REND: RELIABLE AND ENERGY-EFFICIENT NODE-DISJOINT PATHS IN

WIRELESS SENSOR NETWORKS

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Siva Vanteru

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

May 2010

Fargo. North Dakota

North Dakota State University
Graduate School

Title

REND: RELIABLE AND ENERGY-EFFICIENT NODE-DISJOINT

PATHS IN WIRELESS SENSOR NETWORKS

By

SIVA VANTERU

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

ABSTRACT

Vanteru, Siva, M.S., Department of Computer Science. College of Science and
Mathematics, North Dakota State University. May 2010. REND: Reliable and Energy-
Efficient Node-Disjoint Paths in Wireless Sensor Networks. Major Professor: Dr. Weiyi
Zhang.

In wireless sensor networks, finding most reliable and most efficient paths between
source node and destination node is considered NP hard problem. We can increase
reliability by ability to tind node-disjoint alternate path when there is any disruption in the
path from source to destination. If we can find reliable paths by keeping efficiency in
consideration then we can increase both reliability and efficiency of paths between source
and destination.

In this paper, we present routing protocol for finding two node-disjoint paths between
each pair of nodes in a wireless sensor networks. In proposed protocol, each and every
node has the same procedure. In this paper, we compare proposed protocol to traditional
shortest path algorithm to find shortest path (diverse shortest path).

A diverse shortest path has been proven most efticient. as it can compute node-disjoint
paths connecting a source node to a destination node with minimum total energy. However.
computing node-disjoint path connecting source node to destination node in this approach
may not be reliable, as it may not find second shortest path all the time. We proposed node-
disjoint path algorithm to find reliability of node-disjoint paths in wireless sensor networks.
By implementation of node-disjoint path algorithm on wireless sensor networks. reliability
has definitely increased. By implementing c¢fficient node-disjoint path algorithm on

wireless sensor networks. we improved energy consumption signiticantlyv,

i

ACKNOWLEDGEMENTS

I am heartily thankful to my advisor, Dr. Weiyi Zhang, whose encouragement, guidance
and support from the initial level enabled me to develop an understanding of the subject
and helped me to complete my master’s paper.

I would also like to thank Dr. Jun Kong, Dr. Tariq King and Dr. Jin Li for being a part

ot my Masters Paper committee.

DEDICATION

I wish to dedicate my work to my advisor Dr. Weiyi Zhang for his incredible support

and guidance, and to my family.

TABLE OF CONTENTS

ABSTRACT oottt bbbt st a bttt sae s e ens it
ACKNOWLEDGEMENTS ..ottt et een e iv
DEDICATION Lottt ettt st er et ettt e tt e a b e seete s aras e en e eneanseenns v
LISTOF TABLLES ..ottt sttt ree st ene 1 es e tae s rne e s viii
LISTOF FIGURES ..ottt ettt e e ix
I INTRODUCGTION Lottt et e s b e s e e nn 1
Lo BACKEIOUNA .ottt eie e vt s s tba e e aae s 1
1.2. Notation Used and Network Model ..., 2
1.3, Problem StatBMENTccori it erioe st e eenr e reen e 4
[4 Energy Model ..o s 3

2. DIVERSE SHORTEST PATHS SCHEME ..o 6
2, DIESCIIPLION ettt ea et bt et e s e sr et eeen et e nmteereeassaeesseannnins 6
2.2. Shortest Path Problem ... 6
2.3, Dijkstra’s AIZOFItHM .ocoiiiiii e 7
2.4. Finding Diverse Shortest Paths ... 8
3. RELIABLE ROUTING USING MAXIMUM FLOW ..., 14
31 DESCIIPLION oottt ettt ettt aer bbbt ae e s 14
3.2, Maximum FEOW e e e 14
3.3. Finding Node-Disjoint Paths Using Maximum Flow ... 16
3.3.1. Generating Auxiliary Graph G'(V. E™), 16
3.3.2. Finding Node-Disjoint Paths.......... i 19

vi

3.4. Running Maximum Flow on Original Graph.......cccccoimeiinnniiic e 24

4. RELIABLE ENERGY-AWARE ROUTING USING MAXIMUM FLOW 26
A1, DESCIIPLION co.vvetieieer s cerirasttasescrsestessenesaarores st eesesssenessessasteestrvestesetnsesbeansesteeenn 26
4.2. Finding Energy Efficient Node-Disjoint Pathscoeeceivviniiiniiiiccviei e 26

5. PERFORMANCE EVALUATIONcccooiiiiiiietcet e etvee st 33
Sl DESCIIPHION ettt ettt ettt rtee e ebetenee et beeeeensarsaneenbesessnernnee 33
5.2, SIMUIALION SELUP .oeeiieiiiti ettt e rae e een et e beneees s becerassens 33

5.2.1 NetWOrk TOPOLOZY «evveeeriree it cerr ettt ee e e e aree e s s sn e e e 33
5.2.2. Performance Evaluation.c.occooiiiioiiiciiiienr e 33
5.2.2.1.D808E NEtWOTK oo iviieiiiiiieiecie sttt as 34
5.2.2.2.Sparse NEetWOTK ...oiii it e 38

5.3, ODSCIVAIONS weoviiitieeiiiteive e iircenias v s e et eesome e s e asee s e e ab bt e e s sbessaennt s e s e e senabarreas 43

6. DISCUSSTON ettt ettt et et st e e abe e et e stbsree e et enre e senssenans 45
0.1, DESCIIPHON tevcveireiscrii it s e s s snn 45
6.2, 1.€5S0NS LEAMNEU....oooiiiiiiiiiiie e e e 45
6.3, CRAIIENEZES .eoveeeviiiceii et srr e rtes ceenctenn et a s eaeeinens 45
6.4, LIMEIEALIONS ©vvivveveeeecietetsereeveeeeeereseesaese e beaeemes s sass s e esbe e st et aar s eebe st absaesnssnnas 45

7. RELATED WORK ...oooiiiiiiitienis i siee e s s et esneses s erenasiesenean e nen e e neeenaeeans 47
ToL FULIIE WOTK oottt e ettt ta e ar e e s e eaa s ams seeessanmsesemseaaaeesennnes 47

