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ABSTRACT 

Voorhees, William Davis, M.S., Department of Computer Science, College of Science & 

Mathematics, North Dakota State University, May 2010. Outlier Identification in Sensor 

Network Clock Synchronization. Major Professor: Dr. Kendall Nygard. 

We first present a survey of clock synchronization research that describes the problem 

and various challenges to implementing an efficient protocol for clock synchronization in 

sensor networks. We then present several changes to an existing protocol that we believe 

will enhance the accuracy. These changes are implemented in a software simulation and 

a large experiment is conducted that involves several runs of the simulation using various 

parameters for error bounds and outlier detection. We present our results and show that 

modifying the outlier detection range used by many existing algorithms can improve 

network clock accuracy and provide a stabilized average error. 
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1. INTRODUCTION 

Sensor networks have been a hot topic in computer science research for the last 

several years. The concept behind a sensor network is to use many low power, radio 

connected nodes to form a large network capable of sensing various environmental 

variables across a large area. Each sensor node is battery powered and has limited 

processing power and memory. This makes developing control schemes for sensor 

networks very challenging. Approaches used in traditional computer networks do not 

translate well to this resource constrained platform. 

Each sensor node is designed to be very cheap to manufacture. This allows several 

hundred or even thousands of nodes to be deployed into an area for relatively minimal 

cost. Each node is equipped with a low power radio that allows the nodes to share 

information. Generally, the information collected by a network gets relayed to a base 

station, or sink, that is capable of sending the information via high power radio or satellite 

to a staffed command station. 

There are several outstanding issues in regards to sensor networks. Network 

topology and routing are fundamental problems that have yet to be solved in a general 

sense. Several mission specific solutions exist, but no over arching scheme has yet been 

developed. In the case of military and some civilian applications, security becomes 

extremely important. Due to the resource constraints of the average sensor node, 

standard encryption schemes cannot be used. This is an area of active research. 
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Finally, the last major issue faced by sensor network engineers is clock 

synchronization, the topic of this paper. Protocols in use on standard computer networks 

to keep local clocks synchronized (such as NTP (Mills, 1994, [1])) do not translate well to 

sensor networks with severely limited processing and storage. There are also several 

extra sources of synchronization error in a sensor network that do not exist in a standard 

computer network. Most of this error comes from the radio links used to create the 

network. In addition, most computer networks can sustain substantial error with no ill 

effects to higher level applications. In the case of sensor networks, large errors can 

render the network unusable. The extra precision demanded by a sensor network 

compared to a traditional computer network makes the task of clock synchronization 

substantially more difficult. 

In the following section, we will discuss the current state of sensor network clock 

synchronization research. Several papers have been presented in the last few years that 

represent promising approaches to solving the problem of clock synchronization. In 

Section 3, we will discuss one of these papers in detail and propose several modifications 

to the scheme presented. These modifications will be designed to lower the total clock 

synchronization error between two nodes in the network. Section 4 will present a 

simulation designed to test our changes compared to the original protocol. Data from 

several simulation runs will be presented and the effectiveness of our protocol changes 

analyzed. We conclude the paper in Section 5. 
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2. PROBLEM REVIEW 

Clock synchronization in sensor networks is one of the most important support 

services to the nodes. Accurate time synchronization has a direct impact on many 

applications: military target tracking relies on accurately determining the difference 

between when two nodes sense the same target, counter-sniper systems use sound 

triangulation to pinpoint the source of a noise (Girod, 2001, [2]), MAC layer protocols such 

as TOMA rely on nodes being synchronized to a global network time (Claesso, 2001, [3]), 

removing duplicate events sensed by multiple sensors necessitates proper ordering of 

events (lntanagonwiwat, 2000, [4]), and power management schemes that rely on being 

able to accurately schedule radio time also require accurate global network time (Gu, 

2005, [SJ). It is obvious that a robust, scalable network time synchronization protocol is 

essential to efficient operation of nearly any sensor network. 

Several sources of error exist in a sensor network that are detrimental to clocks 

synchronization. These sources of error come mostly from the radio and MAC scheme, 

but several exist on the node itself. These error sources were first described by Kopetz 

and Ochsenreiter (Kopetz, 1987, [6]) and later extended in (Mar6ti, 2004, [7]). 

1. Send Time - the time required to build the message to be sent and forward it to the 

transmitter. Also included is the time required for the transmitter to make the MAC 

layer access request. This delay can be hundreds of milliseconds. 
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2. Access Time - the delay while waiting for access to the radio channel used for 

transmission. This delay is heavily influenced by the network traffic and can be as high 

as several seconds. The access time is the most variable time and presents the single 

largest source of error in clock synchronization. 

3. Transmission Time - the time required to transmit the entire message. This can be 

tens of milliseconds, but can be easily determined using the length of the message and 

the speed of the radio. 

4. Propagation Time - the time it takes for the message to go from the sender to the 

receiver over the air. This time is determined solely by the distance between the 

nodes, and in cases where the nodes are 300m apart or less, is under lµs. This value 

comes from the simple fact that radio waves propagate at the speed of light 

(300,000,000 m/s, or 300m/µs). 

5. Reception Time - the time required for the receiver to get the message from the air. 

This time is identical to the transmission time and is determined by the message 

length and radio speed. 

6. Receive Time - time needed to process a received message and notify higher level 

applications. This time is very similar to the send time. 
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7. Interrupt Handling Time - the time required for the radio chip to signal the

microcontroller that there is a message incoming. This delay is normally on the order 

of at most a few microseconds, but in situations where interrupts are disabled on the 

node, the delay can become very large, potentially into the many seconds range. 

8. Encoding Time - this is the delay incurred by the radio chip translating the message

into a radio signal to be transmitted. This time runs on the order of hundreds of 

microseconds, but it does not vary widely from transmission to transmission and can 

be easily calculated. 

9. Decoding Time - this time is similar to the encoding time, but deals with the

reception of the message and translating it from a radio signal to bits on the radio 

controller. The time is mostly stable, can be calculated, and runs on the order of 

hundreds of microseconds. However, signal strength variations can lead to small 

amounts of jitter (change in the decoding time from transmission to transmission). 

2.1. Existing Solutions 

There have been many proposed algorithms over the years to solve the problem of 

network clock synchronization, such as (Mar6ti, 2004, [7]), (PalChaudhuri, 2004, [8]), 

(Sommer, 2008, [9]), and (Yoon, 2007, [10]). Two schemes in particular stand out in the 

research. These are Reference Broadcast Synchronization (RBS) (Elson, 2002, [11]) and 
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Timing-sync Protocol for Sensor Networks (TPSN) (Ganeriwal, 2003, [12]). These two 

methodologies are most often presented as solutions for the clock sync problem. In all 

schemes, the goal is to provide network clock synchronization with minimum error. Some 

systems require errors on the order of just a few microseconds, so this is the goal of most 

researchers. 

RBS relies on the fact that the radio medium is inherently broadcast. Using a 

source node and a broadcast message, RBS aims to synchronize two receivers with one 

another. The source node sends a broadcast message that both of the receiving nodes 

hear. Each node exchanges the time it received the broadcast with the other node. The 

relative offsets of the nodes are calculated via linear regression. This scheme allows for 

synchronization with an error of llµs on Berkeley Motes. This is an error factor of 

approximately 5.5 given the Berkley Mote clock resolution of 2µs. 

Because RBS does not rely on time stamping at the sender, the errors from send 

time, access time, transmission time, and encoding time are all eliminated. Since access 

time is the single largest source of error in the network, eliminating it makes the RBS 

scheme quite accurate. RBS also has the advantage that it does not rely on low level 

access to the hardware like some other protocols. This makes it ideal for platforms that 

do not provide such access. 

