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ABSTRACT

In this dissertation, an approximate version of the Barndorff-Nielsen and Shephard model,
driven by a Brownian motion and a Lévy subordinator, is formulated. The first-exit time of the log-
return process for this model is analyzed. It is shown that with a certain probability, the first-exit
time process of the log-return is decomposable into the sum of the first exit time of the Brownian
motion with drift, and the first exit time of a Lévy subordinator with drift. Subsequently, the
probability density functions of the first exit time of some specific Lévy subordinators, connected
to stationary, self-decomposable variance processes, are studied. Analytical expressions of the
probability density function of the first-exit time of three such Lévy subordinators are obtained in
terms of various special functions. The results are implemented to empirical S&P 500 dataset.

After this exit time analysis, in this dissertation, we propose a model for the soybean export
market share dynamics and analyze the empirical data using machine and deep learning algorithms.
We justify the proposed general model and provide several theoretical analyses related to a special
case of the general model. The empirical data set is a time series with weekly observations over the
period January 6, 2012, through January 3, 2020. This is a period of growing intense competition,
and during which a trade war had influenced the results. The target variable is the share of
soybean exports made from the US Gulf to China. We implement machine and deep learning-
based techniques to analyze the empirical data. Various numerical results are obtained. The results
indicate that export market shares, which are otherwise highly volatile, can be effectively explained
(predicted) using machine/deep learning methodologies and a set of logical feature variables.

We conclude this dissertation with an analysis of option pricing and implied volatility in
the case when the market is driven by a jump-stochastic volatility model. We find the price of
the European call option in this case. In addition, we implement Malliavin calculus to analyze the

implied volatility.
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1. INTRODUCTION

1.1. General Introduction

The time required for a stochastic process, starting at a given initial state, to reach a
threshold for the first time is referred to as the first-exit time or the first hitting time. It is typically
very useful in determining expected lifetime of mechanical devices. The first-exit time processes
are very useful for understanding various financial sectors, especially the insurance industry and
investment firms. The first-exit time processes arise naturally in the studies of various disciplines.
For example, it is used [56] to model the death probability density function for a decaying stochastic
process that represents either the end of functionality for a machine, or a zero health state for an
organism. The paper [30] provided an expanded first-exit time density function that expresses
the human death distribution. The first-exit time analysis of a two-dimensional symmetric stable
process was discussed in detail in the paper [18]. This was further developed in [32, 61] where
the first-exit time process of an inverse Gaussian Lévy process is considered. The one-dimensional
distribution function of the first-exit time process is obtained. The first-exit time analysis related to
a geophysical data wass provided in [22]. The paper [43], provides generalized notions and analysis
methods for the exit-time of random walks on graphs.

The first-exit time process of the standard Brownian motion is well-studied in the literature
(see [4, 14]). The paper [35] studied the first-exit time of Brownian motion for a parabolic domain.
In [19], the Fokker-Planck equation is solved for the Brownian motion with drift, in the presence
of a fixed initial point and elastic boundaries. An explicit expression was obtained for the density
of the first-exit time. The paper [27] studied the first-exit time problem for the solutions of some
stochastic differential equations for bounded or unbounded intervals. Studies [39, 59, 60] discussed
the first-exit time process for strictly increasing Lévy processes. In the pioneering paper [31], the
authors study the first-exit-time to flat boundaries for a double exponential jump diffusion process.
The related stochastic process consists of a continuous Brownian motion-driven part, and a jump
part with jump sizes given by a double exponential distribution. In general, with the help of a
fluctuation identity, the paper [1] provided, a generic link between a number of known identities

for the first-exit time and the overshoot above/below a fixed level of a Lévy process. In [42], a



class of increasing Lévy processes, perturbed by an independent Brownian motion was considered,
and the problem of determining the distribution of the first-exit time is addressed. The first-exit
time analysis of the Ornstein-Uhlenbeck (OU) process to a boundary was a long-standing problem
with no known closed-form solution for the general case. In [37] a general mean-reverting process
is considered to investigate the long-and short-time asymptotics using a combination of Hopf-Cole
and Laplace transform techniques.

Many problems in finance are related to the first-exit time processes. A deeper understand-
ing of such processes leads to a wiser estimation of fluctuations in the market. In [57], the first-exit
time distributions of stock price returns in different time windows were analyzed. The probability
distribution obtained by such analysis was compared with those obtained from different models
for stock market evolution. The paper [26] showed that for continuous time transformations, inde-
pendent of the Brownian motion, analytical results for the double-barrier problem can be obtained
via the Laplace transform of the time change. The analysis provides a power series representation
for the resulting first-exit time probabilities. In [36], explicit analytical characterizations were pro-
vided for the first-exit time densities for the Cox-Ingersoll-Ross (CIR) and OU diffusions. Such
characterizations were obtained in terms of the relevant Sturm-Liouville eigenfunction expansions.
In [66], a doubly skewed CIR process is studied. A modified spectral expansion was used to obtain
the first-exit time distribution of a doubly skewed CIR process. A detailed study of the first-exit
times of diffusion processes and their applications to finance is provided in [34]. The studies in
[46, 47] discuss the first-exit time analysis related to some financial processes from a data-science
and sequential hypothesis testing perspective. In [12], the authors provide a solution to the optimal
stopping problem of a Brownian motion subject to the constraint that the stopping time’s distri-
bution was a given measure consisting of finitely many atoms. The distribution constraints lead to
an application in mathematical finance to model-free super-hedging with an outlook on volatility.

Some analytically tractable formulas were available for the density of the first-exit time
process (see [61]). However, in general, an explicit expression for the density of the first-exit time
process for a financial model is mostly unknown. In this thesis, we analyze the first-exit time
processes in connection to the Barndorff-Nielsen and Shephard (BN-S) model, a popularly used
stochastic volatility model for financial analysis. We provide various analytical formulas related

the distribution of the first-exit time processes in connection to an approximate version of the BN-S



model. For this study we used various properties of the Laplace transform and their relations to
special functions. In particular, the first-exit time processes for some well-known self-decomposable
Lévy subordinators were analyzed.

1.2. Application in Agribusiness : An Introduction

Artificial intelligence (AI), and specifically deep learning (DL) are particularly attractive
for analyzing competition in international markets. There are a multitude of reasons for this, and
despite its attractiveness, there have been few reported studies using these methods to analyze
export competition. In this paper we use deep learning models to analyze export competition in
soybean market shares for shipments to China.

Briefly, one of the fastest growing commodity markets in world trade is soybean imports

by China, which is the dominant buyer. Chinese imports of soybeans increased from near nil to
100 million metric tons/year in recent years, at a growth rate of about 18% per year. Intense
competition in this market is dominated by the United States (primarily the US Gulf which is the
focus of this study) and Brazil as major exporters. Over time, the US Gulf has gone from being
dominant to now being replaced by Brazil.
A number of important attributes in this competition that motivates use of DL. Factors include
the impact of growth in exports and the seasonality of competition with Brazil dominating during
February to July. In addition, important quality differentials focused around EAA (Essential Amino
Acids) and foreign material specifications in feed manufacture (see [25, 62]), can be challenging to
meet as crop quality vary with quantity varies with weather conditions. In addition, soybeans that
are genetically modified, which are not accepted by all buyers, varies with their adoption rate in the
different countries. Logistics is also an important factor impacting costs. In the United States, rail
and barge shipping costs vary through time and are random. In Brazil there has been inadequate
infrastructure and capacity, which has an impact on wait times and costs for vessels arriving to
load soybeans. Each of these persists, despite that they have improved over time. Finally, there
are periodic interventions impacting trade. The most recent was the trade war during 2018-2019
coinciding with the Trump administration trade war.

Traditionally, economics trade is modeled as spatial equilibrium problems (see [58]) or using
arbitrage models (e.g., see [55]). An important underlying assumptions of these models is that the

supply and demand functions are known, can be represented as equations, are in equilibrium, and



do not change. Implicit is that learning in these models is limited. In contrast, as noted above,
these functions are not known, change through time, have a high degree of randomness, and quality
differentials and shipping costs that vary randomly. Further, given the dynamics (growth, seasonal
and dominance by one buyer) of this sector, and that the structural factors are random, deep
learning models provide a more appropriate framework to analyze competition in this sector.
Deep learning models are appropriate for analyzing this market. The reasons for this are
in part due to the large number of factor impacting trade, and that these are changing over time
and some variables are sporadic, and that, in practice, market participants learn over time. One of
the applications of this dissertation was to model the soybean export market share price dynamics;

and analyze the related empirical data using machine and deep learning algorithms.



2. MATHEMATICAL PRELIMINARIES

2.1. Brownian Motion

There are many phenomena in nature that are seemingly random. Ranging from the dif-
fusion of organisms into habitable land, to the price of a stock or commodity, to the behavioral
patterns of humans, stochastic processes have an abundance of applications. One of the most clas-
sic examples of stochastic process is the Brownian motion. The motivation for such a process is a
continuous symmetric random walk.

Paraphrasing Chapter 3 of the book [54], let w = {w;,w2,...} be a sequence of results of

fair coin tosses. That is, w; is the outcome of the ith toss, H or T'. Define

lifw,=H
Xi: ;

-1 lwa:T

and M, = > | X;. Then {0, My, M>, ...} is a symmetric random walk. In particular, symmetric
random walks are martingales that have independent increments. A martingale is a stochastic
process that has expected value equal to the given present value for all times in the future. To have
independent increments means for each n € N (set of Natural numbers) and each 0 < ¢; < ¢t <
. < tp41 < 00, the random variables (M (tj41) — M(t;),1 < j < n) are independent.
Another crucial property of a symmetric random walk is its non-zero quadratic variation.

In general, the quadratic variation of a discrete stochastic process M is

k
= (M; — M;_1)?,
7j=1

which simplifies quite conveniently in our case to k. Note that while [M, M]; = Var(My) = k for
a symmetric random walk, this is not true in general. One varies dramatically for changes in the

probabilities of each coin toss, while the other, the quadratic variation, remains constant.



Continuing toward the goal of a continuous random walk, define the scaled symmetric

random walk by
1

N

where nt € Z. Otherwise, define Wt(n) by a linear interpolation of its values for the closest integers.

Wt(n) = Mnt:

This new process is similarly a martingale with independent increments and quadratic variation,
for nt € Z,

W W), =¢.

Finally, we obtain a standard Brownian motion as the limit of this sequence of scaled random walks.

We provide the following theorem from [41].
Theorem 2.1.1 (Kolmogorov). For all t1,--- ,t, € T, k € N, let v, ... 4, be probability measures

on R™ and Borel sets F; such that

Vtg(l),---,tg(k)(Fl X oo X Fk) = Vty ety (Fa.—l(l) X oo X Fa.—l(k)) (21)

for all permutations o on 1,2,---.k  and
Uiyt (FL X o XCFR) = Uyttt e st (F1 X X EFy X R X2 X R™) (2.2)

for all m € N, where the set on right hand side has a total of k + m factors.

Then there exists a probability space (Q,F,P) and a stochastic process Xy on Q, X;: Q — R", s.t.

Uty ot (F1 X - X Fy) = P[Xy, € Fr, -+, Xy, € Fl, (2.3)
forallt; €T |, k € N and all Borel sets F;.

Fix € R™ and define

—|z —y|?

on ) for yeR"t>0. (2.4)

p(t,x,y) = (2ﬂt)%n. exp (



If0<t <ty <--- <y, define a measure vy, ... 1, on R7k by

k

Vtyo iy (F1 X o X Fy) = / p(t, z, z1)p(te — t1, 1, 22) -+ p(ty — th—1, Tp—1, T )dx1 - - - dg,
Fy XX Fy,
(2.5)
where we use the notation dy = dy; - - - dyy, for Lebesgue measure and the convention that p(0, z, y)dy =

d:(y), the unit point mass at .

Since f]Rn p(t,x,y)dy = 1 for all t > 0, (2.2) holds, so by Kolmogorov’s theorem there exists
a probability space (2,F,P) and stochastic process Wy, (t > 0) on 2 such that the finite-dimensional

distributional of W; are given by (2.5), i.e.,

Px(th EFl,-" 7Wtk EFk) :/ p(tl,x,xl)---p(tk—tk,l,xk,l,xk)d:cl---da:k. (26)
F1><---><Fk

Such a process is called the Brownian motion starting at x.

Definition 2.1.2. Let (2, F, P) be a probability space. For each w € Q, suppose there is a contin-
uous function W : [0,00) — R that satisfies W (0) = 0 and that depends on w. Then {W(t),t > 0}

is a Brownian motion if for all 0 =ty < t1 < ... < ty,, the increments
W(t1) — W(to), W(te) = W (t1),...,W(tm) — W(tm-1)

are independent and each is normally distributed with

Val“[W(ti+1) — W(tl)] = tl'+1 — ti.

2.2. Lévy Processes

While Brownian motions are classic and powerful tool for modeling a wide range of phe-
nomena, sometimes the processes take on a more sudden nature, and a process with discontinuous
capabilities is more adequate. Lévy processes are a general class of such processes. In [4], we have

the following definition of a Lévy process:



Definition 2.2.1. Let (X (¢),t > 0) be a stochastic process defined on a probability space (2, F, P).
We say that it has stationary increments if each X (tj11) — X(t;) 4 X(tjy1 —t;) — X(0), where 4
means the equality in distribution.

