems

(AUS), 2016: IEEE, pp. 135-140.

[95] T. De Bruin, K. Verbert, and R. Babuška, "Railway track circuit fault diagnosis using recurrent

neural networks," IEEE transactions on neural networks and learning systems, vol. 28, no. 3, pp.

523-533, 2016.

[96] L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, "A recurrent neural network based health indicator for

remaining useful life prediction of bearings," Neurocomputing, vol. 240, pp. 98-109, 2017.

119

[97] S. Zhang, Y. Wang, M. Liu, and Z. Bao, "Data-based line trip fault prediction in power systems

using LSTM networks and SVM," Ieee Access, vol. 6, pp. 7675-7686, 2017.

[98] Y. Zhang, R. Xiong, H. He, and Z. Liu, "A LSTM-RNN method for the lithuim-ion battery remaining

useful life prediction," in 2017 Prognostics and System Health Management Conference (PHM-

Harbin), 2017: IEEE, pp. 1-4.

[99] Y. Zhang, R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network

for remaining useful life prediction of lithium-ion batteries," IEEE Transactions on Vehicular

Technology, vol. 67, no. 7, pp. 5695-5705, 2018.

[100] K. T. Nguyen and K. Medjaher, "A new dynamic predictive maintenance framework using deep

learning for failure prognostics," Reliability Engineering & System Safety, vol. 188, pp. 251-262,

2019.

[101] P. R. d. O. da Costa, A. Akçay, Y. Zhang, and U. Kaymak, "Remaining useful lifetime prediction

via deep domain adaptation," Reliability Engineering & System Safety, vol. 195, p. 106682, 2020.

[102] Z. Shi and A. Chehade, "A dual-LSTM framework combining change point detection and

remaining useful life prediction," Reliability Engineering & System Safety, vol. 205, p. 107257,

2021.

[103] P. Wang and C. Xia, "Fault detection and self-learning identification based on PCA-PDBNs,"

Chinese Journal of Scientific Instrument, vol. 36, no. 5, pp. 1147-1154, 2015.

[104] H. Shao, H. Jiang, X. Zhang, and M. Niu, "Rolling bearing fault diagnosis using an optimization

deep belief network," Measurement Science and Technology, vol. 26, no. 11, p. 115002, 2015.

[105] Z. Chen, C. Li, and R.-V. Sánchez, "Multi-layer neural network with deep belief network for

gearbox fault diagnosis," Journal of Vibroengineering, vol. 17, no. 5, pp. 2379-2392, 2015.

[106] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, "Multimodal deep

support vector classification with homologous features and its application to gearbox fault

diagnosis," Neurocomputing, vol. 168, pp. 119-127, 2015.

[107] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, "Gearbox fault

diagnosis based on deep random forest fusion of acoustic and vibratory signals," Mechanical

Systems and Signal Processing, vol. 76, pp. 283-293, 2016.

120

[108] D. K. Jha, A. Srivastav, and A. Ray, "Temporal learning in video data using deep learning and

Gaussian processes," International Journal of Prognostics and Health Management, vol. 7, no. 4,

2016.

[109] R. Zhao, R. Yan, J. Wang, and K. Mao, "Learning to monitor machine health with convolutional

bi-directional LSTM networks," Sensors, vol. 17, no. 2, p. 273, 2017.

[110] S. Wang, J. Xiang, Y. Zhong, and Y. Zhou, "Convolutional neural network-based hidden Markov

models for rolling element bearing fault identification," Knowledge-Based Systems, vol. 144, pp.

65-76, 2018.

[111] A. L. Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang, "Remaining useful life

predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability

Engineering & System Safety, vol. 183, pp. 240-251, 2019.

[112] X. Li, W. Zhang, and Q. Ding, "Deep learning-based remaining useful life estimation of bearings

using multi-scale feature extraction," Reliability engineering & system safety, vol. 182, pp. 208-

218, 2019.

[113] S. Sankararaman and K. Goebel, "Uncertainty in prognostics and systems health management,"

International Journal of Prognostics and Health Management, vol. 6, no. 4, 2015.

[114] J. L. Schafer and J. W. Graham, "Missing data: our view of the state of the art," Psychological

methods, vol. 7, no. 2, p. 147, 2002.