REFERENCES oottt ettt ettt bttt sttt e ettt e s en e 48

vii

LIST OF TABLES

Tabie Page
Table 1. Shows energy consumption for dense graph with different densitycco.ccoeee.. 34
Table 2. Shows number of nodes for dense graph with different densityccocceoenee. 36

Table 3. Shows the energy consumption of different networks for all three algorithms..... 39
Table 4. Shows number of nodes for sparse graph with different density.......c.cceeviccnnen 44

Table 5. Dense network on constant denSityocieieiinieieeeiiere e esneirieeeeaanas 42

viii

LIST OF FIGURES

Figure Page
Figure 1. The graph G(V,E) with source node S and Destination node Dccooovvieveninnnn.n. 9
Figure 2. First shortest path sp; from source node S to destination node D.........c.....coc... 10
Figure 3. Second shortest path sp; from source node S to destination node D ..o i1
Figure 4. The new graph G2(V.E) with source node S and Destination node D................. 1z
Figure 5. The shortest path between S and D represented by dotted (- ->) line. 12
Figure 6. Remaining graph G2(V.E) after removing node A and node B.............cccoool. 13
Figur¢ 7. The original graph G with source node S and destination node D...................... 17
Figure 8. Generation of auxiliary graph G’ ... e 18
Figure 9. Graph G with fow VAIUEScovovvviviiiievceereeeceee e 21
Figure 10. Node-disjoint paths between source node S and destination Do 23
Figure 11. Equivalent graphs in original graph ... 23
Figure 12. New Graph G with energy consumption as edge weights.........c.ocoiinnn, 24
Figure 13. Edges with flow value and possible paths with high flow magnitude 25
Figure 14. Graph G (V.E) for DSP algorithm.........ccccoiiiiii e 27
Figure 15. Possible node-disjoint paths ... e 30
Figure 16. Reliable and energy efficient node-disjoint paths ... 32
Figure 17. Comparison of energy consumption to density in dense graphs...................... 35
Figure 18. Energy consumption vs number of nodes in dense graphs ... 37
Figure 19. Diverse shortest paths without second shortest path ... 38
Figure 20. Energy consumption of sparse networks with different number of nodes 39
Figure 21. Energy consumption vs. number of nodes in sparse graphs.......c.oooovie 41

X

Figure 22. Diverse shortest paths with no second shortest pathccccooovviiieiciinen, 42

Figure 23. Energy consumption of dense networks with different number of nodes........... 43

I. INTRODUCTION

1.1. Background

Wireless sensor networks (WSN) are seeing great deal of research attention and
increasing usage in sensing applications. WSN has implementations in wide areas from
wildlife monitoring to military {1]. These types of networks consist of individual nodes that
sense data and transmit data by communicating with each other.

Wireless sensors networks are used in collecting information from remote locations in a
cost effective and reliable manner. Examples include Harvard's volcano eruption
monitoring project {2] and the SWE project at the University of Vermont to measure the
snow-water equivalent in a snow pack [3]. Due to the limited availability of the processing
speed and energy, sensor networks need to be very efficient. The goals of wireless sensors
are to sense data and transmit it by consuming very less energy [4].

The wireless sensor node in WSNs consists of hardware and software. The hardware
basis of WSNs is driven by advances in several technologies. First, System-on-Chip (SoC)
technology in which complete system is integrated on single chip. Sensor nodes such as
UC Berkeley's motes, UCLA's Medusa and WINS are based on commercial SoC based
embedded processors. Second, commercial RF circuits enable short distance wireless
comimunication with extremely low power consumption [5].

Software part of wireless sensor comprised of very small operating system called
TinyOS. which is an event-driven operating system specialized for memory constrained
embedded systems. specifically wireless sensors. The language that is most commonly

used to develop wireless sensor network applications on the TinyOS platform is nesC.

which has the low-level control benefits of C, while optimizing the resource limitations of

a wireless device. The flexible, component-based design of nesC uses tasks and events to

support the particular requirements of this domain. NesC allows several software

components to be statically wired together to form node-level applications [6].

A wireless sensor node also contains a radio transceiver. Radio transceiver contains all
the necessary circuitry to send and receive data over the wireless media. Similar to
microcontrollers, transceivers can operate in different modes. Commercially available
transceivers have different characteristics and capabilities.

The sensor node has primarily two functions. First, one is to sense data and second one
isto fransmit data. Sensing data consumes a lot less energy compared to transmitting data.
Sensor nodes has very limited energy source. Due to this, some sensor nodes die over the
period. There by decreasing reliability of the complete network.

In order to increase reliability we propose to tind energy efticient node-disjoint paths so
that if one node fails in a path from source node to destination node then also there will be
other path that is free from failed node.

1.2. Notation Used and Network Model
This paper uses following notation:

I. G(V,E): Bi-directed bi-connected graph. V is the list of n nodes. E is the list of m
edges and graph G is the representation of the real world wireless sensor network. In
this paper. words network and graph are used interchangeably.

2. G'(V'.E'): Directed bi-connected auxiliary graph or generated graph. V' is the list of 2n

nodes. E' is the list of (m+n) edges and graph G' is the auxiliary graph ot G.

[§9]

3. S: Source node in graph G(V,E). S € V.

4. D: Destination node in graph G, D € V.

5. Dense graph: Graph with high density of nodes.

6. Sparse graph: Graph with very low density ot nodes.

7. djj: Distance between node i and node j.

8. EC(e): Energy consumption of edge of the graph G.

9. R: Transmission range ot each node.

10. EC(p): Energy consumption of edge of the graph G.

1 1. EC(p): Energy consumption of path p.

12. ¢j: Energy consumption between node i and node j.

13. R: Transmission range of each node.

14. T: Transmission range of a sensor node.

I5. Field: Field is the area the wireless sensor nodes are randomly placed, in this paper
field size is represented as the area of field where all the nodes of the graph G are
located and are connected with other nodes within transmission range.

16. Transmission Range: (T) Transmission range is the range of the wireless sensor node
it can communicate with other wireless sensor nodes in the network. Transmission
range is same for all the wireless sensor nodes in wireless sensor network.