We say that X (t) is a Lévy process if X(0) =0 (a.s.); X has independent and stationary

increments; and X is stochastically continuous; i.e., for all a > 0 and for all s > 0,
lim P(| X (t) — X(s)| > a) =0.
t—s
Having a quick way of classifying Lévy processes is crucial to the remainder of this disser-

tation. To do so, we use the following definition and theorem from [4]:

Definition 2.2.2. Let v be a Borel measure defined on R4\ {0}. We say that it is a Lévy measure
if
[ (P A vty <o,
RA\{0}

where a A'b := min{a, b} for any a,b € R.

Theorem 2.2.3. (Lévy-It6 decomposition) Let (X¢)i>0 be a Lévy process on R and v its Lévy

measure. Then
1. v is a random measure on R\ {0} and verifies: flw\<1 |z|?v(dz) < oo, and le|>1 v(dr) < oo.

2. The jump measure of X, denoted by Jx, is a Poisson random measure on [0,00) x R with

intensity measure v(dx)dt.

3. There exist v,0 € R, with o > 0, and a Brownian motion (Wy)i>o such that

Xy =yt +oW; + X! + 113(1)5(;, (2.7)
where X} = flmlzl,se[O,t} xJx(ds x dz), and X{ = fe§|r|<1,s€[0,t] x (Jx(ds x dx) — v(dzx)ds).

4. The terms in (2.7) are independent and the convergence in Xte s almost sure and uniform in

te0,7].



In particular, every Lévy process is uniquely determined by its characteristic triplet (v, o, V)
in the decomposition above. Many of the novel theorems in this dissertation rely on manipulations
of these characteristic triplets.

There are a host of familiar processes that can be represented with these characteristics. The
following are examples, along with representative sample paths. These show that Lévy processes
are suited to model a wide variety of phenomena, including the prices of commodities, as considered

in Chapter 3.

e Example 1 Brownian motion: v =0, o = 1, v(dx) = 0.

e Example 2 Poisson Process: v = 0, 0 = 0, v(dx) = Ao1(dz), where A > 0 and §; is point

mass.

Brownian Motion Poisson Process

0 254

201

15

104

-8

—10

0 20 40 60 80 100 0 20 40 60 80 100

Figure 2.1. Sample Paths of a Standard Brownian Motion and of a Poisson Process with A = 1/4.

e Example 3 Gamma Process: v = —fol zv(dz), o = 0, v(dr) = Bz~ e 1,50 dx, where
a, 8> 0.
e Example 4 Cauchy Process: v =0, 0 = 0, v(dz) = f(x)dx, where f(z) = |z|72, z # 0.

Example 5 Wiener Process: v =m, o0 = s, v(dz) = 0, where m € R, s > 0.

Example 6 Subordinator Jump Process: v = 0, 0 = 0, v(dz) = f(z)dz, where f(x) > 0:
x>0and f(z) =0: z <0.



Gamma Process (Symmetric) Cauchy Process

20
1004

10 A
804
60 -

~10
404

—20
20

6 26 4‘0 6‘0 8‘0 160 6 2‘0 4‘0 6‘0 8‘0 160
Figure 2.2. Sample Paths of a Gamma Process with Mean and Variance 1 and of a Cauchy Process.

Wiener Process Inverse Gaussian Process

154
804

104 604

o 20 40 60 80 100 0 20 40 60 80 100

Figure 2.3. Sample Paths of a Wiener Process with v = 0.2 and ¢ = 1 and of a Subordinator
Process, an Inverse Gaussian Process with Mean 1.

2.3. It6 Calculus
The rest of the dissertation uses multiple concepts of integration. In particular, we often
integrate with respect to some stochastic process. As such, it is important to understand the

following definition from [41]:

Definition 2.3.1. Let W; be a Brownian motion and ¢ be a simple cadldg (right-continuous with

left limits) process with partition m = (0 = Ty, Th, ..., Tp41 =T); i.e€.,
n
¢t = ¢Poli=o + Z i1, 11 1)-
i=0

Then the Brownian stochastic integral [ ¢dW is defined as

T n
/ ¢tth = Z ¢i(WTi+1 - WTZ)
0 =0

10



This definition gives rise to another definition of a class of processes called It6 processes,

by which we will define another integral.

Definition 2.3.2. ([54]) Let Wy, t > 0 be a Brownian motion and F(t),t > 0 be an associated

filtration. An Ito process is a stochastic process of the form

X(t)=X(0)+ /OtA(t)qu + /Ot@(u)du,

where X (0) is nonrandom, and A and © are adapted stochastic processes.

Theorem 2.3.3. In particular, Ité processes have quadratic variation

X, X](t) = /0 Au)2du.

Naturally, the previous definition inspires the integral

¢ t t
/OF(u)dX(u) ::/0 F(u)A(u)qu+/0 I'(uw)O(u)du,

for an adapted process I' and It6 process X.

Finally, we can state the following:

Theorem 2.3.4. (Itd formula) Let X (t),t > 0 be an Ité process and let f(t,x) define a function

for which partial derivatives fi, fr, and fi, are defined and continuous. Then for every T > 0,

T T
J(T, X(T)) =£(0,X(0)) + /0 folt, X (8))dt + /0 Fo(t, X (£) AW,

T 1 (T )
+ [ ntexenewar 3 [ e X)W
which may be written, for convenience,
AP X(0) = Filt, X0+ Folt, X)X (1) + 3 Frelt, X(0)AX (X (1)

This is often the case for the remainder of this dissertation: technical integrals are written

in differential notation for convenience.

11



The It6 formula permits us to solve a large number of stochastic differential equations and
is crucial in a thorough understanding of the Barndorff-Neilsen and Shephard model (BN-S model),
which is investigated in further sections, but for now, let us state a uniqueness and existence theorem

for stochastic differential equations:

Theorem 2.3.5. The system
dX(t) = a(t, X (t))dt + o(t, X (t))dW; +/0 /n v(s, X (s7),2) (Jx(ds x dx) — v(dzx)ds)

with X(0) = zo € R™ and where « : [0,T] x R* — R", ¢ : [0,T] x R" — R™™  and v :

[0,T] x R" x R® — R™ and v = v1 x ... X v, satisfy the conditions:

1. There exists a constant C1 < oo such that

l

lor(t, )| + |e(t, ) + / > lw(t,z, 2)Pr(dar) < Ci(1+ |z))
Ri=1

for all x € R™.

2. There exists a constant Cy < 0o such that
lo(t, x) = a(t,y)lI* + |e(t, z) — a(t,y)?

I
+Z/ VB (t, 2, 21) — Y (g, 20) [Prn(dar) < Cola — y?
k=1"R
for all x,y € R™,

has a unique cddldg adapted solution X (t) such that
E[|X(t)|?] < oo for all t.

In the time homogeneous case, when the coefficients do not depend on ¢, the solutions are

called jump diffusions.

Now, we introduce Mallivian Calculus.

12



2.4. Mallivian Calculus

We start with the following definitions (see [41]):

Definition 2.4.1. A real function g : [0,T]" — R is called symmetric if g(te1, - ,ton) =

g(ti, -+ ,ty) for all permutations o = (o1, -+ ,0n) of (1,2,--+ ,n).

Let 1L2([0, T]") be the standard space of square integrable Borel real functions on [0, T]"

such that

|9|H%2([0,T]n) = /[OT] G (tr, - s tn)dty, -+ dt, < 0. (2.8)

Let L2([0, T]™) < L2([0,T]") be the space of symmetric square integrable Borel real functions on

[0,T]™. Let us consider the set

If g € L2([0, T|"), then g |5, € L2(S,) and |g[f2 (o 11n) = 7! |gli2(s,.)

if f is a real function on [0, 7" then its symmetrization f is defined as

ftr, - tn) = %Zf(tal’”' o),

where the sum is taken over all permutations o of (1,---,n).

Definition 2.4.2. Let f be a deterministic function defined on Sy, (n > 1) such that

|f|12L42(Sn) ::/S f2(t17. .. ’tn)dt17. .. ’dtn

Then we can define the n-fold iterated Ito integral as

T tn t3 to
Jn(f):/ / / f(tlf"vtn)thl'”thn'
0 0 0 0

Definition 2.4.3. If g € L2([0, T)"),we define

I(g) = /[ gt )Wy W = ). (2.9)
0,7]™
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We also call n-fold iterated It6 integrals the I,(g) here above.

Theorem 2.4.4. Let & be an Fr measurable random variable in L>(P). Then there exists a unique

sequence (fn)2%, of functions f, € L2([0,T]") such that

f = Zln(fn)»
n=0

where the convergence is in L?(P). Moreover, we have the following isometry

’ﬂ%ﬁ(P) = Z”! |fn’n%2([o,T}n) . (2.10)
n=0

Proof. A proof can be found in [41]. O

Let v = u(t,w), t € [0,T],w € Q be a measurable stochastic process such that, for all
t € [0,T], u(t) is a F; measurable random variable and E[u?(t)] < oo.
Then, for each ¢t € [0,T], we can apply the Wiener-Itd chaos expansion to the random variable
u(t) = u(t,w), w € Q, and thus there exist the symmetric functions f,; = fn(t1, -+ ,tn, t) =

fn,t(tlu e 7t7l)

Definition 2.4.5. Let u(t), t € [0,T], be a measurable stochastic process such that for all t € [0, T
the random wvariable u(t) is Fi- measurable and E[fOT u?(t)dt] < oo. Let its Wiener-Ité chaos

expansion be

u(t) = In(fa)-
n=0

Then we define the Skorohod integral of u by

T 00
o) = [ uOaWO) = 3 () (211)
n=0

when convergent in L2(P).Here f,,n =1,2,--- | are the symmetric functions derived from f,(.,t),n =
1,2,---. We say that u is Skorohod integrable,we write w € Dom(9) if the series in (2.11) converges
to L2(P)
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a stochastic process u belongs to Dom(9) iff

[e.e]

E[5(w)] = Y (n+ 1! fal ooz < o

n=0

Lemma 2.4.6. For any u € Dom(9) the Skorohod integral has zero expectation, that is,
E[§(u)] = 0.

Proof. A proof can be found in [41]. O

Lemma 2.4.7. Let u = u(t), t € [0,T], be a measurable stochastic process such that, for all

t € [0,T), the random variable u(t) is F;- measurable and E[u®(t)] < co. Let
)= 3 (A1),
be its Wiener-Ité chaos expansion. Then u is F- adapted iff
fu(te, - stn,t) =0, (2.12)

for every t < max(t;), 1 <i<n.
Proof. A proof can be found in [41]. O

Theorem 2.4.8. Let u = u(t),t € [0,T], be a measurable F-adapted stochastic process such that

E UOT u%)dt} < 0. (2.13)

Then w € Dom(6) and its Skorohod integral coincides with the Ité Integral

T T
/ w(t)ST (1) = / w(t)dW (D). (2.14)
0 0

Proof. A proof can be found in [41]. O
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2.5. Mallivian Derivative

The Mallivian Calculus was originally created as a tool for studying the regularity of densi-
ties of solutions of stochastic differential equations. Today, the range of applications has extended
even further to include numerical methods,stochastic control, and not just for systems driven by

Brownian motion, but for systems driven by general Lévy process.

Definition 2.5.1. Let F' € L2(P) be F; measurable with chaos expansion
o
F=>Y I(fn), (2.15)
n=0

where f, € L2([0,T])"),n=1,2,---.
We say that F' € Do if

2

oo
F nn! 2 n
A

Definition 2.5.2. If F' € D, we define the Mallivian derivative DiF' of F' at time t as the

expansion

DiF =Y nly 1(fn(1), te[0,T).

n=1
where In_1(fn(.,t)) is the (n-1)- fold iterated integral of fn(t1,--- ,tn—1,t) with respect to the first

(n — 1) variables t1,--- ,t,—1 and t, =t left as parameter.

Theorem 2.5.3. Let G € D15 and g € CY(R) with bounded derivative. Then g(G) € D12 and
Dig(G) = 4 (G)DG. (2.16)

Proof. A proof can be found in [41]. O

16



3. THE BARNDORFF-NIELSEN AND SHEPHARD MODEL
AND A GENERALIZATION

3.1. Barndorff-Nielsen and Shephard Model, Self~-Decomposability, and an Approxi-
mation

Financial time series of different assets share many common features which are successfully
captured by the stochastic model introduced in various works of Ole Barndorff-Nielsen and Neil
Shephard. The model is known in modern literature as the Barndorff-Nielsen and Shephard (BN-S)
model (see [8, 10, 11]). This model is revised and refined in various recent works in literature such
as [49, 50]. This model is successfully implemented in the commodity markets as well (see [52, 64]).
Recently, this model is improved using various machine-learning driven algorithms (see [51, 53]).

For the BN-S model, a frictionless financial market is considered where a risk-less asset
with constant interest rate r, and a stock, are traded up to a fixed horizon date T'. It is assumed
that the price process of the stock S = {Si}:i>0 is defined on some filtered probability space
(Q, F, (Ft)o<i<T,P) and is given by:

Sy = Sp exp(Xy), (3.1)
where the log-return X; is given by
dX; = (w1 + Bro?) dt + or AWy + pdZys, (3.2)
with the variance process
do} = —\o?dt +dZy, of >0, (3.3)

where the parameters p1,61 € R with A > 0 and p < 0. In (3.2) and (3.3), W; and Z; are a
Brownian motion and a Lévy subordinator, respectively. The Lévy subordinator Z is referred to
as the background driving Lévy process (BDLP). Also W and Z are assumed to be independent
and (F;) is assumed to be the usual augmentation of the filtration generated by the pair (W, Z).

