
OUTLIER IDENTIFICATION IN SENSOR NETWORK CLOCK

SYNCHRONIZATION

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Sciences

By

William Davis Voorhees

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

May 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

OUTLIER IDENTIFICATION IN SENSOR NETWORK

CLOCK SYNCHRONIZATION

By

WILLIAM DAVIS VOORHEES

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Voorhees, William Davis, M.S., Department of Computer Science, College of Science &

Mathematics, North Dakota State University, May 2010. Outlier Identification in Sensor

Network Clock Synchronization. Major Professor: Dr. Kendall Nygard.

We first present a survey of clock synchronization research that describes the problem

and various challenges to implementing an efficient protocol for clock synchronization in

sensor networks. We then present several changes to an existing protocol that we believe

will enhance the accuracy. These changes are implemented in a software simulation and

a large experiment is conducted that involves several runs of the simulation using various

parameters for error bounds and outlier detection. We present our results and show that

modifying the outlier detection range used by many existing algorithms can improve

network clock accuracy and provide a stabilized average error.

iii

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1. INTRODUCTION .. 1

2. PROBLEM REVIEW .. 3

2.1. Existing Solutions ... 5

2.2. Other Considerations .. 7

3. BASE SCHEME ... 10

3.1. Scheme Background .. 10

3.2. Other Considerations .. 12

3.3. Base Scheme Description .. 13

3.4. Changes to RATS .. 15

4. SIMULATION .. 20

4.1. Goals and Assumptions ... 20

4.2. Simulation Design .. 21

4.3. Results ... 26

4.3.1. Plotted Data .. 31

iv

5. CONCLUSION AND FUTURE WORK .. 41

REFERENCES CITED .. 44

APPENDIX A .. 46

APPENDIX A.1. Node Time Class .. 46

APPENDIX A.2. Network Node Class .. 48

APPENDIX A.3. Control Program .. 56

V

LIST OF TABLES

1. Simulation Performance Results Summary ... 28

vi

LIST OF FIGURES

Figure Page

1. Hardware Accelerators Architecture ... 11

2. Transmission Sources of Error ... 15

3. Curve Approximation with Multiple linear Regression ... 17

4. Simulation Program Architecture .. 24

5. Average Error over Time (2a, +/-2µs, unlm.) ... 31

6. Average Error over Time (3a, +/-2µs, unlm.) ... 32

7. Average Error over Time (4a, +/-2µs, unlm.) ... 32

8. Average Error over Time (2a, +2µs, unlm.) .. 33

9. Average Error over Time (3a, +2µs, unlm.) .. 34

10. Average Error over Time (4a, +2µs, unlm.) .. 34

11. Average Error over Time (2a, +/-2µs, 25 pts.) ... 35

12. Average Error over Time (3a, +/-2µs, 25 pts.) ... 36

13. Average Error over Time (4a, +/-2µs, 25 pts.) ... 36

14. Average Error over Time (2a, +2µs, 25 pts.) .. 38

15. Average Error over Time (3a, +2µs, 25 pts.) .. 38

16. Average Error over Time (4a, +2µs, 25 pts.) .. 39

vii

1. INTRODUCTION

Sensor networks have been a hot topic in computer science research for the last

several years. The concept behind a sensor network is to use many low power, radio

connected nodes to form a large network capable of sensing various environmental

variables across a large area. Each sensor node is battery powered and has limited

processing power and memory. This makes developing control schemes for sensor

networks very challenging. Approaches used in traditional computer networks do not

translate well to this resource constrained platform.

Each sensor node is designed to be very cheap to manufacture. This allows several

hundred or even thousands of nodes to be deployed into an area for relatively minimal

cost. Each node is equipped with a low power radio that allows the nodes to share

information. Generally, the information collected by a network gets relayed to a base

station, or sink, that is capable of sending the information via high power radio or satellite

to a staffed command station.

There are several outstanding issues in regards to sensor networks. Network

topology and routing are fundamental problems that have yet to be solved in a general

sense. Several mission specific solutions exist, but no over arching scheme has yet been

developed. In the case of military and some civilian applications, security becomes

extremely important. Due to the resource constraints of the average sensor node,

standard encryption schemes cannot be used. This is an area of active research.

1

Finally, the last major issue faced by sensor network engineers is clock

synchronization, the topic of this paper. Protocols in use on standard computer networks

to keep local clocks synchronized (such as NTP (Mills, 1994, [1])) do not translate well to

sensor networks with severely limited processing and storage. There are also several

extra sources of synchronization error in a sensor network that do not exist in a standard

computer network. Most of this error comes from the radio links used to create the

network. In addition, most computer networks can sustain substantial error with no ill

effects to higher level applications. In the case of sensor networks, large errors can

render the network unusable. The extra precision demanded by a sensor network

compared to a traditional computer network makes the task of clock synchronization

substantially more difficult.

In the following section, we will discuss the current state of sensor network clock

synchronization research. Several papers have been presented in the last few years that

represent promising approaches to solving the problem of clock synchronization. In

Section 3, we will discuss one of these papers in detail and propose several modifications

to the scheme presented. These modifications will be designed to lower the total clock

synchronization error between two nodes in the network. Section 4 will present a

simulation designed to test our changes compared to the original protocol. Data from

several simulation runs will be presented and the effectiveness of our protocol changes

analyzed. We conclude the paper in Section 5.

2

2. PROBLEM REVIEW

Clock synchronization in sensor networks is one of the most important support

services to the nodes. Accurate time synchronization has a direct impact on many

applications: military target tracking relies on accurately determining the difference

between when two nodes sense the same target, counter-sniper systems use sound

triangulation to pinpoint the source of a noise (Girod, 2001, [2]), MAC layer protocols such

as TOMA rely on nodes being synchronized to a global network time (Claesso, 2001, [3]),

removing duplicate events sensed by multiple sensors necessitates proper ordering of

events (lntanagonwiwat, 2000, [4]), and power management schemes that rely on being

able to accurately schedule radio time also require accurate global network time (Gu,

2005, [SJ). It is obvious that a robust, scalable network time synchronization protocol is

essential to efficient operation of nearly any sensor network.

Several sources of error exist in a sensor network that are detrimental to clocks

synchronization. These sources of error come mostly from the radio and MAC scheme,

but several exist on the node itself. These error sources were first described by Kopetz

and Ochsenreiter (Kopetz, 1987, [6]) and later extended in (Mar6ti, 2004, [7]).

1. Send Time - the time required to build the message to be sent and forward it to the

transmitter. Also included is the time required for the transmitter to make the MAC

layer access request. This delay can be hundreds of milliseconds.

3

2. Access Time - the delay while waiting for access to the radio channel used for

transmission. This delay is heavily influenced by the network traffic and can be as high

as several seconds. The access time is the most variable time and presents the single

largest source of error in clock synchronization.

3. Transmission Time - the time required to transmit the entire message. This can be

tens of milliseconds, but can be easily determined using the length of the message and

the speed of the radio.

4. Propagation Time - the time it takes for the message to go from the sender to the

receiver over the air. This time is determined solely by the distance between the

nodes, and in cases where the nodes are 300m apart or less, is under lµs. This value

comes from the simple fact that radio waves propagate at the speed of light

(300,000,000 m/s, or 300m/µs).

5. Reception Time - the time required for the receiver to get the message from the air.

This time is identical to the transmission time and is determined by the message

length and radio speed.

6. Receive Time - time needed to process a received message and notify higher level

applications. This time is very similar to the send time.

4

7. Interrupt Handling Time - the time required for the radio chip to signal the

microcontroller that there is a message incoming. This delay is normally on the order

of at most a few microseconds, but in situations where interrupts are disabled on the

node, the delay can become very large, potentially into the many seconds range.

8. Encoding Time - this is the delay incurred by the radio chip translating the message

into a radio signal to be transmitted. This time runs on the order of hundreds of

microseconds, but it does not vary widely from transmission to transmission and can

be easily calculated.

9. Decoding Time - this time is similar to the encoding time, but deals with the

reception of the message and translating it from a radio signal to bits on the radio

controller. The time is mostly stable, can be calculated, and runs on the order of

hundreds of microseconds. However, signal strength variations can lead to small

amounts of jitter (change in the decoding time from transmission to transmission).

2.1. Existing Solutions

There have been many proposed algorithms over the years to solve the problem of

network clock synchronization, such as (Mar6ti, 2004, [7]), (PalChaudhuri, 2004, [8]),

(Sommer, 2008, [9]), and (Yoon, 2007, [10]). Two schemes in particular stand out in the

research. These are Reference Broadcast Synchronization (RBS) (Elson, 2002, [11]) and

5

Timing-sync Protocol for Sensor Networks (TPSN) (Ganeriwal, 2003, [12]). These two

methodologies are most often presented as solutions for the clock sync problem. In all

schemes, the goal is to provide network clock synchronization with minimum error. Some

systems require errors on the order of just a few microseconds, so this is the goal of most

researchers.

RBS relies on the fact that the radio medium is inherently broadcast. Using a

source node and a broadcast message, RBS aims to synchronize two receivers with one

another. The source node sends a broadcast message that both of the receiving nodes

hear. Each node exchanges the time it received the broadcast with the other node. The

relative offsets of the nodes are calculated via linear regression. This scheme allows for

synchronization with an error of llµs on Berkeley Motes. This is an error factor of

approximately 5.5 given the Berkley Mote clock resolution of 2µs.

Because RBS does not rely on time stamping at the sender, the errors from send

time, access time, transmission time, and encoding time are all eliminated. Since access

time is the single largest source of error in the network, eliminating it makes the RBS

scheme quite accurate. RBS also has the advantage that it does not rely on low level

access to the hardware like some other protocols. This makes it ideal for platforms that

do not provide such access.

Several derivatives of RBS have been developed that attempt to reduce the total

error including (PalChaudhuri, 2004, [8]) and (Ganeriwal, 2003, [12]). TPSN is the most

famous and widely studied of these derivative works. TPSN uses the basic scheme of RBS,

but adds a methodology for organizing the network nodes and synchronizing them in a

6

more efficient fashion. TPSN also uses 2-way message exchange to eliminate the

unknown propagation error in RBS. TPSN starts by forming a spanning tree of the

network. Nodes then synchronize to their parent. Using Mica motes for simulation, TPSN

achieved 16.9µs error. With a clock resolution of .25µs, this is an error factor of 67.6.

