
REND: RELIABLE AND ENERGY-EFFICIENT NODE-DISJOINT PATHS IN

WIRELESS SENSOR NET\VORKS

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Siva Vanteru

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

Ma: 2010

Fargo. North Dakota

North Dakota State University
Graduate School

Title

REND: RELIABLE AND ENERGY-EFFICIENT NODE-DISJOINT

PATHS IN WIRELESS SENSOR NETWORKS

By

SIVA VANTERU

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Vanteru, Siva, M.S., Department of Computer Science. College of Science and
Mathematics, North Dakota State University. May 20 I 0. REND: Reliable and Energy
Efficient Node-Disjoint Paths in Wireless Sensor Networks. Major Professor: Dr. Weiyi
Zhang.

In wireless sensor networks, finding most reliable and most efficient paths between

source node and destination node is considered NP hard problem. We can increase

reliability by ability to find node-disjoint alternate path when there is any disruption in the

path from source to destination. If we can find reliable paths by keeping efficiency in

consideration then we can increase both reliability and efficiency of paths between source

and destination.

In this paper, we present routing protocol for finding two node-disjoint paths bet\veen

each pair of nodes in a wireless sensor networks. In proposed protocol, each and every

node has the same procedure. In this paper, we compare proposed protocol to traditional

shortest path algorithm to find shortest path (diverse shortest path).

A diverse shortest path has been proven most efficient. as it can compute nodt:-disjoint

paths connecting a source node to a destination nude with minimum total energy. However.

computing node-disjoint path connecting source node to destination node in this approach

may not be reliable. as it may not find second shortest path al I the time. We proposed node

disjoint path algorithm to find reliability of node-disjoint paths in wireless sensor networks.

B) implementation of node-disjoint path algorithm on ,., ire less sensor rn:t works. rel iabi I it)

has definitely increased. By implementing efficient node-disjoint path algorithm on

wireless sensor networks. \Ve improved energy consumption significantly.

iii

ACKNOWLEDGEMENTS

I am heartily thankful to my advisor, Dr. Weiyi Zhang, whose encouragement, guidance

and support from the initial level enabled me to develop an understanding of the subject

and helped me to complete my master's paper.

I would also like to thank Dr. Jun Kong, Dr. Tariq King and Dr. Jin Li for being a part

of my Masters Paper committee.

IV

DEDICATION

I wish to dedicate my work to my advisor Dr. Weiyi Zhang for his incredible suppor1

and guidance, and to my family.

V

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEl'v1ENTS ... iv

DEDICATION .. V

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

I. INTRODUCTION ... 1

I . I. Background .. I

1.2. Notation Used and Network Model ... 2

1.3. Problem Statement ... 4

1.4. Energy !\;Jodel ... 5

2. DIVERSE SHORTEST PATHS SCHEME .. 6

2.1. Description ... 6

2.2. Shortest Path Problem .. 6

2.3. Dijkstra's Algorithm ... 7

2.4. Finding Diverse Shortest Paths .. 8

3. RELIABLE ROUTING USING MAXIMUM FLOW .. 14

3.1. Description ... 14

3.2. Maximum Flo,v .. 14

3.3. Finding Node-Disjoint Paths Using Maximum Flow .. 16

3.3.1. Generating Auxiliary Graph G'(V'. E ·) ... 16

3.3.2. Finding Node-Disjoint Paths ... l 9

VI

3.4. Running Maximum Flow on Original Graph ... 24

4. RELIABLE ENERGY-A WARE ROUTJ;'-;G USING MAXIMUM FLOW 26

4.1. Description ... 26

4.2. Finding Energy Efficient Node-Disjoint Paths .. 26

5. PERFORMANCE EVALUATION ... 33

5.1. Description ... 33

5.2. Simulation Setup .. 33

5.2.1. Net,vork Topology .. 33

5.2.2. Performance Evaluation .. 33

5.2.2.1. Dense Network ... 34

5.2.2.2. Sparse Network .. 38

5.3. Observations .. 43

6. DISCUSSION .. 45

6.1. Description ... 45

6.2. Lessons Learned ... 45

6.3. Chai lenges ... 45

6.4. Liin:tations ... 45

7. RELATED WORK .. 47

7.1. Future Work ... 47

REFERENCES ... 48

VII

LIST OF TABLES

Table I. Shows energy consumption for dense graph with ditrerent density 34

Table 2. Shows number of nodes for dense graph with different density 36

Table 3. Shows the energy consumption of different networks for all three algorithms 39

Table 4. Shows number of nodes for sparse graph with difterent density 41

Table 5. Dense network on constant density ... 42

VIII

LIST OF FIGURES

Figure

Figure I. The graph G(V,E) with source node Sand Destination node D 9

Figure 2. First shortest path sp I from source node S to destination node D I 0

Figure 3. Second shortest path sp1 from source node S to destination node D 11

Figure 4. The new graph G2(Y.E) with source node Sand Destination node D 12

Figur:e 5. The shortest path between Sand D represented by dotted (- ->) line 12

Figure 6. Remaining graph G2(Y.E) after removing node A and node B 13

Figure 7. The original graph G with source node S and destination node IL 17

Figure 8. Generation of auxiliary graph G' .. 18

Figure 9. Graph G. with flow values .. 21

Figure I 0. Node-disjoint paths between source node Sand destination D 23

Figure 11. Equivalent graphs in original graph ... 23

Figure 12. New Graph G with energy consumption as edge weights 24

Figure 13. Edges with flow value and possible paths with high flow magnitude 25

Figure 14. Graph G (Y.E) for DSP algorithm .. 27

Figure 15. Possible node-disjoint paths ... 30

Figure 16. Reliable and energy efficient node-disjoint paths ... 32

Figure 17. Comparison of energy consumption to density in dense graphs 35

Figure 18. Energy consumption vs number of nodes in dense graphs 3 7

Figure 19. Diverse shortest paths ,vithout second shortest path .. 38

Figure 20. Energy consumption of sparse networks with different number of nodes 39

Figure 21. Energy consumption vs. number of nodes in sparse graphs 41
IX

Figure 22. Diverse shortest paths with no second shortest path .. 42

Figure 23. Energy consumption of dense networks with different number of nodes 43

X

1. INTRODUCTION

1. I. Background

Wireless sensor networks (WSN) are seeing great deal of research attention and

increasing usage in sensing applications. WSN has implementations in wide areas from

wildlife monitoring to military [I]. These types of networks consist of individual nodes that

sense data and transmit data by communicating with each other.

Wireless sensors networks are used in collecting information from remote locations in a

cost effective and reliable manner. Examples include Harvard's volcano eruption

monitoring project [21 and the SWE project at the University of Vermont to measure the

snow-water equivalent in a snow pack [3]. Due to the limited availability of the processing

speed and en~rgy, sensor networks need to be very efficient. The goals of wireless sensors

are to sense data and transmit it by consuming very less energy [4].