Without loss of generality, we assume Wy = Zy = 0.
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We assume Z satisfies the assumptions described in [40]. We describe the assumptions

below:
Assumption 3.1.1. Z has no deterministic drift and its Lévy measure has a Lévy density.

Assumption 3.1.2. Denote the cumulant transforms x(0) = log E[e?%1], and § = sup{f € R :
K(0) < +00}. Then 6 > 0.

Assumption 3.1.3. lim, ,;x(0) = +oo .

It follows that the cumulant transform, where it exists, takes the form k(6) = fR+(eex —
1)w(z) dz, where w(x) is the Lévy density for Z. It is shown in [40] (Theorem 3.2) that there exists
an equivalent martingale measure (EMM) Q, under which equations (3.2) and (3.3) can be written
as:
L 5

dX; =bydt + o, dWy + pdZy, with b = (r — A&(p) — 30 ) (3.4)

do} = —\oldt +dZy, opf >0, (3.5)

where Wy and Z; are a Brownian motion and a Lévy subordinator respectively with respect to Q.
For the rest of this thesis we assume that the risk-neutral dynamics (with respect to Q) of the stock

price is given by (3.17), (3.4) and (3.5). It is trivial to show that the solution of (3.5) is given by

t
o} = e Mo2 + / e N9 4z, (3.6)
0

From (3.6), the positivity of the process o7 is obvious. In fact, o7 is bounded below by the

deterministic function e~*o2. In addition, the instantaneous variance of log-return X; is given by
(02 + p?AVar[Z;]) dt. Consequently, the continuous realized variance in the interval [0, T, denoted

as 0%, is given by 0% = £ OT o2 dt + p?A\Var[Z;]. Therefore, by (3.6) we obtain

1 T
k= <)\_1(1 — e )od 4 A7 /0 (1- ) dZAs> + pPAVar(Zy]. (3.7)

We state some results for the analysis of the variance process o?, when the process is
stationary and self-decomposable. The results are motivated by [23, 24, 28]. The pricing formulas

for various derivatives are dependent on the variance process.

18



Definition 3.1.4. The distribution of a random variable X is said to be self-decomposable if for any
constant ¢, 0 < ¢ < 1, there exists an independent random variable X9, such that X 4ox + X,

where 2 stands for the equality in the distribution.

For self-decomposable laws the associated densities are unimodal (see [17, 48]). It is proved
in [9, 65] that, if X is self-decomposable then there exists a stationary stochastic process {o?(t) }+>o0,

and a Lévy subordinator {Z;};>0, independent of o3, such that o? 2 X for all t > 0 and
t
02 = exp(—\t)oa + / exp (—A(t —s)) dZys, for all A > 0.
0

Conversely, if {07 };>0, is a stationary stochastic process and {Z;}1>o is a Lévy subordinator inde-

pendent of o3, such that {07} and {Z;} satisfy
dat2 = —)\O'tQ dt + dZ )y, 0(2) > 0,

for all A > 0, then o7 is self-decomposable.

It is clear from [48] (Theorem 17.5(ii)) that for any self-decomposable law D there exists
a Lévy subordinator Z such that the process of OU type driven by Z has invariant distribution
given by D. The following theorem (see [23, 24, 50]) gives the relation between the Lévy densities

of such process generated by o7 and Z in (3.5).

Theorem 3.1.5. A random variable X has law in L if and only if X has a representation of the
form X = fooo e~ tdZ;, where Z; is a Lévy subordinator. In this case the Lévy measure U and W
of X and Zy are related by U(dx) = [7° W (e' dx) dt. In addition, if u(x), the Lévy density of U is

differentiable, then the Lévy measure W has a density w, and u and w are related by
w(z) = —u(x) — 2u'(x). (3.8)

There are many known self-decomposable distributions, such as inverse Gaussian (IG),
Gamma, positive tempered stable (PTS), etc.
Consequently, if the stationary distribution of o7 is given by IG(d1,~) law, with the Lévy

density u(z) = \/%75133_3/2 exp(—y2x/2), x > 0, then by (3.8), the Lévy density of Z; is given by
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w(zx) = 231273:7%(1 + 721:)67%723”, x > 0. Alternatively, if the stationary distribution of o7 is given

by gamma law I'(v, o), where the Lévy density of I'(v, @) is given by u(z) = va~te™®%, x > 0, then
by (3.8) we obtain w(x) = vae™** z > 0.

A three-parameter self-decomposable process is positive tempered stable (PTS) process (see
[15, 16]). It is denoted as PTS(k, d,), where 8 > 0,0 < v < 1, and k > 0. For PTS(k, 6, ) process

the Lévy density is simple and is given by (see [23, 24])

_ a2 Y 1 1,
u(z) = Pk VF(V)F(l—'y)xV exp< Qka:), x> 0.

If the stationary distribution of o7 is given by PTS(x,d,~) law, then by (3.8) we obtain that the

Lévy density of Z; is given by

k72'y —y—1 %21 k2
wiz) = 2 r(ﬁ)iu—i) <7+2‘E>, x> 0. (3.9)

In the above discussions we find that the distribution of Z is analytically tractable when
the stationary distribution of o7 in (3.5) is given by a stationary, self-decomposable distribution.

We denote (as o7 is stationary),

o= E%c?), (3.10)
and
L,
,u:r—)\/i(p)—ia . (3.11)
We approximate (3.4) by
dXy = pdt + o dWy + pdZy. (3.12)

We refer to (3.17) and (3.12), as an approzimation of the BN-S model (3.17), (3.4), and (3.5). For
most of the empirical financial data p < 0.

We write Xy = ut + oW, + pZ;, with p € R, 0 > 0, and p < 0, ¢ > 0. For financial
applications @ < 0. For the subsequent sections we develop a general procedure to compute the

first-exit time of the stochastic process X;.
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3.2. A Generalization of the BN-S Model for Application in the Soyabean Export
Market

We assume that the soybean export market share price S; is given by

n
Si = Soe, where dX,=bydt+y 6\ <at aw? + th“’) , (3.13)

i=1
where b; is a deterministic function of ¢, Wt(i), i =1,...,n, are independent Brownian motions,
and Jt(i) is the jump process with intensities A;, ¢ = 1,...,n. We assume that Wt(i) and Jt(i), for

i =1,...,n, are independent. The coefficients Hgi), at every t satisfy Z?:1(9§i))2 = 1. In addition

to that, o, is assumed to be stochastic, and its dynamics is governed by
1) 771 2(2) (2
do? = F(o2, BV HY g2 H® . M H™), (3.14)

for an appropriate function F', where Ht(j ), for j =1,...,n, are jump processes with intensities ji;,
j =1,...,n. The coefficients ﬁt(j ), at every t satisfy Z;-l:l(ﬂt(j ))2 = 1. For simplicity, for the rest
of the paper, we assume 04 = 80) for i =1,...,n.

There are several justifications of modeling a market share for soybeans with (3.13) and
(6.4), over existing models in the literature. First of all, most exiting models use a single jump
term for the dynamics of the log-return process X; of the market share for soybeans. However,
given the involved nature of jumps in a market share for soybeans, it is unlikely to be modeled by
a single jump-term. Consequently, the proposed model provides a great deal of flexibility in terms
of modeling. Secondly, the coefficients 89, i = 1,...,n, will aid in extracting various important
features of a market share for soybeans dynamics. This is obviously not the case for a single jump
(or, no jump) model. Finally, the proposed model in fact incorporates most of the existing models.

We consider the export market share for soybeans exported from the US Gulf (USG) for a
given period of time. Figure 1 is a graphical representation of the data. From the empirical data,
it is clear that a single jump term for “‘big” fluctuations is very unlikely. Consequently, we propose

to use the model as given by (3.13).
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We consider that for the feature variables the individual dynamics are given by eth where
aY,") = g daw® +dJ?O, i=1,...,n.

Thus, from (3.13), we obtain dX; = b dt + ) ;" Hii)dY;(i). We call 92@ as the “importance fac-
tor” for the i-th feature component, for ¢ = 1,...,n. We observe, that if Z?:l(ﬁgi))Q = 1, then
S 91@ th(i) can be represented by dB;, where By is a Brownian motion. Consequently, (3.13)

can be written as
St = SoeX', where dX;=bydt+0udBy+ Y 0, dJ". (3.15)
=1

The expression (3.15) provides an alternative explanation for the coefficients “importance factors”.
Those represent the significance in terms of big fluctuations (or “jumps”) of the i-th feature
component Y;(i). We write Jt(i) in terms of integral with respect to Poisson random measures

N(i)(dt, dx), for i = 1,...,n. Consequently,

) t .
Jt(l) :/ /l’N(Z)(dt, dx).
0o Jr

Hence (3.15) can be written as
St = SoeX', where dX;=bydt+ 0 dB;+ Y 0, / N (at, dz). (3.16)
i=1 R

We consider a special case of this model for developing some mathematical analysis. The
model is the Barndorff-Nielsen & Shephard model (BN-S model, see [10, 11, 28, 23]), where the soy-
bean export market share price S = (S;)¢>0 on some filtered probability space (2,3, (Gt)o<t<T, P)
is given by

Sy = Sp exp(Xy), (3.17)

dX; = (u+ Bop) dt + or AWy + pdZx, (3.18)

22



do? = —\o} dt +dZy, of >0, (3.19)

where the parameters u, 5, p, A € R with A > 0 and p < 0 and r is the risk free interest rate where
a stock or commodity is traded up to a fixed horizon date T". In the above model W; is a Brownian
motion, and the process Z; is a subordinator. Also W and Z are assumed to be independent, and
(Gy) is assumed to be the usual augmentation of the filtration generated by the pair (W, Z).

The BN-S model is a special case of (3.16), where ngi) = % fooo eNO(ds,dx), i=1,...,n,

are subordinators. The BN-S model has been successfully implemented to oil in various cenent works
(see [47, 47, 52]). Making a scaling in the time variable, we define s = At, for A > 0. Then, we

) _

obtain, dZiZ = ?1) fooo N (i)()\ dt,dz), 1i=1,...,n, are subordinators. Consequently, we consider

¢
S = (St)t>0 on some filtered probability space (2, F, (Fi)o<t<T,P), is given by (3.16). Thus we

obtain the dynamics of X; as

n
dX; = (u+ Bo?) dt + 0, dB, +p > 6\)dZ%), (3.20)
i=1
where Z(®), i =1,...,n are independent subordinators. Machine learning algorithms can be imple-

mented to determine the value of §. The processes Z(®) have various intensities. Also, we assume
that By, and Z(®, i =1,...,n, are independent, and (Ft) is assumed to be the usual augmentation

of the filtration generated by (W, Z®), i =1,...,n. In this case (3.19) will be given by

do? = —XoPdt+ > 01dzy), o3> 0. (3.21)
=1

The solution of (3.21) can be explicitly written as
¢ noo
02 = e Mg2 + /O e M= N 90D az). (3.22)
i=1

The integrated variance over the time period [¢, T is given by O'% = | tT 02 ds, and a straight-forward

calculation shows

T n
o2 = e(t,T)o? + / e(s,7) > 00dz) (3.23)
t i=1
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where

€(s,T)=(1—exp(=A(T —3))) /A, t<s<T. (3.24)

We derive a general expression for the characteristic function of the conditional distribution of the
market share for soybeans process appearing in the stochastic model given by equations (3.17),
(3.20) and (3.21).

As shown in [51], the advantages of the dynamics given by (3.17), (3.20), and (3.21) over
the existing models are significant. The following theorem is proved in [51]. From this result,
it is clear that as 6 is constantly adjusted, for a fixed s, the value of ¢ always has an upper
limit. Consequently, Corr(Xy, Xs) never becomes very small, and thus long-range dependence is

incorporated in the model.

Theorem 3.2.1. If the jump measures associated with the subordinators Z and Z® are J; and
Jéb) respectively, and J(s) = [; [+ Jz(MdT,dy), J =3 fR+ /\dT dy); then for the log-
return of the market share for soybeans for the improved BN-S model given by (3.17), (3.20), and
(3.21),

Jo o2dr + p*(1 — 0)2J(s) + p?62T®)(s)

Corr( Xz, Xs) = , 3.25
e a(B)a(s) 2

fort > s, where a(v) = [ o2dr + vp*X((1 — 0)* Var(Z1) + 6? Var(Z£b))).
We denote the cumulant transforms as %) () = log E”[e iz ] In this work, we make the

following assumption similar to [40, 50].
Assumption 3.2.2. Assume that 0%) = sup{f € R : s () < 400} >0, fori=1,....n

We state the following well-known result from [40, 50] and denote the real part and imagi-

nary part of z € C as R(z) and (z), respectively.

Theorem 3.2.3. Let Z be a subordinator with cumulant transform k, and let f : R — C be a

complex-valued, left continuous function such that R(f) < 0. Then

E [exp < /O t £(s) dZASﬂ = exp <)\ /O t K ( f(s))ds) . (3.26)
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The above formula still holds if Z = Z'D satisfies Assumption 3.2.2 and f is such that R(f) < (fi)e),

i=1,...,n, fore>0.

The Laplace transform of Xpj, the conditional distribution of X given the information

up to time ¢ < T, is given by ¢(z) = EF[exp(2X7)|F;], for z € C such that the expectation is
well-defined.