The field size of the network is different for different graphs, for a given field size
sensor nodes are randomly scattered in the field. For a given graph, transmission ranges of
the nodes are constant. Wireless sensor nodes are connected with all the other sensor nodes
that are situated within the transmission range ol the node. The length of a edge e in the

graph G(V,E) where e € E is d which is always less than or equalsto T. i.e.. d < T.
3

17. Bi-directed Graph: A bi-directed graph G is a directed graph with list of nodes V (G)
and list of edges E (G) each edge oriented as #—w—s—e and this orientation is called
out-edge orientation,

18. Bi-connected Graph: A graph G is called bi-connected it any one node veV is
removed from a graph G and graph G is still connected or it any two nodes in a graph
have two or more node-disjoint paths between them. In a bi-connected graph G.
between source node S and destination node D there will be two or more node-disjoint
paths,

1.3. Problem Statement
Dévelop a routing algorithm for wireless sensor networks (WSN) to increase the

reliability, efficiency and thereby increasing the performance ot the network.

INPUT: A bi-directed bi-connected graph G(V,E), source node S, Destination node D.

OUTPUT: For any given source node S and destination node D in graph G(V,E), the

problem seeks a pair of node-disjoint paths with optimal energy consumption between

given source node S and destination node D.

To increase reliability we propose to find node-disjoint paths. With node-disjoint paths,
we can be sure that there will be connectivity and possibility of finding node disjoint paths
even after failure of one node on network.

First. we use dijkstra's shortest path algorithm to find diverse shortest paths in graph
G(V.E). Second. we propose scheme which uses maximum flow algorithm to find node-
disjoint paths. Third. scheme. we improve energy efficiency by finding energy efficient

node-disjoint paths.

1.4. Energy Model

The energy model we used to calculate energy consumption for sensor is based on first
order radio model presented in [8; 9]. Energy consumption of a sensor node to run the
transmitter or receiver circuitry is €4 = 50 nJ/bit, energy consumption of transmitter
amplifier is consumes g,mp = 100 nd/bit/m*. The sensor node consumes Rx = g energy for
receiving |-bit data packet.

The energy consumed by a sensor i to transmit data packet to sensor node j is given by
Tx = (Eelee + Eamp d.f). where d;; is the distance between nodes i and j. The total energy
consumption for transmitting packet from sensor node i to sensor node j. is the sum of
transmission energy consumption of i and receiving energy consumption of j. Therefore,
total energy consumption for transmitting 1-bit data packet is given by

RX + TX = (2 Eetec + Eamp 4y)

Rx +Tx=(250 +100d,") (Since telec = 50 and &4mp = 100)
Rx +Tx=(100+ 100 d,”)

Rx+Tx=100(1 + d;j:)

The distance between two nodes in wireless sensor networks is usually very large and
square of the distance is much larger. Addition on constant | to a very large number is
negligible. Therefore, we can remove constant | from above equation.

Rx + Tx = 100 (dy’)
From above equation. we can conclude that total energy consumed to transmit a packet

of data is proportional to square ot distance between sensor nodes.

Rx + Tx o (d,f)

2. DIVERSE SHORTEST PATHS SCHEME

2.1. Description

In this chapter, we will find two diverse shortest paths between source node S and
desljnalion node D in graph G (V,E) by using dijkstra's algorithm. Dijkstra's algorithm
solves the single source shortest path problem in bi-directed, bi-connected and weighted
graph G = (V, E). Diverse shortest paths between node u and node v are the shortest paths
that are node-disjoint i.e., there is no node that is common among two paths spy and sp.

After finding the diverse shortest paths between node S and node D, we calculate the
energy consumption of the paths by adding all the edge weight of the edge e that belongs to
diverse shortest path. We calculate the energy consumption of each link and take the
average of two diverse shortest paths.
2.2. Shortest Path Problem

In a shortest-paths problem, the input is weighted. bi-directed bi-connected graph G =
(V, E), with weight function w: E — R mapping edges to real-valued-weights i.c.. the
distance of the edge or length of the edge. The length of path p = v0, vI,vk is the sum of
the weights of its constituent edges. [7]

w(p)=Z wv v [7]

The shortest-path weight of path from node z to node vis defined as

S, v) = min {w(p):u 5 v} if there is path fromu to v
’ w0, otherwise.

A shortest path can be defined as any path p from node u to node v where weight of the

path w(p) = 3(u.v).

2.3. Dijkstra's Algorithm

The shortest path algorithm used in this paper is dijkstra's algorithm [7] as it solves
the single pair shortest path problem on bi-directed bi-connected weighted graph G =
(V.E).

In Dijkstra’s algorithm, final shortest-path weights from the source s have already been
determined as they are stored in set S. Vertex u € V — S with the minimum shortest-path
estimate are repeatedly selected by algorithm and then adds u to S, after adding u to S all
the edges leaving u are relaxed. In the following implementation, we use a min-priority
queue Q of vertices. keyed by their d values.

Algorithm 2. Dijktra’s algorithm 7

I. DIKSTRA(G.w.s)

2. INITIALIZE-SINGLE-SOURCE(G,s,D)
3. assign Sto d

4, assign Q to V[(]

5. while Q not equal to &

6. dou € EXTRACT-MIN(Q)

7. S € S union {u}

8. if u equals D

9. break

10. for each vertex v € Adj[u}

It do RELAX(u.v.w)

In line | d and = values are initialized and at line 2 set S is initialized to the empty set.
At the start of the each iteration of the while loop of at lines 4-8 algorithm maintains the
invariant that Q =V — S. At line 3 min-priority queue is set to contain all the vertices in V,
since S = @) at that time, the invariant is true after line 3. Vertex u is extracted from Q =V
— S and added to set S thereby maintaining the invariant. Then, lines 7-8 relax each edge (u,
v) leaving u, thus updating the estimate d[v] and the predecessor n|v] if the shortest path to
v can be improved by going through u. Vertices are never inserted into Q after line 3 and
that each vertex is extracted from Q and added to S exactly once, while loop of lines 4-8
iterates exactly |V} times.

2.4. Finding Diverse Shortest Paths

We use dijkstra’s algorithm to find diverse shortest paths between source node S and
destination node D in graph G(V.E). First. we will find first diverse shortest path sp,
between source node S and destination node D. This will give us the first path that is
present between source node S and destination node D. After getting the first diverse
shortest path sp; we remove all the nodes that are present in the first diverse shortest path
sp; and try finding the second diverse shortest path spa between source node S and
destination node D if there exists one.

