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ABSTRACT 

Wang, Yan, M.S., Department of Computer Science, College of Science and Mathematics, 
North Dakota State University, November 2010. A Closed Form Optimization Model 
for The Conflict Neutralization Problem. Major Professor: Dr. Kendall ~ygard. 

In this study, we proposed a novel closed form optimization model for the 

Conflict Neutralization Problem (CKP) and implemented an efficient algorithm for 

solving the problem. A novel tableau representation of the CNP model was presented 

and described in detail. We implemented a special structured branch and bound 

algorithm to solve the problem. Key components of the implementation were described. 

To test the computation performance of our algorithm, we designed and conducted 

three sets of experiments. The experiment results were reported and analyzed in this 

report. The test results showed the efficiency of the algorithm for solving the Conflict 

Neutralization Problem. 
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CHAPTER 1. INTRODUCTION 

In this study, a novel closed form approach for solving the Conflict Neutral

ization Problem (CNP) is proposed. The CNP was first modeled as Generalized 

Assignment Problem (GAP) through a generalizing of tasks and agents in GAP, for 

which many efficient algorithms exist. Then a Branch and Bound algorithm was 

modified and implemented for solving the CNP. To further improve the performance 

of the algorithm, we exploited special structures in the implementation of it. In this 

chapter, we will introduce the CNP, the mathematical definition of the CNP, the 

GAP used to solve the problem, the Branch and Bound algorithm and some ideas of 

the experiment results of our solver. 

1.1. Problem Statement 

We assume that within a geographical area, there are conflict areas emerging and 

dynamically increasing or decreasing in severity. The conflict areas could be of differ

ent types, and could be such things as fires, terrorist cells, or military enemy units. 

There are sensor platforms and other data sources available to provide information 

about the severity, locations and types of conflict areas. The information provided 

by the heterogeneous sources is dynamically changing and is typically partial and/ or 

imprecise. Response units that are equipped to neutralize conflict areas are available, 

and vary in their mix of resources and in the types of conflicts that they can address. 

The resources of the response units arc reconfigurable and can be redistributed among 

themselves. The response units may also configure themselves into teams to neutralize 

the conflict areas. They stationed initially at different locations and may differ in 

mobility factors, such as speed and endurance. The problem objective is to allocate 

and dispatch the resources and the tasks to response units adaptively over time. We 

coin the term Conflict Neutralization Problem or CNP to refer to the problem of 

interest. 
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In the CNP, it is desirable that more than one response unit be assigned to a 

single task to deal with situations, where differing types of resources are useful in 

neutralizing a conflict area. Here we constraint each response unit to engage with 

only one conflict area. The cost for teams that have different team sizes to neutralize 

a conflict area is provided by each individual team by running subservient models 

aimed at optimizing the coordination of their team missions. 

The Conflict Neutralization Problem can be mathematically defined as below: 

Minimize: 

Subject to: 

Where: 

n 

l m 

z = min LL vi,kYi,k 

k=1 i=l 

m l 

LL xi,j,k ::;; 1 j = 1, ... , n; 
i=1 k=l 

L xi,j,k - k * Yi,k = 0 i = 1, ... , m, k = 1, ... , l; 
j=l 

I 

'°"' 'l'J · k < l ~· 2, -
i = 1, ... , m; 

k=l 

Yi,k = 0, 1 i = 1, ... , ni, k = l, ... , l; 

Xi,j,k = 0, l i = 1, ... , rn, j = 1, ... , n, k = l, ... , l; 

i is conflict areas {1, 2, ... , m}. 

j is response unit {1, 2, ... , n}. 

k is team size {1, 2, ... , l}. 
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vi,k is the objective function coefficient of assign a team size k to a conflict area. 

Variable Yi,k represents the assignment of a team size k to a conflict area i. 

Variable xi,J,k represents the assignment of a response unit j to neutralize a 

conflict area i in a team with team size k. 

Constraint (2) means that one response unit can be engaged with only one or 

no conflict area. For the engaged conflict area, a response unit can only be in a team 

with team size k. For example, response unit j can be involved in a team of size 1, 

2, ... l, and the team can only be assigned to neutralize only one conflict area or the 

response unit can be dismissed and not involved in neutralization of any conflict area. 

Constraint (3) means that for one conflict area i, if one team size k is assigned 

to neutralize it, then there must be k response units assigned to neutralize it. 

Constraint ( 4) means that for any conflict area, only one team size can be 

chosen. 

Constraint (5) means the decision variable Yi,k is binary. 

Constraint (6) means the decision variable Xi,J,k is binary. 

Solving the CNP problem is non--trivial. Because of the constraints (2), (3) 

and (6), the formulation above cannot he solved with standard linear programming 

techniques. In this study, we will show that the problem can be formulated and solved 

as GAP. Since there exists efficient algorithms for the GAP, we can solve the problem 

efficiently with some special data structures. 

