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ABSTRACT 

The fundamental concept of prognostics and health management (PHM) within the scope of 

Condition-Based Maintenance (CBM) is to find an approach to evaluate the system health and predict its 

remaining useful life (RUL). Many methods and algorithms have been proposed for PHM modeling, most 

of which have been proven to perform relatively well. One of the leading algorithms in the current data-

driven technology era is a deep learning approach, which is based on the concept of multiple hidden 

layers in a neural network. RUL prediction is an important part of PHM, which is the science that is aimed 

at increasing the reliability of the system and, in turn, reducing the maintenance cost and potential failure. 

The majority of the PHM models proposed during the past few years have shown a significant increase in 

the number systems that are data-driven. While more complex data-driven models are often associated 

with higher accuracy, there is a corresponding need to reduce model complexity. One possible approach 

is to reduce the complexity of the model is to use the features (attributes or variables) selection and 

dimensionality reduction methods before the model training process. In this work, the effectiveness of 

multiple search-based methods that seek for the best features set to perform model training, which 

included, filter and wrapper feature selection methods (correlation analysis, relief forward/backward 

selection, and others), along with Principal Component Analysis (PCA) as a dimensionality reduction 

method, was investigated. A basic algorithm of deep learning, Feedforward Artificial Neural Network 

(FFNN), was used as a benchmark modeling algorithm. It is believed that all of those approaches can 

also be applied to the prognostics of an aircraft engine. The aircraft engine data from NASA Ames 

prognostics data repository was used to test the effectiveness of the filter and wrapper feature selection 

methods. The findings show that applying feature selection methods helps to improve overall model 

accuracy by 3% to 5% compared to other existing works and significantly reduces the complexity by using 

7 out of 21 less input nodes for the deep learning type of models.  
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1. INTRODUCTION 

1.1. Background 

In an era of information technology, data are being generated, collected, and accumulated across 

all fields at an incredible rate. To extract useful knowledge of these rapidly growing volumes of data, 

computational tools that can analyze big data are needed. This requirement has les to developments in 

data mining, for various fields of applications.  

Data mining is the process of discovering and extracting a pattern from data [1], which generally 

involves characterization, generalization, classification, clustering, association, pattern matching, and 

visualization of large quantities of data [2]. The area of Prognostics and Health Management (PHM) is 

included as a part of a Condition Monitoring System (CMS) systems, which usually collects massive data 

from equipment during system operations. This large collection of data in PHM makes it beneficial to 

employ data mining approaches. Additionally, the prognostics domain also involves forecasting and 

predicting failure precursors to determine the time span of a system until it reaches the system’s end-of-

life. The operational life of a system until its end-of-life in PHM is usually known as the Remaining Useful 

Life (RUL) of the system, which is one of the key indicators of the system’s health status. 

Currently, there are challenges in predicting RUL using traditional approaches, such as the 

traditional regression model or statistical analysis approach. First, the traditional approaches are 

incapable of accurately predicting the RUL when having little or no prior knowledge of the system’s 

physical behaviors. Second, the traditional approaches often fail to analyze the system that has complex 

or multiple fault conditions and/or features. Third, the accuracy of traditional methods, which provided the 

prediction accuracy around 45% to 50%, is still unsatisfactory. And fourth, is the lack of general 

performance metrics for PHM that can be used in a standardized manner in comparing multiple PHM 

models. The data mining methodology is grounded by multi-disciplines such as probability [3] ], statistics 

[4], machine learning [5], and artificial intelligence (AI) [6] However, of these, the data mining disciplines 

that are believed to address the major challenges in PHM are machine learning and artificial intelligence 

algorithms. The traditional machine learning methods also called shallow learning models, such as an 

artificial neural network (ANN) [7], support vector machine (SVM) [8], logistic regression (LoR) [9], and 

others. Though these traditional methods have already been shown to have great performance over the 
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years, they still fail to overcome those challenges in estimating RUL. This opens an opportunity for a 

modern machine learning approach namely, deep learning, to be adopted in PHM applications.  

The early concept of deep learning was first initiated by Geoffrey Hinton in 2006 as the product of 

improving the higher dimensionality of an existing ANN [10]. Deep learning has the potential to overcome 

many shortcomings of the shallow learning methods, as it uses multiple non-linear transformation 

functions to capture more complex representative information from the raw data [11]. Deep learning 

approaches also have been proven to successfully construct good prediction models that use smaller 

knowledge of past behaviors and yet are still able to provide an acceptable level of prediction accuracy 

[12]. The only major challenge that possibly remains as an area of development is the standardized 

metric for evaluating the performance of employing deep learning in PHM, which will also be addressed in 

this dissertation as well as machine learning and deep learning approach in PHM applications.  

1.1.1. PHM Definition 

This section describes the development of PHM ideology. Some predefined terms and definitions 

of PHM will be discussed to establish a fundamental understanding of the PHM area and its predecessor 

methodology as part of the literature survey. This section also provides initial links between PHM and 

deep learning approaches that will be discussed in the later parts of this thesis. 

1.1.1.1. General Ideology of PHM 

Activities of the system’s health analysis are essential to support the critical decision-making 

process in engineering systems. Most of the engineering systems are composed of complex, 

interconnected, multiple components and materials that must be maintained and/or replaced within a 

certain operating time. To maintain the operation of a system, the run to failure scenario of the system 

should be avoided, in most cases. One of the solutions to this scenario is by performing maintenance of 

the system’s components while the operation is still running. This maintenance scheme not only 

guarantees that the operation is performing properly, but also has a great economic impact in terms of 

reducing the operation, production, and support costs. Diagnostics usually plays a role in identifying the 

types of a particular failure that might occur, while prognostics is used to evaluate the health state of the 

system. The operational time of the system’s components is usually called time until end-of-life. As the 

main focus of this dissertation is regarding prognostics of the system, the term EOL, RUL, and system 



 

3 
 

 

health projection or prediction will occur multiple times. As the root of prognostics came from aspects of 

system diagnostics, some parts and applications of diagnostics that relate to prognostics will also be 

mentioned and discussed in this introduction part.  

The term PHM was introduced and developed as a method to enable proactive maintenance 

decisions that involved not only monitoring the health condition, but also predicting the RUL of the system 

[13-17]. PHM technology can transform the passive system’s reliability into adaptive while also reducing 

the system’s life cycle cost [18, 19]. This makes prognostics, a growing field, as one of the core 

components within CBM as part of the CMS of critical systems. The prognostics of a system are defined 

by the ability to evaluate and estimate the RUL of the system. Traditionally, the prognostics method for 

the prognostics system focuses on only the accuracy of RUL estimation for certain applications [20]. 

However, after many studies have been employed by PHM over the years, some other challenges are to 

be found in PHM as well. This is because prognostics is not fully developed compared to diagnostics. 

Additionally, prognostics studies have put more effort into developing and employing new methods to 

fulfill only requirements of particular end-users [21], rather than evaluating and comparing performances 

among those methods from wide perspectives. This leaves gaps for new methods as well as precise 

standard performance metrics to be deployed in PHM. Note that in this dissertation, the terms prognostics 

and PHM might be used interchangeably from time to time.  

To illustrate the importance of CBM, a proposed system’s operation maintenance procedure is 

seed as in Figure 1. Diagnostics and prognostics are essentially involved in CBM. As mentioned 

previously, diagnostics is the process of identification of faults or failures, whereas prognostics is the 

process of identifying health states and making a prediction of the time to failure in the system [22]. The 

time left before observing a failure is described as the RUL of the system [23]. 

The prognostics process also involves two phases as shown in Figure 2, fault prognostic and 

diagnostics. The current system’s health state is assessed and evaluated in the first phase. This phase of 

prognostics overlaps with diagnostics. Again, diagnostics and prognostics are both critical in system 

health analysis, and in many cases, do not distinguish from each other. Classification or clustering 

techniques are utilized within this phase for pattern recognition. This is the part that data mining 

techniques, such as machine learning, and deep learning can be employed.  The goal of the second 
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phase is to predict the time to failure of a system or a component by identifying, forecasting, or projecting 

the RUL. Projection trends, tracking techniques, and time series analysis are utilized in this phase.  

 

Figure 1. Roles of diagnostics and prognostics scheme in the maintenance scenarios [22]. 

In addition to the phase and roles of prognostics, modeling techniques must be established to 

analyze the health state of the system and RUL. There are two types of modeling techniques generally 

used for prognostics data. The first is, the data-driven model, and the second is, the physics-based 

model. To construct a data driven model, requires sufficient run to failure samples data from the system, 

whereas the physics-based model considers the physics of failure progression in the system must be well 

understood. Some detailed definitions of data-driven and physics-based models for prognostics analysis 

are as described next.  

The data-driven model aims to model system behavior using collections of censoring data instead 

of relying on system physicality or domain experts that understand the fundamentals of the systems [24]. 

Data-driven approaches are generally categorized into two types. The first one is from the statistical 

approach and the second one is from the machine learning approach. The models using statistical 

approaches are generally built upon a probabilistic and deterministic method from the available data. 

While the goal of machine learning approaches is to recognize and capture complex patterns based on 
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historical data. The deep learning technique that will be the main discussion of the dissertation falls into 

the machine learning approach.  

 

Figure 2. The phase of prognostics and its transition from diagnostics [22]. 

The physics-based model requires knowledge or understanding of the system’s fundamental 

physics to generate a model that can estimate the system’s RUL. The degradation or run to failure data 

does not play an important role in the physics-based model. Therefore, in this case, the physical rules 

within the system must be substantially known beforehand, which means, the domain expert is essentially 

required to generate the physics-based model. The early step in a physics-based model is to exploit the 

known relationship of physical parameters that represent the health state of the systems [25]. 

In physics-based prognostics models, two challenges must be considered: 1) the physics of 

degradation of some systems may be very difficult to determine or in many cases can be unknown, and 

2) the value of parameters in such a system might be impossible to obtain or evaluate. A physics-based 

model requires vast information and a deep understanding of the failure mechanism of the system as well 

as a high level of quality control. Therefore, skilled-well-knowledge personnel of particular systems or 

subject matters is essentially required to construct and determine the physics-based model [26]. These 

challenges of the physics-based model led to the development of a data-driven model that will come to 

replace the physics-based model in the future.  

One of the data-driven models approaches for prognostics that will be the main discussion is 

machine learning approaches. The advancement of computational tools has largely impacted the 
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development of this approach. The complex machine learning algorithm requires capable computational 

power. Because of the better computational power of a modern computing machine, the machine learning 

algorithms have been proven to be able to empirically learn and recognize more complex patterns of the 

system’s data. In most cases, it is believed it will replace the existing physics-based model. Deep learning 

is a machine learning algorithm that has been proposed and proven to outperform other traditional 

learning algorithms. Deep learning algorithms will be discussed more in detail in further sections. While 

some terms and definitions of prognostics must be described to have a clear understanding of PHM 

before any deeper discussion in the next section. 

1.1.1.2. Prognostics Terms and Definitions 

All commonly used terms in prognostics found in the literature are described in this section. Many 

similar terms have been interchangeably used within the PHM research community. As well as in some 

cases, the same terms have been referred to different notions. Thus, this list aims to help in clarifying 

some discrepancies that might have been caused by some non-standardized use cases outside of the 

PHM community [27].  

Assumptions 

• Prognostics can detect the failure precursors and predict RUL. The prediction of RUL is heavily 

based on the current state of health and the future operating conditions of the system. 

• A health index is defined as the identification of the health state of a system. Health index can be 

considered because of the aggregated from a system’s features and conditions.  

• RUL estimation is a forecasting, prediction, and extrapolation procedure. 

• For comparison, the employed algorithms can generate a single RUL value for each prediction. 

Algorithms that produce RUL distributions can also be compressed to one estimated number. 

• All systems usually stay under continuous monitoring activities as part of the Condition Monitoring 

System and have the capability to measure and acquire data from the system as the system’s 

fault evolves. 
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Common Terminologies 

• EOL: End-Of-Life, is the time index of the actual end of life. 

• RUL: Remaining Useful Life, is the amount of time left before system health drops under the 

failure threshold. 

• EOP: End-Of-Prediction, is the earliest time index, i, when the prediction has reached the defined 

failure threshold. 

• UUT: Unit Under Test. 

• I, is the index for time instant ti. 

• 0, is the time index for the time of the birth of the system, t0. 

• F, is the time index for the time when a fault starts to occur, tF. 

• D, represents the time index when the diagnostics system detects the fault within the system, tD. 

• P, represents the time index when the prognostics system makes the first prediction, tP.. 

• f nl (i), is the value of the nth feature for the lth UUT at time index i. 

• cn
l (i), is the value of the nth operational condition for the lth UUT at time index i. 

• rn
l(i), is the RUL estimation at time ti, when given that the data is available up to time ti for the lth 

UUT. 

• πl(i | j), is the prediction at time index i for the given data up to time tj for the lth UUT. Prediction 

can be made in any domain. 

• Πl (i), represents the trajectory of predictions at time index i for the lth UUT. 

• hl (i), represents the health of a system for the lth UUT. 

Figure 3 illustrates the common time terminologies used in prognostics. These terms will be 

constantly used for the rest of the paper. The red-dotted line represents the actual behavior or the 

prognostics system while the blue line represents the prediction value from the prognostics model. 

Terms Definitions 

• Time index: In a prognostics application, time can be either discrete or continuous. Somehow, 

time index i is used instead of the actual time, likewise, considering time index as a discrete 

measurement. This is useful in cases when the sampling time does not fall into the same pattern. 

Time indexes describe in this paper also do not depend on or vary to time scales. 
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Figure 3. Illustration of some important prognostics time definitions and concepts [27]. 

• Health index: hl(i) is a health index at the time i for UUT, when l = 1, 2, …, L. Normalized 

aggregate of health indicators in operational conditions is also considered as h. 

• Time of detection of fault: D is the time index (tD) when faults are detected in the system. This 

triggers the algorithm to begin performing RUL predictions as soon as enough data is collected 

from the system’s fault state. For the applications, such as battery PHM, the prognosis is 

employed as a degradation or decaying process. The faulty state may not be detected. For this 

case, tD might be considered to be equal to t0. 

• Time to start prediction: Normally, there is a difference between the time when the system starts 

making a prediction (tP) and the time when a fault state is detected (tD). Generally, tP ≥ tD as the 

algorithms required some time to fine-tune and adjust with additional input data before starting to 

predict RUL. However, for some cases that data is collected in the system continuously before 

faults are detected. There might be enough available data to start predicting RUL anytime, hence 

tP = tD. 

• Prognostics features: Given that fnl (i) is a feature at the time i, where n = 1, 2, …, N is the feature 

number, and l = 1, 2, …, L is the UUT index. In most of the prognostics domains, features usually 

change their behaviors over time. Features can take many forms such as system parameters, 

system attributes, component variables, or other quantities that can measure, calculate, or 

compute from any aspects of the system’s operating conditions that relate to the system’s 

prognostics. Features can also be referred to as a feature vector Fl(i) of the lth UUT at the time i. 
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• Operational conditions: Given that cl
m(i) is one of the operational conditions at the time i, where m 

= 1, 2,…,M is the condition number, and l = 1, 2, … , L is the UUT index. The load can also be 

referred to as one of the operational conditions, which can also be referred to as a vector Cl(i) of 

the lth UUT at the time i. 

• Point prediction: Given that πl (i | j) is a point of prediction at the time i. Normally, the information 

is provided at until time tj, where tj ≤ ti. This case πl (i | j)  for i = EOL, is a health indicator at a 

critical threshold. In some cases, the first step is to extrapolate the features, then, aggregate 

those features to calculate the health status of the system. For other cases, the features are 

aggregated to the health state to predict RUL. 

• Trajectory prediction: Πl(i) is the trajectory of RUL predictions at time i. Πl (i) = {πl (i | i), πl (i +1| 

i),...,πl (EOL | i)  

• RUL estimation:  Given that rl(i) be the remaining useful life estimation at the time i. The system’s 

conditions and system’s features are provided until the time i assume that the future operational 

profile of the system is available. As illustrated in Figure 5, the prediction has drawn at time ti and 

it predicts the RUL from the given information until the time i. For the lth UUT, RUL will be predicted 

as rl = arg{h(z) = 0} – i. Note that the subscript of the star symbol (*) indicates the best belief to be 

the true value of the system variable. This condition is described as Ground Truth in the literature 

[27].  

 

 

Figure 4. Trajectory prediction that can be modified corresponding to the estimation of RUL [27]. 
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Figure 5. Comparison of RUL predictions from ground truth [27]. 
When, tp [70, 240], tEOL = 240, tEOP > 240. 

1.1.2. Deep Learning Algorithms  

The reason that the machine learning approach works well with the prognostics data, in general, 

is because it is possible to collect the massive data when performing system’s condition monitoring. 

Although there are multiple machine learning algorithms that have been used in the PHM model over the 

years, the main focus of this thesis is the concept of deep learning which will be discussed in this section. 

As the deep learning concept was developed based on the Artificial Neural Network [7, 28-31], the first 

discussion in this section will be an initial description of ANN. After that, the deep learning algorithms and 

how they apply to prognostics prediction will be discussed. 

1.1.2.1. Artificial Neural Networks 

An ANN or a “neural network”, is a computational model inspired by the structural and functional 

aspects of biological neural networks [7]. A single neural network, or a perceptron, has an interconnected 

group of artificial neurons, which processes computational information through inter-connections 

approaches from node to node. An ANN is an adaptive system, which means, it can change its 

connections based on the different information during the learning phase. There are two configuration 

modes in ANN. The first configuration mode is the feed-forward, and the second is the backpropagation. 

For the feed-forward network, the connections between the units or nodes do not form a completed back-

and-forth cycle. Instead, the information in the network moves only one way forward from the input units, 

through the hidden units, to the output units.  While backpropagation moves the information backward to 

update weights and connections in the network.  
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Backpropagation is a supervised learning method that has two phases, propagation phase and 

weight update phase [28]. These two phases are repeatedly performed until the performance requirement 

of the model is fulfilled. In backpropagation algorithms, the output values from the network are compared 

to the actual or correct value through the calculation of the error-function value. This error-function value 

is fed back through the network as a reference to make an appropriate adjustment of the weights of each 

connection. The goal is to reduce the value of the error function by selecting proper weights. This process 

is repeatedly performed in the training cycle until the condition is satisfied. Usually, the network will 

converge to a certain state in which the calculated error is sufficiently small. This scenario can be 

considered as if the network can learn a certain target function. 

A sigmoid function is usually used as the activation function in ANN. The activation function is 

basically the function that ‘activate’ the learning capability of the neural network. However, other 

activation functions can be implemented in ANN, for example, linear or identity function, binary step 

functions, hyperbolic tangent function, sigmoid function. A sigmoid function is a type of Gaussian spheroid 

function, expressed as follows:  

𝑦(𝑥) =  𝑒
−(

‖𝑥−𝑐‖2

2𝜎2 )
         (1) 

The output of the hidden neuron gives a measure of distance between the input vector x and the 

centroid c of the data cluster. The σ parameter represents the radius of the hypersphere, which is 

normally determined by using the iterative process of selecting the optimum width. The general structure 

of the ANN is as described in Figure 6. 

 

Figure 6. Example of standard Artificial Neural Network structure. 
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In addition to the activation function of the neural network, another condition that needs to be 

considered to construct the classification model is the learning or training algorithm of the neural network. 

A learning algorithm is a systematic step-by-step procedure through which the connection weights among 

neurons are adjusted to minimize the difference between the predicted and actual values of an output 

variable [29]. This adjustment was performed in this study using the most popular method of training, 

known as the back-propagation learning algorithm. In addition to its broad employments in various 

applications, the backpropagation learning algorithm is more efficient than other learning algorithms for 

solving most of the regression problems [30].  

There are three advantages to the backpropagation learning algorithm. First, this learning 

algorithm is straight forward and easy to program. Second, the backpropagation learning algorithm can 

provide reasonably accurate results for complicated applications in which the input and output 

relationships are nonlinear [31]. Finally, and most importantly, the backpropagation learning algorithm has 

revealed an acceptable level of generalization ability. The performance of neural networks trained by the 

backpropagation learning algorithm is usually controlled by mainly two parameters, namely, learning rate 

and momentum. At the start of the learning process, the learning rate will be varied in a range between 0 

and 1. The learning rate is a parameter that affects how connection weights within a network are updated. 

These updates also include a portion of the last weight change to accelerate the training convergence 

and improve the training precision. This portion is defined by the second key parameter of the learning 

algorithm, which is, momentum. Momentum is variant of the stochastic gradient descent that helps the 

weight update to avoid getting stuck in local minima. This consequently helps to accelerate the learning 

speed.   Similar to the learning rate, the momentum will generally be varied in a range of 0–1. A specific 

rule that determines the best values for the learning rate and momentum has not yet been proposed in 

the literature. One of the common practices is by examining different values from 0–0.9 with a constant 

step size of 0.1. Equation 2 and 3 describe the process of momentum and weight update in the neural 

network. Equation 2 is the initialize step of identifying weight. While equation 3 shows the effect of the 

momentum in the process. Where, ∆𝑊𝑖𝑗 represents weight increment and ∆𝑊𝑖𝑗
𝑡−1 represents the weight 

increment from the previous iteration, 𝜂 is the learning rate, 
𝜕𝑌

𝜕𝑤𝑖𝑗
 is the weight gradient variated by the 

output 𝑌, and 𝛾 represents momentum. 
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∆𝑊𝑖𝑗 =  𝜂 × 
𝜕𝑌

𝜕𝑤𝑖𝑗
           (2) 

∆𝑊𝑖𝑗 =  (𝜂 ×  
𝜕𝑌

𝜕𝑤𝑖𝑗
) + (𝛾 ×  ∆𝑊𝑖𝑗

𝑡−1 )         (3) 

1.1.2.2. Overview of Deep Learning Concept 

The concept of deep learning suggested by Geoffrey Hinton in 2006 has gained interest by 

academia and industry [10]. Deep learning is based on ANN with a strong power of representation, which 

holds the potential to overcome the deficiencies in traditional intelligent methods [32]. The representation 

in neural network means the ability or how well that the output of network can mimic or ‘represent’ the 

pattern of the actual data. The prominent advantage of deep learning is being able to capture the 

information from raw data through multiple non-linear transformations and approximate complex non-

linear functions. 

The main algorithms of deep learning include the Deep Neural Network (DNN), the Convolutional 

Neural Network (CNN), the Recurrent Neural Network (RNN), the expansion of CNN and RNN, such as 

Long Short-Term Memory network (LSTM), and the hybrid network which is the combination of different 

type of stacked layers [11]. The following are the characteristics of each deep learning algorithm:  

A Deep Neural Network is generally a stack of multiple hidden layers instead of only one hidden 

layer in the standard ANN architecture. The DNN hidden layers are the multiple feed-forward layers that 

are trained with back-propagation stochastic gradient descent (SGD). The hidden layers consist of 

neurons nodes with hyperbolic tangent activation function (tanh), rectified linear unit activation function 

(ReLU), and maxout function. DNN has additional parameters to the vanilla ANN, such as adaptive 

learning rate, rate annealing, dropout, and regularization. These parameters can be fine-tuned and 

believed to enable higher predictive accuracy than the vanilla ANN. 

Convolutional Neural Network is layers of convolution function consisting of neurons with tanh, 

ReLU applied to the results. CNN uses convolutions over the input layer to compute the output. An 

individual layer of CNN applies different types of filters. The edges of layers capture the shape of data 

and then use these shapes to deter higher-level features. The last layer classifies the output using these 

high-level features. The general idea of convolutional layers in CNN is as shown in Figure 7. 
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Figure 7. Convolutional layers. 

Recurrent Neural Network makes use of sequential information. RNN defines input and output as 

dependent variables based on a time sequence. RNN performs the same task for every element of a 

single sequence, with output at the end of the last time step depending on the previous computations. 

RNN may consider having “memory” as it can capture information about the calculation in the past 

sequence. However, RNN has a limitation in capturing the length of data. This leads to the development 

of the LSTM network which can capture the longer sequence of information [33]. Figure 8 shows an RNN 

being or unfolded into a full network [34]. The formulas that are used for RNN computation are as follows: 

 

Figure 8. Unfolded Recurrent Neural Network [34]. 

• xt: input at the time step t.  

• st: hidden state at the time step t. This might be considered as ‘memory’ of the network. st can be 

calculated based on the previous hidden state and the input of the current step: 𝑠𝑡 = 𝑓(𝑈𝑥𝑡 +

𝑊𝑠𝑡−1).. The function f usually is normally non-linear such as tanh or ReLU.  

• s-1: an initial hidden state that is required for the first hidden state typically initialized to zero. 

• on: the output at step n 
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1.1.3. Performance Measurement Metrics for PHM 

Many PHM performance metrics have been reported in the literature. A particular metric was 

employed based on different prognostics application domains and algorithms that were used to construct 

the model as described in Table 1. Part of the dissertation will only focus on what is called “algorithmic 

performance metrics” as machine learning and deep learning approaches are based on this type of 

performance evaluator [27]. There are mainly three categories of algorithmic performance metrics found 

in the literature, 1) accuracy-based metrics, 2) precision-based metrics, and 3) robustness-based metrics. 

The majority of the literature employed accuracy-based and precision-based metrics. Several cases used 

robustness-based metrics but there is a limited formal definition found for robustness-based metrics, 

which are Brier Score, Receiver Operating Characteristic (ROC), and sensitivity, as described in Table 1. 

However, the robustness metrics may lead to the measurement of model stability against the other 

metrics. The measurement of robustness and stability of the PHM model is needed to be explored in the 

future because there are limited works that have performed a detailed study on the subject. 

Generally, algorithmic performance can be evaluated by measuring the difference of errors 

between the actual and predicted RUL. Other performance characteristics such as statistical, 

convergence, moment, etc., can also use errors to quantify. However, one of the most important notions 

is that the errors can be calculated if there is actual data available, which might not be the case. When 

actual data is unavailable, historical, or past data may be generated to draw corresponding inferences. 