TPSN relies on MAC layer access to the radio chip. This is a feature of Mica motes that will

be discussed in Section 3.

2. 2. Other Considerations

All of the research mentioned has assumed a homogeneous sensor network. That

is to say, a network where all nodes are of the same design and have the same processing,

storage, and power resources. Heterogeneous networks have motes of varying

capabilities. Most commonly, there are many lower powered motes and several higher

power motes with increased processing, storage, and energy resources. In the case of

TPSN, the spanning tree protocol used would migrate to a heterogeneous network quite

easily by simply stating that all root nodes in the TPSN protocol are replaced by the high

power nodes.

There are few clock synchronization algorithms tailored to heterogeneous

networks. This is mostly due to the fact that the benefits of a heterogeneous network

come in the form of increased power and computation of some nodes. Clock

synchronization does not rely heavily on computation and increased power does not

become a significant resource in many cases. This is due to the fact that radio

7

transmissions are symmetric: they take the same amount of power to send as to receiver,

so the only time extra power becomes important is when one node transmits different

messages to many. Broadcast synchronization schemes do not garner any benefit from

the heterogeneous design.

Heterogeneous networks have a distinct advantage in that there can be many

clocks in the network that are always accurate. Each of the high power nodes can

conceivably have a GPS unit on board. With the increased battery life and overall higher

cost of the node, the addition of a GPS unit is not unreasonable. GPS uses satellite signals

to determine the location of the GPS unit. Many satellites are constantly beaming their

current time to Earth. A GPS unit uses the small differences in times from different

satellites to determine its location. The accuracy of the time reported by a GPS satellite

signal is significantly less than lµs and is often on the order of 2-3 nanoseconds. This

gives a GPS enabled node an extremely reliable source of time.

The nine sources of error described above assume that the messages being

broadcast are readily accessible. Some sensor network designers are very concerned with

security (such as networks with military applications). One potential way to safe guard

transmissions is to encrypt all data sent and received. Most high level encryption

schemes in use today are not practical on the very constrained node platform. RSA

encryption/decryption would slow the network to the point where it is unusable. Some

schemes have been proposed that use lightweight encryption, reducing the time delay

when sending or receiving messages (Traynor, 2006, [13]).

8

It might be of concern to researchers attempting to achieve high accuracy clock

synchronization that network security researchers want to introduce another level of

delay. If the timestamp packet needs to be encrypted before being sent, then there will

be a new source of error that depending on the encryption scheme, may be quite large.

We discuss this problem in section 3.2.

9

3. BASE SCHEME

This section begins with essential background information for our scheme. We

then address other issues that were mentioned in section 2. We describe the basic

scheme we are using as a base and explain the modifications that we believe will improve

the performance of the protocol.

3.1. Scheme Background

The TPSN scheme relies on having direct MAC level access to time stamp

synchronization packets just as they go to the air or are received from the air. With this

level of access, nearly all of the delay in the network is eliminated. Send time and access

time are not an issue since the synchronization packet can be time stamped after MAC

access has been confirmed and the message has begun transmission. The transmission

time is deterministic and therefore can be calculated and removed as a source of error

with minimal effort. The propagation time is still a source of error, but since most nodes

only have a radio range of about 150m (Crossbow, 2009, [14]), the maximum error less

than lµs.

The reception time is identical to the transmission time and is also deterministic.

With low level MAC access, the received synchronization packet can be time stamped as

soon as it begins to be received, so the receive time and interrupt handling time are on

the order of 1 clock tick, which in the case of the Mica2 mote is .25µs. With this direct

access to the MAC layer, the only sources of error in a synchronization exchange are the

10

propagation time, encoding time, and decoding time. The only one of these that exhibits

any significant jitter is the decoding time and is therefore the largest source of error.

Not all sensor nodes allow this low level access. The Mica and Mica2 motes are

pioneers of this technology. The node design that allows this kind of access was described

by Hill and Culler in (Hill, 2001, [15]}. The architecture presented described a shift away

from specialized processing boards on the node. Instead of having an on board processor

for a specific communication scheme, the higher application layer handles the

communication protocol. This is possible only when the application layer has direct

access to the communication hardware.

The low level access is made possible by hardware accelerators. The naive

solution to providing the higher application layer with direct hardware access is to simply

tie the two components directly together on the node. This, however, results in a massive

decrease in node performance. To get around this limitation, hardware accelerators are

added alongside the link between application processing and the radio. See Figure 1

Application Controller

Timing Accelerator

Hardware Accelerators

RF Transceiver

Figure 1: Hardware Accelerators

Architecture

taken from (Hill, 2001, [15]} Figure 4, page 7. The

� application layer still has direct access to the

hardware, but communication protocols can run

through the hardware accelerators giving the

protocol a significant boost in performance that

nearly equals the performance of a traditional

node with specialized hardware (Hill, 2001, [15]).

11

tll

~

_I 'l~QE ~ Serialization Accele41! ""

~• i---r

Using this architecture, it is possible to timestamp outgoing packets once they

begin transmitting and also to sense an incoming packet and make a note of its arrival

within the .25µs clock granularity. Section 5.2 of (Hill, 2001, [15]) discusses a time

synchronization protocol using this architecture that synchronizes two nodes to within

2µs of each other. They list the sources of error as raw radio transmission(+/- lµs),

arriving signal capture delay equal to the granularity of the node clock (+/- .25µs), and the

time required for the node to process the packet and update its clock offset(+/- .625µs).

3.2. Other Considerations

We briefly mentioned the effect encryption might have on clock synchronization in

section 2. Now that we have seen how low level access to the radio hardware can be

used for high accuracy synchronization, the problem of encryption becomes even more

important. If we want to timestamp a packet as it is being sent, we need to be able to

generate the stamp and add it into the packet very quickly. All the encryption schemes

presented for sensor networks thus far would take far too long to generate an encrypted

stamp (Gura, 2004, [16]).

We must consider when it becomes necessary to encrypt synchronization packets.

Security of this level only becomes important when there is an adversary attacking the

network. It is easy to imagine a malicious node sending bad time packets in an attempt to

desynchronize the clocks in the network. In section 3.4, we will discuss rejection of

outliers - error data points that are much larger than any other collected. An attacker

12

attempting to skew the global network clock would need to introduce large errors for any

significant desynchronization. Throwing out larger than normal data points would not

allow this bad data to effect the overall network synchronization. If we can prevent

attacks against clock synchronization without encryption, then we can safely send

timestamps in cleartext.

This type of interaction between security and clock synchronization will no doubt

become a topic of intense research over the coming years. While large errors will not be

allowed to change the global network time, it may be possible to introduce small errors

that shift the synchronization by small amounts over a long period of time, resulting in

desynchronization of the clocks. More research is needed to accurately determine

possible threats to network synchronization.

3.3. Base Scheme Description

A direct derivative work of (Hill, 2001, [15]) was developed by Kusy and Culler

(Kusy, 2006, [17]). This paper used the lower error of a hardware accelerated node as a

basis for a full time synchronization protocol based on a primitive called Elapsed Time on

Arrival (ETA). ETA is a time stamping primitive that is used in their primary protocols:

Routed Integrated Time Synchronization (RITS) and Rapid Time Synchronization (RATS).

The ETA protocol is designed for node to node synchronization. RITS extends ETA to

multihop networks by having all nodes synchronize to a root node. RATS reverses RITS

and has the root node initiate synchronization to all nodes in the network.

13

In a heterogeneous network, the root node used in both RITS and RATS is simply

replaced with the higher power nodes of the network. This results in multiple root nodes

each with a group of child nodes that is a subset of the entire network. The advantage to

this approach is that the total number of hops from root to the edge of the network (or in

this case, the edge of the group with the high powered node as the root) is reduced, and

therefore so is the total clock error.

RATS was implemented on the Mica2 mote using the TinyOS node operating

system. It was tested on 60 nodes arranged in a 5x12 grid. The root node transmitted

synchronization pulses every 2 seconds for the first 10 seconds then every 30 seconds for

the remainder of the test. The global time was queried from each node every 5 seconds

for the first 2 minutes and then every 23 seconds thereafter. For each sample, the

absolute and average absolute error was calculated as the difference between the

queried node time and the root time. The experiment was run for 6 hours. The maximum

error was 26µs and the average error was 2.7µs. A similar protocol, FTSP (Mar6ti, 2004,

[7]), was able to achieve slightly higher accuracy (2.3µs average error), but took 150 times

longer to converge (all nodes synchronized).

The ETA primitive and RATS implementation provide very high accuracy time

synchronization without large computational expenses or power demands. Using the high

accuracy of the clocks to create tightly bounded transmission windows in schemes such as

TDMA may indeed more than pay for the periodic updates required by the protocol.

There are a few aspects of the scheme that should be mvestigated, and that is the

purpose of this paper.

14

3.4. Changes to RATS

RATS relies on the hardware accelerator architecture for its accuracy. The clock

synchronization in (Hill, 2001, [15]) had three sources of error: raw radio transmission(+/

lµs), arriving signal capture delay(+/- .25µs), and packet processing(+/- .625µs). This

resulted in an accuracy of+/- 2µs. We would argue that the total error in this scheme will

always skew to the positive side and the error is therefore +2µs at maximum. This gives a

total error range of 2µs instead of 4µs. We will use the simple example below to illustrate

the argument.

At time lO0µs, the root node creates a synchronization packet with the numeric

payload 100 to represent the time the packet was created. Best case scenario, the packet

leaves the node immediately, resulting in 0 error. Using the established error bounds

from (Hill, 2001, [15]), the radio transmission may be delayed lµs. We can see from

Figure 2 that so far we have error from 0µs to lµs. Propagation delay is assumed to be

negligible. The packet is received by the destination node. ff the packet is timed right, it

Real Time (Instantaneous) ! 100 ~ liiliL Ill;! 0
./.r' .. .___._"~

. ./ . ·• .OJ Jl.S prnccssing
1 f15 propagation ,"' 25)JS reception . .