The wireless sensor node in WSNs consists of hardv\are and software. The hardware

basis of WSNs is driven by advances in several technologies. First System-on-Chip (SoC)

technology in which complete system is integrated on single chip. Sensor nodes such as

UC Berkeley's motes, UCLA's Medusa and WINS are based on commercial SoC based

embedded processors. Second, commercial RF circuits enable short distance v,ireless

communication with extremely low power consumption [5].

Software part of wireless sensor comprised of very small operating system called

TinyOS. which is an event-driven operating system specialized for memory constrained

embedded systems. specifically wireless sensors. The language that is most commonly

used to develop wireless sensor network applications on the TinyOS platform i:. nesC

which has the low-level control benefits of C while optimizing the resource limitations of

a wireless device. The flexible. component-based design of nesC uses tasks and events to

support the particular requirements of this domain. NesC allows several software

components to be statically wired together to form node-level applications [6).

A wireless sensor node also contains a radio transceiver. Radio transceiver contains all

the necessary circuitry to send and receive data over the wireless media. Similar to

microcontrollers. transceivers can operate in different modes. Commercially available

transceivers have different characteristics and capabilities.

The sensor node has primarily two tlmctions. First one is to sense data and second one

is to transmit data. Sensing data consumes a lot less energy compared to transmitting data.

Sensor nodes has very limited energy source. Due to this, some sensor nodes die over the

period. There by decreasing reliability of the complete network.

In order to increase reliability we propose to find energy efficient node-disjoint paths so

that if one node fails in a path from source node to destination node then also there will be

other path that is free from failed node.

1.2. Notation Used and Network Model

This paper uses following notation:

I. G(V,E): Bi-directed bi-connected graph. V is the list of n nodes. E is the list of m

edges and graph G is the representation of the real world wireless sensor network. In

this paper. \Vords network and graph are used interchangeably.

2. G'(V',E'): Directed bi-connected auxiliary graph or generated graph. V' is the list of 2n

nodes. E' is the list of (m-:-n) edges and graph G' is the auxiliary graph ofG.

2

3. S: Source node in graph G(V,E). Se V.

4. D: Destination node in graph G, D e V.

5. Dense graph: Graph with high density of nodes.

6. Sparse graph: Graph with very low density of nodes.

7. dij: Distance between node i and node j.

8. EC(e): Energy consumption of edge of the graph G.

9. R: Transmission range of each node.

I 0. EC(p): Energy consumption of edge of the graph G.

11. EC(p): Energy consumption of path p.

12. eij: Energy consumption between node i and node j.

13. R: Transmission range of each node.

14. T: Transmission range of a sensor node.

15. Field: Field is the area the wireless sensor nodes are randomly placed. in this paper

field size is represented as the area of field where all the nodes of the graph G are

located and are connected with other nodes within transmission range.

16. Transmission Range: (T) Transmission range is the range of the wireless sensor node

it can communicate with other wireless sensor nodes in the network. Transmission

range is same for all the wireless sensor nodes in wireless sensor network.

The field size of the network is different for different graphs. for a given field size

sensor nodes are randomly scattered in the field. For a given graph, transmission ranges of

the nodes are constant. Wireless sensor nodes are connected with all the other sensor nodes

that are situated within the transmission range of the node. The length of a edge e in the

graph G(V,E) where e e Eis d which is always less than or equals to T. i.e., do:::: T.

3

17. Bi-directed Graph: A bi-directed graph G is a directed graph with list of nodes V (G)

and list of edges E (G) each edge oriented as • • • • and this orientation is called

out-edge orientation.

18. Bi-connected Graph: A graph G is called bi-connected if any one node veV is

removed from a graph G and graph G is still connected or if any two nodes in a graph

have two or more node-disjoint paths between them. In a bi-connected graph G.

between source node S and destination node D there will be two or more node-disjoint

paths.

1.3. Problem Statement

Develop a routing algorithm for wireless sensor networks (WSN) to increase the

reliability. efficiency and thereby increasing the performance of the network.

INPUT: A bi-directed bi-connected graph G(V,E), source node S, Destination node D.

OUTPUT: For any given source node Sand destination node D in graph G(V,E), the

problem seeks a pair of node-disjoint paths with optimal energy consumption between

given source node S and destination node D.

To increase reliability we propose to find node-disjoint paths. With node-disjoint paths.

we can be sure that there will be connectivity and possibility of finding node disjoint paths

even after failure of one node on network.

First. we use dijkstra's shortest path algorithm to find diverse shortest paths in graph

G(V.E). Second. \Ve propose scheme which uses maximum flow algorithm to find node

disjoint paths. Third. scheme. \Ve improve energy efficiency by finding energy efficient

node-disjoint paths.

4

1.4. Energy Model

The energy model we used to calculate energy consumption for sensor is based on first

order radio model presented in [8; 9]. Energy consumption of a sensor node to run the

transmitter or receiver circuitry is Ecicc = 50 nJ/bit, energy consumption of transmitter

amplifier is consumes Eamp = I 00 nJ/bit/m 2
. The sensor node consumes Rx Ecicc energy for

receiving I -bit data packet.

The energy consumed by a sensor i to transmit data packet to sensor node j is given by

Tx = (telec + Eamp d,/), where d;1 is the distance between nodes i and j. The total energy

consumption for transmitting packet from sensor node i to sensor node j, is the sum of

transmission energy consumption of i and receiving energy consumption of j. Therefore,

total energy consumption for transmitting I -bit data packet is given by

Rx + Tx (2 Eeiec + Eamp d/)

Rx + Tx = (2 50 + I 00 di/)

Rx + Tx = (I 00+ I 00 d/)

Rx + Tx = I 00 (I + d})

(Since Eeicc = 50 and Eamp I 00)

The distance between two nodes in wireless sensor networks is usually very large and

square of the distance is much larger. Addition on constant I to a very large number is

negligible. Therefore, we can remove constant I from above equation.

1

Rx + Tx = I 00 (d,1-)

From above equation. we can conclude that total energy consumed to transmit a packet

of data is proportional to square of distance between sensor nodes.

Rx + Tx oc (ct,/)

5

2. DIVERSE SHORTEST PATHS SCHEME

2.1. Description

In this chapter, we will find two diverse shortest paths bet\veen source node S and

destination node D in graph G (V,E) by using dijkstra's algorithm. Dijkstra's algorithm

solves the single source shortest path problem in bi-directed, bi-connected and weighted

graph G (V, E). Diverse shortest paths between node u and node v are the shortest paths

that are node-disjoint i.e., there is no node that is common among two paths sp1 and sp2.

After finding the diverse shortest paths between node S and node D, we calculate the

energy consumption of the paths by adding all the edge weight of the edge e that belongs to

diverse shortest path. We calculate the energy consumption of each link and take the

average of two diverse shortest paths.

2.2. Shortest Path Problem

In a shortest-paths problem, the input is weighted. bi-directed bi-connected graph G =

(V, E), with weight function w: E R mapping edges to real-valued-weights i.e .. the

distance of the edge or length of the edge. The length of path p = vO. v I, vk is the sum of

the weights of its constituent edges. [7]

The shortest-path weight of path from node u to node vis defined as

o(u, v) = {min {w(p):u ~ v} if there is path from u to v
oo, otherwise.