[115] I. Eekhout, R. M. de Boer, J. W. Twisk, H. C. de Vet, and M. W. Heymans, "Missing data: a

systematic review of how they are reported and handled," Epidemiology, vol. 23, no. 5, pp. 729-

732, 2012.

[116] M. Ranjbar, P. Moradi, M. Azami, and M. Jalili, "An imputation-based matrix factorization method

for improving accuracy of collaborative filtering systems," Engineering Applications of Artificial

Intelligence, vol. 46, pp. 58-66, 2015.

[117] R. Razavi-Far, S. Chakrabarti, M. Saif, and E. Zio, "An integrated imputation-prediction scheme

for prognostics of battery data with missing observations," Expert Systems with Applications, vol.

115, pp. 709-723, 2019.

121

[118] A. N. Baraldi and C. K. Enders, "An introduction to modern missing data analyses," Journal of

school psychology, vol. 48, no. 1, pp. 5-37, 2010.

[119] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, and K. G. Moons, "A gentle introduction to

imputation of missing values," Journal of clinical epidemiology, vol. 59, no. 10, pp. 1087-1091,

2006.

[120] J. L. Schafer, "Multiple imputation: a primer," Statistical methods in medical research, vol. 8, no.

1, pp. 3-15, 1999.

[121] D. Vergouw et al., "The search for stable prognostic models in multiple imputed data sets," BMC

Medical Research Methodology, vol. 10, no. 1, pp. 1-9, 2010.

[122] J. Honaker and G. King, "What to do about missing values in time‐series cross‐section data,"

American journal of political science, vol. 54, no. 2, pp. 561-581, 2010.

[123] U. Leturiondo, O. Salgado, L. Ciani, D. Galar, and M. Catelani, "Architecture for hybrid modelling

and its application to diagnosis and prognosis with missing data," Measurement, vol. 108, pp.

152-162, 2017.

[124] A. Marshall, D. G. Altman, P. Royston, and R. L. Holder, "Comparison of techniques for handling

missing covariate data within prognostic modelling studies: a simulation study," BMC medical

research methodology, vol. 10, no. 1, pp. 1-16, 2010.

[125] T. G. Clark and D. G. Altman, "Developing a prognostic model in the presence of missing data:

an ovarian cancer case study," Journal of clinical epidemiology, vol. 56, no. 1, pp. 28-37, 2003.

[126] M. Xu, P. Baraldi, S. Al-Dahidi, and E. Zio, "Fault prognostics by an ensemble of Echo State

Networks in presence of event based measurements," Engineering Applications of Artificial

Intelligence, vol. 87, p. 103346, 2020.

[127] Z. Yang, K. Tang, and X. Yao, "Self-adaptive differential evolution with neighborhood search," in

2008 IEEE congress on evolutionary computation (IEEE World Congress on Computational

Intelligence), 2008: IEEE, pp. 1110-1116.

[128] K. P. Yoon and C.-L. Hwang, Multiple attribute decision making: an introduction. Sage

publications, 1995.

122

[129] L. Tang, G. J. Kacprzynski, K. Goebel, and G. Vachtsevanos, "Methodologies for uncertainty

management in prognostics," in 2009 IEEE Aerospace conference, 2009: IEEE, pp. 1-12.

[130] H. H. Dewey, D. R. DeVries, and S. R. Hyde, "Uncertainty quantification in prognostic health

management systems," in 2019 IEEE Aerospace Conference, 2019: IEEE, pp. 1-13.

[131] R. Flage, T. Aven, E. Zio, and P. Baraldi, "Concerns, challenges, and directions of development

for the issue of representing uncertainty in risk assessment," Risk analysis, vol. 34, no. 7, pp.

1196-1207, 2014.

[132] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, "Improving the robustness of deep neural

networks via stability training," in Proceedings of the ieee conference on computer vision and

pattern recognition, 2016, pp. 4480-4488.

[133] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van den Bossche, "Critical

review of state of health estimation methods of Li-ion batteries for real applications," Renewable

and Sustainable Energy Reviews, vol. 56, pp. 572-587, 2016.

[134] G. P. Corey, "Batteries for stationary standby and for stationary cycling applications part 6:

alternative electricity storage technologies," in 2003 IEEE Power Engineering Society General

Meeting (IEEE Cat. No. 03CH37491), 2003, vol. 1: IEEE, pp. 164-169.