"''. .o25µ'-i proccs~mg

Real Time (Delayed) ! 100 •

Packet Time

Figure 2: Transmission Sources of Error

i l O l I" total error I

comes in just as

the high accuracy

clock ticks, so the

message is time

stamped perfectly,

resulting in O error. If the packet just misses the dock tick, it is stamped at the next tick

.25µs later. Or total error now ranges from 0µs to 1.25µs. Finally, there is some delay

15

incurred by the processing of the packet. This delay will almost assuredly be greater than

0, but no lower bound is given. The maximum delay might be .625µs. Our total error is

therefore between 0µs (realistically slightly higher) and 1.875µs. This error only leans on

the positive side. In Section 4 we present our simulation of the proposed changes to ETA

and RATS. We run the simulation using both the +/-2µs error assumption and our +2µs

assumption.

One other aspect of ETA and RATS requires analysis. Many of the proposed time

synchronization algorithms rely on linear regression to provide accurate synchronization

between synchronization events. Using linear regression in this way was first described in

(Elson, 2002, [11]). linear regression is necessary because clocks will drift apart from each

other over time. This is a consequence of using inexpensive crystals as a frequency

source. Each clock crystal will vibrate by very slightly different amounts. Crystals will also

change their frequencies over time due to natural aging. Even temperature and vibration

can cause changes in the crystal vibration.

Since these crystals are responsible for keeping a clock ticking uniformly, the clocks

in the network will drift because of imprecise ticks between one another. It would

technically be possible to keep all clocks in sync by simply broadcasting synchronization

packets continuously. This does not make much sense from a practical standpoint

because all the network would be capable of is keeping an accurate global time. By using

linear regression, we can extrapolate the drift between two clocks and compensate for it

once we have a few data points. In papers such as (Mar6ti, 2004, [7]), the data points for

linear regression are tuples of the root node time and the local node time.

16

While not explicitly stated, the charts from (Elson, 2002, [11]} indicate that the

standard size for the regression data table is 25 points. These 25 readings are used to

calculate the linear regression variables a and b (slope and y-intercept, respectively) that

are used for extrapolation. When a new data point is added, the oldest data point is

removed. This gives a rolling window of data points that keeps the linear regression

calculation current with the state of the clocks. This is important because as the crystals

in the clocks age, the drift will change as well. If we were to graph the effects of this type

of drift, it would not be a straight line. The drift might be lµs per second at the start of

the network, but natural crystal aging may bring the drift to much higher values (such as

lOOµs per second) at time goes on.

We could keep all data points ever collected, but this would essentially force us to

fit a straight line to a non-linear pattern of clock drift change. By using only the most

recent data points, we can approximate the drift curve with ever changing lines. Figure 3

illustrates this by showing continuous recalculation of linear regression parameters. By

Time

using multiple linear

regressions (red lines), we

more closely approximate

the curved drift of the node

clock (black line). In

addition, storing all data

points collected would

Figure 3: Curve Approximation with Multiple Linear Regression
17

eventually take up too much memory on the node, leaving no room for actual sensing

data. This is obviously undesirable.

This linear regression method also requires some methodology for removing

outliers. It is possible that some data points will be wildly inaccurate. This may be

because of significant network congestion, natural forces interfering with communication,

or even attacks against the network by adversaries. These outliers would only serve to

skew the linear regression best fit line away from the idea regression. As such, any new

data point determined to be an outlier is simply dropped.

The traditional methodology used by (Elson, 2002, [11]), (Mar6ti, 2004, [7]), and

(Kusy, 2006, [17]) is to not include data points whose error is greater than 3 standard

deviations from the mean error. The mean error is found by averaging the difference of

each point's local node time component and the calculated local node time using the

regression variables and the collected root time. As an example, assume that we have the

data point (100,104) (local node time, root node time) and variables a=l.025 and b=3.42.

Our calculated local node time would be 1.025(100) + 3.42 = 105.92 and this would give us

an error of 105.92 - 104 = 1.92 for this data point. The error for each point is calculated

and averaged. The standard deviation (cr) for the errors is also computed.

The new data point goes through the same process using the current regression

variables. The error of this new data point is compared against the mean error. If the

new data point's error is greater than 3 standard deviations from the mean (positive or

minus), the data point is dropped. If the data point falls within this range, the oldest point

is removed, the new point is added, and the regression variables are recalculated.

18

We are interested in what happens when the range of acceptable values changes.

Using a more stringent outlier check, such as reducing the range from +/-3o to +/-2o may

result in a more accurate line. As part of our simulation, we examine the effects of

changing the outlier criteria with 2o, 3o (baseline), and 4o.

19

4. SIMULATION

In this section we will describe our simulation software. We will discuss the goals

of the experiment, how the program was developed, what assumptions we are using for

our experiment, and the results after running the simulation. The simulation and

experimental parameters are based on the ETA and RATS protocols described in (Kusy,

2006, [17]) and the error bounds from (Hill, 2001, [15]). We implement the ETA protocol

in software and emulate a network that tests the 1-hop characteristics of RATS. RATS is

designed and was tested in (Kusy, 2006, [17]) as a multi-hop protocol. We use a baseline

simulation directly mimicking RATS as our performance baseline in the single hop case.

4.1. Goals and Assumptions

The purpose of this simulation is twofold. First, we wish to see the effects of our

argument for using a +2µs error bound instead of the +/-2µs bound in (Hill, 2001, [15]).

We contend that with this adjusted error bound, we should see errors that float toward

the positive overall. This will of course be offset to some extent by node drift rates that

may skew positive or negative. In the interest of completeness, we will run the simulation

with both +/-2µs and +2µs for all other variables.

The second aspect of the simulation is to test changes to the outlier criteria used

by the protocol. Outliers are traditionally defined as +/-3o from the mean. We wish to

see the effects of changing this range, so we will run tests with +/-20, +/-3o (our baseline),

and +/-40. We expect that a tighter bound on the data points will result in a better line,

20

but there may be unexpected side effects. Restricting the data points may result in such a

narrow band that all subsequent data points are thrown out. If this is the case, our +/-4o

experiment should show slightly better performance.

Additionally, we will also test the differences between using an unbounded

number of data points for the linear regression versus using a static number of data

points. We will use the standard 25 data points when we limit the size of the data set.

We fully expect the limited number of data points to provide better performance than all

data points (see section 3.4).

With 2 different variables to test of the error bounds, 3 different outlier criteria,

and 2 different bounds for the number of data points, we will have a total of 12 runs of

the simulation. For all experiments we use a simulated 11 node network with one node

being the root node. We will run each experiment for 2.5 hours using a synchronization

period of 30 seconds and a sample period of 23 seconds. This will give us 391 samples for

each of the 10 child nodes for a total of 3910 data points per run.

4.2. Simulation Design

The simulation software was written in the Python programming language and run

on the Windows XP Profession 64bit Edition operating system using Python 3.1.1. The

computer used has a 2.4Ghz Intel Core 2 Duo processor and 6GB of DDR2 RAM. The

simulation program consists of three main parts that utilize object oriented principles.

See Appendix A for source code.

21

The first part of the program is a node time class. This class creates an integer

count timer that is constantly incrementing by one. The class takes in one argument that

defines the drift of the node's clock. This is important to simulate because clock drift is a

major factor when correcting for error. We do not take into account changing drift rates

for our simulated clock due to the fact that our simulation times are not long enough for

clock drift rate change to significantly affect our results. It would be a simple matter to

add this functionality for further experimentation. The drift rate is used to periodically

change the node time to reflect the variations in counting that occur in a crystal based

clock.

The node time class keeps track of the current node time with three variables:

micro, second, and minute. The micro variable stores the integer count and represents

microseconds. Every 1,000,000 microseconds, we rollover the micro variable to zero and

increment the second variable. Every 60 seconds we roll over the second variable and

increment the minute variable. We split our time into these smaller chunks to avoid large

integer calculations that would result from simply having a counter that starts at zero and

keeps growing.

The second part of the simulation software is the node class. This class is used to

create a simulated node that can communicate with the root node and handle linear

regression calculations. Each node that is created takes in arguments for the node's ID,

the drift rate, how many data points it can keep in memory, and what the error bounds

are (refer to our previous discussion of +/-2µs versus +2µs error). When the node is

created, it sets up several internal variables. The regression variable is a dictionary that

22

stores node Ids and synchronizations messages. This dictionary holds all the data that is

periodically used to calculate linear regression information.

For those that are unfamiliar with Python, a dictionary is essentially an associative

array, or an array indexed with arbitrary keys instead of numbers. In our case, we use the

node ID of node being synched with as a key, then store all the information for that

particular node ID in an array in the dictionary. This allows us to keep track of any inter

node communication with ease. For our simulation we focused on the node to root

connection only, effectively limiting the simulation to 1 hop scenarios. It would be a

relatively minor change to allow nodes to synchronize with any other node, creating a

multi-hop simulation. We hope to explore this option in the future.

The node class has functions for several different jobs. The main job is to keep the

counter going and periodically synchronize with the root node. The counter for each node

runs in a separate thread to achieve as close to parallel execution of clock timing and

synchronization as possible. The node class is also responsible for introducing the errors

that are common in a real wireless network. It uses the errors for transmission time,

receive time, and interrupt handling time defined in (Hill, 2001, [15]) as the basis for the

errors that are introduced. The goal of the linear regression component is to eliminate

these errors.

23

Finally we have the control program. Figure 4 graphically represents how the

control program interacts with the node class. This program uses the classes we have

discussed thus far to
Root Clock

◄
Output to File

'
Node

,

Node Clock

Control Program

u-., ..
Figure 4: Simulation Program Architecture

quality clock than in the other nodes.

'
Node

Node Clock

actually run the simulation.

The control program acts as

the root node for all

communication. The same

node time class that each

node uses for its clock is

used here for the root

node's clock. The root

node does not have any

clock drift. We assume

that it is a much higher

This control program has variables for all the testable items we wanted to

research. The dev_points variable stores the criteria for eliminating outliers. For our tests

this had the values 2, 3, or 4. The error variable controls if we use +/-2µs or +2µs. This is a

boolean where 1 means +2µs and O means +/-2µs. We also have the variables run_time,

sync_interval, and sample_lnterval, for the total run time, synchronization period, and

sample period, respectively. The synchronization period defines how often the nodes

24

synchronize with the root and the sample period defines how often we get the nodes'

current time and the root time for offline analysis.