However, this is only valid for the case when assuming that the current process similar distribution 

compared to past data.    

The list and descriptions of the three types of metrics are included in Table 1. It was found that 

trajectory prediction metrics were not explicitly well defined in much literature. Some literature discussed 

other types of metrics such as, “similarity measure” [20] and “prediction behavior error” [35]. These 

metrics might be possibly adapted as trajectory prediction metrics. However there is no clear discussion 

regarding trajectory prediction performance evaluations found [27].  

Machine learning and deep learning approaches are heavily computational. It was suggested that 

some computational metrics such as  complexity [36], specificity [37], as well as computational time and 

memory space, might need to be measured and included in the final results. The popular term to measure 
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computational performance is called “Big O” [38]. This notion describes the amount of time algorithm 

needed to run the relative size of the input data or function.  

In addition to PHM metrics related to the deep learning approach, other PHM performance 

metrics that might be beneficial for further discussion as well is, “cost-benefit metrics” [39-41]. This group 

of metrics focuses on how operation cost can be reduced if RUL can be predicted beforehand and how 

the accuracy of RUL prediction impacts the cost to operate the system. The measurements are mostly 

found to inform of return of investment (ROI) per operation. More details can be found in references work 

by D. L. Goodman, S. Vohnout, and S. M. Wood  [39-41]. Table 1 summarized most of the PHM matrices 

having been found in the literature that well suited the deep learning approach and use cases.  

Table 1. PHM performance metrics. 
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Error ∆𝑙 (𝑖) =  𝑟∗
𝑙 − 𝑟𝑙(𝑖) 

The error is the basic notion defined as the 
difference or diversion of the prediction result 
when compared to actual data. The majority of 
the accuracy-based metrics are directly or 
indirectly an error measurement. 

[20] 

Average 
scale-
independent 
error 

𝐴(𝑖) =  
1

𝐿
∑ 𝑒𝑥𝑝 {−

|∆𝑙(𝑖)|

𝐷0

}

𝐿

𝑙=1

 

where D0 is a normalizing constant value  

The weighs exponentially scale the errors of RUL 
predictions and average RUL result over several 
UUT 

[20, 42] 

Average bias 𝐵𝑙 =
∑ {∆𝑙(𝑖)}𝐸𝑂𝑃

𝑖=𝑃

(𝐸𝑂𝑃 − 𝑃 + 1)
 

The averages of the prediction errors can be 
made at all and any time from the beginning of 
the prediction at the lth UUT. This metric can also 
be extended to calculate the average of biases 
overall UUT index and total bias in an application. 

[20] 

Timeliness 

𝐴(𝑖) =  
1

𝐿
∑ 𝜑{∆𝑙(𝑖)}

𝐿

𝑙=1

 

where, 

𝜑(𝑧) =  {
𝑒𝑥𝑝{|𝑧|/𝑎1} − 1, 𝑖𝑓 𝑧 < 0

𝑒𝑥𝑝{|𝑧|/𝑎2} − 1, 𝑖𝑓 𝑧 ≥ 0
 

and 𝑎1 >  𝑎2 > 0 

The exponentially weighs calculate RUL 
prediction errors via a type of asymmetric 
weighting function. This usually penalizes late 
predictions rather than early predictions. 

[20] 

False 
Positives (FP) 

𝐹𝑃 (𝑟∗
𝑙(𝑖)) =  {

1, 𝑖𝑓 ∆𝑙> 𝑡𝐹𝑃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, 𝑡𝐹𝑃= user-defined acceptable early 
prediction 

 

 

 

 

 

 

The FP aims to determine unacceptable early 
predictions, while FN is used to determine 
unacceptable late predictions. Acceptable ranges 
(tFN and tFP) must be set before prediction. This is 
to address the early predictions that are the result 
of the redundant lead time that usually causes 
unnecessary corrections. The prediction that 
comes later after critical threshold time units (tc) 
will not be considered as a prediction result. 

[43] 
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Table 1. PHM performance metrics (continued). 
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False 
Negatives 
(FN) 

𝐹𝑁 (𝑟∗
𝑙(𝑖)) =  {

1, 𝑖𝑓 −∆𝑙> 𝑡𝐹𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, 𝑡𝐹𝑁= the defined acceptable point in 
time for an early prediction 

 

  

Mean 
absolute 

percentage 
error 

(MAPE) 

𝑀𝐴𝑃𝐸(𝑖) =  
1

𝐿
∑ |

100∆𝑙(𝑖)

𝑟∗
𝑙(𝑖)

|

𝐿

𝑙=1

 

The averages of the absolute percentage errors 
in the predictions are calculated for multiple UUT 
at the same prediction time. Instead of the mean, 
median, this metric can also be used to compute 
the Median absolute percentage error (MdAPE). 

[42-44] 

Anomaly 
correlation 
coefficient 
(ACC) 

𝐴𝐶𝐶 =  
∑(𝜋𝑙(𝑖|𝑗 − 𝑧#(𝑖))(𝑧∗(𝑖) −  𝑧#(𝑖))

√∑(𝜋𝑙(𝑖|𝑗) − 𝑧#(𝑖))2 ∑(𝑧∗(𝑖) − 𝑧#(𝑖))2
 

 

where, 𝑧∗(𝑖) is a prediction variable, and 

𝑧∗(𝑖) is the corresponding history data. 

The ACC measures the difference between the 
prediction and observations phase. This can be 
done by subtracting the historical mean at each 
prediction point. The advantage of ACC is that it 
is not sensitive to bias or error. However, a good 
anomaly correlation does not guarantee 
prediction accuracy. ACC is normally computed 
over a few time-steps after tP. This can be used 
to modify long-term predictions. Note that the 
computation of baseline from historical data is 
required for ACC.  

[45] 

Mean squared 
error (MSE) 

𝑀𝑆𝐸(𝑖) =
1

𝐿
∑ ∆𝑙(𝑖)2

𝐿

𝑙=1

 

The averages of the squared prediction calculate 
the error for multiple UUT at the same prediction 
horizon. A derivative of MSE is Root Mean 
Squared Error (RMSE) which is also popular 
among many PHM application 

[42] 

Mean 
absolute error 
(MAE) 

𝑀𝐴𝐸(𝑖) =
1

𝐿
∑|∆𝑙(𝑖)2|

𝐿

𝑙=1

 

The averages of the absolute prediction also 
calculate the error for multiple UUT at the same 
prediction horizon but use median instead of 
mean. 

[42] 

Root mean 
squared 
percentage 
error 
(RMSPE) 

𝑅𝑀𝑆𝑃𝐸(𝑖) = √
1

𝐿
∑ |

∆𝑙(𝑖)

𝑟∗
𝑙(𝑖)

|

2𝐿

𝑙=1

 

The square root of the average percentage 
calculates the error of the prediction from multiple 
UUT. A similar metric is the Root median squared 
percentage error (RMSPE). 

[42] 

P
re

c
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n

-B
a
s
e
d
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Sample 
standard 
deviation 
(SSD) 

𝑆𝑆𝐷(𝑖) = √
∑ (∆𝑙(𝑖) − 𝑀)2𝑛

𝑙=1

𝑛 − 1
 

where M  is the sample mean of error 

The sample standard deviation measures the 
spread of the error with respect to the sample 
mean. This metric is restricted to the normal 
distribution of the error. The result of this error is 
usually recommended to be plotted when 
reporting this type of error. 

[20] 

Mean 
absolute 
deviation from 
the sample 
median (AD) 

𝐴𝐷(𝑖) =
1

𝑛
∑|∆𝑙(𝑖) − 𝑀|

𝑛

𝑙=1

 

where M  = median
𝑙

( ∆𝑙(𝑖)) and the median is 

the (
𝑛+1

2
)

𝑡ℎ

 order statistic 

This is an estimator of the spread of error. It is 
normally being used when the plot of error is not 
a normal distribution, and when there is a small 
number of UUT. 

[46] 

Median 
absolute 
deviation from 
the sample 
median (MAD) 

𝑀𝐴𝐷(𝑖) =  median
𝑙

(|∆𝑙(𝑖) − 𝑀|) 

where M  = median
𝑙

( ∆𝑙(𝑖)) and the median is 

(
𝑛+1

2
)

𝑡ℎ

 order statistic 

This is also an estimator of the spread of error. It 
is also normally used when the plot of error is not 
a normal distribution, and when there is a small 
number of UUT or single UTT but focuses more 
on median measurement rather than average of 
error. 

[46] 
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Table 1. PHM performance metrics (continued). 

 

1.1.4. Initial Framework for PHM Data Modeling Using Deep Learning  

In general, a machine learning framework for PHM data was developed based on a cross-

industry standard process for data mining (CRISP-DM) [48] and consisted of five phases: definition states 

phase, pre-processing phase, training phase, testing phase, and evaluating phase. The standard 

framework is illustrated in Figure 9. However, because of the high complexity of deep networks, it has 

been often found that deep networks are harder to train to compare to vanilla neural networks or other 

machine learning algorithms [49]. To guarantee that the deep networks can be successfully trained and 

overcome the learning difficulty, additional steps (such pre-training, feature selection, dimensionality 

reduction, and etc.) might need to be added into the standard machine learning framework. These issues 

will be further addressed in more detail in the next chapter and one of the possible new frameworks of 

PHM application using deep learning will be initially proposed.  
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Reliability 
diagram, Brier 
Score 

  

The Brier Score computed as  

𝐵𝑆 =  
1

𝐾
∑ (𝑝𝑘 − 𝑜𝑘)2𝐾

𝑘=1  is a measure of the 

deviation from diagonal 

The reliability diagram plots are used to observe 
the prediction frequency against the predicted 
probability of the RUL of a system in the 
condition that RUL must be within a given 
interval, or the health index is crossing a 
threshold. The prediction of RUL is not 
considered as an event (in probability). In this 
case, the prognostics problem must be converted 
to the classification domain. The range of 
probabilities that prognostics event occurs is 
divided into K probabilities. The proximity of the 
plotted curve to the diagonal indicates “reliability”. 
The deviation from the diagonal indicates 
conditional bias. The curve is below the diagonal 
line, which means, it is over-forecasting or too 
high of prediction probabilities, in opposition, 
points above the line indicate under-forecasting 
or too low prediction probabilities. 

[45] 

Receiver 
Operating 
Characteristic 

(ROC) 

 

The area under 
the ROC curve 
can be used as a 
score 

The ROC provides an overview tradeoff between 
false positives (FP) and false negatives (FN). 
That curve that has zero false positives and zero 
false negatives is an ideal curve. Such a curve 
may not be able to achieve. As a result, tuning 
the prognostics algorithm based on only ROC 
may not be practical in practice. 

[45, 47] 

Sensitivity 

𝑆(𝑖) =  
1

𝐿
∑ {

∆𝑀𝑙(𝑖)

∆𝑖𝑛𝑝𝑢𝑡

}

𝐿

𝑙=1

 

where,  

ΔM is the distance measure between two 
successive outputs for metric M’s value and 
Δinput is a distance measure between two 
successive inputs 

Sensitivity measures how sensitive a prognostics 
algorithm is to the variations of input or 
disturbance signal. Sensitivity can be evaluated 
along with any performance metrics.  

[20] 
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Most of the prognostics models that employed machine learning were developed based on the 

aforementioned framework. The experiment with data was mostly constructed by varying the hyper-

parameters depending on the algorithm. The hyperparameters are the modeling parameters that can be 

fine-tuned.  For deep learning algorithms, the hyper-parameters to experiment are the number of layers, 

type of activation functions, momentum, epoch, batch size, etc. All these hyperparameters can cause the 

variation of the deep learning architecture configurations for each PHM application domain. 

The performance metrics are calculated and measured first during the training phase until the performance 

result is satisfied and again during the testing phase to measure model performance against unknown or 

new data or a set of validation data. Multiple performance metrics might be used to draw a more complete 

assumption of the experiment. As briefly discussed in the previous section, the stability of these models 

have not been widely addressed in many published pieces of literature. The stability of the model might be 

improved by evaluating the uncertainties associated with the training parameters. This might involve 

additional tasks within or before the preprocessing phase. While this issue is not the main focus of this 

dissertation, it will be briefly discussed in the next chapter and one of the possible new frameworks that 

might help to overcome some aspects of stability will be introduced.  

1.2. Research Objective and Contribution 

In this research work, the goal was to develop a modeling algorithm to accurately predict the 

lifespan of certain PHM applications, in this case is, the gas turbine aircraft engines. The lifespan 

prediction can be used to determine when maintenance should be performed. This   not only saves the 

cost of operating and maintenance of such systems, but also to help save the lives of the people by 

avoiding a catastrophic failure. In addition, this dissertation also defines a baseline or generic results for 

implementing and developing predictive models for PHM applications in general. Thus, the dissertation 

also includes the experiment results for additional deep learning predictive models of another popular 

PHM application, which is, a PHM of lithium-ion battery as well as proposing a general modeling 

framework for using deep learning in PHM. This promotes the concept of using deep learning algorithms 

that can be generalized across multiple PHM applications and provide a benchmark for PHM modeling 

scheme in general. To achieve all those goals, below is the list of objectives, tasks, and contributions that 

this dissertation aims to fulfill.  
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Figure 9. The process of the prognostics framework using machine learning in general [48]. 

1.2.1. Objectives and Tasks  

Objective 1: Perform a literature survey for the PHM applications that deployed deep learning 

algorithms. 

• Review comparative literature in the ongoing PHM areas that applied deep learning or neural 

networks as a modeling algorithm. 

• Suggest a possible general framework to deploy deep learning algorithms for PHM 

applications. 

Objective 2: Perform preliminary data-driven model experimentation on PHM data.  

• Generate PHM predictive models with multiple data mining or machine learning algorithms 

and compare their performance with the model constructed with deep learning algorithms in 

other existing works and the experiments using basic or vanilla deep learning or neural 

network algorithms.  
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• Use the most popular PHM dataset–lithium-ion battery data, as a benchmark dataset to test 

the assumption and develop preliminary deep learning data-driven predictive models for the 

PHM dataset.     

Objective 3: Extract meaningful features for deep learning data-driven models from the aircraft 

gas turbine engine dataset to improve neural network-based feature selection method for aircraft gas 

turbine engines RUL prediction.  

• Evaluate the features/attributes from the dataset first. Not only to develop high accuracy 

models but also to reduce the complexity of the models by selecting only meaningful 

features/attributes from the dataset. 

• Use evolutionary selection (applied Genetic Algorithm (GA)) as a feature selection algorithm 

to extract the meaningful feature from the aircraft gas turbine engines dataset based on deep 

neural network modeling algorithms. 

• Compare results from evolutionary selection to other models using other neural network-

based feature selection approaches in other existing works and the experiments using basic 

or vanilla deep learning or neural network algorithms. 

Objective 4: Develop/Propose a data-driven model using deep learning algorithms for the 

prognostics of aircraft gas turbine engines.  

• Use the Hybrid Convolutional Deep Neural Network as a modeling algorithm 

• Compare results from the Hybrid Convolutional Deep Neural Network to other models using 

other neural network-based algorithms 

1.2.2. Deliverables 

The final model(s) that was developed demonstrated improvement of deep learning model by 

reduced complexity or increased accuracy over existing models in other literature. 

Deliverable 1: Reduce complexity; by performing features selection, dimensionality reduction, and 

data compression. 

Deliverable 2: Increase accuracy; by using suitable deep learning algorithms, and hybrid 

modeling algorithm schemes. 

Deliverable 3: Faster convergence; by using optimized hyper-parameters tuning. 
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1.2.3. Contributions 

Contribution 1: Introduce a better prognostics model(s) of aircraft gas turbine engines to the PHM 

research communities and/or aerospace communities. 

Contribution 2: Draw a conclusion on which features/attributes in the aircraft gas turbine engines 

dataset that increase the efficiency of implementing data-driven deep learning prognostics models. 

Contribution 3: Validate the developed methodology can improve the RUL prediction model for 

gas turbine engines by comparing its performance/error and complexity to the model derived from original 

features and existing models in other literature. 

Contribution 4: Provide baseline/benchmark results for predicting the lifespan of PHM data for 

such aircraft engines. 

1.3. Chapter Summary 

In this first chapter of the dissertation, this work looked at presenting the concept of applying a 

new deep learning science and approaches to PHM applications. There are attempts in the past to 

emerge those two fields with limited success.  Thus, more studies are needed in this field. This 

dissertation serves as a part of the studies in the aforementioned topic by focusing on developing a deep 

learning model for a specific PHM application, which in this case is, the PHM of aircraft gas turbine 

engines. In addition, the goal is to provide the general outlook for using deep learning within the PHM 

scheme. This will be achieved by providing a general concept of using deep learning for PHM application 

along with some preliminary experiments as well as fine-tuning the deep learning data-driven predictive 

models for aircraft gas turbine engines. The following chapters of the dissertation (Chapter 2-5) are 

organized by the four specific objectives mentioned previously in Chapter 1. The dissertation concludes in 

Chapter 5 with the end results and finally deep learning PHM model of aircraft gas turbine engines along 

with the summary and future directions of Deep Learning for Prognostics and Health Management 

Applications topic. 
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2. A SURVEY OF DEEP LEARNING APPROACH FOR PROGNOSTICS 

AND HEALTH MANAGEMENT APPLICATIONS 

2.1. Deep Learning Paradigm in PHM Tasks 

PHM is a computation-based application that elaborates on physical knowledge, information, and 

data [50] of structures, systems, and components operation and maintenance, to detect anomalies of 

equipment and process, diagnose and evaluate degradation states and faults, as well as predict the 

progression of degradation to failure and estimate the remaining useful life. The PHM task is illustrated in 

Figure 10. As mentioned in more detail in Chapter 1, the outcomes of the PHM elaboration are used to 

support condition-based and predictive maintenance decisions for efficient, reliable, and safe operations. 

The ability to deploy these maintenance strategies provides the opportunity of setting efficient, just-in-

time, and just-right maintenance strategies [51, 52]. This can help to maximize the production profits and 

minimize all costs and losses. As a result, PHM research and development has intensified, both in 

academia and industry, involving various disciplines of mathematics, computer science, operation 

research, physics, chemistry, materials science, engineering, etc.[53, 54]. 

 

Figure 10. Tasks in PHM [50]. 

The practical implementation of PHM includes data acquisition to enable detection, diagnostics 

and prognostics tasks, and maintenance decision-making [55]. The supporting PHM framework and its 

requirements must be properly defined to perform well in real industrial scenarios. Given the increasing 
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complexity, integration, and informatization of modern engineering, PHM can no longer be an isolated 

addition for supporting maintenance but must be closely linked to the other structure, power, 

electromechanical, information and communication technology, control parts of the systems. PHM must 

be included at the beginning of the system conceptualization and carried through its design and 

development in an integrated framework capable of satisfying the overall operation and performance 

requirements [56, 57]. The development of PHM in practice also involves other aspects, including design 

(e.g. the use of smart components may lead to different reliability allocation solutions), and impacts 

various work units involved in maintenance decisions and actions (e.g., workers can use smart systems, 

maintenance engineers can analyze big data), including the supporting logistics (spare parts availability 

and warehouse management can be driven by the PHM results) [58]. This is where new techniques such 

as machine learning and deep learning paradigm can improve and make PHM smarter and predict the 

outcomes more accurately and more reliably. 

Methods of fault detection, fault diagnostics, and failure prognostics within the PHM framework 

are continuously being developed. The advance ‘smarter’ data analytics (also including image processing 

and text mining) are mostly based on the newly developed artificial intelligence, machine learning, and 

deep learning paradigms with the adoption of more computational power systems. The objective of 

performing each task in diagnostic and prognostic is different. The objective of fault detection is to 

recognize anomalies behavior. The objective of fault diagnostics is to identify the degradation states and 

the causes of degradation. Prognostics aims at predicting the RUL, which is the main focus of the 

experiments and models proposed in this dissertation All fault detection and diagnostics, and failure 

prognostics combined can be an enabler of condition-based and predictive maintenance, which offers 

major opportunities for Industry 4.0 and smart structures, systems, and components operation and 

maintenance, as they can allow reducing failures, increasing infrastructure usage, and reducing operation 

and maintenance costs, with tangible benefits of reduction of production downtime, risk and asset losses, 

and consequent increase of production profit [59]. All these are where machine learning and deep 

learning paradigms can be integrated into PHM systems to improve the main 3 tasks; anomaly detection, 

degradation level assessment, and prognostics, in PHM as described in Figure 10. The new deep 

learning technique has proven to be able to handle all these tasks but still needs more studies.  
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In this chapter, a summary of research works in PHM as part of the survey and address some of 

the challenges within this domain are provided. Additionally, an improved frameworks (initial framework 

mentioned in Chapter 1 section 1.1.4) for using Deep Learning in PHM applications will be proposed. 

2.2. Research Application of PHM Domain Using Deep Learning Algorithms 

Deep learning is considered a relatively new approach for research application in the PHM area, 

with promise to improve current outcomes of PHM. There are limited recent works that employed deep 

learning to PHM data. The majority of the works were published between 2014 to 2019. Table 2 provides 

a summary list of prognostics and some related diagnostics research using deep learning based on the 

application area.  

The brief discussions of the applied research for each deep learning algorithm are described 

next. However, there is one deep learning algorithm, namely, Deep Belief Networks (DBN), that is 

discussed in this chapter because of its long history of being studied. DBN is not considered to be a 

recent algorithm for the deep learning approach. The new trend of deep learning recently leans toward 

more on newly developing types of deep layers, such as CNN, RNN-LSTM, and hybrid methods. 

Additionally, the improved DBN has already appeared within the hybrid methods area. Most of the 

interesting improved versions of DBN will also be discussed in hybrid allocation approaches. More 

information on PHM research applications using DBN can be found in [32]. 

Comparing the advantage and limitations between these deep learning algorithms (DNN, CNN, 

and RNN-LSTM), it was discovered that DNN is more suitable to tackle single-dimensional constructed 

data. While CNN is suitable to deal with multidimensional data, such as image data, or data with 

two/three-dimension (2D or 3D) construction. This is because a convolutional technique that has been 

used in CNN layers. This is due to the fact that CNN can help to expand the feature of the data in the 

higher level to better recognize patterns from those higher-level features. It is worth to also notice that 

DNN is usually employed to extract the global feature from fault data, while, CNN has outstanding 

performance for local feature extraction. The local feature is feature from the higher dimension which 

usually represent what was obtained from the raw data. Though there is limited works that have used 

RNN-LSTM, it has been shown that RNN-LSTM is efficient at handling the degradation dataset with a 

timespan and can recognize and capture a repetitive degradation pattern related to time better than other 
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deep learning algorithms. Also, CNN and RNN-LSTM algorithms are more complex than DNN. This 

causes CNN and RNN-LSTM to require more training the final model and require more computational 

resources compared to DNN. Group of prognostics models using each deep learning algorithm are as 

described in the next subsection. This is to determine the research gap in each prognostics area and 

provide a general idea of where this work can contribute to the PHM community. 

2.2.1. PHM Models Using DNN 

In 2003, Samanta, B., et al. is one of the early adopters employing vanilla artificial neural network 

to estimate the fault state of the bearing elements. This work did not aim to improve the prediction 

accuracy but only aimed to set an example of how ANN can be employed (train and test) for fault 

diagnostic and prognostics application [60]. Ma, Y., et al. (2014), a proposed architecture for fault 

diagnosis of visual images and structured data based on the deep auto-encoder neural network [61]. 

Fink, O., et al. (2014) used multilayer feedforward neural networks based on multi-valued neurons for the 

railway turnout application, multilayer feedforward neural networks confirms the good performance in the 

long-term prediction of degradation and does not show accumulating errors for multi-step ahead 

predictions [62]. Weining Lu et al. (2015) developed a feature extraction method based on DNN using the 

bearing system as a case study [63]. Jingwei Qiu et al. (2015) proposed a full features extraction method 

using DNN combined with state analysis of the hidden Markov model to improve the diagnostics and 

prognostics analysis with the inseparable fault. This development leds to the innovation of the early-

warning fault model. This method can effectively deal with the multi attributes-multi features prognostics 

data [64]. Li, K., & Wang, Q. (2015) designed a multi-class classification model using the auto-encoder 

stacked neural networks. The proposed method can identify fault characteristics for various diagnosis and 

prognosis issues [65]. Yaguo, L., et al. (2015) employed DNN to mine available fault characteristics [66]. 

Sarkar, S., et al. (2015) used DNN to classify greyscale flame images from the combustion chamber of 

the gas turbine engine whether the engine is in a stable stage or unstable regions [67]. Feng Jia et al. 

(2016) used DNN to develop an intelligent method for fault diagnosis diagnosing through the prognostics 

of rotating machinery dataset [68]. Liu, H., et al. (2016) proposed a new rolling bearing fault diagnosis 

method using the sound signal. The modeling method was based on short-time Fourier transform and 

stacked sparse auto-encoder DNN [69].  Sun, W., (2016) presented a DNN approach for fault diagnosis 



 

27 
 

 

of an induction motor by utilizing the sparse auto-encoder to extract features [70]. Lei, Y., et al used two 

stages-two layers DNN to develop a classification model for fault diagnostic of bearing equipment based 

on the vibration signal data of the bearing system [71]. Zhou, F., et al. (2017) propose a multimode 

classification method based on deep learning by constructing a hierarchical DNN model for mode partition 

of bearing [72]. Ma, K., et al. (2017) trained auto-encoder DNN model using fiber-optic acoustic data from 

a pipeline system and developed a multi-step method for pipeline anomaly detection [73]. Jiang, G., et al. 

(2017) proposed a fault detector model based on an unsupervised learning method, denoising auto-

encoder deep network, which can capture nonlinear data patterns against noise and input fluctuation [74]. 