A shortest path can be defined as any path p from node u to node v where \veight of the

path w(p) 6(u.v).

6

2.3. Dijkstra's Algorithm

The shortest path algorithm used in this paper is dijkstra's algorithm [7] as it solves

the single pair shortest path problem on bi-directed bi-connected weighted graph G =

(V,E).

In Dijkstra's algorithm, final shortest-path weights from the sources have already been

determined as they are stored in set S. Vertex u E V S with the minimum shortest-path

estimate are repeatedly selected by algorithm and then adds u to S, after adding u to S all

the edges leaving u are relaxed. In the following implementation. we use a min-priority

queue Q of vertices. keyed by their d values.

Algorithm 2. Dijktra's algorithm n

I. DIJKSTRA(G,w,s)

2. INITIALIZE-SINGLE-SOURCE(G.s,D)

3. assign S to 0

4. assign Q to V[G]

5. while Q not equal to 0

6. do u ~ EXTRACT-MIN(Q)

7. S ~ S union {u}

8. if u equals D

9. break

10. for each vertex v E Adj[ul

11. do RELAX(u.v.w)

7

In line I d and rr values are initialized and at line 2 set S is initialized to the empty set.

At the start of the each iteration of the while loop of at lines 4-8 algorithm maintains the

invariant that Q V - S. At line 3 min-priority queue is set to contain all the vertices in V,

since S 0 at that time, the invariant is true after line 3. Vertex u is extracted from Q == V

Sand added to set S thereby maintaining the invariant. Then, lines 7-8 relax eaeh edge (u.

v) leaving u, thus updating the estimate d[v] and the predecessor rr[vj if the shortest path to

v can be improved by going through u. Vertices are never inserted into Q after line 3 and

that each vertex is extracted from Q and added to S exactly once. while loop of lines 4-8

iterates exactly IVI times.

2.4. Finding Diverse Shortest Paths

We use dijkstra's algorithm to find diverse shortest paths between source node Sand

destination node D in graph G(V.E). First. we will find first diverse shortest path sp 1

between source node S and destination node D. This will give us the first path that is

present between source node S and destination node D. After getting the first diverse

shortest path sp1. we remove all the nodes that are present in the first diverse shortest path

sp 1 and try finding the second diverse shortest path sp2 between source node S and

destination node D if there exists one.

In algorithm 3. we propose pseudo code to find diverse shortest paths betvveen source

node S and destination node D. First we read graph G. source node S and destination node

D. In second step. using algorithm I v\e find first shortest path p1. In third step. we loop

through all the nodes present in first shortest path p I and we wi 11 remove all corresponding

nodes. By this way. we knmv that when vve find next shortest path we will know that

second shortest path Pc doesn ·1 consists of any nodes that were included in first shortest

8

path p1. In step six. using algorithm I we find second shortest path p2 . If there is. a second

shortest path then algorithm will return two paths p1 and p2. Figure I, figure 2 and figure 3

explain in detail how to find diverse shortest paths sp1 and sp2•

Algorithm 3. Diverse shortest path pseudo code

I. read graph G, source S and destination D

2. using Algorithm 1 find shortest path P1

3. for each node n E Pi

4. remove n from graph G

5. end for

6. using algorithm I find second shortest path P2

7. if3p2

8. return p1 and P2

9. else

I 0. drop the request.

A

s D

B

Figure 1. The graph G(V.E) vvith source node Sand Destination node D
9

/

s

--
/

/ A

/2
/

B

........

D

Figure 2. First shortest path sp1 from source node S to destination node D

We find the first shortest path sp1 from source node S to destination node D.

w[pi] 2 + 10 12

Energy consumption of the path is sum of the square of the edge weight of the edges in

the path sp 1.

' ' Ec(pi) = (2 r + (IO t 4 -r- I 00 = I 04

w[p2] 8+ 4 = 12

Now as we got the first diverse shortest path. v,e vvill remove all the nodes that are part of

sp I except source node and destination node.

Finding diverse shortest paths is not as simple as it seems because using shortest path

algorithm to find diverse shortest path may not result in succt':ss.

10

s

\
\

' ' 8
........ - /

/

/
4/

/

D

Figure 3. Second shortest path sp1 from source node S to destination node D

Energy consumption of the path is the summation of the square of the edge weight of

the edges in the path sp1.

) 0

(&r+(4r 64 + 16 = 80

After finding first diverse shortest path. there is no assurance that there will be another

second diverse shortest path between source node S and destination node D.

We will explain in the following figure 4. figure 5 and figure 6 why it is not always

possible to find second diverse shortest path between source node S and destination node

D.

In this example. we try to find diverse shortest paths sp, and sp2 between source node S

and destination node D. The figure 4 shows the graph we choose for this example. The

figure 5 shows possible shortest path between source node S and destination node D in

graph G2. The figure 6 shows graph after removing nodes that are associated with first

shortest path sp 1.

The shortest path between source node Sand destination node D is

sp 1 S - A - B - D. w [sp1 I 2 3+ 4 = 9.

11

A

s 3 D

B

Figure 4. The new graph G2(V.E) with source node Sand Destination node D.

A

s

B

Figure 5. The shortest path between Sand D represented by dotted (-->)line.

We will nO\v remove all the nodes that are associated ,vith first diverse shortest path sp 1

and try to find second diverse shortest path sp2. lkre ,\e remove node A and node B. there

12

by all the corresponding edges will be removed. The figure 5 shows in detailed graph after

removing nodes that are present in first shortest path sp 1•

In figure 6, we can see that there is no connection between source node S and

destination node D as the node A and node B are removed the connecting edges are also

removed.

s D

Figure 6. Remaining graph G2(V,E) after removing node A and node B

We can say that using shortest path algorithm to find node-disjoint or diverse paths is

not always a good thing as we may not find diverse shortest paths every time.

Shortest path algorithm may give us paths with less energy eonsumption but it may not

be reliable even though there is a diverse or node-disjoint path. The reliability of diverse

shortest path scheme is not I 00%.

In order to improve the reliability. \Ve propose another scheme to tind reliable routing.

We call it as reliable routing using maximum tlow. In the next chapter. \\e discuses about

the reliable routing using maximum tlc)\v algorithm and improve network reliability.

13

3. RELIABLE ROUTING USING MAXIMUM FLOW

3.1. Description

In this chapter, we find all node-disjoint paths between source node S and destination

node D in bi-connected bi-directed weighted graph G (V,E) by using maximum flow

algorithm. By using maximum flow algorithm, we can find all node-disjoint paths between

any two nodes in bi-connected bi-directed weighted graph G(V,E).

In order to find node-disjoint paths we generate new graph called auxiliary graph

G'(V',E') from graph G(V,E) with 2n nodes and m n edges. The new graph generated

will help in finding the node-disjoint paths when we run maximum flow algorithm on it.