[135] F. Camci and R. B. Chinnam, "Health-state estimation and prognostics in machining processes,"

IEEE Transactions on automation science and engineering, vol. 7, no. 3, pp. 581-597, 2010.

[136] I. K. Jennions, Integrated vehicle health management: perspectives on an emerging field. SAE

International Warrendale, PA, 2011.

[137] H. Qiu, J. Lee, J. Lin, and G. Yu, "Robust performance degradation assessment methods for

enhanced rolling element bearing prognostics," Advanced Engineering Informatics, vol. 17, no. 3-

4, pp. 127-140, 2003.

[138] B. Sahaand and K. Goebel, "Battery Data Set, NASA ames prognostics data repository," NASA

Ames Research Center, 2007.

[139] B. Saha and K. Goebel, "Uncertainty management for diagnostics and prognostics of batteries

using Bayesian techniques," in 2008 IEEE aerospace conference, 2008: IEEE, pp. 1-8.

123

[140] W. He, M. Pecht, D. Flynn, and F. Dinmohammadi, "A physics-based electrochemical model for

lithium-ion battery state-of-charge estimation solved by an optimised projection-based method

and moving-window filtering," Energies, vol. 11, no. 8, p. 2120, 2018.

[141] B. Saha, K. Goebel, and J. Christophersen, "Comparison of prognostic algorithms for estimating

remaining useful life of batteries," Transactions of the Institute of Measurement and Control, vol.

31, no. 3-4, pp. 293-308, 2009.

[142] G. Bai, P. Wang, C. Hu, and M. Pecht, "A generic model-free approach for lithium-ion battery

health management," Applied Energy, vol. 135, pp. 247-260, 2014.

[143] E. Meissner and G. Richter, "Battery monitoring and electrical energy management: Precondition

for future vehicle electric power systems," Journal of power sources, vol. 116, no. 1-2, pp. 79-98,

2003.

[144] S. Santhanagopalan and R. E. White, "Online estimation of the state of charge of a lithium ion

cell," Journal of power sources, vol. 161, no. 2, pp. 1346-1355, 2006.

[145] D. Liu, J. Pang, J. Zhou, and Y. Peng, "Data-driven prognostics for lithium-ion battery based on

Gaussian process regression," in Proceedings of the IEEE 2012 Prognostics and System Health

Management Conference (PHM-2012 Beijing), 2012: IEEE, pp. 1-5.

[146] S.-C. Huang, K.-H. Tseng, J.-W. Liang, C.-L. Chang, and M. G. Pecht, "An online SOC and SOH

estimation model for lithium-ion batteries," Energies, vol. 10, no. 4, p. 512, 2017.

[147] A. M. Bianco and E. Martínez, "Robust testing in the logistic regression model," Computational

statistics & data analysis, vol. 53, no. 12, pp. 4095-4105, 2009.

[148] H. Akaike, "A new look at the statistical model identification," IEEE transactions on automatic

control, vol. 19, no. 6, pp. 716-723, 1974.

[149] D. Anderson and K. Burnham, "Model selection and multi-model inference," Second. NY:

Springer-Verlag, vol. 63, no. 2020, p. 10, 2004.

[150] L. E. Peterson, "K-nearest neighbor," Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[151] Z. Zhang, L. Gu, and Y. Zhu, "Intelligent fault diagnosis of rotating machine based on SVMs and

EMD method," The open automation and control systems journal, vol. 5, no. 1, 2013.

124

[152] A. Downey, Y.-H. Lui, C. Hu, S. Laflamme, and S. Hu, "Physics-based prognostics of lithium-ion

battery using non-linear least squares with dynamic bounds," Reliability Engineering & System

Safety, vol. 182, pp. 1-12, 2019.

[153] D. D. Susilo, A. Widodo, T. Prahasto, and M. Nizam, "State of health estimation of lithium-ion

batteries based on combination of gaussian distribution data and least squares support vector

machines regression," in Materials Science Forum, 2018, vol. 929: Trans Tech Publ, pp. 93-102.

[154] A. El Mejdoubi, H. Chaoui, H. Gualous, P. Van Den Bossche, N. Omar, and J. Van Mierlo,

"Lithium-ion batteries health prognosis considering aging conditions," IEEE Transactions on

Power Electronics, vol. 34, no. 7, pp. 6834-6844, 2018.