The main method starts by setting up the root clock and starting a timer for how

long the program should run. After that is set up, the file operations for storing the

sample data from the nodes are created. The program then builds as many nodes as are

called for by the number_nodes variable. We default to 10 nodes in all tests, but this

number could be increased easily. Each node is assigned a random drift value between O

ppm and 100 ppm (Kusy, 2006, [17]). This metric determines how much the clock drift

changes. In this case each node drifts by a random value between O and 100 µs per

second.

Once all the preliminary data is ready, the root clock starts, node clocks start, and

the control program goes into a loop where it periodically takes sample data from each

node and synchronizes with the nodes. Figure 4 shows the synchronization message from

control to node, the request for a sample from control to node, and the sample request

response from node to control. When data is collected, the Node ID, Error, Node Time,

and Root Time are written to a comma separated value file. The error is simply the root

time minus the time linear regression would predict for the root. Each node has its own

linear regression parameters. The node takes its current time, uses linear regression to

determine what it thinks the root time should be, finds the error by subtracting this

expected time from the actual reported root time (no error is introduced into this root

time when it is sent to the node), and then reports this data back to the control program.

25

Once the run_time variable has been reached, the program takes one last sample,

then shutdowns all the nodes, closes the data file, and ends the program. Using the

control program, we would run multiple simulations back to back by just modifying the

variables as needed in our main method calls.

4.3. Results

After running the program 12 times for 2.5 hours for each run and collecting our

data, we imported the data into Excel. The first 3 data points for each node were

removed. This is because the linear regression calculation we used requires a minimum of

three data points. After these initial points were removed, the remaining errors were

changed to their absolute value. We calculated the average error across all nodes for the

entire run, the maximum error across all nodes, the minimum error across all nodes, and

the percentage of data points below the average. In addition, we broke the results down

by individual nodes. For each node we found the average error, maximum error,

minimum error, and percentage of data points below the average.

The average error is the best "single number" metric to evaluate the performance

of the network. A small average error is beneficial because it means that the network on

a whole is synchronized. There are bound to be instances where a node is completely out

of sync, and that cannot be avoided, so we try to minimize the overall error. The

maximum error gives us an idea of how bad the network can get. If we see maximum

errors that are orders of magnitude larger than our average errors, we know that at some

26

point the network was extremely out of sync. Eliminating the source of such errors can

greatly increase overall performance.

The percent under average metric gives us insight into the distribution of error

points. Having many nodes under the average would indicate that there are a few very

high error points and then many more error points that are below average. In such cases,

we may find that a few network hiccups have ruined the overall metric when in fact the

network was relatively well synchronized for the majority of the time. Conversely, we

may see that many data points are above the average. Such a case would lead us to

believe that the network performed poorly most of the time, but managed to be well

synchronized at a few points. Having around 50% under average means that we have a

roughly normal distribution, which may mean that the network is not prone to high or low

points.

We also applied a correcting factor to convert our simulation results into numbers

more indicative of a sensor network. We did this by dividing the root clock's time at the

end of the run by the number of microseconds the simulation lasted. As an example, our

baseline criteria run (3a, errors of +/-2µ, 25 data point limit) had a final root time of

668759150 and ran for 9000000000 microseconds. Dividing these gives us 0.0743. This

number is how many microseconds were simulated per "real,,

microsecond. We

multiplied all our absolute errors by this factor. This gives us final results that more

closely match sensor network clock error times. The one negative effect of this

methodology is that our synchronizations time and sample time of 30 and 23 seconds,

27

re
sp

e
c
ti

v
e
ly

, d
o

e
s

n
o

t
p
e
rf

e
ct

ly
 m

at
ch

 t
h
e
 3

0
 s

e
co

n
d

 s
yn

ch
ro

n
iz

a
ti

o
n

 a
n

d
 2

3
 s

e
co

n
d

sa
m

p
le

 t
im

e
s

u
se

d
 i
n

 (
K
u

sy
,
2
0
0
6
,

(1
7
])

.

T
a
b

le
 1

 p
re

se
n

ts
 a

 s
im

u
la

ti
o

n
 p

e
rf

o
rm

a
n

ce
 s

u
m

m
a
ry

.
T

h
e
 t

a
b

le
 is

 d
iv

id
e
d

 in
to

 t
w

o

se
ct

io
n

s.

T

h
e
 f

ir
st

 s
e
ct

io
n

 s
h
o

w
s

th
e
 r

u
n

s
th

a
t

u
se

d
 u

n
li
m

it
e
d

 d
a
ta

 p
o

in
ts

 f
o

r
lin

e
a
r

re
g
re

ss
io

n
 c

a
lc

u
la

ti
o

n
s.

 T
h
e
 s

e
co

n
d

 s
e
ct

io
n

 s
h
o

w
s

th
e
 r

u
n

s
li
m

it
e
d

 t
o
 2

5
 d

a
ta

 p
o

in
ts

.
In

b
o

th
 c

a
se

s,
 w

e
 p

re
se

n
t

d
a
ta

 f
o

r
2
a

, 3
a

,
a
n

d
 4

a
 o

u
tl

ie
r

re
je

ct
io

n
 c

ri
te

ri
a
 a

n
d

 +
/-

2
µ

s
a
n

d

+
2
µ

s
e
rr

o
r

b
o

u
n

d
s.

W

e
 s

h
o

w
 t

h
e
 a

ve
ra

g
e
 e

rr
o

r
fo

r
e
a
ch

 r
u

n
, t

h
e
 m

a
xi

m
u

m
 e

rr
o

r
fo

r
e
a
c
h

ru
n

,
a
n

d
 t

h
e
 p

e
rc

e
n

ta
g
e
 o

f
d

a
ta

 p
o

in
ts

 u
n

d
e
r

th
e
 a

v
e
ra

g
e
.

T
a
b

le
 1

:
Si

m
u

la
ti

o
n

 P
e
rf

o
rm

a
n

ce
 R

e
su

lt
s

Su
m

m
a
ry

U
n

li
m

it
e
d

 D
a
ta

 P
o

in
ts

A
v
e
ra

g
e
 E

rr
o

r
M

a
xi

m
u

m
 E

rr
o

r
%

 U
n

d
e
r

A
ve

ra
g
e

"+
/-

E
rr

o
r"

"+

E
rr

o
r"

"+

/-
E
rr

o
r"

"+

E
rr

o
r"

"+

/-
E
rr

o
r"

"+

E
rr

o
r"

2
o

2
9
.4

9
0
6
2

5
0
.9

7
7
9
4

1

8
0
.0

2
6
5

3
1
5
.1

2
8
8

6
2

.2
4
%

7
2
.1

4
%

3
a

2
4

.2
6
2
1

5

2
6
.1

8
7
8
8

1
0
1
.9

4
3
4

1
2
4

.9
9
7
8

6
2
.1

9
%

6
5

.8
0
%

4
a

3
2
.1

3
1
1
9

2
2
.7

7
6
1

9

2
8
3
.9

5
3
7

1
2
0
.2

9
4

6

7
6
.4

7
%

6
3

.6
9
%

2
5
 D

a
ta

 P
o

in
ts

A
ve

ra
g
e
 E

rr
o

r
M

ax
im

u
m

 E
rr

o
r

%
 U

n
d

e
r

A
v
e
ra

g
e

"+
/-

E
rr

o
r"

"+

E
rr

o
r"

"+

/-
E
rr

o
r"

"+

E
rr

o
r"

"+

/-
E
rr

o
r"

"+

E
rr

o
r"

2
o

9
.1

0
1

6
6
4

8
.3

6
8
2
5
5

7
3

.5
6
9
9
3

7
2
.3

5
9
8
2

5
7
.8

6
%

5
9
.3

6
%

3
a

1
1
.3

5
3
2
6

8
.4

7
3
5
3
3

1
2
4
.4

6
3
5

3
7
.1

9
2
3
7

6
8
.0

4
%

5
8
.5

3
%

4
a

8

.0
7
8

2
2
3

1
0
.1

3
8
8
6

7
2
.3

9
2
6
9

1
1

1
.9

7
9
5

6
4

.3
0
%

6
6
.2

4
%

B
y

d
o

in
g
 a

 g
e
n

e
ra

l c
o

m
p
a
ri

so
n

 b
e
tw

e
e
n

 t
h
e
 2

5
 D

a
ta

 P
o

in
t

se
ts

 a
n

d
 U

n
li
m

it
e
d

 D
a
ta

P
o

in
t

se
ts

 p
re

se
n

te
d

 in
 T

a
b

le
 1

,
w

e
 i
m

m
e
d

ia
te

 s
e
e
 t

h
a
t

ru
n

s
u

si
n

g
 t

h
e
 b

o
u

n
d

e
d

 2
5
 p

o
in

t

se
t

p
e
rf

o
rm

 b
e
tt

e
r

th
a
n

 t
h
e
 u

n
lim

it
e
d

 d
a
ta

 p
o

in
t
ru

n
s.

Fo

r
a
ll
 o

u
tl

ie
r

v
a
ri

a
b

le
s,

 t
h
e
 2

5

2
8

I

1

data point runs were at a minimum 2 times as accurate (10.13µs vs 22.78µs for 4o using

our modified error bounds) and at the high end were 6 times better (8.37µs vs 50.98µs)

for 2o using our modified error bounds). Maximum errors were also lower in 5 out of 6

instances. The exception is that the 3o run using the error bounds from (Kusy, 2006, [17])

showed very slightly lower maximum with unlimited data points. This is especially

interesting since the 25 data point limitation with 3o and (Kusy, 2006, [17])'s error bounds

is the baseline.

We also notice some interesting results with the percentage of data points under

the average. While both the unlimited and 25 data point bounded runs consistently

achieve greater than 50% of data points under the average, the unlimited data point runs

almost always have more data points under the average than the limited data set. While

interesting, this fact is misleading. Even though there are more data points under the

average, the average also sits much higher as an absolute value for the unlimited data

sets, so the raw average error is still lower for the bounded data set runs.

We were surprised to see that there is little difference overall between a +/-2µs

error bound and a +2µs bound. In some cases our bound shows improved performance,

but in others the +/-2µs bound performs better. Compare the 4o average error in the

second part of Table 1. Our error bounds ran slightly more than 2µs slower than the+/-

2µs error bound. We believe that the linear regression method used in the protocol

serves to remove the differences between the two bounds. Linear regression is used to

compensate for clock drift which can be l00µs per second. Since synchronizations only

occurred every 30 seconds, synchronization errors only introduce 8µs or 4µs of error per

29

node per minute depending on which bound is used. Both of these are insignificant to the

error introduced by clock drift. More generally, we could argue that as long as the total

error introduced by the sending node, propagation, and receiving node is much less than

the drift of the node's clock, the synchronization error becomes unimportant compared to

the natural clock drift.