1.2. GAP Used to Address CNP 

To solve the CNP, we first model the problem as a special Generalized Assign

ment Problem (GAP). In GAP, there are a number of agents and tasks. An agent 

can be assigned to perform any task in the task set. An assignment of an agent to 

a task will incur some costs. The profit of an assignment varies depending on the 

agent-task pair. Each agent has a capacity limit. The sum of the costs of assign a 
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task to it cannot exceed this limit. The solution to a GAP problem is the one that 

all agents do not exceed their budget and total profit of the assignment is maximized. 

For the problem presented in this paper, it is necessary to solve the minimum GAP 

problem shown below: 

Minimize: 

Subject to: 

m n 

z =min"'""'"'""' V· ·x· · L.....,; L.....,; i,J i,J 

m 

I:xi,J = 1 
i=l 

n 

i=l j=l 

j = l, ... , n; 

L ri,jXi,J :s;; bi i = l, ... , m; 
j=l 

xi,j = 0 or l i = 1, ... , m,j = l, ... , n; 

(7) 

(8) 

(9) 

In the formulation, j is the set of tasks, i is the set of r:gents, r(i, j) is a measure 

of the amount of resource that agent i spends in carrying out task j. b( i, j) is the total 

resource that is available to agent i and v( i, j) is the the cost to assign a agent i to 

carry out task j. The decision variables x(i, j) are binary and model the assignment or 

non-assignment of tasks to agents. The objective function accumulates and provides 

the total cost of the tasks being assigned to agents. The constraints set (8) requires 

that each task is done by one agent and the constraint set (10) enforces that each 

agent's resource capacity is not exceeded. 

The formulation above is generic. In the CNP it is desirable that more than one 

response unit (RU) be allowed assignment to a single task, to deal with situations 

where different types of resources are useful in neutralizing a conflict area (CA) and 
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the resources are only available at different response units. For example, there could 

be situations in which specific teams comprised of RUs working together to increase 

the probability of neutralizing the conflict area. The cost is expected to be nonlinear 

in the number of RUs. To function as teams, the RUs must be in close communication 

with each other, and negotiate to agree upon a feasible estimated time of arrival (ETA) 

based on their specific role in neutralizing the conflict area. 

In this work we proposed a novel modeling techniques to fit the CNP to a GAP 

formulation. We will present the detail of the model in Chapter 3. 

1.3. Method Used to Solve the GAP 

The GAP is a NP-hard program. But due to the difficulty in solving "hard" 

GAPs, in the case of optimizing methods, computational results are limited to 500 to 

1,000 binary variables in the beginning. A considerable body of literature exists on 

the search for effective enumeration algorithms to solve GAP problems. Both exact 

and heuristic algorithms have been suggested for solving the GAP problem. Various 

mathematical programming techniques have been tried on the GAP problem including 

branch and bounds techniques, relaxation, dual approaches, meta-heuristics, set par

titioning, etc. A large number of special GAP problems have more efficient algorithms 

designed to take advantage of their special structures. 

The branch and bound is an exact method for finding an optimal solution 

to an NP-hard problem. It is an enumerative technique that can be applied to a 

wide class of combinatorial optimization problems. The branch and bound algorithm 

makes the search much more efficient by using bounds on the objective function to 

prune large parts of the search tree. For example, a branch and bound algorithm 

for integer optimization problem begins by solving the continuous relaxation of the 

original problem. If a 0/1 variable is fractional, the algorithm constructs two new 

subproblems. In one of the subproblem the variable is set to be zero and another the 
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variable is one. The algorithm proceeds in this fashion by solving subproblems and 

creating new subproblems until an integer solution has been found and each remaining 

subproblem has a higher lower bound than the integer solution. 

In this study, we present a special structured branch and bound algorithm for 

solving the CNP. The elements of the algorithm are described in Chapter 4.1 to 4.3. 

In Chapter 5, we will describe the implementation. Computation experiments and 

results are reported in Chapter 6. 

1.4. Analysis of Experiments Results 

Due to the special structured model of the CNP, existing computer programs 

are not able to process the model and few computer programs are available to offer 

modeling flexibility for the problem. Also, existing commercial mixed integer linear 

programming products are too general to be efficient on large sized problems like 

the CNP. In Ross and Soland's study, they programmed and tested some special 

structured model with their algorithms. The calculation time is not as small as 

other's work. For solving the CNP, we implemented the branch and bound algorithm 

of Ross. In this study, we implemented an efficient branch and bound algorithm with 

C++ and solved a variety of test problems with randomly generated variables. The 

computational results for problems of different size arc reported in Chapter 6. The 

standard deviation, median, minimum and maximum calculation times are reported, 

as well as the median values of the number of feasible solutions and nodes. 

To demonstrate the efficiency of our algorithm, we solved sets of randomly gen

erated CNPs. The computational results clearly show the efficiency of our algorithm 

for the CNP. As indicated in the computational results, the calculation times of our 

algorithm are relatively stable for each problem size. As problem size increases, the 

calculation time increases but at a relatively slow rate when the number of variables 

is less than certain limit. 
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We also noticed that the number of dismissible response units affects the scal

ability of the algorithm. If the dismissible response unit is low, most of the response 

unit must be involved in neutralizing the conflict area. Compared with problem with 

a higher number of dismissible response units, low dismissible response units impose 

more restriction on the problem and result in more complex computation. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter we will give a brief review of the relevant literature on Conflict 

:'.'Jeutralization Problem, Branch and Bound techniques, etc. 