3.2. Maximum Flow

The maximum flow problem [71 is all aboui computing the greatest rate at which data

can be transferred from source node S to destination node D without violating any capacity

constraints. This basic technique is used in maximum flow algorithms can be adapted to

solve our problem of finding node-disjoint paths.

A flow network G(V, E) is a directed graph in which each edge (u, v) E E has a

nonnegative capacity c(u, v) ~ 0. If (u, v) fl. E. we assume that c(u. v) 0. We differentiate

two vertices in a flow network: a source S and a destination D. We assume that every

veriex lies on some path from source node to sink. That for every vertex v E V, tht:re is

a path between two nodes in the graph. therefore graph is connected and set of edges is

greater than or equal to set of all nodes minus one. /El IV I - I.

We can now define flows formally. Let G (V, E) be a tlov\ network \vith a capacity

function c. Let S be the source of the network. and let D be the destination. A flow in Ci is a

14

real valued function f: V x V - R that satisfies the following three properties:

1. Capacity constraint: For all u. v E V, we require f (u. v) < c(u, v).

The capacity constraint says that tlow from one node to another node must

not exceed the given capacity.

2. Skew symmetry: For all u, v EV. we require f(u. v) - f (v. u).

Skew symmetry says that flow from node u to node v is the negative of the

tlow in the reverse direction.

3. Flow conservation: Forall u EV - (s, t}. we require

L f(u,v) = 0
vEV

Flow conversation property says that the total out of a vertex other than source node is

0, i.e., total data flowing into any particular node is always equal to total data flowing out

ofa node. For all v EV - {S.D}. i.e., the total flow out of a vertex is 0.

The flow from vertex u to vertex v is defined by t(u.v). which can be positive. zero. or

negative. The value of flow is defined as

1/1 = L f(u,v),
vEV

That is. the total flow value from node u node v.

We can define total positive flow entering node as

L f(u,v).
vEV
f(u,v)

15

The total positive tlow leaving a node is defined symmetrically. Total net flow at a node

can be defined as total positive flow leaving minus total positive flow entering a node. The

net flow at a node must equal to zero. it is also referred as "flow in equals flow out".

Algorithm4. Maximum tlow algorithm /7!

Max-Flow (G. s. t)

I.

2.

3.

4.

5.

6.

7.

8.

assign C to max(u., i E Ec(u. v)

initialize flow f to 0

assign K to

while K greater than or equals I

do while there exists an argument path p of capacity at least K

do augment flow f along p

assign K to K / 2

return f

3.3. Finding Node-Disjoint Paths Using Maximum Flow

There are several steps in finding node-disjoint paths. First step in finding the node

disjoint paths is to generate auxiliary graph G'(V'S') from original graph G(V,E).

3.3.l. Generating Auxiliary Graph G'(V', E')

Generating auxiliary graph is the most important step in finding node-disjoint paths in a

network. First step in generating auxiliary graph is to split all the nodes in the graph other

than source node S and destination node D.

Splitting nodes is called "node-splitting" and it is done by splitting each node i in G.

other than S and D. into two nodes i' and i" and adding a "node-splitting" edge (i' , i") of

16

unit capacity. Figure 7 shows original graph G with source node Sand destination node D.

A

s 3 D

B

Figure 7. The original graph G with source node S and destination node D.

All the edges in graph G entering node i now enter node i' and all the edges going out

from node i, now go out through i". in auxiliary graph G'. Figure 8 explains how auxiliary

graph G' is generated.

After the splitting of the nodes next thing to be done is adding the edges between nodes

in graph G' corresponding to the edges in original graph. We assign a capacity of en to each

edge in graph G' except the node-splitting edges, which have unit capacity. There will be a

one-to-one correspondence between the edge-disjoint paths in G' and node-di~joint paths in

G. As a result, the maximum number of arc-disjoint paths in G' is equals the maximum

number of node-disjoint paths in graph G. Figure 8 shov\s auxiliary graph Ci' that is

generated from original graph G.

17

1

s D

Figure 8. Generation of auxiliary graph G'

Algorithm 5. AuX-GRAPH_GEN(G)

I. read original graph G(V, E)

2. repeat

3. for each node in original graph G(V, E)

4. generate two nodes n1 and n2 in auxiliary graph G'(V', E')

5. add node splitting edge with unit capacity between n1 and n2

6. n n + I

7. end for

8. until all nodes in original graph are reached

9. for all nodes in original graph

10. an edge entering node n in original graph \viii enter n1 in auxiliary graph

11. an edge leaving node n in original graph will leave n2 in auxiliary graph
18

12. end for

13. write auxiliary graph to file

In figure 7. we have original graph for which we have to generate auxiliary graph. In

figure 8. we can see that each node other than source node S and destination node D are

split. Node A is split into A', A" and node B is split into B', B". After splitting nodes, we

add edge with unit capacity between split nodes. i.e .. between nodes A'. A" and B', B".

We add edges between nodes in auxiliary graph G'(V'. E') which are equivalent to

original graph G(Y,E). But here edge entering node A in original graph will enter node A'

in auxiliary graph and edge leaving node A will leave from A'', similarly edge entering

node B in original graph will enter node B' and node leaving B in original graph will leave

B" in auxiliary graph. All the edges in auxiliary graph G' other than node split edges have

infinite capacity.

If n equals total number of edges in original graph G(V, E) and e equals total number of

edges in original graph G(V, E), then total number of nodes in auxiliary graph G'(Y', E')

are 2n-2, and total number of edges in auxiliary graph G'(V'. E') are e + n.

3.3.2. Finding Node-Disjoint Paths

After generating auxiliary graph Ci' we run maximum flow on it to find node-disjoint

paths. Algorithm 4 explains how the auxiliary graph is generated. In next step. we will give

algorithm for finding node-disjoint paths between source node Sand destination node D.

Algorithm6. RELIABLE-ROUTING (G, S. D)

I. read graph G. source S and destination D

2. using algorithm 5 generate auxiliary graph G'

3. using algorithm 4 compute the maximum flow from source to destination

19

4. for (i I to f)

5. generate path Pi by tracing all nodes from destination node D to source node S

whose edges with flow value I.

7. end for

8. for (i = I to f)

9. for all edges in graph G'

I 0. if (edge e > I)

I I . if(e E p 1)

12.

13. end if

14. end if

15. end for

16. end for

17. sort (Ec(p 1), Ec(p2) Ec(pr)

18. Ecavg Ec(p 1) + Ec(p2) / 2

19. return Eca,g

After running maximum flow on auxiliary graph d. on each edge we get the flow and

capacity values. Here numerator denotes flow value and denominator denotes capacity

value.