Several derivatives of RBS have been developed that attempt to reduce the total 

error including (PalChaudhuri, 2004, [8]) and (Ganeriwal, 2003, [12]). TPSN is the most 

famous and widely studied of these derivative works. TPSN uses the basic scheme of RBS, 

but adds a methodology for organizing the network nodes and synchronizing them in a 
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more efficient fashion. TPSN also uses 2-way message exchange to eliminate the 

unknown propagation error in RBS. TPSN starts by forming a spanning tree of the 

network. Nodes then synchronize to their parent. Using Mica motes for simulation, TPSN 

achieved 16.9µs error. With a clock resolution of .25µs, this is an error factor of 67.6. 

TPSN relies on MAC layer access to the radio chip. This is a feature of Mica motes that will 

be discussed in Section 3. 

2. 2. Other Considerations 

All of the research mentioned has assumed a homogeneous sensor network. That 

is to say, a network where all nodes are of the same design and have the same processing, 

storage, and power resources. Heterogeneous networks have motes of varying 

capabilities. Most commonly, there are many lower powered motes and several higher 

power motes with increased processing, storage, and energy resources. In the case of 

TPSN, the spanning tree protocol used would migrate to a heterogeneous network quite 

easily by simply stating that all root nodes in the TPSN protocol are replaced by the high 

power nodes. 

There are few clock synchronization algorithms tailored to heterogeneous 

networks. This is mostly due to the fact that the benefits of a heterogeneous network 

come in the form of increased power and computation of some nodes. Clock 

synchronization does not rely heavily on computation and increased power does not 

become a significant resource in many cases. This is due to the fact that radio 
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transmissions are symmetric: they take the same amount of power to send as to receiver, 

so the only time extra power becomes important is when one node transmits different 

messages to many. Broadcast synchronization schemes do not garner any benefit from 

the heterogeneous design. 

Heterogeneous networks have a distinct advantage in that there can be many 

clocks in the network that are always accurate. Each of the high power nodes can 

conceivably have a GPS unit on board. With the increased battery life and overall higher 

cost of the node, the addition of a GPS unit is not unreasonable. GPS uses satellite signals 

to determine the location of the GPS unit. Many satellites are constantly beaming their 

current time to Earth. A GPS unit uses the small differences in times from different 

satellites to determine its location. The accuracy of the time reported by a GPS satellite 

signal is significantly less than lµs and is often on the order of 2-3 nanoseconds. This 

gives a GPS enabled node an extremely reliable source of time. 

The nine sources of error described above assume that the messages being 

broadcast are readily accessible. Some sensor network designers are very concerned with 

security (such as networks with military applications). One potential way to safe guard 

transmissions is to encrypt all data sent and received. Most high level encryption 

schemes in use today are not practical on the very constrained node platform. RSA 

encryption/decryption would slow the network to the point where it is unusable. Some 

schemes have been proposed that use lightweight encryption, reducing the time delay 

when sending or receiving messages (Traynor, 2006, [13]). 
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It might be of concern to researchers attempting to achieve high accuracy clock 

synchronization that network security researchers want to introduce another level of 

delay. If the timestamp packet needs to be encrypted before being sent, then there will 

be a new source of error that depending on the encryption scheme, may be quite large. 

We discuss this problem in section 3.2. 

9 



3. BASE SCHEME

This section begins with essential background information for our scheme. We 

then address other issues that were mentioned in section 2. We describe the basic 

scheme we are using as a base and explain the modifications that we believe will improve 

the performance of the protocol. 

3.1. Scheme Background 

The TPSN scheme relies on having direct MAC level access to time stamp 

synchronization packets just as they go to the air or are received from the air. With this 

level of access, nearly all of the delay in the network is eliminated. Send time and access 

time are not an issue since the synchronization packet can be time stamped after MAC 

access has been confirmed and the message has begun transmission. The transmission 

time is deterministic and therefore can be calculated and removed as a source of error 

with minimal effort. The propagation time is still a source of error, but since most nodes 

only have a radio range of about 150m (Crossbow, 2009, [14]), the maximum error less 

than lµs. 

The reception time is identical to the transmission time and is also deterministic. 

With low level MAC access, the received synchronization packet can be time stamped as 

soon as it begins to be received, so the receive time and interrupt handling time are on 

the order of 1 clock tick, which in the case of the Mica2 mote is .25µs. With this direct 

access to the MAC layer, the only sources of error in a synchronization exchange are the 
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propagation time, encoding time, and decoding time. The only one of these that exhibits 

any significant jitter is the decoding time and is therefore the largest source of error. 

Not all sensor nodes allow this low level access. The Mica and Mica2 motes are 

pioneers of this technology. The node design that allows this kind of access was described 

by Hill and Culler in (Hill, 2001, [15]}. The architecture presented described a shift away 

from specialized processing boards on the node. Instead of having an on board processor 

for a specific communication scheme, the higher application layer handles the 

communication protocol. This is possible only when the application layer has direct 

access to the communication hardware. 

The low level access is made possible by hardware accelerators. The naive 

solution to providing the higher application layer with direct hardware access is to simply 

tie the two components directly together on the node. This, however, results in a massive 

decrease in node performance. To get around this limitation, hardware accelerators are 

added alongside the link between application processing and the radio. See Figure 1 

Application Controller 

Timing Accelerator 

Hardware Accelerators 

RF Transceiver 

Figure 1: Hardware Accelerators 

Architecture 

taken from (Hill, 2001, [15]} Figure 4, page 7. The 

� application layer still has direct access to the

hardware, but communication protocols can run 

through the hardware accelerators giving the 

protocol a significant boost in performance that 

nearly equals the performance of a traditional 

node with specialized hardware (Hill, 2001, [15]). 
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Using this architecture, it is possible to timestamp outgoing packets once they 

begin transmitting and also to sense an incoming packet and make a note of its arrival 

within the .25µs clock granularity. Section 5.2 of (Hill, 2001, [15]) discusses a time 

synchronization protocol using this architecture that synchronizes two nodes to within 

2µs of each other. They list the sources of error as raw radio transmission(+/- lµs), 

arriving signal capture delay equal to the granularity of the node clock (+/- .25µs), and the 

time required for the node to process the packet and update its clock offset(+/- .625µs). 

3.2. Other Considerations 

We briefly mentioned the effect encryption might have on clock synchronization in 

section 2. Now that we have seen how low level access to the radio hardware can be 

used for high accuracy synchronization, the problem of encryption becomes even more 

important. If we want to timestamp a packet as it is being sent, we need to be able to 

generate the stamp and add it into the packet very quickly. All the encryption schemes 

presented for sensor networks thus far would take far too long to generate an encrypted 

stamp (Gura, 2004, [16]). 

We must consider when it becomes necessary to encrypt synchronization packets. 

Security of this level only becomes important when there is an adversary attacking the 

network. It is easy to imagine a malicious node sending bad time packets in an attempt to 

desynchronize the clocks in the network. In section 3.4, we will discuss rejection of 

outliers - error data points that are much larger than any other collected. An attacker 
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attempting to skew the global network clock would need to introduce large errors for any 

significant desynchronization. Throwing out larger than normal data points would not 

allow this bad data to effect the overall network synchronization. If we can prevent 

attacks against clock synchronization without encryption, then we can safely send 

timestamps in cleartext. 

This type of interaction between security and clock synchronization will no doubt 

become a topic of intense research over the coming years. While large errors will not be 

allowed to change the global network time, it may be possible to introduce small errors 

that shift the synchronization by small amounts over a long period of time, resulting in 

desynchronization of the clocks. More research is needed to accurately determine 

possible threats to network synchronization. 