Bangalore, P., et al. applied an artificial neural network with Mahalanobis distance to develop a model for 

anomaly detection in wind turbine gearboxes [75]. Zhao, Z., et al. used an improved back propagation 

neural network as a modeling algorithm for predicting the RUL of multiple aircraft engines [76]. Xiao, H., 

et al. (2017) proposed a fault diagnosis framework using auto-associative neural networks for wastewater 

process. The framework has been validated by process data collected from two wastewater treatment 

plants with different dynamic characteristics [77].  In 2018, Chemali, E., et al. successfully employed DNN 

to predict the multi-state of charge or health state of the lithium-ion battery system [78]. In 2019, Tolo, S., 

et al., developed a robust on-line fault detection tool for the early accident detection for nuclear 

powerplant heavy-water reactor with artificial neural network architectures through the use of Bayesian 

statistics as a modeling algorithm [79]. Pliego, A., et al. (2019) used two real dataset from a wind turbine 

to train the false alarm model. Their proposed model was compared against the prediction result using 

fuzzy logic model [80].  

2.2.2. PHM Models Using CNN 

Generally, new configurations or new constructions of the proposed neural network layers, 

including CNN, is rather new and can help to improve some aspects of the models over the years. Each 

configuration of the CNN layer provides different end results that might rather better in terms of prediction 

accuracy, complexity, or robustness of the models. Chen Zhiqiang et al. (2015) suggested a configuration 

of a deep Convolutional Neural Network (CNN) for fault identification and classification. The experiment 

had shown that the suggested model had outstanding performance compared to base algorithms [81]. 

Babu, G. S., et al. (2016) proposed another deep CNN based on the regression approach. The proposed 
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CNN model was compared to three regression algorithms including Multi-Layer Perceptron (MLP), 

Support Vector Regression (SVR), and Relevance Vector Regression (RVR). Results showed that the 

proposed CNN could deliver better results across multiple datasets [82]. Janssens, O., et al (2016) 

proposed a feature learning model for condition monitoring based on convolutional neural networks to 

autonomously learn useful features for bearing fault detection from several types of bearing faults data 

such as outer-raceway faults and lubrication degradation [83]. Ince, T., et al. (2016) developed a fast and 

accurate motor condition monitoring model as an early fault-detection system using one-dimension CNN 

with an adaptive design for the feature extraction and classification of the motor fault detection in a single 

learning body [84]. Dong, H.Y., et al (2016) developed a small fault diagnosis method using CNN trained 

by vibration data under several different small fault patterns of front-end controlled wind generators [85]. 

Gibert, X., et al. (2016) used CNN to generate a multi-task learning framework for detecting possible 

different failure modes of railway track from its image [86]. Lu, C. et al. (2017) also employed hierarchical 

CNN to develop a fault classification model of rolling bearings. Their model reduced learning computation 

requirements in the temporal dimension, and an invariance level of working condition fluctuation and 

ambient noise was provided by identifying the elementary features of bearings [87].  Xia, M., (2017) 

developed a CNN-based approach for fault diagnosis of rotating machinery. This work took advantage of 

the CNN structure to achieve higher and more robust diagnosis accuracy [88]. Janssens, O, et al. (2017) 

investigated if and how CNN can be applied to the infrared thermal video data to automatically determine 

the condition of the servo-motor [89]. In 2018, Xiang Li, et al. applied CNN as a time window approach to 

generate a feature extraction model of C-MAPSS aero-engine data [90].  

2.2.3. PHM Models Using RNN-LSTM 

Xuhong, W., et al (2005) presented a diagonal RNN based approach for detecting fault in the 

induction motors. In this work, two diagonal recurrent neural networks were employed to detect turn fault 

of the induction motors. Turn fault is a type of electrical fault occur in the induction motor that might 

happen either in stator or rotor in the indiction motor. One was used to estimate the fault severity, the 

other was used to determine the exact number of faults turns [91]. In 2007, Qingpei Hu, et al. applied 

RNN for software reliability. RNN applied to model fault detection, and fault correction process within the 

software packet [92]. Oliver Obst (2014) deployed an RNN that can learn spatiotemporal correlations 
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between different sensors and maked use of the learned model to detect faulty sensors within a system 

[93]. Yuan, M. et al. (2016) applied the RNN-LSTM network for fault diagnosis and estimation of the 

remaining useful life of aircraft engines. Results showed that the performance of the LSTM model with 

modifications outperformed other peer algorithms [94]. Tim de Bruin, et al. (2016) used LSTM to learn 

dependencies within railway track circuits data to timely detect and identify the faults in railway track [95]. 

Guo, L., et al. (2017) proposed a data-driven model using RNN for remaining useful life prediction of 

bearing dataset [96]. Zhang, S. et al. (2017) develop a method for data-based line trip fault prediction in 

power systems using LSTM compared against support vector machine [97]. Zhang, Y. et al. (2017) used 

a simple one-layer RNN-LSTM to construct the RUL prediction model for lithium-ion battery from NASA 

Ames Prognostics Center of Excellence (PCoE) and compare the result with Support Vector Machine 

[98]. In 2018, Zhang, Y. et al. used RNN-LSTM to make predictions of the remaining useful life of the 

lithium-ion battery dataset. The experiment demonstrated that LSTM was able to capture the underlying 

long-term dependencies or variables among the degraded capacities lithium-ion battery datasets. The 

experiment was contrasted to the support vector machine model, the particle filter model, and the simple 

RNN model for RUL prediction. RNN-LSTM was, again, outperformed every other baseline models [99]. 

Nguyen, K., et al. developed the prognostics step, based on the Long/Short-Term Memory network, 

oriented towards the requirements of operation planners. Their approach provided the probabilities that 

the system can fail in different time horizons to decide the moment for preparing and performing 

maintenance activities. The proposed framework was validated on a real application case study using the 

C-MAPSS aircraft dataset [100]. Again, a popular C-MAPSS aircraft dataset has been used by da Costa, 

P., et al. (2020) to develop the RUL prediction model. In this work, a Domain Adversarial Neural Network 

(DANN) approach was applied to training LSTM models. The results showed that their method provided 

more reliable RUL predictions than models trained only on source data for varying operating conditions 

and fault modes [101]. Recently in 2021, Shi, Z., et al. proposed a new dual-LSTM framework ideology to 

predict the life span of an aircraft engine using a popular C-MAPSS dataset. They used the LSTM 

network in two training states (change point prediction state and prediction state.) The result using their 

framework has proven to achieve higher precision compared to the existing benchmark results using the 

traditional LSTM framework [102]. 
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2.2.4. PHM Models Using Hybrid Deep Learning Layers  

Wang, P., et al. (2015) improve the accuracy of fault recognition by developing a new 

identification method called, PDBN, which is a hybrid method that combines the particle swarm 

optimization (PSO) algorithm with the Deep Belief Network (DBN) [103]. Shao, H., et al. (2015) employed 

the optimization DBN model for fault diagnosis and prognosis, where PSO was additionally used to 

decide the optimal structure of DBN. The results confirmed that the suggested hybrid method was better 

performed in terms of accuracy when compared to SVM, ANN, and Boosting methods [104]. Zhiqiang, C., 

et al. (2015) presented multi-classifier models using a multi-layer neural network (MLNN) for fault 

diagnosis of vibration signals. The new learning architecture using Deep Belief Network (MLNNDBN) was 

proposed and tested in their work [105]. Chuan Li et al. (2015) experimented on a multimodal deep 

support vector classification (MDSVC) model to diagnose faults by employing Gaussian-Bernoulli Deep 

Boltzmann Machine (GDBM) [106]. Sanchez et al. (2016) addressed the use of the Deep Random Forest 

Fusion (DRFF) method for fault diagnosis and prognosis performance of gearboxes. They employed two 

independent DBNs to extract the features of an acoustic emission sensor and an accelerometer. This was 

an improvement of the vanilla random forest method [107]. Jha, D.K., et al. (2016) used CNN to extract 

spatial features from individual combustion wind turbine images and employed a Gaussian process to 

model the temporal dynamics of the spatial features extracted from CNN [108]. Zhao, L. et al. (2017) 

combined the CNN and LSTM to generate Machine Health Monitoring Systems (MHMS) model. In this 

work, Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) have been particularly 

designed to handle raw sensory data from MHMS. The first step of CBLSTM was to use a regular CNN 

layer to exploit local features from raw data that were robust and informative features. Next was using a 

bi-directional LSTM layer to encode temporal information. In this work, LSTM was used to capture long-

term dependencies and sequential data, while bi-directional network layer is capable to capture the 

information within the past and future contexts from the raw data [109] Zhao, R. et al. (2017) employed 

multiple extensions of RNN, including, Gated Recurrent Units (GRU), and Bidirectional Gated Recurrent 

Units (BiGRU), against their proposed local featured-based Gated Recurrent Units (LFGRU), again, for 

Machine Health Monitoring Systems. LFGRU proposed in this work was a hybrid approach that combined 

handcrafted feature design with automatic feature learning for machine health monitoring. First, features 
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from windows of input time series were extracted. Then, an enhanced bi-directional GRU network was 

designed and applied to the generated sequence of local features to learn the representation. A 

supervised learning layer was finally trained to predict machine conditions [109]. Wang, S., et al. (2018) 

used convolutional neural network-based hidden Markov models (CNNHMMs) to classify multi-faults in 

mechanical systems. In this work a CNN and the t-distributed stochastic neighbor embedding (t-SNE) 

technique was first employed to learn data features from raw vibration signals data, then, HMMs was 

employed as a  tool to classify faults [110]. Ellefsen, A., et al. (2019) used Convolutional Neural Network 

and Long-Short Term Memory with the utilization of Genetic Algorithm (GA) for fine-tuning hyper-

parameters to generate the RUL prediction model for C-MAPSS aircraft engine data [111]. Li, X., et al. 

(2019) also deployed a hybrid CNN and LSTM layer to implement the multi-scale feature extraction model 

for bearing data [112]. 

2.3. Some of the Challenges of Deploying Deep Learning for PHM Applications 

As mentioned in the previous chapter, prognostics aim at predicting RUL, i.e., the time left before 

the system or components can no longer be able to perform its intended function. This prediction fits into 

a regression scheme when deploying deep learning. However, many challenges remain and are still in 

discussion within the PHM communities. The challenges arise from the complexity of the physics, the 

data available, and requirements to the PHM for practical solutions. These are only the challenges within 

the applications themselves, some of which, are directly related to the challenges of using deep learning 

in the PHM domain as well.  

After a literature survey, we detail such challenges into three categories: 1) Data challenges, 2) 

Uncertainty and 3) Difficulty to train models.  This section will go through these challenges. Additionally, 

we also propose one of the possible new frameworks for deploying deep learning in the PHM domain 

which can possibly address these issues based on those challenges. 

2.3.1. Data Challenges  

Prognostics is concerned with the prediction of the future evolution to the failure state. It involves 

the processing of data to predict the future degradation and functional attributes, based on estimation of 

failure probability and RUL. The prognostic outcomes are used for the health management of which, 

using the RUL prediction to decide on and actuate operational actions and maintenance interventions. 
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Table 2. Summary of prognostics application research using deep learning. 

 

It is important to note there are uncertainties within the data available from the sensors. For 

example, the uncertainties in the data collected from sensors, such as noise, interference of the 

environment, some operational errors, and etc. affect the degradation state prediction. This makes it 

practically impossible to precisely predict the future evolution of the state of health and it is necessary to 

account for the different sources of uncertainty that affect prognostics [113].  

Algorithm Application field Reference 

DNN 

Bearing components 
Power transformers 
Railway 
Pipeline monitoring system 
Spacecraft 
Multistage gear system  
The combustion chamber of a gas turbine  
Rotating machinery 
The sound signals from the rolling bearing 
Induction motor 
Vibration from bearing equipment 
Wind turbine  
Gearboxes in wind turbine 
Aircraft engine 
Wastewater process 
Lithium-ion battery 
Nuclear powerplant reactor  

[60, 63, 72] 
[61] 
[62] 

[64, 73] 
[65] 
[66] 
[67] 
[68] 
[69] 
[70] 
[71] 

[74, 80] 
[75] 
[76] 
[77] 
[78] 
[79] 

CNN 

Gearboxes  
Aircraft engine  
Rolling bearing  
Motor  
Front-end controlled wind generator 
Railway track inspection 
Rotating machinery 
Servo-motor 

[81] 
[82, 90] 
[83, 87] 

[84] 
[85] 
[86] 
[88] 
[89] 

RNN-LSTM 

Induction motor 
Software reliability 
Sensor system 
Aircraft engine 
Railway track circuits 
Bearing 
Power system 
Lithium-ion battery 

[91] 
[92] 
[93] 

[94, 100-102] 
[95] 
[96] 
[97] 

[98, 99] 

Hybrid 

Industrial fault  
Bearing 
Gearbox 
Wind turbine 
Computer Numerical Control (CNC) milling machine 
Rolling bearing  
Aircraft engine 

[103] 
[104, 112] 
[105-107] 

[108]  
[109] 
[110] 
[111] 
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Traditional fault prognostics methods face the challenge of dealing with incomplete and noisy 

data collected at irregular time steps in correspondence with the occurrence of triggering events in the 

system. For example, for monitoring the degradation and failure processes of bearings in large turbine 

units, signal measurements collection (e.g., vibration signals measured) is only triggered by abnormal 

behaviors of the units, such as large noise and anomalous vibration behavior. These “snapshot” datasets 

are often encountered in industrial applications, dominated by the necessity of cost-saving in storing and 

managing the databases, and of reducing energy consumption and bandwidth resources.  

Because failure events are rare event-based datasets, these datasets are dominated by missing 

measurements, where the values of all signals are often missing at the same time. With these 

characteristics, traditional methods for missing data management, such as case deletion [114], imputation 

[115-117], and maximum likelihood estimation [118], are difficult to apply. For instance, case deletion 

methods discard patterns, whose information is incomplete, they are not useful in the case of event-

based datasets where the pattern is either present or absent for all signals [118]. Imputation techniques, 

which are based on the idea that a missing value of a signal can be replaced by a statistical indicator of 

the probability distribution generating the data, such as, the signal mean value [119] or a value predicted 

by a multivariable regression model [114], have been shown inaccurate in case of large fractions of 

missing values in the dataset [120, 121]. Maximum Likelihood methods use the available data to identify 

the values of the probability distribution parameters with the largest probability of producing the sample 

data [120]. They normally require the Missing At Random (MAR) assumption [122]. Few research works 

have considered fault prognostics in presence of missing data. A model based on Auto-Regressive 

Moving Average (ARMA) and Auto-Associative Neural Networks (AANN), has been developed for fault 

diagnostics and prognostics of water process systems with incomplete data [77]. An integrated Extreme 

Learning Machine (ELM)-based imputation-prediction scheme for prognostics of battery data with missing 

data [117] and a hybrid architecture of physics-based and data-driven approaches have been proposed to 

deal with missing data in a rotating machinery prognostics application [123]. In the medical field, a 

Bayesian simulator has been used to generate missing data for developing prognostics models [124] and 

a Multiple Imputation approach has been embedded within a prognostics model for assessing overall 
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survival of ovarian cancer in presence of missing covariate data [125]. It is important to note that all these 

methods are based on the two successive steps of missing data reconstruction and prediction.   

Advancements in technology and new methods are still needed to enable predicting the RUL 

based on measurements collected when only triggering events occur, such as system faults or extreme 

operational conditions, and providing an estimate of the uncertainty affecting the RUL prediction. As an 

example, M. Xu, et al. [126] had developed a method based on Echo-State Networks (ESNs) to directly 

predict the RUL without requiring reconstructing the missing data. ESNs are considered to use for the 

experiment because of their ability to maintain information about the input history. The main difficulty is 

that, contrarily to the typical applications of ESNs, the time intervals at which the data become available 

are irregular. Two different strategies have been considered to address the event-based data collection. 

In one strategy, the ESN receives an input pattern only when an event occurs. The pattern is formed by 

the measured signals and the time at which the event has occurred. In a second strategy, the reservoir 

states are stimulated at each time step. If an event has occurred, the reservoir states are excited both by 

the previous reservoir states and the measured signals, whereas, if an event has not occurred, they are 

excited only by the previous reservoir states. By so doing, the connection loops in the reservoir allow 

reconstructing the dynamic degradation behavior at those time steps in which events do not occur. Multi-

Objective Differential Evolution (MODE) algorithm based on a Self-adaptive Differential Evolution with 

Neighborhood Search (SaNSDE) [127] is used to optimize the ESN hyper-parameters. The Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) [128] is, then, used to select the optimal 

solution from the obtained Pareto solutions. Furthermore, a bootstrap aggregating (Bagging) ensemble 

method is applied to improve the RUL prediction accuracy and estimate the RUL prediction uncertainty. 

Given that ESNs cannot be fed by random sequences of patterns, the traditional Bagging sampling 

mechanism used to create the bootstrap training sets has been modified. In the proposed solution, the 

bootstrap training sets are obtained by concatenating entire run-to-failure trajectories, randomly sampled 

with replacement. The benefits of the proposed methods are shown by application to the prediction of the 

RUL of a sliding bearing of a turbine unit. 
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2.3.2. Uncertainty  

Uncertainty is intrinsically present in the PHM tasks of detection, diagnostics, and prognostics, 

and may adversely affect their outcomes, so to lead to an imprecise assessment of the state and 

prediction of the behavior of such systems, which could lead to wrongly informed system health 

management decisions with possibly costly, if not catastrophic, consequences. For practical deployment, 

it is necessary to be able to estimate the uncertainty and confidence in the outcomes of detection, 

diagnostics, and prognostics activities, for quantifying the risk associated with the PHM decision-making 

on the operation of engineering systems. Despite the recognition of the importance of uncertainty in PHM 

[129], work is still needed to concretely address the impact of uncertainty on the different PHM tasks and 

to effectively manage it [130]. Not only uncertainties from the occurrence of abnormally from PHM tasks 

itself but also the uncertainties from the data collected as mentioned in the previous section. 

The challenge comes from the fact that there are different sources of uncertainty that affect PHM, 

whose interactions are not fully understood and, thus, it is difficult to systematically account for them in 

the PHM tasks. While some sources are internal, others are external, and all must be accounted for in the 

different activities of PHM. There is uncertainty in the physical behavior of ones’ system and epistemic 

uncertainty in the model of them, which developed based on sensors data, and the associated 

parameters. As mentioned earlier, there is uncertainty in the sensor’s measurements and their processing 

tools. For the prognostics task, there is also uncertainty on the future system’s operation profile and state 

evolution. 

Given the relevance of uncertainty in the PHM tasks, it becomes necessary to develop systematic 

frameworks to account for such uncertainty in practical applications, to enable the robust verification and 

validation of the solutions developed, concerning the requirements for their use for decision-making and 

their contribution to the risk involved in such decisions. Such frameworks must enable the systematic 

identification, representation, quantification, and propagation of the different sources of uncertainty. 

Therefore, any PHM outcome is also provided with uncertainty, which needs to be considered for robust 

decision-making [131]. 
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2.3.3. Difficulty to Train Models  

Even though the deep learning approach can be perfectly fit for the PHM task, there are a few 

potential issues that could cause difficulties for deep learning to be implemented in current prognostics 

works. The most significant issue that has been addressed in the literature so far is the complexity of 

training the deep network. As commonly known, the goal of training the network is to enable its learning 

behavior so that the network can capture the pattern data and perform the prediction task effectively. The 

shallow network was found to be easier to be trained compared to the deep network. For most cases, the 

deep network is unable to learn or recognize the pattern of data with the simple training scheme while the 

shallow network can learn when the same task is assigned. To solve this issue, it has been suggested 

that one extra step might need to be performed before effectively generating the prediction model with the 

deep network.  This step has been suggested in the literature called “unsupervised pre-training” [49] 

which is the method to train (or pretrain) the training data without using the target variable prior to the 

actual model training phase. This is to ensure that the deep architecture network can adaptively learn and 

successfully perform the prediction task effectively. It has also been believed that the pre-training process 

can help to improve the robustness of deep learning architecture as well as its performance, especially, 

when increasing the depth of the network. The result from the literature shows that the increasing depth 

of the network also causes a higher probability of finding poor local minima [49]. The pre-training step can 

solve this issue and gives consistently better generalization to the deep network. The better 

generalization is also believed to help when some of the new input attributes of the prediction task are not 

within the range of the training data which is a common problem found in PHM data as mentioned in the 

previous section as well. 

Another issue found when employing a deep learning algorithm is the instability of prediction 

results. This can be observed when the prediction result has a wide range of distribution. The unstable 

behavior of the prediction results is believed to be caused by the randomness of initialization when the 

deep layer model is constructed. It has also been shown in the experiment result that the more layers 

added to the deep architecture, the more unstable results can occur. This is the reason that most of the 

work that employs deep learning often reports the average results or best result from the final output 

distribution. This makes the deep learning model become harder to evaluate or compare to other data 
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mining algorithms. In other words, we may consider this as one of the modeling “Uncertainties” mentioned 

in the previous section as well.  

Currently, there is a very limited solution to improve algorithm stability. One approach is to 

perform a stability training approach [132]. However, this additional step of learning may not be favored in 

the PHM area. To solve some issues in the deep learning model, new steps of the modeling framework 

must be introduced. The uncertainty quantification of training attributes or modeling parameters might be 

the starting point of the study.  

 

Figure 11. Proposed prognostics framework using a deep learning algorithm.  
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2.3.4. The Proposed Framework for Deploying Deep Learning in the PHM Domain 

Our ultimate goal is to introduce a general universal framework for using deep learning in the 

prognostics domain and also, to have an organized procedure to generate a deep learning model for 

prognostics data in the future. One of the possible new frameworks is as illustrated in Figure 11. 

Preprocessing, feature engineering, and pre-training steps have been emphasized in this framework. 

These three steps are commonly performed when training a deep learning network for prognostics 

applications. However, this is only one example of a deep learning framework. More studies must be 

made, and new steps are added to address all aforementioned issues.   

Another minor challenge is the unity of PHM performance metrics. As mentioned in the previous 

chapter, there are so many performance metrics used in PHM works. However, there are no general 

metrics aimed to measure the effectiveness of deep learning for prognostics data that can be used for all 

and every prognostics application. It might be true that the error measurements have already been used 

to evaluate the accuracy of the deep learning model for PHM but there is still no direct measurement for 

generalization, robustness, and stability of the deep learning model. To precisely evaluate the model, new 

measurement metrics might also be introduced to the deep PHM model as well as a new framework in 

which all angles of performance measurements are considered. 

2.4. Chapter Summary 

Degradation patterns prediction and recognition play a great deal in PHM application. Many 

frameworks and algorithms have been introduced over the years in PHM studies. There is still no one 

perfect algorithm that can guarantee to deliver the best result for every prognostic application. However, 

the deep learning approach is believed to be able to outperform many conventional prediction algorithms, 

which can be extended to PHM applications. Although deep learning seems to be a promising approach 

for prognostics applications, there are still some challenges and issues (such as difficulties in training the 

deep learning algorithms) that should be addressed and studied more. This chapter gathered useful initial 

information and highlights some key issues of deploying deep learning in PHM areas. We believe that 

addressing these issues will engage the PHM community to employ more deep learning in the PHM 

domain from this point onwards. 
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3. A DATA-DRIVEN PREDICTIVE PROGNOSTICS MODEL FOR 

LITHIUM-ION BATTERIES BASED ON A DEEP LEARNING 

ALGORITHM 

3.1. Data-Driven Prognostics Approach for Lithium-ion Battery 

Historically, nickel-cadmium batteries were generally the only common electrical power source for 

various portable equipment, until nickel-metal hybrid and lithium-ion batteries were developed in the 

1990s [133]. Currently, lithium-ion battery technology is rapidly growing, and it is the most reliable 

portable electrical power source for numerous appliances. Lithium-ion batteries are extensively used in 

both high and low-power products, such as hybrid-motor engines, electric cars, smartphones, tablets, and 

laptops. To date, lithium-ion technology is considered to be a standard electrical storage system, and its 

performance continues to improve. The main focus of the ongoing technology remains to improving the 

lithium-ion system in terms of both its performance and reliability. The following are the main advantages 

of lithium-ion batteries: (1) high energy density (up to 23–70 Wh/kg), (2) high efficiency (~90%), and (3) 

long life cycle (provides 80% capacity at 3,000 cycles) [134].  

To ensure that the lithium-ion battery system performing reliably, there must be a method that 

helps track and determine the state of health (SoH) of the battery system, along with its RUL (Remaining 

Useful Life). This method provide insight when the battery should be replaced. This type of evaluation 

falls into the PHM paradigm. 

3.1.1. Overview of Data-Driven Prognostics  

Similar to other applications within the PHM paradigm, the PHM of batteries must be included as 

part of the CBM (Condition-Based Maintenance) plan of the system. The CBM plan is considered a 

preventive strategy, which means that maintenance is be performed only when the need arises. This 

need can be determined by continuously evaluating the health status of a particular system’s 

components, or the health state of the system as a whole [135]. CBM has included two major tasks: 

diagnostics and prognostics. Diagnostics is the process of the identification of faults and part of the 

current health status of the system, which is described as a SoH, whereas prognostics is the process of 

forecasting the time to failure. The time left before observing a failure is described as the RUL of such a 
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system [136]. To avoid catastrophic failure, the maintenances must be performed when the system is 

operational. These types of maintenance require early plans and preparation [22]. Thus, CBM can be 

included as part of the system’s operation, especially for the critical systems. The prognostic of the 

system is a crucial factor in CBM.  