At node A "flow in" must equal "110\,V out". The out tlov, at node A must equal I. the

edge between node A, and node A,, is I. At node A' there are two edges leaving node. The

flow value on edge node A and node D is I as it results total flow value between source

20

node S and destination node D to be maximum. If the flow value between node A" and

node s' is I. i.e., There is a flow between them then total flow value between source node S

and destination node D is not maximum. We use maximum flow to find maximum amount

flow possible between source node S and destination node D

Flow value on edge between source node S and node s' is I even though capacity is (A).

This is because the of flow conversation property, that is, the total flow into a vertex has to

be 0. The figure 9 shows flow value on edge between source node S and node A, is I even

though capacity is XJ. This is because the of flow conversation property, that is, the total

flow into a vertex has to be 0. In The following figure we will see the flow on the network

after running maximum flow on graph G'.

/
s

""

/
/

/

'

Node-disjoint path 1

/
/

.,,,- -1tl -
A' __._, A"

' ' ' ' ' -- - / Node-disjoint path 2

Figure 9. Graph Ci with flow values

21

At node A, "flow in" must equal "flow out". The out flow at node s· must equal L the

edge between node s' and node s" is I. At node a" there are two edges leaving node. The

flow value on edge node a" and node D is I as it results total flow value between source

node Sand destination node D to be maximum.

Flow value on the edges between node A" and a' and edge between node s' and A. is 0.

As there is no flow on these edges, they can be removed. We get node-disjoint paths after

removing edges that doesn·t have any flow.

The figure IO shows two node-disjoint paths between source node S and destination

node D. with flow values are on edges of the paths indicating the node-disjoint paths.

After finding node-disjoint paths on the auxiliary graph, we have to find equivalent

paths of node-disjoint paths of auxiliary graph in original graph.

Split nodes in auxiliary graph are unified in the original graph and equivalent node

disjoint paths in original graph doesn't include node split arc but unifies two split nodes

into one.

We calculate the energy consumption of the node-disjoint path by adding the energy

consumption of each edge (link) in the path. Energy consumption of each edge is the

amount of energy it takes a node to forward a packet to next node in the path. Here we find

all the node-disjoint paths that are present in the network as shown in figure 11. But finding

node-disjoint paths is not final: we have to find the paths with lowest energy consumption

and also two paths with minimum total energy consumption. We get two node-disjoint

paths P1 and P2• Energy consumption of the path is the sum of energy consumption of each

and individual edge that is included in the path. i.e .. energy consumption of path p = vO. v L

.... vk is the sum of the energy consumption of its constituent edges.

22

Node-disjoint path 1 (P1)

s

1/1 /
s· ,~ s" /

' /
__ .,,,,,

Node-disjoint path 2(P2)

/
/

D I

Figure IO. Node-disjoint paths between source node Sand destination D

s

/
/

Node-disjoint path 1(p1)

/

/
/2

---- ' A

Node-disjoint path 1 (P2)

Figure 11. Equivalent graphs in original graph

D

3.4. Running Maximum Flow on Original Graph

In this section, we tell the reason of generating auxiliary graph d with spitted nodes

which have unit node-splitting edges and why it is necessary to generate auxiliary graph in

order to find all the node-disjoint paths.

We use a new graph G for proving that we can't find node-disjoint all the time when we

run maximum flow algorithm on graph without node-splitting.

We run maximum flow algorithm on the graph G in figure 12, to see what paths we can

get for the maximum flow magnitude between source node S and destination node D.

' 12
A

\
C

/ ~.

s 10
7 D

'

~.· /. B E

14

Figure 12. New Graph G with energy consumption as edge weights

The figure 13 shows all possible paths between source node S and destination node D

after running maximum flow on the original graph G.

All the nodes in graph other than source node S and destination node D are saturated

and there is no way to transmit more flm" through the graph. The tltw, value through the

graph is the amount of tlO\\ leaving the source node S is equal to the flow value entering

destination node D. Here the tlow value is 23.

24

/ A

7.'
1 1/10 s

12/12

~ B

11/14

Figure 13. Edges with flow value and possible paths with high flow magnitude

In this figure 13, we have different edges with two different colors "red" color and other

in "blue" color. All the edges with flow value at least 1 will constitute paths between

source and destination. In order to get node-disjoint paths we need to have edges with red

color present in paths. If we can get edges with red color all the time then we can get node

disjoint paths all the time. But maximum flow doesn't guarantee that it will lead us to node

disjoint paths all the time. Paths from source node to destination can be combination of r~d

edges and blue edges.

We may get different values on the edges that are not on minimum cut, when choose

paths in different order. But the total flow value will be same i.e., the flow magnitude will

be same.

By this method, we can't conclude that we can get node-disjoint paths on the network.

But by generating auxiliary graph, we can guarantee that every time we can get node

disjoint paths. And we can find all the possible node-disjoint paths that are present in the

network.

25

4. RELIABLE ENERGY-AWARE ROUTING USING

MAXIMUM FLOW

4.1. Description

In this chapter, we discuss how to increase the energy etliciency of node-disjoint paths

while maintaining high reliability. In the previous chapter, we discussed how to find node

disjoint paths. A way to achieve high reliable node-disjoint paths is by using maximum

flow algorithm and generating auxiliary graph.

4.2. Finding Energy Efficient Node-Disjoint Paths

Here we propose new scheme to improve energy efficiency of the reliable node-disjoint

path routing using maximum flow algorithm. In a network, some links between nodes can

have high energy consumption. These edges will drain all energy of nodes it corresponds

and thereby decreasing the life time of the network.

If we can find a way to eliminate edges or links between nodes that are not necessary in

communication between nodes, by this we can avoid unnecessary wastage of energy and

thereby decreasing overall consumption of the network. This intern increases overall

reliability of the network there by increasing total performance of network.

We know increase reliability by combining high energy consuming link removal with

maximum flow algorithm. This combination of our scheme with maximum flow algorithm

increases the efficiency of the network. The figure 14 shows the graph we consider for this

scheme. We have a net\,\Ork (graph G) for vvhich ½e have to find node-disjoint paths from

source S to destination D. We have discussed finding node-disjoint paths in previous

chapter. Here also \Ve are going to use same scheme. We will be generating auxiliary graph

26

G' from original graph G to find node-disjoint paths.

A

24 s E D

25

F

Figure 14. Graph G (V,E) for DSP algorithm

In order to generate auxiliary graph G' we split all nodes in graph G' and add unit edges

between them and call them as "node splitting edges". In auxiliary graph G'. we use

capacity in contrast to energy consumption used in original graph G. Splitting nodes is

called "node-splitting" and it is done by splitting each node i in G, other than Sand D, into

two nodes i' and i" and adding a "node-splitting" edge (i',i") of unit capacity. All the edges

in graph G entering node i now enter node i' and all the edges going out from node i now

go out through i" in auxiliary graph Ci'.

A tler the splitting of the nodes next thing to do is to add the edges between nodes in

graph G' corresponding to the edges in original graph. We assign a capacity of,. to each

27

edge in graph G' except the node-splitting edges, which have unit capacity. There will be a

one-to-one correspondence between the edge-disjoint paths in G' and node-disjoint paths in

G. As a result, the maximum number of arc-disjoint paths in G' is equals the maximum

number of node-disjoint paths in graph G.

