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ABSTRACT

In this dissertation, an approximate version of the Barndorff-Nielsen and Shephard model,

driven by a Brownian motion and a Lévy subordinator, is formulated. The first-exit time of the log-

return process for this model is analyzed. It is shown that with a certain probability, the first-exit

time process of the log-return is decomposable into the sum of the first exit time of the Brownian

motion with drift, and the first exit time of a Lévy subordinator with drift. Subsequently, the

probability density functions of the first exit time of some specific Lévy subordinators, connected

to stationary, self-decomposable variance processes, are studied. Analytical expressions of the

probability density function of the first-exit time of three such Lévy subordinators are obtained in

terms of various special functions. The results are implemented to empirical S&P 500 dataset.

After this exit time analysis, in this dissertation, we propose a model for the soybean export

market share dynamics and analyze the empirical data using machine and deep learning algorithms.

We justify the proposed general model and provide several theoretical analyses related to a special

case of the general model. The empirical data set is a time series with weekly observations over the

period January 6, 2012, through January 3, 2020. This is a period of growing intense competition,

and during which a trade war had influenced the results. The target variable is the share of

soybean exports made from the US Gulf to China. We implement machine and deep learning-

based techniques to analyze the empirical data. Various numerical results are obtained. The results

indicate that export market shares, which are otherwise highly volatile, can be effectively explained

(predicted) using machine/deep learning methodologies and a set of logical feature variables.

We conclude this dissertation with an analysis of option pricing and implied volatility in

the case when the market is driven by a jump-stochastic volatility model. We find the price of

the European call option in this case. In addition, we implement Malliavin calculus to analyze the

implied volatility.
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1. INTRODUCTION

1.1. General Introduction

The time required for a stochastic process, starting at a given initial state, to reach a

threshold for the first time is referred to as the first-exit time or the first hitting time. It is typically

very useful in determining expected lifetime of mechanical devices. The first-exit time processes

are very useful for understanding various financial sectors, especially the insurance industry and

investment firms. The first-exit time processes arise naturally in the studies of various disciplines.

For example, it is used [56] to model the death probability density function for a decaying stochastic

process that represents either the end of functionality for a machine, or a zero health state for an

organism. The paper [30] provided an expanded first-exit time density function that expresses

the human death distribution. The first-exit time analysis of a two-dimensional symmetric stable

process was discussed in detail in the paper [18]. This was further developed in [32, 61] where

the first-exit time process of an inverse Gaussian Lévy process is considered. The one-dimensional

distribution function of the first-exit time process is obtained. The first-exit time analysis related to

a geophysical data wass provided in [22]. The paper [43], provides generalized notions and analysis

methods for the exit-time of random walks on graphs.

The first-exit time process of the standard Brownian motion is well-studied in the literature

(see [4, 14]). The paper [35] studied the first-exit time of Brownian motion for a parabolic domain.

In [19], the Fokker-Planck equation is solved for the Brownian motion with drift, in the presence

of a fixed initial point and elastic boundaries. An explicit expression was obtained for the density

of the first-exit time. The paper [27] studied the first-exit time problem for the solutions of some

stochastic differential equations for bounded or unbounded intervals. Studies [39, 59, 60] discussed

the first-exit time process for strictly increasing Lévy processes. In the pioneering paper [31], the

authors study the first-exit-time to flat boundaries for a double exponential jump diffusion process.

The related stochastic process consists of a continuous Brownian motion-driven part, and a jump

part with jump sizes given by a double exponential distribution. In general, with the help of a

fluctuation identity, the paper [1] provided, a generic link between a number of known identities

for the first-exit time and the overshoot above/below a fixed level of a Lévy process. In [42], a
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class of increasing Lévy processes, perturbed by an independent Brownian motion was considered,

and the problem of determining the distribution of the first-exit time is addressed. The first-exit

time analysis of the Ornstein-Uhlenbeck (OU) process to a boundary was a long-standing problem

with no known closed-form solution for the general case. In [37] a general mean-reverting process

is considered to investigate the long-and short-time asymptotics using a combination of Hopf-Cole

and Laplace transform techniques.

Many problems in finance are related to the first-exit time processes. A deeper understand-

ing of such processes leads to a wiser estimation of fluctuations in the market. In [57], the first-exit

time distributions of stock price returns in different time windows were analyzed. The probability

distribution obtained by such analysis was compared with those obtained from different models

for stock market evolution. The paper [26] showed that for continuous time transformations, inde-

pendent of the Brownian motion, analytical results for the double-barrier problem can be obtained

via the Laplace transform of the time change. The analysis provides a power series representation

for the resulting first-exit time probabilities. In [36], explicit analytical characterizations were pro-

vided for the first-exit time densities for the Cox-Ingersoll-Ross (CIR) and OU diffusions. Such

characterizations were obtained in terms of the relevant Sturm-Liouville eigenfunction expansions.

In [66], a doubly skewed CIR process is studied. A modified spectral expansion was used to obtain

the first-exit time distribution of a doubly skewed CIR process. A detailed study of the first-exit

times of diffusion processes and their applications to finance is provided in [34]. The studies in

[46, 47] discuss the first-exit time analysis related to some financial processes from a data-science

and sequential hypothesis testing perspective. In [12], the authors provide a solution to the optimal

stopping problem of a Brownian motion subject to the constraint that the stopping time’s distri-

bution was a given measure consisting of finitely many atoms. The distribution constraints lead to

an application in mathematical finance to model-free super-hedging with an outlook on volatility.

