
IMAGE SENSOR CLASSIFICATION 
SYSTEM FOR PROSTHESIS CONTROL 

A Paper 
Submitted to the Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 

By 

Daniel Jason Schwandt 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 

Major Department: 
Electrical and Computer Engineering 

December 2010 

Fargo, North Dakota 



North Dakota State University 
Graduate School 

Title 

Image Sensor Classification System 

For Prosthesis Control 

By 

Daniel Jason Schwandt 

The Supervisory Comwittee certifies that this disquisition complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the document, signatures have been 
removed from the digital version of this document. 



ABSTRACT 

Schwandt, Daniel Jason, M.S., Department of Electrical and Computer Engineering, 

College of Engineering and Architecture, North Dakota State University, December 2010. 

Image Sensor Classification System for Prosthesis Control. Major Professor: Dr. Mark J. 
Schroeder. 

This paper proposes the integration of an image sensor classification system into the 

control scheme for prosthetic limbs. The goal is to minimize the mental strain experienced 

by brain-computer interface (BCI) users when performing routine tasks. In particular, the 

focus is to investigate the capabilities of image classification as a method for identifying 

and classifying objects. Incorporating this process into prosthesis control will allow more 

fluid and natural movements while minimizing the mental strain of multiple commands by 

the user. A popular imaging and classification software package was evaluated by 

exposing it to various images under different conditions. Results indicate that an image 

sensor classification system is suitable for prosthetic limb control in many situations; 

however, the system performance is reduced in low light and clustered object conditions. It 

is therefore feasible to consider the integration of image sensor classification and camera

in-hand technology into EMG- and BCI-controlled prosthetics. 
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CHAPTER 1. INTRODUCTION 

Natural movements with simplistic controls are essential when designing prosthetic 

hands. There are several stages and approaches for controlling prosthetics. The initial 

stage is to collect a signal from the body. There are primarily two methods for 

accomplishing this. First, electrodes can be placed on the surface of the skin to collect 

myoelectric signals which initiate the prosthetic hand to react [1]-[4]. Alternatively, 

signals can be collected neurologically with invasive electrodes located along the nervous 

system [5]-[9]. The second stage is to identify these signals using a classification system 

such as an artificial neural network (ANN) [10]-[13] or fuzzy logic classifier [14]-[16]. 

Finally, these classified signals are used as specific input controls for the prosthetic hand to 

perform multiple commands [1], [3], [17]-[20]. 

In order to design a successful prosthetic, the device needs to have multiple degrees 

of freedom [3], [17]-[21 ], simplistic and intuitive controls [1], [19] and a responsive 

feedback system [I]. These introduce multiple problems however. First, in order to give 

the prosthetic multiple degrees of freedom, the user must voluntarily initiate the device for 

each movement. This produces an unnatural relationship with the device and further 

causes great mental strain on the individual. Thus, the user rejects the device entirely [1]

[2], [ 19]. Similarly, if the device can only utilize minimal controls from the user, this 

causes limitations in the performance of the device. Thus, the user also rejects this design 

[1], [17], [19]. Prosthetics need to essentially replace the missing limb, mimicking the 

natural and carefree movements of the limb. 
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Although there have been great advances in the field of myoelectric analysis and 

control for prosthetics, one area that has not been fully investigated is image sensor 

classification. Image sensors can be incorporated into the design of a prosthetic hand to 

help the individual control the device. These sensors can identify unique objects that are 

encountered on a daily basis and activate the prosthetic to perform a certain automated task 

related to such objects. For example, grasping a glass is an action that is performed 

multiple times a day by everyone. The user could initiate the movement of the prosthetic to 

the glass. The image sensor could identify the glass and its location. Then, the system 

could automate the prosthetic to grasp the glass and bring it back to the user. This system 

would need minimal input from the user, allowing less mental concentration for the 

mundane everyday tasks. 

Using image, position and force sensors along with a strong myoelectric signal 

classifier could enable a more naturally controlled prosthetic. Why should the user need to 

control every action of the prosthetic? Automating multiple everyday tasks would allow 

the user to have natural movements with minimal thinking about controlling the device. 

Figure 1 illustrates a comparison between typical prosthetics and this image controlled 

prosthetic. 

The purpose of this paper is to introduce the integration of image sensors into 

prosthetics in order to improve their control structure and minimize the constraints on the 

user. To establish the foundation needed to understand this topic, a brief history of the 

development of prosthetic control will be discussed in Chapter 2. Chapter 3 provides an 

introduction to the National Instruments software, Vision Builder AI, which was used to 

implement the classification structure. The methodology of the derivations and its 
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retrieval proces. 