Generating auxiliary graph G' is the first part of the process, next part would be to find

node-disjoint paths between source node S and destination node D. We find node-disjoint

paths similar way as we find in chapter 3. i.e., by running maximum flow algorithm on

graph G, to find all node-disjoint paths that are present between source node S and

destination node D.

Running maximum flow on auxiliary network gives us node-disjoint paths. It is similar

to what we have done in previous chapter. Algorithm 6 explains working of the scheme we

use in this chapter to find reliable node-disjoint paths.

Algorithm6. Energy Efficient Reliable Node-disjoint Path Algorithm

REL-NODE-DIS(G, S, D)

I. read graph G, source S and destination D

2. using algorithm 5 generate auxiliary graph G'

3. using algorithm 4 compute the maximum flow from source to destination

4. for (i I to f)

5. generate path p, by tracing all nodes from destination node D to source node

S whose edges with flow value I.

6. Ec(p,) O

7. end for

8. if (f > I)

28

9. then

l 0. for all edges in graph G

l l. search for edge e with highest energy consumption in Graph G

12. if(Ec(e) > Ec(G - e))

13. then

G G-e 14.

15.

16.

goto step I

else

17. G G + e

I 8. goto step I

19. endif

20. for (i = I to f)

21. for all edges in graph G'

22. if (edge e > I)

23. if (e E p I)

24. Ec(p1) Ec(pi) + Cc(e)

25. end if

26. end if

27. end for

28. end for

29. sort (Ec(pi). Ec(p2) Ec(pr)

30. = Ec(p1) + Ec(p2) / 2

31. return Eca,g

29

The figure 15 shows one possibility of pair of node-disjoint paths that are present

between source node S and destination node D. Both paths are distantly marked with

different colors. The one with red color is first path p 1 and the one with green is second

path P2-

A
12

B

14

,, C
25

1i 15

14
s !

24
E D

·~

F

~ 16
G

i.f,-~--,··----+i H

Figure 15. Possible node-disjoint paths

When we run maximum flow on auxiliary graph G' we get all possible paths present in

the network. Among all paths, we consider only two paths which have minimum sum of

energy consumption of these two paths. Paths Pt and p2 have very less combined energy

consumption. This is the main reason for considering these two paths for this particular

network.

Now we calculate the energy consumption of each path. According to energy model

30

defined previously. Energy consumption of each edge is approximately equal to the square

of the distance. Energy consumption of total path is sum of all edges present in the path.

Similarly, we calculate energy consumption of second path p2.

, .1 , ,

Ec(p2) = (I Of+ (16f + (16)~ + (25t

Ec(p1) = 100 + 256 + 256 + 625

We got energy consumption of each path. The total energy cons um pt ion of two paths is

the summation of energy consumption of paths p1 and p2.

Ec(p1+ p2) = Ec(pi) + Ec(p1).

We got the energy consumption of two node-disjoint paths. We propose scheme in order

to improve energy consumption.

If we have two or more than two node-disjoin~ paths present between source node and

destination node, then we take out the edges with highest energy consumption in the

network and run maximum flow algorithm on the network to find node-disjoint paths. If we

get two or more than two node-disjoint paths between source node S and destination node

D even after removing edges with highest magnitude. then we will remove edges with next

highest magnitude and run maximum no\\ on the net\\-ork. We do this until \Ve get flow

value of maximum flow as one i.e., there is one node-disjoint path present between source

node S and destination node D. But we need a pair of node-di~joint paths to improve

31

reliability of the network. So we go back one step, we add last removed edges back to

network. This way of adding all the edges back to network will give us two node-disjoint

paths in network between source S and destination D.

The figure 16 shows after removing the edges with highest magnitude we are able to get

a pair of node-disjoint paths with improved energy consumption.

0 0
0

16

Figure 16. Reliable and energy efficient node-disjoint paths

32

5. PERFORMANCE EVALUATION

5.1. Description

This chapter, we present simulation results to evaluate the performance of proposed

routing algorithms. We have two goals. First, determine how our reliable routing

algorithms perform m real world. Second, compare performance of reliable routing

algorithm with each other and compare reliable routing with diverse shortest path

algorithm.

5.2. Simulation Setup

In this section. we give a brief overview of the different modules used in our simulator.

5.2.1. Network Topology

For test purposes, we define two field sizes as I 00 by 100 square and I 000 by I 000

square. We use two different field sizes to generate two graphs with different node density.

The two graphs generated are dense graph and sparse graph. Dense graph has a field size of

l 00 by I 00 square and sparse graph has field size of I 000 by I 000 square.

In generating graph we use field size as the area in which all the nodes are present, these

nodes are randomly generated which is similar to random deployment of sensor nodes in

the field. Each node has transmission range of 25 in dense network and transmission range

of 150 in sparse network, ever~1 node can transmit data within its transmission range.

We assume that geographical topology is same throughout our simulation for all

networks.

5.2.2. Performance Evaluation

In performance evaluation. we considered to run all three algorithms on different graphs

33

with different number of nodes in both dense and sparse networks. In order to get accurate

results we have taken average of ten Node-Disjoint paths for each graph. Taking the

average value is significant as it helped in finding accurate value.

5.2.2.1. Dense Network

First, we considered to run all three algorithms diverse shortest path (DSP), node

disjoint path (NOP), and energy efficient shortest path (ENDP) on dense graph.

The field size of dense network is considered l 0,000 square and each sensor network

has transmission range of 25. We run all three algorithms on different graphs with different

number of nodes in it. The density is different for different graphs.

Networks with nodes l 0, 25, 50, 75, l 00,200 are considered as dense networks for field

size l 0,000 square. Here DSP is diverse shortest path algorithm, NOP is node-disjoint path

algorithm and ENDP is efficient node-diverse shortest path. Table l shows the energy

consumption of different networks for all the three algorithms DSP, NOP, ENDP

respectively.

Table 1. Shows energy consumption for dense graph with different density

0.001 1354.8

0.0025 1036.3 1158.3 1135.7

0.005 1157.9 1650.1 1599

0.0075 859.2 1302.7 1277.6

0.0085 561.1 805.2 718.199

O.ot 761.799 1128.6 1039.3

0.02 507.5 1205.S 883.8

34

. The figure 17 is the graphical representation of energy consumption for dense

networks. Here the densities of networks are 0.001, 0.0025, 0.005, 0.0075, 0.0085, 0.01,

and 0.02.

Energy Comparision
1800

1600

1400

1200 -1 1000
cu 800 C:

"' 600

400

2,00

0

0.001 0.0025 0.005 0.0075 0.0085 0.01 0.02

Density

Figure 17. Comparison of energy consumption to density in dense graphs

■ DSP

ENDP

■ NOP

As the shortest path algorithm is the most efficient algorithm for finding shortest path

accurately. Hence diverse shortest path (DSP) algorithm can find routes with least energy

consumption. It can be seen that node-disjoint pmhs found through DSP consume least

amount of energy.