Some analytically tractable formulas were available for the density of the first-exit time

process (see [61]). However, in general, an explicit expression for the density of the first-exit time

process for a financial model is mostly unknown. In this thesis, we analyze the first-exit time

processes in connection to the Barndorff-Nielsen and Shephard (BN-S) model, a popularly used

stochastic volatility model for financial analysis. We provide various analytical formulas related

the distribution of the first-exit time processes in connection to an approximate version of the BN-S

2



model. For this study we used various properties of the Laplace transform and their relations to

special functions. In particular, the first-exit time processes for some well-known self-decomposable

Lévy subordinators were analyzed.

1.2. Application in Agribusiness : An Introduction

Artificial intelligence (AI), and specifically deep learning (DL) are particularly attractive

for analyzing competition in international markets. There are a multitude of reasons for this, and

despite its attractiveness, there have been few reported studies using these methods to analyze

export competition. In this paper we use deep learning models to analyze export competition in

soybean market shares for shipments to China.

Briefly, one of the fastest growing commodity markets in world trade is soybean imports

by China, which is the dominant buyer. Chinese imports of soybeans increased from near nil to

100 million metric tons/year in recent years, at a growth rate of about 18% per year. Intense

competition in this market is dominated by the United States (primarily the US Gulf which is the

focus of this study) and Brazil as major exporters. Over time, the US Gulf has gone from being

dominant to now being replaced by Brazil.

A number of important attributes in this competition that motivates use of DL. Factors include

the impact of growth in exports and the seasonality of competition with Brazil dominating during

February to July. In addition, important quality differentials focused around EAA (Essential Amino

Acids) and foreign material specifications in feed manufacture (see [25, 62]), can be challenging to

meet as crop quality vary with quantity varies with weather conditions. In addition, soybeans that

are genetically modified, which are not accepted by all buyers, varies with their adoption rate in the

different countries. Logistics is also an important factor impacting costs. In the United States, rail

and barge shipping costs vary through time and are random. In Brazil there has been inadequate

infrastructure and capacity, which has an impact on wait times and costs for vessels arriving to

load soybeans. Each of these persists, despite that they have improved over time. Finally, there

are periodic interventions impacting trade. The most recent was the trade war during 2018-2019

coinciding with the Trump administration trade war.

Traditionally, economics trade is modeled as spatial equilibrium problems (see [58]) or using

arbitrage models (e.g., see [55]). An important underlying assumptions of these models is that the

supply and demand functions are known, can be represented as equations, are in equilibrium, and

3



do not change. Implicit is that learning in these models is limited. In contrast, as noted above,

these functions are not known, change through time, have a high degree of randomness, and quality

differentials and shipping costs that vary randomly. Further, given the dynamics (growth, seasonal

and dominance by one buyer) of this sector, and that the structural factors are random, deep

learning models provide a more appropriate framework to analyze competition in this sector.

Deep learning models are appropriate for analyzing this market. The reasons for this are

in part due to the large number of factor impacting trade, and that these are changing over time

and some variables are sporadic, and that, in practice, market participants learn over time. One of

the applications of this dissertation was to model the soybean export market share price dynamics;

and analyze the related empirical data using machine and deep learning algorithms.

4



2. MATHEMATICAL PRELIMINARIES

2.1. Brownian Motion

There are many phenomena in nature that are seemingly random. Ranging from the dif-

fusion of organisms into habitable land, to the price of a stock or commodity, to the behavioral

patterns of humans, stochastic processes have an abundance of applications. One of the most clas-

sic examples of stochastic process is the Brownian motion. The motivation for such a process is a

continuous symmetric random walk.

Paraphrasing Chapter 3 of the book [54], let ω = {ω1, ω2, . . .} be a sequence of results of

fair coin tosses. That is, ωi is the outcome of the ith toss, H or T . Define

Xi =


1 if ωi = H

−1 if ωi = T

,

and Mn =
∑n

i=1Xi. Then {0,M1,M2, . . .} is a symmetric random walk. In particular, symmetric

random walks are martingales that have independent increments. A martingale is a stochastic

process that has expected value equal to the given present value for all times in the future. To have

independent increments means for each n ∈ N (set of Natural numbers) and each 0 ≤ t1 ≤ t2 ≤

. . . < tn+1 <∞, the random variables (M(tj+1)−M(tj), 1 ≤ j ≤ n) are independent.

Another crucial property of a symmetric random walk is its non-zero quadratic variation.

In general, the quadratic variation of a discrete stochastic process M is

[M,M ]k :=
k∑
j=1

(Mj −Mj−1)2,

which simplifies quite conveniently in our case to k. Note that while [M,M ]k = Var(Mk) = k for

a symmetric random walk, this is not true in general. One varies dramatically for changes in the

probabilities of each coin toss, while the other, the quadratic variation, remains constant.

5



Continuing toward the goal of a continuous random walk, define the scaled symmetric

random walk by

W
(n)
t =

1√
n
Mnt,

where nt ∈ Z. Otherwise, define W
(n)
t by a linear interpolation of its values for the closest integers.

