
A CLOSED FORM OPTIMIZATION MODEL FOR THE

CONFLICT NEUTRALIZATION PROBLEM

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Yan Wang

In Partial Fulfillment of the Requirements
for the Degree of

l\1ASTER OF SCIENCE

l\1ajor Department:
Computer Science

November 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A CLOSED FORM OPTIMIZATION MODEL FOR THE

CONFLICT NEUTRALIZATION PROBLEM

By

YANWANG

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Wang, Yan, M.S., Department of Computer Science, College of Science and Mathematics,
North Dakota State University, November 2010. A Closed Form Optimization Model
for The Conflict Neutralization Problem. Major Professor: Dr. Kendall ~ygard.

In this study, we proposed a novel closed form optimization model for the

Conflict Neutralization Problem (CKP) and implemented an efficient algorithm for

solving the problem. A novel tableau representation of the CNP model was presented

and described in detail. We implemented a special structured branch and bound

algorithm to solve the problem. Key components of the implementation were described.

To test the computation performance of our algorithm, we designed and conducted

three sets of experiments. The experiment results were reported and analyzed in this

report. The test results showed the efficiency of the algorithm for solving the Conflict

Neutralization Problem.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Kendall Nygard for his guidance

and advice during my study at North Dakota State University. I would like to thank

him for providing me with valuable advice and extensive knowledge. I would also like

to gratefully acknowledge my supervisory committee, Dr. William Perrizo, Dr. Jun

Kong and Dr. Wei Lin, for their valuable advice and comments.

iv

DEDICATION

To my parents for their unlimited love and support during my master's study, for

the tough time they spent with me in a foreign land. The past three years have been

the most challenging years of my academic and personal life. Without my parents, I

would not be where I am.

The special thanks belong to my husband, Tingda, and my son, Michael, whose

love and encouragement made this thesis possible.

V

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDG~ENTS .. Iv

DEDICATION.... V

LIST OF TABLES .. viii

LIST OF FIGURES . IX

1. INTRODUCTION . 1

1. 1. Problem Statement . 1

1.2. GAP Used to Address CNP . 3

1.3. Method Used to Solve the GAP . 5

1.4. Analysis of Experiments Results . 6

2. LITERATURE REVIEW.. 8

3. MODELING CNP AS GAP...... 13

3.1. Tableau Representation of CNP 13

3.2. Model Description . 14

4. A BRANCH AND BOUND ALGORITHM FOR CNP 17

4.1. Brief Introduction to Branch and Bound. 17

4.2. Bounding Algorithm . 18

4.3. Branching Algorithm . 20

4.4. Pruning Criterion. 21

5. ALGORITHM IMPLEMENTATION 22

5.1. Definitions and Data Structures . 23

vi

5.2. CNP Solver . 24

6. EXPERIMENT AND COMPUTATION RESULTS 27

7. CONCLUSION AND FUTURE WORK 33

REFERENCES ... 35

vii

LIST OF TABLES

Table Page

1. Computation result for group 1 . 27

2. Computation result for group 2 28

3. Computation result for group 3 28

4. Computation result for group 4 28

5. Computation result for group 5 29

6. Statistics for five experiment groups . 29

7. Computation results for problems with different number of CA, RU
and team size . 30

8. Computation results for problems with none dismissible response units. 31

9. Computation results for problems with half of the responsible unit
dismissible. 31

Vlll

LIST OF FIGURES

Figure

1. GAP tableau representation of a p-median problem 11

2. Modeling CNP as GAP. 13

3. Scalability chart for problems with different number of CA, RU and
team size . 30

4. Scalability chart for problems with different dismissible RUs 32

IX

CHAPTER 1. INTRODUCTION

In this study, a novel closed form approach for solving the Conflict Neutral

ization Problem (CNP) is proposed. The CNP was first modeled as Generalized

Assignment Problem (GAP) through a generalizing of tasks and agents in GAP, for

which many efficient algorithms exist. Then a Branch and Bound algorithm was

modified and implemented for solving the CNP. To further improve the performance

of the algorithm, we exploited special structures in the implementation of it. In this

chapter, we will introduce the CNP, the mathematical definition of the CNP, the

GAP used to solve the problem, the Branch and Bound algorithm and some ideas of

the experiment results of our solver.

1.1. Problem Statement

We assume that within a geographical area, there are conflict areas emerging and

dynamically increasing or decreasing in severity. The conflict areas could be of differ

ent types, and could be such things as fires, terrorist cells, or military enemy units.

There are sensor platforms and other data sources available to provide information

about the severity, locations and types of conflict areas. The information provided

by the heterogeneous sources is dynamically changing and is typically partial and/ or

imprecise. Response units that are equipped to neutralize conflict areas are available,

and vary in their mix of resources and in the types of conflicts that they can address.

The resources of the response units arc reconfigurable and can be redistributed among

themselves. The response units may also configure themselves into teams to neutralize

the conflict areas. They stationed initially at different locations and may differ in

mobility factors, such as speed and endurance. The problem objective is to allocate

and dispatch the resources and the tasks to response units adaptively over time. We

coin the term Conflict Neutralization Problem or CNP to refer to the problem of

interest.

1

In the CNP, it is desirable that more than one response unit be assigned to a

single task to deal with situations, where differing types of resources are useful in

neutralizing a conflict area. Here we constraint each response unit to engage with

only one conflict area. The cost for teams that have different team sizes to neutralize

a conflict area is provided by each individual team by running subservient models

aimed at optimizing the coordination of their team missions.