Theorem 3.2.4. In the case of the stochastic model as described in equations (3.17), (3.20) and

(3.21), the Laplace transform ¢(z) = Elexp(2X1)|F:] of Xpp, is given by
1 <
o(z) = exp (z(Xt +u(T —1t)) + 5(22 +2B2)e(t, T)o? + )\Z/ G (s, 2) ds) , (3.27)
i=1 7t

where GO (s, 2) = k1) ((PZ +3(22 + 2ﬁz)e(s,T))9§i)>.

The transform ¢(z) is well defined in the open strip S = {z € C: R(z) € (6—,04)}, where

(i) _ _a__ P (1) \ p(@) _ (i)
= i (o0l - VA0) ] ot

and

(@) _ _p__P (1) \ p(i) — min )
b é?é[( p 1) " A1>95]’ 01 = minfy

i §(3)
where A = (B + tbgy)? + 2y
Proof. We obtain from equation (3.20)

T T n '
Xr=Copoie o |73 o)
¢ toi=1
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where ¢ = X; + (T —t). Let G denote the o-algebra generated by Z®), i =1,... ,n, up to time T

by Fi. Then, proceeding by iterated conditional expectations, we obtain

¢(2) = E" [exp(2X71)|F]
i T T ]
exp (z(cwa% + /t oadW, + p /t ;0§”d2§3)> |g] \ft]

=E" |E"
T T

= E¥ |exp | 2(¢ + Bo? +p/ ZQEZ)dZ)(\?) E* [exp(z/ Os dWs)|Q] | F
t t

- o |

= E¥ |exp (Z(( + Bo? + p/ Z 9§’)dZ§ZS)) + ;0’%22> ]]—"t] :
L toi=1

Using (3.23) we obtain

¢(z) = exp (Cz + %e(t, T)o?(2* + 262)) E*

T i |
exp (/t (pz + %(;ﬂ + 2Bz)e(s,T)> Zegi)d2§?>

Using the independence of the processes Z(), i =1,... n, we obtain

EI]P

T i |
exp (/t (pz + %(22 + 2ﬁz)e(s,T)) Zegi)d2§;)>

=1

T .
=17, B [exp (/ (pz + %(z2 +28B2)e(s, T)> Hgi)dZy))] .
t

Clearly if z € S, then §R((pz+%(z2+252)9gi)) < 0. Thus the result follows from (3.26). [

In order to study the characteristic of the “importance factors” (9,@ ,i=1,...,n), the
following result is useful. In is providing a decomposition of first exit-time (3.20) in terms of the
individual subordinators. For simplicity, we assume that oy = ¢ is constant and the positive factors

(Gt(i), i=1,...,n) are incorporated in the subordinators Z® i=1,... n.
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4. THE FIRST EXIT TIME ANALYSIS

4.1. First-Exit Time for a Combination of a Brownian Motion and a Lévy Subordinator

In this section, we develop a couple of results related to the first-exit time analysis of log-
return processes [5] of the form (3.12). At first, we develop the result related to the first-exit time
of a simpler process Wy + Y;, where Y is a Lévy subordinator, with Wy = Yy = 0. If X; and Xy

are independent random variables, we denote X; 1 X5 .

Theorem 4.1.1. For a Brownian motion Wy and a Lévy subordinator Y, and a,b > 0,
inf{r >0: W, +Y,>a+b}=inf{t >0: W; > a} +inf{a >0:Y, > b}, (4.1)

with probability
P—/ / / Pi(e;t,a)Py(e;t, o) de dt dev, (4.2)
0 0 —0o0

2

Pi(et, ) :/ e / e = ds dr, (4.3)

2o V2t

ds | d 4.4
Py(et,a) = / fri (B ( /m ot mO)fY‘”(S) S> B, (4.4)

where the probability density function of Yy is given by fy,(-).

where

and

Proof. The first-exit time of a combination of W; and Y%, in the sense that its value is more than

a+ b, is given by

inf{r >0: W, +Y, >a+b}

=inf{t+a>0: Wiaq+ Yiga >a+bt>0a>0}.

For a fixed € € R, we define

Pi(et,a) = PWipq > a—e€, Wy > a), (4.5)
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Py(e;t,a) = P(Yiiq > b+ €,Y, >0). (4.6)

We proceed to compute Pj(€;t, ) and Pa(€;t, ). We observe,

Pi(e;t,a) = PWipa > a— ¢, Wy > a)
=PWipa—Wr>a—e— Wy, Wy > a)
=PW;>a—¢€— (Wia — W), Wi > a)

:P(WthaX(a,a—e—X)), XNN(O,Q), XJ—Wt

2 2

X e2a o0 e 2t
:/ / ds | dr.
—oo V2TTQx max(a,a—e—7) V 27t

On the other hand,

P2(6§taa):P(Y%+a2b+67YaZb)
:P(YVtJra*YaZbTLE*YavYaZb)
:P(Ya Zb+6—(Yt+a—Ya),YaZb)

= P(Y, > max(b,b+€e—mn)), nlY,.

As the probability density function of Y; is given by fy,(-), therefore we obtain

Pt = [ i ( Lo fya(S)dS> as.

Clearly, {t >0: Wy > a}+{a>0:Y, >b} ={t+a>0: Wipo+ Yita > a+0bt>0a >0},
with probability P, where P is given by (4.2), and Pj(e;t,«) and Pa(e;t, ) are obtained by (4.3)

and (4.4), respectively. This leads to (4.1). O

Next, we generalize the result in Theorem 4.1.1 for the log-return stochastic process (3.12) in
the approximation of the BN-S model. In the BN-S model p < 0 is assumed in order to incorporate
the leverage effect of the market. Typically in a derivative market, a significant fluctuation always

corresponds to a “big-downward-movement” of the asset prices. Consequently, for the next theorem
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we focus on the first-exit time corresponding to a “downward-movement” of the log-return process

(3.12). For the following theorem we assume Wy = Zy = 0.
Theorem 4.1.2. For a Brownian motion Wy and a Lévy subordinator Z;, if u € R, 0 >0, p <0,

and a,b > 0, then

inf{r >0:ur+oW; +pZ; < —a— b}

=inf{t; > 0: put1 + oWy, < —a} +inf{ta > 0: uts + pZ, < —b}, (4.7)

with probability

/ / </ Pi(e;t1,t2)Ps(e; tl,tQ)de> dty dts, (4.8)

where ] 2
o e% min<(’a;“t1),<ﬂ:6)ﬂ_f M(téjw)) 6551
filen ) = / V2rts / ———ds | dr, (4.9)
—00 27Tt2 — 00 27Tt1
and

P2(6;t17t2) :/0 thl (6) (/max(max<( b— th) (= b+5) B u(t2+t1 ) )thz( )ds> dg, (4‘10)

where the probability density function of Zy is given by fz,(-).

Proof. For fixed ¢ € R, we define and compute the following joint probabilities. At first, we

compute, for a > 0:

Pi(e;ty,ta) = P(Wyy 44, + u(tli-tz) < _7& — g Wy, + ’u?tl < 7a)
= P(Wipt, — Wiy + gfjl < %a - g - Wiy, — MtQ Wi, + th < ?)
— P(W,, + ’;—Z < =t = (Wt = W) — “tQ W+ /Ltl <79
=P(W, < —aze (Wiy gt — Way) — ,u(t12?‘1—t2)’ Wy, < _a%“tl)
_p (th < min ((—a ; Mt1)7 (—aa— € Y- H(HQ;F 752))) ’
2 2

: ((—a;utl) 7 (—%—6) Y #(t12:t2)> . gtsl

o0 €2t2 min d d
_/_oo ol /_oo ozl R
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where in the second to last step x ~ N(0,t2), and x L Wy,. With p < 0, we compute for b > 0,

u(tl + tQ) —b € uto —b
P(e;ty,ta) = P(Z, +—=>—+ -+ — > —
( ) ( t1+t2 2P P P to P) p)
u(t1 + tz) —-b € uto —b
= P(Zoptg + 2 2 > 2 S - 24,2, + 2 > 2
1+t2 2p 2 P P 2 2 P ,0)
(—b+e) p(ta +t1) —b — pto
:P(ZtQZp(Ztl+t2Zt2+2p)7Zt22p
—b—ut —b to+t
:P(ZtQZmaX<( :LLQ)’( +€)_n_lw>)7
P p 2p

where Since n L Z;,, therefore we obtain (4.10). For a,b > 0, we define a set

A={r>0:ur+ oW, + pZ; < —a—b}

= {tl 4+t >0: ,u(t1 + tg) + oWy 4ty + 024 41, < —a— b, 81 > 0,82 > 0}.

Consequently, we obtain

A={ty+1t2>0: p(ty +t2) + oWy 44, + pZty 44, < —a — b}

={t1 >0: pt;1 + oWy, < —a}+ {ta >0: uty + pZy, < —b},

with probability P given by (4.8). Consequently,

inf A =inf{t; > 0: ut1 + oWy, < —a} +inf{ta > 0: uta + pZ;, < —b}.

This proves (4.7). O

The purpose of Theorem 4.1.1 and Theorem 4.1.2 is to decompose the first-exit time process
of a linear combination of a Brownian motion and a Lévy subordinator into the individual first-exit
time processes of a Brownian motion and a Lévy subordinator. However, as observed in both of

the theorems, such decomposition holds only with certain probability.

Remark 4.1.3. It is well known (see [4, 32]) that for the process Gy = inf{s > 0: Wy+~ys > 01t},
with 7,61 > 0, known as the inverse Gaussian (IG) process, Gy follows an IG(61t,) distribution.

As the process Ws + s is continuous, we also have Gy = inf{s > 0 : W5 + vs = do1t}. The
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distribution IG(61,7) is concentrated on Ry and has probability density:

1
p(x) = 5101 p3/2 exp (

V2r

5%;1071 + 721‘

6 0.
92 )7 ’Y?l>

Consequently, for Theorem 4.1.2 with p < 0 and a > 0, the first term on the right hand side of
(4.37) has the distribution inf{t; > 0 : ut; + oWy, < —a}i inf{t; > 0: —put; + oWy, > a} ~
G (3, ).

The case is not the same if the Brownian motion does not have any drift term. In that case,

it is known (see [7]) that inf{s > 0 : W, > a}, with a > 0, satisfies a Lévy distribution with the

a a? =0
————exp| |, =z )
oV 2mx3 P 202z

Consequently, for Theorem 4.1.1, the first term on the right hand side of (4.1), i.e., inf{t > 0 :

probability density function

Wi > a} = inf{t > 0: Wy = a}, with a > 0, has the probability density function \/2‘;? exp (—%),
x > 0. A similar result holds for the first term on the right hand side of (4.7) in Theorem 4.1.2
with p = 0.

Note that, for the case when p =0 and a >0, inf{s > 0: oWy < —a} =inf{s > 0:cWs =

—a}i inf{s >0:0Ws; =a} =inf{s >0: oW > a}.

We note that for Theorem 4.1.1, if a,b < 0, then (4.1) is trivially satisfied. Similarly, for
Theorem 4.1.2, if a,b < 0, then (4.7) is trivially satisfied. As Wy = Zy = 0, therefore all the related
first-exit times are zero in those cases.

4.2. First-Exit Time Distribution For Some Self-Decomposable Processes

Consider the log-return dynamics X; given by (3.12), in the approximation of the BN-S
model (3.17) and (3.12). In Theorem 4.1.2, it is shown that with certain probability, the first-exit
time process inf{t > 0 : X; < —a — b}, is decomposable into the sum of the first exit time of two
processes- (1) the Brownian motion with drift, and (2) a Lévy subordinator with drift. We denote
three stochastic processes: A,yp = inf{t >0: Xy < —a—b} =inf{t > 0: pt+oWi+pZ; < —a—"b},
B, =inf{t > 0: ut + cW; < —a}, and C, = inf{t > 0: ut + pZ; < —b}, with p <0, and a,b > 0.

In these expressions o and p are given by (3.10) and (3.11), respectively. Thus, o > 0. Also, in
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general, for financial applications p < 0. With these notations, from Theorem 4.1.2 we obtain that
Agyy = Bo + Cp.

The probability density function of the process B, with u < 0, is discussed in Remark 4.1.3.
In this section we discuss the probability density function of the process C' for some special cases.
Accordingly, with probability P given by (4.8), the probability density function of the process A is
equal to the convolution of the probability density functions of the processes B and C.

The goal of this section is to analyze the first-exit time distribution for the Lévy subordinator
in the decompositions provided in Theorem 4.1.1 and Theorem 4.1.2. For simplicity we assume
1 = 0. We consider the distribution of the corresponding process Cp = inf{s > 0: Z; > %b}, for
three self-decomposable distributions. As b > 0 and p < 0, in general, C' can be written as the
stochastic process Ty = inf{s > 0: Z; > t}, t > 0.

In Subsection 4.2.1, we describe some results related to special functions and Laplace trans-
forms that are implemented for the subsequent analysis. Subsections 4.2.2, 4.2.3, and 4.2.4, deal
with various analysis of T} in relation to Gamma, IG, and PTS subordinators, respectively.

4.2.1. Laplace Transform and Some Relevant Special Functions

At first, we describe some special functions necessary for the development of the rest of this

paper.

e The MacRobert E-function is denoted as
E(m;ar :n;bj i x) = E(ar, -+ ,am by, -+ by 1 2).