Figure 1. Comparison between typical prosthetics and visual based prosthetics. 

implementation are discussed in Chapters 4 and 5, respectfully. The results are discussed 

in Chapter 6 and Chapter 7 provides the concluding remarks. 
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CHAPTER 2. BACKGROUND INFORMATION 

2.1. Introduction 

This chapter presents the details involved with acquiring electromyographic (EMG) 

signals from the body. There are primarily two methods for retrieving signals from the 

body. The first is to place electrodes on the surface of the skin to collect myoelectric 

signals to initiate the prosthetic to react. The second is to collect signals neurologically 

from invasive electrodes located along the nervous system or directly connected to the 

brain. The system connected between the brain and a device is called a Brain Computer 

Interface or BCI. Naturally, there are many ways to collect signals from the body. Only a 

few major methods will be introduced. 

In addition, this chapter provides the details involved with how the acquired signals 

are analyzed and used for prosthetic control. There are multiple approaches for 

recognizing and classifying signals including artificial neural networks (ANN) [10]-[15], 

fuzzy logic classifiers [14]-[16], self organizing neural networks and genetic algorithms. 

Visual-based robotic control is also discussed in this chapter. This method 

illustrates the prosthetic's mechanical process of retrieving objects by means of a camera

to-object relationship. 

2.2. Description of Surface Electrodes 

Surface electrodes are used to collect many signals from the body on the exterior of 

the skin. They are commonly used in the clinical setting to collect electromyographic 

(EMG) signals, electrocardiographic (ECG) signals and electroencephalographic (EEG) 
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signals. EMG surface electrodes measure the biopotentials of muscle groups flexing and 

relaxing [23]. 

Surface electrodes are generally made from particular types of polymers or 

elastomers and then adding a fine carbon or metal powder to make them electrically 

conductive. The location the electrode will be placed is generally cleaned to limit the 

impedance between the electrode and the skin. However, to allow for easy and quick 

application, the electrodes can also be made with a prepaste AgCl gel [23]. The main 

advantage of surface electrodes is their ability to collect signals noninvasively [9]. This 

makes them easily replaceable and limits the possibility of infection. Unfortunately, the 

distance between the source and the electrode generates a noticeable amount of noise. 

Thus, the signals that are generally used are the larger signals like the ECG and EMG [9]. 

2.3. Description of Invasive Electrodes 

Implantable electrodes provide a direct path to record the electrical signals from the 

brain, nerves and muscle fibers [5]-[9]. These electrodes are either surgically implanted or 

inserted into the muscle tissue with needles [23]. In the brain or nervous system, 

microelectrodes can be implanted to interact with individual cells. Neuron cells carry 

electrical impulses along their axons when an action potential is elicited. These action 

potentials can then be measured and used to interact with prosthetic devices [23]. 

The advantage of implantable electrodes is that there is far less noise associated 

with the signals and there are millions of signals to use [9]. Direct communication with the 

brain and neurons can provide the possibility of advanced control and dexterity. However, 

direct communication is difficult to achieve since the electrodes must be surgically 

implanted into the body, bringing forth multiple difficulties and risks [25]. 
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2.3.1. Needle Electrodes 

Needle electrodes provide direct connection with the electrical signals from the 

nerves and muscle fibers. Concentric bipolar electrodes are the most common needle 

electrodes. The recording and reference electrodes are made from two thin metallic wires 

that are incased in either a larger canula or hypodermic needle. The other common type of 

percutaneous electrode is the unipolar needle electrode. The needle is manufactured using 

a thin metal wire insulated entirely by a layer of Teflon except for the very tip. Since this 

is a unipolar needle, it requires a second reference electrode to create a closed electrical 

circuit. It can either be another unipolar electrode or a surface electrode placed near the 

first [23]. 

2.3.2. Microelectrodes 

Microelectrodes are designed to interact with individual biological cells by inserting 

an ultra fine tip into the cell. In order to minimize cell damage, the electrode tip must be 

very small compared to the dimensions of the cell. These electrodes are used commonly in 

neurophysiological studies to record the action potentials of individual cells. These 

electrodes are typically manufactured in three different ways: (a) glass micropipettes, (b) 

metal microelectrodes, and (c) solid-state microprobes [23]. These electrodes can provide 

excellent signal-to-noise ratios because of their ability to record the action potentials of 

individual neurons. 

2.3.3. Chronic Electrode Implants 

Chronic electrodes can be surgically implanted to interact directly with the neurons 

of the brain. There are two typical designs for chronically implanted electrodes. The first 

and most widely used are microwire electrodes [33]. The individual electrodes are 
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essentially designed similar to the needle electrode except on a miniature scale. Their 

structure consists of an array of conducting metal wires coated with an insulating layer 

except for their tips. Their simple design is their primary advantage being easily fabricated 

compared to the more sophisticated silicon arrays. 

Silicon arrays are the next generation of chronic electrodes. With a more complex 

design, silicon micromachined electrodes offer the possibility to minimize the foreign body 

response which allows more flexibility for the placement of the electrodes. Advancements 

in silicon manufacturing allow for complete control over the designs of the electrode's size, 

shape, texture and placement of individual recording electrodes on the chip. Silicon based 

electrodes also allow the recording circuit to be integrated directly onto the chip itself for 

better signal acquisition [33]. 