This new process is similarly a martingale with independent increments and quadratic variation,

for nt ∈ Z,

[W (n),W (n)]t = t.

Finally, we obtain a standard Brownian motion as the limit of this sequence of scaled random walks.

We provide the following theorem from [41].

Theorem 2.1.1 (Kolmogorov). For all t1, · · · , tk ∈ T , k ∈ N, let νt1,··· ,tk be probability measures

on Rnk and Borel sets Fi such that

νtσ(1),··· ,tσ(k)(F1 × · · · × Fk) = νt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k)) (2.1)

for all permutations σ on 1,2,· · · ,k and

νt1,··· ,tk(F1 × · · · × Fk) = νt1,··· ,tk,tk+1,··· ,tk+m(F1 × · · · × Fk × Rn × · · · × Rn) (2.2)

for all m ∈ N, where the set on right hand side has a total of k +m factors.

Then there exists a probability space (Ω,F ,P ) and a stochastic process Xt on Ω, Xt: Ω −→ Rn, s.t.

νt1,··· ,tk(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk], (2.3)

for all ti ∈ T , k ∈ N and all Borel sets Fi.

Fix x ∈ Rn and define

p(t, x, y) = (2πt)
−n
2 . exp (

−|x− y|2

2t
) for y ∈ Rn, t > 0. (2.4)

6



If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, define a measure νt1,··· ,tk on Rnk by

νt1,··· ,tk(F1 × · · · × Fk) =

∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk,

(2.5)

where we use the notation dy = dy1 · · · dyk for Lebesgue measure and the convention that p(0, x, y)dy =

δx(y), the unit point mass at x.

Since
∫
Rn p(t, x, y)dy = 1 for all t ≥ 0, (2.2) holds, so by Kolmogorov’s theorem there exists

a probability space (Ω,F ,P ) and stochastic process Wt, (t ≥ 0) on Ω such that the finite-dimensional

distributional of Wt are given by (2.5), i.e.,

P x(Wt1 ∈ F1, · · · ,Wtk ∈ Fk) =

∫
F1×···×Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk. (2.6)

Such a process is called the Brownian motion starting at x.

Definition 2.1.2. Let (Ω,F , P ) be a probability space. For each ω ∈ Ω, suppose there is a contin-

uous function W : [0,∞)→ R that satisfies W (0) = 0 and that depends on ω. Then {W (t), t ≥ 0}

is a Brownian motion if for all 0 = t0 < t1 < . . . < tm, the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent and each is normally distributed with

E[W (ti+1)−W (ti)] = 0,

Var[W (ti+1)−W (ti)] = ti+1 − ti.

2.2. Lévy Processes

While Brownian motions are classic and powerful tool for modeling a wide range of phe-

nomena, sometimes the processes take on a more sudden nature, and a process with discontinuous

capabilities is more adequate. Lévy processes are a general class of such processes. In [4], we have

the following definition of a Lévy process:

7



Definition 2.2.1. Let (X(t), t ≥ 0) be a stochastic process defined on a probability space (Ω,F , P ).

We say that it has stationary increments if each X(tj+1)−X(tj)
d
= X(tj+1 − tj)−X(0), where

d
=

means the equality in distribution.

We say that X(t) is a Lévy process if X(0) = 0 (a.s.); X has independent and stationary

increments; and X is stochastically continuous; i.e., for all a > 0 and for all s ≥ 0,

lim
t→s

P (|X(t)−X(s)| > a) = 0.

Having a quick way of classifying Lévy processes is crucial to the remainder of this disser-

tation. To do so, we use the following definition and theorem from [4]:

Definition 2.2.2. Let ν be a Borel measure defined on Rd \ {0}. We say that it is a Lévy measure

if ∫
Rd\{0}

(|y|2 ∧ 1)ν(dy) <∞,

where a ∧ b := min{a, b} for any a, b ∈ R.

Theorem 2.2.3. (Lévy-Itô decomposition) Let (Xt)t≥0 be a Lévy process on R and ν its Lévy

measure. Then

1. ν is a random measure on R \ {0} and verifies:
∫
|x|≤1 |x|

2ν(dx) <∞, and
∫
|x|≥1 ν(dx) <∞.

2. The jump measure of X, denoted by JX , is a Poisson random measure on [0,∞) × R with

intensity measure ν(dx)dt.

3. There exist γ, σ ∈ R, with σ > 0, and a Brownian motion (Wt)t≥0 such that

Xt = γt+ σWt +X l
t + lim

ε→0
X̃ε
t , (2.7)

where X l
t =

∫
|x|≥1,s∈[0,t] xJX(ds× dx), and X̃ε

t =
∫
ε≤|x|<1,s∈[0,t] x (JX(ds× dx)− ν(dx)ds).

4. The terms in (2.7) are independent and the convergence in X̃ε
t is almost sure and uniform in

t ∈ [0, T ].
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In particular, every Lévy process is uniquely determined by its characteristic triplet (γ, σ, ν)

in the decomposition above. Many of the novel theorems in this dissertation rely on manipulations

of these characteristic triplets.

There are a host of familiar processes that can be represented with these characteristics. The

following are examples, along with representative sample paths. These show that Lévy processes

are suited to model a wide variety of phenomena, including the prices of commodities, as considered

in Chapter 3.