[155] B. Saha and K. Goebel, "Modeling Li-ion battery capacity depletion in a particle filtering

framework," in Annual Conference of the PHM Society, 2009, vol. 1, no. 1.

[156] Q. Miao, L. Xie, H. Cui, W. Liang, and M. Pecht, "Remaining useful life prediction of lithium-ion

battery with unscented particle filter technique," Microelectronics Reliability, vol. 53, no. 6, pp.

805-810, 2013.

[157] B. Li, K. Peng, and G. Li, "State-of-charge estimation for lithium-ion battery using the gauss-

hermite particle filter technique," Journal of Renewable and Sustainable Energy, vol. 10, no. 1, p.

014105, 2018.

[158] D. Wang and K.-L. Tsui, "Brownian motion with adaptive drift for remaining useful life prediction:

Revisited," Mechanical Systems and Signal Processing, vol. 99, pp. 691-701, 2018.

[159] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple

way to prevent neural networks from overfitting," The journal of machine learning research, vol.

15, no. 1, pp. 1929-1958, 2014.

[160] F. Chollet, "Keras documentation," keras. io, vol. 33, 2015.

[161] F. Schorfheide, "Loss function‐based evaluation of DSGE models," Journal of Applied

Econometrics, vol. 15, no. 6, pp. 645-670, 2000.

[162] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep learning with limited

numerical precision," in International conference on machine learning, 2015: PMLR, pp. 1737-

1746.

125

[163] A. Saxena and K. Goebel, "Turbofan engine degradation simulation data set. NASA Ames

Prognostics Data repository, NASA Ames Research Center, Moffett Field," ed, 2008.

[164] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction: foundations and

applications. Springer, 2008.

[165] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of machine

learning research, vol. 3, no. Mar, pp. 1157-1182, 2003.

[166] J. Benesty, J. Chen, Y. Huang, and I. Cohen, "Pearson correlation coefficient," in Noise reduction

in speech processing: Springer, 2009, pp. 1-4.

[167] D. Sarwate, "Mean-square correlation of shift-register sequences," in IEE Proceedings F

(Communications, Radar and Signal Processing), 1984, vol. 131, no. 2: IET, pp. 101-106.

[168] Y. Sun, "Iterative RELIEF for feature weighting: algorithms, theories, and applications," IEEE

transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1035-1051, 2007.

[169] S. Derksen and H. J. Keselman, "Backward, forward and stepwise automated subset selection

algorithms: Frequency of obtaining authentic and noise variables," British Journal of Mathematical

and Statistical Psychology, vol. 45, no. 2, pp. 265-282, 1992.

[170] H. Vafaie and I. F. Imam, "Feature selection methods: genetic algorithms vs. greedy-like search,"

in Proceedings of the international conference on fuzzy and intelligent control systems, 1994, vol.

51, p. 28.

[171] K. Javed, R. Gouriveau, R. Zemouri, and N. Zerhouni, "Features selection procedure for

prognostics: An approach based on predictability," IFAC Proceedings Volumes, vol. 45, no. 20,

pp. 25-30, 2012.

[172] D. K. Frederick, J. A. DeCastro, and J. S. Litt, "User's guide for the commercial modular aero-

propulsion system simulation (C-MAPSS)," 2007.

[173] F. Khan, O. F. Eker, A. Khan, and W. Orfali, "Adaptive degradation prognostic reasoning by

particle filter with a neural network degradation model for turbofan jet engine," Data, vol. 3, no. 4,

p. 49, 2018.

126

[174] A. Saxena, K. Goebel, D. Simon, and N. Eklund, "Damage propagation modeling for aircraft

engine run-to-failure simulation," in 2008 international conference on prognostics and health

management, 2008: IEEE, pp. 1-9.

[175] C. Xiongzi, Y. Jinsong, T. Diyin, and W. Yingxun, "Remaining useful life prognostic estimation for

aircraft subsystems or components: A review," in IEEE 2011 10th International Conference on

Electronic Measurement & Instruments, 2011, vol. 2: IEEE, pp. 94-98.

[176] A. Zhang et al., "Transfer learning with deep recurrent neural networks for remaining useful life

estimation," Applied Sciences, vol. 8, no. 12, p. 2416, 2018.