The Conflict Neutralization Problem can be mathematically defined as below:

Minimize:

Subject to:

Where:

n

l m

z = min LL vi,kYi,k

k=1 i=l

m l

LL xi,j,k ::;; 1 j = 1, ... , n;
i=1 k=l

L xi,j,k - k * Yi,k = 0 i = 1, ... , m, k = 1, ... , l;
j=l

I

'°"' 'l'J · k < l ~· 2, -
i = 1, ... , m;

k=l

Yi,k = 0, 1 i = 1, ... , ni, k = l, ... , l;

Xi,j,k = 0, l i = 1, ... , rn, j = 1, ... , n, k = l, ... , l;

i is conflict areas {1, 2, ... , m}.

j is response unit {1, 2, ... , n}.

k is team size {1, 2, ... , l}.

2

(2)

(3)

(4)

(5)

(6)

vi,k is the objective function coefficient of assign a team size k to a conflict area.

Variable Yi,k represents the assignment of a team size k to a conflict area i.

Variable xi,J,k represents the assignment of a response unit j to neutralize a

conflict area i in a team with team size k.

Constraint (2) means that one response unit can be engaged with only one or

no conflict area. For the engaged conflict area, a response unit can only be in a team

with team size k. For example, response unit j can be involved in a team of size 1,

2, ... l, and the team can only be assigned to neutralize only one conflict area or the

response unit can be dismissed and not involved in neutralization of any conflict area.

Constraint (3) means that for one conflict area i, if one team size k is assigned

to neutralize it, then there must be k response units assigned to neutralize it.

Constraint (4) means that for any conflict area, only one team size can be

chosen.

Constraint (5) means the decision variable Yi,k is binary.

Constraint (6) means the decision variable Xi,J,k is binary.

Solving the CNP problem is non--trivial. Because of the constraints (2), (3)

and (6), the formulation above cannot he solved with standard linear programming

techniques. In this study, we will show that the problem can be formulated and solved

as GAP. Since there exists efficient algorithms for the GAP, we can solve the problem

efficiently with some special data structures.

1.2. GAP Used to Address CNP

To solve the CNP, we first model the problem as a special Generalized Assign

ment Problem (GAP). In GAP, there are a number of agents and tasks. An agent

can be assigned to perform any task in the task set. An assignment of an agent to

a task will incur some costs. The profit of an assignment varies depending on the

agent-task pair. Each agent has a capacity limit. The sum of the costs of assign a

3

task to it cannot exceed this limit. The solution to a GAP problem is the one that

all agents do not exceed their budget and total profit of the assignment is maximized.

For the problem presented in this paper, it is necessary to solve the minimum GAP

problem shown below:

Minimize:

Subject to:

m n

z =min"'""'"'""' V· ·x· · L.....,; L.....,; i,J i,J

m

I:xi,J = 1
i=l

n

i=l j=l

j = l, ... , n;

L ri,jXi,J :s;; bi i = l, ... , m;
j=l

xi,j = 0 or l i = 1, ... , m,j = l, ... , n;

(7)

(8)

(9)

In the formulation, j is the set of tasks, i is the set of r:gents, r(i, j) is a measure

of the amount of resource that agent i spends in carrying out task j. b(i, j) is the total

resource that is available to agent i and v(i, j) is the the cost to assign a agent i to

carry out task j. The decision variables x(i, j) are binary and model the assignment or

non-assignment of tasks to agents. The objective function accumulates and provides

the total cost of the tasks being assigned to agents. The constraints set (8) requires

that each task is done by one agent and the constraint set (10) enforces that each

agent's resource capacity is not exceeded.

The formulation above is generic. In the CNP it is desirable that more than one

response unit (RU) be allowed assignment to a single task, to deal with situations

where different types of resources are useful in neutralizing a conflict area (CA) and

4

the resources are only available at different response units. For example, there could

be situations in which specific teams comprised of RUs working together to increase

the probability of neutralizing the conflict area. The cost is expected to be nonlinear

in the number of RUs. To function as teams, the RUs must be in close communication

with each other, and negotiate to agree upon a feasible estimated time of arrival (ETA)

based on their specific role in neutralizing the conflict area.

In this work we proposed a novel modeling techniques to fit the CNP to a GAP

formulation. We will present the detail of the model in Chapter 3.

1.3. Method Used to Solve the GAP

The GAP is a NP-hard program. But due to the difficulty in solving "hard"

GAPs, in the case of optimizing methods, computational results are limited to 500 to

1,000 binary variables in the beginning. A considerable body of literature exists on

the search for effective enumeration algorithms to solve GAP problems. Both exact

and heuristic algorithms have been suggested for solving the GAP problem. Various

mathematical programming techniques have been tried on the GAP problem including

branch and bounds techniques, relaxation, dual approaches, meta-heuristics, set par

titioning, etc. A large number of special GAP problems have more efficient algorithms

designed to take advantage of their special structures.

The branch and bound is an exact method for finding an optimal solution

to an NP-hard problem. It is an enumerative technique that can be applied to a

wide class of combinatorial optimization problems. The branch and bound algorithm

makes the search much more efficient by using bounds on the objective function to

prune large parts of the search tree. For example, a branch and bound algorithm

for integer optimization problem begins by solving the continuous relaxation of the

original problem. If a 0/1 variable is fractional, the algorithm constructs two new

subproblems. In one of the subproblem the variable is set to be zero and another the

5

variable is one. The algorithm proceeds in this fashion by solving subproblems and

creating new subproblems until an integer solution has been found and each remaining

subproblem has a higher lower bound than the integer solution.