Node-disjoint path (NDP) algorithm can find reliable disjoint paths between source and

destination nodes. We can see from figure 16 that disjoint routes by NOP consume more

energy as it tries to find reliable routes between source and destination nodes. NDP

algorithm compromises efficiency to reliability. Here energy consumption is significantly

more than other two algorithms.

35

Efficient node-disjoint path (ENDP) algorithm uses same principle in finding reliable

node-disjoint paths as NDP algorithm but tries to minimize energy consumption.

Table 2 shows the energy consumption of different networks with different number of

nodes for all the three algorithms DSP, NDP, ENDP respectively.

Table 2. Shows number of nodes for dense graph with different density

Number of nodes DSP NOP ENDP

10 1277.9 1529.1 1354.8

25 1036.3 1158.3 1135.7

50 1157.9 1650.1 1599

75 859.2 1302.7 1277.6

85 561.1 805.2 718.199

100 761.799 1128.6 1039.3

200 507.5 1205.5 883.8

We can see from figure 18, that node-disjoint paths by ENDP algorithm consume

significantly less energy than NOP algorithm without compromising reliability. We can

calculate gain in energy consumption by ENDP algorithm. The energy consumption gain

can be calculated by

E . EC(INDP paths)- ECQ:ENDP paths) * Jl(),(),
nergy gain= EC(INDP paths)

. 9277-8008
Energy gain= --- * 100

9277

Energy gain= 13. 67%

36

The gain in energy consumption is 13.67 %; this is significant gain in energy

consumption without compromising reliability.

Shortest path algorithm is efficient algorithm to find shortest paths between source and

destination nodes. Diverse shortest path algorithm to find node-disjoint paths is also

efficient but not reliable. There is possibility that diverse shortest path algorithm may not

be able to find second shortest path.

In figure 19, we can see graph for all the networks with no second shortest path when

we used diverse shortest path (DSP) to find node-disjoint paths between source and

destination. We can see in figure 18, as density of network increases performance of DSP

increases a~ the connectivity of network increases. In sparse graph network is more likely

less connected compared to dense graph. Percentage gain is calculated by.

s
i:a ...
CII
C

"'

Number of no second shortest path
-= % of no second shortest paths = ---------- *100

Total mtmber of paths

i.e.% ofno second shortest paths=_!_ ~100 = 11.43%
7•10

1800

1600

1400

1200

1000

800

600

400

200

0

10 25 50 75 85

Density

100 200

Figure 18. Energy consumption vs number of nodes in dense graphs

37

■ DSP

ENDP

■ NDP

2.5
..c ...
Ill 2 ~

t;
CII
t: 1.5 0 ..c
Ill
'ti 1 C
0 u
CII
Ill 0.5
0 z

0

10

No Second Shortest Path

25 50 75 85

Number of nodes

--,

100 200

- No Second Shortest
Paths

Figure 19. Diverse shortest paths without second shortest path

We can calculate percentage of no second shortest path for networks considered.

5.2.2.2. Sparse Network

Here we considered to run all t~ree algorithms diverse shortest path (DSP), node

disjoint path (NDP), and energy efficient shortest path (ENDP) on sparse graph.

The sparse network we are considering here has field of size 1000* 1000 square and

each sensor network has transmission range of 150. We run all three algorithms on

different graphs with different number of nodes in it. The density is different for different

graphs.

Networks with nodes 100, 200, 300, 400,500 are considered as dense networks for field

size 10,000 square. Here DSP is diverse shortest path algorithm, NDP is node-disjoint path

algorithm and ENDP is efficient node-diverse shortest path.

Figure 20 and figure 23 are the graphical representation of energy consumption for

sparse networks and dense networks respectively. Here the densities of networks are

38

0.0001, 0.0002, 0.0003, 0.0004, and 0.0005. Table 3 shows energy consumption of

different networks with different network density.

Table 3. Shows the energy consumption of different networks for all three algorithms

Density DSP

0.0001 142218

0.0002 53832.2

0.0003 48773.7

0.0004 37008.4

0.0005 28814.9

0.0001 0.0002 0.0003

NOP

195950

84743.9

89439.4

75227.8

68765.5

0.0004 0.0005

ENDP

185917

82845.1

87756.9

74394.8

67932.1

■ DSP

■ ENDP

■ NDP

Figure 20. Energy consumption of sparse networks with different number of nodes

As the shortest path algorithm is the most efficient algorithm for finding shortest path

accurately. Hence diverse shortest path (DSP) algorithm can find routes with least energy

39

consumption. It can be seen in above figure that node-disjoint paths found through OSP

consume least amount of energy.

Node-disjoint path (NOP) algorithm can find reliable disjoint paths between source and

destination nodes. We can see from figure 18, that disjoint routes by NOP consume more

energy as it tries to find reliable routes between source and destination nodes. NOP

algorithm compromises efficiency to reliability. Here energy consumption is significantly

more than other two algorithms

Efficient node-disjoint path (ENOP) algorithm uses same principle in finding reliable

node-disjoint paths as NOP algorithm but tries to minimize energy consumption.

We can see from figure 18, that node-disjoint paths by ENOP algorithm consume

significantly less energy than NOP algorithm without compromising reliability. We can

calculate gain in energy consumption by ENOP algorithm. The energy consumption gain

can be calculated by

E
• ECQ:NDP paths)- RC(D!NDP paths)

nergy gain=
RC(ENDP paths)

* 100

E . 514126.6-498845.9 *lOO
nergy gain= 514126.6

Energy gain= 2. 97%

The gain in energy consumption 1s 2.97 %, this is significant gain in energy

consumption without compromising reliability. When we compare energy gain with dense

networks, actual energy gain is much less. due to the fact that there are much less

alternative routes from source to destination. Table -i shovvs energy consumption for

different number of nodes for sparse graph ,vith constant density. Figure 21 shows energy

consumption for different number of nodes on sparse net\\ork.

40

100 200 300 400 500

■ DSP

■ ENDP

■ NDP

Figure 21. Energy consumption vs. number of nodes in sparse graphs

Table 4. Shows number of nodes for sparse graph with different density

Number of nodes DSP NOP ENDP

100 142218 195950 185917

200 53832.2 84743.9 82845.1

300 48773.7 89439.4 87756.9

400 37008.4 75227.8 74394.8

500 28814.9 68765.5 67932.1

Shortest path algorithm is efficient algorithm to find shortest paths between source and

destination nodes. Diverse shortest path algorithm to find node-disjoint paths is also

efficient but not reliable. There is possibility that diverse shortest path algorithm may not

41

be able to find second shortest paths. Figure 22 shortcoming of DSP in finding second

shortest path. Table 5 shows energy consumption for dense network with constant density.