In algorithm 3, we propose pseudo code to find diverse shortest paths between source
node S and destination node D. First. we read graph G. source node S and destination node
D. In second step. using algorithm [we find first shortest path p;. In third step. we loop
through all the nodes present in first shortest path p; and we will remove all corresponding
nodes. By this way. we know that when we find next shortest path we will know that

second shortest path p- doesn’t consists of any nodes that were included in first shortest
8

path p;. In step six, using algorithm | we find second shortest path p.. If there is, a second
shortest path then algorithm will return two paths p, and pz. Figure 1, figure 2 and tigure 3
explain in detail how to find diverse shortest paths sp;and spa.

Algorithm 3. Diverse shortest path pseudo code

l. read graph G, source S and destination D

2. using Algorithm 1 tind shortest path p,

3. for cach node n € p;

4. remove n from graph G

5. end for

6. | using algorithm 1 find second shortest path p;
7. if Iy

8. return p; and p2

9. else

10. drop the request.

Figure 1. The graph G(V.E) with source node S and Destination node D
9

Figure 2. First shortest path sp, from source node S to destination node D
We find the first shortest path sp; from source node S to destination node D.
spi=S—A—-D
wlpi]=2+10=12
Energy consumption of the path is sum of the square of the edge weight of the edges in
the path sp,.
Ec(p)=(2) +(10) =4+ 100 =104
spi =S—B—D
wlpa]=8+4=12
Now as we got the first diverse shortest path. we will remove all the nodes that are part of
sp; except source node and destination node,
Finding diverse shortest paths is not as simple as it seems because using shortest path
algorithm to find diverse shortest path may not result in success.

10

Figure 3. Second shortest path sp; from source node S to destination node D

Energy consumption of the path is the summation of the square of the edge weight of
the edges in the path sp,.

Ec(pz) =(8) +(4) =64+ 16=80

After finding first diverse shortest path, there is no assurance that there will be another
second diverse shortest path between source node § and destination node D.

We will explain in the following figure 4. figure 5 and figure 6 why it is not always
possible to find second diverse shortest path between source node S and destination node
D.

In this example. we try to find diverse shortest paths sp; and sp- between source node S
and destination node D. The figure 4 shows the graph we choose for this example. The
figure 5 shows possible shortest path between source node S and destination node D in
graph G2. The figure 6 shows graph after removing nodes that are associated with first
shortest path sp;.

The shortest path between source node S and destination node D) is

sp1=S—A—=B—D.w[spi|=2+3+4=9,

(/]
w
O

Figure 5. The shortest path between S and D represented by dotted (- ->) line.

We will now remove all the nodes that are associated with first diverse shortest path sp,

and try to find second diverse shortest path sp>. Here we remove node A and node B, there

by all the corresponding edges will be removed. The tigure 5 shows in detailed graph after
removing nodes that are present in first shortest path sp.

In figure 6, we can see that there is no connection between source node S and
destination node D as the node A and node B are removed the connecting edges are also

removed.

Figure 6. Remaining graph G2(V,E) after removing node A and node B

We can say that using shortest path algorithm to find node-disjoint or diverse paths is
not always a good thing as we may not find diverse shortest paths every time.

Shortest path algorithm may give us paths with less energy consumption but it may not
be reliable even though there is a diverse or node-disjoint path. The reliability of diverse
shortest path scheme is not 100%.

in order to improve the reliability. we propose another scheme to find reliable routing,
We call it as reliable routing using maximum flow. In the next chapter. we discuses about

the reliable routing using maximum flow algorithm and improve network reliability.

3. RELIABLE ROUTING USING MAXIMUM FLOW

3.1. Description

In this chapter, we find all node-disjoint paths between source node S and destination
node D in bi-connected bi-directed weighted graph G (V,E) by using maximum flow
algorithm. By using maximum flow algorithm, we can find all node-disjoint paths between
any two nodes in bi-connected bi-directed weighted graph G(V.E).

In order to find node-disjoint paths we generate new graph called auxiliary graph
G'(VLE") from graph G(V,E) with 2n nodes and m + n edges. The new graph generated
will help in finding the node-disjoint paths when we run maximum flow algorithm on it.
3.2. Maximum Flow

The maximum flow problem {7} is all aboui computing the greatest rate at which data
can be transferred from source node S to destination node D without violating any capacity
constraints. This basic technigue is used in maximum flow algorithms can be adapted to
solve our problem of finding node-disjoint paths.

A flow network G(V, E) is a directed graph in which each edge (u, v) € E has a
nonnegative capacity c(u, v) > 0. If (u, v) € E. we assume that ¢c(u. v) = 0. We differentiate
two vertices in a flow network: a source S and a destination D. We assume thal every
veriex lies on some path from source node to sink. That is. for every vertex v € V. there is
a path between 1wo nodes in the graph. therefore graph is connected and set of edges is
greater than or equal to set of all nodes minus one. [Ef = [V [- 1.

We can now define flows formally. Let G (V, E) be a flow network with a capacity
function c. Let S be the source of the network. and let D be the destination. A flow in G is a

14

real valued function f: V x V — R that satisties the following three properties:
1. Capacity constraint: For all u. v € V, we require f(u, v) <c(u, v).
The capacity constraint says that flow from one node to another node must
not exceed the given capacity.
2. Skew symmetry: Forall u, v e V. we require I (u, v) = - (v, u).
Skew symmetry says that flow from node u to node v is the negative of the
flow in the reverse direction.

3. Flow conservation: Forallu e V - {s, t}. we require

> favy =0

Flow conversation property says that the total out of a vertex other than source node is
0, i.e., total data flowing into any particular node is always equal to total data flowing out
of anode. Forallve V- {S.Dl.i.e. the total flow out of a vertex is 0.

The flow from vertex u to vertex v is defined by f(u.v). which can be positive, zero, or
negative. The value of flow is defined as

=) fav),

rEV

That is. the total flow value from node u node v.
We can define total positive flow entering node as

z f{uv).

vev

flur)

The total positive flow leaving a node is defined symmetrically. Total net flow at a node
can be defined as total positive flow leaving minus total positive flow entering a node, The
net flow at a node must equal to zero, it is also referred as "flow in equals tlow out".
Algorithm4. Maximum flow algorithm |7

Max-Flow (G, s, 1)

1. assign C to max.y) pc(u, v)

2. initialize flow f to 0

3. assign K to 2!