In this study, we present a special structured branch and bound algorithm for

solving the CNP. The elements of the algorithm are described in Chapter 4.1 to 4.3.

In Chapter 5, we will describe the implementation. Computation experiments and

results are reported in Chapter 6.

1.4. Analysis of Experiments Results

Due to the special structured model of the CNP, existing computer programs

are not able to process the model and few computer programs are available to offer

modeling flexibility for the problem. Also, existing commercial mixed integer linear

programming products are too general to be efficient on large sized problems like

the CNP. In Ross and Soland's study, they programmed and tested some special

structured model with their algorithms. The calculation time is not as small as

other's work. For solving the CNP, we implemented the branch and bound algorithm

of Ross. In this study, we implemented an efficient branch and bound algorithm with

C++ and solved a variety of test problems with randomly generated variables. The

computational results for problems of different size arc reported in Chapter 6. The

standard deviation, median, minimum and maximum calculation times are reported,

as well as the median values of the number of feasible solutions and nodes.

To demonstrate the efficiency of our algorithm, we solved sets of randomly gen

erated CNPs. The computational results clearly show the efficiency of our algorithm

for the CNP. As indicated in the computational results, the calculation times of our

algorithm are relatively stable for each problem size. As problem size increases, the

calculation time increases but at a relatively slow rate when the number of variables

is less than certain limit.

6

We also noticed that the number of dismissible response units affects the scal

ability of the algorithm. If the dismissible response unit is low, most of the response

unit must be involved in neutralizing the conflict area. Compared with problem with

a higher number of dismissible response units, low dismissible response units impose

more restriction on the problem and result in more complex computation.

7

CHAPTER 2. LITERATURE REVIEW

In this chapter we will give a brief review of the relevant literature on Conflict

:'.'Jeutralization Problem, Branch and Bound techniques, etc.

As John Arquilla and David Ronfeldt stated, the information revolution is

altering the nature of low intensity conflict, crime, and activism waged by actors like

terrorists, fire apparatus, etc. As the information revolution deepens, the conduct and

outcome of conflicts increasingly depend on information and communications. The

actors are organizing into sprawling, loose, leaderless networks [2]. From the 1990s,

officials and analysts in U.S. and European government, military, and police circles

began to show an interest in the concept. However, they found it difficult to deal with

terrorists, criminals, and fanatics associated with militias and extremist single-issue

movements, largely because these antagonists were organizing into sprawling, loose,

leaderless networks, overcoming their former isolated postures as stand-alone groups

headed by "great" person.

The CNP is a special case of pairing problem that shares the same feature.

In the C:'.\P, the information provided by the heterogeneous sources is dynamically

changing and is typically partial or imprecise. The decision making and operations

are less centralized, therefore allowing for local initiative and autonomy. Based on the

communication and computation capability of actors, each team can run subservient

models aimed at optimizing the coordination of their team missions. Typically in

the CNP, the cost for teams with different team size to neutralize a conflict area is

provided.

Since mid-fifties, many research articles on pairing problems haw been pub

lished. Some of these problems are easy to solve, whereas others are extremely difficult

like the Generalized Assignment problem. The Generalized Assignment Problem is

used in many applications such as assigning jobs to computers in a computer network

8

[3], vehicle routing [7] and plant location [11]. Numerous studies have been done

on approaches for solving the GAP. In 1974 Geoffrion coined the term Lagrangian

Relaxation in an early exposition of the concept and applied the Lagrangean Re

laxation in obtaining lower bounds when solving a integer programming problem

[8]. After that the Lagrangean Relaxation was applied to many discrete optimization

problems including facility location and capacity planning, scheduling, vehicle routing

and network flow, set covering, generalized assignment, and other variations on

the knapsack problem. Beyond these traditional resource allocation problem, the

techniques was also applied to problems like biology, electric power generation, the

chemical and petroleum industries.

In 1975, Ross and Soland [11] proposed an efficient branch and bound algorithm

which applies an elaborate technique for bounding calculation by solving a series of

binary knapsack problems. In their algorithm, the bounding process starts from

solving an initial simple and easy to calculate relaxation of the original problem.

An initial bound is obtained by solving first relaxation problem. Then a set of PKi

problem was created and solved for each agent i that the capacity constraints is

violated. Each PKi problem is a binary knapsack problem. The solution to each PKi

designates those tasks that must be reassigned from agent i to other agents in order

to satisfy the resource restriction on agent i. The solution was used to further refine

the lower bound by the sum of the values of the objective functions obtained.

Another benefit of solving the PKi problems is that by reassigning some of the

variables xi,J, a feasible solution to original problem P may be constructed. This new

solution will be used for later pruning process. In their report, Ross and Soland also

showed that their approach for bounding can be viewed as a specific application of

Lagrangean Relaxation. The method for branching of their approach is based on the

0-1 dichotomy of variable values. The chosen variable is also based on the solution

9

of previous PKi problem. The variable chosen represents a job that is best kept with

agent i considering both the penalty for switching the job and the resources available

to the agent.

Ross and Soland implemented their algorithm and solved a variety of test

problems. They applied a LIFO (Last In First Out) treatment to the candidate

problems for fast update of candidate list and small storage space. Based on the

computation results, the algorithm could solve problems with up to 4000 variables

and the computation time was relatively stable for each problem size in comparison

to other algorithms tested.

Different metaheuristic approaches also have been proposed by other authors

[1][4][6]. A survey of exact and heuristic algorithms to solve the GAP can be found

in Cattrysse and \1/assenhove's report [5].