For m > n + 1, with |z| < 1, the MacRobert E-function is defined as

L 0 (ay — ai)T(aq) 2™
Z [ T2 T'(bk — ai)

i=1

i1 Fm_1A(x), (4.11)
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ai,ai—b1+1,~-- ,ai—bn—{—l;
where A(x) = (—=1)™*"z|. For m < n+ 1, with |z| > 1,

ai_al_'_lv'” 7;‘;7"' 7ai_am+1;
the MacRobert E-function is defined as

mTr i ~ ar, - ,am;—
ey i) 7 1 (4.12)
Hj:lr(bj) bi, - ,bp; ¥

For n = 0, the notation E(- :: -) is used. The % denotes that the term containing a; — a;

corresponding to j = i is omitted. Here ,,F,[-| is generalized hypergeometric functions,

defined as

where (-),, is the Pochhammer symbol.

The Gauss hypergeometric function oF} (a, b, ¢; x) is defined as

n=0

)

where (+), is the Pochhammer symbol, ¢ # 0,—1,—2,...;, and |z| < 1. For z € C, with
|z| > 1, the series can be analytically continued along any path in the complex plane that

avoids the branch points 1 and infinity. An integral representation of the hypergeometric

D(c) [t P~ (A—t) e~ (1—xt) —“dt
T(0)T(c—b) :

function is given by 9 F} (a,b, c;x) =

Modified Bessel functions are solutions of the modified Bessel equation. The modified Bessel

function of the first kind is defined by

with v € R, and J,(-) is the Bessel function of the first kind.
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e Upper incomplete gamma function is given by

_ o a—1_—t
I(a,z) = 1 tetdt.

For x > 0, I'(a,x) converges for all real a. In particular, I'(0, x) is the exponential integral

[t et dt.

Next, we describe some results related to the Laplace transform. For ¢ > 0, and s € C,
we denote the Laplace transform of f(t) by L£(f(t)) = F(s), where f(t) is piecewise continuous
function on every finite interval in [0, c0) satisfying |f(t)| < Me®, for some M > 0 and for all t €

[0,00). The Laplace transform and the inverse Laplace transform are related by:

F(s) = /O T et dt,

and

f0 =g [ et mo)as

3 Ly
for some zp € R, where ¢ is greater than the real part of all singularities of F'(s), and F'(s) is
bounded on the line Re(s) = xg in the complex-plane. We list some useful properties related to the
Laplace transform. The following result is elementary and can be found in [45].
Lemma 4.2.1. The following results hold: (1) L~ (aF(as — b)) = e%f(é), with a >0, b € R; (2)
£t (<) = ep (1) (3) £71 (F) = Jo Fwydus (4) £74(sF(s) = (0)) = 2.

The following results provide various relations between the Laplace transform and special

functions. These results can be found in [45].

Lemma 4.2.2. The following results hold.

(1) £ (17 [ e ¥ fuan) = 2/DF5).

o
NPT

(2) E_l( ) = Ig(2V/at), where Io(x) is the modified Bessel function of the first kind, and



(4) L(T(v,at)) = Fiv) [1— (14 2)7"], where I'(v, at) is the upper incomplete gamma function,
and Re(v) >0, Re(s) > —Re(a).

(5) £ ((Vat)) = s\/‘é%, where (x) = %fox et dt,
Re(s) > max(0, —Re(a)).

(6) L1 (@) = e\;ﬂi:, Re(s) > —Re(a).

(7) £ (E) Ja + Va[vat], Re(s) > max(0, —Re(a)).

(8)

-1 <sc—le—(bs)%>

Lime

m2 1 1

= ZfE <c,c+,...,c+
(2m) 2 b 5 m

m  m™mt

m—1 be”)

where E(- : - : ) is the MacRobert E-function, Re(s) > 0, Re(c) > 0, Re(b) > 0,m = 2,3,....
In the above expression Zl_z denotes that in expression following the summation sign, i is

to be replaced by —i and two expressions are to be added.

In the two-dimension, for x € R, let F(x,s) = fooo f(x,t)e ~5tdt, be the Laplace transform
of function f(x,t) with respect to the ¢ variable. Note that, for a subordinator Xy, with probability

density function fx,(-), and Lévy measure mx, the Lévy-Khinchin representation gives (see[13])
oo
/ e T fx. (t)dt = e=5¥x(?) (4.13)
0

where x(+) is the Laplace exponent of X and is given by ¢x(2) = [;°(1 — e **)mx (du), where

mx is the Lévy measure of X. The following result can be found in [13].

Theorem 4.2.3. The Lévy density w(x) and Lévy measure wx (t,00) of the subordinator X (with

[e.9]

mx(t,00) = [T w(x)dx) satisfy L(mx (t,00)) = wXT(S), where Yx (s) is the Laplace exponent of the

subordinator X .

The following results are proved in [61].
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Theorem 4.2.4. Let X = {X;}4~0 be a subordinator with the probability density function p(x,t).
Suppose p(x,t) admits continuous partial derivatives. Let Ty = inf{r > 0 : X; > t}, fort > 0,
represents the first-exit time process of X. Denote the probability density function of Ty by hi(-) =

h(-,t). Then,
P (s)e=™vx ()

L(h(,1)) = HE2——, (4.14)

where 1x (+) is the Laplace exponent of the subordinator X .

Theorem 4.2.5. Denote the g-th moment of the first-exit time of the subordinator X by My(z,t).

Then,

_ 'l +4q)
£(My(,0) = {5 (4.15)

4.2.2. Gamma Subordinators

ve %

xT

Let X; be a Gamma subordinator with Lévy density given by wx (z) =

, > 0, with

v,a > 0. In this case, the Laplace exponent of X is given by ¢x(s) = vIn (1 + £) (see [23, 40]).

Theorem 4.2.6. For xv =n—+1, n=20,1,2,..., the probability density function of the first-exit

time of X is given by

h(z,t) = / P () I v v L v R ) g, (4.16)
0

(xv —1)!
where o Fy (—vz, —vz,1 — vx; 1) is the hypergeometric function.

Proof. By Theorem 4.2.4, the Laplace transform of probability density of the first-exit time of

Gamma subordinator is given as

L(h(z,t) = 1;51:8%5 _ K(i,S)’

(4.17)

where K (z,s) = F(z,s)G(x,s), with F(z,s) = vIn(142),and G(z, s) = W Then L(h(x,t)) =
K(z,s)

S

. Let the inverse Laplace transforms for F'(z, s) and G(z, s) be f(z,t) and g(x,t), respectively.

Note that £ 1(In(1 + s)) = —?, (see [45]). Using Lemma 4.2.1(1), we obtain,

Ve—ta

t

f(.%',t) - =
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For v = n + 1, where n is a non-negative integer, £~! (—(5+11)w> = tz;:el;,t Hence, by using

azutzr/flefta

Lemma 4.2.1(1), we obtain g(z,t) = (zv—1)!

. Consequently, by standard convolution proce-

dure, we obtain

¢ t —Ta TV (4 _ Nev—1,—a(t—T)
k(x,t) = / flz,m)g(x,t —7)dT = / _ve % (t—1) e i
0 0

(zv —1)!
e (=) o By (—ve, —ve, 1 — va; 1) 4 vt
B (zv —1)! ’
Hence, with the application of Lemma 4.2.1(3), we obtain (4.16). O

The next result provides the first and the second order moment of the first-exit time of

Gamma subordinator.

Theorem 4.2.7. The first order moment (mean) the first-exit time of Gamma subordinator Xy is

given by

t oo

- u—1

ae " (Aa)" " dudA

t) = . 4.18

mie.0) = [ [ 2R (118)
00

Proof. Using Theorem 4.2.5, we obtain the Laplace transform of the ¢-th moment of the first-exit

time of the Gamma subordinator as %. Consequently, the Laplace transform of the first

order moment of the first-exit time of the Gamma subordinator is given by

I'(2)

M(z,s) = ——2
(z,5) svin(l+ 2)

(4.19)

We observe that £~} < 11; %))) _ fooo 1“(1%)(2‘)_1 du. Consequently, using Lemma 4.2.1(2), we obtain

e ) - e

Consequently, £L~1(M (z, s)) can be computed using Lemma 4.2.1(3) to obtain (4.18). O

We conclude this subsection by considering the case when the subordinator Z, that appears
in (3.12) and (3.5), is related to the Gamma subordinator in the BN-S model. As observed in
Section 3.1, if the stationary distribution of o7 is given by gamma law I'(v,a), then the Lévy

density of Z; is given by w(x) = vae™**, z > 0.
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Theorem 4.2.8. The probability density function of the first-exit time of a subordinator Z with

ax

Lévy density w(x) = vae™**, is given by

h(z,t) =ve ™I (2\/961/0415) e

where Io(+) is the modified Bessel function of the first kind.

Proof. For this case, the Lévy measure of Z is given by 7z (t,00) = ftoo vae “dy = ve~ . Using

vals) — v Consequently, ¥z(s) =

s st+a

Vs
s+a”

The Laplace transform of the

—zvs
ve sta

ER e’

Theorem 4.2.3, we obtain

probability density function of the first-exit time of Z is given by H(x,s) = . Consequently,

the probability density function of the first-exit time of Z is given by h(z,t) = L~ (H(z, s)), where

H( ) ve ;iltlxs yeiwy(li Sia) yefxye :ig (4 20)
x,8) = = = . .
S+« S+« S+«

Using Lemma 4.2.1(1) and Lemma 4.2.2(2), we obtain

h(z,t) =ve ™I (2\/3:1/0415) e o,

4.2.3. Inverse Gaussian Subordinators
The first-exit time of IG processes is described in [61]. In this subsection we consider the
subordinator Z, that appears in (3.12), is related to the IG subordinator in the BN-S model.If

the stationary distribution of o7 is given by IG(d1,~) law, then the Lévy density of Z; is given by

w(z) = 2\‘;12717_%(1 +’y2x)e_%72x, x>0, and 01,7 > 0.
For the results in Subsections 4.2.3 and 4.2.4, we define the convolution of two functions
p(z,t) and q(z,t) by

p(z,t) * q(x,t) = /0 p(z, 7)q(x, t — T)drT.

Consequently, for three functions p(x,t), ¢(z,t), and r(zx,t),

(p(x,t) * q(z,t)) * r(z,t) = /0 /Oup(a:, T)q(z,u — 7)r(z,t —u) dT du.
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Theorem 4.2.9. The probability density function of the first-exit time of a subordinator Z with

Lévy density w(x) = 2\‘;127:1:_%(1 +7233)e_%72x, is given by h(x,t) = (p(x,t) *xq(x,t)) xr(z,t), where

—5iy(2L ) T(ZL, 2hs
p(:c,t):72\/§ +127+<2 2)17,

—ayd —ty? 3
e 2 e 2 tz [ _.2 720, xy20;
= I 2 4.22
ala,t) 2./7 /o v <0< \/2\/5 u) (\/2\/% o) ) du, - (4.22)

where §(-) is the Dirac delta function, Iy(-) is the modified Bessel function of the first kind, and

(4.21)

N

772t 81y —5%1‘2’Y4

;L‘(SlfyGe 2 e 2 e 32

r(z,t) = (4.23)
8/m(2t)2
Proof. We obtain the Lévy measure for Z as
=3 —72:1: —1 —7250
oo © Sir2e 2 A 2\ 5
7 (t, 00) :/ w(z)dx :/ wrer +oalezen dx
t t 2427
Vit _ 2
_ —nE) NEIb T(3, Loy
2 2 4\/7 ’
Using Theorem 4.2.3, Lemma 4.2.2(4), and Lemma 4.2.2(5) we obtain,
2s
S 512 S1y[l — /(1 + 23]
Llrp(t o0)) = 2208 0y 17 - T (4.24)

s 2s 2\/55( /S_'_g) 2s

Consequently, by Theorem 4.2.4, we obtain that the Laplace transform of the probability density

function of the first-exit time of Z is given by

51y 5192 S1y[l—4/(1+ 373)]

28 2\/53( /S_‘_g) 28

= P(z,s5)Q(zx,s)R(x, s),

—zB(s)

H(xz,s) = e

where
B(s) 517y 5172 o1y[l—4/(1+ %3)]
s)=| = — - ,
2 98 /s+ r 2
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2s
5 5172 a1yl = /(1 + 23)]
P(z,s) = Qﬂ - 1 _ - ; e (4.25)
5 9v2s4/s + z 5
_ 2
Q(x,s) = exp ZL‘2’}/51 + 01 -
22 /s + 5
and
51361'7 .7351’)/ (1 + %)
R(z,s) = exp 5 5

We denote the inverse Laplace transforms of P(z,s), Q(x,s), and R(x,s) by p(z,t), ¢(z,t), and

r(x,t), respectively.

§17[1—/(1+25)]
We have p(z,t) = L7} 521—3 — o172 — — : oF 2>~ ). From this, comparing with
2\/55(\/5—&-%)

(4.24), we note that p(z,t) = E‘l(wZT(S)). Hence p(x,t) is given by (4.21).

Next, we compute g(z,t) using Lemma 4.2.2(2), Lemma 4.2.2(1), and Lemma 4.2.1(4).
Lemma 4.2.2(2) gives £7! (%) = Ip(2V/at).

With L(s) = £, we find I(t) = £~(L(s)) = Io(2/at). We notice Io(0) = 1. Consequently,
using Lemma 4.2.1(4), we have £~ (sL(S) — 1(0)) = I'(t). Hence, we obtain, L~ (es) — L7(1) =
I5(2V/at)(y/%), and thus L7Mes) = I5(2v/at)(\/F) + 6(t), where 4(-) is the Dirac delta-function.