4. while K greater than or equals |

5. | do while there exists an argument path p of capacity at least K
6. do augment flow falong p

7. assign K to K /2

8. return f

3.3. Finding Node-Disjoint Paths Using Maximum Flow

There are several steps in finding node-disjoint paths. First step in finding the node-
disjoint paths is to generate auxiliary graph G'(V'.E") from original graph G(V.E).

3.3.1. Generating Auxiliary Graph G'(V', E’)

Generating auxiliary graph is the most important step in finding node-disjoint paths in a
network. First step in generating auxiliary graph is to split all the nodes in the graph other
than source node S and destination node D.

Splitting nodes is called "node-splitting” and 1t is done by splitting each node i in G.

other than S and D. into two nodes i' and i" and adding a "node-splitting” edge (i' . i") of

16

unit capacity. Figure 7 shows original graph G with source node S and destination node D.

A
2 »> 10
S 3 D
8
4
4#7
B

Figure 7. The original graph G with source node S and destination node D.

All the edges in graph G entering node i now enter node i and all the edges going out
from node i, now go out through i", in auxiliary graph G'. Figure 8 explains how auxiliary
graph (5" is generated.

After the splitting of the nodes next thing to be done is adding the edges between nodes
in graph G’ corresponding to the edges in original graph. We assign a capacity of = to each
edge in graph G' except the node-splitting edges. which have unit capacity. There will be a
one-to-one correspondence between the edge-disjoint paths in GG' and node-disjoint paths in
G. As a result, the maximum number of arc-disjoint paths in G’ is equals the maximum
number of node-disjoint paths in graph G. Figure 8 shows auxiliary graph G' that is

generated from original graph G.

[1
B —p» B

R S L ’

Figure 8. Generation of auxiliary graph &'

Algorithm 5. AUX-GRAPH_GEN(G)

l.

2.

read original graph G(V, E)
repeat
for each node in original graph G(V. E)
generate two nodes n; and n- in auxiliary graph G'(V', E")
add node splitting edge with unit capacity between n, and n»
n=n+|
end for
until all nodes in original graph are reached
for all nodes in original graph
an edge entering node n in original graph will enter ny in auxiliary graph

an edge leaving node n in original graph will leave n> in auxiliary graph
18

12. end for
13. write auxiliary graph to file

In figure 7, we have original graph for which we have to generate auxiliary graph. In
figure 8, we can see that each node other than source node S and destination node [are
split. Node A is split into A", A" and node B is split into B', B". Atter splitting nodes, we
add edge with unit capacity between split nodes, i.e.. between nodes A", A" and B', B".

We add edges between nodes in auxiliary graph G'(V'. E') which are equivalent to
original graph G(V,E). But here edge entering node A in original graph will enter node A’
in auxiliary graph and edge leaving node A will leave from A", similarly edge entering
node B in original graph will enter node B’ and node leaving B in original graph will leave
B" in auxiliary graph. All the edges in auxiliary graph G' other than node split edges have
infinite capacity.

If n equals total number of edges in original graph G(V, E) and e equals total number of
edges in original graph G(V, E). then total number of nodes in auxiliary graph G'(V', E")
are 2n-2, and total number of edges in auxiliary graph G'(V'. E') are ¢ + n.

3.3.2. Finding Node-Disjoint Paths

After generating auxiliary graph G' we run maximum flow on it to find node-disjoint
paths. Algorithm 4 explains how the auxiliary graph is generated. In next step. we will give
algorithm for finding node-disjoint paths between source node S and destination node D.

Algorithm6. RELIABLE-ROUTING (G. S. D)

I read graph G. source S and destination D
2. using algorithm 5 generate auxiliary graph G'
3. using algorithm 4 compute the maximum tlow from source to destination

19

4. for(i=1tof)
3. generate path p; by tracing all nodes from destination node D to source node S

whose edges with flow value 1.

6. Ec(p) =0

7. end for

8. for(i=1tof)

9. for all edges in graph G'
10, if (edgee>1)

11. if(e € pp)

12. | Ec(pi) = Ec(pi) + Ec(e)
13. end if

14. end if

15. end for

16. end for

17. sort (Ec(pt), Ec(p2) -..... Ec(py
18. Ecave = Ec(p1) + Ec(p2) / 2

19. return Ec,..

Afier running maximum flow on auxiliary graph G, on each edge we get the flow and
capacity values. Here numerator denotes flow value and denominator denotes capacity
value.

At node A "flow in" must equal "flow out”. The out flow at node A must equal 1. the
edge between node A and node A'is 1. At node A’ there are two edges leaving node. The

flow value on edge node A and node D is | as it results total flow value between source

20

node S and destination node D to be maximum. If the flow value between node A~ and
node B is 1. i.c.. There is a flow between them then total flow value between source node S
and destination node D is not maximum. We use maximum flow to find maximum amount
flow possible between source node S and destination node D

Flow value on edge between source node S and node B is | even though capacity is w.
This is because the of flow conversation property. that is, the total flow into a vertex has to
be 0. The figure 9 shows flow value on edge between source node S and node A is | even
though capacity is . This is because the of flow conversation property, that is, the total
flow into a vertex has to be 0. In The following figure we will see the flow on the network

after running maximum flow on graph G'.

Node-disjoint path 1

K n

7~

o1

B —» B
7

~ —_

Node-disjoint path 2

Figure 9. Graph G with flow values

21

F

At node A" "flow in" must equal "flow out”. The out flow at node B must equal 1, the
edge between node B and node B is 1. At node B’ there are two edges leaving node. The
flow value on edge node B and node D is | as it results total flow value between source
node S and destination node D to be maximum.

Flow value on the edges between node A and B and edge between node B and A is 0.
As there is no flow on these edges, they can be removed. We get node-disjoint paths after
removing edges that doesn’t have any flow.

The figure 10 shows two node-disjoint paths between source node S and destination
node D, with flow values are on edges of the paths indicating the node-disjoint paths.