[177] Z. Kong, Y. Cui, Z. Xia, and H. Lv, "Convolution and long short-term memory hybrid deep neural

networks for remaining useful life prognostics," Applied Sciences, vol. 9, no. 19, p. 4156, 2019.

[178] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, "Long short-term memory network for

remaining useful life estimation," in 2017 IEEE international conference on prognostics and health

management (ICPHM), 2017: IEEE, pp. 88-95.

[179] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, "Remaining useful life estimation of engineered

systems using vanilla LSTM neural networks," Neurocomputing, vol. 275, pp. 167-179, 2018.

[180] A. Candel, V. Parmar, E. LeDell, and A. Arora, "Deep learning with H2O," H2O. ai Inc, pp. 1-21,

2016.

[181] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, "A theory of

learning from different domains," Machine learning, vol. 79, no. 1, pp. 151-175, 2010.

[182] A. Van der Drift, "Evolutionary selection, a principle governing growth orientation in vapour-

deposited layers," Philips Res. Rep, vol. 22, no. 3, p. 267, 1967.

[183] J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, "Dimensional sentiment analysis using a regional

CNN-LSTM model," in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 2016, pp. 225-230.

[184] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, "Convolutional, long short-term memory, fully

connected deep neural networks," in 2015 IEEE international conference on acoustics, speech

and signal processing (ICASSP), 2015: IEEE, pp. 4580-4584.

127

[185] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, "Action recognition in video

sequences using deep bi-directional LSTM with CNN features," IEEE access, vol. 6, pp. 1155-

1166, 2017.

[186] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, "Automated diagnosis of arrhythmia using

combination of CNN and LSTM techniques with variable length heart beats," Computers in

biology and medicine, vol. 102, pp. 278-287, 2018.

[187] G. Yue, G. Ping, and L. Lanxin, "An end-to-end model based on cnn-lstm for industrial fault

diagnosis and prognosis," in 2018 international conference on network infrastructure and digital

content (IC-NIDC), 2018: IEEE, pp. 274-278.

[188] T.-Y. Kim and S.-B. Cho, "Predicting residential energy consumption using CNN-LSTM neural

networks," Energy, vol. 182, pp. 72-81, 2019.

[189] K. Fukushima and S. Miyake, "Neocognitron: A self-organizing neural network model for a

mechanism of visual pattern recognition," in Competition and cooperation in neural nets:

Springer, 1982, pp. 267-285.

[190] C. Olah. "Understanding LSTM Networks." (accessed 2021). Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

128

APPENDIX

A1. Adaptive Moment Estimation

The Adaptive Moment Estimation (Adam) optimizer keeps an exponentially decaying average of

past gradients M(t), similar to momentum. M(t) and V(t) are values of the first moment, which is the

Mean, and the second moment, which is the Un-centered variance of the gradients, respectively. The

following is the formulas for the First Moment (Mean), and the Second Moment (Variance):

m̂t =
mt

1‐ β1
t (A2)

v̂t =
vt

1‐ β2
t (A3)

The following is the final formula for the Parameter update:

 θt+1 = θt‐
η

√v̂t‐ ε
 (A4)

The value for β1 is 0.9, and 0.999 for β2 and 10*exp(−8) for ε

1
2

9

A2. Pearson Correlation Matrix

Table A1. The Pearson correlation matrix (for C-MAPSS dataset)

A
tt

ri
b

u
te

s

T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd
PCNfR_

dmd
W31 W32 RUL

T2 1.0000 0.9441 0.8709 0.8979 0.9864 0.9864 0.9731 0.5725 0.8618 0.8266 0.7060 0.9729 0.1643 0.3528 −0.5426 0.7936 0.8732 0.5720 0.1642 0.9777 0.9777 −0.0023

T24 0.9441 1.0000 0.9822 0.9810 0.9158 0.9441 0.9686 0.8106 0.9785 0.9051 0.8957 0.9688 0.4801 0.6241 −0.7779 0.8050 0.9830 0.8103 0.4800 0.9624 0.9624 −0.0064

T30 0.8709 0.9822 1.0000 0.9896 0.8429 0.8848 0.9290 0.8957 0.9978 0.9290 0.9607 0.9295 0.6209 0.7520 −0.8759 0.8047 0.9987 0.8954 0.6208 0.9171 0.9171 −0.0253