Based solely on the data from Table 1, it would appear that the 4a, +/-2µs, 25 data

point method performs the best with an average error of 8.08µs, a maximum error of

72.4µs (2a, +2µs, 25 data points is very slightly lower and 3a, +2µs, 25 data points is

significantly lower), and 64% of data points under average. Another aspect of any clock

synchronization protocol that needs to be considered is consistency. A protocol that has

an average error of 8µs is a good start, but if it ranges from 0µs error to 16µs, it could

present problems at times when the error is very high. A protocol that has a 9µs or l0µs

average error but only ranges from 8µs to llµs might be more worthwhile since the

maximum error is significantly less even with slightly higher average error.

We decided to examine the overall stability of each run by graphing the average

network error over time. Each time data was collected, we got 10 data points, one for

each node. For each 10 data points, we averaged the absolute values. We then graphed

the average network error over time and applied a trend line to the data. The idea is that

a trend line can approximate the change in error in the network over a long period of

time. The ideal trend line would have a negative slope, meaning that as time went on, the

network became more and more synchronized with smaller error values. Zero slope

would also be an acceptable result. At long as the error remains constant over time, we

30

ca
n

 a
t le

a
st kn

o
w

 th
a
t th

e
 e

rro
rs w

ill n
o

t sp
ira

l o
u

t o
f co

n
tro

l.
A

 p
o

sitive
 slo

p
e
 is b

y fa
r

th
e
 w

o
rst re

su
lt, as it im

p
lie

s th
a
t a

s tim
e
 go

e
s o

n
 th

e
 n

e
tw

o
rk b

e
co

m
e
s m

o
re a

n
d

 m
o

re

in
a
ccu

ra
te

. T
h

e
 fo

llo
w

in
g se

ctio
n

 sh
o

w
s o

u
r p

lo
ts a

n
d

 tre
n

d
 lin

e
s.

4
.3

.1
. P

lo
t
t
e

d
 D

a
t
a

First le
t u

s e
xa

m
in

e
 th

e
 +

/-2
µ
s, u

n
lim

ite
d

 d
a
ta

 p
o

in
t ch

a
rts.

Figu
re

 5
 sh

o
w

s th
e
 2

o

sim
u

la
tio

n
 re

su
lts.

9
0

8
0

a_

70

.5
60

.. f
50

.. t
4 0

C11

30
�

20

10 0

y = 0.1124 x + 7.663 5
R

2
 = 0.521

S
im

u
la

te
d

 µs

Figu
re

 5
: A

ve
ra

ge
 Erro

r o
ve

r T
im

e
 (2

o
, +

/-2
µ
s, u

n
lm

.)

T
h

e
 tre

n
d

 fro
m

 th
e
 2

o
 ru

n
 is o

b
vio

u
sly n

o
t id

e
a
l. T

h
e
 a

ve
ra

ge
 e

rro
r gro

w
s o

ve
r

tim
e
.

Figu
re

 6 sh
o

w
s th

e
 3

o
 sim

u
la

tio
n

 re
su

lts.

3
1

32
202
372
542
712
882

1052
1222
1392
1562
1732
1902
2072
2242
2412
2582
2752
2922
3092
3262
3432
3602
3772

60

50

.5 40

� 30

u 20
�

10

0

N NN N N
rt') ,-i a, ,... LO

Nm LO ,...

_y = 0.1184x + 1.2244

R2 =0.759

N N N NN NNNN
rt') ,-i a, ,... LO('t'),-iCJ'I,...
a, ,-i N � IDCOO,-i('t')

,-i ,-i ,-i ,-i ,-i N N N

Simulated µs

N N N
LO rt') ,-i
LO ,... a,

N N N

Figure 6: Average Error over Time (3o, +/-2µs, unlm.)

N N N N N
a, ,... LO rt') ,-i
0 N � <.D co
rt') rt') rt') rt') rt')

Like Figure 5, we again see massive growth in average network error as the

simulation runs. This trend line is very slightly worse than that of the 2o run. Finally,

figure 7 shows the 4o simulation results.

a.
.5
..

..
..

M,I

•
..

�

160

140

120

100

80

60

40

y = 0.2402x - 14.592
R2 = 0.5128

20
....,,...,.,,.

0
N N N N N N N N N N N N N N N N

rt') N ,-i 0 a, co ,... ID LO � rt') N ,-i 0 a, co
N � <.D ,... a, ,-i rt') LO ,... a, ,-i rt') LO <.D co

,-i ,-i ,-i ,-i ,-i N N N N N

Simulated µs

Figure 7: Average Error over Time (4o, +/-2µs, unlm.)

32

N
,...
0
rt')

N N N N
ID LO � rt')

N � ID co
rt') rt') rt') rt')

a.

i ..

0

u

W
e
 can

 se
e
 fro

m
 Figu

re
s 5

-7
 th

a
t in

 e
a
ch

 in
sta

n
ce

 th
e
 tre

n
d

 lin
e
 h

a
s a

 sign
ifica

n
t

u
p

w
a
rd

 slo
p
e
. T

h
is in

d
ica

te
s th

a
t e

a
ch

 ru
n

 e
xp

e
rie

n
ce

d
 e

ve
r g

ro
w

in
g
 a

ve
ra

g
e
 e

rro
r in

 th
e

n
e
tw

o
rk. W

h
ile

 th
e
 R

2
 va

lu
e
s d

o
 n

o
t n

e
ce

ssa
rily in

d
ica

te
 a

 stro
n

g co
rre

la
tio

n
 w

ith
 th

e

d
a
ta

, w
e
 w

o
u

ld
 a

rgu
e
 th

at it is still a
 va

lid
 gu

id
e
. T

h
e
 d

a
ta

 h
a
s la

rge
 va

ria
tio

n
s th

a
t m

a
ke

a
ccu

ra
te

 tre
n

d
 lin

e
s d

iff
icu

lt to
 ge

n
e
ra

te
, b

u
t w

e
 a

re
 o

n
ly in

te
re

ste
d

 in
 ge

n
e
ra

l tre
n

d
s, n

o
t

sp
e
cific tre

n
d

s.
In

 e
a
ch

 ca
se

, it is a
p

p
a
re

n
t th

a
t o

ve
r tim

e
 th

e
 n

e
tw

o
rks w

ill b
e
co

m
e
 m

o
re

a
n

d
 m

o
re

 u
n

syn
ch

ro
n

ize
d

.
T

h
e
se

 re
su

lts w
o

u
ld

 in
d

ica
te

 th
a
t u

sin
g
 a

n
 u

n
b

o
u

n
d

e
d

 n
u

m
b

e
r

o
f d

a
ta

 p
o

in
ts re

su
lts in

 co
m

p
o

u
n

d
in

g
 e

rro
rs a

n
d

 e
ve

r in
cre

a
sin

g e
rro

r le
ve

ls.

W
e

 w
ill n

o
w

 lo
o

k at th
e
 +

2
µ

s u
n

lim
ite

d
 d

a
ta

 p
o

in
t ch

a
rts.

Figu
re

 8
 sh

o
w

s th
e
 2

o

re
su

lts.

1
6
0

1
4
0

y
 =

 0
.1

6
9
5

x
 +

 1
8
.0

0
9

R
2
 =

 0
.2

4
1

1

1
2

0

1
0
0

8
0

6
0

4
0

2
0

0

S
im

u
la

te
d

 µs

Fig
u

re
 8

: A
ve

ra
ge

 Erro
r o

ve
r T

im
e
 (2

o
, +

2
µ

s, u
n

lm
.)

Ju
st like

 in
 th

e
 la

st se
t o

f gra
p

h
s, w

e
 se

e
 a

 stro
n

g u
p

w
a
rd

 slo
p

e
 to

 th
e
 tre

n
d

 lin
e
.

Fig
u

re
 9

 sh
o

w
s th

e
 3

o
 re

su
lts.

3
3

32
212
392
572
752
932

1112
1292
1472
1652
1832
2012
2192
2372
2552
2732
2912
3092
3272
3452
3632
3812

Average Error In I.IS

8
0

7
0

y
=

 0
.1

0
8

6
>< +

 5
.0

6
5

R
2

=

 0
.4

7
4
7

!
6

0

.5

5
0

..

0

..

..

""

4
0

Iii

"'

..

3
0

2
0

1
0

0

N
 N

N
 N

 N
 N

 N
N

 N
 N

 N
 N

 N
 N

 N
N

 N
 N

 N
 N

 N
 N

rr,

,...

en

......

Ill

rr,

,...

en

......

Ill

rr,

...

a,

......

Ill

rr,

...

a,

......

Ill

rr,

...

N

rr,

Ill

......

a,

.-i

N

'It

ID

co

0

...

rr,

Ill

......

a,

0

N

'It

ID

co

...

...

...

...

...
 N

 N
 N

 N
 N

 N

rr,

rr,

rr,

rr,

rr,

S
im

u
la

te
d

 µs

Fig
u

re
 9

: A
ve

rag
e

 E
rro

r o
ve

r T
im

e
 (3

a
, +

2
µ

s, u
nlm

.)

A
g

ain
, stro

n
g

 u
p

w
ard

 tre
nd

.
Fig

u
re

 10
 sh

o
w

s th
e

 4
a
 sim

u
latio

n
 re

su
lts.

8
0

7
0

y
 =

 0
.1

2
1

>< -
0
.7

6
6
4

R
2

 =
 0

.6
3

6
3

!
6
0

.5

5
0

..

0

..

..

4
0

IA.I

Iii

"'

3
0

2
0

1
00

S
im

u
la

te
d

 µs

Fig
u

re
 10

: A
ve

rag
e

 E
rro

r o
ve

r T
im

e
 (4

a
, +

2
µ

s, u
n
lm

.)