Using Lemma 4.2.2(1), we obtain

tz [

e = 2 [T et Va4 + s

Therefore, using Lemma 4.2.1(1) we obtain

—ay8 —ty? 3
e 2 e 2z tz [ _.2 720, xy20;
= I 2 . 4.2
ala,t) 2./7 /0 v <0< \/2\@ u) (\/2\/% o) | du (4.26)

Finally,

2s
617, /(1+=5)
1y 1 +2

r(z,t) = LY R(z,8) =L [e 2 e 2

xd1y x81vV/s m621'y S #ﬁﬂy?
Using Lemma 4.2.2(3), we obtain L= (e 2 e~ 2 R C \1;)63 . Consequently, using
4\/mt2

Lemma 4.2.1(1), we obtain (4.23).
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Finally, if h(x,t) is the probability density function of the first-exit time of Z, then h(z,t) =

L7 (H(x,8)) = L7 (P(2,5)Q(x, 8)R(,5)) = (p(x,t) * q(w, 1)) * r(z, ). O
4.2.4. Positive Tempered Stable Subordinators

Let Xy be a positive tempered stable (PTS) subordinator with Lévy density given by

- Y -1 Lo
we)=pk™ —— g7 exp(—kx), x>0,
@) (L1 =) 2

with 5>0,0<vy<1,and k > 0.

Theorem 4.2.10. The probability density function of the first-exit time of X is given by h(z,t) =

p(z,t) * q(z,t), where

k2t
p(x,t) = al’ (—7, 2> , (4.27)
where a = 51— and
2T(y)r(1—y)’
q(z,t) =
r k2, (1)727“/2 1
e (e pEn) 7 ; T Z;E(l,l—l—%...,Q—'y::C’(:U)), (4.28)
(2m) 2 (—za(zz) T (=) i
2 —za)l'(— le“’
where C(z) = (G2)C El;( N, (4.28), E(- : - : -) is the MacRobert E-function, and

vt
> i _; denotes that in expression following the summation sign, i is to be replaced by —i and two

expressions are to be added.

Proof. We have

- oo B S ka?y,}/w*’Y*le%?m _ B’YF(_%%%)
R A T R e

We compute L(mx(t)) using Theorem 4.2.3 to obtain the Laplace exponent of density function of

X as
BT (=)L~ (1 + 3]
L V5 (R E

41



Now using Theorem 4.2.4, we obtain the Laplace transform of the probability density function of

the first-exit time of X as

H(z,s) = L(h(z,1)) = (af(—fy)[l _S 1+ ’33)7]> e~ wT(=-(1+8)7)

To compute h(zx,t), the probability density function of the first-exit time

p(x,t) = £ <GF(—W)[1 —(1+ ng>

— By
where a = TRTA—)2

of X, we find

s
and

and use the convolution result. By using Lemma 4.2.2(4), we obtain, the expression of p(x,t) as
(4.27).

Next, compute g(z,t). Denote Q(z, s) = exp (—azI'(—7)[1 — (1 + %)'y]) We observe

Qe.s) = (- ((-ean ) + o war 7))

— ¢~ oxp (— <(—xar(—7))i +s <—xa (k22>7 r(-ﬂ) i>’Y> .

Hence, by using Lemma 4.2.2(8) and Lemma 4.2.1(1), we obtain the expression of ¢(z,t) as (4.28).
[

We conclude this subsection by considering a subordinator Z related to the PTS subordi-
nator in the BN-S model. If the stationary distribution of ¢ is given by PTS(k,d,v) law, then

that the Lévy density of Z; is given by

_k2e
Bk yz e 3 < k2x
2

w(x) = T =) 'y+>, r>0, B>00<vy<1,k>0. (4.29)

As in the previous sections, Z is the subordinator that appears in (3.12).
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Theorem 4.2.11. The probability density function of the first-exit time of a subordinator Z, with

Lévy density (4.29), is given by h(z,t) = (p(x,t) * q(x,t)) * r(x,t), where

k%t k%t
p(z,t) =a <’YF(—% ) =, 2)) : (4.30)
where a = 4 and
2T (v)I'(1—)’
1422
_ k2 =) 2
q(z,t) = et T (=) K2t _ ('y) 2 ; s, (4.31)
(2m) 27 (—zay(35) T (=)
where
2 (—zay)T(— 7 el
S1=ZE<1,1—|—% , 22—y ()" ’Z)l (=7)) ’
i,—1 v t
and .
2 _1 Va2
r(x,t) = e—wal(1-7) o= 45t ~ (7_1) — 59, (4.32)
(2m) 75 (—al )1 101~ 7))
where .
1 (B (~aa)(1 —))Tem
ngZfE Ly,...,3 =y — —
=i (v —1)"1¢
In the expressions of S1 and Sy, E(- : - : -) is the MacRobert E-function, and Zi,—i denotes that

in expression following the summation sign, i is to be replaced by —i and two expressions are to be

added.

Proof. We obtain 7z(t,c0) as

Y B Ooﬁk_QV'yx_W_le%% kx
raltioe) = [ wlyte = [T B e

By k2t k2t
= srgr— (3T 550).

We use Theorem 4.2.3 to obtain

¢Zs(3) _ 27F(7)51_")El — ('YF(S_’Y)( g)v) + F(ls_ 7) (1-(1+ z§)7—1)> ‘
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Consequently,

vas) =a (A0 = (14 )+ TA =)= (14 )77 )

where a = % Using Theorem 4.2.4, we obtain the Laplace transform of the probability

density function of the first-exit time of Z as

H(z,s) = L(h(x,t)) = P(x,s)Q(z,s)R(z, s),

where
P(aj‘,s) —a <7F(;7) - 'YF(S_’Y) (1 + 2%)7 + F(ls— 7) N F(ls— '7) (1 + i‘;)v—l> ’ (4‘34)
Qes) = exp (—za (M- 14 1) ).
and

R(z,s) = exp (—xa <r(1 (1 -1+ Zj)“)) .

We denote the inverse Laplace transform for P(x,s), Q(z,s), and R(zx,s), by p(x,t), q(x,t), and

r(z,t), respectively. Using Lemma 4.2.2(4), we obtain

e A L)

Also, using Lemma 4.2.2(4), we obtain ,/5*1(M - M(1 + 2P ) =T(1-, %Zt) Hence, we

S S

obtain p(z,t) as given by (4.30).

Next, we observe that Q(z,s) can be written as:

Qes) = =D exp (= (et () + (et ) ) (4.35)

_ =) e <_ ((—xa'yF(—fy))"lv s <—xa’y (;)7 r(-ﬂ) i>7> . (436)
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Hence by using Lemma 4.2.2(8) and Lemma 4.2.1(1), we obtain (4.31). Finally, we observe that

R(z,s) can be written as

R(z,s) = e " exp (— <(—xaF(l — )T+ ig( zal'(1 — 7))7“)7_ )
= e exp (~Dla) ™),

1

where D(z) = <(—xaf(1 - 'y))ﬁ +s <—xa (%)771 NG 7)) 71) Hence by using Lemma 4.2.2(8)
and Lemma 4.2.1(1), we obtain (4.32). Finally, by convolution theorem, we obtain the probability

density function of the first-exit time of Z as h(z,t) = L7 (H(z, s)) = (p(z,t) *q(x,t)) *r(x,t). O

4.3. A Generalized Result
At this point, we prove a generalized version of Theorem 4.1.2. This can be implemented

for the analysis of the commodity market as described in a previous chapter.

Theorem 4.3.1. For a Brownian motion W; and a Lévy subordinators Zt(i), 1=1,....n,if u € R,

c>0,p<0, and a,by,...,by, >0, then

inf{r > 0: pr + oW, +pZZ<% —a—Zb}
=1

=inf{t; >0: pt1 + oWy, < —a}+ Zinf{tg >0 pty + ng) < —b;}, (4.37)
i=1

with probability

P = / / (/ P1 E tl,tQ)HPQ(i)(E;tl,tQ)Ck) dtl dtg, (438)

i=1
where ] 2
> e% min((_“;’“1)7(*(:6)_7__;1(7&12:@)) 65:1
l) E't ,t = ds d7- 4‘39
1(€;1,t2) /_oo 2ty /_Oo Nor=m , (4.39)
and fori=1,...,n,

(€5t1,t2) / fZ() (/ ax(max(< nbi—pty) (nbite) g ;L(t2+f1)) )th(;)(S)d5> 4B, (4.40)

pn ’ np 2pn
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where the probability density function of Zt(i) s given by fgt)()

Proof. For fixed ¢ € R, we define and compute the following joint probabilities.

At first, we
compute, for a > 0:
t1 + to —a € t1 —a
P1(€§t17t2):P(Wt1+t2+M( 9 ) Si_*ath"i'LSi)
o o o o o
ply _ —a € uta uty  —a
= P(W, Wi < — — — =Wy, — —, W, — < —
( t1+to t1 20 =5 o t1 2% t1 + = g )
M —a— ,uf2 Ht1
=PWy + 5 < ——— = (Wit = Wiy) = 5= Wiy + == < 7)
—a —€ p(ts + t2) —a — uty
= P(th < P - (Wt1+t2 - th) - T? th < f)
—a—pty) (—a— t+t
:P<Wt1§min<( a /11)7( a 6)_X_M(1+ 2))>’
o o 20
o 6_27‘;2 min((*‘l;Mtl)7(*ﬂU*5> P u(t12;rt2)> 65512
— _ ——ds | dr,
/ 27Tt2 ;/—oo vV 27Tt1

where in the second to last step x ~ N(0,¢2), and x L Wy,. For i = 1,...,n, with p < 0, we

compute for b; > 0,

; ; t o+t —b; ty  —b;
P ey, 1) = P20, + ML T2) +— Z§) 2> 7

2pn p np "~ p
JAY
t

(i) plt+t2) ) i () i), Btz o —b
=P(Z — > —+— -2, pa—
( t1+t2 2pn = P) + on to np > P )
_ (i)  (=nbi+e€) (4) (@) . Mtz +1t1) (i) — —nb; — uto
=P <Zt2 2 T - (Zt1+t2 - th + Z.T)a ZtQ > T
_ P (29 5 max ((EPiz i) (Enbite) o plz+h))

’ pn np 2om

where () ~ the distribution of Zt(f). Since n L Zt(;), therefore we obtain (4.40). For a,b > 0, we

define a set

A:{T>02,U,T+O'WT+pZZ7(_i) g—a—Zbi}

i=1

n n
= {tl +t3>0: u(tl —I—tQ) +0Wt1+t2 +pZZt(I)+t2 < —a-— Zbi7t1 > O,tz > 0}.
i=1 =1
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Consequently, we obtain
n . n
A= {tl +1t9>0: M(tl +t2) + oWt 41, +pZZt(1Z)+t2 < —a-— Zbl}
i=1 i=1

n
= {tl >0: put; + Uth < —a} + Z{tQ > 0: ute + pZt(;) < —bi},
=1

with probability P given by (4.38). Consequently,
n .
inf A =inf{t; > 0: pty + oWy, < —a} + Y inf{ts > 0: pty + pZ)) < —b;}.
i=1

This proves (4.37). O

The purpose of Theorem 4.1.2 is to decompose the first-exit time process of a linear com-
bination of a Brownian motion and Lévy subordinators into the individual first-exit time processes
of a Brownian motion and Lévy subordinators. However, as observed in the theorem, such decom-

position is attained only with certain probability.
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5. DATA ANALYSIS

5.1. Data Description and Analytical Framework

The data set in our study consistsed of 418 observations and 34 features. The data set is
a time series with weekly observations over the period 2012 to 2020. This captures a period of
growing intensity in competition, and during which a trade war had influenced the results. The
target variable was the share of world soybean exports shipped from the US Gulf to China. This
value was derived from USDA soybean market reports (see [67, 68, 69, 70]). A set of feature variables
were developed as having potential impacts on the target variable. These variables depicted costs,
time, logistics in addition to binary variable by month and for the duration of the trade war. The
variables are summarized in Table 5.1 along with their source. In the following table “Grain TR”

stands for “Grain Transportation Report”.
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Table 5.1. Variables and Data Sources.

Variable Name Description Source
DCV Rail car values Tradewest
Velocity Rail car cycle time BNSF

Outstanding Sales

Export sales

USDA Grain TR

Pnw in port

Ships in port at the PNW

USDA Grain TR

Wtime santos

Ship wait time Braazil

USDA Grain TR

Gulf duenext10d

Ships due in US Gulf next 10 days

USDA Grain TR

barge mm

Monthly barge rate

USDA Grain TR

gulf in port

Ships in port at the US Gulf

USDA Grain TR

gulf loaded post 7 days

Ships loaded in past 7 days

USDA Grain TR

usg b Basis at the US Gulf Thompson Reuters Eikon
pnw b Basis at the PNW Thompson Reuters Eikon
braz fre Ocean shipping from Brazil Thompson Reuters Eikon
arg fre Ocean shipping from Argentina Thompson Reuters Eikon

twar dummy

Trade war

usg fre Ocean shipping from US Gulf Thompson Reuters Eikon
Pnw fre Ocean shipping from PNW Thompson Reuters Eikon
exrate arg Exchange rate Argentina Thompson Reuters Eikon
exrate bra Exchange rate Brazil Thompson Reuters Eikon

Monthly binary variables

Our goal in this study is to predict the US Gulf soybean export market shares using Random
Forest (RF) and Recurrent Neural Network (RNN) techniques. Once a prediction was obtained
with sufficient accuracy, we used variable importance plot for RF, and LIME for RNN to examine
which features are important in interpreting the prediction of shares of USA. The main motivation
behind using variable importance plot for RF, and LIME for RNN stems from the fact that former

technique helps in understanding the global interpretation while later one focuses more on local
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interpretation. Global interpretation helps in understating the inputs and and their relationship
with prediction target, while local interpretation helps us understanding model predictions for single
observation or group of similar observations.