3.3. Base Scheme Description 

A direct derivative work of (Hill, 2001, [15]) was developed by Kusy and Culler 

(Kusy, 2006, [17]). This paper used the lower error of a hardware accelerated node as a 

basis for a full time synchronization protocol based on a primitive called Elapsed Time on 

Arrival (ETA). ETA is a time stamping primitive that is used in their primary protocols: 

Routed Integrated Time Synchronization (RITS) and Rapid Time Synchronization (RATS). 

The ETA protocol is designed for node to node synchronization. RITS extends ETA to 

multihop networks by having all nodes synchronize to a root node. RATS reverses RITS 

and has the root node initiate synchronization to all nodes in the network. 
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In a heterogeneous network, the root node used in both RITS and RATS is simply 

replaced with the higher power nodes of the network. This results in multiple root nodes 

each with a group of child nodes that is a subset of the entire network. The advantage to 

this approach is that the total number of hops from root to the edge of the network (or in 

this case, the edge of the group with the high powered node as the root) is reduced, and 

therefore so is the total clock error. 

RATS was implemented on the Mica2 mote using the TinyOS node operating 

system. It was tested on 60 nodes arranged in a 5x12 grid. The root node transmitted 

synchronization pulses every 2 seconds for the first 10 seconds then every 30 seconds for 

the remainder of the test. The global time was queried from each node every 5 seconds 

for the first 2 minutes and then every 23 seconds thereafter. For each sample, the 

absolute and average absolute error was calculated as the difference between the 

queried node time and the root time. The experiment was run for 6 hours. The maximum 

error was 26µs and the average error was 2.7µs. A similar protocol, FTSP (Mar6ti, 2004, 

[7]), was able to achieve slightly higher accuracy (2.3µs average error), but took 150 times 

longer to converge (all nodes synchronized). 

The ETA primitive and RATS implementation provide very high accuracy time 

synchronization without large computational expenses or power demands. Using the high 

accuracy of the clocks to create tightly bounded transmission windows in schemes such as 

TDMA may indeed more than pay for the periodic updates required by the protocol. 

There are a few aspects of the scheme that should be mvestigated, and that is the 

purpose of this paper. 
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3.4. Changes to RATS 

RATS relies on the hardware accelerator architecture for its accuracy. The clock 

synchronization in (Hill, 2001, [15]) had three sources of error: raw radio transmission(+/

lµs), arriving signal capture delay(+/- .25µs), and packet processing(+/- .625µs). This 

resulted in an accuracy of+/- 2µs. We would argue that the total error in this scheme will 

always skew to the positive side and the error is therefore +2µs at maximum. This gives a 

total error range of 2µs instead of 4µs. We will use the simple example below to illustrate 

the argument. 

At time lO0µs, the root node creates a synchronization packet with the numeric 

payload 100 to represent the time the packet was created. Best case scenario, the packet 

leaves the node immediately, resulting in 0 error. Using the established error bounds 

from (Hill, 2001, [15]), the radio transmission may be delayed lµs. We can see from 

Figure 2 that so far we have error from 0µs to lµs. Propagation delay is assumed to be 

negligible. The packet is received by the destination node. ff the packet is timed right, it 

Real Time (Instantaneous) ! 100 ~ liiliL Ill;! 0 
./.r' .. .___._"~ 

. ./ . ·• .OJ Jl.S prnccssing 
1 f15 propagation ,"' 25 )JS reception . . 

"''. .o25µ'-i proccs~mg 

Real Time (Delayed) ! 100 • 

Packet Time 

Figure 2: Transmission Sources of Error 

i l O l I" total error I 

comes in just as 

the high accuracy 

clock ticks, so the 

message is time 

stamped perfectly, 

resulting in O error. If the packet just misses the dock tick, it is stamped at the next tick 

.25µs later. Or total error now ranges from 0µs to 1.25µs. Finally, there is some delay 
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incurred by the processing of the packet. This delay will almost assuredly be greater than 

0, but no lower bound is given. The maximum delay might be .625µs. Our total error is 

therefore between 0µs (realistically slightly higher) and 1.875µs. This error only leans on 

the positive side. In Section 4 we present our simulation of the proposed changes to ETA 

and RATS. We run the simulation using both the +/-2µs error assumption and our +2µs 

assumption. 

One other aspect of ETA and RATS requires analysis. Many of the proposed time 

synchronization algorithms rely on linear regression to provide accurate synchronization 

between synchronization events. Using linear regression in this way was first described in 

(Elson, 2002, [11]). linear regression is necessary because clocks will drift apart from each 

other over time. This is a consequence of using inexpensive crystals as a frequency 

source. Each clock crystal will vibrate by very slightly different amounts. Crystals will also 

change their frequencies over time due to natural aging. Even temperature and vibration 

can cause changes in the crystal vibration. 

Since these crystals are responsible for keeping a clock ticking uniformly, the clocks 

in the network will drift because of imprecise ticks between one another. It would 

technically be possible to keep all clocks in sync by simply broadcasting synchronization 

packets continuously. This does not make much sense from a practical standpoint 

because all the network would be capable of is keeping an accurate global time. By using 

linear regression, we can extrapolate the drift between two clocks and compensate for it 

once we have a few data points. In papers such as (Mar6ti, 2004, [7]), the data points for 

linear regression are tuples of the root node time and the local node time. 
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While not explicitly stated, the charts from (Elson, 2002, [11]} indicate that the 

standard size for the regression data table is 25 points. These 25 readings are used to 

calculate the linear regression variables a and b (slope and y-intercept, respectively) that 

are used for extrapolation. When a new data point is added, the oldest data point is 

removed. This gives a rolling window of data points that keeps the linear regression 

calculation current with the state of the clocks. This is important because as the crystals 

in the clocks age, the drift will change as well. If we were to graph the effects of this type 

of drift, it would not be a straight line. The drift might be lµs per second at the start of 

the network, but natural crystal aging may bring the drift to much higher values (such as 

lOOµs per second) at time goes on. 

We could keep all data points ever collected, but this would essentially force us to 

fit a straight line to a non-linear pattern of clock drift change. By using only the most 

recent data points, we can approximate the drift curve with ever changing lines. Figure 3 

illustrates this by showing continuous recalculation of linear regression parameters. By 

Time 

using multiple linear 

regressions (red lines), we 

more closely approximate 

the curved drift of the node 

clock (black line). In 

addition, storing all data 

points collected would 

Figure 3: Curve Approximation with Multiple Linear Regression 
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eventually take up too much memory on the node, leaving no room for actual sensing 

data. This is obviously undesirable. 

This linear regression method also requires some methodology for removing 

outliers. It is possible that some data points will be wildly inaccurate. This may be 

because of significant network congestion, natural forces interfering with communication, 

or even attacks against the network by adversaries. These outliers would only serve to 

skew the linear regression best fit line away from the idea regression. As such, any new 

data point determined to be an outlier is simply dropped. 

The traditional methodology used by (Elson, 2002, [11]), (Mar6ti, 2004, [7]), and 

(Kusy, 2006, [17]) is to not include data points whose error is greater than 3 standard 

deviations from the mean error. The mean error is found by averaging the difference of 

each point's local node time component and the calculated local node time using the 

regression variables and the collected root time. As an example, assume that we have the 

data point (100,104) (local node time, root node time) and variables a=l.025 and b=3.42. 

Our calculated local node time would be 1.025(100) + 3.42 = 105.92 and this would give us 

an error of 105.92 - 104 = 1.92 for this data point. The error for each point is calculated 

and averaged. The standard deviation (cr) for the errors is also computed. 

The new data point goes through the same process using the current regression 

variables. The error of this new data point is compared against the mean error. If the 

new data point's error is greater than 3 standard deviations from the mean (positive or 

minus), the data point is dropped. If the data point falls within this range, the oldest point 

is removed, the new point is added, and the regression variables are recalculated. 
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We are interested in what happens when the range of acceptable values changes. 