As John Arquilla and David Ronfeldt stated, the information revolution is 

altering the nature of low intensity conflict, crime, and activism waged by actors like 

terrorists, fire apparatus, etc. As the information revolution deepens, the conduct and 

outcome of conflicts increasingly depend on information and communications. The 

actors are organizing into sprawling, loose, leaderless networks [2]. From the 1990s, 

officials and analysts in U.S. and European government, military, and police circles 

began to show an interest in the concept. However, they found it difficult to deal with 

terrorists, criminals, and fanatics associated with militias and extremist single-issue 

movements, largely because these antagonists were organizing into sprawling, loose, 

leaderless networks, overcoming their former isolated postures as stand-alone groups 

headed by "great" person. 

The CNP is a special case of pairing problem that shares the same feature. 

In the C:'.\P, the information provided by the heterogeneous sources is dynamically 

changing and is typically partial or imprecise. The decision making and operations 

are less centralized, therefore allowing for local initiative and autonomy. Based on the 

communication and computation capability of actors, each team can run subservient 

models aimed at optimizing the coordination of their team missions. Typically in 

the CNP, the cost for teams with different team size to neutralize a conflict area is 

provided. 

Since mid-fifties, many research articles on pairing problems haw been pub

lished. Some of these problems are easy to solve, whereas others are extremely difficult 

like the Generalized Assignment problem. The Generalized Assignment Problem is 

used in many applications such as assigning jobs to computers in a computer network 
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[3], vehicle routing [7] and plant location [11]. Numerous studies have been done 

on approaches for solving the GAP. In 1974 Geoffrion coined the term Lagrangian 

Relaxation in an early exposition of the concept and applied the Lagrangean Re

laxation in obtaining lower bounds when solving a integer programming problem 

[8]. After that the Lagrangean Relaxation was applied to many discrete optimization 

problems including facility location and capacity planning, scheduling, vehicle routing 

and network flow, set covering, generalized assignment, and other variations on 

the knapsack problem. Beyond these traditional resource allocation problem, the 

techniques was also applied to problems like biology, electric power generation, the 

chemical and petroleum industries. 

In 1975, Ross and Soland [11] proposed an efficient branch and bound algorithm 

which applies an elaborate technique for bounding calculation by solving a series of 

binary knapsack problems. In their algorithm, the bounding process starts from 

solving an initial simple and easy to calculate relaxation of the original problem. 

An initial bound is obtained by solving first relaxation problem. Then a set of PKi 

problem was created and solved for each agent i that the capacity constraints is 

violated. Each PKi problem is a binary knapsack problem. The solution to each PKi 

designates those tasks that must be reassigned from agent i to other agents in order 

to satisfy the resource restriction on agent i. The solution was used to further refine 

the lower bound by the sum of the values of the objective functions obtained. 

Another benefit of solving the PKi problems is that by reassigning some of the 

variables xi,J, a feasible solution to original problem P may be constructed. This new 

solution will be used for later pruning process. In their report, Ross and Soland also 

showed that their approach for bounding can be viewed as a specific application of 

Lagrangean Relaxation. The method for branching of their approach is based on the 

0-1 dichotomy of variable values. The chosen variable is also based on the solution 
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of previous PKi problem. The variable chosen represents a job that is best kept with 

agent i considering both the penalty for switching the job and the resources available 

to the agent. 

Ross and Soland implemented their algorithm and solved a variety of test 

problems. They applied a LIFO (Last In First Out) treatment to the candidate 

problems for fast update of candidate list and small storage space. Based on the 

computation results, the algorithm could solve problems with up to 4000 variables 

and the computation time was relatively stable for each problem size in comparison 

to other algorithms tested. 

Different metaheuristic approaches also have been proposed by other authors 

[1][4][6]. A survey of exact and heuristic algorithms to solve the GAP can be found 

in Cattrysse and \1/assenhove's report [5]. 

A variety of extensions of the GAP have been proposed in the past in order 

to more closely describe various real-world applications. Srinivasan and Thompson 

[13] mentioned an extension of the model where the capacity of the agents can be 

increased at a certain cost, which is linear in the amount of capacity added. Neebe and 

Rao proposed a fixed-charge version of the GAP with agent-independent requirements 

where each agent processing at least one task incurs a fixed wst [10]. In 1989, Mazzola 

states that nonlinear capacity interaction can be found in hierarchical production 

planning GAP, where product families must be assigned to production facilities and 

a changeover is translated into nonlinear capacity interaction between the product 

families assigned to the same facility [9]. 