We note that the Random Forest method is an ensemble method for classification and
regression. OQutput from Random Forest is based on ensemble of decisions made by various decision
trees. Studies have shown that ensemble method significantly improves predictive performances.
On the other hand, Recurrent Neural Network (RNN) is a neural network algorithm that is used
for time series data. The common problem that RNN faces is vanishing gradient, to solve this issue,
Long Short Term Memory (LSTM) is used. The improvement of RNN can be further incorporated
by the “LIME” technique.

LIME, that stands for Local Interpretable Model-agnostic Explanations, is a method for
visualizing individual predictions. LIME uses an interpretable model locally around the prediction
to clarify any classifier’s predictions in an interpretable and faithful manner. It is model agnostic,
which means that it will work with every supervised regression or classification model. LIME is
based on the premise that any complex model is linear on a local scale and that it is possible to
solve it. The simple model can then be used to illustrate the more complicated model’s predictions
locally. LIME is useful when there is possibility of dataset shift. LIME is also very useful when
there is chance of data leakage. LIME can explain predictions of any machine learning algorithm,
by approximating it locally with an interpretable model. SP-LIME uses submodular optimization
to address the trusting the model issue.

Unlike in econometrics or linear policy modeling analytics such as hypothesis testing, it is
not possible to take a partial derivative of an exogenous variable’s coefficient in a deep learning
model’s functional form with respect to the endogenous. The ability to do this in a regression
model allows for a pure ceteris paribus interpretation of the model. In contrast, in Deep Learning
there are often a large number of variables and an often-attributed presence of multicollinearity,
each variable having complex relations among other variables’ “marginal” influences. Additionally,
the presence of dynamic interrelations within the network, not only with feature scale, but with
relational feature distance and differentials, a linear interpretation fails to capture these complex and

nonlinear relations, notwithstanding nonstationary assumptions. As an alternative, it is possible to
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evaluate model determination and feature importance through non-conventional methods including
Variable in Importance (VIP) or through Local Interpretable Model-Agnostic Explanation (LIME).

LIME as presented by [44] is a novel technique that explains classifiers or regression models
at a local prediction. In doing this the method develops a linear, interpretable, and understandable
model that defines the observation. It is exceptionally effective at identifying local model interpre-
tation, but in deriving a global interpretation of a deep learning model, it is important to evaluate
perturbations at varying points in the sample dataset. This is because it is entirely possible that
if evaluated at differing observations, the ranking and signs of the variables may vary. Global
interpretation is difficult, even if model weights and biases can be evaluated.

A method of Submodular Pick Local Interpretable Model-Agnostic Explanation (SP-LIME)
was developed in [44] as a method to attempt a global perspective of model interpretability.
Through sub-modular optimization, by selecting a few individual instances and corresponding pre-
dictions of the observation set, in such a way that they are representative of the model upon the
individual, local predictions. In using SP-LIME, a feature attribution matrix is developed through
perturbation search and estimation. By averaging this matrix, one can observe the global feature
attribution. Though this method approaches linear interpretation, marginal essentialism cannot
be attained like it can in statistical and linear approaches which is accomplished by taking partial
derivatives of the function.

5.2. Numerical Results and Conclusion

For the analysis [6], 300 observation (numbered from 1 to 300) were used for training data,
while 118 (numbered from 1 to 118) were used for testing. For the training data, the number 1
represents June 1, 2012, while the number 300 represents September 22, 2017. For the testing data
(Figures 2 and 4), the number 1 (in the x-axis) represents September 29, 2017, while the number
118 represents March 1, 2020. Variables were chosen based on a priori expectations and some were
excluded due to multicollinearity. The RF model is used, and based on variable importance plot
the following variables were considered as important variables.

The data analysis is connected to the mathematical model. For all the feature variables we
assign a binary “importance factor” #() as either 0 or 1. We list the features that are obtained
with 0 = 1. We discard the features with #®) = 0. Variable Importance Plot is based on

IncNodePurity. IncNodePurity relates to loss function by which best split is chosen in Table 4.2.
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Loss function is our analysis is Mean Square Error. More useful variables achieve higher increases
in node purities, that is to find a split which has a high inter node variance and a small intra-node
variance.

Plots between Predicted shares and Actual shares are presented below in Figures 4.1 and
4.3. These plots show that the RF model has fairly well. In RNN, LSTM was used with 50 nodes
and 1 dense layer. For optimization “Adam” was used. RNN was trained for 100 epochs. Batch
size of 72 was used in training of RNN model. For RNN model, we made sure that all the variables
were normalized so-that variables with higher variance do not unnecessarily dominate in model.

For training of RNN, we used timestamp of value 1.

(18]
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Figure 5.1. Soyabean Export Shares from US Gulf to China.
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Table 5.2. Variable Importance Plot for Shares of USA.

Variable Name IncNodePurity
DCV 0.22
velocity 0.82
Outstanding Sales 0.70
Pnw in port 0.27
Wtime santos 0.71
Gulf duenext10d 2.29
barge mm 2.39
gulf in port 0.72
gulf loaded post 7 days 3.21
usg b 0.20
pnw b 0.24
braz fre 0.41
arg fre 0.33
usg fre 0.34
Pnw fre 0.48
santos_b 1.92
arg_b 0.81
exrate arg 1.24
exrate bra 0.85
jan dummy 0.73
feb dummy 0.30
mar dummy 0.29
apr dummy 0.10
sep dummy 0.18
nov dummy 0.11
dec dummy 0.20
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Results from RF: Variable importance plot for shares of USA is presented in Table 4.2.
We can infer that “gulf loaded post 7 days”, “barge mm”, “Gulf duenext10d”, “Wtime santos”,
“exrate arg” are the important variables on average. Figure 5.2 provides a description of predicted
shares vs. actual shares using the RF algorithm.

Result from RNN:

In the Figure 5.2, orange colored variables support the feature variables, while blue colored
variables oppose the feature variables.

LIME plot in Figure 5.2, shows that “twar dummy”, “Wtime santos”, “braz fre”, “arg
fre”, “gulf loaded post 7 days”, “Pnw fre” variables positively correlates with USA shares, while
“Velocity”, “gulf in port”, “usg fre”, “Pnw in port”, “arg fre” negatively correlates with USA share.

Comparison between predicted shares and actual shares is given below in Figure 5.3.

Feature Value Feature Value

Figure 5.2. LIME Plot.
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Figure 5.3. Predicted Shares Vs. Actual Shares using RNN.

Next, we incorporate Theorem 4.1.2 in the empirical data analysis. In the plots in Figure
5.4, 5.5, and 5.6, we provide the histograms corresponding to the first-exit time of the variables
“exrate arg”, “Gulf duenext10d”, “gulf loaded post 7 days”, and , respectively, for the empirical
dataset for various values of t. Along with the histograms, we use Gamma-type subordinators (Z)
described with Lévy density w(x) = vae™**. After finding appropriate parameter values, in those
plots, we plot the probability density functions of inf{s > 0 : Z5 > ¢}, for various values of t. This
is motivated by Theorem 4.1.2, and the analysis in [5].

In Figure 5.4 we use t = 1,2,3, and in Figure 5.5 we use ¢t = 1,2,3. In Figure 5.6 we
use t = 1,2,3. From these figures, it is clear that for the time duration when there is no big
fluctuation of the empirical dataset, inf{s > 0 : Wy = t} plays the dominant role in determining
the distribution of inf{s > 0 : X > ¢}. However, for the time duration of big fluctuation of the
empirical dataset, inf{s > 0 : Zs > t} plays the dominant role in determining the distribution of
inf{s > 0: X, > t}.

Deep learning models have advantages in providing analysis of competition, particularly
in this case. Many features of competition influence this sector which limits or constrains the
ability of traditional “equilibrium” models normally specified in economics. Most important are
the randomness of most variables, changes over time in the underlying relationships and functions,
as well as periodic interventions. In this paper we developed a deep learning model of competition

in soybean exports to China, the largest and fastest growing market in the world.
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The results indicate that export market shares, which are otherwise highly volatile, can be
effectively explained (predicted) using deep learning methodologies and a set of association vari-
ables. Some of the variables have significant influences, particularly using the Variable Importance.
These factors include “Gulf duenext10D”, “barge mm”, “gulf loaded past 7 days”, in addition to a

number of other variables including monthly binary variables.
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Figure 5.4. First-Exit Time for “exrate arg”.
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Figure 5.6. First-Exit Time for “gulf loaded post 7 days”.

5.3. S&P 500 Data Analysis
Similar thing can be done for stock price too,we use the S&P 500 daily close price dataset
for the period May 11, 2010 to May 8, 2020. Table 5.3 summarizes some features of this empirical

dataset.

Table 5.3. Properties of the Empirical Dataset.

S&P 500 Daily Close Price
Mean 2027.003
Median 2036.709
Maximum 3386.149
Minimum 1022.580

Figure 5.7 shows a line plot of the empirical dataset. The log-return process for the corre-
sponding dataset is shown in Figure 5.8. Figure 5.9 and Figure 5.10 show the histograms of the
S&P 500 daily close price, and corresponding log-returns respectively.

For the empirical dataset we consider the log-return process X;, with Xg = 0. For the
first-exit time process of the log-return, inf{s > 0 : X, > t}, we consider the associated first-
exit time processes of the Brownian motion inf{s > 0 : W, = t}, and the Lévy subordinator
inf{s > 0 : Zs; > t}. In the plots in Figure 5.11, we provide the histograms corresponding to

the first-exit time of X; for the empirical dataset for various values of ¢t. In the plots of Figure
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5.12, we use Remark 4.1.3 to plot the probability density functions of inf{s > 0 : Wy = t}, for
t = 1,2,3,4. Finally, we use Gamma-type subordinators described in Section 4.2.2 with Lévy
density w(x) = vae™**. After finding appropriate parameter values, in the plots of Figure 5.13,we
use Theorem 4.2.8 to plot the probability density functions of inf{s > 0: Z; > t}, for t = 1,2,3,4.
From these figures, it is clear that for the time duration when there is no big fluctuation of the
empirical dataset, inf{s > 0 : W, = ¢} plays the dominant role in determining the distribution of
inf{s > 0 : Xy > t}. However, for the time duration of big fluctuation of the empirical dataset,

inf{s > 0: Z; > t} plays the dominant role in determining the distribution of inf{s > 0: X, > t}.
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Figure 5.7. S&P 500 Daily Close Price from May, 2010 -May, 2020.
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Figure 5.8. S&P 500 Log-Returns from May, 2010 -May, 2020.
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6. OPTION PRICING AND IMPLIED VOLATILITY

6.1. Option Pricing

Option pricing has a significant influence on quantitative finance. In Black-Scholes model,
value of the option depends on future volatility of stock rather than its expected return. One of the
biggest drawbacks of Black-Scholes is the mismatch between the model volatility of the underlying
option and observed volatility from market. The paper [3] has shown the extension of classical Hull
and White formula for option pricing when noise driving the volatility process correlates with the

noise driving the stock prices. Price of a European call option, as obtained in [3] is given by,

1 T 63 82 T
Vi = E*(Cps(t, Xy; )| Fe) + §E* (/t ertrs <8:L‘3 - 8x2) Cps(s, Xs,vs) </s DZV03> O'Sd8|]:t)

(6.1)

where, Cpg(t, X¢;14) is the price of European call option, o = {o4,s € [0,T]} is an adopted and

square integrable process and stock price is given by,

dS; = MStdt + 01 SpdWe, t € [0, T], (62)

Xt = log(St),

where E* denotes the expectation with respect to risk-neutral probalility P*, F; denotes the o—
algebra generated by volatility process, 7 is the risk free interest rate and v? is expected average

volatility under the risk-neutral probability P*.

It has been observed that jump in stock prices correlates with jump in volatility. Hence in
our approach, we assume that both the stock price and volatility are driven by a correlated jump

term.

Assumption 6.1.1. we assume that jump term in stock price and volatility is bounded.
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We assume that the Stock price X/ is given by,

T 1 (T T n B
X} =Xy + / osdWs + 5 / o2 ds + / / c(s,z)N(ds,dz). (6.3)
t t t Jon

Where ¢(s, z) be a Skorohod integrable stochastic process. We also assume that volatility process

is given by :,

}Q:/T/nUQ(s,z)]\Nf(ds,dz). (6.4)

Theorem 6.1.2. Assume that the stock price and volatility dynamics are given by (6.3) and (6.4)

respectively. Then under (6.1.1), the price of a European call option is given by:

* 1 * r —
Vi = E*(Cps(t, X} X2)|Fy) + §E [/ z1e" 7 Cps(s, Xs_)o2ds]
t

—I—E*[ rt—rsC ( X )ﬂ] +E*[/T rt—rsC ( X )d ]
I BS\S, As— 2(T+6 _ 8) ] se BS\S, Ag)ds
T 2 rt—rs T 2 rt—rs
-85 X —-0,X
+E*[/ Alla € CBSgS 5a S)d8+/ A128 € CBS(S 5’ S)dS
+ Oy ‘ 0129
T 2 _rt—rs 5. X T 2 rt—rs 4. X
+/ A218 e "5Cpg(s — 4, S)d5+/ Azza e CBS§5 5, S)ds]
t 011 ¢ Oxs
AX#0
+ E*| Z e Cps(s, X7 + AX,) — e Cpgs(s, XJ)
0<s<t

— AX x5 Cps(s, X7 ) — AX229e™ " Cg(s, X))

Here X, = (X}, X2) are multidimensional Levy process and AXs = X — X_.