T50 0.8979 0.9810 0.9896 1.0000 0.8841 0.9196 0.9567 0.8439 0.9873 0.9616 0.9368 0.9571 0.5447 0.7156 −0.8467 0.8591 0.9902 0.8436 0.5446 0.9464 0.9464 −0.0378

P2 0.9864 0.9158 0.8429 0.8841 1.0000 0.9963 0.9798 0.5242 0.8329 0.8438 0.6736 0.9795 0.1136 0.3305 −0.5253 0.8241 0.8455 0.5237 0.1135 0.9857 0.9857 −0.0031

P15 0.9864 0.9441 0.8848 0.9196 0.9963 1.0000 0.9933 0.5944 0.8762 0.8782 0.7339 0.9931 0.1981 0.4075 −0.5955 0.8403 0.8871 0.5940 0.1980 0.9964 0.9964 −0.0029

P30 0.9731 0.9686 0.9290 0.9567 0.9798 0.9933 1.0000 0.6791 0.9226 0.9187 0.8054 1.0000 0.3070 0.5081 −0.6842 0.8577 0.9309 0.6787 0.3069 0.9991 0.9991 −0.0003

Nf 0.5725 0.8106 0.8957 0.8439 0.5242 0.5944 0.6791 1.0000 0.9033 0.7829 0.9726 0.6801 0.9028 0.9245 −0.9712 0.5913 0.8937 1.0000 0.9028 0.6559 0.6558 0.0027

Nc 0.8618 0.9785 0.9978 0.9873 0.8329 0.8762 0.9226 0.9033 1.0000 0.9291 0.9643 0.9231 0.6349 0.7711 −0.8855 0.7996 0.9979 0.9030 0.6347 0.9100 0.9100 −0.0134

epr 0.8266 0.9051 0.9290 0.9616 0.8438 0.8782 0.9187 0.7829 0.9291 1.0000 0.8924 0.9192 0.5087 0.7271 −0.8475 0.9141 0.9297 0.7827 0.5086 0.9092 0.9091 0.0014

Ps30 0.7060 0.8957 0.9607 0.9368 0.6736 0.7339 0.8054 0.9726 0.9643 0.8924 1.0000 0.8062 0.8001 0.8931 −0.9654 0.7326 0.9597 0.9724 0.8000 0.7848 0.7847 −0.0426

phi 0.9729 0.9688 0.9295 0.9571 0.9795 0.9931 1.0000 0.6801 0.9231 0.9192 0.8062 1.0000 0.3084 0.5094 −0.6853 0.8579 0.9314 0.6797 0.3083 0.9991 0.9991 −0.0005

NRF 0.1643 0.4801 0.6209 0.5447 0.1136 0.1981 0.3070 0.9028 0.6349 0.5087 0.8001 0.3084 1.0000 0.9277 −0.8842 0.2952 0.6173 0.9031 1.0000 0.2766 0.2765 0.0044

NRc 0.3528 0.6241 0.7520 0.7156 0.3305 0.4075 0.5081 0.9245 0.7711 0.7271 0.8931 0.5094 0.9277 1.0000 −0.9574 0.5425 0.7496 0.9245 0.9275 0.4792 0.4792 −0.0309

BPR −0.5426 −0.7779 −0.8759 −0.8467 −0.5253 −0.5955 −0.6842 −0.9712 −0.8855 −0.8475 −0.9654 −0.6853 −0.8842 −0.9574 1.0000 −0.6644 −0.8742 −0.9712 −0.8842 −0.6601 −0.6601 −0.0320

farB 0.7936 0.8050 0.8047 0.8591 0.8241 0.8403 0.8577 0.5913 0.7996 0.9141 0.7326 0.8579 0.2952 0.5425 −0.6644 1.0000 0.8060 0.5910 0.2950 0.8554 0.8553 −0.0649

htBleed 0.8732 0.9830 0.9987 0.9902 0.8455 0.8871 0.9309 0.8937 0.9979 0.9297 0.9597 0.9314 0.6173 0.7496 −0.8742 0.8060 1.0000 0.8934 0.6172 0.9191 0.9190 −0.0254