A variety of extensions of the GAP have been proposed in the past in order

to more closely describe various real-world applications. Srinivasan and Thompson

[13] mentioned an extension of the model where the capacity of the agents can be

increased at a certain cost, which is linear in the amount of capacity added. Neebe and

Rao proposed a fixed-charge version of the GAP with agent-independent requirements

where each agent processing at least one task incurs a fixed wst [10]. In 1989, Mazzola

states that nonlinear capacity interaction can be found in hierarchical production

planning GAP, where product families must be assigned to production facilities and

a changeover is translated into nonlinear capacity interaction between the product

families assigned to the same facility [9].

In 1977, Ross showed that many location problems can be formulated as spe

cial structured GAP and solved efficiently with existing algorithms [12]. He first

introduced additional "tasks" and "agents'' in the tableau representation of original

locations problems as showed in Figure 1. This includes a large amount of new cells

10

into the tableau representation. Ross and Soland elaborately defined the value of the

ri,j, ai and bi in the tableau as,

i = 1, ... , N. (11)

(12)

The special values of these coefficients enables that the GAP constraints (13) and

(14) can guarantee that each specific requirement of the original location problem are

satisfied. For example, when constraint (13) and (14) applied, the last row of tableau

in Figure 1 insures that exactly two demand centers are designated as supply centers.

m

LXi,j = 1
i=l

xi,j = 0 or 1

j = 1, ... , n;

i = 1, ... ,m,j = 1, ... ,n;

3

3

3

2

Figure 1. GAP tableau representation of a p-median problem

(13)

(14)

In their study, they considered both public and private section models of facility

location problems like p-median problem, capacity constrained p-median, capacitated

warehouse location problems, etc. They implemented an existing algorithm to solve

a set of example GAPs. As they stated, the computation time is not as small as some

11

others reported in recent research.

In this study, we reviewed research works on optimization problems like location

problems, Netwar, fire fighting, etc. A large number of special GAP problems have

more efficient algorithms designed to take advantage of their special structure. Based

on the nature of the CNP, we proposed a novel tableau representation of the Conflict

Neutralization Problem, which was modeled as a GAP by generalizing of tasks and

agents in GAP. To solve the CNP, we modified and implemented the branch and

bound approach proposed by Ross. \Ve further improved performance of the algorithm

by applying special structures to exploit the special feature of the C~P model.

12

CHAPTER 3. MODELING CNP AS GAP

As stated in Chapter 1, the CNP problem cannot be solved with standard

linear programming techniques. In this study, we showed that the problem can be

formulated and solved as Generalized Assignment Problem (GAP), for which there

exists efficient algorithms for the GAP. In this chapter, we will present detailed

explanation of the CNP model.

3.1. Tableau Representation of CNP

Figure 2 shows how GAP constructs can support the global assigning of multiple

response units to teams that work cooperatively in such a way that the total cost for

neutralizing conflict areas is minimized.

0

2

3

4

s

6

7

8

9

11

12

13

; ; ; ; ; ;;;i ; ; ; 1 ~ ~ .!l .!l i::i:: :: .. -= .!l .. -= 'a i :i:i .!l l:i l:i .:: .§ "Q = .e- "Q = = t = = = = = ~ = ;5 .!! = ~
00 i::i ~ i::i t'-l i::i z z z N, Ill N N a :;i 3

..
=-;;;i ; ; ; ; -< -< < -< < < -< < < =-i::i:: u u u u u u u u u u ;;;i

CAI Single RU
0 0 0 0 0 0

1
1 1 1 l 1 1

CAI Double RU
0 0 0 0 0 0

1
1/2 1/2 1/2 1/2 1/2 1

CAI Triple RU
0 0 0 0 0 0

1
1/3 1/3 1/3 1/3 1/3 1

CA2 Single RU
0 0 0 0 0 0

1
1 1 1 1 1 1

CA2 Double RU
0 0 0 0 0 0

1
1/2 1/2 1/2 1/2 1/2 1

CA2 Triple RU
0 0 0 0 0 0

1
1/3 1/3 1/3 1/3 1/3 1

CA3 Single RU
0 0 0 0 0 0

1
1 1 1 1 1 1

CA3 Double RU
0 0 0 0 0 0

1
1/2 1/2 1/2 1/2 1/2 1

CA3 Triple RU
0 0 0 0 0 0

1
1/3 1/3 1/3 1/3 1/3 1

CAI#RU
vu V12 V13 0

1
1 1 1 1

CA2#RU
V21 V22 V23 0

1
1 1 1 1

CA3 #RU
V31 V32 V33 0

1
1 1 1 1

CA Dispatch
0 0 0

3
1 1 1

RU Dismiss
0 0 0 0 0 s
1 1 1 1 1

Figure 2. Modeling CNP as GAP

In the figure, columns correspond to generalized tasks. Rows are generalized

13

agents. Cells correspond to decision variables xi,J. \Vi thin a cell (i, j) of the table,

the objective function coefficient v(i, j) is shown as the top entry and the resource

consumed by the assignment r(i, j) is the bottom entry. Constraint (8) stipulated that

for any feasible solution, exactly one of the cells in each column is chosen (multiple

choice constraint). Across each row, the chosen cells must have a total resource

consumption that does not exceed the upper limit (capacity), shown on the end of

the row. When the upper limit is set to 1, the model solution will assign at most one

task to the corresponding agent, i.e., a binary assignment structure. Empty cells in the

tableau represent inadmissible assignments. These could be handled computationally

through large penalty costs, but we prefer to handle them by employing specialized

data structures in the solution algorithm to bypass these assignments.