Using a more stringent outlier check, such as reducing the range from +/-3o to +/-2o may 

result in a more accurate line. As part of our simulation, we examine the effects of 

changing the outlier criteria with 2o, 3o (baseline), and 4o. 
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4. SIMULATION

In this section we will describe our simulation software. We will discuss the goals 

of the experiment, how the program was developed, what assumptions we are using for 

our experiment, and the results after running the simulation. The simulation and 

experimental parameters are based on the ETA and RATS protocols described in (Kusy, 

2006, [17]) and the error bounds from (Hill, 2001, [15]). We implement the ETA protocol 

in software and emulate a network that tests the 1-hop characteristics of RATS. RATS is 

designed and was tested in (Kusy, 2006, [17]) as a multi-hop protocol. We use a baseline 

simulation directly mimicking RATS as our performance baseline in the single hop case. 

4.1. Goals and Assumptions 

The purpose of this simulation is twofold. First, we wish to see the effects of our 

argument for using a +2µs error bound instead of the +/-2µs bound in (Hill, 2001, [15]). 

We contend that with this adjusted error bound, we should see errors that float toward 

the positive overall. This will of course be offset to some extent by node drift rates that 

may skew positive or negative. In the interest of completeness, we will run the simulation 

with both +/-2µs and +2µs for all other variables. 

The second aspect of the simulation is to test changes to the outlier criteria used 

by the protocol. Outliers are traditionally defined as +/-3o from the mean. We wish to 

see the effects of changing this range, so we will run tests with +/-20, +/-3o (our baseline), 

and +/-40. We expect that a tighter bound on the data points will result in a better line, 
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but there may be unexpected side effects. Restricting the data points may result in such a 

narrow band that all subsequent data points are thrown out. If this is the case, our +/-4o 

experiment should show slightly better performance. 

Additionally, we will also test the differences between using an unbounded 

number of data points for the linear regression versus using a static number of data 

points. We will use the standard 25 data points when we limit the size of the data set. 

We fully expect the limited number of data points to provide better performance than all 

data points (see section 3.4). 

With 2 different variables to test of the error bounds, 3 different outlier criteria, 

and 2 different bounds for the number of data points, we will have a total of 12 runs of 

the simulation. For all experiments we use a simulated 11 node network with one node 

being the root node. We will run each experiment for 2.5 hours using a synchronization 

period of 30 seconds and a sample period of 23 seconds. This will give us 391 samples for 

each of the 10 child nodes for a total of 3910 data points per run. 

4.2. Simulation Design 

The simulation software was written in the Python programming language and run 

on the Windows XP Profession 64bit Edition operating system using Python 3.1.1. The 

computer used has a 2.4Ghz Intel Core 2 Duo processor and 6GB of DDR2 RAM. The 

simulation program consists of three main parts that utilize object oriented principles. 

See Appendix A for source code. 
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The first part of the program is a node time class. This class creates an integer 

count timer that is constantly incrementing by one. The class takes in one argument that 

defines the drift of the node's clock. This is important to simulate because clock drift is a 

major factor when correcting for error. We do not take into account changing drift rates 

for our simulated clock due to the fact that our simulation times are not long enough for 

clock drift rate change to significantly affect our results. It would be a simple matter to 

add this functionality for further experimentation. The drift rate is used to periodically 

change the node time to reflect the variations in counting that occur in a crystal based 

clock. 

The node time class keeps track of the current node time with three variables: 

micro, second, and minute. The micro variable stores the integer count and represents 

microseconds. Every 1,000,000 microseconds, we rollover the micro variable to zero and 

increment the second variable. Every 60 seconds we roll over the second variable and 

increment the minute variable. We split our time into these smaller chunks to avoid large 

integer calculations that would result from simply having a counter that starts at zero and 

keeps growing. 

The second part of the simulation software is the node class. This class is used to 

create a simulated node that can communicate with the root node and handle linear 

regression calculations. Each node that is created takes in arguments for the node's ID, 

the drift rate, how many data points it can keep in memory, and what the error bounds 

are (refer to our previous discussion of +/-2µs versus +2µs error). When the node is 

created, it sets up several internal variables. The regression variable is a dictionary that 
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stores node Ids and synchronizations messages. This dictionary holds all the data that is 

periodically used to calculate linear regression information. 

For those that are unfamiliar with Python, a dictionary is essentially an associative 

array, or an array indexed with arbitrary keys instead of numbers. In our case, we use the 

node ID of node being synched with as a key, then store all the information for that 

particular node ID in an array in the dictionary. This allows us to keep track of any inter

node communication with ease. For our simulation we focused on the node to root 

connection only, effectively limiting the simulation to 1 hop scenarios. It would be a 

relatively minor change to allow nodes to synchronize with any other node, creating a 

multi-hop simulation. We hope to explore this option in the future. 

The node class has functions for several different jobs. The main job is to keep the 

counter going and periodically synchronize with the root node. The counter for each node 

runs in a separate thread to achieve as close to parallel execution of clock timing and 

synchronization as possible. The node class is also responsible for introducing the errors 

that are common in a real wireless network. It uses the errors for transmission time, 

receive time, and interrupt handling time defined in (Hill, 2001, [15]) as the basis for the 

errors that are introduced. The goal of the linear regression component is to eliminate 

these errors. 
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Finally we have the control program. Figure 4 graphically represents how the 

control program interacts with the node class. This program uses the classes we have 

discussed thus far to 
Root Clock 

◄ 
Output to File 

' 
Node 

, 

Node Clock 

Control Program 

u-., .. 
Figure 4: Simulation Program Architecture 

quality clock than in the other nodes. 

' 
Node 

Node Clock 

actually run the simulation. 

The control program acts as 

the root node for all 

communication. The same 

node time class that each 

node uses for its clock is 

used here for the root 

node's clock. The root 

node does not have any 

clock drift. We assume 

that it is a much higher 

This control program has variables for all the testable items we wanted to 

research. The dev_points variable stores the criteria for eliminating outliers. For our tests 

this had the values 2, 3, or 4. The error variable controls if we use +/-2µs or +2µs. This is a 

boolean where 1 means +2µs and O means +/-2µs. We also have the variables run_time, 

sync_interval, and sample_lnterval, for the total run time, synchronization period, and 

sample period, respectively. The synchronization period defines how often the nodes 
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synchronize with the root and the sample period defines how often we get the nodes' 

current time and the root time for offline analysis. 

The main method starts by setting up the root clock and starting a timer for how 

long the program should run. After that is set up, the file operations for storing the 

sample data from the nodes are created. The program then builds as many nodes as are 

called for by the number_nodes variable. We default to 10 nodes in all tests, but this 

number could be increased easily. Each node is assigned a random drift value between O 

ppm and 100 ppm (Kusy, 2006, [17]). This metric determines how much the clock drift 

changes. In this case each node drifts by a random value between O and 100 µs per 

second. 

Once all the preliminary data is ready, the root clock starts, node clocks start, and 

the control program goes into a loop where it periodically takes sample data from each 

node and synchronizes with the nodes. Figure 4 shows the synchronization message from 

control to node, the request for a sample from control to node, and the sample request 

response from node to control. When data is collected, the Node ID, Error, Node Time, 

and Root Time are written to a comma separated value file. The error is simply the root 

time minus the time linear regression would predict for the root. Each node has its own 

linear regression parameters. The node takes its current time, uses linear regression to 

determine what it thinks the root time should be, finds the error by subtracting this 

expected time from the actual reported root time (no error is introduced into this root 

time when it is sent to the node), and then reports this data back to the control program. 
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Once the run_time variable has been reached, the program takes one last sample, 

then shutdowns all the nodes, closes the data file, and ends the program. Using the 

control program, we would run multiple simulations back to back by just modifying the 

variables as needed in our main method calls. 