• Example 1 Brownian motion: γ = 0, σ = 1, ν(dx) = 0.

• Example 2 Poisson Process: γ = 0, σ = 0, ν(dx) = λδ1(dx), where λ > 0 and δ1 is point

mass.

Figure 2.1. Sample Paths of a Standard Brownian Motion and of a Poisson Process with λ = 1/4.

• Example 3 Gamma Process: γ = −
∫ 1

0 xν(dx), σ = 0, ν(dx) = βx−1e−αx1x≥0 dx, where

α, β > 0.

• Example 4 Cauchy Process: γ = 0, σ = 0, ν(dx) = f(x)dx, where f(x) = |x|−2, x 6= 0.

• Example 5 Wiener Process: γ = m, σ = s, ν(dx) = 0, where m ∈ R, s > 0.

• Example 6 Subordinator Jump Process: γ = 0, σ = 0, ν(dx) = f(x)dx, where f(x) ≥ 0:

x > 0 and f(x) = 0: x < 0.
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Figure 2.2. Sample Paths of a Gamma Process with Mean and Variance 1 and of a Cauchy Process.

Figure 2.3. Sample Paths of a Wiener Process with γ = 0.2 and σ = 1 and of a Subordinator
Process, an Inverse Gaussian Process with Mean 1.

2.3. Itô Calculus

The rest of the dissertation uses multiple concepts of integration. In particular, we often

integrate with respect to some stochastic process. As such, it is important to understand the

following definition from [41]:

Definition 2.3.1. Let Wt be a Brownian motion and φ be a simple cádlág (right-continuous with

left limits) process with partition π = (0 = T0, T1, ..., Tn+1 = T ); i.e.,

φt = φ01t=0 +

n∑
i=0

φi1[Ti,Ti+1).

Then the Brownian stochastic integral
∫
φdW is defined as

∫ T

0
φtdWt =

n∑
i=0

φi(WTi+1 −WTi).
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This definition gives rise to another definition of a class of processes called Itô processes,

by which we will define another integral.

Definition 2.3.2. ([54]) Let Wt, t ≥ 0 be a Brownian motion and F(t), t ≥ 0 be an associated

filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0
∆(t)dWu +

∫ t

0
Θ(u)du,

where X(0) is nonrandom, and ∆ and Θ are adapted stochastic processes.

Theorem 2.3.3. In particular, Itô processes have quadratic variation

[X,X](t) =

∫ t

0
∆(u)2du.

Naturally, the previous definition inspires the integral

∫ t

0
Γ(u)dX(u) :=

∫ t

0
Γ(u)∆(u)dWu +

∫ t

0
Γ(u)Θ(u)du,

for an adapted process Γ and Itô process X.

Finally, we can state the following:

Theorem 2.3.4. (Itô formula) Let X(t), t ≥ 0 be an Itô process and let f(t, x) define a function

for which partial derivatives ft, fx, and fxx are defined and continuous. Then for every T ≥ 0,

f(T,X(T )) =f(0, X(0)) +

∫ T

0
ft(t,X(t))dt+

∫ T

0
fx(t,X(t))∆(t)dWt

+

∫ T

0
fx(t,X(t))Θ(t)dt+

1

2

∫ T

0
fxx(t,X(t))∆(t)2dt,

which may be written, for convenience,

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).

This is often the case for the remainder of this dissertation: technical integrals are written

in differential notation for convenience.
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The Itô formula permits us to solve a large number of stochastic differential equations and

is crucial in a thorough understanding of the Barndorff-Neilsen and Shephard model (BN-S model),

which is investigated in further sections, but for now, let us state a uniqueness and existence theorem

for stochastic differential equations:

Theorem 2.3.5. The system

dX(t) = α(t,X(t))dt+ σ(t,X(t))dWt +

∫ t

0

∫
Rn
γ(s,X(s−), z) (JX(ds× dx)− ν(dx)ds)

with X(0) = x0 ∈ Rn and where α : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m, and γ :

[0, T ]× Rn × Rn → Rn×l and ν = ν1 × . . .× νn satisfy the conditions:

1. There exists a constant C1 <∞ such that

‖σ(t, x)‖2 + |α(t, x)|2 +

∫
R

l∑
k=1

|γk(t, x, z)|2νk(dzk) ≤ C1(1 + |x|2)

for all x ∈ Rn.

2. There exists a constant C2 <∞ such that

‖σ(t, x)− σ(t, y)‖2 + |α(t, x)− α(t, y)|2

+
l∑

k=1

∫
R
|γ(k)(t, x, zk)− γ(k)(t, y, zk)|2νk(dzk) ≤ C2|x− y|2

for all x, y ∈ Rn,

has a unique cádlág adapted solution X(t) such that

E[|X(t)|2] <∞ for all t.

In the time homogeneous case, when the coefficients do not depend on t, the solutions are

called jump diffusions.

Now, we introduce Mallivian Calculus.
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2.4. Mallivian Calculus

We start with the following definitions (see [41]):

Definition 2.4.1. A real function g : [0, T ]n −→ R is called symmetric if g(tσ1, · · · , tσn) =

g(t1, · · · , tn) for all permutations σ = (σ1, · · · , σn) of (1, 2, · · · , n).