3.2. Model Description

The CNP model discussed above supports scenarios that single tasks can be

cooperatively carried out by multiple RUs. The value of engaging a CA is likely to be

nonlinear in the number of RUs. The GAP framework supports extended modeling

constructs for this type of scenario by generalizing the meaning of jobs and agents.

In the example of the tableau, there are five available RU s and three CAs. Each

task can be assigned 0, 1, 2, or 3 RlTs, i.e., the team size to neutralize the CA can

be 0, 1, 2, 3. If the team size is more than one, the team members are granted the

autonomy to coordinate their mission using models at the team level. For example,

if different resources are required to neutralize an conflict area, or efficiency will be

gained in scale if large numbers of response units are assigned to neutralize a conflict

area.

The first five columns of the table correspond to generalized GAP tasks which

model the response units. Based on GAP Constraint (8), exactly one cell is selected

in each column, so each response unit is restricted to choose only one from the ten

14

cells that are available.

The agent choices in the first three rows enforce that if conflict area CAI is

assigned, there will be one, two, or three response units. Upper limits for each of

the first nine rows is set to 1. Because the variables are binary and the resource

consumed are inversely proportional to the number of RUs in the team, each of these

rows enforces a condition that either one of the specified number of RU choices is

assigned to the CA, or none at all. The bottom row represents the option of the RU

having no assignment.

Cells on the diagonal structure correspond to agent/task pairs for each possible

team size for each CA. This mechanism allows for a given team size to not be selected.

This induces a ripple effect in the model. More specifically, a non-selection forces a

selection in the cell in the column corresponding to the task/number of RU agents

enumerated in rows 9, 10, and 11. These cells are where the team reward values

v(i, j) are provided for the model. This structure models nonlinear returns to scale,

because individual reward value entries for 1, 2, or 3 RUs are provided for each CA.

The actual v(i,j) values would be provided by the individual teams, through running

subservient models aimed at optimizing the coordination of their team missions. Rows

9 - 11 have an upper limit of one, essentially making these multiple choice constraints.

This enforces the assigning of exactly 0, 1, 2, or 3 RUs to each task. Finally, row

12 models selection or non-selection of each CA. The upper limit of 3 provides for

selecting at most all three tasks, but also makes it possible to assign less than all

three, which may be optimal for some scenarios, depending on the severity of the CA.

The model supports fundamental differences in the RUs through reward co

efficients for the various available combinations. Thus, the model has remarkable

flexibility for heterogeneous RUs with different resources or other differences. the

potential drawback of the approach is computational solution time. However, to

15

improve solution time, the enumeration solution scheme can take advantage of the

considerable special structure.

16

CHAPTER 4. A BRANCH AND BOUND ALGORITHM

FOR CNP

To solve the CNP, we modified and implemented the branch and bound approach

proposed by Ross [11]. The algorithm solves the generalized assignment problem

by solving a series of binary knapsack problems. Previous research work and our

experiment result demonstrated the efficiency of the approach. In this chapter we

will present the branch and bound procedure in detail.

4.1. Brief Introduction to Branch and Bound

Solving NP-hard discrete optimization problems to optimality reqmres very

efficient algorithms. Branch and bound is by far the most widely used tool for solving

large scale NP-hard combinatorial optimization problems. The branch and bound

algorithm searches the complete solutions space for a given problem for the best

solution. As the solution process, the status of the solution with respect to the search

of the solution space is described by a pool of yet unexplored subset of this space and

the best solution found so far.

The branch and bound procedure consists of three important components. The

first one is a splitting procedure that split a set S of candidates into two or more

smaller sets. The union of these sets covers original solution set S.

Another component is the bounding procedure that computes upper or lower

bounds for the minimum value of within a given subset S. If the lower bound for a

tree node is greater than the upper bound for some other node or the upper bound for

a tree node is less than the lower bound, then that tree node can be safely discarded

from the search. This component is called pruning.

The efficiency of a branch and bound algorithm depends heavily on the effec

tiveness of the branching and bounding approach. Poor design may result in repeated

branching without any pruning.

17

In the branch and 1:>ound algorithm used in this study the bound is calculated

in part by solving a set of binary knapsack problems, which require only minimal

effort. The algorithm exploits the structure of the CNP problem and yields an

integer solution that tends to be feasible. With a LIFO implementation of candidate

problems, the algorithm demonstrated great efficiency.

Minimize:

(P)

Subject to:
m

m n

z = min LL 1\,jXi,j

i=l j=l

LXi,j = 1
i=l

j = l, ... ,n;

n

L ri,jxi,j :s; bi i = 1, ... , m;
j=l

xi,j = 0 or 1 i = l, ... ,m,j = l, ... ,n;

4.2. Bounding Algorithm

(15)

(16)

(17)

(18)

The first step of the bounding procedure of the algorithm is the initial relaxation

of problem (P). The relaxation is a natural one in which tasks are assigned to the

least costly agent without regard to the limitations on multiple assignments. This

relaxation is

~inimize:

(PR)

Subject to:

m n

z = min LL ci,jxi,j
i=l j=l

m

LXi,j = l
i=l

j = l, ... ,n;

18

(19)

(20)

xi,J = 0 or l i = l, ... ,rn,j = l, ... ,n; (21)

The solution to (PR) is found by determining an index iJ E I for all j E J, such

that cij,J = miniEI{ci,J} and setting Xij,J and Xi,J = 0 for all i EI, i =J. ij.

The lower bound yields this way is:

n

z = "'"" Cj . 6 J,J
j=l

(22)

Each of the constraints (18) in (P) is then checked for feasibility using the

solution to (PR). Most of the time, some of these constraints will be violated. A set

of (PKi) problem are then solved to refine the lower bound.