After ﬁnding node-disjoint paths on the auxiliary graph, we have to tind equivalent
paths of node-disjoint paths of auxiliary graph in original graph.

Split nodes in auxiliary graph are unified in the original graph and equivalent node-
disjoint paths in original graph doesn't include node split arc but unifies two split nodes
into one.

We calculate the energy consumption of the node-disjoint path by adding the energy
consumption of each edge (link) in the path. Energy consumption of each edge is the
amount of energy it takes a node to forward a packet to next node in the path. Here we find
all the node-disjoint paths that are present in the network as shown in figure 11. But finding
node-disjoint paths is not final; we have to tind the paths with lowest energy consumption
and also two paths with minimum total energy consumption. We get two node-disjoint
paths P, and P.. Energy consumption of the path is the sum of energy consumption of each
and individual edge that is included in the path. i.e.. energy consumption of path p = v0, v1,

....vk is the sum ot the energy consumption of its constituent edges,

22

Node-disjoint path 1(p1)

~ T T ~
A e A

Ve

11
B —# B
Ve
~ -~
Node-disjoint path 2(p;)

Figure 10. Node-disjoint paths between source node S and destination D

Node-disjoint path 1(p.)
- ~

a— ———

| A AN

B

e — —

Node-disjoint path 1(p,)

Figure 11. Equivalent graphs in original graph

8]
(98]

3.4. Running Maximum Flow on Original Graph

In this section, we tell the reason of generating auxiliary graph G with spitted nodes
which have unit node-splitting edges and why it is necessary to generate auxiliary graph in
order to find all the node-disjoint paths.

We use a new graph G for proving that we can't find node-disjoint all the time when we
run maximum flow algorithm on graph without node-splitting.

We run maximum flow algorithm on the graph G in figure 12, to see what paths we can

get for the maximum flow magnitude between source node S and destination node D.

12
13 A 4 » C
4 i// P'S 20
B 9
S 10 . b
13 K M
B « » E 4
14

Figure 12. New Graph G with energy consumption as edge weights

The figure 13 shows all possible paths between source node S and destination node D
after running maximum flow on the original graph G.

All the nodes in graph other than source node S and destination node D are saturated
and there is no way to transmit more tlow through the graph. The flow value through the
graph is the amount of How leaving the source node S is equal to the flow value entering

destination node D. Here the tlow value is 23.

24

4. RELIABLE ENERGY-AWARE ROUTING USING

MAXIMUM FLOW

4.1. Description

In this chapter, we discuss how to increase the energy efficiency of node-disjoint paths
while maintaining high reliability. In the previous chapter, we discussed how to find node-
disjoint paths. A way to achieve high reliable node-disjoint paths is by using maximum
flow algorithm and generating auxiliary graph.

4.2. Finding Energy Efficient Node-Disjoint Paths

Here we prbpose new scheme to improve energy efficiency of the reliable node-disjoint
path routing using maximum flow algorithm. In a network, some links between nodes can
have high energy consumption. These edges will drain all energy of nodes it corresponds
and thereby decreasing the life time of the network.

[f we can find a way to eliminate edges or links between nodes that are not necessary in
communication between nodes, by this we can avoid unnecessary wastage ot energy and
thereby decreasing overall consumption of the network. This intern increases overall
reliability of the network there by increasing total performance of network.

We know increase reliability by combining high energy consuming link removal with
maximum flow algorithm. This combination of our scheme with maximum flow algorithm
increases the efficiency of the network. The figure 14 shows the graph we consider for this
scheme. We have a network (graph G) for which we have to find node-disjoint paths from
source S to destination D. We have discussed finding node-disjoint paths in previous

chapter. Here also we are going to use same scheme. We will be generating auxiliary graph

26

G’ from original graph G to find node-disjoint paths,

o
25
10 5
- 14
24 ,
S ¢ > E y D
10 25

Figure 14. Graph G (V,E) for DSP algorithm

[n order to generate auxiliary graph G' we split all nodes in graph G' and add unit edges
between them and call them as "node splitting edges”. In auxiliary graph G'. we use
capacity in contrast to energy consumption used in original graph G. Splitting nodes is
calted "node-splitting” and it is done by splitting each node i in G, other than S and D, into
two nodes i’ and i" and adding a "node-splitting” edge (i',i") of unit capacity. All the edges
in graph G entering node i now enter node i' and all the edges going out from node i now
go out through i" in auxiliary graph G".

After the splitting of the nodes next thing to do is to add the edges between nodes in
graph G° corresponding to the edges in original graph. We assign a capacity of » to each

27

edge in graph G' except the node-splitting edges, which have unit capacity. There will be a
one-to-one correspondence between the edge-disjoint paths in G' and node-disjoint paths in
G. As a result, the maximum number of arc-disjoint paths in G’ is equals the maximum
number of node-disjoint paths in graph G.

Generating auxiliary graph G' is the first part of the process, next part would be to find
node-disjoint paths between source node S and destination node D. We find node-disjoint
paths similar way as we find in chapter 3. i.e., by running maximum flow algorithm on
graph G, to find all node-disjoint paths that are present between source node S and
destination node D.

Running maximum flow on auxiliary network gives us node-disjoint paths. It is similar
to what we have done in previous chapter. Algorithm 6 explains working of the scheme we
use in this chapter to find reliable node-disjoint paths.

Algorithmé6. Energy Efficient Reliable Node-disjoint Path Algorithm
REL-NODE-DIS(G, S. D)

l. read graph G, source S and destination D

2. using algorithm 5 generate auxiliary graph G’

3. using algorithm 4 compute the maximum flow from source to destination

4. for(i=1to0t)

S. generate path p; by tracing all nodes from destination node D to source node

S whose edges with flow value 1.