Let L2([0, T ]n) be the standard space of square integrable Borel real functions on [0, T ]n

such that

|g|2L2([0,T ]n) :=

∫
[0,T ]n

g2(t1, · · · , tn)dt1, · · · , dtn <∞. (2.8)

Let L̃2([0, T ]n) ⊂ L2([0, T ]n) be the space of symmetric square integrable Borel real functions on

[0, T ]n. Let us consider the set

Sn = (t1, · · · , tn) ∈ [0, T ]n : 0 ≤ t1 ≤ t2 · · · ≤ tn ≤ T .

If g ∈ L̃2([0, T ]n), then g |Sn∈ L2(Sn) and |g|2L2([0,T ]n) = n! |g|2L2(Sn)

if f is a real function on [0, T ]n,then its symmetrization f̃ is defined as

f̃(t1, · · · , tn) =
1

n!

∑
σ

f(tσ1 , · · · , tσn),

where the sum is taken over all permutations σ of (1, · · · , n).

Definition 2.4.2. Let f be a deterministic function defined on Sn, (n ≥ 1) such that

|f |2L2(Sn) :=

∫
Sn

f2(t1, · · · , tn)dt1, · · · , dtn.

Then we can define the n-fold iterated Itô integral as

Jn(f) =

∫ T

0

∫ tn

0
· · ·
∫ t3

0

∫ t2

0
f(t1, · · · , tn)dWt1 · · · dWtn .

Definition 2.4.3. If g ∈ L̃2([0, T ]n),we define

In(g) :=

∫
[0,T ]n

g(t1, · · · , tn)dWt1 · · · dWtn := n!Jn(g). (2.9)
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We also call n-fold iterated Itô integrals the In(g) here above.

Theorem 2.4.4. Let ξ be an FT measurable random variable in L2(P ). Then there exists a unique

sequence (fn)∞n=0 of functions fn ∈ L̃2([0, T ]n) such that

ξ =
∞∑
n=0

In(fn),

where the convergence is in L2(P ). Moreover, we have the following isometry

|ξ|2L2(P ) =

∞∑
n=0

n! |fn|2L2([0,T ]n) . (2.10)

Proof. A proof can be found in [41].

Let u = u(t, ω), t ∈ [0, T ],ω ∈ Ω be a measurable stochastic process such that, for all

t ∈ [0, T ], u(t) is a Ft measurable random variable and E[u2(t)] <∞.

Then, for each t ∈ [0, T ], we can apply the Wiener-Itô chaos expansion to the random variable

u(t) = u(t, ω), ω ∈ Ω, and thus there exist the symmetric functions fn,t = fn,t(t1, · · · , tn, t) :=

fn,t(t1, · · · , tn).

Definition 2.4.5. Let u(t), t ∈ [0, T ], be a measurable stochastic process such that for all t ∈ [0, T ]

the random variable u(t) is Ft- measurable and E[
∫ T

0 u2(t)dt] < ∞. Let its Wiener-Itô chaos

expansion be

u(t) =
∞∑
n=0

In(fn,t).

Then we define the Skorohod integral of u by

δ(u) =

∫ T

0
u(t)δW (t) =

∞∑
n=0

In+1(f̃n), (2.11)

when convergent in L2(P ).Here f̃n, n = 1, 2, · · · , are the symmetric functions derived from fn(., t), n =

1, 2, · · · . We say that u is Skorohod integrable,we write u ∈ Dom(δ) if the series in (2.11) converges

to L2(P )
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a stochastic process u belongs to Dom(δ) iff

E[δ2(u)] =
∞∑
n=0

(n+ 1)!
∣∣f˜n∣∣2L2([0,T ]n+1)

<∞.

Lemma 2.4.6. For any u ∈ Dom(δ) the Skorohod integral has zero expectation, that is,

E[δ(u)] = 0.

Proof. A proof can be found in [41].

Lemma 2.4.7. Let u = u(t), t ∈ [0, T ], be a measurable stochastic process such that, for all

t ∈ [0, T ], the random variable u(t) is Ft- measurable and E[u2(t)] <∞. Let

u(t) =
∞∑
n=o

In(fn(., t)),

be its Wiener-Itô chaos expansion. Then u is F- adapted iff

fn(t1, · · · , tn, t) = 0, (2.12)

for every t < max(ti), 1 ≤ i ≤ n.

Proof. A proof can be found in [41].

Theorem 2.4.8. Let u = u(t), t ∈ [0, T ], be a measurable F-adapted stochastic process such that

E

[∫ T

0
u2(t)dt

]
<∞. (2.13)

Then u ∈ Dom(δ) and its Skorohod integral coincides with the Itô Integral

∫ T

0
u(t)δW (t) =

∫ T

0
u(t)dW (t). (2.14)

Proof. A proof can be found in [41].
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2.5. Mallivian Derivative

The Mallivian Calculus was originally created as a tool for studying the regularity of densi-

ties of solutions of stochastic differential equations. Today, the range of applications has extended

even further to include numerical methods,stochastic control, and not just for systems driven by

Brownian motion, but for systems driven by general Lévy process.

Definition 2.5.1. Let F ∈ L2(P ) be Ft measurable with chaos expansion

F =

∞∑
n=0

In(fn), (2.15)

where fn ∈ L̃2([0, T ]n), n = 1, 2, · · · .