3
4

Aver I Ave

32
212
392
572
752
932

1112
1292
1472
1652
1832
2012
2192
2372
2552
2732
2912
3092
3272
3452
3632
3812

W
e

 ca
n

 se
e
 th

a
t Figu

re
s 8

-1
0 fo

r th
e
 +

2
µ

s e
rro

r a
ssu

m
p

tio
n

 sh
o

w
 th

e
 sa

m
e
 tre

n
d

s

a
s th

e
 +

/-2
µ

s ru
n

s. T
h

e
 R

2
 va

lu
e

s a
re

 sligh
tly h

igh
e

r th
a
n

 th
e
 p

re
ce

d
in

g ch
a

rts. T
h

e
se

ch
a
rts d

o
 n

o
t su

rp
rise

 u
s, sin

ce
 th

e
 su

m
m

a
ry

 d
a
ta

 in
 T

a
b
le

 1
 q

u
ite

 cle
a

rly
 sh

o
w

s th
a
t th

e

u
n

lim
ite

d
 d

a
ta

 se
t ru

n
s h

a
d

 sign
ifica

n
tly w

o
rse

 p
e

rfo
rm

a
n

ce
 th

a
n

 th
e
 2

5
 d

a
ta

 p
o

in
t ru

n
s.

W
e

 w
ill n

o
w

 sw
itch

 ge
a

rs to
 th

e
 m

o
re

 in
te

re
stin

g a
n

d
 a

ccu
ra

te
 2

5
 d

a
ta

 p
o

in
t ru

n
s.

T
h

e
 fo

llo
w

in
g ch

a
rts sh

o
w

 th
e
 +

/-2
µ

s, 2
5
 d

a
ta

 p
o

in
t ru

n
s. W

e
 sta

rt w
ith

 th
e

 2
a

 ru
n

.

3
5

3
0

y
 =

 -0
.0

0
3

5
x +

 9
.7

8
1

9

R
2

=
 0

.0
1

2

2
5

.E

...

2
0

...

1
5

1
0

�

5

0

S
im

u
la

te
d

 µs

Figu
re

 1
1

: A
ve

ra
ge

 E
rro

r o
ve

r T
im

e
 (2

a
, +

/-2
µ

s, 2
5
 p

ts.)

T
h

is is o
u

r first in
te

re
stin

g re
su

lt.
O

u
r tre

n
d

 lin
e

 a
p

p
e
a
rs to

 h
a
ve

 a
 sligh

t

d
o

w
n

w
a
rd

 tre
n

d
 to

 it. T
h

is is co
n

firm
e

d
 b

y
 th

e
 slo

p
e

 o
f th

e
 lin

e
a
r re

gre
ssio

n
 e

xp
re

ssio
n

.

T
h

is tre
n

d
 in

d
ica

te
s th

a
t a

s th
e
 sim

u
la

tio
n

 p
ro

gre
sse

d
, th

e
 a

ve
ra

ge
 e

rro
r in

 th
e
 n

e
tw

o
rk

d
e

cre
a
se

d
. T

h
e

re
 is a

 la
rge

 sp
ike

 a
t th

e
 e

n
d
 o

f th
e
 sim

u
la

tio
n

 th
a
t is o

f in
te

re
st.

Figu
re

 1
2

sh
o

w
s th

e
 3

a
 sim

u
la

tio
n

.

3
5

erage Ero µs

32
212
392
572
752
932

1112
1292
1472
1652
1832
2012
2192
2372
2552
2732
2912
3092
3272
3452
3632
3812

70

60 y = 0.0055x + 10.28
R2 = 0.0043

~ 50
.E ...
0 40

l&I
QI 30 11111
Ill ...
QI

20 ~
10

0

Simulated µs

Figure 12: Average Error over Time (3o, +/-2µs, 25 pts.)

Another interesting result. Here the trend line has a very slight upward trend, but

is still much more level than any of the unlimited data point runs. Lastly, figure 13 shows

the 4o, +/-2µs, 25 data point run.

40

35

~ 30
y = -0.0162x + 11.234

R2 = 0.1145
.E 25 ...
0 20 l&I
QI
11111

15 Ill ...
QI

~ 10

5

0

Simulated µs

Figure 13: Average Error over Time (4o, +/-2µs, 25 pts.)

36

These charts are particularly interesting. Each has a very low R2 value, but each

also shows either a negative trend (Figures 11 and 13) or a very small positive trend

(Figure 12). This would indicate that these runs were very stable and over time will have

very little error growth, or actually improve the average error. This is exactly the behavior

any clock synchronization protocol should display. Figure 13 shows that the 4a run had

the highest R2 value and also showed a negative trend. This simulation would indicate

that using a large error range for outlier detection improves overall protocol performance.

This is in direct contradiction to our predictions. We believe it is possible that being too

restrictive on outlier detection leads to all new data points being considered outliers and

being thrown out. This would be a good argument for widening the outlier detection

range. However, we do not believe this is the explanation for our data, since if that was

the case, we would expect to see very poor performance in the 2a run. More study is

required for us to fully understand this phenomenon.

It should also be noted that for the 4a run, the large spike in error at the beginning

of Figure 13 greatly throws off the linear regression. If we remove this spike, we would

get a much flatter line with a minimum of variation.

Finally, we present the +2µs, 25 data point plots. Figure 14 shows the 2a

simulation run.

37

25

20

e 15 ...
IA.I

I:, 10
f

i
5

0

y = 0.0063x + 7.1484
R2 = 0.0493

Simulated µs

Figure 14: Average Error over Time (2a, +2µs, 25 pts.)

This graph is very similar to other 25 data point graphs. We see a very slight

upward trend in average error here. Figure 15 shows the 3a simulation data.

25

20

e 15 ...
IA.I

I:, 10 n,

j
5

0

y = 0.0034x + 7.8116
R2 = 0.0106

Simulated µs

Figure 15: Average Error over Time (3a, +2µs, 25 pts.)

38

Again, a very slight upward trend is observed. This is not significantly different

from the 2a run in Figure 14. Figure 16 shows the 4a simulation run.

60

so
~
.E 40 ..
0 ..

y_= -0.0144x + 12.938 .. 30 ~

CII R2 = 0.0382 111111
n, .. 20 CII

~
10

0

Simulated µs

Figure 16: Average Error over Time (4a, +2µs, 25 pts.)

Both the 2a (Figure 14) and 3a (Figure 15) charts are uninteresting. They mimic

previous charts. The 4a (Figure 16) chart, however is rather intriguing. It shows a

negative trend and has a large spike much like the 4a, +/-2µs chart. Since we have gotten

this result a second time, the previously stated theory that using a 4a outlier range

improves performance gains extra credibility. This run has slightly worse performance

than the +/-2µs run, but the trend is the same.

Our simulation results show that limiting the number of data points used in linear

regression drastically improves the effectiveness of the method. This makes sense from a

conceptual standpoint because the drift of each clock in the network changes over time.

39

Using all past data mixes old drift rates with new drift rates while eliminating old data

makes sure that the linear regression takes in to account only the newest drift rates.

The experiment also revealed that there is no substantial difference between the

+/-2µs error presented in (Hill, 2001, [15]) and our assumption of +2µs. This is due to the

linear regression. Such a small difference in error is compensated for with the linear

regression. The total clock drift also dwarfs the small difference between +/-2µ and +2µs.

Finally, our simulation showed that using an outlier range of 4o yields better

performance than the traditional 3o range and also a 2o range. Using the 4o range

resulted in small error and an overall negative trend in the average network time error.

This would imply that over time the network error stabilizes and may actually reduce. The

exact reason for this has yet to be determined and will be the topic of future work.

40

5. CONCLUSION AND FUTURE WORK

We began by presenting a brief review of the problem of sensor network clock

synchronization and the challenges involved with creating a suitable synchronization

protocol. We discussed in detail the Estimated Time on Arrival (ETA) primitive and how it

relies on hardware accelerators to eliminate some of the largest sources of error in clock

synchronization. We explained the RITS and RATS protocols built on the ETA primitive.

Changes to the protocols were presented. We focused on three main items.

First, we wanted to see what happened if we used an unlimited number of data

points when doing linear regression for clock synchronization. Most schemes use 25 data

points. We believed that the unbounded number of points would lead to poor

performance due to the fact that we would be trying to fit linear data to a curved clock

skew line resulting from the aging of the physical clock crystals.

Second, we took issue with the ETA primitive's assumption of a maximum clock

error of +/-2µs. We argued that the clock error would skew to the positive side,

essentially limiting the total clock error to +2µs. Finally, we wanted to test the outlier

elimination criteria. The traditional approach is to throw out new data points that are

greater than three standard deviations from the mean. We decided to test the effects of

using two standard deviations and four standard deviations. We predicted that using a

more strict guideline for elimination (two standard deviations) would result in a more

accurate linear regression calculation.

41

We created a simulation using the Python programming language to mimic the

behavior of a ten node network where each node synchronizes its clock to a root node.

The program used integer counting to simulation clock ticks. Each node was assigned a

clock drift value that was taken into account. We tested +/-2µs and +2µs error bounds for

each of the 2o, 3o, and 4o cases using both unlimited data points and 25 data points

resulting in 12 different combinations. Data that was collected was imported into Excel

for analysis.

The differences between 25 data points and unlimited data points were not

surprising. The 25 data point runs performed markedly better than the unlimited runs.

The differences between the +/-2µ and +2µs were surprising. There was nearly no

difference between the two error bound criteria. We believe this is a result of the linear

regression smoothing out the rather minor difference between the two.

The results of the outlier detection were the most surprising. We discovered that

the 4o run had the best performance, followed by the 2o run, then the 3o run. We cannot

even say that higher error bounds result in better performance because the 2o run

performed better than the 3a run. Isolating the source of this effect and finding the

optimal error bound is a goal of future work.

Our results are interesting because many existing solutions rely on linear

regression in some form. We have shown that using a 3o outlier detection criteria does

not necessarily result in the optimal clock synchronization. In fact, the 3a criteria

performed worse than either 2o or 4o. The 3o run had average error of about llµs while

the 4o run had average error of about 8µs, showing a considerable, but perhaps not

42

dramatic, increase in accuracy. More importantly though, the 4a run showed a definite

negative trend over time while the 3a run had a very slight positive trend.

Developing a methodology for calculating the optimal criteria for outlier detection

in a linear regression based approach is extremely important, since the entire protocol

ultimately relies on the accuracy of these calculations. We hope to conduct further

research on this topic to better understand how outlier detection effects overall

performance. There is clearly some very interesting relationship between outlier

identification and linear regression that directly effects performance of the network.