The prognostic process additionally involves two phases. The first phase aims to assess the 

current SoH. Terms that are usually used to describe this phase in most of the literature are severity 

detection and degradation detection, which can also be considered under diagnostics. Classification or 

clustering techniques can be utilized to perform tasks such as pattern recognition in this phase. The 

second phase aims to predict the failure time by forecasting the degradation trend, and by identifying the 

RUL. Trend projection, tracking techniques, or time series analysis are included in this phase. Most of the 

articles regarding prognostics analysis only consider the first phase [137]. This paper aims to construct 

and analyze both SoH and RUL, in which focus is made on both the first and the second phase of 

prognostics for the battery system. 

Table 3. Difference between data-driven and physics-based models for PHM. 

 

Generally, there are two existing major approaches for prognostics evaluation; the data-driven 

model, and physics-based models. Data-driven methods require adequate data or samples from systems 

that were run until failure, while physics-based methods evaluate the system’s failures through the 

physics of failure progression. Both the data-driven and physics-based models also require different input 

 Data-Driven Model [24] Physics-Based Model [25, 26] 

Based on 
The empirical lifetime data and 
the use of previous data of the 
operation of the system 

Physical understanding of the physical rules 
of the system, the exact formulas that 
represent the system  

Advantages 

The real behavior of the complex 
physical system is not required. 

Higher accuracy because the model is based 
on an actual (or near-actual) physical system 

Models are less complex, easier 
to employ in a real application 

The model represents a real system, the 
model can be observed and judged in a more 
realistic manner 

Limitations 

Needs a large amount of 
empirical data to construct a high 
accuracy model 

Highly complex requires extensive 
computational time/resources, which may not 
be very suitable for employment in real-world 
applications 

The models do not represent the 
actual system, it requires more 
effort to understand the real 
system behavior based on the 
collected data  

Limitations in modeling, especially in cases 
of large and complex systems with non-
measurable variables 
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and apply to different scenarios. Both have different advantages and limitations. Table 3 summarizes the 

information on the differences and advantages of each model. 

One of the data-driven model approaches for prognostics and diagnostics mentioned earlier in 

the previous chapters are machine learning approaches, which will be used to generate the prognostics 

model for lithium-ion battery used in this chapter. 

3.1.2. Prognostics of the Lithium-ion Battery 

The lithium-ion battery data used in the prognostics analysis of this work was  from the NASA 

Ames Prognostics Center of Excellence (PCoE) data repository [138]. This dataset contains the test 

results of commercially available lithium-ion 1850-sized rechargeable batteries, and the experiment has 

been performed under controlled conditions in the NASA prognostics testbed [139]. 

Experimental data were obtained from three different lithium-ion battery-operational test 

conditions: charge, discharge, and impedance. All experiments were performed at room temperature. The 

charge was performed at a constant current of 1.5 A until the voltage reached 4.2 V, and then it continued 

charging at a constant voltage until the charge current dropped to 20 µA. The discharge was also 

performed at a constant current of 2 A until the voltage dropped to 2.7 V, 2.5 V, 2.2 V, and 2 V. These 

same tests were performed for batteries No. 05, No. 06, No. 07, and No. 18. The impedance test was 

completed using EIS (Electrochemical Impedance Spectroscopy) frequency adjustment from 0.1 kHz to 5 

kHz. Repeatedly performing charge and discharge tests in multiple cycles accelerated the aging 

characteristics of the batteries. This aging effect of the lithium-ion battery is related to physics-based 

model established in work by W. He, et al [140]. The tests were stopped when the batteries reached the 

end of life criteria, which was defined as a 30% loss of the rated charge capacity. 

Figure 1 is the schematic diagram of the tested battery. The parameters of the schematic diagram 

included the Warburg impedance (RW) and the electrolyte resistance (RE), the charge transfer resistance 

(RCT), and the double-layer capacitance (CDL). The two parameters RW and CDL showed a negligible 

change over the aging process of the battery, and these were excluded from further analysis [141]. Figure 

13 shows a typical response of the current and voltage behaviors during the charging and discharging 

cycles of battery No. 05.    
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In order to evaluate the prognostics of the battery, the SoH of the battery must be defined. 

Therefore, it is important to understand the clear definition of SoH, as the SoH will be the main prediction 

attribute of the proposed data-driven model, along with RUL. It is also important to note that in this work, 

all attributes from the test data were used as training attributes.  

 

Figure 12. The schematic diagram of the tested battery. 

The SoC of the battery indicates the reliability of the battery system. In the literature, the ratio 

between the available amount of charge and the maximum amount of charge is commonly referred to as 

the SoC [142]. In some cases, the available amount of charge can also be replaced by the rated capacity 

(or nominal capacity) provided by battery manufacturers. The SoC can be mathematically expressed as: 

𝑆𝑜𝑐 =  
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐶𝑁
                                                                     (4)                                                                                                                       

where 𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 represents the available amount of charge and 𝐶𝑁 represents the rated capacity from 

battery manufacturers. 

However, there are problems using SoC as battery health measurement. First, the only way to 

derive the rated capacity of a battery is through experiments under a constant discharge rate within a 

controlled experimental environment. This reason explains the difficulty in using a rated capacity as a 

reference point in real-world applications [143]. As all conditions must be controlled in order to derive the 

capacity directly, is difficult to measure the capacity data from the battery sets. Second, SoC is not 

considered to have a strong correlation with battery capacity. This is important to note for making a long-

term estimation of the battery’s health because the capacity is the main indication of the battery’s health, 

which fades over time.  
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(a) (b) 

  

(c) (d) 

Figure 13. The current and voltage during the discharging and charging of battery No. 05.  
(a) Current of discharge, (b) Current of charging, (c) Voltage of discharging, and (d) Voltage of 

charging. 
Many alternative SoC definitions have been studied to address the aforementioned issues. One 

definition is practical state-of-charge, or SoCN [144]. This definition uses the maximum practical 

operational capacity, instead of the manufactured rated capacity, as the maximum amount of charge. 

SoCN can be expressed as: 

𝑆𝑜𝐶𝑁 =  
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝐶 𝑚𝑎𝑥,𝑝
                                                                 (5) 

where 𝐶𝑚𝑎𝑥,𝑝 represents the maximum practical capacity as measured from the operating battery at the 

current time. 𝐶𝑚𝑎𝑥,𝑝 may fade over time, because of the effect of battery aging. It is important to note that 

𝐶𝑚𝑎𝑥,𝑝 can only be measured directly from the battery while it is operating. 

For batteries, SoH can be generally defined as: 

𝑆𝑜𝐻 =  
𝐶𝑚𝑎𝑥,𝑝

𝐶𝑁
                                                                (6) 
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One of the most important tasks in prognostics health management of a battery is to accurately 

estimate the 𝐶𝑚𝑎𝑥,𝑝, as 𝐶𝑚𝑎𝑥,𝑝 is required in both Equations (5) and (6) for SoC and SoH, respectively. 

The battery dataset used in this study, contained all the aging information of the battery, and the battery 

SoH was calculated from cycle 0 to cycle 168. As shown in Figure 14, the predicted SoH of battery No. 05 

exponentially degraded as the cycle number increased. The acceptable predicted results must be within 

the 95% confidence bound [145]. The regression model for SoC and SoH estimation, which aimed to 

perform similar tasks, was also proposed by S. C. Huang, et al. [146]. This work introduced a new 

variable called, unit time voltage drop or V′ to directly indicate the voltage drop of the battery cell as the 

prediction variable. This work delivered very interesting results. However, it is not within the scope of our 

deep learning approach. The work presented here aimed to use only existing test variables to train and 

generate the deep learning model for the SoH and RUL estimation of lithium-ion batteries based on 

equation (4).  

 

Figure 14. Predicted state of health of battery No. 05. 

To evaluate the performance of the prediction model in this work, the root means square error 

(RMSE) was used for SoH, and the error of RUL cycle (ERUL) was employed for RUL. The following are 

the formulas of RMSE and ERUL: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑[𝑥𝑖 − �̅�𝑖]

2

𝑛

𝑖=1

 

(7) 

𝐸𝑅𝑈𝐿 =  |𝑅𝑈𝐿𝑟𝑒𝑎𝑙 − 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| (8) 
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where 𝑛 is the number of prediction datasets, 𝑥𝑖 is the real value of testing and monitoring the battery 

capacity, and �̅�𝑖 is the prediction value. RMSE and ERUL are used as the key performance measures of 

the performance of all traditional machine learning approaches and the proposed deep learning algorithm. 

RMSE and ERUL will be calculated within the testing phase of the modeling framework (as in Figure 9 from 

Chapter 1). 

3.2. Data-Driven Predictive Prognostics Model for Lithium-ion Batteries Based on A Deep Learning 

Algorithm 

Data-driven PHM models, require large empirical data to create a high accuracy model of the 

systems. Traditional machine learning methods are called ‘shallow’ learning models. To compare deep 

learning or neural network-based algorithms to traditional ‘shallow’ learning algorithms, this work use 

shallow learning modeling algorithms with the lithium-ion battery data as well. The results will be 

illustrated later in this chapter. The algorithms used, include: Linear Regression (LR) [147] with the Akaike 

Information Criterion (AIC) [148, 149], k-Nearest Neighbors algorithm (k-NN) [150], SVM [151], and one 

layer ANN [7, 28-31].  

3.2.1. Related Works   

There have been many advancements from various disciplines to the PHM of lithium-ion batteries 

using various methods using both physic-based and data driven approach. Downey et al. proposed a 

physics-based prognostic approach that considered multiple concurrent degradation mechanisms [152]. 

Susilo et al. studied the estimation of the lithium-ion battery SoH with the combination of Gaussian 

distribution data and the least square support vector machines regression approach [153]. Mejdoubi et al. 

employed the Rao–Blackwellization particle filter to evaluate the aging condition of lithium-ion batteries, 

and to estimate the SoH and RUL of the battery system [154]. Bai et al. developed a generic model-free 

approach based on ANN and the Kalman filter, to help to improve the health management system of the 

lithium-ion battery [142]. Other filtering techniques, for example, particle filtering [155] or its variation of 

the unscented particle filtering technique [156] had been employed in the PHM aspect for lithium-ion 

batteries. Recently, Li et al. proposed the Gauss-Hermite particle filter (GHPF) technique for battery state-

of-charge estimation, which is another extension of the particle filter technique, which not only improves 

the estimation accuracy but also reduces the number of sampling particles, which reduces the complexity 
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of the algorithm [157]. Another interesting work also aims to predict the health state of the lithium-ion 

battery, as proposed by Wang et al. This work employed the Brownian motion technique, which is the 

combination of the Kalman filter and the Gaussian distribution state-space technique, to determine battery 

prognostics based on the drift coefficient [158]. 

3.2.2. Deployment of Deep Learning for Prognostics Model of Lithium-ion Battery Data 

In the diagnostics and prognostics fields, the developing trend of employing the deep learning 

approach has evolved from fault detection and failure diagnosis to degradation pattern recognition and 

time series predictive analysis. The modeling methods have grown from using only a single algorithm 

such as DNN, CNN, and RNN, to the Hybrid model (or a combination of multiple layer types and 

traditional algorithms, as previously discussed in Chapter 2. The application range of using deep learning 

has also been expanding continuously over the years, from machinery, electrical, and electronics 

systems, to wind-power and high-end aerospace equipment. 

For the experiment in this chapter, only DNN was employed to model the SoH and RUL of the 

battery data compared to traditional machine learning algorithms. Each of these deep learning algorithms 

has its own advantages and limitations. It has reported that ANN and DNN are more suitable for tackling 

one-dimensional data. CNN is able to make predictions relative well with multidimensional data, as it has 

adopted types of convolutional techniques. RNN is suitable for applications that deal with time series or 

time dependent data, and DNN is usually employed for extracting global features from fault data, which 

will be suitable for the lithium-ion battery data. Additionally, as aforementioned, the layers of CNN and 

RNN are more complex than those of DNN. Therefore, CNN and RNN require additional learning, which 

is their major drawback. These reasons make DNN more suitable for employment in real applications for 

most cases. 

The prognostic model of the battery data using DNN was developed based on the basic 

framework from Chapter 1 (Figure 9). The experiment with the data was constructed by varying the 

number of dense layers in DNN. In this experiment, the number of hidden layers was varied to analyze 

the SoH of battery data until it delivered the minimum RMSE error. In addition, the dropout layer was also 

applied as the last layer before the output layer, to prevent the “overfitting” issue in the model. When the 

overfitting occurs, this means the model tend to “remember” instead of “learning” the pattern from the 
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actual data. Dropout is applied to the neural network so that some information is randomly removed and 

to prevent the network to copy the same information from the original data. The dropout layer is applied to 

the last layer of DNN, to randomly drop neurons during the model training, as shown in Figure 15. Each 

neuron is retained with a fixed probability, p, which is independent of other neurons. The neural network 

after being sampled, the so-called “thinned” network, will contain only the surviving neurons (Figure 15b). 

By training a neural network with some dropouts, the whole network can be trained faster than 

training regular networks without dropout, because the network is thinned and requires less training time. 

The network then becomes less sensitive to some specific weights. This results in the network being 

better at generalization. In this work, a p-value of 0.25 is applied to the network, as suggested, to be the 

optimal dropout rate for the network to avoid overfitting but to still maintain the best prediction accuracy 

[159].  

In this section, an analysis of battery No. 06, No. 07, and No. 18 degradation datasets obtained 

from the NASA Ames Prognostics Center of Excellence (PCoE) database [138] was studied to validate 

the effectiveness of using the DNN approach. The dataset of battery No. 05 was used as a training 

dataset for all algorithms.  

 

(a)                                                 (b) 

Figure 15. Dropout in deep neural network model.  
(a) A standard network with two hidden layers, and (b) the network after applying dropout. 

3.2.3. The Proposed Deep Neural Network Prognostics Model for Lithium-ion Battery 

By varying the number hidden layers of DNN from two layers to four layers, the RMSE results 

from Table 2 show that the best formation of DNN consists of three stacked dense or fully-connected 

hidden layers, with the Rectifier Linear Unit or ReLU activation function described as: 
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𝑓(𝑥) =  𝑥+ = max (0, 𝑥)    (9) 

where 𝑥 is the input to a neuron, and + represents the positive part of its arguments.     

The proposed model architecture is illustrated in Figure 16. Additionally, it is important to note that 

there are some prediction fluctuations in the DNN model that are implemented by using the Keras library 

[160], which is the open-source neural network library that is employed in this experiment. To show the 

level of prediction fluctuations, each DNN experiment was performed with 10 trials then the reported RMSE 

was averaged. The RMSE results of the final model (three dense layers) are as shown in Table 4. The best 

result from the three layers trials was chosen to be the final model. 

Table 4. RMSE results of each stacked hidden layer model. 

 

 

 

Table 5. RMSE results of 10 trials for a model with three stacked hidden layers. 

 

The preliminary model of deep learning for PHM of the lithium-ion battery was developed, based 

on the deep neural network. The model architecture is illustrated in Figure 16. The objective of the 

experiment is to prove that the deep learning algorithm outperformed other traditional machine learning 

algorithms, and to provide a complete benchmark of SoH and RUL prediction for the lithium-ion battery.  

3.2.4. Results for Model’s SoH Estimation 

In this experiment, the discharge data for all 164 cycles and 11,345 sample points from battery 

No. 05 were used for training. The SoH was calculated from the initial capacity at 1.9 AHr. Figure 17a–c 

shows the SoH estimation performance for batteries No. 06, 07, and 18, using k-NN, LR, SVM, ANN, and 

DNN respectively. The x-axis represents the cycles, and the y-axis represents the SoH. The triangle 

marked with a light blue line curve shows the true SoH, and the balance of the curves show the predicted 

SoH by the k-NN, LR, SVM, ANN, and the developed DNN.  

It is important to note that the SVM formulation used in this work was based on the radial basis 

kernel function, with a regularization parameter of 200, and tolerance-of-loss function of 0.1. LR employed 

No. of Hidden 
Layers 

RMSE 

2 3.815 

3 3.247 

4 3.275 

Trials 1 2 3 4 5 6 7 8 9 10 

RMSE 3.917 3.877 3.667 3.507 3.487 3.321 3.296 3.253 3.249 3.247 
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the greedy algorithm with 0.1 minimum tolerance parameters. Additionally, k-NN employed the Euclidean 

distance measurement to evaluate distances among the neighbor data points.  

Both the curve fitting of the trained DNN model and the RMSEs of the SoH estimated by the 

proposed model are better compared to the ones estimated by k-NN, LR, SVM, and ANN. In addition, 

after the batteries aged from the first cycle to the 164th cycle, it is seen that the proposed DNN approach 

could capture the degradation pattern better than the other algorithms. The input capacity in the 

developed DNN model could provide sufficient information for the stability of the SoH estimation when the 

batteries were aged. However, the lack of knowledge of other approaches resulted in an increasing error 

for the SoH estimation in the aged cycles. In addition, the performance of the capacity convergence by 

the proposed DNN approach was better, because the knowledge of capacity fade could be captured 

better by using the DNN model. Considering the result illustrated in Figure 17, it is also important to note 

that the results from batteries No. 06 performed slightly worse when compared to batteries No. 07 and 18. 

This could be because of the aging pattern of battery No. 06 being slightly different from the training 

dataset. Additionally, there was a greater distribution of the data of battery No. 06, compared to the other 

batteries.  

The RMSE results between traditional machine learning, k-NN, LR, SVM, and ANN, along with 

the developed DNN, are shown in Figure 17 and Table 6. When comparing other algorithms to DNN, 

DNN was shown to perform the best among the four approaches in terms of predicting both data patterns 

and minimizing the RMSE. Additionally, the models constructed from each algorithm could also be 

observed in detail, from Table 7.  

Other aspects of the DNN that should considered further, are the optimizer of the network, and 

the loss function. DNN in this work was performed by employing “Adam” or Adaptive Moment Estimation, 

as an optimizer (see Appendix for more details). Additionally, based on the nature of the battery dataset 

in this work, the absolute error function was used as the loss function [161]. Absolute errors measured the 

mean absolute value of the difference between predicted and actual value. Absolute error loss is not the 

same as RMSE. While the RMSE measured the error from the whole SoH curve, the absolute error loss 

measured the different between the actual and the prediction point only ‘at the end of life’ cycle. The 

absolute error formula used as the loss function can be expressed by equation (10): 
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𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠 =
1

𝑘
∑ |𝑦𝑖 − �̅�𝑖|

2𝑘
𝑖=1          (10) 

where 𝑦𝑖 and �̅�𝑖 are, respectively, the predicted data and the input data of each iteration or epoch 𝑖, and k 

is the number of iterations. In this work, the total number of iterations was set to be equal to 1024, as 

suggested in reference [162]. 

Table 6. RMSE of the SoH estimation by using DNN and traditional machine learning algorithms. 

 

 

 

Figure 16. The proposed Deep Neural Network model for lithium-ion battery data. 

RMSE 
k-NN LR SVM ANN DNN 

5.598 4.558 4.552 4.611 3.427 
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(a) Battery No. 06 

(b) Battery No. 07 

(c) Battery No. 18 

Figure 17. The SoH estimation with all algorithms for battery No. (a) 06, (b) 07, and (c) 18. 

 

 

  

50

60

70

80

90

100

110

0 20 40 60 80 100 120 140 160

S
O
H
 
(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR prediction

k-NN prediction

60

70

80

90

100

110

0 20 40 60 80 100 120 140 160

S
O
H
 
(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR predictiom

k-NN prediction

60

70

80

90

100

110

0 20 40 60 80 100 120 140

S
O
H
 
(
%
)

Cycles

Actual SoH

DNN prediction

ANN prediction

SVM prediction

LR prediction

k-NN prediction



 

52 
 

 

Table 7. Models created from the lithium-ion battery training dataset. 

Algorithm Model Description 

k-NN 
22-Nearest Neighbor model for regression 

The model contains 624 examples with seven dimensions 

LR 
228.765 * Voltage_measured + 237.439 × Current_measured − 1.495 * 

Temperature_measured − 1098.506 × Current_charge + 50.156 * Capacity − 918.727 

SVM 

Total number of Support Vectors: 613 
Bias (offset): −85.065 

w[Voltage_measured] = 42686654.125 
w[Current_measured] = –17208.396 

w[Temperature_measured] = 243822393.316 
w[Current_charge] = 3952.097 

w[Voltage_charge] = 0.000 
w[Time] = 0.000 

w[Capacity] = 16430099.458 
number of classes: 2 

number of support vectors: 613 

ANN 

Node 1 (Sigmoid) 
Voltage_measured: −0.172 
Current_measured: −0.448 
Temperature_measured: 

2.894 
Current_charge: −1.458 
Voltage_charge: 0.005 

Time: 0.042 
Capacity: −0.155 

Bias: −2.726 

Node 2 (Sigmoid) 
Voltage_measured: 1.954 
Current_measured: 0.328 
Temperature_measured: 

−1.124 
Current_charge: −0.397 
Voltage_charge: 0.036 

Time: −0.014 
Capacity: 0.943 

Bias: −1.930 

Node 3 (Sigmoid) 
Voltage_measured: 

0.406 
Current_measured: 

1.254 
Temperature_measured: 

1.472 
Current_charge: 1.391 

Voltage_charge: −0.049 
Time: −0.036 

Capacity: 1.107 
Bias: −1.055 

Node 4 (Sigmoid) 
Voltage_measured: −3.468 
Current_measured: −0.975 
Temperature_measured: 

0.080 
Current_charge: −0.018 
Voltage_charge: 0.044 

Time: −0.020 
Capacity: 2.457 

Bias: −0.108 

Node 5 (Sigmoid) 
Voltage_measured: −7.072 
Current_measured: −0.455 

Temperature_measured: 2.095 
Current_charge: 2.091 

Voltage_charge: −0.004 
Time: 0.045 

Capacity: −0.464 
Bias: −4.078 

Output 
Regression (Linear) 

Node 1: 1.278 
Node 2: 1.460 
Node 3: 0.865 
Node 4: 1.214 

Node 5: −1.134 
Threshold: −0.819 

Neural Network created: 

 

DNN 

Layer (Type) 
No. of 
Hidden 
Nodes 

No. of 
Parameters Total parameters: 217 

Trainable parameters: 
217 

Non-trainable 
parameters: 0 

dense_1 (Dense) 8 64 

dense_2 (Dense) 8 72 

dense_3 (Dense) 8 72 

dropout_1 (Dropout) 8 0 

dense_4 (Dense) 1 9 



 

53 
 

 

3.2.5. Results for Model’s RUL Estimation  

In addition to the SoH prediction of the batteries from the previous section, another aspect of the 

prognostic analysis of the battery data was to predict the RUL of the batteries. RUL prediction focuses on 

projecting the degradation results from a certain cycle until the EOL of the batteries, which is different 

from that of the SoH prediction, which focuses on detecting the pattern of degradation. In this experiment, 

the goal was to compare the RUL prediction result by using k-NN, LR, SVM, and ANN to the proposed 

DNN algorithm.   

The RUL predictions experiments were performed from three different starting points, which were 

at the 40th cycle, 80th cycle, and the 120th cycle of battery No. 05. The threshold of the EOL of the 

battery data was set to be 30% remaining capacity or the 164th cycle. This was deemed to be best 

practices of the EOL threshold, for the battery to remain active. The data before the starting cycle was 

used as a training dataset to predict each starting cycle, and the error of RUL (Equation (8)) was 

calculated to compare the accuracy of each machine learning algorithm. The accumulated errors of the 

RUL results are as shown in Table 6, and the projection results of RUL are as shown in Figure 8. Note 

that the RUL results focus on projects, not to recognize the data’s pattern 

The results from Table 8 and Figure 18 show that, overall, the proposed DNN algorithm had a 

smaller error compared to the other machine learning algorithms. The prediction result at the 120th cycle 

of DNN and ANN are similar. However, DNN did performed better than ANN in terms of smaller error 

while having a smaller set of training data, i.e., when start the prediction at the later cycle mean more 

training data was used. As seen in the result, DNN provided a slightly better result when starting at the 

40th cycle and the 80th cycle. Additionally, the trend of the results also showed that having more training 

data improves the prediction result for every algorithm in this experiment. 

Table 8. The error of RUL estimation by using DNN and traditional machine learning algorithms. 

 

 

Error of 
RUL 

Starting 
Points 

k-NN LR SVM ANN DNN 

40th cycle 24 19 12 6 5 

80th cycle 17 12 10 3 2 

120th cycle 19 9 4 1 1 
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(a) The RUL estimation using k-NN 

(b) The RUL estimation using LR 

(c) The RUL estimation using SVM 

(d) The RUL estimation using ANN 

Figure 18. (a - d) The RUL estimation of battery No. 05 using different learning algorithms. 
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(e) The RUL estimation using DNN 

Figure 18. (e) The RUL estimation of battery No. 05 using different learning algorithms (continued). 

3.3. Result Discussion 

From the experimental results in the previous sections, it is seen that the proposed DNN 

algorithm predict SoH and RUL with smaller error compared to k-NN, LR, SVM, and ANN in these specific 

lithium-ion battery datasets. However, two points should be addressed. First, the DNN proposed in this 

work can use (learn) the degradation pattern to predict the SoH. However, the DNN method was 

comparable to ANN for predicting the RUL. This is expected because of the fundamentals of DNN being 

based on ANN. It is also important to note the smaller training dataset for DNN, the DNN performed better 

overall. In more detail, from the RUL prediction results, the DNN provided better results when started from 

the smaller amount of training data at the 40th and 80th cycles, compared to the typical neural network.  

The results obtained from this work show that the deep learning algorithm is effective and suitable 

for predicting prognostic and diagnostic data modeling, particularly in the prognostics of the battery data 

set. The prognostic results can eventually aid in condition-based monitoring of maintenance activities, to 

obtain the best time to replace the batteries without causing a long downtime in the main systems. Based 

on this experiment, the downsides of using a deep learning algorithm include: (1) a higher computational 

time and (2) more computational resources are required by DNN than for the other two algorithms. These 

drawbacks are also true for other deep learning algorithms as well. This conclusion is that deep learning 

is more suitable for studies that require higher accuracy, however, may not be suitable for applications 

that need real-time processing. In the battery PHM application, real-time processing is typically not 

critical, because the prediction should be before the end-of-life of the batteries. In addition, with the 
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advancement of the computational tools, the real-time processing issue could be minimized, and the 

computational time will be improved.  