We say that F ∈ D1,2 if

∣∣∣F̃ ∣∣∣2
D1,2

=

∞∑
n=1

nn! |fn|2L2([0,T ]n)

Definition 2.5.2. If F ∈ D1,2, we define the Mallivian derivative DtF of F at time t as the

expansion

DtF =

∞∑
n=1

nIn−1(fn(., t)), t ∈ [0, T ].

where In−1(fn(., t)) is the (n-1)- fold iterated integral of fn(t1, · · · , tn−1, t) with respect to the first

(n− 1) variables t1, · · · , tn−1 and tn = t left as parameter.

Theorem 2.5.3. Let G ∈ D1,2 and g ∈ C1(R) with bounded derivative. Then g(G) ∈ D1,2 and

Dtg(G) = g
′
(G)DtG. (2.16)

Proof. A proof can be found in [41].
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3. THE BARNDORFF-NIELSEN AND SHEPHARD MODEL

AND A GENERALIZATION

3.1. Barndorff-Nielsen and Shephard Model, Self-Decomposability, and an Approxi-

mation

Financial time series of different assets share many common features which are successfully

captured by the stochastic model introduced in various works of Ole Barndorff-Nielsen and Neil

Shephard. The model is known in modern literature as the Barndorff-Nielsen and Shephard (BN-S)

model (see [8, 10, 11]). This model is revised and refined in various recent works in literature such

as [49, 50]. This model is successfully implemented in the commodity markets as well (see [52, 64]).

Recently, this model is improved using various machine-learning driven algorithms (see [51, 53]).

For the BN-S model, a frictionless financial market is considered where a risk-less asset

with constant interest rate r, and a stock, are traded up to a fixed horizon date T . It is assumed

that the price process of the stock S = {St}t≥0 is defined on some filtered probability space

(Ω,F , (Ft)0≤t≤T ,P) and is given by:

St = S0 exp(Xt), (3.1)

where the log-return Xt is given by

dXt = (µ1 + β1σ
2
t ) dt+ σt dWt + ρ dZλt, (3.2)

with the variance process

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.3)

where the parameters µ1, β1 ∈ R with λ > 0 and ρ < 0. In (3.2) and (3.3), Wt and Zt are a

Brownian motion and a Lévy subordinator, respectively. The Lévy subordinator Z is referred to

as the background driving Lévy process (BDLP). Also W and Z are assumed to be independent

and (Ft) is assumed to be the usual augmentation of the filtration generated by the pair (W,Z).

Without loss of generality, we assume W0 = Z0 = 0.
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We assume Z satisfies the assumptions described in [40]. We describe the assumptions

below:

Assumption 3.1.1. Z has no deterministic drift and its Lévy measure has a Lévy density.

Assumption 3.1.2. Denote the cumulant transforms κ(θ) = logE[eθZ1 ], and θ̂ = sup{θ ∈ R :

κ(θ) < +∞}. Then θ̂ > 0.

Assumption 3.1.3. limθ→θ̂ κ(θ) = +∞ .

It follows that the cumulant transform, where it exists, takes the form κ(θ) =
∫
R+

(eθx −

1)w(x) dx, where w(x) is the Lévy density for Z. It is shown in [40] (Theorem 3.2) that there exists

an equivalent martingale measure (EMM) Q, under which equations (3.2) and (3.3) can be written

as:

dXt = bt dt+ σt dWt + ρ dZλt, with bt = (r − λκ(ρ)− 1

2
σ2
t ), (3.4)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.5)

where Wt and Zt are a Brownian motion and a Lévy subordinator respectively with respect to Q.

For the rest of this thesis we assume that the risk-neutral dynamics (with respect to Q) of the stock

price is given by (3.17), (3.4) and (3.5). It is trivial to show that the solution of (3.5) is given by

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s) dZλs. (3.6)

From (3.6), the positivity of the process σ2
t is obvious. In fact, σ2

t is bounded below by the

deterministic function e−λtσ2
0. In addition, the instantaneous variance of log-return Xt is given by

(σ2
t + ρ2λVar[Z1]) dt. Consequently, the continuous realized variance in the interval [0, T ], denoted

as σ2
R, is given by σ2

R = 1
T

∫ T
0 σ2

t dt+ ρ2λVar[Z1]. Therefore, by (3.6) we obtain

σ2
R =

1

T

(
λ−1(1− e−λT )σ2

0 + λ−1

∫ T

0

(
1− e−λ(T−s)

)
dZλs

)
+ ρ2λVar[Z1]. (3.7)

We state some results for the analysis of the variance process σ2
t , when the process is

stationary and self-decomposable. The results are motivated by [23, 24, 28]. The pricing formulas

for various derivatives are dependent on the variance process.
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Definition 3.1.4. The distribution of a random variable X is said to be self-decomposable if for any

constant c, 0 < c < 1, there exists an independent random variable X(c), such that X
d
= cX +X(c),

where
d
= stands for the equality in the distribution.

For self-decomposable laws the associated densities are unimodal (see [17, 48]). It is proved

in [9, 65] that, if X is self-decomposable then there exists a stationary stochastic process {σ2(t)}t≥0,

and a Lévy subordinator {Zt}t≥0, independent of σ2
0, such that σ2

t
d
=X for all t ≥ 0 and

σ2
t = exp(−λt)σ2

0 +

∫ t

0
exp (−λ(t− s)) dZλs, for all λ > 0.