2.3.4. Problems with Invasive Electrodes 

Although invasive electrodes offer a wide selection of benefits, such as being able 

to directly measure signals from neurons, there are disadvantages with them. Whenever the 

skin barrier of the body is broken there is a possibility of infection. Brain surgery is a 

difficult procedure within itself. Long term use of implantable electrodes has shown that 

the body can consider these electrodes as foreign objects and does its best to control the 

area where the electrode was implanted by creating a layer of scar tissue between the 

electrode and the neurons [33]. 

2.4. Details Involved With Signal Classification 

Signals are collected from the body with single or multiple electrodes, either on the 

surface or invasively [15]-[16]. There are multiple approaches on how to use these signals 

for prosthetic control. In order to use these signals to control a prosthetic device with 

7 



multiple degrees of freedom, the signals need to be mapped to the particular muscle or 

neuron group that initiated the command [15]-[16]. Figure 2 illustrates how a digitized 

EMG signal is classified by an artificial neural network (ANN) system. 

Figure 2. ANN EMG classification strategy. 

2.4.1. Artificial Neural Networks 

The human brain is a structure of interconnected neurons that communicate with 

each other through electrical impulses. This structure provides the basis for artificial neural 

networks [26]-[28]. These neural networks can be used as a form of parallel computing 

[26] to mathematically model the complex relationships between inputs and outputs [15] or 

as a pattern recognition tool [16]. Essentially, it is a mathematical function mapping the 

relationship between a set of inputs (X) to a set of outputs (}?. 

f:X ➔ Y (2.1) 

Artificial neural networks create a system of interconnected neurons in individual 

layers. The first layer is the input layer, where information is then sent to the second layer 

via synapses. Synapses are numerical weights which store coefficients that manipulate 

neuron calculations. The second layer is a hidden layer. Multiple hidden layers can exist 

to model more complex systems. The final layer is the output layer. Figure 3 shows an 
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example architecture of an artificial neural network. The synapse weights are adjusted to 

minimize the output error during the training phase. 

Input Layer Hidden Layer Output Layer 

Figure 3. A simplified view of a neural network. 

Artificial neural networks can be used to learn particular information which will 

then be used to perform mathematical tasks. The two primary types of learning are 

supervised and unsupervised learning. In supervised learning, the system is given sets of 

training data (X, }J to learn. The system then learns to recognize the function (I) that relates 

the input (X) to the output (}J. This can be used for pattern recognition or classification. In 

unsupervised learning, the system is given some input data (X) and the cost function (I). 

The goal is to find the output (}J while minimizing the cost function (I); essentially trying 

to determine how the data is organized. This can be used for filtering and general 

estimation problems. 

Supervised learning of artificial neural networks can be used to classify signals 

from the body. The training can be set up so the user performs particular tasks while the 
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system learns the signals that are being created. Thus, the system is determining the 

function that relates the action to the signal. 

2.4.2. Self Organizing Maps 

Self organizing maps are a unique style of trained artificial neural networks that use 

unsupervised learning to produce a low dimensional representation of the input samples. 

These maps differ from artificial neural networks in that they use a neighborhood function 

to maintain the topological properties of the input data. This model has also been 

commonly called Kohonen maps. Self organizing maps typically consist of one 

dimensional or two dimensional grids of connected neurons or nodes by weights. Initially, 

the weights are typically given sample values evenly spaced throughout the grid. The 

training consists of competitive learning where the neuron with the weights that most 

closely match the input wins. This causes the neuron and the neurons closest to it to 

change their weights towards the input. The mathematical function of this process of 

competing neurons and adjusting weights (W..(t)) is 

W.,(t + 1) = Wv(t) + 0(v, t)a(t)(X(t) - Wv(t)) (2.2) 

where the monotonically decreasing learning coefficient is a(t)and the input vector is X(t). 

The neighborhood function, 0(v,t), depends on the distances between the winning neuron 

and the adjacent neuron [47]. 

Self organizing maps can be used as a signal identification tool. The identified 

unique signals can be mapped to a particular task. 

2.4.3. Fuzzy Logic Classification 

Fuzzy logic is a mathematical model for approximation. This is an essential tool 

when dealing with extremely complex systems, such as the human brain and nervous 
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system. Fuzzy logic incorporates degrees of truth instead of just using true or false as in 

binary logic [29]-[32]. An excellent narrative of fuzzy logic was given by P. Hajek in the 

Metamathematics of Fuzzy Logic. "In a narrow sense, fuzzy logic ... is a logical system 

which aims at a formalization of approximate reasoning [29]." 

2.5. Brain-Computer Interface (BCI) 

Brain-Computer Interfaces (BCI) systems provide direct neural communication 

links from the electrical signals of the brain to controllable devices [25]. In order to use 

these systems, the signals need to be linked to the particular action that the user intended. 

Thus, most BCI systems require a fair amount of training for the user to understand the 

thoughts needed to control the device [40]. BCI systems have had many advancements in 

recent years and also provide a promising future for direct communication with the brain. 