In 1977, Ross showed that many location problems can be formulated as spe

cial structured GAP and solved efficiently with existing algorithms [12]. He first 

introduced additional "tasks" and "agents'' in the tableau representation of original 

locations problems as showed in Figure 1. This includes a large amount of new cells 
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into the tableau representation. Ross and Soland elaborately defined the value of the 

ri,j, ai and bi in the tableau as, 

i = 1, ... , N. (11) 

(12) 

The special values of these coefficients enables that the GAP constraints (13) and 

(14) can guarantee that each specific requirement of the original location problem are 

satisfied. For example, when constraint (13) and (14) applied, the last row of tableau 

in Figure 1 insures that exactly two demand centers are designated as supply centers. 

m 

LXi,j = 1 
i=l 

xi,j = 0 or 1 

j = 1, ... , n; 

i = 1, ... ,m,j = 1, ... ,n; 

3 

3 

3 

2 

Figure 1. GAP tableau representation of a p-median problem 

(13) 

(14) 

In their study, they considered both public and private section models of facility 

location problems like p-median problem, capacity constrained p-median, capacitated 

warehouse location problems, etc. They implemented an existing algorithm to solve 

a set of example GAPs. As they stated, the computation time is not as small as some 
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others reported in recent research. 

In this study, we reviewed research works on optimization problems like location 

problems, Netwar, fire fighting, etc. A large number of special GAP problems have 

more efficient algorithms designed to take advantage of their special structure. Based 

on the nature of the CNP, we proposed a novel tableau representation of the Conflict 

Neutralization Problem, which was modeled as a GAP by generalizing of tasks and 

agents in GAP. To solve the CNP, we modified and implemented the branch and 

bound approach proposed by Ross. \Ve further improved performance of the algorithm 

by applying special structures to exploit the special feature of the C~P model. 
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CHAPTER 3. MODELING CNP AS GAP 

As stated in Chapter 1, the CNP problem cannot be solved with standard 

linear programming techniques. In this study, we showed that the problem can be 

formulated and solved as Generalized Assignment Problem (GAP), for which there 

exists efficient algorithms for the GAP. In this chapter, we will present detailed 

explanation of the CNP model. 

3.1. Tableau Representation of CNP 

Figure 2 shows how GAP constructs can support the global assigning of multiple 

response units to teams that work cooperatively in such a way that the total cost for 

neutralizing conflict areas is minimized. 

0 

2 

3 

4 

s 

6 

7 

8 

9 

11 

12 

13 
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00 i::i ~ i::i t'-l i::i z z z .. .... N ... .., Ill .... ... ... N N .... a :;i ... ... .... 3 

.. 
=-;;;i ; ; ; ; -< -< < -< < < -< < < =-i::i:: u u u u u u u u u u ;;;i 

CAI Single RU 
0 0 0 0 0 0 

1 
1 1 1 l 1 1 

CAI Double RU 
0 0 0 0 0 0 

1 
1/2 1/2 1/2 1/2 1/2 1 

CAI Triple RU 
0 0 0 0 0 0 

1 
1/3 1/3 1/3 1/3 1/3 1 

CA2 Single RU 
0 0 0 0 0 0 

1 
1 1 1 1 1 1 

CA2 Double RU 
0 0 0 0 0 0 

1 
1/2 1/2 1/2 1/2 1/2 1 

CA2 Triple RU 
0 0 0 0 0 0 

1 
1/3 1/3 1/3 1/3 1/3 1 

CA3 Single RU 
0 0 0 0 0 0 

1 
1 1 1 1 1 1 

CA3 Double RU 
0 0 0 0 0 0 

1 
1/2 1/2 1/2 1/2 1/2 1 

CA3 Triple RU 
0 0 0 0 0 0 

1 
1/3 1/3 1/3 1/3 1/3 1 

CAI#RU 
vu V12 V13 0 

1 
1 1 1 1 

CA2#RU 
V21 V22 V23 0 

1 
1 1 1 1 

CA3 #RU 
V31 V32 V33 0 

1 
1 1 1 1 

CA Dispatch 
0 0 0 

3 
1 1 1 

RU Dismiss 
0 0 0 0 0 s 
1 1 1 1 1 

Figure 2. Modeling CNP as GAP 

In the figure, columns correspond to generalized tasks. Rows are generalized 
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agents. Cells correspond to decision variables xi,J. \Vi thin a cell ( i, j) of the table, 

the objective function coefficient v(i, j) is shown as the top entry and the resource 

consumed by the assignment r(i, j) is the bottom entry. Constraint (8) stipulated that 

for any feasible solution, exactly one of the cells in each column is chosen (multiple 

choice constraint). Across each row, the chosen cells must have a total resource 

consumption that does not exceed the upper limit (capacity), shown on the end of 

the row. When the upper limit is set to 1, the model solution will assign at most one 

task to the corresponding agent, i.e., a binary assignment structure. Empty cells in the 

tableau represent inadmissible assignments. These could be handled computationally 

through large penalty costs, but we prefer to handle them by employing specialized 

data structures in the solution algorithm to bypass these assignments. 

3.2. Model Description 

The CNP model discussed above supports scenarios that single tasks can be 

cooperatively carried out by multiple RUs. The value of engaging a CA is likely to be 

nonlinear in the number of RUs. The GAP framework supports extended modeling 

constructs for this type of scenario by generalizing the meaning of jobs and agents. 

In the example of the tableau, there are five available RU s and three CAs. Each 

task can be assigned 0, 1, 2, or 3 RlTs, i.e., the team size to neutralize the CA can 

be 0, 1, 2, 3. If the team size is more than one, the team members are granted the 

autonomy to coordinate their mission using models at the team level. For example, 

if different resources are required to neutralize an conflict area, or efficiency will be 

gained in scale if large numbers of response units are assigned to neutralize a conflict 

area. 