Conversely, if {σ2
t }t≥0, is a stationary stochastic process and {Zt}t≥0 is a Lévy subordinator inde-

pendent of σ2
0, such that {σ2

t } and {Zt} satisfy

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0,

for all λ > 0, then σ2
t is self-decomposable.

It is clear from [48] (Theorem 17.5(ii)) that for any self-decomposable law D there exists

a Lévy subordinator Z such that the process of OU type driven by Z has invariant distribution

given by D. The following theorem (see [23, 24, 50]) gives the relation between the Lévy densities

of such process generated by σ2
t and Z in (3.5).

Theorem 3.1.5. A random variable X has law in L if and only if X has a representation of the

form X =
∫∞

0 e−t dZt, where Zt is a Lévy subordinator. In this case the Lévy measure U and W

of X and Z1 are related by U(dx) =
∫∞

0 W (et dx) dt. In addition, if u(x), the Lévy density of U is

differentiable, then the Lévy measure W has a density w, and u and w are related by

w(x) = −u(x)− xu′(x). (3.8)

There are many known self-decomposable distributions, such as inverse Gaussian (IG),

Gamma, positive tempered stable (PTS), etc.

Consequently, if the stationary distribution of σ2
t is given by IG(δ1, γ) law, with the Lévy

density u(x) = 1√
2π
δ1x
−3/2 exp(−γ2x/2), x > 0, then by (3.8), the Lévy density of Z1 is given by
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w(x) = δ1
2
√

2π
x−

3
2 (1 + γ2x)e−

1
2
γ2x, x > 0. Alternatively, if the stationary distribution of σ2

t is given

by gamma law Γ(ν, α), where the Lévy density of Γ(ν, α) is given by u(x) = νx−1e−αx, x > 0, then

by (3.8) we obtain w(x) = ναe−αx, x > 0.

A three-parameter self-decomposable process is positive tempered stable (PTS) process (see

[15, 16]). It is denoted as PTS(κ, δ, γ), where β > 0, 0 < γ < 1, and k ≥ 0. For PTS(κ, δ, γ) process

the Lévy density is simple and is given by (see [23, 24])

u(x) = βk−2γ γ

Γ(γ)Γ(1− γ)
x−γ−1 exp

(
−1

2
k2x

)
, x > 0.

If the stationary distribution of σ2
t is given by PTS(κ, δ, γ) law, then by (3.8) we obtain that the

Lévy density of Z1 is given by

w(x) =
βk−2γγx−γ−1e

−k2x
2

Γ(γ)Γ(1− γ)

(
γ +

k2x

2

)
, x > 0. (3.9)

In the above discussions we find that the distribution of Z is analytically tractable when

the stationary distribution of σ2
t in (3.5) is given by a stationary, self-decomposable distribution.

We denote (as σ2
t is stationary),

σ = EQ(σ2
1), (3.10)

and

µ = r − λκ(ρ)− 1

2
σ2. (3.11)

We approximate (3.4) by

dXt = µdt+ σ dWt + ρ dZλt. (3.12)

We refer to (3.17) and (3.12), as an approximation of the BN-S model (3.17), (3.4), and (3.5). For

most of the empirical financial data µ ≤ 0.

We write Xt = µt + σWt + ρZt, with µ ∈ R, σ > 0, and ρ < 0, t > 0. For financial

applications µ ≤ 0. For the subsequent sections we develop a general procedure to compute the

first-exit time of the stochastic process Xt.
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3.2. A Generalization of the BN-S Model for Application in the Soyabean Export

Market

We assume that the soybean export market share price St is given by

St = S0e
Xt , where dXt = bt dt+

n∑
i=1

θ
(i)
t

(
σt dW

(i)
t + dJ

(i)
t

)
, (3.13)

where bt is a deterministic function of t, W
(i)
t , i = 1, . . . , n, are independent Brownian motions,

and J
(i)
t is the jump process with intensities λi, i = 1, . . . , n. We assume that W

(i)
t and J

(i)
t , for

i = 1, . . . , n, are independent. The coefficients θ
(i)
t , at every t satisfy

∑n
i=1(θ

(i)
t )2 = 1. In addition

to that, σt is assumed to be stochastic, and its dynamics is governed by

dσ2
t = F (σ2

t , β
(1)
t H

(1)
t , β

(2)
t H

(2)
t , . . . , β

(n)
t H

(n)
t ), (3.14)

for an appropriate function F , where H
(j)
t , for j = 1, . . . , n, are jump processes with intensities µj ,

j = 1, . . . , n. The coefficients β
(j)
t , at every t satisfy

∑n
j=1(β

(j)
t )2 = 1. For simplicity, for the rest

of the paper, we assume θ(i) = β(i), for i = 1, . . . , n.

There are several justifications of modeling a market share for soybeans with (3.13) and

(6.4), over existing models in the literature. First of all, most exiting models use a single jump

term for the dynamics of the log-return process Xt of the market share for soybeans. However,

given the involved nature of jumps in a market share for soybeans, it is unlikely to be modeled by

a single jump-term. Consequently, the proposed model provides a great deal of flexibility in terms

of modeling. Secondly, the coefficients θ(i), i = 1, . . . , n, will aid in extracting various important

features of a market share for soybeans dynamics. This is obviously not the case for a single jump

(or, no jump) model. Finally, the proposed model in fact incorporates most of the existing models.