In the near future, BCI systems will be able to work flawlessly with patients to provide 

natural moving prosthetics [ 41]. 

2.6. Visual Based Robotic Control 

The use of cameras has become an interesting topic of discussion for robot control. 

There are multiple ways to use cameras as control strategies. The two primary methods are 

the fixed camera approach and the camera-in-hand or eye-in-hand approach [37]-[39]. The 

fixed camera system uses multiple cameras in fixed locations creating a coordinate system 

with images of both the robot and its surroundings [37], [39]. The camera-in-hand 

approach uses a camera mounted on the robotic arm, which supplies visual feedback to the 

system of the environment (Fig. 4). This mounted camera provides more flexibility to view 

a particular environment than the fixed camera system [37]-[39]. 
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The camera frame 

The end-effector frame 

The robot base frame 

Figure 4. Camera-in-hand setup for visual control. 

The camera-in-hand approach provides a natural method for prosthetic control. 

This system incorporated into a prosthetic can be used for both identifying objects and the 

retrieval process of locating and positioning the prosthetic in relation to the desired object. 
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CHAPTER 3. AN INTRODUCTION TO VISION BUILDER AI 

3 .1. Introduction 

This chapter provides a brief introduction and explanation of the National 

Instruments Vision Builder AI software. Vision Builder AI has two separate views, the 

Configuration and Inspection Interfaces. The Configuration Interface is where the software 

is created and modified to perform the desired operations. The Inspection Interface is the 

viewable junction connecting the Configuration Interface to the readi ly available 

information created. 

3 .2. Configuration Interface 

The Configuration Interface, shown in Figure 5, displays four primary areas: Main 

window, Overview window, State Configuration window, and Inspection Steps Palette. 

These windows are used to create an inspection. 

I. Main window - displays either the image being processed or the state diagram

for the inspection. The Main window can be used to modify the state diagram,

define regions of interest within the displayed image and configure various step

parameters.

2. Overview window displays a small view of either the image being processed

or the state diagram for the inspection.

3. State Configuration window displays the selected state's list of steps in the

inspection. The user programs each state (from window 2) in this window by

selecting objects from window 4.
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4. Inspection Steps palette- Lists and explains the steps used to create the 

inspection. These steps can be conformed to what is needed 

~ NI VJ>IOII Buildc1 Al (CJ11f1v,u1c1t10n Gtlll:ldllla>!.lft('I 1 / \IIJdl • _ ' L ·x 

\ 9. ~~· - - -----------
-;:-·I !L Ill ___ , 

-----
1 Main Window 3 State Configuration Window 
2 Overview Window 4 Ins · Palette 

Figure S. Vision Builder Al Configuration Interface. 

3 .3. Inspection Interface 

The Inspection Interface of Vision Builder AI is used to run the configuration 

created in the Configuration Interface. It consists of three main areas shown in Figure 6: 

the Results Panel, the Display Window, and the Inspection Statistics Panel. 

1. Results panel - Displays the Inspection States and steps. It also shows 

measurements or comments and the pass/fail results. 

2. Display window - Displays the image under inspection. 
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3. Inspection Statistics Panel- displays indicators that show the yield (ratio

between PASS and FAIL), active verses idle time, and processing time of the

inspection.
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a.o IOO.D IDDD.D ISOD.O 2000.0 2'00.D 
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I 1 Rerults Panel 2 Display Window 3 Inspection Statistics Panel I 

Figure 6. Vision Builder AI Inspection Interface. 

3.4. Creating a Configuration for Inspection 

This section will explain some of the different possibilities the software provides. 

The softwar� is set up in two levels. First, the high level architecture is the inspection state 

diagram, which functions like a flowchart with branching and decision making abilities. 

The inspection proceeds from state to state depending on whether the transition or branch is 
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met or proceeds with the default transition. The second level consists of the individual 

states which run a series of subroutines if and only if their prior transitions were met. 

3.4.1. Inspection State Diagram 

The inspection state diagram provides easy solutions to create new states and the 

transitions that connect them. The transitions follow Boolean logic which can be triggered 

from a variable declared in the previous state. For example, a transition could have a 

constraint of: if Question is True proceed through the flowchart, otherwise use default 

transition. There are a variety of possible constraints that can be used and declared within a 

state. 

3.4.2. Individual State Subroutines 

Subroutines can be created within the individual states to produce a variety of 

possibilities. Vision Builder has provided a great number of pre-coded steps available to 

use. These steps can be combined and customized to meet the needs of the particular 

software requirements. The steps on the palette are classified into eight categories; Acquire 

Image, Enhance Image, Locate Features, Measure Features, Check for Presence, Identify 

Parts, Communicate and Use Additional Tools. Each of these categorical tabs on the 

palette have their own unique operations. 

• Acquire Image this tab is used for interfacing with cameras to acquire the 

necessary images. There is also an option to simulate image acquisition from a 

declared folder. 

• Enhance Image this tab is used to alter the attributes of the acquired images. 