6. Ec(pp) =0
7. end for
8. if (f>1)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

then

for all edges in graph G

search for edge e with highest energy consumption in Graph G

if (Ec(e) > Ec(G -¢e))
then
G =G-e
goto step 1
else
G=G+e
goto step 1
end if
for(i=1tof)
for all edges in graph G'
if (edgee> 1)
if(e e p))
Ec(pi) = Ec(pi) + Lc(e)
end if
end if
end for
end for
sort (Ec(pi), Ec(p2) -..... Ec(py)
Ecave = Ec(p1) + Ec{p2) / 2

return Eca,g
29

The figure 15 shows one possibility of pair of node-disjoint paths that are present
between source node S and destination node D. Both paths are distantly marked with

different colors. The one with red color is first path p, and the one with green is second

path p;.
A
\ 12 .
B
\ 14
c
25]
. ¥ 14
2 / .
S ¢ u » E » D
10
F
S 16
G | -
R S

Figure 15. Possible node-disjoint paths

When we run maximum flow on auxiliary graph G' we get all possible paths present in
the network. Among all paths, we consider only two paths which have minimum sum of
energy consumption of these two paths. Paths p; and p, have very less combined energy
consumption. This is the main reason for considering these two paths for this particular
network.

Now we calculate the energy consumption of each path. According to energy model

30

defined previously. Energy consumption of each edge is approximately equal to the square
of the distance. Energy consumption of total path is sum ot all edges present in the path.

Ec(p) = 24)" + (14)°

Ec(p;) =772.

Similarly, we calculate energy consumption of second path ps.

Ec(p2) = (10)° + (16)' +(16)° + (25’

Ec(p)) = 100 + 256 + 256 + 625

Ec(pi) = 1237.

We got energy consumption of each path. The total energy consumption of two paths is

the summatioﬁ of energy consumption of paths p; and p;.
Ec(pi+ p2) = Ec(p1) + Ec(py).
Ec(pi+ p2) =772 + 1237.
Ec(p;+ p2) = 2009.

We got the energy consumption of two node-disjoint paths. We propose scheme in order
to improve energy consumption.

If we have two or more than two node-disjoint paths present between source node and
destination node, then we take out the edges with‘ highest energy consumption in the
network and run maximum flow algorithm on the network to find node-disjoint paths. It we
get two or more than two node-disjoint paths between source node S and destination node
D even after removing edges with highest magnitude. then we will remove edges with next
highest magnitude and run maximum flow on the network. We do this until we get flow
value of maximum flow as one i.e., there is one node-disjoint path present between source

node S and destination node D. But we need a pair of node-disjoint paths to improve

31

5. PERFORMANCE EVALUATION

5.1. Description

This chapter, we present simulation results to evaluate the performance of proposed
routing algorithms. We have two goals. First, determine how our reliable routing
algorithms perform in real world. Second, compare pertormance of reliable routing
algorithm with each other and compare reliable routing with diverse shortest path
algorithm,

5.2. Simulation Setup

In this section. we give a brief overview of the different modules used in our simulator.
5.2.1. Network Topology

For test purposes, we define two field sizes as 100 by 100 square and 1000 by 1000
square. We use two different field sizes to generate two graphs with different node density.
The two graphs generated are dense graph and sparse graph. Dense graph has a figld size of
100 by 100 square and sparse graph has field size of 1000 by 1000 square.

In generating graph we use field size as the area in which all the nodes are present, these
nodes are randomly generated which is similar to random deployment ot sensor nodes in
the field. Each node has transmission range of 25 in dense network and transmission range
of 150 in sparse network, every node can transmit data within its transmission range.

We assume that geographical topology is same throughout our simulation for alil
networks.

5.2.2. Performance Evaluaiion

In performance evaluation. we considered to run all three algorithms on difterent graphs

33

Efficient node-disjoint path (ENDP) algorithm uses same principle in finding reliable
node-disjoint paths as NDP algorithm but tries to minimize energy consumption.
Table 2 shows the energy consumption of different networks with different number of

nodes for all the three algorithms DSP, NDP, ENDP respectively.

Table 2. Shows number of nodes for dense graph with different density

Number of nodes DSP NDP ENDP
10 1277.9 1529.1 1354.8
25 1036.3 1158.3 1135.7
50 1157.9 1650.1 1599
75 859.2 1302.7 1277.6
85 561.1 805.2 718.199
100 761.799 1128.6 1039.3
200 507.5 1205.5 883.8

We can see from figure 18, that node-disjoint paths by ENDP algorithm consume
significantly less energy than NDP algorithm without compromising reliability. We can
calculate gain in energy consumption by ENDP algorithm. The energy consumption gain

can be calculated by

EC(ZNDP paths)— EC(TENDP paths)
EC(TNDP paths)

Energy gain = * 100

, 92778008
Energy gain = Eev— * 160

Energy gain = 13.67%

No Second Shortest Path

2.5

15 + -

lo Second Shortest

Paths
0.5 +

No Second Shortest Path

10 25 50 75 85 100 200

Number of nodes

Figure 19. Diverse shortest paths without second shortest path

We can calculate percentage of no second shortest path for networks considered.
5.2.2.2. Sparse Network

Here we considered to run all three algorithms diverse shortest path (DSP), node-
disjoint path (NDP), and energy efficient shortest path (ENDP) on sparse graph.

The sparse network we are considering here has field of size 1000*1000 square and
each sensor network has transmissio.n range of 150. We run all three algorithms on
different graphs with different number of nodes in it. The density is different for different
graphs.

Networks with nodes 100, 200, 300, 400,500 are considered as dense networks for field
size 10,000 square. Here DSP is diverse shortest path algorithm, NDP is node-disjoint path
algorithm and ENDP is efficient node-diverse shortest path.

Figure 20 and figure 23 are the graphical representation of energy consumption for
sparse networks and dense networks respectively. Here the densities of networks are

38

consumption. It can be seen in above figure that node-disjoint paths found through DSP
consume least amount of energy.

Node-disjoint path (NDP) algorithm can find reliable disjoint paths between source and
destination nodes. We can see from figure 18, that disjoint routes by NDP consume more
energy as it tries to find reliable routes between source and destination nodes. NDP
algorithm compromises efficiency to reliability. Here energy consumption is significantly
more than other two algorithms

Efficient node-disjoint path (ENDP) algorithm uses same principle in finding reliable
node-disjoint paths as NDP algorithm but tries to minimize energy consumption.