4.3. Results 

After running the program 12 times for 2.5 hours for each run and collecting our 

data, we imported the data into Excel. The first 3 data points for each node were 

removed. This is because the linear regression calculation we used requires a minimum of 

three data points. After these initial points were removed, the remaining errors were 

changed to their absolute value. We calculated the average error across all nodes for the 

entire run, the maximum error across all nodes, the minimum error across all nodes, and 

the percentage of data points below the average. In addition, we broke the results down 

by individual nodes. For each node we found the average error, maximum error, 

minimum error, and percentage of data points below the average. 

The average error is the best "single number" metric to evaluate the performance 

of the network. A small average error is beneficial because it means that the network on 

a whole is synchronized. There are bound to be instances where a node is completely out 

of sync, and that cannot be avoided, so we try to minimize the overall error. The 

maximum error gives us an idea of how bad the network can get. If we see maximum 

errors that are orders of magnitude larger than our average errors, we know that at some 
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point the network was extremely out of sync. Eliminating the source of such errors can 

greatly increase overall performance. 

The percent under average metric gives us insight into the distribution of error 

points. Having many nodes under the average would indicate that there are a few very 

high error points and then many more error points that are below average. In such cases, 

we may find that a few network hiccups have ruined the overall metric when in fact the 

network was relatively well synchronized for the majority of the time. Conversely, we 

may see that many data points are above the average. Such a case would lead us to 

believe that the network performed poorly most of the time, but managed to be well 

synchronized at a few points. Having around 50% under average means that we have a 

roughly normal distribution, which may mean that the network is not prone to high or low 

points. 

We also applied a correcting factor to convert our simulation results into numbers 

more indicative of a sensor network. We did this by dividing the root clock's time at the 

end of the run by the number of microseconds the simulation lasted. As an example, our 

baseline criteria run (3a, errors of +/-2µ, 25 data point limit) had a final root time of 

668759150 and ran for 9000000000 microseconds. Dividing these gives us 0.0743. This 

number is how many microseconds were simulated per "real,, 

microsecond. We 

multiplied all our absolute errors by this factor. This gives us final results that more 

closely match sensor network clock error times. The one negative effect of this 

methodology is that our synchronizations time and sample time of 30 and 23 seconds, 
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data point runs were at a minimum 2 times as accurate (10.13µs vs 22.78µs for 4o using 

our modified error bounds) and at the high end were 6 times better (8.37µs vs 50.98µs) 

for 2o using our modified error bounds). Maximum errors were also lower in 5 out of 6 

instances. The exception is that the 3o run using the error bounds from (Kusy, 2006, [17]) 

showed very slightly lower maximum with unlimited data points. This is especially 

interesting since the 25 data point limitation with 3o and (Kusy, 2006, [17])'s error bounds 

is the baseline. 

We also notice some interesting results with the percentage of data points under 

the average. While both the unlimited and 25 data point bounded runs consistently 

achieve greater than 50% of data points under the average, the unlimited data point runs 

almost always have more data points under the average than the limited data set. While 

interesting, this fact is misleading. Even though there are more data points under the 

average, the average also sits much higher as an absolute value for the unlimited data 

sets, so the raw average error is still lower for the bounded data set runs. 

We were surprised to see that there is little difference overall between a +/-2µs 

error bound and a +2µs bound. In some cases our bound shows improved performance, 

but in others the +/-2µs bound performs better. Compare the 4o average error in the 

second part of Table 1. Our error bounds ran slightly more than 2µs slower than the+/-

2µs error bound. We believe that the linear regression method used in the protocol 

serves to remove the differences between the two bounds. Linear regression is used to 

compensate for clock drift which can be l00µs per second. Since synchronizations only 

occurred every 30 seconds, synchronization errors only introduce 8µs or 4µs of error per 
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node per minute depending on which bound is used. Both of these are insignificant to the 

error introduced by clock drift. More generally, we could argue that as long as the total 

error introduced by the sending node, propagation, and receiving node is much less than 

the drift of the node's clock, the synchronization error becomes unimportant compared to 

the natural clock drift. 

Based solely on the data from Table 1, it would appear that the 4a, +/-2µs, 25 data 

point method performs the best with an average error of 8.08µs, a maximum error of 

72.4µs (2a, +2µs, 25 data points is very slightly lower and 3a, +2µs, 25 data points is 

significantly lower), and 64% of data points under average. Another aspect of any clock 

synchronization protocol that needs to be considered is consistency. A protocol that has 

an average error of 8µs is a good start, but if it ranges from 0µs error to 16µs, it could 

present problems at times when the error is very high. A protocol that has a 9µs or l0µs 

average error but only ranges from 8µs to llµs might be more worthwhile since the 

maximum error is significantly less even with slightly higher average error. 

We decided to examine the overall stability of each run by graphing the average 

network error over time. Each time data was collected, we got 10 data points, one for 

each node. For each 10 data points, we averaged the absolute values. We then graphed 

the average network error over time and applied a trend line to the data. The idea is that 

a trend line can approximate the change in error in the network over a long period of 

time. The ideal trend line would have a negative slope, meaning that as time went on, the 

network became more and more synchronized with smaller error values. Zero slope 

would also be an acceptable result. At long as the error remains constant over time, we 
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Like Figure 5, we again see massive growth in average network error as the 

simulation runs. This trend line is very slightly worse than that of the 2o run. Finally, 

figure 7 shows the 4o simulation results. 
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Figure 12: Average Error over Time (3o, +/-2µs, 25 pts.) 

Another interesting result. Here the trend line has a very slight upward trend, but 

is still much more level than any of the unlimited data point runs. Lastly, figure 13 shows 

the 4o, +/-2µs, 25 data point run. 
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Figure 13: Average Error over Time (4o, +/-2µs, 25 pts.) 
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These charts are particularly interesting. Each has a very low R2 value, but each 

also shows either a negative trend (Figures 11 and 13) or a very small positive trend 

(Figure 12). This would indicate that these runs were very stable and over time will have 

very little error growth, or actually improve the average error. This is exactly the behavior 

any clock synchronization protocol should display. Figure 13 shows that the 4a run had 

the highest R2 value and also showed a negative trend. This simulation would indicate 

that using a large error range for outlier detection improves overall protocol performance. 

This is in direct contradiction to our predictions. We believe it is possible that being too 

restrictive on outlier detection leads to all new data points being considered outliers and 

being thrown out. This would be a good argument for widening the outlier detection 

range. However, we do not believe this is the explanation for our data, since if that was 

the case, we would expect to see very poor performance in the 2a run. More study is 

required for us to fully understand this phenomenon. 

It should also be noted that for the 4a run, the large spike in error at the beginning 

of Figure 13 greatly throws off the linear regression. If we remove this spike, we would 

get a much flatter line with a minimum of variation. 

Finally, we present the +2µs, 25 data point plots. Figure 14 shows the 2a 

simulation run. 
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This graph is very similar to other 25 data point graphs. We see a very slight 

upward trend in average error here. Figure 15 shows the 3a simulation data. 
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Figure 15: Average Error over Time (3a, +2µs, 25 pts.) 
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Again, a very slight upward trend is observed. This is not significantly different 

from the 2a run in Figure 14. Figure 16 shows the 4a simulation run. 
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Figure 16: Average Error over Time (4a, +2µs, 25 pts.) 

Both the 2a (Figure 14) and 3a (Figure 15) charts are uninteresting. They mimic 

previous charts. The 4a (Figure 16) chart, however is rather intriguing. It shows a 

negative trend and has a large spike much like the 4a, +/-2µs chart. Since we have gotten 

this result a second time, the previously stated theory that using a 4a outlier range 

improves performance gains extra credibility. This run has slightly worse performance 

than the +/-2µs run, but the trend is the same. 