Proof. With a similar argument as in [3] we observe, Cpg(T, X+; X2) = Vp, as e "'V, is a P*
martiangle. Now we will apply It6 lemma for multidimensional Levy process, since derivatives of

Cps(t,z,y) are not bounded, we will make use of approximating argument. Consider the process,

e "Cps(t — 6, X} X7), (6.5)
where
Y
X2=,/—"t .
t 2n(T + 6 — 1) (6:6)



It can be shown that,

1 n ~
AX) = oW, + 0% + / o(s, 2)N (ds, d2). (6.7)
X2 = X2 N X2 ffn o?(s, z)N(ds,dz).
5T +6—s) 2Y,

Now using It6 formula for multidimensional Lévy process (see [48]), we obtain

T
e_TTCBS(T -9, X%,X%) = e_rtCBg(t -9, th; XE) + / xle_TSCBs(S,Xs,)dXSl
t

T
+$26_TSCBs(S,XS_)dX52)+/ e "sCps(s, Xs)ds
t

T 2 ,—rs _ T —rs _(5 X
+/ AH@ e " Cps(s 6,X5)d8+/ A 0%e"Cps(s S)d
t

O3 Ox122
T 326_”033(8 — 4, Xs) r 826_T5035(S -9, Xs)
+/ Aoy 3 ds + / Ao 5 ds
t 211 t Oxs
AX#£0
+ Y [e77Crs(s, Xy + AX,) — e "*Cps(s, X))
0<s<t

— AXlr1e7"Cgs(s, X7 ) — AXZ29e " Chs(s, X7 )],
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where X = (X!, X2) is multidimenisonal Le¥y process. Consequently,

T
1
e_TTC'BS(T — 90, X%;X%) = e "Cps(t — 6, th; Xf) + / x1e "°Cps(s, Xs_)(osdWs + 50’?(15
¢

+ /n c(s,2)N(ds,dz))

—n

s

T+o_s & 2V,

L X2ds X2 [" o(s,2)N(ds,dz)ds
+ xoe SCBs(S,XS,))(Q f )

T
+ / se”"°Cps(s, Xs)ds
t

T 2 —rs _ T 2,—Ts _
+/ Alla e " Cps(s 6,Xg)d5+/ A120 e " Cps(s 5,X5)d8
t t

ax% O0x1T9
T 2 ,—rs — 58X T 2, ,—rSs _ 4. X
+/ A218 e " Cps(s — 9, S)ds+/ A226 e 035(25 J, S)ds
t al'QfL‘l t 8I2
AX#0
+ Z e Cps(s, Xy + AX;) —e "Cps(s, X;)
0<s<t

— AXlz1e7Cps(s, X7 ) — AX229e " Cps(s, X7)].
Now taking conditional expectations and multiplying by e, we obtain,

T
1
E* [Cps(T — 6, X1; X7)|Fy] = Cps(T — 6, X5 X7) + B / (216" Clps (5, X ) (05d W, + 072
t

+ /_n c(s, 2)N(ds,dz))]

s

T+o—s " 2V,

. _ X2ds X2 [" o(s,2)N(ds,dz)ds
+ E*[zge™ TSCBs(S,XS_))<2 / )]

T
+ E*[/ se" " Cpg(s, Xs)ds]
t

T 82 rtfrsC -8 X T 82 rtfrsC -0 X
+E*[/ Ay LT Cps (s =0, S)ds+/ ApLE Bs(s = 0, Xs)
t t

Ox? Ox122
T 2 rt—rs T 2 rt—rs
0 C -6, X 0 C -6, X
+/ 4 T Cnsls =6 S)ds—i—/ 4, T OB (5 =0, Xs) 4
p 0zrax1 ‘ Oxs
AXs#0
+ET ) e Cps(s, X; + AX,) — € Cps(s, X))
0<s<t

— AXlr1e"t 5 Cps(s, X7) — AX220e™ T Cg(s, X))

Now letting d to 0, we obtain,
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Vi = E*(Cps(t, X} X2)|Fy) + §E [/ z1e" 7 Cps(s, Xs_)o?]
t

—I—E*[ rt—rsC ( X )ﬂ] +E*[/T rt—rsC ( X )d ]
ZTae€ BS\S, As— 2(T+(5 — 8) ] se BS\S, Ag)ds
T 2 rt—rs T 2 rt—rs
-5 X -0, X
+E*[/ Alla € CBSgS 5a S)d8+/ A128 € CBS(S ; S)dS
+ Oy ‘ 0x122
T 2 _rt—rs 5. X T 2 rt—rs 5. X
+/ A218 e Cps(s — 4, S)ds+/ A228 e Cngs 0, S)ds]
t 81’21‘1 t 81‘2
AX#0
+ E*| Z e Cps(s, X7 + AX,) — e C0ps(s, XJ)
0<s<t

— AXlz1e" T Cps(s, X7 ) — AX229e™ " Cg(s, X))

6.2. Implied Velocity

Main motivation of this section is to study at-the-money implied volatility of a European
call option when stock price is defined by (6.9). We will use Malliavin calculus to derive an exact
expression. In this section, we assume log-price of a stock under a risk neutral probability measure

P the model is given by,

1t t t ~
Xt:X0—2/ o2 ds+/ adeSJr// o(s, 2)N(ds,dz), € [0,T), (6.9)
0 0 0 o

where X is current log-price, W; is standard Brownian motions defined on a complete probability
space (€,F,P) and o, is a square integrable and right continuous stochastic process and N (ds, dz)
is a compenstaed poisson process. The price of the European call with strike price K is given by
the following formula,

Vi = E/[(eXT — K)*], (6.10)

where F; denotes the F; conditional expectation with respect to P. In the following, we used

following notation: v(t,Y:) = Tth, where Y; = ftT o2du. Suppose v represents future average

volatility, BS(t,T,x,k, o) denotes the price of a European call option under Black-Scholes model
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with current log price z, constant volatility o,time to maturity 7' — ¢ and strike price K = exp(k),
BS(t,T,x,k,0) = exp(x)N(d4+(k,0)) —exp(k)N(d_(k, o)), (6.11)

where N is the cumulative distribution function of the standard normal law and

K-k, o(T—1)
ovT —t 2 ’

di(k,o) = (6.12)

where k; denotes the at-the-money strike,which coincides with  when interest rate is 0. The inverse
function BS~1(t, T, x,k,.) of the Black-Scholes formula with respect to the volatility parameter is
defined, for all A > 0, (see [2]):

BS(t,T,x,k, BS™ (t, T, 2,k,\)) = \. (6.13)
For any fixed ¢, T, Xy, k, we define the implied volatility I(¢,T, Xy, k) as the quantity such that
BS(t,T, X, k, I(t,T, X, k) = Vi (6.14)

Following notations are used for following section: ]D)‘l,[’,2 is domain of Malliavin derivative operator
Dy with respect to the Brownian motion W;. We consider the iterated derivative Dfj, for n > 1,
whose domains are denoted by D{%*.We also define Lis? = L2([0,T] : D).

It is shown in [2] that at-the-money implied volatility has following form.

1

T d}’f’
1T, X0 k) = Bilur] = g5 F /t (N (d(kf, 0y)))2 <E

Ut

T W 2 2
/ DY oZds
N<d+<k:,vt>>f’"]> ar| |

(6.15)
where, A, = E.[BS(t,T, Xy, kf,v4)],
and ¢, = BST1(k}, vy).
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Consider the following hypotheses:
(1) There exist positive constant a, b such that a < oy < b for all ¢t € [0,T].

1,2
(2) 02 € Ly

Theorem 6.2.1. Consider the model (6.9). Then, the at-the-money implied volatility is given as,

1 ! o
RT—n /t (N'(d+ (K, 9r))? <ET

I(t,T, Xt, k‘:) = Et[’Ut]—

T AW .2 2
’ D?" Usds
N (dy (k5 o) JrPr o5 - D dr|

(6.16)
where, Ay = Ep[BS(t,T, X4, kf, v4)]
Ur = BSTHk{, vr).
Proof. We have,
Vi = EyBS(t,T, Xy, kf,vp)].
Then

I(t,T, X, k) = BSTL (K}, V)
= Ey[BS™Y(k}, E;[BS(t, T, X1,k v¢)])]
= Et[Bsil(krv Et[BS(t7 T7 Xt7 k;tk7 Ut)]) - BS?I(KZU BS<t7 T7 Xt7 k;tk7 Ut))] + Et[vt]'
(6.17)

where Ey[BS~Y(k}, BS(t,T, Xy, ki, v))] = Ei[vy].

From [2], we obtain,

T
BS(t,T, Xt,k:f,vt) = Et[BS(t,T, Xt,k‘f,vt)] +/ USdWS, (618)
t

68



Where Ug can be computed by Clark-Ocone formula and W is Brownian motion that derives the

volatility process.

E[BS™Y(k, E{[BS(t,T, X3, k},v)]) — BS™Y(k, BS(t, T, X¢, ki, v¢))]
= Ey[BS™(k;, ) — BS™ (K}, Ar)]

T T
_ R / (BS*l)’<k:,AT)UTdWT+% / (BS~Y)' (k' A, U2dr. (6.19)
t t

Where (BS~!)",(BS~")" denote first and second derivative of BS~!with respect to last variable \.

’ fT DWO'2
U.=FE, X)N (dy (K}, e 6.20
exp (XN (ds (k] .v) 70 (6:20)
Clearly (6.20) along with hypothesis (1) imply that
T , 2
E, [ / ((BS*l) (k;*,AT)UT> dr] < O(T,1). (6.21)
t
This gives us expectation of stochastic integral is zero. Then we get,
E[BS™H (X4, By[BS(t, T, Xy, kf,vr)]) — BS™H (X4, BS(t, T, Xy, ki, vr))]
1 r —1I\" /7. 2
= _§Et (BS™) (k;,A)UZdr| . (6.22)
¢
O

Now we estimate at the money implied volatility under specific framework. We assume that
volatility follows a mean-reverting OU process, i.e., Stein and Stein model.

Under Stein and Stein Model,volatility process assumes following form,

doy = —a(m — op)dt + cdWy, (6.23)

where o, m and c are positive real constants and W; is a standard Brownian motion. Analytical

soluttion of (6.23) is given as,

os=m+ (o — m)e_o‘(s_t) + c/ e~ s=w gy, . (6.24)
t
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Theorem 6.2.2. Assuming Model (6.9) and volatility process follows Stein and Stein model, the

at-the-money implied volatility I1(t,T, X¢, k}) is given as,

/ ' CHCRERT: <E [N/(d“’“; %)) 2CPUT€_Q;ETT : ean? dr] |

Proof. We have already shown in (6.2.1), the explicit expression for implied volatility I(¢, T, X¢, k}).

1
32(T — t)

E; [Ut] - By

Now using (6.24) for volatility process,we compute Malliavin derivative as
DYV o? = 20,D,0, = 2cpo,e %), (6.25)

This completes the proof. ]
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7. CONCLUSION

It is shown in this dissertation that an analytically tractable expression can be obtained for
the probability density function of the first-exit time process of an approximate BN-S process. For
the financial data, the density function of the first-exit time of the corresponding log-return process
provides an important insight. In particular, such density function facilitates the understanding of
a “crash-like” future fluctuation of the market. In addition, this analysis has two-fold advantages.
Firstly, based on the insight from the probability density function of the first-exit time process, the
empirical data analysis for the future market is improved. Secondly, and more importantly, this
provides a concrete way to improve existing stochastic models. For example, most of the existing
financial models suffer from the lack of long-range dependence problem. An understanding of the
density function of the first-exit time of stochastic models driven by a general Lévy process can
contribute positively to mitigate this issue.

In the numerical results, we show various plots in support of the theoretical analysis pro-
vided in this dissertation. However, the analysis is dependent on the accurate estimation of model
parameters for the empirical dataset. At present, we are implementing various machine learning
based calibration techniques to improve the estimates of the parameter values for the empirical
dataset. In effect, this may significantly improve the numerical results.

In this dissertation, it is also showed that data-science driven models have advantages in
providing analysis of competition in the soybean market. Many features of competition in a soybean
sector which limits or constrains the ability of traditional “equilibrium” models normally specified
in economics. Most important are the randomness of most variables, changes over time in the
underlying relationships and functions, as well as periodic interventions. In this dissertation, we
develop a data-science driven model of competition in soybean exports to China, the largest and
fastest growing market in the world.

The results indicate that export market shares, which are otherwise highly volatile, can be
effectively explained (predicted) using deep learning methodologies and a set of logical feature vari-

ables. Some of the variables have significant influences, particularly using the Variable Importance.
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These factors include “Gulf duenext10D”, “barge mm”, “gulf loaded past 7 days”, in addition to
several other variables including monthly binary variables.

We conclude this dissertation with an analysis of option pricing and implied volatility in
the case when the market is driven by a jump-stochastic volatility model. We find the price of
the European call option in this case. In addition, we implement Malliavin calculus to analyze the
implied volatility. This is a novel way generates simple formulas for various stochastic models. We

plan to explore this more in our future works.
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