There are options to enhance the image's features, filter noise, and extract color 

planes. One step can calibrate the image to perform measurements in real world 
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units. One major step is the ability to create a region of interest within the 

image. This can be used to specify areas wanting to be investigated. 

• Locate Features this tab is used to located features within the image. These 

features can be used to find edges, straight edges and circular edges in a region 

of interest. Match pattern is a tool used to locate features within the image that 

match a pattern that has been defined. Geometric matching connects the 

features collected from the edge data. One of the most helpful steps is the 

detect objects step. This can be used to locate objects with homogenous 

intensities. It can be fine tuned to collect important information while 

disregarding useless noise. 

• Measure Features this tab has multiple features to measure attributes within an 

image. After an enhancement or location has been used within the software, 

measurements can be recorded. Combining several find edges steps could 

produce the geometric measurements of an object, such as length, width, area, 

etc. There are also measurement features to document light and color 

intensities. 

• Check for Presence this tab can be used to measure the intensity differences of a 

particular area within the image. Comparing shades of the object with its 

background environment. 

• Identify Parts - this tab can identify characters, numbers and barcodes. This 

provides countless options for systems that need to read information. Such as 

part numbers. 

• Communicate - this tab is used to read or write information from or to files. 

17 



• Use Additional Tools this tab is the miscellaneous tab and has a variety of 

features to use. For instance, time delay functions, set the system status to pass 

or fail, initialize a counter, locate information within a stack, request 

information from the user and many more. 

3.5. Pattern Matching and Classification Methodologies 

This section describes the theory behind several of the matching and classification 

methods available in National Instruments Al software. 

3. 5. I . Pattern Matching Techniques 

The pattern matching technique primarily uses normalized cross correlation to 

determine the mathematical similarities between a given sample image and an undefined 

image. This subroutine can be set up to return the empirical score of the cross correlation 

similarities. If the measurement is acceptable, the unknown image can be categorized as 

the given image. 

This software uses a normalized cross correlation method for determining a 

template or pattern within an overall image, identifying feature's distances measured by 

d}./u,v) =Lx,y[[(x,y)-t(x u,y-v)]2 (3.1) 

(where/is the given image and the Lx,y is of the boundaries containing the feature f's 

position at u, v). Expanding the equation gives 

d},t(u, v) = Lx,y[[ 2 (x,y) - 2f(x,y)t(x - u,y v) + t 2 (x - u,y - v)] (3.2) 

Assuming that E t 2 (x u, y v) is a constant and approximating L f 2 (x, y) as a 

constant, then the remaining cross correlation 

c(u, v) = Lx,y f(x, y)t(x - u, y - v) 
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is a measurement of the quantified similarities between the given image and the features. 

This information creates a template which is then used to match features within an 

unknown image for classification [44]. 

3.5.2. Classification Methods 

There are two classification schemes used in this software, Nearest Neighbor and 

Support Vector Machines. Both use a two tiered approach of training on a sample set and 

classifying these sets into categories. 

Nearest Neighbor classification is an intuitive system for categorizing data. This 

system defines objects based on their closest distances of a given trained sample within the 

featured space. Using the formula below to find the minimum distance from an input 

feature X of unknown class Cj is defined as 

(3.4) 

where d(Xv cj) is the distance between X and x/. X, of unknown class, is then assigned to 

the class of its nearest neighbor defined by the following classification rule. 

X € Class Cj, if d(X, CJ mini d(X, Ci) (3.5) 

A second classification method used in the software is the Support Vector Machine 

method which uses a form of supervised learning to generalize a large set of trained 

samples into support vectors which are fewer and more manageable for computation. This 

method is more mathematically complex than distance based classification methods, but 

utilizes a more generalized approach and can exploit a large sample set since the set will be 

broken down into supporting vectors. This method compares the unknown sample with the 

supporting vectors of the given trained sample to determine the class. The unknown 

sample xis classified using the following formula. 
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(3.6) 

Here, Yt is the class association (-1 or+ 1 ), ai is the weighted coefficient, K is the kernel 

function, Xt is the number of supporting vectors and bis the distance of the separation 

boundary of each class [ 43]. 
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CHAPTER 4. DERIVATION OF CONTROL METHODS 

4.1. Introduction 

The work presented in Chapters 2 and 3 provides an excellent foundation for 

creating and implementing a new approach for robotic prosthetics control. The format for 

the next three chapters will be first, the development of the methods, then implementation 

of this method and finally a discussion of the results. 

4.2. Determining the Control Method 

The area of prosthetic control has had many advancements throughout the years. 

Originally within the area of signal acquisition, myoelectric signals were only collected 

from muscle tissue using surface electrodes. Now, entire electrode systems can be fully 

implanted to acquire and classify signals from the neurons in the brain and can even 

stimulate the surrounding tissue. 

In the area of myoelectric signal control through the use of surface electrodes there 

has been a great deal of innovation. However, the functionality of the device is dependent 

on how much control is given to the user. This presents two alternative solutions. The first 

solution is a prosthetic device that can perform multiple tasks with great dexterity. 