The deep learning model in this paper was only developed based on the Deep Neural Network 

algorithm (DNN). Other more complex deep learning algorithms have been developed over the years, 

such as the Convolutional Neural Network (CNN), the Recurrent Neural Network (RNN), and the Long 

Short-Term Memory network (LSTM). It is important to note that some researchers have used the LSTM 

network for similar battery prognostic data, to predict the remaining useful life (RUL) of the battery [98]. 

Although this has already been done, it is incomparable to the experiments in this work. Based on the fact 

that the experiment on LSTM in the literature implemented a different dataset. More importantly, the 

experiment only focused on testing the LSTM network in the model and did not provide a complete 

comparison to other models that use traditional machine learning algorithms. This leaves gaps to be 

explored in the future, particularly with benchmarking all deep learning algorithms. 

In addition to benchmarking deep learning approaches with other machine learning algorithms, in 

the future, physical experiments can also additionally be explored to bridge the gap between data-driven 

models and physics-based models for PHM applications. Applying physical understanding to data-driven 

approach can help to identify the crucial parameters that effect the aging behavior of the batteries as well 

as help to better interpret the data-driven models that only directly derive from the data points or raw data. 

Then, data-driven models will be employed to help in easing the modeling complexity in physics-based 

models of lithium-ion batteries. Thus, accurate battery models that mimic physical operation of the battery 

in real-world applications could be obtained without the need for extensive expense of time and 

computational resources.  

3.4. Chapter Summary 

This work aims to accomplish two tasks. First, a complete benchmarking of the data-driven model 

by using a machine learning algorithm with the battery prognostic data is made. Second, a preliminary 

data-driven model is developed by using a deep learning algorithm for the prognostic data. This paper 

presented as a benchmark, the prognostic data-driven model for battery data using machine learning 

algorithms and based on the results from the case studies. In more detail it has been shown that the deep 

learning algorithm provides a promising prediction tool and modeling of prognostic data, especially in the 
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battery prognostic. Based on the accuracy archived, it has been shown that the traditional physics-based 

model may be replaced by data-driven models in the near future, in various fields and applications. The 

reliable data-driven model has many advantages over a traditional physics-based model. The first major 

advantage is that it overcomes the complexity of the physics-based model. In the future, the predictive 

models may be able to predict the health of batteries without experts in the field. The second advantage 

is that data-driven models can be employed in real-time situations, because of their shorter computational 

time, when compared to physics-based models in general. The last point is that the data-driven model is 

more cost-effective to construct and to employ in real applications. As an example, a data-driven model 

can be generated and monitored by using only regular personal computing devices, without the need for 

exclusive and excessive expert resources. This future trend of data-driven models is in line with the 

recent achievement of deep learning algorithms and artificial intelligence. These methodologies are 

believed to be the main approaches in the further development of data-driven models. However, the 

accuracy of prediction and the higher performance of using deep learning algorithms also come with the 

drawback of higher computational time. With rapid advancements in technology, the computational time 

could be substantially reduced. The future direction of this work will focus on developing a hybrid-deep 

learning model that could be universally applicable to multiple types of prognostic data. 
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4. DEEP NEURAL NETWORK FEATURE SELECTION APPROACHES 

FOR DATA-DRIVEN PROGNOSTIC MODEL OF AIRCRAFT ENGINES 

4.1. Deep Neural Feature Selection Approach for Modeling RUL Prediction of Aircraft Engines Data 

Modern computational capability has become more powerful over the past decades. This has 

induced a new trend of using various data-driven models in many fields. Even though modern computers 

can complete complex tasks, researchers are still searching for solutions to reduce the computational 

time and complexity of the data-driven models to increase the likelihood that the models can be applied in 

real-time operations. 

The same challenge has also been applied to a certain type of aerospace data, which in this 

case, is the estimation of Remaining Useful Life or RUL of the aircraft gas turbine engines. The main 

purpose of this work is to prove that a particular group or a set of prognostics features (attributes or 

variables) from the aircraft gas turbine engines data can be selected before the training phase of Artificial 

Neural Network (ANN) modeling in order to reduce the complexity of the model. The same assumption 

may be applicable to the Deep Neural Network (DNN) models. For example, it might also be applied to 

other complex deep learning models, i.e., Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), and their variations as well. 

To validate this theory, the prognostics of aircraft gas turbine engines dataset or Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) dataset derived from NASA Ames Prognostics 

Center of Excellence (PCoE) [163] was used to develop preliminary vanilla ANN models with selected 

features using different feature selection methods. In addition, to prove that similar assumptions can also 

be deployed to other deep learning algorithms, the Deep Neural Network or DNN models have also been 

developed based on selected features derived from the ANN validation models. The final goal was to 

determine which feature selection method was the most suitable for the deep learning model in general to 

predict prognostics state or remaining useful Llife for aircraft gas turbine engines data. Results from 

various future selection methods were compared to the one that is using original features. The ANN and 

DNN models with selected features were studied and compared based on their performance. 
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Based on the aforementioned goal, the summary of the main contributions of this experiment are: 

1. Extract meaningful features for neural network-based and deep learning data-driven models from 

the C-MAPSS dataset. 

2. Suggest the novel neural network-based feature selection method for aircraft gas turbine engines 

RUL prediction. 

3. Develop deep neural network models from selected features. 

4. Show how the developed methodology can improve the RUL prediction model by comparing its 

performance/error and complexity to the model derived from original features. 

4.1.1. Feature Selection Methods for Neural Network Architectures  

In prognostic AI predictions with large data, feature extraction of raw data from the sensors can 

reduce enhance learning of the system. The feature extraction usually involves signal processing and 

analysis in the time or frequency domains. The purpose is to transform raw signals into more informative 

data [164]. In more detail, feature extraction is the process of sensor signals into data that results in 

proper training of AI systems. In contrast, the purpose of feature selection is to extract a particular set of 

features in the dataset that is believed to be more relevant for modeling. These feature selection 

processes are typically executed after the feature extraction and occur in between pre-processing and the 

training or pre-training phase of the data modeling framework. 

Three common feature selection strategies have been discussed in the literature: (1) filter 

approach, (2) wrapper approach, and (3) embedded approach. This paper will only discuss the filter and 

wrapper approaches. Figure 3 shows the processes flow and role difference role of feature extraction and 

feature selection in the data modeling process. 

Filter methods use statistical, correlation, and information theory to identify the importance of the 

features. The performance measurement metrics of filter methods usually use the local criteria (which is 

the different statistical matric from each algorithm) that do not directly relate to model performance [165]. 

There are currently multiple baseline filter methods commonly sued for feature selection 

processes. However, the result from the experiments showed in section 4.3 that only the correlation-

based methods were suitable for the case study data. This is because correlation-based methods 

evaluate the feature with a direct relationship to the target variable. In more detail, the correlation-based 
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filter methods make selections based on the modeling objectives, which can lead to better filtering of 

suitable to the data with the target variable. The correlation-based filter method included in this work is 

Pearson correlation [166, 167]. Additionally, the result from other statistical-based methods, namely Relief 

algorithm, Deviation selection, SVM selection, and PCA selection [168], was also included to provide 

comparison. 

Wrapper methods use a data-driven algorithm that performs the modeling for the dataset to select 

the set of features that yield the highest modeling performance [169]. Wrapper methods are typically 

more computationally intensive compared to filter methods. There are four main baseline wrapper 

methods [169]: (1) forward selection, (2) backward elimination, (3) brute force selection, and (4) 

evolutionary selection. 

Forward selection and backward elimination are search algorithms with different starting and 

stopping conditions. The forward selection starts with an empty selection set of features, then adds an 

attribute in each searching round. Only the attribute that provides the highest increase in performance is 

retained. Afterward, another new searching cycle is started with the modified set of selected features. The 

searching of forward selection stops when the added attribute in the next round does not further improve 

the model performance. The best way to actually search or select the best set of features or attributes is 

to use the method called “Brute Force” selection. Unlike forward selection and backward elimination, 

brute force selection will not stop searching based on any criteria other than getting the best performance. 

However, it is unlikely to test on all combination of features or attributes in practical application as it is 

required computational time and resource. Therefore, it is uncommon to use brute force selection in a 

larger dataset or typical real-world dataset.  

In contrast, the backward elimination method performs in the reverse process. Backward 

selection starts with a set of all attributes, and then the searching processes continue to eliminate 

attributes until the next set of eliminated attributes does not provide any further improvements in modeling 

performance. The brute force selection method uses search algorithms that try all combinations of 

attributes. evolutionary selection employs a genetic algorithm to select the best set of features based on 

the fittest function measurement [170]. Because of computational and time limitations, brute force 
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selection could not be included in this experiment. Only forward selection, backward elimination, and 

evolutionary selection were implemented [171]. 

 

Figure 19. Role of feature extraction and feature selection in the prognostics modeling process. 

4.1.2. C-MAPSS Aircraft Engines Data 

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is a simulation tool that 

was used to generate the turbofan engine degradation run-to-failure test dataset. This test dataset was 

derived from the NASA Ames prognostics data repository [163]. The C-MAPSS dataset is one of the most 

popular benchmark datasets used in the prognostics and diagnostics research community. This dataset 

provides a set of editable input parameters to simulate various operational conditions for aircraft gas 

turbine engines [38]. Note that varying or adjusting the simulated input parameter is beyond the scope of 

this work. All the experiments performed in this work only used the existing simulation data provided by 

NASA Ames. The operational conditions include sea-level temperature, Mach number, and altitude. The 

C-MAPSS dataset includes four sub-datasets described in Table 9. 

Table 9. C-MAPSS dataset description [38]. 

 

 

 

 

Each sub-dataset FD001, FD002, FD003, and FD004 contains several training engines with run-

to-failure information and several testing engines with information terminating before failure is observed. 

In reference to the operating conditions, each dataset can have one or six operational conditions based 

on altitude (0–42,000 feet), throttle resolver angle (20–100°), and Mach (0–0.84). As for fault mode, each 

dataset can have one mode or two modes, which are, High Pressure Compressor (HPC) degradation and 

Fan degradation. 

Description 
C-MAPSS 

FD001 FD002 FD003 FD004 

Number of training engines 100 260 100 248 

Number of testing engines 100 259 100 248 

Operational conditions 1 6 1 6 

Fault modes 1 1 2 2 
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Sub-dataset FD002 and FD004 are generated with six operational conditions, which are believed 

to be a better representation of general aircraft gas turbine engines operation compared to FD001 and 

FD003, which could be generated from only one operational condition. In this study, the data from the 

FD002 set was selected as a training dataset. In the model validation set-up (which will be described in 

Section 3.2), the wrapper methods required roughly 2 to 3 weeks to complete the run. In addition, the 

number of data points used in feature selection validations and model training–in both ANN feature 

selection validation and DNN model training was kept constant. The experiments have been designed to 

demonstrate the effectiveness of the feature selection methods used for neural network-based 

algorithms. 

There are 21 features included in the C-MAPSS dataset for every sub-dataset. These attributes 

(note that the word ‘attribute’ and ‘feature’ might be used interchangeably throughout the dissertation) 

represent the sensor signals from the different parts of the aircraft gas turbine engines, as seen in Figure 

5 [172]. Short descriptions of the features and the plots of all 21 sensor signals of sub-dataset FD002 are 

seen in Figure 21. 

It has been suggested by multiple literature references to normalize the raw signal before 

performing modeling and analysis [90, 94, 173]. Figure 22 shows the data signals before and after 

applying z-normalization: 

�̃�𝑡
𝑖𝑗

=
𝑥𝑡

𝑖𝑗
−min(𝑥𝑗)

𝑚𝑎𝑥(𝑥𝑗)− 𝑚𝑖𝑛(𝑥𝑗)
                                 (11) 

where, 𝑥𝑡
𝑖𝑗

denotes the original 𝑖-th data point of 𝑗-th feature at time 𝑡 and 𝑥𝑗 is the vector of all inputs of 

the 𝑗-th feature. Each attribute value was normalized individually and scaled to the same range across all 

data points. 

From the dataset, aircraft gas turbine engines start with various initial wear levels, but all are 

considered to be at a “healthy state” at the start of each record. The engines begin to degrade at a point 

in time at higher operation cycles until they can no longer function normally. This is considered as the 

time when the engine system is being in an “unhealthy state”. The training datasets have been collected 

over the time of run-to-failure information to cover the entire life until the engines fail. 
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Figure 20. Engine and sensor points (left) and engine parts modules connections (right) [172]. 

 

 

 

 

Figure 21. Example of sensor signals (NRc and Ps30) and all feature descriptions. 

  
Figure 22. Example of before (left) and after (right) z-normalization. 
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Figure 23. RUL curve of all testing engines FD002 (top) and FD004 (bottom). 

The RUL curves of all unseen or test data sets containing testing engines from FD002 and FD004 

datasets illustrates in Figure 23. The unseen data contained the new set of input data that can be used to 

validate the model. Figure 24 show the example of RUL curves from one degradation engine from the 

FD002 and FD004 dataset. The same degradation behavior is also applied to the training set. These RUL 

curves represent the health state or prognostic of the aircraft gas turbine engines over cycles until the 

end-of-life or the point that the aircraft gas turbine engines can no longer operate normally degradation 

behavior of the aircraft gas turbine engines can be seen clearer from Figure 24. It noted that the RUL is a 

constant cycle until it reaches a critical point, Rth,,when the performance of the engine starts to degrade. In 

the degradation phase, the RUL is represented by a linear function. Thus, the entire RUL curve is 

identified as a piece-wise linear degradation function. The critical points of the aircraft gas turbine engines 

were predefined based on the condition described by the data source–NASA Ames prognostics data 

repository [163]. 
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Figure 24. Example of RUL curve of one testing engine FD002 (top) and FD004 (bottom). 

To measure and evaluate the performance of the models with selected features, root means 

square error (RMSE) and the scoring algorithm were used[172] . 

RMSE is commonly used as a performance indicator for regression models. The following is the 

formula of RMSE: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ [𝑥𝑖 − �̅�𝑖]

2𝑛
𝑖=1                                                       (12) 

where 𝑛 is the number of prediction datasets, 𝑥𝑖 is the real value, and �̅�𝑖 is the prediction value. In this 

case, the 𝑥 parameters refer to the data points in the RUL curve while 𝑥𝑖 is the actual RUL value and �̅�𝑖 is 

the RUL value predicted by our models. 

The scoring algorithm is as described in the formula below: 

𝑠 =  {
∑ 𝑒

−(
𝑑

𝑎1
)

− 1  𝑓𝑜𝑟 𝑑 < 0𝑛
𝑖=1

∑ 𝑒
−(

𝑑

𝑎2
)

− 1  𝑓𝑜𝑟 𝑑 ≥ 0𝑛
𝑖=1

                                                   (13) 

where 𝑠 is the computed score, n is the number of units under test (UTT), 𝑑 =  �̂�𝑅𝑈𝐿 − �̂�𝑅𝑈𝐿 or Estimated 

RUL—True RUL, while 𝑎1 = 10 and 𝑎2 = 13.  
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Note that the value of 𝑎1 and 𝑎2 here are standard value that have been used in all other works 

performing similar experiments. In summary,  𝑎𝑖 is the difference between predicted and observed RUL 

values and 𝑠 is summed over all examples. From the formula, the scoring matric penalizes positive errors 

more than negative errors as these have a higher impact on maintenance policies. Also, note that the 

lower score reflect a better prediction performance of the model [172]. 

4.1.3. Related Works 

Multiple deep learning algorithms have been used to generate data-driven models to predict RUL 

for C-MAPSS aircraft gas turbine engines data. It seen from the literature [90, 94, 111, 173, 175-179]  that 

the most suitable deep learning algorithm for training the high accuracy C-MAPSS models is the Long-

Short Term Memory Recurrent Neural Network (LSTM). The hybrid deep neural network layers with 

LSTM is also an ongoing investigation and experiment on the C-MAPSS dataset. This approach believes 

to achieve higher accuracy among other algorithms that have been employed. The most important 

drawback of the hybrid models is the high complexity of the model architectures. These models can also 

have vast variations and architectures. To reduce the complexity of the model it is possible to limit the 

number of input nodes. In addition, feature selection methods can be used to reduce the complexity. 

There are many publications on applying ANN-based or deep learning algorithms to C-MAPSS aircraft 

gas turbine engines data. However, all previous works have never introduced the feature selection 

approaches into their model architectures. Also, the usefulness of any particular feature selection 

methods has not been addressed in any prior works. 

Chen Xiongzi, et al., (2011) conducted a comprehensive survey of the three main data-driven 

methods for aircraft gas turbine engines, namely particle filtering methods, neural network, and relevant 

vector machine methods. They comprehensive study showed that the neural network perform best [175]. 

Mei Yuan, et al., (2016) applied RNN network methods for fault diagnosis and estimation of the remaining 

useful life of engines [94]. Faisal Khan, et al., (2018) used particle filter algorithms to generate the 

arbitrary input data points before training their models with neural networks. Unlike, the vanilla neural 

network algorithm, their models employed radial basic function (RBF) as activation function instead of the 

original sigmoid function the result from using RBF as activation function was better compared to sigmoid 

function [173]. Xiang Li, et al., (2018) applied the Convolutional Neural Network (CNN) as a time window 
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approach to generate a feature extraction model of engine data [90]. Ansi Zhang et al., (2018) proposed a 

supervised domain adaptation approach by exploiting labeled data from the target domain that aims to 

fine-tune a bi-directional Long-Short Term Memory Recurrent Neural Network (LSTM) previously trained 

on the source domain [176]. Zhengmin Kong et al., (2019) also developed the models based on CNN. 

They employed CNN as part of the network layers in their experiment and proposed the hybrid models by 

combining the CNN layers with LSTM layers. Their approaches achieved relatively high accuracy in SoH 

predictions over the other standard methods [177]. Other works previously published [111, 177, 179] 

mostly focused on adopting the LSTM network and proposing new models without addressing the 

complexity reduction in their approaches. While each work proposed the different network architectures 

and the performances of the models have been improved over time, there remains the need to reduce the 

complexity of ANN-based models. This work aims to address the issue of a selection approach to reduce 

learning times. 

4.2. Methodology 

In this section, the details of the auto-encoder deep neural network used in this work will be 

discussed. The problem will be defined, and all notations will also be defined, as well as the illustration of 

how the proposed deep neural network architecture can be applied to predict RUL of aircraft gas turbine 

engines with feature selection and neural network modeling framework mentioned in Figure 11 Chapter 2. 

The experiment only used DNN with auto-encoder as a modeling algorithm. All encoded and 

decoded processes were designed to occur inside the hidden layers of the network through 

parameterized functions [10, 11]. The construction of DNN with auto-encoder is detailed in Figure 25. 

Unlike the ANN that uses the sigmoid function as an activation function, the proposed DNN layers used 

Rectified Linear Units (ReLU) as an activation function. The ReLU function has demonstrated to achieve 

better general regression training for deeper networks compared to other activation functions such as the 

logistic sigmoid and the hyperbolic tangent (tanh) [11]. Therefore, the ReLU function was selected for 

modeling Remaining Useful Life (RUL) prediction for our PHM data while the ANN with sigmoid function 

has been used as a validation algorithm for feature selection methods. 
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Figure 25. Auto-encoder Deep Neural Networks construction. 

4.2.1. Problem Statement 

Starting with the raw data, which is denoted as, 𝐷𝑆 =  {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}
𝑖=1

𝑁𝑠
, the data contains 𝑁𝑠 training 

sample where 𝑥𝑆
𝑖  ∈ 𝒳𝑆 is a feature with a length of 𝑇𝑖 and 𝑞𝑆 is the number of features, in which, xS

i = =

 {xt
i}

t=1

Ti ∈  RqS×Ti. In addition, 𝑦𝑆
𝑖  ∈ 𝒴𝑆 is denoted as Remaining Useful Life (RUL) also with the length 𝑇𝑖 

(feature space and RUL space are within the same length) with 𝑦𝑆
𝑖 =  {𝓎𝑡

𝑖 }
𝑡=1

𝑇𝑖 ∈  ℝ≥0
𝑇𝑖 . where 𝑡 ∈

{1, 2, … , 𝑇𝑖}, 𝓍𝑡
𝑖 ∈  ℝ𝑞𝑆, and 𝓎𝑡

𝑖 ∈  ℝ≥0, represent the 𝑡-th measurement of all variables and RUL label, 

respectively. Similarly, the estimated target domain, 𝐷𝒯 =  {𝑥𝒯
𝑖 }

𝑖=1

𝑁𝒯
 where 𝑥𝒯

𝑖  ∈ 𝒳𝒯 and 𝒳𝒯 ∈ ℝ𝑞𝒯×𝑇𝑖with no 

labels. The source and target domain, 𝐷𝑆  and 𝐷𝒯, are assumed to possibly have a different probability 

distribution, 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝒯). The primary goal is to define a function 𝑔 that can derive or learn from the 

source data that can approximate the corresponding RUL for the target domain at the testing time, such, 

𝑦𝒯
𝑖  ≈ 𝑔(𝑥𝒯

𝑖 ), with the preliminary assumption that mapping between input (𝑥) and output (𝑦) is somehow 

similar across all domains. 

4.2.2. Deep Neural Network Architecture 

While there are existing deep learning algorithms that have been proposed to predict PHM of 

aircraft gas turbine engines data modeling [90, 94, 111, 173, 175-179], this work focuses on using a deep 

neural network with an auto-encoder.  
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The DNN used in this work focused on the feedforward architecture by the H2O package in 

Python API [21]. H2O is based on multi-layer feedforward neural networks for predictive modeling [180]. 

The following are some of the H2O DNN features used for this experiment. 

• Supervised training protocol for regression tasks 

• A multi-threaded and distributed parallel computation that can be run on a single or a multi-node 

cluster 

• The automatic, per-neuron, adaptive learning rate for fast convergence 

• Optional specification of the learning rate, annealing, and momentum options 

• Regularization options to prevent model overfitting 

• Elegant and intuitive web interface (Flow) 

• Grid search for hyperparameter optimization and model selection 

• Automatic early stopping based on the convergence of user-specified metric to a user-specified 

tolerance 

• Model check-pointing for reduced run times and model tuning 

• Automatic pre- and post-processing for categorical numerical data 

• Additional expert parameters for model tuning 

• Deep auto-encoders for unsupervised feature learning 

In the proposed DNN model, deep neural network layers are used to extract the temporal 

features from the time length, 𝑇𝑖. The hidden state units of the neural consist of, the hidden state vector 

ℎ𝑡−1 ∈  ℝℎ, input vector, xt
i  ∈  ℝi, and the activation function, 𝑓, where ℎ is the dimension of hidden state 

layers. All operations in DNN layers can be written as: 

𝑖𝑡 = 𝑓(𝑊𝑖𝓍𝑡
𝑖 + 𝑊𝑖

′ℎ𝑡−1 + 𝑏𝑖)                                                                       (14) 

𝑜𝑡 = 𝑓(𝑊𝑜𝓍𝑡
𝑖 +  𝑊𝑜

′ℎ𝑡−1 + 𝑏𝑜)                                                       (15) 

where 𝑖 and 𝑜 represent input and output states. 𝑊 and 𝑊′ are matrices of updated weights and weights 

from the hidden state, and 𝑏 is the bias vector. 

Unlike in vanilla ANN, in the proposed DNN, the activation function 𝑓 is the Rectifier Linear Unit 

or ReLU function [23] instead of the sigmoid function. The DNN activation function can be represented as; 
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𝑓(𝛼) = max(0, 𝛼)  ∈  ℝ+                                                               (16) 

where, in this case, 𝛼 represents the state functions (Formulas (14) and (15)) that firing into the input 

neural. 

Another important aspect of the DNN model architecture is the loss function, denoted by, ℒ. For 

this work, the Huber loss function was selected because it [181] has been shown to work best in terms of 

accurately projecting the RUL, 𝑦𝑆
𝑖  ∈ 𝒴𝑆, of the source domain, 𝐷𝑆. The Huber loss function can be 

described as; 

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) =  {

1

2
‖�̂�𝑡

𝑖 − 𝓎𝑡
𝑖 ‖

2

2
        , 𝑓𝑜𝑟 ‖�̂�𝑡

𝑖 − 𝓎𝑡
𝑖 ‖

1
≤ 1 

‖�̂�𝑡
𝑖 − 𝓎𝑡

𝑖 ‖
1

− 
1

2
    , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

                                     (17) 

where, 𝜃𝑓 is the space representation of the target input that mapped through the feature extraction layers 

into a new space. In addition, 𝜃𝑦 is the domain regression space generated by logistic repressor [181], 

and, �̂�𝑡
𝑖  is RUL prediction from the source domain. 

The objective in training DNN is to minimize the prediction loss, ℒ𝑦
𝑖 , which can be described by; 

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)
𝑁𝑠
𝑖=1 ]                                                             (18) 

The DNN model used in this work is depicted in Figure 26. This DNN model architecture is 

trained to predict for each input, 𝑥𝑖, real value 𝑦𝑖 and its domain label 𝑑𝑖 for the source domain and only 

the domain label for the target domain. The first part of the DNN architecture is the feature extractor, 𝑔𝑓, 

that decomposes the inputs and maps them through the hidden state to form the outputs, ℎ𝑡−1  ∈  ℝℎ. The 

model then embeds the output space as a feature space 𝑓 of the deeper layers and repeats this process 

as needed. As previously detailed, this vector space parameter that is the result of feature mapping is, 𝜃𝑓 

i.e., 𝑓 =  𝑔𝑓(𝜃𝑓). This feature space 𝑓 is first mapped to a real-value 𝓎𝑡
𝑖  variable by the function, 𝑔𝑦(𝑓; 𝜃𝑦), 

which is composed of fully-connected neural network layers with parameter, 𝜃𝑦. The dropout layer with a 

rate of 0.4 was applied to avoid the overfitting issue [159]. 
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Another goal of this work was to find the feature space that is domain invariant, i.e., finding a 

feature space 𝑓 in which 𝑃(𝑋𝑆) and 𝑃(𝑋𝒯) are similar. This is one of the challenges in training, which can 

be improved by applying the “feature selection” before training (detailed in the further section). Another 

objective was to minimize the weights of feature extractor in the direction of the regression loss, ℒ𝑦
𝑖 . In 

more detail, it is proposed that the model loss function can be used to derive the final learning function, 𝑔, 

through parameter 𝜃, which means the RUL prediction result (described in Equation (17)), �̂�𝑡
𝑖 =

 𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). 