Our simulation results show that limiting the number of data points used in linear 

regression drastically improves the effectiveness of the method. This makes sense from a 

conceptual standpoint because the drift of each clock in the network changes over time. 
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Using all past data mixes old drift rates with new drift rates while eliminating old data 

makes sure that the linear regression takes in to account only the newest drift rates. 

The experiment also revealed that there is no substantial difference between the 

+/-2µs error presented in (Hill, 2001, [15]) and our assumption of +2µs. This is due to the 

linear regression. Such a small difference in error is compensated for with the linear 

regression. The total clock drift also dwarfs the small difference between +/-2µ and +2µs. 

Finally, our simulation showed that using an outlier range of 4o yields better 

performance than the traditional 3o range and also a 2o range. Using the 4o range 

resulted in small error and an overall negative trend in the average network time error. 

This would imply that over time the network error stabilizes and may actually reduce. The 

exact reason for this has yet to be determined and will be the topic of future work. 
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5. CONCLUSION AND FUTURE WORK 

We began by presenting a brief review of the problem of sensor network clock 

synchronization and the challenges involved with creating a suitable synchronization 

protocol. We discussed in detail the Estimated Time on Arrival (ETA) primitive and how it 

relies on hardware accelerators to eliminate some of the largest sources of error in clock 

synchronization. We explained the RITS and RATS protocols built on the ETA primitive. 

Changes to the protocols were presented. We focused on three main items. 

First, we wanted to see what happened if we used an unlimited number of data 

points when doing linear regression for clock synchronization. Most schemes use 25 data 

points. We believed that the unbounded number of points would lead to poor 

performance due to the fact that we would be trying to fit linear data to a curved clock 

skew line resulting from the aging of the physical clock crystals. 

Second, we took issue with the ETA primitive's assumption of a maximum clock 

error of +/-2µs. We argued that the clock error would skew to the positive side, 

essentially limiting the total clock error to +2µs. Finally, we wanted to test the outlier 

elimination criteria. The traditional approach is to throw out new data points that are 

greater than three standard deviations from the mean. We decided to test the effects of 

using two standard deviations and four standard deviations. We predicted that using a 

more strict guideline for elimination (two standard deviations) would result in a more 

accurate linear regression calculation. 
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We created a simulation using the Python programming language to mimic the 

behavior of a ten node network where each node synchronizes its clock to a root node. 

The program used integer counting to simulation clock ticks. Each node was assigned a 

clock drift value that was taken into account. We tested +/-2µs and +2µs error bounds for 

each of the 2o, 3o, and 4o cases using both unlimited data points and 25 data points 

resulting in 12 different combinations. Data that was collected was imported into Excel 

for analysis. 

The differences between 25 data points and unlimited data points were not 

surprising. The 25 data point runs performed markedly better than the unlimited runs. 

The differences between the +/-2µ and +2µs were surprising. There was nearly no 

difference between the two error bound criteria. We believe this is a result of the linear 

regression smoothing out the rather minor difference between the two. 

The results of the outlier detection were the most surprising. We discovered that 

the 4o run had the best performance, followed by the 2o run, then the 3o run. We cannot 

even say that higher error bounds result in better performance because the 2o run 

performed better than the 3a run. Isolating the source of this effect and finding the 

optimal error bound is a goal of future work. 

Our results are interesting because many existing solutions rely on linear 

regression in some form. We have shown that using a 3o outlier detection criteria does 

not necessarily result in the optimal clock synchronization. In fact, the 3a criteria 

performed worse than either 2o or 4o. The 3o run had average error of about llµs while 

the 4o run had average error of about 8µs, showing a considerable, but perhaps not 
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dramatic, increase in accuracy. More importantly though, the 4a run showed a definite 

negative trend over time while the 3a run had a very slight positive trend. 

Developing a methodology for calculating the optimal criteria for outlier detection 

in a linear regression based approach is extremely important, since the entire protocol 

ultimately relies on the accuracy of these calculations. We hope to conduct further 

research on this topic to better understand how outlier detection effects overall 

performance. There is clearly some very interesting relationship between outlier 

identification and linear regression that directly effects performance of the network. 

In this paper we have only looked at linear regression. Other avenues of future 

research will hopefully include identification of alternative methods for keeping clocks 

synchronized between time synchronization messages. We will look at the performance 

impact of these alternative methods, the effects of outlier identification on the 

performance of a clock synchronization scheme based on the alternative methods, and 

the computation required by these other methods. 
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APPENDIX A 

This appendix presents the source code used in the Python simulations. The first section 
is the node time class that handled the simulated clock for each node. The second section 
is the node class that creates and runs a simulated node. The third section is the control 
code that creates the simulated nodes, passes in the simulation parameters, controls 
synchronization, and collects data. 

APPENDIX A.1. Node Time Class 

node_time.py 

""" 
Node Time Class 

This class defines a time object for use by a network node. The time object stores: 

microseconds (int) 
seconds (int) 
minutes (int) 

drift (int) stores drift value (ppm) 

The class supports these operations: 

run(self) - clock counts up by 1 continuously until stopped 
drift is added in when appropriate 

""" 

import threading 

class NodeTime: 

global stop 

""."A time object'""' 
def _init_(self,drift): 

self .micro = O 
self .second = O 
self .minute= O 
self .drift= drift 
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"'"'Primary run method"'"' 
def run(self): 

# Set stop variable to 1 (i.e. run) 

self .stop = 1 

# Determine when to drift 

if(self.drift == O): 

# Never drift 

dr.ift_every_micro = 1000000 

# self .micro max is 999999 

# 999999 mod 1000000 = 1, so the if test in the 
# while loop is never true 

else: 

drift_ every _micro = round( 1000000/self .drift) 

while 1 and self .stop: 

#print("Time is " + str(self.micro)) 

if(self.micro % drift_every_micro == O): 

# The current time is a multiple of the drift_every_micro value 

# Drift the clock by 1 (an extra tick does this) 
# Increment clock 

self.micro = self.micro + 1 

# Regardless of drift, increment clock by 1 

self .micro = self .micro + 1 

# Check if increment causes micro rollover 

if(self.micro >= 1000000): 
self.micro = self.micro - 1000000 

self .second = self.second + 1 

# Check if increment causes second rollover 

lf(self .second >= 60): 

self .second = self .second - 60 

self.minute = self.minute+ 1 

47 



APPENDIX A.2. Network Node Class 

node.py 

111111 

Network Node Class 

This class defines a network node. The network node includes the following information: 

Node ID (int) 
Node Time (Node Time object) 
Regression Table (diet) 
Drift (int - ppm) 
Current regression data (diet) 
Std dev bounds (int) 
Error bounds (int) 

A node has the following operations: 

give_time()- Return current node time 
sync_time() - Syncs clock with root node 
end() - Ends the node simulation 
give_regressions() - Hands off regression informaiton 
sample{) - hands off regression info and current time 
add_regress() - Adds regression info to node dictionary 
lin_reg() - Calculates linear regression variables for node 
linreg() - Does linear regression 
std_dev() - Calculates standard deviation 
minTomac() - Orders a list from min to max using absolute values 

Regression information is stored in a dictionary with remote node ID as the key and a list 
of tuples of tuples for the regression data points (e.g. 1:( ((3,4),(5,6)), ((8,11),(9,12))] ) 

""" 
from node time import * 

import math, threading, random 

class Node: 

"""A network node 11
"