However, the control system has to heavily rely on the user to input multiple commands 

over a long period of time. This very strenuous on the user. The second option is to give 

the user only a few control options. This is quite limiting to the possible functionality of 

the device [ 1 ], [2], [ 17]-[ 19]. This is also not ideal. 

An initial idea was to use artificial neural networks to classify unique myoelectric 

signals from the arm. These unique signals would be collected from individuals as they 
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tried to perform a task during training sessions. Training sessions are when users 

repeatedly try to perform tasks and the signals created are documented and linked to their 

respective task. This type of system would allow the user to react to an object, creating a 

unique myoelectric signal. The system would then classify the signal and perform the 

appropriate action based on the classification (Figure 7). 

Surface Electrode 

.. 

Col1ect Signal 

Neural Net,vork 

ldentitv Signal 
.. ..... 

Robotic Prosthetic 

.. 

Perform Predetermined Task 

Figure 7. Original idea of the control structure. 

Some background research revealed that the use of artificial neural networks for 

myoelectric prosthetic control had quite extensively been developed. Then, considering the 

need for a highly functional prosthetic device and also the need for a control system that 

has minimal mental strain on the user, the addition of image sensors incorporated into the 

control structure for prosthetics were examined. 

Image systems that can identify unique objects and use that information to initiate a 

predetermined task were investigated. This idea was engineered from the thought of daily 

activities usually consisting of repeated common tasks, such as reaching for a glass of 

water. An image sensor based control system for prosthetic devices that can identify 

several objects that are encountered on a daily basis and perform a predetermined action 
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defmed by that object could reduce the mental strain on a user to perform those mundane 

tasks. 

This system was set up so the user could initiate the device to acquire an image of 

the object. The system would identify the object and ask if the user would like to retrieve 

the object. The user would respond and the system would react appropriately. The 

implementation of this system would be quite fruitful given that the system can identify 

unique everyday objects and perform a particular predetermined task based on that object. 

However, considering that the user initiates the prosthetic to react toward an object, this 

implies that the user has already decided they would like to retrieve this object regardless 

of what the object is. 

This thought introduced the idea of determining the proper action regardless of the 

object since the user already specified the desire to retrieve the object. This system's only 

concern would be the objects width, unless there was more than one object. 

Once the user initiates the prosthetic system to react to an object, the system 

determines the number of objects. If there is only one object, the system proceeds to 

determine first, if the object is able to be grasped, then the object's width and angle of 

trajectory. If there is more than one object, the system asks the user to define which object 

to grasp and then proceeds as if there is only one object. 

This method of assuming the user wants to retrieve an object when they initiate the 

prosthetic gives the user more freedom to worry about other details during the day than the 

voluntary act of guiding the prosthetic to retrieve the object. 

4.3. Method Objectives and Set Up 
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The high level objective is to create a program that can improve the control 

structure ofrobotic prosthetics. The software chosen to accomplish this task is National 

Instruments Vision Builder AL 

Two different control approaches are considered. First, the specificity approach 

possesses the ability to identify unique objects from each other and to then react according 

to said object. For instance, this approach should decipher the difference between a pen 

and a ball. The second method is the capabilities approach, broadening the possibilities of 

identifying nonspecific objects and reacting to their geometric shape. 

NI Vision Builder AI can utilize real time image acquisition using smart cameras or 

it can simulate image acquisition by selecting previously created images from a specified 

folder. The simulation method was chosen. Therefore, a library of images was created by 

using a digital camera to take single pictures of a variety of common objects and 

combinations as shown in Table 1. The images were used to determine if the vision 

acquisition software can be implemented to decipher unique objects. The images were 

taken in a controlled environment using a white background and several light intensities. 

The structure of the image was organized with either one or multiple objects in a simple or 

clustered arrangement. Future testing could incorporate a variety of backgrounds to 

determine effectiveness. 

Table 1. List of common objects and quantities. 

Quantity of Objects Number of Images Including: 

Within an Image Pens or Pencils Utensils Soda Can 

1 Object 9 15 4 

2 Objects 6 6 NIA 

3 Objects 3 6 NIA 

4 Objects 3 3 NIA 

Cluttered Objects 3 5 NIA 

24 

I 



The procedure was broken up into two steps; the training procedure and the testing 

procedure. During the training procedure, the system was taught to recognize objects by 

using a collection of categorized images of the individual objects at multiple light 

intensities and angles. This provided one category or object with multiple frames of 

reference for comparison. During the testing procedure, the system was tested on images 

with single objects and combinations of objects. This system would give an empirical 

accuracy score for each tested object, 0- 100%, which would be used to determine how 

closely the tested object matches the trained objects. The score could then be integrated 

into a system that would retrieve the object. For example, eight images were taken of a 

single pen at different positions and light intensities. Figure 8 shows two of the trained 

images and two of the tested images. The system was trained on four of these images, 

giving th� training system multiple frames of reference for the object. Then the testing 

Figure 8. Trained (top images) and tested (bottom images) objects. 
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system would decipher the remaining four images and compare the reference object to the 

unidentified objects. If the matching accuracy score was greater than 80%, the system 

would continue to grasp the object. 
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CHAPTER 5. IMPLEMENTATION OF CONTROL METHODS 

5 .1 Introduction 

Chapter 5 presents how the methods from Chapter 4 are implemented into the 

design of prosthetic control. There are multiple approaches and tools for using these ideas. 