In this paper we have only looked at linear regression. Other avenues of future

research will hopefully include identification of alternative methods for keeping clocks

synchronized between time synchronization messages. We will look at the performance

impact of these alternative methods, the effects of outlier identification on the

performance of a clock synchronization scheme based on the alternative methods, and

the computation required by these other methods.

43

REFERENCES CITED

1. D. Mills, "The Network Time Protocol" in Global States and Time in Distributed

Systems, 1994.

2. L. Girod and D. Estrin, "Robust range estimation using acoustic and multimodal

sensing" in Proceedings of the IEEE/RSJ lnternation Conference on Intelligent Robots

and Systems, 2001.

3. V. Claesso, H. Lonn, and N. Suri, "Efficient TOMA Synchronization for Distributed

Embedded Systems" in 20th Symposium on Reliable Distributed Systems, Pittsburgh,

PA, 2001, pp. 198-200.

4. C. lntanagonwiwat, R. Govindan, and D. Estrin, "A scalable and robust

communication paradigm for sensor networks" in Proceedings of the Sixth Annual

International Conference on Mobile Computing and Networking, Boston, MA, 2000,

pp. 56-67.

5. L. Gu and J. A. Stankovic, "Radio-Triggered Wake-Up for Wireless Sensor Networks",

vol. 29, 2005, pp. 157-182.

6. H. Kopetz and W. Ochsenreiter, "Clock Synchronization in Distributed Real-Time

Systems" in IEEE Transactions on Computers, 1987, pp. 933-939.

7. M. Mar6ti, B. Kusy, G. Simon, and A. Ledeczi, "The Flooding Time Synchronization

Protocol" in SenSys, Baltimore, MD, 2004.

8. S. PalChaudhuri, A. K. Saha, and D. Johnson, "Adaptive Clock Synchronization in

Sensor Networks" in IPSN, Berkeley, CA, 2004, pp. 340-348.

9. P. Sommer and R. Wattenhofer, "Symmetric Clock Synchronization in Sensor

Networks" in REALWSN, Glasgow, United Kingdom, 2008.

10. S. Yoon, C. Veerarittiphan, and M. Sichitiu, "Tiny-Sync: Tight Time Synchronization

for Wireless Sensor Networks," ACM Transactiosn on Sensor Networks, 2007.

11. J. Elson, L. Girod, and D. Estrin, "Fine-Grained Network Time Synchronization using

Reference Broadcasts" in Proceedings of the Fifth Symposium on Operating Systems

44

Design and Implementation, Boston, MA, 2002.

12. S. Ganeriwal, R. Kumar, and M. Srivastava, "Timing-sync Protocol for Sensor

Networks" in SenSys, Los Angeles, CA, 2003, pp. 138-149.

13. P. Traynor, R. Kumar, H. Bin Saad, G. Cao, and T. La Porta, "UGER: Implementing

Efficient Hybrid Security Mechanisms for Heterogeneous Sensor Networks" in

MobiSys, Uppsala, Sweden, 2006.

14. Mica2 Datasheet, Crossbow Technology. Retrieved Dec., 2009 [Online].

http://www.xbow.com/Prod ucts/Product_pdf _files/Wireless _pdf /M ICA2_Datasheet.

pdf

15. J. Hill and D. Culler, "A wireless embedded sensor architecture for system-level

optimization", 2001.

16. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, "Comparing Elliptic Curve

Cryptography and RSA on 8-bit CPUs", 2004.

17. B. Kusy, P. I. Dutta, P. Levis, M. Mar6ti, A. Ledeczi, and D. Culler, "Elapsed Time on

Arrival: A simple and versatile primitive for canoncial time synchronization services,"

vol. 2, no. 1, 2006.

45

APPENDIX A

This appendix presents the source code used in the Python simulations. The first section
is the node time class that handled the simulated clock for each node. The second section
is the node class that creates and runs a simulated node. The third section is the control
code that creates the simulated nodes, passes in the simulation parameters, controls
synchronization, and collects data.

APPENDIX A.1. Node Time Class

node_time.py

"""
Node Time Class

This class defines a time object for use by a network node. The time object stores:

microseconds (int)
seconds (int)
minutes (int)

drift (int) stores drift value (ppm)

The class supports these operations:

run(self) - clock counts up by 1 continuously until stopped
drift is added in when appropriate

"""

import threading

class NodeTime:

global stop

""."A time object'""'
def _init_(self,drift):

self .micro = O
self .second = O
self .minute= O
self .drift= drift

46

"'"'Primary run method"'"'
def run(self):

Set stop variable to 1 (i.e. run)

self .stop = 1

Determine when to drift

if(self.drift == O):

Never drift

dr.ift_every_micro = 1000000

self .micro max is 999999

999999 mod 1000000 = 1, so the if test in the
while loop is never true

else:

drift_ every _micro = round(1000000/self .drift)

while 1 and self .stop:

#print("Time is " + str(self.micro))

if(self.micro % drift_every_micro == O):

The current time is a multiple of the drift_every_micro value

Drift the clock by 1 (an extra tick does this)
Increment clock

self.micro = self.micro + 1

Regardless of drift, increment clock by 1

self .micro = self .micro + 1

Check if increment causes micro rollover

if(self.micro >= 1000000):
self.micro = self.micro - 1000000

self .second = self.second + 1

Check if increment causes second rollover

lf(self .second >= 60):

self .second = self .second - 60

self.minute = self.minute+ 1

47

APPENDIX A.2. Network Node Class

node.py

111111

Network Node Class

This class defines a network node. The network node includes the following information:

Node ID (int)
Node Time (Node Time object)
Regression Table (diet)
Drift (int - ppm)
Current regression data (diet)
Std dev bounds (int)
Error bounds (int)

A node has the following operations:

give_time()- Return current node time
sync_time() - Syncs clock with root node
end() - Ends the node simulation
give_regressions() - Hands off regression informaiton
sample{) - hands off regression info and current time
add_regress() - Adds regression info to node dictionary
lin_reg() - Calculates linear regression variables for node
linreg() - Does linear regression
std_dev() - Calculates standard deviation
minTomac() - Orders a list from min to max using absolute values

Regression information is stored in a dictionary with remote node ID as the key and a list
of tuples of tuples for the regression data points (e.g. 1:(((3,4),(5,6)), ((8,11),(9,12))])

"""
from node time import *

import math, threading, random

class Node:

"""A network node 11
"

11

def _init_(self,node_lD,node_drift,polnts,error):
self.time= NodeTime(node_drift)
self .ID = node_lD

48

self .regression = {}

self.a ={}

self.b = {}

self.RR ={}

self.dPoints = points

self .error = error

Build clock thread

\

clock_run = threading.Thread(target=self.time.run, name='clck_run', args=[])

Start clock thread

clock_run.start()

"""Hand off current node time"""

def give_time(self):

return self .time.micro,self.time.second,self .time.minute

"""Synchronize time with root'""'

def sync_time(self,root_time):

Record current node time

local_time = (self .time.micro,self .time.second,self.time.minute)

Establish limits of error

transmission_error_limit = 1

receive_error_limit = .25

sync_error_limit = .625

Establish error for this transmission

random.uniform returns a random floating point number

Decimal values rounded out in a later step

if(self.error):

transmission_error = random.uniform(O,transmission_error_limit)

receive_error = random.uniform(O,receive_error _limit)

sync_error = random.uniform(O,sync_error _limit)

else:
transmission_error = random.uniform(

transmission_error _limit, transmission_ error _limit)

receive_error = random.uniform(-receive_error _limit,receive_error _limit)

sync_error = random.uniform(-sync_error _limit,sync_error _limit)

49

Decompose root_time
root_micro = root_time[0]
root_second = root_time[l]
root_minute = root_time[2]

Subtract out error
This simulates the clock running while the sync completes.
In essence, it acts as though the message was sent several cycles ago.
new_root_micro = root_micro - transmission_error - receive_error - sync_error

Our simulated clock has less precision, so round error to nearest int
new __ root_micro = round(new_root_micro)

#print("Base: ",new _root_micro)

Check to see if time units need to be rolled back
if(new_root_micro < 0}:

if(root_second == 0}:
Roll back minute
root minute = root_minute - 1
root_second = 59

else:
root_second = root_second - 1

root_micro = 1000000 - abs(new_root_micro)

#print("Corrected: 11,new_root_micro)

Redefine root_time
root_time = (root_micro,root_second,root_minute)

Create entry in regression table
self.add_regress(local_time,root_time)

"""
####Notes on the lin_reg function####

so

The lin_reg function has a term where a value is divided by the length of the input list
minus 2

value/(len(list)-2)

Therefore, the input list must have at least 3 values before the lin_reg
function can be called. The conditional below enforces this.

This works in the context of the simulation because the more data points
we use, the better the linear regression. So having a minimum number of
data points doesn't hurt the performance, especially when the minimum
is just 3.
nun

Make sure there is data to lin reg ·
regression[O] references the root node in the regression dictionary
regression[O] is a list
lin_reg(O) does linear regression for this node and node O (the root node)
if(len(self .regression[O]) >= 3):

Perform linear regression
self.lin_reg(O)

Finally, return regression info to control node
return (local_time,root_time,self.lD)

"""Stop the clock"""
def end(self):

self .time.stop = 0
return self.time.micro,self.time.second,self.time.minute

'""'Hand off regression info"""
def give_regressions(self):

return self.regression

"""Hand off regression info and current time"'"'
def sample(self,node):

Make sure data exists for a and b
if(len(self .a) == O):

51

a_ret = O
b_ret = O

else:

a_ret = self .a[node]
b_ret = self .b[node]

#print("A: ",a_ret)
#print("B: ",b_ret)
return self .time.micro, self.time.second, self.time.minute,a_ret,b_ret

111111

These are helper functions for the other functions
nun

'"'"Add data point to regression table for node"""
def add_regress(self,local_time,remote_time):

111111 Version with a maximum of 25 data points for regression"""

i!(len(self.regression) > O):
current= self.regression[O]
"""Remove this conditional for unlimited length"""
if{len(current) == 25):

Pop oldest off
current.pop{O)

"'"'End remove"""
else:

current= []
current.append((local_time,remote_time))
self.regression[O] = current