Figure 26. The proposed Deep Neural Networks model architecture for C-MAPSS data. 

The way the DNN algorithm update its learning weights, 𝜃, is through the gradient descent update 

[26] in the form of; 

𝜃𝑓 ←  𝜃𝑓 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
)                                                                (19) 

𝜃𝑦 ←  𝜃𝑦 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
)                                                                (20) 

Usually, the Stochastic Continuous Greedy (SCG) estimate is used to update the Equations (19) 

and (20). The learning rate, 𝜆, represents the learning steps taken by the SCG as training processes. 
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4.3. Experiment and Result 

The first part of the experiment was designed to compare the effectiveness of using different 

feature selection methods and filtering for ANN modeling of the prognostics dataset. The aircraft gas 

turbine engines dataset with 21 attributes was fed into different filter and wrapper feature selection 

methods to identify particular sets of features before the model training phase. The selected sets of 

features were then used as training features or training attributes for the ANN model. The second part 

was to test the feature selected using ANN modeling with the DNN architecture. The results from different 

sets of features were compared to determine the most suitable set of selected features. Finally, the final-

best DNN model for predicting the RUL of aircraft gas turbine engines was determined. 

4.3.1. Training Procedure and Hyperparameters Selection 

For training, the data from input sensors, operational setting, and labeled RUL value from the 

source data, and only sensors and settings from the target dataset were used. The raw data were 

normalized, and the feature selection was applied before the start of all models training. For the training 

process, the training dataset (as a source) from dataset FD002 was used. The FD002 and FD004 test 

dataset were used to validate (RMSE and Score). In reference to the wrapper methods, we used ANN as 

a validation algorithm for our wrapper methods. The cross-validation within the FD002 training data was 

employed for measuring the performance of the wrapper algorithms. The set-up parameters for ANN 

validation were fine-tuned based on the best model that was derived from complete attributes (21 

features) modeling. 

• 5 Folds Cross-Validation 

• 1000 Training cycles 

• 0.001 Learning rate 

• 0.9 Momentum 

• Linear sampling. 

For the DNN hyperparameters selection, the model parameters in the H2O DNN algorithm varied 

as detailed in Table 10. The grid search to identify the range of the learning rate, λ, was performed after 

fine-tuning the remaining parameters manually. Additionally, the training sample per iteration was set to 

auto-tuning, and batch size was set to 1 for all variations. 
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The best-case scenario is the combination of following hyperparameters; Epoch = 5000, Learning 

rate = 10−8, Momentum = 0.99, L1 = 10−5, L2 = 0, and Max w2 set to infinity. These are all 

hyperparameters employed in the final DNN model proposed. 

Table 10. Hyperparameters values evaluated in the proposed DNN model for C-MAPSS data.  

Hyperparameters Range 

Epoch {100, 1000, 5000, 7000, 10000} 

Training sample per iteration AUTO 

Batch size 1 

Leaning rate annealing {10−10, 10−8, 10−5, 10−1} 

Momentum {0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 0.99} 

L1: Regularization that constraint the absolute value {10−20, 10−15, 10−10, 10−5, 10−1, 0} 

L2: Regularization that constraint the sum of square weights {10−20, 10−15, 10−10, 10−5, 10−1, 0} 

Max w2: Maximum sum of square of incoming weight into the 
neuron 

{0, 10, 100, 10000, ∞} 

 

4.3.2. Experiment Setup and Results  

All experiments were implemented on an Intel® Core i7 10th generation i7–10510U 4 cores 

processor with 8 MB Cache, 1.8 GHz clock speed, and up to 4.9 GHz boost speed with 16 GB RAM and 

Intel® UHD integrated graphic. The DNN architecture was implemented using Python 3.6 with the H2O 

library/package [180]. The experimental results presented in this section will be separated into three 

parts: (1) Feature selected using feature selection methods, (2) Results and models from ANN with the 

selected feature, and (3) Proposed DNN model. All RMSE and all performance measurements of DNN 

models reported in this paper are the average results from 20 trials. 

4.3.2.1. Feature Selection for Aircraft Engine Dataset 

All possible feature selection methods were used with the C-MAPSS dataset. Filter methods 

include, Deviation selection, PCA selection, Relief algorithm selection, selection, SVM selection, and 

Pearson correlation selection. Only three wrapper methods were implemented: forward selection, 

backward elimination, and evolutionary selection. 

Table 11 detail the ranking of attributes based on coefficients and weights calculated from each 

filter feature selection method. It is important to note that the ranking of the attributes based on different 

methods is dependent upon the statistical measures or weights obtained from each method. 

For the Pearson correlation, the attributes were not selected if the coefficient was less than 

−0.01based on the work of others [166, 167]. For PCA, the features were selected based on weight 
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(selected if weight is more than 0.2) and the PCA matrix [168]. For the Relief algorithm, the attributes 

were not selected if the calculated weight was below zero [168]. For deviation selection, the feature was 

selected if the weights were higher than 1 [168]. It is important to note that the weights of the attributes 

calculated using the Relief algorithm were unacceptably low (less than 10−12) suggesting little learning 

and in addition there were large gaps between calculated weights. Similar results were observed with 

other filter selection methods, including the SVM. It was found that by using the filter methods that 

provided statistically low weight for selecting features, the models trained from those features were 

unable to provide usable prediction results. 

The following are the features selected based on these two filtering methods. In addition to the 

feature weights from Pearson correlation selection and PCA selection in Table 11, the Pearson 

correlation matrix and PCA matrix are also provided in Appendix. 

• Pearson correlation; 8 attributes: T30, T50, Ne, Ps30, NRc, BPR, farB, and htBleed. 

• Relief algorithm; 2 attributes: P15 and Nf_dmd. 

• SVM selection; 11 attributes: T2, T24, P30, Nf, epr, phi, NRF, Nf_dmd, PCNfR_dmd, W31, and 

W32. 

• PCA selection; 17 attributes: T2, T24, T30, T50, P2, P15, P30, Nf, Ne, epr, Ps30, phi, farB, 

htBleed, Nf_dmd, W31, and W32. 

• Deviation selection; 11 attributes: T2, T24, T50, P2, P15, Ne, epr, Ps30, farB, PCNfR_dmd, and 

W32. 

In reference to the wrapper methods study, below are the sets of features selected from each 

method. It is important to note that for the wrapper methods, ANN validation with the modeling set-up, as 

mentioned in Section 3.2 was used. Figure 27 shows the validation process using ANN for evolutionary 

selection. 

• Backward elimination; validate RMSE 46.429 from 19 attributes; T2, T30, P2, P15, P30, Nf, epr, 

Ps30, phi, NRF, NRc, BPR, farB, htBleed, Nf_dmd, PNCfR_dmd, W31, and W32. 

• Evolutionary selection; validate RMSE 46.451 from 14 attributes; T2, T30, T50, P2, Nf, Ne, epr, 

Ps30, NRc, BPR, farB, htBleed, W31, and W32. 
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• Forward selection methods; validate RMSE 46.480 from 11 attributes; T2, T30, T50, P2, P15, 

Ps30, NRc, BPR, farB, htBleed, and Nf_dmd. 

Unlike forward selection and backward elimination methods, which are both based on search 

algorithms [169], selection is based on genetic algorithms [182]. However, instead of using fitness 

function from genetic theory, the evolutionary selection method used ANN validation as fitness 

measurement. The parameters set-up in this experiment were; population size = 10, maximum number of 

generation = 200, using tournament selection with 0.25 size, initial probability for attributes (features) to 

be switched = 0.5, crossover probability = 0.5 with uniform crossover, and mutation probability = 

1

number of attributes
. 

It is also important to note that, in this case, the brute force algorithm was not used. The brute 

force algorithm is the selection algorithm that can derive the best features set from the data. However, 

with limited computational capability, it cannot be used in real-time. Therefore, it was not included in this 

experiment.  

 

Figure 27. Validation result using evolutionary selection from C-MAPSS data. 
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Table 11. C-MAPSS attribute values from different filter methods. 

 

4.3.2.2. DNN Models and Results 

Table 12 summarizes RMSE and prediction score results from all of the DNN models. The 

complete RUL best fit prediction curves for testing data of all feature selection methods are shown in 

Figure 28 for FD002 test data, and in Figure 29 for FD004 test data, respectively. The blue curves 

represent the actual RUL from the dataset, and the red lines/dots are the prediction points from our 

feature selection DNN models. For illustration purposes, Figures 30 and 31 include the prediction curve 

from one engine of each testing data FD002 and FD004 to demonstrate the prediction of the DNN model 

of one degradation cycle. Additionally, Table 14 includes all DNN models and all prediction error values 

measured from the DNN models using the FD002 test dataset, i.e., absolute error, relative error, relative 

error lenient, relative error strict, normalized absolute error, root relative squared error, squared error, 

correlation, squared correlation, prediction average, spearman rho, and Kendall tau. The number of 

hidden nodes in the DNN layers was identified based on the best models fine-tuned from one-layer ANN 

models for each feature selection method. The same number of hidden nodes from the best ANN models 

were used to construct the DNN model layers. Note that only the DNN models from feature selection 

Pearson Correlation Relief Algorithm SVM PCA Deviation 

Attributes Weight Attribute Weight Attribute Weight Attribute Weight Attribute Weight 

farB −0.0648807 P15 2.55555E-05 epr 28.062965 htBleed 0.24226001 PCNfR_dmd 1.00002156 

Ps30 −0.0426395 Nf_dmd 4.29878E-13 T2 24.031467 T30 0.24219398 farB 1.00000884 

T50 −0.0377657 farB −1.76803E-13 Nf_dmd 15.921074 Ne 0.24213648 P15 1.00000751 

BPR −0.0320325 T2 −3.5083E-13 Nf 15.293535 T50 0.24212279 epr 1.00000215 

NRc −0.0308729 P2 −1.41209E-12 T24 11.169562 T24 0.23799320 P2 1.00000079 

htBleed −0.0254014 PCNfR_dmd −3.58802E-12 W31 9.070028 epr 0.23251894 T2 1.00000049 

T30 −0.0253007 phi −8.18383E-07 W32 8.806654 Ps30 0.23247642 Ne 1.00000022 

Ne −0.0133643 Nf −1.94057E-06 PCNfR_dmd 6.597514 phi 0.22942893 T50 1.00000016 

T24 −0.0063673 NRF −2.22812E-06 NRF 5.849870 P30 0.22931342 Ps30 1.00000013 

P2 −0.0031016 P30 −3.43389E-06 P30 5.529144 W31 0.22654883 W32 1.00000013 

P15 −0.0028634 T24 −3.2525E-05 phi 5.262733 W32 0.22654313 T24 1.00000011 

T2 −0.0023212 W31 −6.1066E-05 Ne 0.026252 P15 0.21870245 T30 1.00000000 

phi −0.0004811 W32 −6.76249E-05 P15 −0.151776 Nf 0.21427293 P30 0.99999998 

P30 −0.0003329 epr −9.125E-05 P2 −0.726430 Nf_dmd 0.21420247 NRF 0.99999993 

epr 0.0013847 Ne −0.00017538 farB −16.274719 T2 0.21253812 BPR 0.99999985 

Nf 0.0026742 BPR −0.000324083 T30 −24.291950 P2 0.20884536 NRc 0.99999984 

W32 0.0029798 NRc −0.000344686 htBleed −24.530502 farB 0.20473956 phi 0.99999978 

Nf_dmd 0.0030117 Ps30 −0.000364589 NRc −32.369914 NRc 0.18353047 Nf 0.99999973 

W31 0.0030517 T50 −0.000397835 T50 −40.853420 NRF 0.14637480 W31 0.99999957 

NRF 0.0044269 T30 −0.000422547 Ps30 −53.894591 PCNfR_dmd 0.14634719 htBleed 0.99999829 

PCNfR_dmd 0.0048232 htBleed −0.000613424 BPR −65.865476 BPR −0.21428742 Nf_dmd 0.99998466 
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methods that provided usable prediction results are presented. Therefore, the results from Relief 

algorithms and SVM selection are not presented. 

Table 12. Best RMSE and prediction score results of RUL prediction from all DNN models. 

 

 

 

 

 

 

Because of the fluctuations in the prediction results from the DNN algorithm, the experiments 

(training and testing) were ran 100 times for each model. The result in Table 12 is the best prediction 

result. The fluctuations across 100 iterations for FD002 and FD004 are presented in Figure 32. In addition 

to the best prediction, the mean RMSE and error distributions from the 100 times testing are seen in 

Table 13 and Figure 33. These fluctuations in prediction errors are commonly found in most deep learning 

algorithms because of the random initial training weights assignment and the amplification effect from the 

optimizer function in deeper networks. The fluctuations in the prediction result can be more obvious when 

models are more complex and take a large number of input attributes.  

4.4. Result Discussion 

As mentioned in the related works (section 4.1.3), there have been several efforts in developing 

deep learning models for a C-MAPSS aircraft gas turbine engines dataset [90, 94, 111, 173, 175-179]. 

Currently, the deep learning model with the highest accuracy was proposed by Zhengmin Kong et al. 

[177]. Their deep learning architecture consists of CNN and LSTM-RNN combined layers and were able 

to achieve a RMSE of 16.13, while the best previously reported evolutionary DNN model was a RMSE 

value of 44.71. This indicates that the performance of our DNN models is less accurate than the modern 

hybrid deep learning models developed in recent years. 

However, no work has addressed the complexity of the models and the computational 

requirement for model training. All hybrid deep neural network layers are generally overly complex and 

require exponentially more computational time and resources compared to the proposed evolutionary 

Methods 
RMSE Score  

FD002 FD004 FD002 FD004  

Original data 45.439 45.302 645,121 427,968  

SVM     
Unusable 

Relief algorithm     

Backward elimination 45.121 45.436 645,132 211,129 

 

Deviation 45.374 45.630 740,936 256,776  

Evolutionary Selection 44.717 44.953 518,025 355,458 Best Overall 

Forward selection 45.242 46.505 1,353,749 423,997  

PCA 45.368 45.108 1,450,397 406,872  

Pearson correlation 45.272 46.216 502,579 338,400  
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DNN. All proposed models in recent years also took all features from the C-MAPSS dataset and disregard 

the features performance benchmark. Different from those models, the proposed approach applies the 

feature selection prior to the model training phase to help reduce the number of input attributes, and to 

reduce the model complexity as a result. The reduction in the complexity when using fewer input features 

is more evident for the high complexity hybrid deep neural network layers. 

Additionally, as seen in Figures 32 and 33, prediction error fluctuations can be noticed when 

training deep learning models. This effect has occurred not only in DNN but also in other types of network 

layers, such as LSTM-RNN, CNN, and other modern hybrid layers. Based on the results as seen in Table 

13 and Figures 28 to 33, the key observations of such an effect include: 

First, utilizing fewer features to train the model has been shown to lower the error distribution 

range, compared to using more features. This is because the initial random weights assigned to the 

hidden nodes are smaller when using fewer features in model training.  The reduction in the error may 

also be result of eliminating   irrelevant (or less important) training the data and allow those features that 

are actually relevant to increase model learning. In more detail, the models are more robust and reliable 

when using fewer features. The same observation is also applied for the fluctuation of the prediction 

errors, in that the prediction results are more stable when using fewer features in model training. 

Second, in reference to model performance and accuracy, although using selected features from 

some feature selection methods does not promote better results, the feature selection methods can 

reduce the computational burden while offering better prediction performance. In this experiment, the 

evolutionary selection can achieve both better performance and complexity reduction. 

It is important to note that the current goal is not to improve model performance compared 

against other existing works; rather, the aim is to provide baseline results and demonstrate the feature 

selections on deep learning models, can reduce learning times. It is believed that the results can be 

further improved when applying the proposed feature selection results in the modern hybrid deep neural 

network architectures. 

The experimental results in general, the best accuracy based on the RMSE results in Table 4 

were generated from the evolutionary method. The complexity of the model was improved using a 

reduced set of features, from 21 attributes to only 14 attributes. 
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When considering the complexity and computational time, the filter methods were less complex 

and learning time was reduced because they do not require train-and-test multiples of ANN model 

validation in the process. In this study, when performing the selection process, most of the filter methods 

required only 5–10 min while wrapper methods required 10 h to 10 days to complete. 

It is also important to note that the curve fitting and pattern recognition were improved, as can be 

seen when comparing the RUL prediction curves in Figures 30 to 31. In greater detail, the DNN model 

from most of the selected features can reasonably capture the trend of both before and after aircraft gas 

turbine engines’ degradation intervals as illustrated in Figure 30 and 31, the curve fitting is better for both 

interval before Rth and after. 

In summary, the evolutionary DNN model architecture performs best as a simplified deep neural 

network data-driven model for C-MAPSS aircraft gas turbine engines data. The feature selection phase 

(as described in the modeling framework in Figure 11 Chapter 2) should be included as a standard in the 

modeling framework for such a PHM dataset. This presents a potential improvement to the overall 

performance for RUL prediction for the prognostics of aircraft gas turbine engines data as well as other 

prognostic datasets.  

Table 13. Mean RMSE from all DNN models. 

 

 

Average RMSE 

Original Data BW Elimination Deviation Evo Selection FW Selection PCA Pearson  
FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 FD002 FD004 

48.398 50.541 47.907 50.331 48.160 50.081 47.452 49.650 48.434 50.708 48.072 49.737 49.203 52.111 
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Figure 28. (a - g) All RUL prediction curves for FD002. 
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Figure 29. (a - g) All RUL prediction curves for FD004.  
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Figure 30. (a - g) RUL prediction points for one engine of FD002 test data. 
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Figure 31. (a - g) RUL prediction points for one engine of FD004 test data. 
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Table 14. The best DNN models for FD002 test data. 

  

Feature 
Selection 
Method 

Model Output Weights Errors 

Original  
(All 21 

Attributes) 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.389707 
Layer 3: 

−0.954436 
Layer 4: 

−0.798112 
Layer 5: 1.135641 

root_mean_squared_error: 45.439 +/− 0.000 
absolute_error: 37.062 +/− 26.289 
relative_error: 285.29% +/− 1071.56% 
relative_error_lenient: 40.87% +/− 26.92% 
relative_error_strict: 290.30% +/− 1070.51% 
normalized_absolute_error: 0.933 
root_relative_squared_error: 0.963 
squared_error: 2064.669 +/− 2549.829 
correlation: 0.426 
squared_correlation: 0.182 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.406 
kendall_tau: 0.28  

1 
2 
3 
4 
 

5 

21 
12 
12 
12 

 
1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 

Backward 
Elimination 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.383010 
Layer 3: 

−0.791862 
Layer 4: 

−0.706631 
Layer 5: 1.064392 

root_mean_squared_error: 45.121 +/− 0.000 
absolute_error: 36.707 +/− 26.240 
relative_error: 275.51% +/− 1043.67% 
relative_error_lenient: 40.75% +/− 26.64% 
relative_error_strict: 281.59% +/− 1042.46% 
normalized_absolute_error: 0.924 
root_relative_squared_error: 0.956 
squared_error: 2035.929 +/− 2509.247 
correlation: 0.417 
squared_correlation: 0.174 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.399 
kendall_tau: 0.278  

1 
2 
3 
4 
 

5 

19 
11 
11 
11 

 
1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 

Deviation 
Selection 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.274669 
Layer 3: 

−0.962801 
Layer 4: 

−0.156934 
Layer 5: 0.528834 

root_mean_squared_error: 45.374 +/− 0.000 
absolute_error: 37.420 +/− 25.662 
relative_error: 283.25% +/− 1026.67% 
relative_error_lenient: 41.82% +/− 26.69% 
relative_error_strict: 290.19% +/− 1025.24% 
normalized_absolute_error: 0.942 
root_relative_squared_error: 0.962 
squared_error: 2058.794 +/− 2489.328 
correlation: 0.383 
squared_correlation: 0.147 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.375 
kendall_tau: 0.261 

1 
2 
3 
4 
 

5 

11 
7 
7 
7 
 

1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 

Evolutionary 
Selection* 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.820539 
Layer 3: 

−0.729643 
Layer 4: 

−1.375567 
Layer 5: 1.658891 

root_mean_squared_error: 44.717 +/− 0.000 
absolute_error: 36.402 +/− 25.971 
relative_error: 271.60% +/− 1022.51% 
relative_error_lenient: 40.89% +/− 26.50% 
relative_error_strict: 278.38% +/− 1021.18% 
normalized_absolute_error: 0.917 
root_relative_squared_error: 0.948 
squared_error: 1999.604 +/− 2499.212 
correlation: 0.415 
squared_correlation: 0.172 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.401 
kendall_tau: 0.280 

1 
2 
3 
4 
 

5 

14 
9 
9 
9 
 

1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 

Forward 
Selection 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.598193 
Layer 3: 

−1.333539 
Layer 4: 

−1.583420 
Layer 5: 0.341112 

root_mean_squared_error: 45.242 +/− 0.000 
absolute_error: 36.817 +/− 26.294 
relative_error: 275.71% +/− 1038.01% 
relative_error_lenient: 41.12% +/− 26.56% 
relative_error_strict: 282.81% +/− 1036.64% 
normalized_absolute_error: 0.927 
root_relative_squared_error: 0.959 
squared_error: 2046.830 +/− 2564.139 
correlation: 0.403 
squared_correlation: 0.163 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.390 
kendall_tau: 0.272 

1 
2 
3 
4 
 

5 

11 
7 
7 
7 
 

1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 
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Table 14. The best DNN models for FD002 test data (continued). 

*Note: Complete model layers for the proposed evolutionary selection DNN model will be  
described in detail in Appendix. 

Figure 32. (a, b) RMSE fluctuation for FD002 and FD004 test data. 
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Pearson Corrrelation

Feature 
Selection 
Method 

Model Output Weights Errors 

PCA 
Selection 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.022651 
Layer 3: 

−1.327223 
Layer 4: 

−1.541491 
Layer 5: 1.298059 

root_mean_squared_error: 45.368 +/− 0.000 
absolute_error: 36.694 +/− 26.680 
relative_error: 264.95% +/− 1016.32% 
relative_error_lenient: 41.31% +/− 26.37% 
relative_error_strict: 275.07% +/− 1014.64% 
normalized_absolute_error: 0.924 
root_relative_squared_error: 0.962 
squared_error: 2058.300 +/− 2623.562 
correlation: 0.390 
squared_correlation: 0.152 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.382 
kendall_tau: 0.266 

1 
2 
3 
4 
 

5 

17 
10 
10 
10 

 
1 

Input 
Rectifier 
Rectifier 
Rectifier 

0.4 Dropout 
Linear 

Backward 
Elimination 

Layer 
----- 

Unit 
---- 

Type 
----------- Layer 2: 

−0.853966 
Layer 3: 

−1.340343 
Layer 4: 

−0.972141 
Layer 5: 0.786599 

root_mean_squared_error: 45.272 +/− 0.000 
absolute_error: 37.002 +/− 26.084 
relative_error: 269.63% +/− 1010.61% 
relative_error_lenient: 41.23% +/− 26.36% 
relative_error_strict: 277.67% +/− 1009.11% 
normalized_absolute_error: 0.932 
root_relative_squared_error: 0.960 
squared_error: 2049.533 +/− 2474.691 
correlation: 0.382 
squared_correlation: 0.146 
prediction_average: 68.095 +/− 47.177 
spearman_rho: 0.364 
kendall_tau: 0.253 

1 

2 

3 

4 

 

5 

8 
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6 
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Input 
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(a) RMSE Distribution for Original Data  

  
(b) RMSE Distribution for Backward Elimination 

 
(c) RMSE Distribution for Deviation Selection 

 
(d) RMSE Distribution for Evolutionary Selection 

 
(e) RMSE Distribution for Forward Selection 

 
Figure 33. (a - e) Prediction error distributions from feature selection methods.  
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(f) RMSE Distribution for PCA Selection 

 
(g) RMSE Distribution for Backward Elimination 

 
  Figure 33. (f - g) Prediction error distributions from feature selection methods (continued).  

4.5. Chapter Summary 

While there has been a review of the work on deep neural network algorithms and proposed new 

DNN model architecture, in this chapter, the features selected, and other new deep learning algorithms 

and methods were reviewed. As demonstrated in the related works [90, 94, 111, 173, 175-179], their 

RNN, LSTM, and CNN have been shown to result in more accurate RUL predictions when compared to 

shallow DNN models. However, as seen in this work, further improvements can be achieved by applying 

new algorithms to the selected features. One of the aspects that can improve such selected features that 

can accelerate machine learning through less complex models. The result in this chapter detailed a 

preliminary study on selecting features to generate a data-driven neural network model for the prognostic 

of aircraft gas turbine engines data. More complex deep learning algorithms; however, still need to be 

performed and tested for the effectiveness of such a feature selection technique. These are the key 

aspects that should be tested and experimented with in the future. 
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5. AN EVOLUTIONARY CONVOLUTIONAL LONG SHORT-TERM 

MEMORY DEEP NEURAL NETWORK DATA-DRIVEN MODEL FOR 

PROGNOSTICS OF AIRCRAFT GAS TURBINE 

5.1. Hybrid Deep Neural Network Layers Approach for Modeling RUL Prediction of Aircraft 

Engines Data  

In the previous chapter, a benchmark was prepared using the C-MAPSS aircraft engines data 

[163] with selected features using a deep neural network approach. However, the results from the vanilla 

Deep Neural Network (DNN) model can be further improved. Developing a hybrid deep neural network 

model and using the selected features from the previous experiments is a potential approach of improving 

the predictions. An emerging scheme combining Convolutional Neural Network (CNN) and Long Short-

Term Memory recurrent neural network (LSTM) or CNN-LSTM has been suggested in several recent 

articles [109, 183-186], most of which focuses on natural language processing, speech processing, video 

processing task, and as a few examples. There is a good example of prognostics application using CNN-

LSTM ensemble on predicting RUL [187]. Also, another interesting article introduced a hybrid scheme to 

predict residential energy consumption  [188]. Both works relied on raw sensor data for the predictions. 