The first five columns of the table correspond to generalized GAP tasks which 

model the response units. Based on GAP Constraint (8), exactly one cell is selected 

in each column, so each response unit is restricted to choose only one from the ten 

14 



cells that are available. 

The agent choices in the first three rows enforce that if conflict area CAI is 

assigned, there will be one, two, or three response units. Upper limits for each of 

the first nine rows is set to 1. Because the variables are binary and the resource 

consumed are inversely proportional to the number of RUs in the team, each of these 

rows enforces a condition that either one of the specified number of RU choices is 

assigned to the CA, or none at all. The bottom row represents the option of the RU 

having no assignment. 

Cells on the diagonal structure correspond to agent/task pairs for each possible 

team size for each CA. This mechanism allows for a given team size to not be selected. 

This induces a ripple effect in the model. More specifically, a non-selection forces a 

selection in the cell in the column corresponding to the task/number of RU agents 

enumerated in rows 9, 10, and 11. These cells are where the team reward values 

v( i, j) are provided for the model. This structure models nonlinear returns to scale, 

because individual reward value entries for 1, 2, or 3 RUs are provided for each CA. 

The actual v(i,j) values would be provided by the individual teams, through running 

subservient models aimed at optimizing the coordination of their team missions. Rows 

9 - 11 have an upper limit of one, essentially making these multiple choice constraints. 

This enforces the assigning of exactly 0, 1, 2, or 3 RUs to each task. Finally, row 

12 models selection or non-selection of each CA. The upper limit of 3 provides for 

selecting at most all three tasks, but also makes it possible to assign less than all 

three, which may be optimal for some scenarios, depending on the severity of the CA. 

The model supports fundamental differences in the RUs through reward co

efficients for the various available combinations. Thus, the model has remarkable 

flexibility for heterogeneous RUs with different resources or other differences. the 

potential drawback of the approach is computational solution time. However, to 
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improve solution time, the enumeration solution scheme can take advantage of the 

considerable special structure. 

16 



CHAPTER 4. A BRANCH AND BOUND ALGORITHM 

FOR CNP 

To solve the CNP, we modified and implemented the branch and bound approach 

proposed by Ross [11]. The algorithm solves the generalized assignment problem 

by solving a series of binary knapsack problems. Previous research work and our 

experiment result demonstrated the efficiency of the approach. In this chapter we 

will present the branch and bound procedure in detail. 

4.1. Brief Introduction to Branch and Bound 

Solving NP-hard discrete optimization problems to optimality reqmres very 

efficient algorithms. Branch and bound is by far the most widely used tool for solving 

large scale NP-hard combinatorial optimization problems. The branch and bound 

algorithm searches the complete solutions space for a given problem for the best 

solution. As the solution process, the status of the solution with respect to the search 

of the solution space is described by a pool of yet unexplored subset of this space and 

the best solution found so far. 

The branch and bound procedure consists of three important components. The 

first one is a splitting procedure that split a set S of candidates into two or more 

smaller sets. The union of these sets covers original solution set S. 

Another component is the bounding procedure that computes upper or lower 

bounds for the minimum value of within a given subset S. If the lower bound for a 

tree node is greater than the upper bound for some other node or the upper bound for 

a tree node is less than the lower bound, then that tree node can be safely discarded 

from the search. This component is called pruning. 

The efficiency of a branch and bound algorithm depends heavily on the effec

tiveness of the branching and bounding approach. Poor design may result in repeated 

branching without any pruning. 
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In the branch and 1:>ound algorithm used in this study the bound is calculated 

in part by solving a set of binary knapsack problems, which require only minimal 

effort. The algorithm exploits the structure of the CNP problem and yields an 

integer solution that tends to be feasible. With a LIFO implementation of candidate 

problems, the algorithm demonstrated great efficiency. 

Minimize: 

(P) 

Subject to: 
m 

m n 

z = min LL 1\,jXi,j 

i=l j=l 

LXi,j = 1 
i=l 

j = l, ... ,n; 

n 

L ri,jxi,j :s; bi i = 1, ... , m; 
j=l 

xi,j = 0 or 1 i = l, ... ,m,j = l, ... ,n; 

4.2. Bounding Algorithm 

(15) 

(16) 

(17) 

(18) 

The first step of the bounding procedure of the algorithm is the initial relaxation 

of problem (P). The relaxation is a natural one in which tasks are assigned to the 

least costly agent without regard to the limitations on multiple assignments. This 

relaxation is 

~inimize: 

(PR) 

Subject to: 

m n 

z = min LL ci,jxi,j 
i=l j=l 

m 

LXi,j = l 
i=l 

j = l, ... ,n; 
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xi,J = 0 or l i = l, ... ,rn,j = l, ... ,n; (21) 

The solution to (PR) is found by determining an index iJ E I for all j E J, such 

that cij,J = miniEI{ci,J} and setting Xij,J and Xi,J = 0 for all i EI, i =J. ij. 