Nf_dmd 0.5720 0.8103 0.8954 0.8436 0.5237 0.5940 0.6787 1.0000 0.9030 0.7827 0.9724 0.6797 0.9031 0.9245 −0.9712 0.5910 0.8934 1.0000 0.9030 0.6554 0.6554 0.0030

PCNfR_d
md

0.1642 0.4800 0.6208 0.5446 0.1135 0.1980 0.3069 0.9028 0.6347 0.5086 0.8000 0.3083 1.0000 0.9275 −0.8842 0.2950 0.6172 0.9030 1.0000 0.2765 0.2764 0.0048

W31 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6559 0.9100 0.9092 0.7848 0.9991 0.2766 0.4792 −0.6601 0.8554 0.9191 0.6554 0.2765 1.0000 0.9999 0.0031

W32 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6558 0.9100 0.9091 0.7847 0.9991 0.2765 0.4792 −0.6601 0.8553 0.9190 0.6554 0.2764 0.9999 1.0000 0.0030

1
3

0

A3. Principle Components Matrix

Table A2. The Principle Components (PC) matrix (for C-MAPSS dataset)

Eigenvector

C
o

m
p

o
n

e
n

t

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n

P
ro

p
o

rt
io

n
 O

f

V
a
ri

a
n

c
e

C
u

m
u

la
ti

v
e

V
a
ri

a
n

c
e

T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd PCNfR_dmd W31 W32

PC 1 4.1098 0.8043 0.8043 0.2125 0.2380 0.2422 0.2421 0.2088 0.2187 0.2293 0.2143 0.2421 0.2325 0.2325 0.2294 0.1464 0.1835 −0.2143 0.2047 0.2423 0.2142 0.1463 0.2265 0.2265

PC 2 1.8911 0.1703 0.9746 0.2432 0.0759 −0.0129 0.0338 0.2694 0.2294 0.1739 −0.2437 −0.0234 0.0343 −0.1505 0.1731 −0.4207 −0.3244 0.2381 0.1294 −0.0105 −0.2440 −0.4208 0.1900 0.1900

PC 3 0.6210 0.0184 0.9930 −0.2203 −0.2194 −0.1148 0.0276 −0.0668 −0.0637 −0.0351 −0.1583 −0.1055 0.4065 −0.0113 −0.0345 −0.0745 0.2675 −0.1636 0.7255 −0.1142 −0.1582 −0.0747 −0.0391 −0.0391

PC 4 0.2765 0.0036 0.9966 −0.1973 −0.1956 −0.1354 −0.0125 0.1133 0.1197 0.1552 −0.1492 −0.0729 0.3738 −0.0685 0.1558 −0.0679 0.3512 −0.2851 −0.6037 −0.1303 −0.1498 −0.0681 0.1400 0.1399

PC 5 0.1898 0.0017 0.9983 0.2407 0.1279 0.1338 0.2365 −0.1105 −0.1263 −0.1444 −0.1089 0.2504 0.0171 0.1765 −0.1436 −0.2556 0.5771 0.3024 −0.1262 0.1371 −0.1126 −0.2598 −0.1894 −0.1890

PC 6 0.1429 0.0010 0.9993 −0.1080 −0.0508 −0.1018 −0.2787 0.1666 0.1661 0.1402 −0.0006 0.0850 −0.5969 −0.2325 0.1398 0.0629 0.5242 0.1348 0.1816 −0.0949 −0.0067 0.0564 0.1473 0.1473

PC 7 0.0912 0.0004 0.9997 0.3962 0.2324 −0.0820 −0.3642 −0.0725 −0.1049 −0.1372 0.1574 0.2384 0.2671 −0.5964 −0.1412 −0.0471 0.0686 −0.2038 0.0105 −0.0991 0.1585 −0.0485 0.0028 0.0024

PC 8 0.0467 0.0001 0.9998 0.2674 0.1477 −0.3715 0.0978 −0.0681 −0.0160 0.1226 −0.0583 0.0358 −0.3458 0.2701 0.1267 −0.1464 −0.0277 −0.6182 0.0391 −0.1879 −0.0548 −0.1362 −0.1777 −0.1775

PC 9 0.0363 0.0001 0.9999 0.0132 −0.0133 0.7894 −0.0969 −0.0175 −0.0065 0.0249 −0.0527 −0.0336 −0.0869 0.0295 0.0252 −0.0552 0.0009 −0.1860 0.0047 −0.5529 −0.0523 −0.0533 −0.0472 −0.0457