11 

def _init_(self,node_lD,node_drift,polnts,error): 
self.time= NodeTime(node_drift) 
self .ID = node_lD 
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self .regression = {} 

self.a ={} 

self.b = {} 

self.RR ={} 

self.dPoints = points 

self .error = error 

# Build clock thread 

\ 

clock_run = threading.Thread(target=self.time.run, name='clck_run', args=[]) 

# Start clock thread 

clock_run.start() 

"""Hand off current node time""" 

def give_time(self): 

return self .time.micro,self.time.second,self .time.minute 

"""Synchronize time with root'""' 

def sync_time(self,root_time): 

# Record current node time 

local_time = (self .time.micro,self .time.second,self.time.minute) 

# Establish limits of error 

transmission_error_limit = 1 

receive_error_limit = .25 

sync_error_limit = .625 

# Establish error for this transmission 

# random.uniform returns a random floating point number 

# Decimal values rounded out in a later step 

if(self.error): 

transmission_error = random.uniform(O,transmission_error_limit) 

receive_error = random.uniform(O,receive_error _limit) 

sync_error = random.uniform(O,sync_error _limit) 

else: 
transmission_error = random.uniform(

transmission_error _limit, transmission_ error _limit) 

receive_error = random.uniform(-receive_error _limit,receive_error _limit) 

sync_error = random.uniform(-sync_error _limit,sync_error _limit) 
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# Decompose root_time 
root_micro = root_time[0] 
root_second = root_time[l] 
root_minute = root_time[2] 

# Subtract out error 
# This simulates the clock running while the sync completes. 
# In essence, it acts as though the message was sent several cycles ago. 
new_root_micro = root_micro - transmission_error - receive_error - sync_error 

# Our simulated clock has less precision, so round error to nearest int 
new __ root_micro = round(new_root_micro) 

#print("Base: ",new _root_micro) 

# Check to see if time units need to be rolled back 
if(new_root_micro < 0}: 

if(root_second == 0}: 
# Roll back minute 
root minute = root_minute - 1 
root_second = 59 

else: 
root_second = root_second - 1 

root_micro = 1000000 - abs(new_root_micro) 

#print("Corrected: 11,new_root_micro) 

# Redefine root_time 
root_time = (root_micro,root_second,root_minute) 

# Create entry in regression table 
self.add_regress(local_time,root_time) 

""" 
####Notes on the lin_reg function#### 

so 



The lin_reg function has a term where a value is divided by the length of the input list 
minus 2 

value/(len(list)-2) 

Therefore, the input list must have at least 3 values before the lin_reg 
function can be called. The conditional below enforces this. 

This works in the context of the simulation because the more data points 
we use, the better the linear regression. So having a minimum number of 
data points doesn't hurt the performance, especially when the minimum 
is just 3. 
nun 

# Make sure there is data to lin reg · 
# regression[O] references the root node in the regression dictionary 
# regression[O] is a list 
# lin_reg(O) does linear regression for this node and node O (the root node) 
if(len(self .regression[O]) >= 3): 

# Perform linear regression 
self.lin_reg(O) 

# Finally, return regression info to control node 
return (local_time,root_time,self.lD) 

"""Stop the clock""" 
def end(self): 

self .time.stop = 0 
return self.time.micro,self.time.second,self.time.minute 

'""'Hand off regression info""" 
def give_regressions(self): 

return self.regression 

"""Hand off regression info and current time"'"' 
def sample(self,node): 

# Make sure data exists for a and b 
if(len(self .a) == O): 

51 



a_ret = O 
b_ret = O 

else: 

a_ret = self .a[node] 
b_ret = self .b[node] 

#print("A: ",a_ret) 
#print("B: ",b_ret) 
return self .time.micro, self.time.second, self.time.minute,a_ret,b_ret 

111111 

These are helper functions for the other functions 
nun 

'"'"Add data point to regression table for node""" 
def add_regress(self,local_time,remote_time): 

111111 Version with a maximum of 25 data points for regression""" 

i!(len(self.regression) > O): 
current= self.regression[O] 
"""Remove this conditional for unlimited length""" 
if{len(current) == 25): 

# Pop oldest off 
current.pop{O) 

"'"'End remove""" 
else: 

current= [] 
current.append( (local_time,remote_time)) 
self.regression[O] = current 

"""Calculate regression variables"'"' 
def lin_reg(self,node): 

self.a[node] = O 
self .b[node] = O 

# Build x and y lists from regression dictionary 
rootTimes = [) 
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nodeTimes = [] 

#Pullout info for "node" from regression list 
for regress in self.regression[node]: 

# At this point 'regress' references a tuple in 'regression' 
# indexed to 'node' 
node_time = regress[0] 
root_time = regress[l] 

# node_time and root_time are both tuple of (micro,second,minute) 
# Convert to ints 
temp_sec = node_time[l] • 1000000 # Line shortener variable 
temp_min = node_time[2] • 60000000 # Line shortener variable 
node_time = node_time[0] + temp_sec + temp_min 

temp_sec = root_time[l] • 1000000 # Line shortener variable 
temp_min = root_time[2] • 60000000 # Line shortener variable 
root_time = root_time[0] + temp_sec + temp_min 

( 

# Add data points to x and y lists 
nodeTimes.append(node_time) 
rootTimes.append(root_time) 

# Get regression info 
temp_a,temp_b,temp_RR = self.linreg(nodeTimes,rootTimes) 

# Cale projected node_time 
projected = [] 
fort in range(len(nodeTimes)): 

projected.append(temp_a*nodeTimes[t] + temp_b) 

# Build list of actual-calculated 
diffs = [] 
for u in range(len(rootTimes)): 

diffs.append(rootTimes[u] - projected[u]) 

# Get std dev differences 
std_dev = self.std_dev(diffs) 

#Get mean 
mean = sum(diffs)/len(diffs) 

#Throwout outliers if more than X (dev_points) deviations from mean 
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dev_points = self.dPoints 

list_min = 5 

# Order list min to max 

# Gets ordered list and original list 

diffs,org_diffs = self.minTomax(diffs) 

# Remove anything greater than dev_points deviations from the mean, 

# provided that the list is at least list_min long when completed 

i = len(diffs)-1 

while i >=O and len(diffs) > list_min:

# Check for dev_points over mean, remove 

if( (diffs[i] >(mean + dev_points • std_dev)) or 

(diffs[i] < (mean - dev_points • std_dev)) ): 

# Remove from lists 

# Find index of data point in diffs in the org_diffs list 

# org_diffs and rootTimes have synced indexes 

rootTimes.pop(org_diffs.index(diffs[i])) 

nodeTimes.pop(org_diffs.index(diffs[i])) 

i = i -1 

# Cale linear regression using purified list 

self .a[node],self.b[node],self.RR[node] = self.linreg(nodeTimes,rootTimes) 

111111 

linear regression function provided by: 

http://www.answermysearches.com/how-to-do-a-simple-linear-regression-in

python/124/ 

Modified to be Python 3 compliant 
""" 

def linreg(self,X, Y): 

111111 

Summary 

linear regression of y = ax + b 

Usage 

real, real, real = linreg(list, list) 

Returns coefficients to the regression line "y=ax+b" from x[] and y[], and R"2 Value 
111111 

54 



if len(X) I= len(Y): raise ValueError('unequal length') 
N = len(X) 
Sx = Sy = Sxx = Syy = Sxy = 0.0 
#for x, y in map(None, X, Y): 
for x,y in map(lambda •a:a, �, Y): 