The lower bound yields this way is: 

n 

z = "'"" Cj . 6 J,J 
j=l 

(22) 

Each of the constraints (18) in (P) is then checked for feasibility using the 

solution to (PR). Most of the time, some of these constraints will be violated. A set 

of (PKi) problem are then solved to refine the lower bound. 

Let 

Let 

J; 

I' {i: Lri,.fXi,J < bi,i = l, ... ,rr1 } 

.i=l 

The PKi problem is defined as below: 

Minimize: 

subject to 

zi = LP.1Yi,.i 
jEJ, 
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where 

~r- ·y· · > d· L..,; i,J i,J - i 

jEJ; 

Yi,J = 0 or 1 

di = L ri,JXi,J - bi 
jEJi 

(24) 

(25) 

The optimal solution to (PKi) indicates those reassignments that lead to a 

minimal increase to the value of Z. The revised lower bound for (P) is: 

LB=Z+I:z;. 
iEI1 

An additional refinement can be made in the procedure for solving (PKi) as the 

branching progresses, particularly as the algorithm proceeds down the "one-branch''. 

ri,J > bi - L ri,JXi,J 
jEFi 

where Fi designates those tasks assigned to agent i in the current candidate 

problem. 

This may increase the bound and penalties PJ in the objective function of the 

4.3. Branching Algorithm 

The variable Xi• ,J* that chosen to separate on is decided based on; 

1. The variable should be one from the solution set for (PKi) with Yi,J= O; 
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2. ti*,j* = max{pj/"''i,j/(bi - LjEF; ri,jxi,j)}, 

where ~ denotes the set of tasks assigned to agent i. 

In this way, the solution set for (P) is separated into two mutually exclusive and 

collectively exhaustive subsets based on the 0-1 dichotomy of variable values. 

The branching approach above creates two new candidate problems whose so

lution sets differ only in the value assigned to a particular variable. The candidate 

problem in which the separation variable is fixed to one is the problem examined 

next. 

4.4. Pruning Criterion 

The solutions of the binary knapsack problems in (PKi) indicate some reassign

ments of tasks to other agents that may lead to a feasible solution. Those feasible 

solutions are used in our algorithm for search space pruning. A variable that records 

the minimum upper bound seen among all subtrees examined so far was maintained 

globally. If the lower bound for some set of candidates is greater than that global 

upper bound, then that candidates can be safely discarded from the search. 

In this study, we implemented the branch :=md bound algorithm presented above 

with special data structures, the experiment results shows good efficiency and scala

bility of the algorithm. 
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CHAPTER 5. ALGORITHM IMPLEMENTATION 

The branch and bound algorithm was implemented with C++ under Redhat 

5.0. In the implementation, we apply a LIL treatment on the bounding process of 

the algorithm. The LIL treatment greatly reduced the processing time by avoiding 

process of inadmissible cells in the model. Algorithm 1 shows the general branch and 

bound procedure. 

Input: nCAs(Number of Conflict Areas), nRUs(Numbcr of response unit), 
nSizes(K umber of team size) 

Output: Optimum Solution 

Createli1 odel(nCAs, nRUs, nSizes); 

CnpSolver.initialize(); 

while pStackHead and nSerialNo :s; MAX_NODES do 

pCur = pop(pStackH ead); 

pr Solve(); 

if feasible() then 

update optinum ... ; 

fanthom(); 

else 
pkSolver(); 

reassign(); 

if feasible() then 

update optinum ... ; 

fanthorn(); 

else 

Create New:'.'J"ode0; 
Create NewNodel; 
push stack NewNode0; 
push stack NewNodel; 

end 
end 

end 
Algorithm 1: Bra11ch and Bound for the CNP 
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5.1. Definitions and Data Structures 

As the tableau representation of the CNP model exists large number of inad

missible cells, we exploit this special structure in implementing the branch and bound 

algorithm. List of lists are created for storing of the objective coefficient and resource 

consumption, LIL stores one list per row, where each entry stores a column index and 

value. The LIL treatment of the model greatly reduce the computation in solving the 

PR problems and the PKi problems. 

/* List of lists node * / 

typedef struct LILN ode{ 

int nValue; 

}; 

int nlndex; 

LILNode * pNext; 

/*Value of the cell*/ 

/*Column or row number of the cell, * / 

/*Pointer to next cell*/ 

the branch and bound tree consist of nodes defined below. Each node points to 

its parent through the pParent pointer, except for the root. When solving the (PR) 

and (PKi) problem, by following the path from a particular node to the root, the 

algorithm can determine all the variables that are fixed to either zero or one. The 

pPrev pointer link node to its previous node in the LIFO stack. The branch and 

bound algorithm will terminate when the stack is empty. 