PC 10 0.0328 0.0001 0.9999 0.0008 −0.0389 0.1788 −0.7296 −0.0113 −0.0056 0.0201 −0.0967 −0.0508 0.0283 0.3284 0.0208 −0.1045 0.0016 −0.1610 0.0012 0.5025 −0.0962 −0.1026 −0.0400 −0.0441

PC 11 0.0311 0.0000 1.0000 0.1051 0.1076 −0.2848 −0.3377 0.0413 0.0245 −0.0107 0.1014 0.1245 0.2238 0.5163 −0.0125 0.0465 0.0011 0.3575 −0.0016 −0.5287 0.1028 0.0463 0.0864 0.0873

PC 12 0.0138 0.0000 1.0000 −0.2578 −0.2810 −0.0020 0.0108 0.0167 −0.0099 −0.0864 −0.1056 0.8618 −0.0568 0.0304 −0.0848 −0.0164 −0.2225 −0.1099 −0.0024 −0.0025 −0.1110 −0.0253 0.0644 0.0496

PC 13 0.0118 0.0000 1.0000 0.0477 −0.0185 0.0025 0.0839 −0.0086 −0.1363 −0.4283 0.0260 −0.1718 −0.1710 0.1638 −0.4312 −0.1047 0.0539 −0.2109 −0.0039 0.0099 0.0176 −0.1249 0.4655 0.4744

PC 14 0.0101 0.0000 1.0000 −0.0021 −0.0067 −0.0005 −0.0023 0.0098 0.0070 −0.0020 0.0012 0.0090 0.0009 0.0001 −0.0028 0.0001 −0.0025 −0.0016 0.0000 0.0020 0.0007 −0.0008 −0.7132 0.7008

PC 15 0.0071 0.0000 1.0000 0.5000 −0.7791 0.0160 0.0235 −0.1718 −0.1149 0.1418 0.1483 −0.0349 −0.0279 0.0250 0.1270 −0.0272 0.0099 0.0680 0.0015 0.0178 0.1666 −0.0003 0.0504 0.0501

PC 16 0.0058 0.0000 1.0000 0.0583 −0.2380 −0.0142 0.0054 0.6356 0.4221 −0.2979 0.1703 −0.0600 0.0165 0.0288 −0.2753 −0.0146 0.0194 −0.0802 −0.0018 −0.0146 0.1399 −0.0673 −0.2421 −0.2634

PC 17 0.0025 0.0000 1.0000 0.0239 −0.0042 0.0006 −0.0014 −0.0321 0.0275 −0.7104 −0.0225 0.0000 0.0017 −0.0024 0.7009 0.0127 −0.0002 0.0038 0.0001 −0.0002 −0.0181 0.0232 0.0068 0.0081

PC 18 0.0011 0.0000 1.0000 −0.0506 0.0059 0.0006 0.0011 0.0861 −0.0696 −0.0029 −0.4001 0.0033 −0.0050 0.0004 −0.0007 −0.5777 0.0057 −0.0026 0.0000 0.0008 0.4897 0.5014 −0.0056 −0.0055

PC 19 0.0008 0.0000 1.0000 −0.2540 0.0089 0.0007 0.0033 0.4119 −0.6623 0.1074 0.3333 −0.0010 −0.0155 0.0051 0.1922 −0.1498 −0.0006 −0.0017 −0.0002 0.0011 0.2199 −0.3095 −0.0178 −0.0180

PC 20 0.0004 0.0000 1.0000 0.3279 −0.0012 0.0002 0.0002 0.4451 −0.4099 −0.0213 −0.4508 0.0004 0.0104 0.0000 −0.0349 0.3864 0.0000 −0.0001 0.0002 0.0002 −0.3040 0.2821 0.0029 0.0029

PC 21 0.0002 0.0000 1.0000 0.0385 −0.0005 0.0000 0.0000 0.0661 −0.0567 −0.0051 0.4972 0.0001 0.0022 −0.0001 −0.0091 −0.4057 0.0000 0.0000 0.0000 0.0000 −0.5855 0.4860 0.0009 0.0010

1
3

1

A4. Evolutionary DNN Model Description

Figure A1. The proposed evolutionary DNN model description (for C-MAPSS dataset)