Sx= Sx +x 
Sy= Sy +y 
Sxx = Sxx + x•x 
Syy = Syy + y•y 
Sxy = Sxy + x•y 

det = Sxx • N - Sx • Sx 
a, b = (Sxy • N - Sy • Sx)/det, (Sxx • Sy - Sx • Sxy)/det 
meanerror = residual = 0.0 
for x, y in map(lambda •a:a, X, Y): 

meanerror = meanerror + (y - Sy/N)**2 
residual= residual + (y - a • x - b)**2 

RR = 1 - residual/meanerror 
#RR=O 

ss = residual / (N-2) 
Var_a, Var_b = ss • N / det, ss • Sxx / det 
#print "y=ax+b" 
#print "N= %d" % N 
#print "a= %g \ \pm t_{%d;\ \alpha/2} %g" % (a, N-2, sqrt(Var _a)) 
#print "b= %g \\pm t_{%d;\ \alpha/2} %g" % (b, N-2, sqrt(Var _b)) 
#print "R"2= %g" % RR

#print "s"2= %g" % ss 

#print("A: ",a) 
#print("B: ",b) 
return a, b, RR

""" 

Function that returns the standard deviation of a list of numbers 
111111 

def std_dev(self,nums): 
mean = sum(nums)/len(nums) 
temp=[] 
for n in range(len(nums)): 

temp.append( (nums[n] - mean) •• 2 ) 

std_dev = ( (sum(temp)/len(nums)) •• (1.0/2.0)) 
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return std_dev 

ttU11 

Function that orders a list from minimum to maximum {absolute vals) 

Returns ordered list and original list 
111111 

def minTomax(self,in_list): 

out_list = in_list 

swaps= 1 

i = 0 

while swaps > O: 

swaps= 0 

for i in range(len(out_list)-1): 

if(abs(out_list[i]) > abs(out_list[i+ 11)): 

# Swap items 

templ = out_list[i] 

temp2 = out_list[i+l] 

out_list[i] = temp2 

out_list[i+l] = templ 

· swaps += 1

return out_list,in_list 

APPENDIX A.3. Control Program 

control.py 

""" 

Program Flow Control 

This controls the simulation and exports data to CSV files 

root_micro {int) 

root second {int) 

root_minute {int) 

samples {int) 
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syncs (int) 
nodes (diet) 

main() - Creates nodes and runs simulation 
add_tick() - Ticks the root node's clock 
lllltl 

from node import * 
from node_time import *
import time, threading 

""" 

Primary test function 
lllftl 

def 
main(number_of_nodes,run_time,sync_interval,sample_interval,dev_points,error,filena 
me): 

# Clock 
root_micro = 0 
root_second = 0 
root_m·inute = O 

# Stats 
samples =O 
syncs= O 

#Set up root clock 
node_clock � NodeTime{O) 
root_clock =lhreading.Thread(target=node_clock.run, name='root_clock', args=[]) 

# Startup output 
prlnt{"Program running ... ") 
print("Start time: ",time.ctime(),"\nRun time: ", run_time, " minute(s)\n") 

# List of nodes 
nodes=[] 

# Create data file 
data_file = open(filename, 'w') 
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# Put header in file 
write_string = "Node 10,Error,Node Time,Root Time\n" 

# Write header to file 
data_file.write(write_string) 

# Start root clock 
root_clock.start() 

# Build nodes 
i =O 

while i < n·umber_of_nodes: 
# Random node drift 0-100 ms 
drift = random.randint(0,100) 
new_node = Node(i,drift,dev_points,error) 
nodes.append(new_node) 
i += 1 

# Start the clock 
start_time = time.time() 
end_time = start_time + (run_time*60) 

""" 

Optionally, we could run a set number of cycles 

run_time = 100 
j=O 

while j < run_time: 
#do stuff 
j += 1 

flllfl 

# Start the simulation 

sync_number = 1 
sample_number = 1 
while time.time() < end_time: 

# Tick root clock 
#root_micro,root_second,root_minute =

add_tick(root_micro,root_second,root_minute) 
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# Sample data points from nodes 
if(int(time.time()) >= (int(start_time) + sample_interval * sample_number)): 

print("Sampling data points") 
samples+= 1 

sample_number += 1 

# For each node, get the sample data, calc error, write to file 

for node in nodes: 

# Get sample data 
# Gets data from node for root (node O) 
node_id = O 
'"'"Make node IDs start at 1, Excel doesn't like node ID O for some reason""" 
micro,second,minute,a,b = node.sample(node_id) 

# Get time as ints for regression 
temp_sec = node_clock.second*lOOOOOO #Temp variable to shorten line 
temp_min = node_clock.minute*60000000 #Temp variable to shorten line 
root_time_int = node_clock.micro + temp_sec + temp_min 

temp_sec = second • 1000000 #Temp variable to shorten line 
temp_min =minute* 60000000 #Temp variable to shorten line 
node_time_int =micro+ temp_sec + temp_min 

# Regression time 
reg_time = round(node_time_int*a + b} 

#print("Node: ",node_time_int) 
#print("Reg: ",reg_time) 
#print("Regressions: ",node.regression) 

#print("A: ",node.a) 
#print("B: ",node.b) 
#print("Reg: ",node.regression) 

# Error 
error= root_time_int - reg_time 

# Write string 
write_string = str(node.10} + "," + str(error) + 
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"," + str(node_time_int) + "," + str(root_time_int) + "\n" 

# Write node ID and error to file 

data_file.write(write_string) 

# Sync node clocks to root 

lf(int(time.time()) >= (int(start_time) + sync_interval • sync_number)): 

print("Syncing node clocks to root") 

syncs+= 1 

sync_number += 1 

# Sync the clocks 

for node in nodes: 

# Build root time 

root_time = (node_clock.micro,node_clock.second,node_clock.minute) 

#Sync 

node.sync_time(root_time) 

# Explicitally end nodes 

for node in nodes: 

node.end() 

'""'End of simulation""" 

# End root clock 

node_clock.stop = 0 

print("Program complete") 

print("Samples: ",samples) 

print("Syncs: ",syncs) 

def add_tick(micro,second,minute): 

micro+= 1 

# Check if increment causes micro rollover 

if(micro >= 1000000): 

micro = micro - 1000000 

second = second + 1 
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# Check if increment causes second rollover 

if(second >= 60): 

second = second • 60 

minute = minute + 1 

return micro,second,minute 

# Program variables 

"""Basic Testing 

number_of_nodes = 10 

#run_time = 150 # In Minutes 

#sync_interval = 30 # In Seconds 

#sample_interval = 23 # In Seconds 

run_time = 2 # In Minutes 

sync_interval = 15 # In Seconds 

sample_interval = 7 # In Seconds 

dev_points = 3 

error = 0 # 1 means Oto high, 0 means -high to high 
tll111 

"""Baseline 

number_of_nodes = 10 

run_time = 150 # In Minutes 

sync_interval = 30 # In Seconds 

sample_interval = 23 # In Seconds 

dev_points = 3 

error = 0 # 1 means Oto high, 0 means -high to high 
UIIII 

"""My version""" 

number_of_nodes = 10 

run_time = 150 # In Minutes 
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sync_interval = 30 # In Seconds 

sample_interval = 23 # In Seconds 

#dev_points = 3 

#error = 1 # 1 means Oto high, O means -high to high 

# Test runs 

#main(number_of_nodes,run_time,sync_interval,sample_interval,2,0,"2std neg high to 

high.csv") 

main(number_of_nodes,run_time,sync_interval,sample_interval,2,1,"2std Oto 

high(251im).csv") 

#main(number_of_nodes,run_time,sync_lnterval,sample_interval,3,0,"3std neg high to 

high.csv") 

main(number_of_nodes,run_time,sync_interval,sample_interval,3,1,"3std Oto high 

(251im ).csv") 
#main(number_of_nodes,run_time,sync_interval,sample_interval,4,0, "4std neg high to 

high.csv") 

main(number_of_nodes,run_time,sync_interval,sample_interval,4,l,"4std Oto high 

(2Slim).csv") 

62 


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069