However, in most of the published works in the past years in RUL data-driven prognostics, more features 

or all features often used to describe equipment degradation [177]. This causes the training time or 

running time of the modeling phase to increase exponentially. As the preliminary results from the previous 

chapter showed, using selected features can help significantly reduce the complexity of the model and 

reduce training time. In addition, the accuracy of the prediction model is slightly better or similar 

compared to when using all features from raw data, less complexity and less training time can be 

realized.  

In this chapter, a novel scheme based on a hybrid deep neural network, namely CNN-LSTM model 

is proposed to predict the RUL of aircraft engines. First, redundant features are removed using the result 

of DNN evolutionary selection from the previous experiments. Secondly, the spatial-temporal features are 

sequentially extracted by using CNN and multilayer LSTM from the preselected data. In addition, RUL is 

predicted by a multilayer fully connected neural network at the end layer. Finally, the effectiveness and 



 

89 
 

 

accuracy of the proposed scheme are validated using RMSE and a scoring algorithm as suggested by F. 

Khan, et al  [172]. 

The main contributions of the experiments in this chapter are summarized as follows: 

1. Design and execute a preselection of data with the evolutionary selection method which best 

depicts aircraft engines' degradation model using DNN. 

2. Propose a novel scheme based on hybrid deep neural CNN-LSTM layers to efficaciously predict 

aircraft engines RUL collected in using C-MAPSS turbofan engine degradation simulation data. 

3. Design a less complex with higher accuracy AI system compared with the non-hybrid models. 

5.2. Methodology 

Taking a similar approach detailed in Chapter 4 (section 4.2), the neural network modeling 

framework mentioned in Figure 11 Chapter 2 was again used. The problem statement is again defined 

including additional notations are also stated with the CNN and LSTM scheme described in Chapter 4 is 

detailed.  

Previously the experiments used a hybrid CNN-LSTM scheme. This chapter will further 

investigate a hybrid an architecture of CNN and LSTM layers coupled with a sliding time window 

processing approach, which is an essential data preprocessing method that can expand the dimensions 

of the input data. 

5.2.1. Problem Statement 

The majority of the problem statement described in section 4.2.1 Chapter 4 can be used again for 

the CNN-LSTM modeling scheme. This is because the DNN algorithm that has been used in the previous 

experiments also falls into the same nature, in which, they are all based on neural network algorithm.  

• The raw data is denoted as, 𝐷𝑆 =  {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖 )}
𝑖=1

𝑁𝑠
, the data contains 𝑁𝑠 training sample, where 𝑥𝑆

𝑖  ∈

𝒳𝑆 is a feature with a length of 𝑇𝑖 and 𝑞𝑆 is the number of features. 

• xS
i = =  {xt

i}
t=1

Ti ∈  RqS×Ti.and  𝑦𝑆
𝑖  ∈ 𝒴𝑆 is denoted as Remaining Useful Life (RUL) also with the 

length 𝑇𝑖 (feature space and RUL space are within the same length)  

•  𝑦𝑆
𝑖 =  {𝓎𝑡

𝑖 }
𝑡=1

𝑇𝑖 ∈  ℝ≥0
𝑇𝑖 . where 𝑡 ∈ {1, 2, … , 𝑇𝑖}, 𝓍𝑡

𝑖 ∈  ℝ𝑞𝑆, and 𝓎𝑡
𝑖 ∈  ℝ≥0, represent the 𝑡-th 

measurement of all variables and RUL label.  
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• The estimated target domain is denoted as, 𝐷𝒯 =  {𝑥𝒯
𝑖 }

𝑖=1

𝑁𝒯
 where 𝑥𝒯

𝑖  ∈ 𝒳𝒯 and 𝒳𝒯 ∈ ℝ𝑞𝒯×𝑇𝑖with no 

labels.  

• The source and target domain, 𝐷𝑆  and 𝐷𝒯, are assumed to a different probability distribution, 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝒯).  

• Function 𝑔  is assumed to be able to derive or learn from the source data that can approximate 

the corresponding RUL for the target domain at the testing time, such, 𝑦𝒯
𝑖  ≈ 𝑔(𝑥𝒯

𝑖 ). 

5.2.2. Sliding Time Window Processing 

Sliding time window processing is essential data preprocessing approach to transform the raw 

input data into a dimension that can recognize by CNN and LSTM layers. The dimension of the input data 

is important because the CNN and LSTM layer generally operate in higher dimension or 3D. The layer 

cannot read (or recognize) the input data if the data dimension does not fit with the layer scheme. The 

window processing data isa technique that converts the time series data into the sequence data and 

retains the local dependence of the series data. It is important to note that the time dimension is not loss, 

instead the time dimension is transformed or reshaped. The data processed by the sliding time window 

can be encapsulated in a time window with a fixed length. The window continues to be “sliding” through 

the data continuously.  

In the case of using this technique to predict the RUL, adapting different sequence lengths allow 

information from the past multivariate temporal sequences to influence the RUL prediction at a point in 

time. As mentioned earlier, the sequential input is assumed to be xS
i = =  {xt

i}
t=1

Ti
  where 𝑇𝑖 denotes the 

size of each sequence length. The hidden state function, ℎ is used to divide each sequence of size 𝑇𝑖 in 

the sequential time window of size 𝑇𝑤  i.e. ℎ𝑡(𝑥𝑖) = {(xt−𝑇𝑤
i , … , xt−1

i )}
𝑡=𝑇𝑤−1

𝑇𝑖
. At time 𝑡 all previous sensor 

data within the time window (xt−𝑇𝑤
i , … , xt−1

i ) are transformed to a high-dimensional input vector i=used to 

predict the target variable as previously defined as 𝓎𝑡
𝑖   If 𝑇𝑖 < 𝑇𝑤 the zero-padding will be applied to the 

left size of 𝑥𝑖 until 𝑇𝑖 has size of 𝑇𝑤 + 1 to make each original time series have a training samples size, 

𝑛𝑖 =  𝑇𝑖 + 𝑇𝑤. The updated number of examples is also defined as �̃�𝑆 =  ∑ 𝑛𝑖
𝑁𝑆
𝑖=1  and �̃�𝒯 =  ∑ 𝑛𝑖

𝑁𝒯
𝑖=1  for the 

source and target domain respectively. In the experiment, 𝑇𝑤 was a fixed value at 30 for all domains to 
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allow consistency on the number of time steps seen by the CNN and LSTM neural network. Also, in this 

case, the transformed input has a dimension of 𝑝 × 𝑞. 

5.2.3. Defined Convolutional Neural Network  

The Convolutional Neural Network or CNN, as briefly mentioned in Chapter 1, was introduced in 

1982 by Fukushima and Miyake [189]. CNN was first introduced to perform pattern recognition and image 

processing tasks which involved extracting high-level spatial patterns. This poses a potential using CNN 

for sensor data which involved a similar task as well. In addition to the aspects of CNN that have already 

been described in the previous chapter, there are mainly two types of CNN layer employed in this work: 

convolutional layer, and pooling layer. 

The convolutional layer convolves the feature map from the previous layer with convolution 

kernels. The kernels are used for feature extraction and feature mapping, then the feature map of the 

next layer is computed through a type of non-linear function or in this case, the ReLU function. These 

functions can also call an activation function as in the vanilla DNN layer.  

The pooling layer reduces the feature map resolution. The feature maps of the convolutional layer 

are subsampling by a predefined factor. Maximum pooling and average pooling are the most commonly 

used sampling approaches for the pooling layer. The pooling layer may also refer to as the subsampling 

layer in some literature [189].          

Figure 34. The defined Convolutional Neural Network architecture. 
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The defined CNN architecture is seen in Figure 34, which is constructed by using two one-

dimensional convolution layers stacked with the max-pooling layer. The flatten layer at the end is used to 

reduce the dimension from the CNN layer and connected to the fully connected layer at the end to form a 

proper regression output value. The input of CNN obtained from the transformed actual input data using 

the sliding time window processing technique (previously described) to expand the input dimension into a 

shape that the CNN layer can recognize. Similar to the formula used for DNN layers in the previous 

chapter, the CNN layers are used to extract the spatial features. However, the features are contained in 

the predefined time windows of size, 𝑇𝑤. Similar to DNN layers, the hidden state units of CNN consist of 

the hidden state vector ℎ𝑡−1 ∈  ℝℎ, input vector, xt
i  ∈  Rq, and the activation function, 𝑓. Where ℎ is the 

dimension of the CNN layer. The CNN layers’ operation can be formulated as: 

𝑖𝑡 = 𝜍(𝑊𝑖𝓍𝑡
𝑖 + �̂�𝑖ℎ𝑡−1 + 𝑏𝑖) (21) 

𝑜𝑡 = 𝜍(𝑊𝑜𝓍𝑡
𝑖 + �̂�𝑜ℎ𝑡−1 + 𝑏𝑜) (22) 

where 𝑖 and 𝑜 represent input and output states. 𝑊 and �̂� are matrices of updated weights and weights 

from the convolutional state, and 𝑏 is the bias vector. 

The activation function 𝜍 for CNN also used the Rectifier Linear function [23] which can be 

represented as; 

𝜍(𝛼) = max(0, 𝛼)  ∈  ℝ+ (23) 

The loss function (ℒ), was defined as a simple error (or regression loss) between the actual and 

predicted output values from the RUL. The loss function can be expressed as: 

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) = |�̂�𝑡

𝑖 − 𝓎𝑡
𝑖 |

𝑝
 (24) 

The 𝜃𝑓 is the space representation of the target input that mapped into a new space (the denote, 

𝑓 represents the feature space). The 𝜃𝑦 is the domain regression space and, �̂�𝑡
𝑖  is RUL prediction from 

the source domain. The objective in training DNN is to minimize the prediction loss, ℒ𝑦
𝑖 , which can be 

described as: 

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)

𝑁𝑠

𝑖=1

] (25) 
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Another objective is to minimize the weights in the direction of the regression loss, ℒ𝑦
𝑖 . The final 

learning function, 𝑔, can also derive from the loss function through parameter 𝜃.The RUL prediction result 

is �̂�𝑡
𝑖 =  𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). The CNN update layers’ learning weights, 𝜃, through the gradient descent update 

[26] in the form of; 

𝜃𝑓 ←  𝜃𝑓 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
) (26) 

𝜃𝑦 ←  𝜃𝑦 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
) (27) 

However, in the case of CNN, Adaptive Moment Estimation (Adam) is used to optimize the weight 

update (see Appendix for more details of Adam). The learning rate, 𝜆, also represents the learning steps. 

5.2.4. Defined Long Short-Term Memory Recurrent Neural Network  

The concept of Recurrent Neural Network (RNN) was briefly introduced in Chapter 1. Long Short-

Term Memory neural network (LSTM) is an extension or an improvement version of the RNN. One of the 

obvious issues using RNN is that the original RNN can accumulate the derivatives of the activation 

function during the backpropagation process which can cause of divergence from an accurate model. 

More importantly, RNN is usually faced with the “fading memory” issue. This makes the “future” time-

steps of RNN can no longer contain the virtual memory of the first inputs.  All of these issues occur when 

the ‘number of time-steps’ in the RNN network becomes too large for the number of connections and 

layers. Therefore, LSTM has been developed to improve on the issues that original or vanilla RNN has.  

LSTM was introduced in 1997 by Hochreiter and Schmidhuber [33]. Instead of containing all data 

in long time-steps, LSTM adopts the gating structure to control the flow of the information. The 

corresponding structure diagram of the LSTM memory cell is seen in Figure 35. The memory cell of LSTM 

consists of the forget gate, input gate, and output gate. Although these three gates of the memory cell of 

LSTM can take the current input layer data and the recurrent state before, the corresponding functions 

are different from each other. The forget gate identifies how many states of the memory cells at the last 

moment that can be fed to the current state. This helps to shorten the virtual time-steps number and 

makes the LSTM network capable of controlling how information flows within the memory cells by 

updating the series of gates capable of learning long-term relationships in the input data. 
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+ + 

 

Figure 35. LSTM memory cell [190]. 

Table 15. The notation of the symbol in the LSTM memory cell. 

 

 In the proposed LSTM architecture seen in Figure 36, the LSTM layers take the input from the 

reshaped-input data using sliding time window processing. The features were contained in the predefined 

time windows of size, 𝑇𝑤. However, the input dimension was considered as an imaginary time dimension. 

This allows the LSTM layers to separate the time dimension from the input data for the recurrent training 

process. In the LSTM layer, a set memory cell consists of three non-linear gating units (Figure 35 

illustrated a unit of LSTM memory cell) that update a cell state, 𝐶𝑡 ∈  ℝℎ′
 in each iteration, using a hidden 

state vector, ℎ𝑡−1 ∈
′ ∈  ℝℎ′

 with input xt
i  ∈  Rq, where ℎ, is the recurrent time dimension of the LSTM layer. 

Operation formulas of the LSTM layers are defined as:  

𝑓𝑡
′ = 𝜎(𝑊𝑓′𝓍𝑡

𝑖 + 𝑅𝑓′ℎ𝑡−1 + 𝑏𝑓′)  (28) 

𝑖𝑡
′ = 𝜎(𝑊𝑖′𝓍𝑡

𝑖 + 𝑅𝑖′ℎ𝑡−1 + 𝑏𝑖′)  (29) 

𝑜𝑡
′ = 𝜎(𝑊𝑜′𝓍𝑡

𝑖 + 𝑅𝑜′ℎ𝑡−1 + 𝑏𝑖′)  (30) 

Symbols   
  

Notation 
Element-wise 
Multiplication 

Sum 
Sigmoid 
Function 

Hyperbolic 
Tangent 

 

x
0 

+
0 



 

95 
 

 

where 𝑓𝑡
′, 𝑖𝑡

′, and 𝑜𝑡
′ are forget gate, input gate, and output gate respectively,  𝜎 is a sigmoid activation 

function inside the LSTM cell (as described in Figure 35 and Table 15) used to scale the output to the 0-1 

range, 𝑊 ∈  ℝℎ×𝑞 are input weight matrices, 𝑅 ∈  ℝℎ×ℎ are the recurrent weight matrices, and 𝑏 ∈  ℝℎ 

are bias vectors. 

 Figure 36. The defined Long Short-Term Memory network architecture. 

All 𝑓𝑡
′, 𝑖𝑡

′, and 𝑜𝑡
′ erre first calculated and fed through the gate to compute the new cell state �̃�𝑡 

using hyperbolic tangent (tanh) activation function as follow:  

�̃�𝑡 = tanh(𝑊𝐶𝑥𝑡
𝑖 + 𝑅𝐶ℎ𝑡−1 + 𝑏𝐶)     (31) 

 Then, the previous cell state  𝐶𝑡−1 were updated into the new cell state 𝐶𝑡 as seen in Figure 35 

and Table 15, or as the formula: 

�̃�𝑡 = 𝑓𝑡
′ ⊗ 𝐶𝑡−1 +  𝑖𝑡

′ ⊗ �̃�𝑡             (32) 

 As previously detailed (and described in the previous equation), the forget gate, 𝑓𝑡
′ decide on 

which part of information vectors to keep or ignore from the cell state. Then, the input gate, 𝑖𝑡
′ decides part 

of the state vectors that can be updated based on the candidate cell states. Then, the forget gates and 

input gates are used to update the information for the new state in the next iteration steps. The last part is 

the output gate, 𝑜𝑡
′ which decides on which information is output data. Then the new hidden state, ℎ𝑡 can 

be calculated by employing hyperbolic tangent activation function to the current cell state times the result 

from the output gate (also as described in Figure 35 and Table 15):    

ℎ𝑡 =  𝑜𝑡 ⊗ tanh (𝐶𝑡)                      (33) 
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The rest of the formulation architecture is similar to the definition for CNN layers in the previous 

section (equation 25 to 37). It is important to note that the 𝑓 represents the feature space while 𝑓′ 

represent the forget gate and there are not the same.   

The loss function of LSTM can be expressed as: 

ℒ𝑦
𝑖 (𝜃𝑓, 𝜃𝑦) = |�̂�𝑡

𝑖 − 𝓎𝑡
𝑖 |

𝑝
                     (34) 

The objective in training LSTM is to minimize the prediction loss which can be expressed as: 

min
𝜃𝑓,𝜃𝑦

[
1

𝑁𝑠
∑ ℒ𝑦

𝑖 (𝜃𝑓, 𝜃𝑦)
𝑁𝑠
𝑖=1 ]                    (35) 

Also, the weights in the direction of the regression loss must be minimized and the final learning 

function, 𝑔, derives through the loss function through parameter 𝜃. And final the RUL prediction result is 

�̂�𝑡
𝑖 =  𝑔𝑦(𝑔𝑓(𝜃𝑓); 𝜃𝑦). The gradient descent update [26] of the learning rate, 𝜆 (also using Adaptive 

Moment Estimation) can be described as; 

𝜃𝑓 ←  𝜃𝑓 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
)      (36) 

𝜃𝑦 ←  𝜃𝑦 −  𝜆 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑦
)      (37) 

5.2.5. CNN-LSTM Hybrid Architecture  

The hybrid scheme combines the CNN and LSTM architectures. In the proposed hybrid scheme, 

there are two layers of CNN with two pooling layers and one flatten layer stacked with two LSTM layers 

and two fully connected at the end to form regressive RUL prediction output. The hybrid architecture 

takes advantage of CNN’s spatiality and LSTM’s long-term temporal memory characteristics. If there are 

high-frequency sensor measurements involved or there is an increase of variation in the sensor’s signals, 

the CNN-LSTM hybrid architecture is able to process the tasks better than the traditional deep neural 

layers. Additionally, the predicted results can have smaller errors compared to the homogenous neural 

network scheme. CNN layers are interspersing with the pooling layer to reduce the computation time. 

While LSTM layers can expose the shorter long-term temporal dependency features. It is important to 

note that the fully connected layers are required at the output to better form the output mapping and 

shape the regression RUL prediction result. One minor change is that the LSTM layers take the 
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information from the last layer of CNN layers as their input instead of the reshaped raw input data as 

described previously. The proposed CNN-LSTM hybrid architecture is illustrated in Figure 37.  

Figure 37. The proposed evolutionary hybrid CNN-LSTM deep neural network model architecture. 

5.3. Experiment and Result 

The processor used for CNN-LSTM experiments was an Intel® Core i7 10th generation i7–

10510U 4 cores processor with 8 MB Cache, 1.8 GHz clock speed, and up to 4.9 GHz boost speed with 

16 GB RAM and Intel® UHD integrated graphic. Two model configurations were studied: one using only 

CNN layers, and the newly proposed CNN-LSTM hybrid layers architectures. Both configurations were 

implemented using Python 3.6 with Keras library/package [160]. The Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) data [163] with selected features using the evolutionary 

selection (from Chapter 4) is used across all experiments. These are the 14 attributes from C-MAPSS 

data we obtained using evolutionary selection that will also be used for the experiment in this section: T2, 

T30, T50, P2, Nf, Ne, epr, Ps30, NRc, BPR, farB, htBleed, W31, and W32.  

For training, the data from input sensors, operational setting, and labeled RUL value from the 

source data, and only sensors and settings from the target dataset were used. The raw data were 

normalized using equation (8) described in Chapter 4. For the training process, the training dataset (as a 

source) from dataset FD002 was used. The FD002 and FD004 test datasets were used to validate the 

models and calculate prediction errors, which are, RMSE (equation (9)) and Score (equation (10)). Note 

that the “training” datasets of FD002 and FD004 are not the same dataset as “testing” dataset of FD002 

and FD004 (as previously describe in Table 9–Chapter 4, section 4.1.2.) 
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The two models being presented here are Evolutionary CNN and Hybrid Evolutionary CNN-LSTM 

as employed evolutionary Selection and Genetic Algorithm prior to the neural network model training 

were used 

5.3.1. Evolutionary CNN Model 

Initially only with CNN layers were studied. Fourteen features obtained from the evolutionary 

selection methods (from Chapter 4.) to develop the model were included in the model.  

5.3.1.1. Evolution and Selection of CNN Hyperparameters  

The list of CNN hyperparameters used for the experiments is detailed in Table 16. The grid 

search was used to select the best model configuration. However, because CNN layers on Keras requires 

more processing time to train compared to the basic DNN using H2O that has previously been 

implemented in Chapter 4, the range and number of hyperparameters trained was limited due to only 

vanilla deep neural network algorithm was employed. It is important to note that the H2O library [180]  has 

a very limited set of hyperparameters that we can adjust, unlike Keras library [160]. In addition, in Keras 

library, the input shape that the CNN layers take must be predefined. The input shape of (30, 14) which is 

the sliding time window dimension, and the number of features or attributes of the dataset respectively 

were studied. Two CNN layers stacked with pooling layers for each CNN layer and flatten layer and fully 

connected layer to form the RUL output shape at the end was used. The type of CNN layer was 1 

dimensional CNN with 64 filter size and a kernel size of 2, and 1 stride. The ReLU function was used as 

an activation function, with a dilation rate of 1, and the padding technique was applied for both layers. For 

the pooling layer, max pooling, with a pool size of 2 and 2 strides was used. Padding was applied to both 

pooling layers. The 0.25 dropout rate was applied for the dropout layer. The first fully connected layer (or 

dense layer) took the reshaped output from the flatten layer using the ReLU activation function with 250 

output space then feed information into one node dense layer at the end to form an RUL prediction output 

for each vector space.   

The CNN configuration based on the Keras library were; Epoch = 256, Batch size = 8, Callback 

function = TensorBoard, Loss function = Mean Square Error, Optimizer function: Adam, Learning rate = 

0.001, Beta 1 and Beta 2 parameter = 0.999 and 0.999, Epsilon parameter = 10-8, and Decay rate = 0. 
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Table 16. Hyperparameters values evaluated in the proposed CNN model.  

 

 

 

 

 

 

5.3.1.2. Evolutionary CNN Results  

The result of RMSE and prediction score from the various CNN model configurations are detailed in 

Table 17.  The best hyperparameters of 1 dimension 2 CNN layers as detailed in Table 16 and with 2 

dimensions 2 CNN Layers, 1 dimension 3 CNN Layers, and 1 dimension 3 CNN layers respectively, were used. 

It is seen that the lowest RMSE values were obtained from the base configuration-1 dimension 2 CNN layers. It 

is important to note that the variations of model configurations were limited because of the training time for the 

CNN algorithm. A better result may have been achieved with additional CNN model configurations. In these 

experiments only the basic configuration was studied to test the premise that the hybrid scheme can have 

smaller error compared to the homogeneous modeling scheme. The RUL prediction curves from the best CNN 

model configuration (1 dimension 2 CNN layers) are shown in Figures 37 and 38 for FD002 and FD004 test data 

respectively. The blue curves represent the actual RUL from the dataset, and the red lines/dots are the 

prediction points from the CNN model. 

Table 17. RMSE and prediction score for RUL prediction from different CNN configurations. 

Model Configurations 
RMSE Score  

FD002 FD004 FD002 FD004  

1 Dimension 2 CNN Layers 38.235 39.536 469,997 386,584 Best Overall 

2 Dimension 2 CNN Layers 42.239 45.505 790,875 538,979  

1 Dimension 3 CNN Layers 44.687 43.581 557,397 468,792  

2 Dimension 3 CNN Layers 46.492 47.612 689,086 315,601  

 

 

  

Hyperparameters Range 

Epoch {64, 100, 256} 

Batch size {8, 16, 32} 

Callback function TensorBoard 

Optimizer function Adam 

Learning rate {0.001, 0.0001, 0.00001} 

Beta 1 1 

Beta 1 1 

Epsilon 10-8 

Decay rate 0 
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5.3.2. Hybrid Evolutionary CNN-LSTM Model  

The hybrid evolutionary CNN-LSTM model includes the 14 features selected using the 

evolutionary selection method as input data for CNN-LSTM stacked layers. The final model architecture is 

seen in Figure 36. There are two CNN layers with two pooling layers stacked together and the output of 

CNN is connected to the two LSTM layers and the fully connected layer is applied at the end to form RUL 

output. The dropout layers were used at the end of both CNN layers and LSTM layers. 

5.3.2.1. Hybrid Evolutionary CNN-LSTM Hyperparameters Selection 

In addition to the hyperparameters selected for CNN from section 5.3.1.1, a sub-set of 

hyperparameters sets for the FD002 were also used as detailed by P. R. d. O. da Costa, et al. [101]. The 

work by da Costa [101]  used only LSTM layers using the domain adaptation technique. In this case, the 

feature of CNN layer using in section 5.3.1.1: 64 filter size, 2 kernel size, and 1 stride, with Max Pooling, 

with a pool size of 2 and 2 strides for pooling layer, and same padding, were used. The adjustment 

completed through the LSTM layer, and the number of units in the LSTM layers was varied between 32 

and 64 based on work by P. R. d. O. da Costa, et al. [101]. Various optimizers were tested, including 

Stochastic Continuous Greedy (SCG) and Adaptive Moment Estimation (Adam). The number of the batch 

size experimented on has also been added. In this case, the batch size was varied from 8, 16, 32, 64, 

256, 512, and 1,024 as additionally suggested by P. R. d. O. da Costa, et al. [101] respectively.  