"""Calculate regression variables"'"'
def lin_reg(self,node):

self.a[node] = O
self .b[node] = O

Build x and y lists from regression dictionary
rootTimes = [)

52

nodeTimes = []

#Pullout info for "node" from regression list
for regress in self.regression[node]:

At this point 'regress' references a tuple in 'regression'
indexed to 'node'
node_time = regress[0]
root_time = regress[l]

node_time and root_time are both tuple of (micro,second,minute)
Convert to ints
temp_sec = node_time[l] • 1000000 # Line shortener variable
temp_min = node_time[2] • 60000000 # Line shortener variable
node_time = node_time[0] + temp_sec + temp_min

temp_sec = root_time[l] • 1000000 # Line shortener variable
temp_min = root_time[2] • 60000000 # Line shortener variable
root_time = root_time[0] + temp_sec + temp_min

(

Add data points to x and y lists
nodeTimes.append(node_time)
rootTimes.append(root_time)

Get regression info
temp_a,temp_b,temp_RR = self.linreg(nodeTimes,rootTimes)

Cale projected node_time
projected = []
fort in range(len(nodeTimes)):

projected.append(temp_a*nodeTimes[t] + temp_b)

Build list of actual-calculated
diffs = []
for u in range(len(rootTimes)):

diffs.append(rootTimes[u] - projected[u])

Get std dev differences
std_dev = self.std_dev(diffs)

#Get mean
mean = sum(diffs)/len(diffs)

#Throwout outliers if more than X (dev_points) deviations from mean

53

dev_points = self.dPoints

list_min = 5

Order list min to max

Gets ordered list and original list

diffs,org_diffs = self.minTomax(diffs)

Remove anything greater than dev_points deviations from the mean,

provided that the list is at least list_min long when completed

i = len(diffs)-1

while i >=O and len(diffs) > list_min:

Check for dev_points over mean, remove

if((diffs[i] >(mean + dev_points • std_dev)) or

(diffs[i] < (mean - dev_points • std_dev))):

Remove from lists

Find index of data point in diffs in the org_diffs list

org_diffs and rootTimes have synced indexes

rootTimes.pop(org_diffs.index(diffs[i]))

nodeTimes.pop(org_diffs.index(diffs[i]))

i = i -1

Cale linear regression using purified list

self .a[node],self.b[node],self.RR[node] = self.linreg(nodeTimes,rootTimes)

111111

linear regression function provided by:

http://www.answermysearches.com/how-to-do-a-simple-linear-regression-in

python/124/

Modified to be Python 3 compliant
"""

def linreg(self,X, Y):

111111

Summary

linear regression of y = ax + b

Usage

real, real, real = linreg(list, list)

Returns coefficients to the regression line "y=ax+b" from x[] and y[], and R"2 Value
111111

54

if len(X) I= len(Y): raise ValueError('unequal length')
N = len(X)
Sx = Sy = Sxx = Syy = Sxy = 0.0
#for x, y in map(None, X, Y):
for x,y in map(lambda •a:a, �, Y):

Sx= Sx +x
Sy= Sy +y
Sxx = Sxx + x•x
Syy = Syy + y•y
Sxy = Sxy + x•y

det = Sxx • N - Sx • Sx
a, b = (Sxy • N - Sy • Sx)/det, (Sxx • Sy - Sx • Sxy)/det
meanerror = residual = 0.0
for x, y in map(lambda •a:a, X, Y):

meanerror = meanerror + (y - Sy/N)**2
residual= residual + (y - a • x - b)**2

RR = 1 - residual/meanerror
#RR=O

ss = residual / (N-2)
Var_a, Var_b = ss • N / det, ss • Sxx / det
#print "y=ax+b"
#print "N= %d" % N
#print "a= %g \ \pm t_{%d;\ \alpha/2} %g" % (a, N-2, sqrt(Var _a))
#print "b= %g \\pm t_{%d;\ \alpha/2} %g" % (b, N-2, sqrt(Var _b))
#print "R"2= %g" % RR

#print "s"2= %g" % ss

#print("A: ",a)
#print("B: ",b)
return a, b, RR

"""

Function that returns the standard deviation of a list of numbers
111111

def std_dev(self,nums):
mean = sum(nums)/len(nums)
temp=[]
for n in range(len(nums)):

temp.append((nums[n] - mean) •• 2)

std_dev = ((sum(temp)/len(nums)) •• (1.0/2.0))

55

return std_dev

ttU11

Function that orders a list from minimum to maximum {absolute vals)

Returns ordered list and original list
111111

def minTomax(self,in_list):

out_list = in_list

swaps= 1

i = 0

while swaps > O:

swaps= 0

for i in range(len(out_list)-1):

if(abs(out_list[i]) > abs(out_list[i+ 11)):

Swap items

templ = out_list[i]

temp2 = out_list[i+l]

out_list[i] = temp2

out_list[i+l] = templ

· swaps += 1

return out_list,in_list

APPENDIX A.3. Control Program

control.py

"""

Program Flow Control

This controls the simulation and exports data to CSV files

root_micro {int)

root second {int)

root_minute {int)

samples {int)

56

f

syncs (int)
nodes (diet)

main() - Creates nodes and runs simulation
add_tick() - Ticks the root node's clock
lllltl

from node import *
from node_time import *
import time, threading

"""

Primary test function
lllftl

def
main(number_of_nodes,run_time,sync_interval,sample_interval,dev_points,error,filena
me):

Clock
root_micro = 0
root_second = 0
root_m·inute = O

Stats
samples =O
syncs= O

#Set up root clock
node_clock � NodeTime{O)
root_clock =lhreading.Thread(target=node_clock.run, name='root_clock', args=[])

Startup output
prlnt{"Program running ... ")
print("Start time: ",time.ctime(),"\nRun time: ", run_time, " minute(s)\n")

List of nodes
nodes=[]

Create data file
data_file = open(filename, 'w')

57

Put header in file
write_string = "Node 10,Error,Node Time,Root Time\n"

Write header to file
data_file.write(write_string)

Start root clock
root_clock.start()

Build nodes
i =O

while i < n·umber_of_nodes:
Random node drift 0-100 ms
drift = random.randint(0,100)
new_node = Node(i,drift,dev_points,error)
nodes.append(new_node)
i += 1

Start the clock
start_time = time.time()
end_time = start_time + (run_time*60)

"""

Optionally, we could run a set number of cycles

run_time = 100
j=O

while j < run_time:
#do stuff
j += 1

flllfl

Start the simulation

sync_number = 1
sample_number = 1
while time.time() < end_time:

Tick root clock
#root_micro,root_second,root_minute =

add_tick(root_micro,root_second,root_minute)

58

Sample data points from nodes
if(int(time.time()) >= (int(start_time) + sample_interval * sample_number)):

print("Sampling data points")
samples+= 1

sample_number += 1

For each node, get the sample data, calc error, write to file

for node in nodes:

Get sample data
Gets data from node for root (node O)
node_id = O
'"'"Make node IDs start at 1, Excel doesn't like node ID O for some reason"""
micro,second,minute,a,b = node.sample(node_id)

Get time as ints for regression
temp_sec = node_clock.second*lOOOOOO #Temp variable to shorten line
temp_min = node_clock.minute*60000000 #Temp variable to shorten line
root_time_int = node_clock.micro + temp_sec + temp_min

temp_sec = second • 1000000 #Temp variable to shorten line
temp_min =minute* 60000000 #Temp variable to shorten line
node_time_int =micro+ temp_sec + temp_min

Regression time
reg_time = round(node_time_int*a + b}

#print("Node: ",node_time_int)
#print("Reg: ",reg_time)
#print("Regressions: ",node.regression)

#print("A: ",node.a)
#print("B: ",node.b)
#print("Reg: ",node.regression)

Error
error= root_time_int - reg_time

Write string
write_string = str(node.10} + "," + str(error) +

59

\

"," + str(node_time_int) + "," + str(root_time_int) + "\n"

Write node ID and error to file

data_file.write(write_string)

Sync node clocks to root

lf(int(time.time()) >= (int(start_time) + sync_interval • sync_number)):

print("Syncing node clocks to root")

syncs+= 1

sync_number += 1

Sync the clocks

for node in nodes:

Build root time

root_time = (node_clock.micro,node_clock.second,node_clock.minute)

#Sync

node.sync_time(root_time)

Explicitally end nodes

for node in nodes:

node.end()

'""'End of simulation"""

End root clock

node_clock.stop = 0

print("Program complete")

print("Samples: ",samples)

print("Syncs: ",syncs)

def add_tick(micro,second,minute):

micro+= 1

Check if increment causes micro rollover

if(micro >= 1000000):

micro = micro - 1000000

second = second + 1

60

Check if increment causes second rollover

if(second >= 60):

second = second • 60

minute = minute + 1

return micro,second,minute

Program variables

"""Basic Testing

number_of_nodes = 10

#run_time = 150 # In Minutes

#sync_interval = 30 # In Seconds

#sample_interval = 23 # In Seconds

run_time = 2 # In Minutes

sync_interval = 15 # In Seconds

sample_interval = 7 # In Seconds

dev_points = 3

error = 0 # 1 means Oto high, 0 means -high to high
tll111

"""Baseline

number_of_nodes = 10

run_time = 150 # In Minutes

sync_interval = 30 # In Seconds

sample_interval = 23 # In Seconds

dev_points = 3

error = 0 # 1 means Oto high, 0 means -high to high
UIIII

"""My version"""

number_of_nodes = 10

run_time = 150 # In Minutes

61

sync_interval = 30 # In Seconds

sample_interval = 23 # In Seconds

#dev_points = 3

#error = 1 # 1 means Oto high, O means -high to high

Test runs

#main(number_of_nodes,run_time,sync_interval,sample_interval,2,0,"2std neg high to

high.csv")

main(number_of_nodes,run_time,sync_interval,sample_interval,2,1,"2std Oto

high(251im).csv")

#main(number_of_nodes,run_time,sync_lnterval,sample_interval,3,0,"3std neg high to

high.csv")

main(number_of_nodes,run_time,sync_interval,sample_interval,3,1,"3std Oto high

(251im).csv")
#main(number_of_nodes,run_time,sync_interval,sample_interval,4,0, "4std neg high to

high.csv")

main(number_of_nodes,run_time,sync_interval,sample_interval,4,l,"4std Oto high

(2Slim).csv")

62

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069