Let

Let

J;

I' {i: Lri,.fXi,J < bi,i = l, ... ,rr1 }

.i=l

The PKi problem is defined as below:

Minimize:

subject to

zi = LP.1Yi,.i
jEJ,

19

(23)

where

~r- ·y· · > d· L..,; i,J i,J - i

jEJ;

Yi,J = 0 or 1

di = L ri,JXi,J - bi
jEJi

(24)

(25)

The optimal solution to (PKi) indicates those reassignments that lead to a

minimal increase to the value of Z. The revised lower bound for (P) is:

LB=Z+I:z;.
iEI1

An additional refinement can be made in the procedure for solving (PKi) as the

branching progresses, particularly as the algorithm proceeds down the "one-branch''.

ri,J > bi - L ri,JXi,J
jEFi

where Fi designates those tasks assigned to agent i in the current candidate

problem.

This may increase the bound and penalties PJ in the objective function of the

4.3. Branching Algorithm

The variable Xi• ,J* that chosen to separate on is decided based on;

1. The variable should be one from the solution set for (PKi) with Yi,J= O;

20

2. ti*,j* = max{pj/"''i,j/(bi - LjEF; ri,jxi,j)},

where ~ denotes the set of tasks assigned to agent i.

In this way, the solution set for (P) is separated into two mutually exclusive and

collectively exhaustive subsets based on the 0-1 dichotomy of variable values.

The branching approach above creates two new candidate problems whose so

lution sets differ only in the value assigned to a particular variable. The candidate

problem in which the separation variable is fixed to one is the problem examined

next.

4.4. Pruning Criterion

The solutions of the binary knapsack problems in (PKi) indicate some reassign

ments of tasks to other agents that may lead to a feasible solution. Those feasible

solutions are used in our algorithm for search space pruning. A variable that records

the minimum upper bound seen among all subtrees examined so far was maintained

globally. If the lower bound for some set of candidates is greater than that global

upper bound, then that candidates can be safely discarded from the search.

In this study, we implemented the branch :=md bound algorithm presented above

with special data structures, the experiment results shows good efficiency and scala

bility of the algorithm.

21

CHAPTER 5. ALGORITHM IMPLEMENTATION

The branch and bound algorithm was implemented with C++ under Redhat

5.0. In the implementation, we apply a LIL treatment on the bounding process of

the algorithm. The LIL treatment greatly reduced the processing time by avoiding

process of inadmissible cells in the model. Algorithm 1 shows the general branch and

bound procedure.

Input: nCAs(Number of Conflict Areas), nRUs(Numbcr of response unit),
nSizes(K umber of team size)

Output: Optimum Solution

Createli1 odel(nCAs, nRUs, nSizes);

CnpSolver.initialize();

while pStackHead and nSerialNo :s; MAX_NODES do

pCur = pop(pStackH ead);

pr Solve();

if feasible() then

update optinum ... ;

fanthom();

else
pkSolver();

reassign();

if feasible() then

update optinum ... ;

fanthorn();

else

Create New:'.'J"ode0;
Create NewNodel;
push stack NewNode0;
push stack NewNodel;

end
end

end
Algorithm 1: Bra11ch and Bound for the CNP

22

5.1. Definitions and Data Structures

As the tableau representation of the CNP model exists large number of inad

missible cells, we exploit this special structure in implementing the branch and bound

algorithm. List of lists are created for storing of the objective coefficient and resource

consumption, LIL stores one list per row, where each entry stores a column index and

value. The LIL treatment of the model greatly reduce the computation in solving the

PR problems and the PKi problems.

/* List of lists node * /

typedef struct LILN ode{

int nValue;

};

int nlndex;

LILNode * pNext;

/*Value of the cell*/

/*Column or row number of the cell, * /

/*Pointer to next cell*/

the branch and bound tree consist of nodes defined below. Each node points to

its parent through the pParent pointer, except for the root. When solving the (PR)

and (PKi) problem, by following the path from a particular node to the root, the

algorithm can determine all the variables that are fixed to either zero or one. The

pPrev pointer link node to its previous node in the LIFO stack. The branch and

bound algorithm will terminate when the stack is empty.

/* Branch and bound node structure * /

typedef struct Node {

int nNode;

int nBound;

int nAgentFixed;

/*Node no*/

/*Lower bound of the node's LP relaxation*/

/* Agents fixed*/

23

} Node;

int nTaskFixed;

int nFixedTo;

struct Node *pParent;

struct Node *pPrev;

Global definations:

define MAX_NODES 1000000

define I:\'FINITY 9999999

define NO_SELECTION -1

define TRUE 1

define FALSE O

define ASSIGN 1

define NOT _ASSIGN 0

define NOT _SOLVED -1

define NO_VALUE -1

define NOT _REASSIG~ 0

define NOT _ASSIGNED 0

define ASSIGNED 1

define SIZE 5000

5.2. CNP Solver

/*Tasks fixed*/

/*Variable fixed to 1 or O* /

/*Pointer to parent Node*/

/*Pointer to previous node

in the branch and bound stack*/

The CNP solver class is the main implementation of the branch and bound

algorithm including branching, bounding, LIFO management, model initialization

and etc. Below shows some piece of the solver.