However, the best performance is still primarily based on the best model parameters obtained 

from section 5.3.1.1 for CNN. The best hyperparameters were; Epoch = 256, Batch size = 8, Callback 

function = TensorBoard, Loss function = Mean Square Error, Optimizer function: Adam, Learning rate = 

0.001, Beta 1 and Beta 2 parameter = 0.999 and 0.999, Epsilon parameter = 10-8, Decay rate = 0, and 

Number of LSTM units (for both LSTM layers) = 32. The sets of hyperparameters used in the Hybrid 

CNN-LSTM experiment are detailed in Table 18. 
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Table 18. Hyperparameters values evaluated in the proposed hybrid CNN-LSTM model. 

 

5.3.2.2. Hybrid Evolutionary CNN-LSTM Results 

Only 4 alterations from LSTM layers are reported here. Based on the results of the previous 

experiment, the CNN layers configurations were held constant with; 1 dimension 2 CNN layers. The 

results of RMSE and prediction score from LSTM alterations are detailed in Table 19. The number of 

LSTM units was 32 and 64, and the number of LSTM layers were varied from 1, 2, and 3 layers. The best 

prediction result came from a configuration with 2 layers of LSTM with 32 units. The results from the 

hybrid scheme are proven to be superior compared to what has been achieved from the homogenous 

scheme or in our case CNN layers as RMSE and prediction score illustrated in Table 17 and 19, as well 

as prediction curve in Figure 38, 39, 40 and 41.   

The RUL prediction curves from the best Evolutionary Hybrid CNN-LSTM model (1 dimension 2 

CNN layers, and 2 LSTM layers) are seen in Figures 39 and 40 for FD002 and FD004 test data. Same as 

the previous curves, the blue curves represent the actual RUL from the dataset, and the red lines/dots are 

the prediction points from the CNN model. 

Table 19. RMSE and prediction score for RUL prediction from different CNN-LSTM configurations. 

Model Configurations 
RMSE Score  

FD002 FD004 FD002 FD004  

32 Units 1 LSTM Layer 30.938 32.856 500,139 436,584  

64 Units 1 LSTM Layer 34.579 33.976 458,890 420,895  

32 Units 2 LSTM Layers 15.376 16.743 306,768 331,852 Best Overall 

64 Units 2 LSTM Layers 18.975 20.233 302,896 324,142  

32 Units 3 LSTM Layers 22.491 25.154 422,679 464,280  

64 Units 3 LSTM Layers 24.320 23.437 405,960 521,214  

 

 

Hyperparameters Range 

Epoch {64, 100, 256} 

Batch size {8, 16, 32, 64, 256, 512, 1,024} 

Callback function TensorBoard 

Optimizer function Adam, SGD 

Learning rate {0.001, 0.0001, 0.00001} 

Beta 1 1 

Beta 1 1 

Epsilon 10-8 

Decay rate 0 

Number of LSTM units (for both LSTM layers) {32, 64} 
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Figure 38. (a, b, and c) Evolutionary CNN RUL prediction curves for FD002 test data.  
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Figure 39. (a, b, and c) Evolutionary CNN RUL prediction curves for FD004 test data. 
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Figure 40. (a, b, and c) Hybrid evolutionary CNN-LSTM RUL prediction curves for FD002 test data. 
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Figure 41. (a, b, and c) Hybrid evolutionary CNN-LSTM RUL prediction curves for FD004 test data. 
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5.4. Result Discussion 

As seen in Table 19 in the previous section, the hybrid evolutionary CNN-LSTM model proposed 

in this chapter has better prediction accuracy compared to the vanilla CNN model. The best CNN model 

can only archive 38.24 RMSE, while the hybrid evolutionary CNN-LSTM can produce a prediction error at 

15.38 RSME. In addition, when comparing the best result among all the deep neural models previously 

proposed; Hybrid, CNN, and DNN (previously proposed Chapter 4), the vanilla DNN can produce the best 

performance with a 44.71 RMSE, which is the largest error among the other two models. 

While it has been seen from our baseline that the evolutionary hybrid approach can produce 

predictions with smaller error compared to both DNN and CNN, it has also been seen to perform slightly 

better than the hybrid architectures proposed in other literature as well. As mentioned in Chapter 4, there 

are several efforts over the years to improve the deep learning models for predicting the RUL of the C-

MAPSS aircraft gas turbine engines dataset [90, 94, 111, 173, 175-179]. Based on this study, the best 

result of the hybrid deep layers model was from Zhengmin Kong, et al. [177]. Their hybrid architecture 

was constructed with CNN and LSTM-RNN combined and achieved error of 16.13 RMSE, while the 

proposed evolutionary hybrid scheme achieved an error of 15.38 RMSE. Given that genetic algorithm 

[182] or evolutionary selection has been applied to the input data to reduce the complexity before the 

model training phase of or model, the evolutionary hybrid approach not only perform better but also 

provide less complexity, which can consider being a significant improvement among other models 

previously proposed. Additionally, when comparing R-Squared value between standard CNN and 

evolutionary CNN-LSTM hybrid approach, the hybrid CNN-LSTM also perform better as illustrated in 

Figure 38 through 41. For FD002 the R-Squared of CNN is 0.736 and hybrid CNN-LSTM is 0.981. While 

for FD004 the R-Squared of CNN and hybrid CNN-LSTM are 0.889 and 0.974 respectively.      

In summary the experiments and models introduced in this chapter are extensions from the 

previous chapter. In Chapter 4, provided a baseline using a neural network-based feature selection 

approach to improve on reducing the complexity of the model. The main goal of the experiments in 

Chapter 4 was to demonstrate that feature selection to improve machine learning, In this chapter, both 

feature selection and hybrid modeling was studied.   It was seen that these models are able to predict 

outcomes reasonably well with accelerated learning. 
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One aspect that has not been tested is the fluctuation in the prediction results or the “uncertainty” 

in the model. The reported results were obtained from training and testing the model three times. While 

we reported the RMSE average of one hundred trials and observed the fluctuation for DNN models in 

Chapter 4, the reported RMSE of the CNN models and the hybrid CNN-LSTM models are from only three 

trials. This is because of the limitation of running CNN and the CNN-LSTM algorithm. With the proposed 

configurations of the model using the specified computing machine described in section 5.3, it took 4 to 5 

hours on average per training and testing of a model. However, the RMSE results from the three times 

training and testing were very close with only ±5% difference on average. The same effect occurred 

across all experiments using both vanilla CNN and hybrid CNN-LSTM algorithms.       

5.5. Chapter Summary 

The work in this chapter was an extension of the experiment from the previous chapter. The set 

of features using the evolutionary selection method has been used to develop models with better 

prediction accuracy using deep Convolutional Neural Network (CNN.) and applied to a hybrid 

Convolutional Long Short-Term Memory Neural Network (CNN-LSTM.) The results from both CNN and 

CNN-LSTM are better compared to ones obtained from the previous chapter based on only DNN. The 

result from CNN-LSTM has larger prediction error compared to existing models recently proposed by Z. 

Kong, et al. [177] as well as being more complex. Despite the approaches used to implement the 

“Evolutionary Convolutional Long Short-Term Memory Deep Neural Network Data-Driven Model for 

Prognostics of Aircraft Gas Turbine” in this work might have already been outperformed other existing 

works in the same nature in terms of prediction accuracy, the future tasks to further improve the work 

within the same scope remains. Better fine-tuning methods to achieve better accuracy from the adjacent 

or similar model architectures might be needed. Additionally, some aspects of dimensionality reduction 

such as PCA might be included to reduce the model complexity. In this case, a model was tested using 

PCA but the prediction results were unusable, which might need to investigate more in the future. 

Moreover, more prognostics datasets might need to be tested and developed in order to have a definite 

conclusion on what might be a universally best algorithm, or model, or architecture, ultimately suitable for 

prognostics data.  
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6. GENERAL SUMMARY 

This dissertation works as a part of ongoing studies on deep learning for prognostics and health 

management applications and developed new deep learning models and approaches for prognostics and 

health management applications. In the early chapters, the groundworks of both Prognostics and Health 

Management (PHM) and Deep Learning (DL) were introduced and investigated. All the PHM matrices, 

ideologies terms, and units were included in this chapter as well as the general concepts of DL. In 

Chapter 1, the PHM and DL were introduced as non-related entities. In Chapter 2, the PHM and DL were 

linked. The aspects of PHM that DL were applied to further investigate, the development of models to 

predict the Remaining Useful Life (RUL). The challenges and research gaps in this have also been 

addressed in this chapter. Additionally, an in-depth survey of the PHM approaches that applied DL 

algorithms over the years were conducted in Chapter 2. Because DL is still relatively new to PHM 

applications, there are areas that can be further investigated and improved for multiple PHM applications. 

Two of which, PHM for Li-ion battery and aircraft gas turbine engine are possibilities. These two 

applications are the most popular among many PHM applications and can be used to develop the 

approach, that believes to possibly be, a universal schema in PHM research. In Chapter 3, the Li-ion 

battery data was used to develop a basic PHM deep learning model. The work in this chapter was 

dedicated to proving some examples that DL algorithms can most likely perform better compared to other 

traditional Machine Learning (ML) algorithms in predictive regression tasks. The result from this chapter 

showed that the model using DL is better in terms of predicting the RUL of Li-ion battery compared to 

other ML algorithms. In Chapter 4, part of the proposed new framework (as in Figure 7) was tested as the 

framework that potentially overcome some of the challenges of using DL in PHM addressed in Chapter 2. 

The feature selection methods were applied to the development of PHM model for the C-MAPSS aircraft 

gas turbine engine. The experiments in this chapter were limited to investigating the effect of feature 

reduction approaches for neural network-based or deep learning-based algorithms. Therefore, only neural 

network-based algorithms have been employed. The results showed that for PHM of aircraft gas turbine 

engine, the genetic algorithm or evolutionary selection approach can perform best and able to select only 

meaningful features or input data for DL-based modeling. However, the results were unsatisfactory when 

compared to other works prior published using the same dataset in terms of accuracy prediction. 
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However, this part aimed to be a baseline for choosing an appropriate set of features to implement DL for 

PHM of aircraft gas turbine engine data and provide concepts how to further improve the DL models 

using similar approaches for PHM applications only. In Chapter 5, the assumption from Chapter 4 were 

further improved for the DL model for aircraft gas turbine engines RUL predictions. The hybrid scheme 

was applied to the selected data from Chapter 4 to develop hybrid DL models. The result using both 

feature selection approach and hybrid scheme improved the prediction results in terms of both complexity 

and accuracy. In this chapter, a proposed “An Evolutionary Convolutional Long Short-Term Memory Deep 

Neural Network Data-Driven Model for Prognostics of Aircraft Gas Turbine” as the model was 

implemented based on all combinations of aforementioned methods and approaches.  This final model 

outperformed the best existing models that fall within similar nature (based on the study between 2019 

and 2020.)  Lastly, as mentioned in Chapter 5, even though the final evolutionary CNN-LSTM proposed 

here was the best one among others. Better fine-tuning or optimizing methods may be needed to further 

improve the model. Additionally, more diverse PHM applications must be tested using similar approaches. 

All things considered, the approaches and schema proposed in this dissertation believe to be able to 

universally be used for most of the PHM datasets that employed DL as a modeling algorithm. The study 

in this dissertation reduces dilemmas on using DL in PHM among prognostics and diagnostics research 

communities.  
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APPENDIX 

A1. Adaptive Moment Estimation 

The Adaptive Moment Estimation (Adam) optimizer keeps an exponentially decaying average of 

past gradients M(t), similar to momentum. M(t) and V(t) are values of the first moment, which is the 

Mean, and the second moment, which is the Un-centered variance of the gradients, respectively. The 

following is the formulas for the First Moment (Mean), and the Second Moment (Variance): 

m̂t =  
mt

1‐ β1
t  (A2) 

v̂t =  
vt

1‐ β2
t  (A3) 

The following is the final formula for the Parameter update: 

                                      θt+1 = θt‐ 
η

√v̂t‐ ε
  (A4) 

The value for β1 is 0.9, and 0.999 for β2 and 10*exp(−8) for ε 
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A2. Pearson Correlation Matrix 

Table A1. The Pearson correlation matrix (for C-MAPSS dataset) 

A
tt

ri
b

u
te

s
 

T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd 
PCNfR_

dmd 
W31 W32 RUL 

T2 1.0000 0.9441 0.8709 0.8979 0.9864 0.9864 0.9731 0.5725 0.8618 0.8266 0.7060 0.9729 0.1643 0.3528 −0.5426 0.7936 0.8732 0.5720 0.1642 0.9777 0.9777 −0.0023 

T24 0.9441 1.0000 0.9822 0.9810 0.9158 0.9441 0.9686 0.8106 0.9785 0.9051 0.8957 0.9688 0.4801 0.6241 −0.7779 0.8050 0.9830 0.8103 0.4800 0.9624 0.9624 −0.0064 

T30 0.8709 0.9822 1.0000 0.9896 0.8429 0.8848 0.9290 0.8957 0.9978 0.9290 0.9607 0.9295 0.6209 0.7520 −0.8759 0.8047 0.9987 0.8954 0.6208 0.9171 0.9171 −0.0253 

T50 0.8979 0.9810 0.9896 1.0000 0.8841 0.9196 0.9567 0.8439 0.9873 0.9616 0.9368 0.9571 0.5447 0.7156 −0.8467 0.8591 0.9902 0.8436 0.5446 0.9464 0.9464 −0.0378 

P2 0.9864 0.9158 0.8429 0.8841 1.0000 0.9963 0.9798 0.5242 0.8329 0.8438 0.6736 0.9795 0.1136 0.3305 −0.5253 0.8241 0.8455 0.5237 0.1135 0.9857 0.9857 −0.0031 

P15 0.9864 0.9441 0.8848 0.9196 0.9963 1.0000 0.9933 0.5944 0.8762 0.8782 0.7339 0.9931 0.1981 0.4075 −0.5955 0.8403 0.8871 0.5940 0.1980 0.9964 0.9964 −0.0029 

P30 0.9731 0.9686 0.9290 0.9567 0.9798 0.9933 1.0000 0.6791 0.9226 0.9187 0.8054 1.0000 0.3070 0.5081 −0.6842 0.8577 0.9309 0.6787 0.3069 0.9991 0.9991 −0.0003 

Nf 0.5725 0.8106 0.8957 0.8439 0.5242 0.5944 0.6791 1.0000 0.9033 0.7829 0.9726 0.6801 0.9028 0.9245 −0.9712 0.5913 0.8937 1.0000 0.9028 0.6559 0.6558 0.0027 

Nc 0.8618 0.9785 0.9978 0.9873 0.8329 0.8762 0.9226 0.9033 1.0000 0.9291 0.9643 0.9231 0.6349 0.7711 −0.8855 0.7996 0.9979 0.9030 0.6347 0.9100 0.9100 −0.0134 

epr 0.8266 0.9051 0.9290 0.9616 0.8438 0.8782 0.9187 0.7829 0.9291 1.0000 0.8924 0.9192 0.5087 0.7271 −0.8475 0.9141 0.9297 0.7827 0.5086 0.9092 0.9091 0.0014 

Ps30 0.7060 0.8957 0.9607 0.9368 0.6736 0.7339 0.8054 0.9726 0.9643 0.8924 1.0000 0.8062 0.8001 0.8931 −0.9654 0.7326 0.9597 0.9724 0.8000 0.7848 0.7847 −0.0426 

phi 0.9729 0.9688 0.9295 0.9571 0.9795 0.9931 1.0000 0.6801 0.9231 0.9192 0.8062 1.0000 0.3084 0.5094 −0.6853 0.8579 0.9314 0.6797 0.3083 0.9991 0.9991 −0.0005 

NRF 0.1643 0.4801 0.6209 0.5447 0.1136 0.1981 0.3070 0.9028 0.6349 0.5087 0.8001 0.3084 1.0000 0.9277 −0.8842 0.2952 0.6173 0.9031 1.0000 0.2766 0.2765 0.0044 

NRc 0.3528 0.6241 0.7520 0.7156 0.3305 0.4075 0.5081 0.9245 0.7711 0.7271 0.8931 0.5094 0.9277 1.0000 −0.9574 0.5425 0.7496 0.9245 0.9275 0.4792 0.4792 −0.0309 

BPR −0.5426 −0.7779 −0.8759 −0.8467 −0.5253 −0.5955 −0.6842 −0.9712 −0.8855 −0.8475 −0.9654 −0.6853 −0.8842 −0.9574 1.0000 −0.6644 −0.8742 −0.9712 −0.8842 −0.6601 −0.6601 −0.0320 

farB 0.7936 0.8050 0.8047 0.8591 0.8241 0.8403 0.8577 0.5913 0.7996 0.9141 0.7326 0.8579 0.2952 0.5425 −0.6644 1.0000 0.8060 0.5910 0.2950 0.8554 0.8553 −0.0649 

htBleed 0.8732 0.9830 0.9987 0.9902 0.8455 0.8871 0.9309 0.8937 0.9979 0.9297 0.9597 0.9314 0.6173 0.7496 −0.8742 0.8060 1.0000 0.8934 0.6172 0.9191 0.9190 −0.0254 

Nf_dmd 0.5720 0.8103 0.8954 0.8436 0.5237 0.5940 0.6787 1.0000 0.9030 0.7827 0.9724 0.6797 0.9031 0.9245 −0.9712 0.5910 0.8934 1.0000 0.9030 0.6554 0.6554 0.0030 

PCNfR_d
md 

0.1642 0.4800 0.6208 0.5446 0.1135 0.1980 0.3069 0.9028 0.6347 0.5086 0.8000 0.3083 1.0000 0.9275 −0.8842 0.2950 0.6172 0.9030 1.0000 0.2765 0.2764 0.0048 

W31 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6559 0.9100 0.9092 0.7848 0.9991 0.2766 0.4792 −0.6601 0.8554 0.9191 0.6554 0.2765 1.0000 0.9999 0.0031 

W32 0.9777 0.9624 0.9171 0.9464 0.9857 0.9964 0.9991 0.6558 0.9100 0.9091 0.7847 0.9991 0.2765 0.4792 −0.6601 0.8553 0.9190 0.6554 0.2764 0.9999 1.0000 0.0030 
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A3. Principle Components Matrix 

Table A2. The Principle Components (PC) matrix (for C-MAPSS dataset) 

Eigenvector 
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a
ri

a
n

c
e

 
T2 T24 T30 T50 P2 P15 P30 Nf Nc epr Ps30 phi NRF NRc BPR farB htBleed Nf_dmd PCNfR_dmd W31 W32 

PC 1 4.1098 0.8043 0.8043 0.2125 0.2380 0.2422 0.2421 0.2088 0.2187 0.2293 0.2143 0.2421 0.2325 0.2325 0.2294 0.1464 0.1835 −0.2143 0.2047 0.2423 0.2142 0.1463 0.2265 0.2265 

PC 2 1.8911 0.1703 0.9746 0.2432 0.0759 −0.0129 0.0338 0.2694 0.2294 0.1739 −0.2437 −0.0234 0.0343 −0.1505 0.1731 −0.4207 −0.3244 0.2381 0.1294 −0.0105 −0.2440 −0.4208 0.1900 0.1900 

PC 3 0.6210 0.0184 0.9930 −0.2203 −0.2194 −0.1148 0.0276 −0.0668 −0.0637 −0.0351 −0.1583 −0.1055 0.4065 −0.0113 −0.0345 −0.0745 0.2675 −0.1636 0.7255 −0.1142 −0.1582 −0.0747 −0.0391 −0.0391 

PC 4 0.2765 0.0036 0.9966 −0.1973 −0.1956 −0.1354 −0.0125 0.1133 0.1197 0.1552 −0.1492 −0.0729 0.3738 −0.0685 0.1558 −0.0679 0.3512 −0.2851 −0.6037 −0.1303 −0.1498 −0.0681 0.1400 0.1399 

PC 5 0.1898 0.0017 0.9983 0.2407 0.1279 0.1338 0.2365 −0.1105 −0.1263 −0.1444 −0.1089 0.2504 0.0171 0.1765 −0.1436 −0.2556 0.5771 0.3024 −0.1262 0.1371 −0.1126 −0.2598 −0.1894 −0.1890 

PC 6 0.1429 0.0010 0.9993 −0.1080 −0.0508 −0.1018 −0.2787 0.1666 0.1661 0.1402 −0.0006 0.0850 −0.5969 −0.2325 0.1398 0.0629 0.5242 0.1348 0.1816 −0.0949 −0.0067 0.0564 0.1473 0.1473 

PC 7 0.0912 0.0004 0.9997 0.3962 0.2324 −0.0820 −0.3642 −0.0725 −0.1049 −0.1372 0.1574 0.2384 0.2671 −0.5964 −0.1412 −0.0471 0.0686 −0.2038 0.0105 −0.0991 0.1585 −0.0485 0.0028 0.0024 

PC 8 0.0467 0.0001 0.9998 0.2674 0.1477 −0.3715 0.0978 −0.0681 −0.0160 0.1226 −0.0583 0.0358 −0.3458 0.2701 0.1267 −0.1464 −0.0277 −0.6182 0.0391 −0.1879 −0.0548 −0.1362 −0.1777 −0.1775 

PC 9 0.0363 0.0001 0.9999 0.0132 −0.0133 0.7894 −0.0969 −0.0175 −0.0065 0.0249 −0.0527 −0.0336 −0.0869 0.0295 0.0252 −0.0552 0.0009 −0.1860 0.0047 −0.5529 −0.0523 −0.0533 −0.0472 −0.0457 

PC 10 0.0328 0.0001 0.9999 0.0008 −0.0389 0.1788 −0.7296 −0.0113 −0.0056 0.0201 −0.0967 −0.0508 0.0283 0.3284 0.0208 −0.1045 0.0016 −0.1610 0.0012 0.5025 −0.0962 −0.1026 −0.0400 −0.0441 

PC 11 0.0311 0.0000 1.0000 0.1051 0.1076 −0.2848 −0.3377 0.0413 0.0245 −0.0107 0.1014 0.1245 0.2238 0.5163 −0.0125 0.0465 0.0011 0.3575 −0.0016 −0.5287 0.1028 0.0463 0.0864 0.0873 

PC 12 0.0138 0.0000 1.0000 −0.2578 −0.2810 −0.0020 0.0108 0.0167 −0.0099 −0.0864 −0.1056 0.8618 −0.0568 0.0304 −0.0848 −0.0164 −0.2225 −0.1099 −0.0024 −0.0025 −0.1110 −0.0253 0.0644 0.0496 

PC 13 0.0118 0.0000 1.0000 0.0477 −0.0185 0.0025 0.0839 −0.0086 −0.1363 −0.4283 0.0260 −0.1718 −0.1710 0.1638 −0.4312 −0.1047 0.0539 −0.2109 −0.0039 0.0099 0.0176 −0.1249 0.4655 0.4744 

PC 14 0.0101 0.0000 1.0000 −0.0021 −0.0067 −0.0005 −0.0023 0.0098 0.0070 −0.0020 0.0012 0.0090 0.0009 0.0001 −0.0028 0.0001 −0.0025 −0.0016 0.0000 0.0020 0.0007 −0.0008 −0.7132 0.7008 

PC 15 0.0071 0.0000 1.0000 0.5000 −0.7791 0.0160 0.0235 −0.1718 −0.1149 0.1418 0.1483 −0.0349 −0.0279 0.0250 0.1270 −0.0272 0.0099 0.0680 0.0015 0.0178 0.1666 −0.0003 0.0504 0.0501 

PC 16 0.0058 0.0000 1.0000 0.0583 −0.2380 −0.0142 0.0054 0.6356 0.4221 −0.2979 0.1703 −0.0600 0.0165 0.0288 −0.2753 −0.0146 0.0194 −0.0802 −0.0018 −0.0146 0.1399 −0.0673 −0.2421 −0.2634 

PC 17 0.0025 0.0000 1.0000 0.0239 −0.0042 0.0006 −0.0014 −0.0321 0.0275 −0.7104 −0.0225 0.0000 0.0017 −0.0024 0.7009 0.0127 −0.0002 0.0038 0.0001 −0.0002 −0.0181 0.0232 0.0068 0.0081 

PC 18 0.0011 0.0000 1.0000 −0.0506 0.0059 0.0006 0.0011 0.0861 −0.0696 −0.0029 −0.4001 0.0033 −0.0050 0.0004 −0.0007 −0.5777 0.0057 −0.0026 0.0000 0.0008 0.4897 0.5014 −0.0056 −0.0055 

PC 19 0.0008 0.0000 1.0000 −0.2540 0.0089 0.0007 0.0033 0.4119 −0.6623 0.1074 0.3333 −0.0010 −0.0155 0.0051 0.1922 −0.1498 −0.0006 −0.0017 −0.0002 0.0011 0.2199 −0.3095 −0.0178 −0.0180 

PC 20 0.0004 0.0000 1.0000 0.3279 −0.0012 0.0002 0.0002 0.4451 −0.4099 −0.0213 −0.4508 0.0004 0.0104 0.0000 −0.0349 0.3864 0.0000 −0.0001 0.0002 0.0002 −0.3040 0.2821 0.0029 0.0029 

PC 21 0.0002 0.0000 1.0000 0.0385 −0.0005 0.0000 0.0000 0.0661 −0.0567 −0.0051 0.4972 0.0001 0.0022 −0.0001 −0.0091 −0.4057 0.0000 0.0000 0.0000 0.0000 −0.5855 0.4860 0.0009 0.0010 
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A4. Evolutionary DNN Model Description 

 
Figure A1. The proposed evolutionary DNN model description (for C-MAPSS dataset) 