We can see from figure 18, that node-disjoint paths by ENDP algorithm consume
significantly less energy than NDP algorithm withcut compromising reliability. We can
calculate gain in energy consumption by ENDP algorithm. The energy consumption gain

can be calculated by

EC(TNDP paths)~ EC(CENDP paths)
EC(SNDP paths)

Energy gain = * 100

" 514126.6-498845.9
Energy gain = ——— *100
514126.6

Energy gain = 2.97%

The gain in energy consumption is 2.97 %, this is significant gain in energy
consumption without compromising reliability. When we compare energy gain with dense
networks. actual energy gain is much less. due to the fact that there are much less
alternative routes from source to destination. Table 4 shows energy consumption tor
different number of nodes for sparse graph with constant density. Figure 21 shows energy

consumption for different number of nodes on sparse network.

40

As density is more, there are more nodes connected with each other. This in turn
increases the possibility of more node-disjoint paths between nodes. Due to high
connectivity between nodes, we have more alternate paths with less energy consumption in
dense networks, nodes are very near to each other. Less energy will be consumed to
transmit data from one node to another.

In sparse network energy, consumption of energy efficient node-disjoint path algorithm
is slightly greater or equal to reliable node-disjoint path algorithm. This phenomena is
observed because in sparse network we have node that are scattered in a very large field.
There will be less number of edges or links between nodes in sparse network. Due to this
connectivity of entire network will be less when compared to dense networks. Here nodes
are scattered, some nodes can be very near to each other might be very far from each other.
We generally observe edges with high energy consumption and edges with very low energy
consumption.

In sparse network when we are implementing energy efficient node-disjoint path
algorithm, we observe paths having many edges have less energy consumption. This is
becausc in energy efticient node-disjoint path algorithr, we avoid the links or edges with
largest energy and choose edges with less energy consumption. In sparse networks as nodes
are scattered some nodes are close to each other and some far, when we try to avoid a edge
with high energy consumption then we will end up with more number of edges with less
individual energy consumption. Total energy consumption of all these small edges will be

high.

44

6. DISCUSSION

6.1. Description

In this chapter, we discuss lessons learned, challenges and limitations of using
maximum flow algorithm to find reliable and energy-efficient node-disjoint paths in
wireless sensor networks.
6.2. Lessons Learned

There are many ways to find node-disjoint paths in wireless sensor networks. By using
shortest path algorithm is the casiest way drue to limitations of shortest path algorithm we
couldn’t find node-disjoint path always. By using maximum flow algorithm, we can find
reliable node-disjoint paths in WSNs. Complexity of finding node-disjoint paths increases
as we include parameters like reliability and energy efticiency.
6.3. Challenges

Due to limitations of shortest path algorithm to find node-disjoint paths in WSNs, we
are forced to use maximum flow algorithm. The creation of auxiliary graph was important
step in finding node-disjoint paths.

In finding reliable and efficient node-disjoint paths. we had to use auxiliary graph in
conjunction with maximum flow algorithm.

6.4. Limitations

Shortest path algorithm isn’t the best solution for finding node-disjoint paths between
wireless sensor networks. Using maximum flow algorithm solves the problem to some
degree but also creates some new problems. In finding reliable and efficient node-disjoint

paths. we hide edge with highest edge weight. this forces algorithm to find edges with less

45

weight. But this solution doesn’t work every time, especially in sparse network where
single large edge might consume less energy than group of small edges. This is one of the

limitations of this algorithm on sparse network.
Using maximum flow algorithm and generating auxiliary graph consumes more

processing power: this in turn depletes battery by consuming more power.

46

7. RELATED WORK

In this chapter, we discuss related work done in finding node-disjoint path in wireless
sensor networks

Other approaches finding node-disjoint multi paths is node-disjoint parallel multi-path
routing algorithm (DPMR) [10], it take full advantage of known geographic information
and finds the node-disjoint multi-paths. Idea used in this approach is Local Minimum
Phenomenon. Through improving the packet delivery performance and evenly distributing
the energy load among the sensors, DPMR [10] can prolong the networks system lifetime.
This approach is good as far as we know geographic information of the area in with
wireless sensor nodes is deployed.

Alternative approach with dealing with failed nodes in the network is by using relay
nodes. By using relay nodes, it takes strain out of each node as the most of the transmission
of sensed data is done by relay nodes, which have relatively high power transceivers and

more power. Idea in using relay nodes is formulation and approximation
7.1. Future Work

Future works include finding maximum flow algorithm with idea like local minimum
phenomenon and fine node-disjoint reliable and energy efficient paths and compare them
with the approach | used to in this paper.

To find alternative to shortcoming of shortest path algorithm, by combing shortest path

with idea like local minimum phenomenon and compare with my results in this paper.

47

REFERENCES

[1] D.Estrin, R. Govindan, J. Heidemann and S. Kumar, "Next Centuary Challenges:
Scalable Coordination in Sensor Networks," MobiCOM, August 1999, pp. 263-270.

[2] Volcano monitoring. Harvard Sensor Networks Lab: http:// fiji.eecs.harvard.edu/.
[3] Snow Water Equivalent Monitoring with Wireless Sensor Networks. Sensor
Networks and Wireless Workgroup:
http://www.cems.uvm.edu/research/cems/snow/swe.php.

[4] H.Karland A. Willig, Protocols and Architectures for Wireless Sensor Networks.
West Sussex, England: Wiley 2005.

[5] Information Processing And Routing In Wireless Sensor Networks by Yang

Yu (motorola labs, usa), Viktor K Prasanna (university of southern california,

usa), &Bhaskar Krishnamachari (university ot southern california, usa).

[6] P. Levis, TinyOS Programming. http://csl.stanford.edu/~pal/pubs/tinyos-
programming.pdf. June 28, 2006.

[7] Thomas H. Cormen. Charles E. Leiserson, Ronald L.. Rivest, Clitford SteinlEEE
“Introduction to Algorithms, Second Edition™ The MIT Press Cambridge, Massachusetts
London, England.

[8] Channel Wireless Mesh Networks, ACM MobiHoc 2005, and pp. 68-77.

[9] M.A Labrador. P.M Wightman “Topology Control in Wireless Sensor Networks:
With a Companion Simulation Tool for Teaching and Research™.

[10] Shanping Li, Zhendong Wu. ~“Node-Disjoint Parallel Multi-Path Routing in Wireless

Sensor Networks™ ICESS 2005.

48

[1'1] BinHaoJianTang and GuoliangXue “Fault-Tolerant Relay Node Placementin

Wireless Sensor Networks : Formulation and Approximation™

49

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014