/* Branch and bound node structure * / 

typedef struct Node { 

int nNode; 

int nBound; 

int nAgentFixed; 

/*Node no*/ 

/*Lower bound of the node's LP relaxation*/ 

/* Agents fixed*/ 

23 



} Node; 

int nTaskFixed; 

int nFixedTo; 

struct Node *pParent; 

struct Node *pPrev; 

Global definations: 

# define MAX_NODES 1000000 

# define I:\'FINITY 9999999 

# define NO_SELECTION -1 

# define TRUE 1 

# define FALSE O 

# define ASSIGN 1 

# define NOT _ASSIGN 0 

# define NOT _SOLVED -1 

# define NO_VALUE -1 

# define NOT _REASSIG~ 0 

# define NOT _ASSIGNED 0 

# define ASSIGNED 1 

# define SIZE 5000 

5.2. CNP Solver 

/*Tasks fixed*/ 

/*Variable fixed to 1 or O* / 

/*Pointer to parent Node*/ 

/*Pointer to previous node 

in the branch and bound stack*/ 

The CNP solver class is the main implementation of the branch and bound 

algorithm including branching, bounding, LIFO management, model initialization 

and etc. Below shows some piece of the solver. 
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class CnpSolver { 

int nAgents_; 

int nTasks_; 

int **c ; 

int **r 
' 

int *b; 

int *pSelectedAgenL; 

int nSerialN o_; 

Node* pBestNode_; 

int nFeasibles; 

Node* pR.oot_; 

Node* pStackHead_; 

Node *pCur _; 

I* 

/*Number of agents*/ 

/*Number of tasks*/ 

/*Objective values*/ 

/*Coefficients*/ 

/*Capacities*/ 

/*Solution to PR problem*/ 

/*Current node number in the queue*/ 

/*Best*/ 

/*Number of feasible solutions*/ 

/*Root node for the branch and bound tree*/ 

/*Head node for the LIFO stack*/ 

/*Current node*/ 

*Implementation of LIL for objective value sparse matrix 

*and Coefficients sparse matrix. 

* 

*Each row will head an array with different length 

*according to the number of non-zero cells in the row. 

*/ 
LILNode** ppCSparseRow_; 

LILKode** ppCSparscCoL; 

LILN ode** ppR.SparseRow _; 

. . . omission of other members 

CnpSolver(); 
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CnpSolver(); 

int initialize( const char* fileN ame ) ; 

int solve(); 

private: 

} 

int feasible_(int *nSolution); 

void reassign_(); 

int pkSolver_(int &nZValue, int &nNextTask, int &nNextAgent); 

int prSolver_(); 

void fanthorn_(const char* str); 

Other functions include a 0-1 knapsack problem solver implemented with dy

namic programming approach, LIFO operation functions, etc. 
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CHAPTER 6. EXPERIMENT AND COMPUTATION 

RESULTS 

To test our algorithm and demonstrate the efficiency of the algorithm, we 

programmed our algorithm and solved a variety of test problems. The program was 

written with C++ and tested on under PowerEdge 2970 with 64-bit Red Hat Enter

prise Linux 5.5. \Ve test the algorithm on randomly generated problems with different 

number of conflict areas, response units and team size. In the randomly generated 

problems, a uniform probability distribution was used to create the objective function 

coefficient ½,j values. The solution times reported in the tables below were CPU time. 

The solution times, the number of feasible solutions and total nodes processed are 

given below. Table 1 shows computation results for problem with 10 response units, 

15 conflict areas and maximum team si:ze of 5. Table 2 shows computation results 

for problem with 11 response units, 16 conflict areas and maximum team size of 6. 

Table 3 shows computation results for problem with 12 response units, 17 conflict 

areas and maximum team si:ze of 7. Table 4 shows computation results for problem 

with 13 response units, 18 conflict areas and maximum team size of 8. Table 5 

shows computation results for problem with 14 response units, 19 conflict areas and 

maximum team size of 9. 

Table 1. Computation result for group 1 

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes 

10 15 5 9200 0.035 4 49 

10 15 5 9200 0.027 3 40 

10 15 5 9200 0.037 4 52 

10 15 5 9200 0.075 4 98 

10 15 5 9200 0.041 5 i 57 

The standard deviation of solution time and median values of the number of 
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Table 2. Computation result for group 2 

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes 
11 16 6 14022 0.052 2 50 
11 16 6 14022 0.053 3 53 
11 16 6 14022 0.044 2 48 
11 16 6 14022 0.05 3 50 
11 16 6 14022 0.054 3 53 

Table 3. Computation result for group 3 

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes 
12 17 7 20424 0.424 4 227 
12 17 7 20424 0.091 2 58 
12 17 7 20424 0.091 2 61 
12 17 7 20424 0.103 3 67 
12 17 7 20424 0.135 6 82 

Table 4. Computation result for group 4 

RUs CAs Team Sizes Variables Time Feasible Solutions Nodes 
13 18 8 28700 0.175 4 76 
13 18 8 28700 0.141 1 66 
13 18 8 28700 0.166 3 76 
13 18 8 28700 0.161 3 72 
13 18 8 28700 0.218 5 93 

feasible solutiuns and total nodes are also given in Table G. Based on the compu

tational results, the computation time of our algorithm is relatively stable for each 

problem size. 