24

class CnpSolver {

int nAgents_;

int nTasks_;

int **c ;

int **r
'

int *b;

int *pSelectedAgenL;

int nSerialN o_;

Node* pBestNode_;

int nFeasibles;

Node* pR.oot_;

Node* pStackHead_;

Node *pCur _;

I*

/*Number of agents*/

/*Number of tasks*/

/*Objective values*/

/*Coefficients*/

/*Capacities*/

/*Solution to PR problem*/

/*Current node number in the queue*/

/*Best*/

/*Number of feasible solutions*/

/*Root node for the branch and bound tree*/

/*Head node for the LIFO stack*/

/*Current node*/

*Implementation of LIL for objective value sparse matrix

*and Coefficients sparse matrix.

*

*Each row will head an array with different length

*according to the number of non-zero cells in the row.

*/
LILNode** ppCSparseRow_;

LILKode** ppCSparscCoL;

LILN ode** ppR.SparseRow _;

. . . omission of other members

CnpSolver();

25

CnpSolver();

int initialize(const char* fileN ame) ;

int solve();

private:

}

int feasible_(int *nSolution);

void reassign_();

int pkSolver_(int &nZValue, int &nNextTask, int &nNextAgent);

int prSolver_();

void fanthorn_(const char* str);

Other functions include a 0-1 knapsack problem solver implemented with dy

namic programming approach, LIFO operation functions, etc.

26

CHAPTER 6. EXPERIMENT AND COMPUTATION

RESULTS

To test our algorithm and demonstrate the efficiency of the algorithm, we

programmed our algorithm and solved a variety of test problems. The program was

written with C++ and tested on under PowerEdge 2970 with 64-bit Red Hat Enter

prise Linux 5.5. \Ve test the algorithm on randomly generated problems with different

number of conflict areas, response units and team size. In the randomly generated

problems, a uniform probability distribution was used to create the objective function

coefficient ½,j values. The solution times reported in the tables below were CPU time.

The solution times, the number of feasible solutions and total nodes processed are

given below. Table 1 shows computation results for problem with 10 response units,

15 conflict areas and maximum team si:ze of 5. Table 2 shows computation results

for problem with 11 response units, 16 conflict areas and maximum team size of 6.

Table 3 shows computation results for problem with 12 response units, 17 conflict

areas and maximum team si:ze of 7. Table 4 shows computation results for problem

with 13 response units, 18 conflict areas and maximum team size of 8. Table 5

shows computation results for problem with 14 response units, 19 conflict areas and

maximum team size of 9.

Table 1. Computation result for group 1

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes

10 15 5 9200 0.035 4 49

10 15 5 9200 0.027 3 40

10 15 5 9200 0.037 4 52

10 15 5 9200 0.075 4 98

10 15 5 9200 0.041 5 i 57

The standard deviation of solution time and median values of the number of

27

Table 2. Computation result for group 2

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes
11 16 6 14022 0.052 2 50
11 16 6 14022 0.053 3 53
11 16 6 14022 0.044 2 48
11 16 6 14022 0.05 3 50
11 16 6 14022 0.054 3 53

Table 3. Computation result for group 3

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes
12 17 7 20424 0.424 4 227
12 17 7 20424 0.091 2 58
12 17 7 20424 0.091 2 61
12 17 7 20424 0.103 3 67
12 17 7 20424 0.135 6 82

Table 4. Computation result for group 4

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes
13 18 8 28700 0.175 4 76
13 18 8 28700 0.141 1 66
13 18 8 28700 0.166 3 76
13 18 8 28700 0.161 3 72
13 18 8 28700 0.218 5 93

feasible solutiuns and total nodes are also given in Table G. Based on the compu

tational results, the computation time of our algorithm is relatively stable for each

problem size.

In order to investigating the scalability of the algorithm, we also tested the

algorithm on problems that vary widely on the problem size. The test was conducted

28

Table 5. Computation result for group 5

RUs CAs Team Sizes Variables Time Feasible Solutions Kodes
14 19 9 39168 0.62 4 172
14 19 9 39168 0.332 3 89
14 19 9 39168 0.304 2 81
14 19 9 39168 0.36 4 93
14 19 9 39168 0.404 6 105

Table 6. Statistics for five experiment groups

RUs CAs T Sizes Variables Max Min Avg STD Slts Avg Nodes Avg
10 15 5 9200 0.076 0.027 0.043 0.038 4 59
11 16 6 14022 0.053 0.044 0.05 0.039 2 51
12 17 7 20424 0.427 0.091 0.169 0.133 3 99
13 18 8 28700 0.213 0.138 0.171 0.112 3 77
14 19 9 39168 0.614 0.299 0.397 0.264 3 108

on problems with response units, conflict areas and team sizes all different. The

computation results was listed in Table 7. Figure 3 shows the scalability chart for

problems listed in Table 7.

The last experiment was carried out on problems with different number of

response unit that ca.n be dismissed. We generated two groups of problems each

with the same number of response units, conflict areas and team size. One group

has half of the response units dismissible and another group has no response units

dismissible. Table 8 shows computation results for problems with half of the response

unites dismissible. Table 9 shows computation results for problems with no response

unites dismissible.

Figure 4 shows the scalability chart for problems listed in Table 8 and Table 9.