No Second Shortest Paths
2.5

2

- 1.5

i
II
C

11,1 1 - No Second Shortest Paths

0.5

0 +---- ""T-----------------,
100 200 300

Number of nodes

400 500

Figure 22. Diverse shortest paths with no second shortest path

Table 5. Sparse network on constant density

Density Number Of DSP NOP

Nodes

0.0075 50 925 1326.7

0.0075 75 859.2 1302.7

0.0075 100 1162.8 1924

0.0075 125 1254.9 1839.6

0.0075 150 1699 2941.8

0.0075 175 1182.9 1873.7

42

ENDP

1225.1

1277.6

1767.4

1812.4

2899.5

1805.6

The figure 23 shows graphical representation of energy co~sumption for different

number of nodes with density of nodes constant.

3500

3000

2500

2000 ■ DSP

■ ENDP
1500

■ NDP

1000

500

0

so 75 100 125 150 175

Figure 23. Energy consumption of dense networks with different number of nodes

5.3. Observations

The experimental results had lot of variation from dense network to sparse network.

This is because of the density of the network. Denser the network is, more edges or links

are present between nodes. Denser the network is stronger the connectivity between node

within the network. Less dense the network or t~e sparser network is lesser is the

connectivity between nodes within the network as there are few edges or links between

nodes.

Energy efficient node-disjoint algorithm behaved differently on dense network and

sparse network. In dense network, the results of energy efficient node-disjoint path

algorithm were expected. The energy consumption is less than reliable node-disjoint

algorithm.

43

As density is more, there are more nodes connected with each other. This in turn

increases the possibility of more node-disjoint paths between nodes. Due to high

connectivity between nodes, we have more alternate paths with less energy consumption in

dense networks. nodes are very near to each other. Less energy will be consumed to

transmit data from one node to another.

In sparse network energy, consumption of energy efficient node-disjoint path algorithm

is slightly greater or equal to reliable node-disjoint path algorithm. This phenomena is

observed because in sparse network we have node that are scattered in a very large field.

There will be less number of edges or links between nodes in sparse network. Due to this

connectivity of entire network will be less when compared to dense networks. Here nodes

are scattered, some nodes can be very near to each other might be very far from each other.

We generally observe edges with high energy consumption and edges with very low energy

consumption.

In sparse network when we are implementing energy efficient node-disjoint path

algorithm, we observe paths having many edges have less energy consumption. This is

because in energy efficient node-disjoint path algorithr.1, we avoid the links or edges with

largest energy and choose edges with less energy consumption. In sparse networks as nodes

are scattered some nodes are close to each other and some far, when we try to avoid a edge

with high energy consumption then we will end up with more number of edges with less

individual energy consumption. Total energy consumption of all these small edges will be

high.

44

6. DISCUSSION

6.1. Description

In this chapter, we discuss lessons learned, challenges and limitations of usmg

maximum flow algorithm to find reliable and energy-efficient node-disjoint paths in

wireless sensor networks.

6.2. Lessons Learned

There are many ways to find node-disjoint paths in wireless sensor networks. By using

shortest path algorithm is the easiest way due to limitations of shortest path algorithm we

couldn't find node-disjoint path always. By using maximum tlO\v algorithm, we can find

reliable node-disjoint paths in WSNs. Complexity of finding node-disjoint paths increases

as we include parameters like reliability and energy efficiency.

6.3. Challenges

Due to limitations of shortest path algorithm to find node-disjoint paths in WSNs, we

are forced to use maximum flow algorithm. The creation of auxiliary graph was important

step in finding node-disjoint paths.

In finding reliable and efficient node-disjoint paths. we had to use auxiliary graph m

conjunction with maximum flow algorithm.

6.4. Limitations

Shortest path algorithm isn't the best solution for finding node-disjoint paths betv,een

,vireless sensor net\vorks. Using maximum tlo,, algorithm solves the problem to some

degree but also creates some new problems. In finding reliable and efficient node-disjoint

paths. we hide edge with highest edge vveight. this forces algorithm to find edges with less

45

weight. But this solution doesn't work every time, especially in sparse network where

single large edge might consume less energy than group of small edges. This is one of the

limitations of this algorithm on sparse network.

Using maximum flow algorithm and generating auxiliary graph consumes more

processing power; this in tum depletes battery by consuming more power.

46

7. RELATED WORK

In this chapter, we discuss related work done in finding node-disjoint path in wireless

sensor networks

Other approaches finding node-disjoint multi paths is node-disjoint parallel multi-path

routing algorithm (DPMR) [I OJ, it take full advantage of known geographic information

and finds the node-disjoint multi-paths. Idea used in this approach is Local Minimum

Phenomenon. Through improving the packet delivery performance and evenly distributing

the energy load among the sensors, DPMR [I OJ can prolong the networks system lifetime.

This approach is good as far as we know geographic information of the area in with

wireless sensor nodes is deployed.

Alternative approach with dealing with failed nodes in the network is by using relay

nodes. By using relay nodes, it takes strain out of each node as the most of the transmission

of sensed data is done by relay nodes, which have relatively high power transceivers and

more power. Idea in using relay nodes is formulation and approximation

7.1. Future Work

Future works include finding maximum flow algorithm with idea like local minimum

phenomenon and fine node-disjoint reliable and energy efficient paths and compare them

with the approach I used to in this paper.

To find alternative to shortcoming of shortest path algorithm. by combing shortest path

with idea like local minimum phenomenon and compare \vith my results in this paper.

47

REFERENCES

[I] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, "Next Centuary Challenges:

Scalable Coordination in Sensor Networks," MobiCOM, August 1999, pp. 263-270.

[2] Volcano monitoring. Harvard Sensor Networks Lab:http://fiji.eecs.harvard.edu/.

[3] Snow Water Equivalent Monitoring with Wireless Sensor Networks. Sensor

Networks and Wireless Workgroup:

http://www.cems.uvm.edu/research/cems/snow/swe.php.

[4] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks.

West Sussex, England: Wiley 2005.

[5] Information Processing And Routing In Wireless Sensor Networks by Yang

Yu (motorola labs, usa), Viktor K Prasanna (university of southern california,

usa), &Bhaskar Krishnamachari (university of southern california, usa).

[61 P. Levis, TinyOS Programming. http://csl.stanford.edu/-pal/pubs/tinyos

programming.pdf. June 28, 2006.

[7] Thomas H. Carmen, Charles E. Leiserson, Ronald L. Rivest, Clifford SteinlEEE

··Introduction to Algorithms, Second Edition .. The MIT Press Cambridge, Massachusetts

London, England.

[8] Channel Wireless Mesh Networks, ACM MobiHoc'2005, and pp. 68-77.

[9] M.A Labrador. P.M Wightman "Topology Control in Wireless Sensor Networks:

With a Companion Simulation Tool for Teaching and Research ...

[IO] Shanping Li, Zhendong Wu, "Node-Disjoint Parallel Multi-Path Routing in Wireless

Sensor Net\vorks .. ICESS 2005.

48

[11] BinHao,JianTang and GuoliangXue ··Fault-Tolerant Relay Node Placementin

Wireless Sensor Networks : Formulation and Approximation ..

49

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014