Only a few will be discussed. 

5.2. Software Architecture 

National Instruments Vision Builder AI provides an excellent platform to analyze 

images, implement various design options and integrate with software that can be used to 

control robotic arms, such as Lab VIEW [43]. 

A simplistic software interface is necessary for the designs of the prosthetic which 

require only minimal input controls from the user to perform the appropriate actions. The 

user simply has to initiate the system. The software then identifies how many objects are 

within the viewable frame. If there are multiple objects in the viewable frame, the program 

indicates the objects and requests which object the user would like to reach for. If there is 

only one object in the viewable frame the program passes through to reaching for the 

object. Figure 9 illustrates the high level software architecture and Figure 10 displays the 

actual state diagram from the Vision Builder software. 

There are two control schemes that need to be considered in determining the 

recognition strategy to use. First, how specific is the software at recognizing objects? 

Second, do the objects even need to be recognized? If the user has declared the desire to 

retrieve an object, what it is, is no longer relevant. What is relevant are the attributes of 

this object. These two different control schemes are further discussed below. 
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Acquire 
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Detennine Number 
of Objects 
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Action 

Figure 9. Software architecture. 
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Figure 10. State diagram from the NI Vision Builder. 

5.2.1. Specificity Approach 

The specificity approach identifies unique objects and classifies them into specific 

categories that have predetermined tasks associated with them. For instance, when a pencil 

is identified, the program would initiate the prosthetic to reach out and grab the pencil in a 

predetermined way. This has a different category than reaching for a cup. 

This implementation uses a library of collected images of chosen objects to classify 

objects during the real-time operations. A great variety of objects with multiple reference 

points and varied light intensities are needed to provide the most in depth range of 
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classifiable objects. Each object is classified into categories of similar actions. Table 2 

below illustrates several different action categories and their associated items. Obviously, 

the types, number of objects and actions can be drastically expanded. Also, more detailed 

movements can be implemented. 

Table 2. Classifiable objects and actions. 

Pinch Grasp Clutch Hook 
Pen Cup Door Knob Door Handle 

Pencil Soda Baseball 

Knife Phone 

Fork 
Spoon 

During the real-time operations, images are captured from the camera after the user 

has declared the prosthetic to reach for an object. In order to compare these new images 

with the library of categorized images, the software must first enhance these new images so 

that useful information can be extracted. The images are filtered to block out unusual 

disturbances and color enhancements are used to illuminate the outlines of the objects. 

With this information the software locates the objects, disregarding the small 

disturbances that were not filtered out, and compares them to the library of collected 

images to find a match. The software gives the object an empirical score (0 - 100) based 

on how closely the tested object matches the reference object from the library. If this score 

is above a certain threshold, the software declares what the object is and proceeds to 

perform the appropriate action. If there were multiple objects within the viewable frame, 

the software identifies and requests that the user choose which object they would like to 

retrieve. If the object is unrecognized, the software will not proceed to retrieve the object 

but display an error indicating that it is unrecognizable. 
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CHAPTER 7. DISCUSSION AND CONCLUSION 

7 .1. Discussion of Results 

It is understandable to assume that better lighting conditions and more contrast 

between the objects color and their environment will naturally improve the performance of 

both the capabilities approach and specificities approach. This could be accomplished by 

using a camera with better sensors and the addition of a light flash. However, a visible 

flash during each iteration of the software would cause an annoyance to the user. This 

could be solved by using a camera and flash that was outside the visual spectrum, such as 

infrared spectrum. 

The specificity approach had several instances where the software would identify an 

object as a different object. Typically this would not cause an issue since the identified 

object was quite similar to the actual object. For instance, a pen was identified even though 

it was a pencil. This risk is acceptable. However, in the rare instance where a pen was 

identified and the actual object was a soda can (this did not happen, but it is within the 

realm of possibilities during real-time operations), the software would initiate the prosthetic 

to reach for and pinch the ''pen." This would obviously crush the soda can. Several simple 

abort functions could be incorporated into the design. The first would allow the user to 

abort any and all functions at any point during real-time operations. The second would be a 

stop or freeze function whenever the prosthetic's force sensors retrieve abnormal 

information� the system would stop all functions and report an error message. Continuing 

with the rare instance of an identified "pen," the moment the prosthetic begins to close its 

grasp around the "pen," which is really a soda can, the force sensors retrieve resistance 
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information that is not accurate with attributes of a pen, it would stop all operations and 

display an error message. 