Based on the computation results, the solver can efficiently solve the CNP with

29

Table 7. Computation results for problems with different number of CA, RU and
team size

45

40

35
~ 30 "D
I:

8 25
! 20 II
E 15 I=

10

s
0

RUs CAs Team Sizes Variables Time
10
11
12
13
14
15
16
17
18
19

0

15 5 9200 0.025
16 6 14022 0.117
17 7 20424 0.093
18 8 28700 0.229
19 9 39168 0.384
20 10 52170 0.458
21 11 68072 1.96
22 12 87264 2.4
23 13 110160 33.144
24 14 137198 41.593

20000 40000 60000 80000 100000 120000 140000 160000

Variables

Figure 3. Scalability chart for problems with different number of CA, RU and team
size

30

Table 8. Computation results for problems with none dismissible response units

RUs CAs Team Sizes Variables Time
7 10 5 4154 0.191
7 11 5 4964 0.199
7 12 5 5846 0.104
7 13 5 6800 0.276
7 14 5 7826 0.739
7 15 5 8924 1.71
7 16 5 10094 4.158
7 17 5 11336 7.943
7 18 5 12650 18.805
7 19 5 14036 40.645

Table 9. Computation results for problems with half of the responsible unit
dismissiblc

RUs CAs Team Sizes Variables Time
7 10 5 4154 0.161
7 11 5 4964 0.025
7 12 5 5846 0.135
7 13 5 6800 0.196
7 14 5 7826 0.132
7 15 5 8924 0.074
7 16 5 10094 0.362
7 17 5 11336 0.477
7 18 5 12650 1.236
7 19 5 14036 11.186

31

-:;;
'a
C:

8
tll
~
tll
E
I=

20

18

16

14

12

10

8

6

4

2

0

0 2000 4000 6000 8000 10000 12000 14000

Variables

...,._Dismiss=0

...,._.Dismiss= Half

Figure 4. Scalability chart for problems with different dismissible RUs

a large range of problem size.

32

CHAPTER 7. CONCLUSION AND FUTURE WORK

In this report, we first presented a novel approach to model the Conflict Neu

traliiation Problem as a Generalized Assignment Problem. The mathematical model

of the CNP was presented and described. U pan examination of the CNP model, there

is no existing algorithm can be applied directly for solving the problem. Therefore, we

proposed in this report that the CNP could be modeled as a Generalized Assignment

Problem, for which efficient algorithms exist. In the tableau representation of CNP

to GAP, tasks and agents of GAP are generalized and represented as columns and

rows. Constraints of the GAP model stipulate the constraints of the CNP, hence the

solution to this GAP model is also a valid solution of the CN"P.

Existing computer codes are not capable of processing the special structure for

our CNP model and few computer codes are available to offer modeling flexibility for

the problem. Also, the commercial mixed integer linear programming codes are too

general to be efficient on large sized problems like the C~P. In Ross and Soland's

work, they programmed and tested their algorithms in FORTRAN. Their code could

efficiently solve problems with up to 4,000 variables. Later they solved the GAP

model of the P-median problem, which is similar to our GAP model for the CNP. The

code could solve up to 1,000 variables. From their study we can estimate that their

algorithm can solve similar sized CNP problems, that is far from enough for solving the

CNP. We implemented the branch and bound algorithm of Ross. To further improve

the performance of the algorithm, we applied special structures in our program. The

tableau representation of the CNP model shows a large amount of inadmissible cells.

We can surely give large coefficients to bypass the selection of these cells. In this

study, we prefer to use special LILs to avoid the processing of these inadmissible

cells. In this way we greatly reduced the processing time. The computation results

showed that our algorithm can efficiently solve Conflict Neutralization Problems with

33

4000 variables. \Ne then tested the algorithm on problems with a large range of size,

the solver can still work efficiently for problems with up to 9000 variables with none

of the response units can be dismissed, which is the most intensive scenario. For each

problem size, the solution times of our algorithm are relatively stable.

This report is a preliminary work on modeling and solving the Conflict Neu

tralization Problem. Later research can be done with some dynamic CNP scenarios

simulation based on the solver implemented in this study.

34

REFERENCES

[l] ~1aria Albareda-Sambola, Maarten H. van der Vlerk, and Elena Fernndez, Exact
solutions to a class of stochastic generalized assignment problems, European
Journal of Operational Research 173 (2006), no. 2, 465- 487.

[2] John Arquilla and David Ronfeldt, Networks and netwars the future of terror,
crime, and militancy, (2002).

[3] V. Balachandran, An integer generalized transportation problem for optimal job
assignment in computer networks., Operations Research 24 (1976), no. 4, 742--
759.

[4] J.E. Beasley and P.C. Chu, A genetic algorithm for the generalized assignment
problem, Computers and Operations Research 24 (1997), no. 1, 17-23.

[5] Dirk G. Cattrysse and Luck ~- Van Wassenhove, A survey of algorithms for the
generalized assignment problem, European Journal of Operational Research 11
(1992), no. 2, 260-272.

[6] Juan A. Daz and Elena Fernandez, A tabu search heuristic for the generalized
assignment problem, European Journal of Operational Research 132 (2001), 22-
38.

[7] M.L. Fisher and Jaikumar, A generalized assignment heuristic for the large scale
vehicle routing, Networks 11 (1981), no. 2, 109-124.

[8] A.M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical
Programming Studies 2 (2004), 82114.

[9] J.B. Mazzola, Generalized assignment with nonlinear capacity interaction,
Management Science 35 (1989), 923941.

[10] A.W. Necbe and M.R. Rao, An algorithm for the fixedcharge assigning users
to sources problem, Journal of the Operational Research Society 34 (1983),
11071113.

[11] G. Terry Ross and Richard M. Soland, A branch and bound algorithm for the
generalized assignment problem, Mathematical Programming 8 (1975), 91-103,
10.1007 /BF01580430.

[12] G. Terry Ross and Richard M Soland, Modeling facility location problems as
generalized assignment problems, Management Science 24 (1977), 345-357.

[13] V. Srinivasan and G.L. Thompson, An algorithm for assigning uses to sources
in a special class of transportation problems, Operations Research 21 (1972),
284-295.

35

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044