In order to investigating the scalability of the algorithm, we also tested the 

algorithm on problems that vary widely on the problem size. The test was conducted 
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Table 5. Computation result for group 5 

RUs CAs Team Sizes Variables Time Feasible Solutions Kodes 
14 19 9 39168 0.62 4 172 
14 19 9 39168 0.332 3 89 
14 19 9 39168 0.304 2 81 
14 19 9 39168 0.36 4 93 
14 19 9 39168 0.404 6 105 

Table 6. Statistics for five experiment groups 

RUs CAs T Sizes Variables Max Min Avg STD Slts Avg Nodes Avg 
10 15 5 9200 0.076 0.027 0.043 0.038 4 59 
11 16 6 14022 0.053 0.044 0.05 0.039 2 51 
12 17 7 20424 0.427 0.091 0.169 0.133 3 99 
13 18 8 28700 0.213 0.138 0.171 0.112 3 77 
14 19 9 39168 0.614 0.299 0.397 0.264 3 108 

on problems with response units, conflict areas and team sizes all different. The 

computation results was listed in Table 7. Figure 3 shows the scalability chart for 

problems listed in Table 7. 

The last experiment was carried out on problems with different number of 

response unit that ca.n be dismissed. We generated two groups of problems each 

with the same number of response units, conflict areas and team size. One group 

has half of the response units dismissible and another group has no response units 

dismissible. Table 8 shows computation results for problems with half of the response 

unites dismissible. Table 9 shows computation results for problems with no response 

unites dismissible. 

Figure 4 shows the scalability chart for problems listed in Table 8 and Table 9. 

Based on the computation results, the solver can efficiently solve the CNP with 
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Table 7. Computation results for problems with different number of CA, RU and 
team size 

45 

40 
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~ 30 "D 
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E 15 I= 

10 

s 
0 

RUs CAs Team Sizes Variables Time 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0 

15 5 9200 0.025 
16 6 14022 0.117 
17 7 20424 0.093 
18 8 28700 0.229 
19 9 39168 0.384 
20 10 52170 0.458 
21 11 68072 1.96 
22 12 87264 2.4 
23 13 110160 33.144 
24 14 137198 41.593 

20000 40000 60000 80000 100000 120000 140000 160000 

Variables 

Figure 3. Scalability chart for problems with different number of CA, RU and team 
size 
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Table 8. Computation results for problems with none dismissible response units 

RUs CAs Team Sizes Variables Time 
7 10 5 4154 0.191 
7 11 5 4964 0.199 
7 12 5 5846 0.104 
7 13 5 6800 0.276 
7 14 5 7826 0.739 
7 15 5 8924 1.71 
7 16 5 10094 4.158 
7 17 5 11336 7.943 
7 18 5 12650 18.805 
7 19 5 14036 40.645 

Table 9. Computation results for problems with half of the responsible unit 
dismissiblc 

RUs CAs Team Sizes Variables Time 
7 10 5 4154 0.161 
7 11 5 4964 0.025 
7 12 5 5846 0.135 
7 13 5 6800 0.196 
7 14 5 7826 0.132 
7 15 5 8924 0.074 
7 16 5 10094 0.362 
7 17 5 11336 0.477 
7 18 5 12650 1.236 
7 19 5 14036 11.186 
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a large range of problem size. 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

In this report, we first presented a novel approach to model the Conflict Neu

traliiation Problem as a Generalized Assignment Problem. The mathematical model 

of the CNP was presented and described. U pan examination of the CNP model, there 

is no existing algorithm can be applied directly for solving the problem. Therefore, we 

proposed in this report that the CNP could be modeled as a Generalized Assignment 

Problem, for which efficient algorithms exist. In the tableau representation of CNP 

to GAP, tasks and agents of GAP are generalized and represented as columns and 

rows. Constraints of the GAP model stipulate the constraints of the CNP, hence the 

solution to this GAP model is also a valid solution of the CN"P. 

Existing computer codes are not capable of processing the special structure for 

our CNP model and few computer codes are available to offer modeling flexibility for 

the problem. Also, the commercial mixed integer linear programming codes are too 

general to be efficient on large sized problems like the C~P. In Ross and Soland's 

work, they programmed and tested their algorithms in FORTRAN. Their code could 

efficiently solve problems with up to 4,000 variables. Later they solved the GAP 

model of the P-median problem, which is similar to our GAP model for the CNP. The 

code could solve up to 1,000 variables. From their study we can estimate that their 

algorithm can solve similar sized CNP problems, that is far from enough for solving the 

CNP. We implemented the branch and bound algorithm of Ross. To further improve 

the performance of the algorithm, we applied special structures in our program. The 

tableau representation of the CNP model shows a large amount of inadmissible cells. 

We can surely give large coefficients to bypass the selection of these cells. In this 

study, we prefer to use special LILs to avoid the processing of these inadmissible 

cells. In this way we greatly reduced the processing time. The computation results 

showed that our algorithm can efficiently solve Conflict Neutralization Problems with 
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4000 variables. \Ne then tested the algorithm on problems with a large range of size, 

the solver can still work efficiently for problems with up to 9000 variables with none 

of the response units can be dismissed, which is the most intensive scenario. For each 

problem size, the solution times of our algorithm are relatively stable. 

This report is a preliminary work on modeling and solving the Conflict Neu

tralization Problem. Later research can be done with some dynamic CNP scenarios 

simulation based on the solver implemented in this study. 
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