Each of the issues do not pose a great threat to either the operability of the 

prosthetic device or the user's wellbeing. If any issue is encountered during real-time 

operations, the software would simply reflect an error message and stop all operations. 

It is recommended that a hybrid combination of both the capabilities approach and 

the specificity approach be developed to provide the best of both worlds accentuating the 

benefits and limiting the defects. 

7 .2. Concluding Remarks 

Modem technology is sustained or destroyed by the will of consumers. Products 

need to both simple and complex. The interface between device and controller has to be 

intuitive and lackadaisical. A product may have a revolutionary idea, but if it fails to meet 

the most basic ergonomics, it will be unsuccessful. Alternatively, if a product has an 

amazing interface with consumers, but severely lacks in depth or operations, it will also 

fail 

A process incorporating camera-in-hand technology into prosthetic control was 

developed to simplify the user's mental strain on routine tasks. Comparing the capability 

classification approach to the specificity object classification approach, the former provides 

an easier system for the user to utilize given that no prior library of information is needed. 

However, the addition of a library of images allows the specific classification approach to 

produce less classification errors. Both the capability and specific classification 

approaches provide less mental strain on users compared with the typical myoelectric 

controlled prosthetics since fewer commands are needed from them. This work shows 
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proof of concept that either approach can provide users with a more natural moving 

prosthetic device. It is recommended that a hybrid version of both the capability and 

specific approaches be combined to greatly increase its versatility. 

Further work could be done to broaden the program's ability to react with more 

objects and perform more predetermined tasks. Also, the hardware can be improved for 

better precision in positioning and more accurate results. This system would allow a more 

natural moving prosthetic device, where the user has to use little voluntary brain power to 

perform tasks. Another interesting topic would be the addition of non visual feedback 

systems to the user. This could include vibration or heat stimulators that allow the user to 

feel how hard and what types of objects they are grasping. 
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APPENDIX A. ASPECTS OF SOFTWARE ARCHITECTURE 

The section provides a description of the primary aspects of the software program 

Genera/Classifier. vbai. Each state was created in the Configuration Interface window of 

National Instruments Vision Builder AI. Many of the minute details will not be discussed 

Figure 15 below displays the high level architecture of the software. 

Start 

No 

Figure 15. State diagram from the NI Vision Builder. 
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The software begins with asking whether or not the user would like to retrieve an 

object. If yes, the software continues to the Acquire Image state. If no, the software 

simply ends. 

The Acquire Image state is a complex state with intricate subroutines. This state 

begins with acquiring an image, either by use of a camera or simulation. Once an image is 

acquired, the software begins with filtering the image to enhance the desired features by 

softening the background noise and intensifying the attributes. This allows the software to 

determine how many objects are within the viewable frame. This subroutine can be set up 

to ignore minor imperfections within the image. If objects were collected, a counter is 

initialized to one to keep track of how many objects are within the frame. Also, the first 

object's coordinates are made into a global variable to be able to retrieve at a later date. 

Using the object's coordinates, an "Object l" icon is displayed on the first object within the 

viewable frame. 

If there were two objects available, the system would move to the 2 Objects state 

that extracts the second object's coordinate data and makes that data into a global variable. 

Also, this state displays a similar icon "Object 2" onto the second object. If there were 

three objects, a similar state would also progress. 

In the Select from 2 state, the user would be asked to choose which object they 

would like to retrieve in the event of multiple objects within the viewable frame. 

The next state and its multiple related states (Object 1, Object 2 and Object 3), 

depending on which object is chosen to retrieve, displays an icon "Selecting This Object." 

Also within this state, a global variable is set to the appropriate selected object. 
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The number of objects state is used to create a region of interest around the desired 

state. It selects the appropriate object using the global variable set up in the previous state. 

The next states, I Object, 2 Object and 3 Object, are used to determine the 

geometric features of the specified object. This state uses the global variables set up 

previously determining which object to analyze and its coordinate data. Using this 

information to create more specified regions of interest, a subroutine is set up to determine 

the width between two accented borders of the object. Figurel6 illustrates this action. 

Depending on whether there was only one object identified or multiple objects identified, 

an individual circumference determination routine was given. If only one object was 

identified, the sample frame was broadened to allow for an objects more robust 

circumference as opposed to a frame with multiple objects. 

Figure 16. Width determination routine. 

The Pinch or Grasp states were set up to simply reflect the possibility of using a 

robotic arm to grasp the object since no hardware was considered for this procedures. 

In addition, the specificity approach uses a subroutine set up to classify objects. 

This subroutine is where the library of trained images is collected and the empirical score is 

derived. The images of the objects are collected and categorized and the system is then 
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trained to recognize images with similar attributes. The number of trained images and 

categories could expand greatly. The empirical accuracy score is given to the tested images 

as compared to the trained object. For example, a pen would relate to the pen category 

with .954 accuracy rate. This is then used to proclaim that this is a pen, since the accuracy 

score is above a certain threshold. 
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