We consider the export market share for soybeans exported from the US Gulf (USG) for a

given period of time. Figure 1 is a graphical representation of the data. From the empirical data,

it is clear that a single jump term for “‘big” fluctuations is very unlikely. Consequently, we propose

to use the model as given by (3.13).
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We consider that for the feature variables the individual dynamics are given by eY
(i)
t where

dY
(i)
t = σt dW

(i)
t + dJ

(i)
t , i = 1, . . . , n.

Thus, from (3.13), we obtain dXt = bt dt +
∑n

i=0 θ
(i)
t dY

(i)
t . We call θ

(i)
t as the “importance fac-

tor” for the i-th feature component, for i = 1, . . . , n. We observe, that if
∑n

i=1(θ
(i)
t )2 = 1, then∑n

i=1 θ
(i)
t dW

(i)
t can be represented by dBt, where Bt is a Brownian motion. Consequently, (3.13)

can be written as

St = S0e
Xt , where dXt = bt dt+ σtdBt +

n∑
i=1

θ
(i)
t dJ

(i)
t . (3.15)

The expression (3.15) provides an alternative explanation for the coefficients “importance factors”.

Those represent the significance in terms of big fluctuations (or “‘jumps”) of the i-th feature

component Y
(i)
t . We write J

(i)
t in terms of integral with respect to Poisson random measures

N (i)(dt, dx), for i = 1, . . . , n. Consequently,

J
(i)
t =

∫ t

0

∫
R
xN (i)(dt, dx).

Hence (3.15) can be written as

St = S0e
Xt , where dXt = bt dt+ σtdBt +

n∑
i=1

θ
(i)
t

∫
R
xN (i)(dt, dx). (3.16)

We consider a special case of this model for developing some mathematical analysis. The

model is the Barndorff-Nielsen & Shephard model (BN-S model, see [10, 11, 28, 23]), where the soy-

bean export market share price S = (St)t≥0 on some filtered probability space (Ω,G, (Gt)0≤t≤T ,P)

is given by

St = S0 exp(Xt), (3.17)

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ dZλt, (3.18)
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dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (3.19)

where the parameters µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0 and r is the risk free interest rate where

a stock or commodity is traded up to a fixed horizon date T . In the above model Wt is a Brownian

motion, and the process Zλt is a subordinator. Also W and Z are assumed to be independent, and

(Gt) is assumed to be the usual augmentation of the filtration generated by the pair (W,Z).

The BN-S model is a special case of (3.16), where dZ
(i)
s = 1

ρ

∫∞
0 xN (i)(ds, dx), i = 1, . . . , n,

are subordinators. The BN-S model has been successfully implemented to oil in various cenent works

(see [47, 47, 52]). Making a scaling in the time variable, we define s = λt, for λ > 0. Then, we

obtain, dZ
(i)
λt = 1

ρ

∫∞
0 xN (i)(λ dt, dx), i = 1, . . . , n, are subordinators. Consequently, we consider

S = (St)t≥0 on some filtered probability space (Ω,F , (Ft)0≤t≤T ,P), is given by (3.16). Thus we

obtain the dynamics of Xt as

dXt = (µ+ βσ2
t ) dt+ σt dBt + ρ

n∑
i=1

θ
(i)
t dZ

(i)
λt , (3.20)

where Z(i), i = 1, . . . , n are independent subordinators. Machine learning algorithms can be imple-

mented to determine the value of θ. The processes Z(i) have various intensities. Also, we assume

that Bt, and Z(i), i = 1, . . . , n, are independent, and (Ft) is assumed to be the usual augmentation

of the filtration generated by (W,Z(i)), i = 1, . . . , n. In this case (3.19) will be given by

dσ2
t = −λσ2

t dt+
n∑
i=1

θ
(i)
t dZ

(i)
λt , σ2

0 > 0. (3.21)

The solution of (3.21) can be explicitly written as

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s)

n∑
i=1

θ(i)
s dZ

(i)
λs . (3.22)

The integrated variance over the time period [t, T ] is given by σ2
I =

∫ T
t σ2

s ds, and a straight-forward

calculation shows

σ2
I = ε(t, T )σ2

t +

∫ T

t
ε(s, T )

n∑
i=1

θ(i)
s dZ

(i)
λs , (3.23)
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where

ε(s, T ) = (1− exp(−λ(T − s))) /λ, t ≤ s ≤ T. (3.24)

We derive a general expression for the characteristic function of the conditional distribution of the

market share for soybeans process appearing in the stochastic model given by equations (3.17),

(3.20) and (3.21).

As shown in [51], the advantages of the dynamics given by (3.17), (3.20), and (3.21) over

the existing models are significant. The following theorem is proved in [51]. From this result,

it is clear that as θ is constantly adjusted, for a fixed s, the value of t always has an upper

limit. Consequently, Corr(Xt, Xs) never becomes very small, and thus long-range dependence is

incorporated in the model.

Theorem 3.2.1. If the jump measures associated with the subordinators Z and Z(b) are JZ and

J
(b)
Z respectively, and J(s) =

∫ s
0

∫
R+ JZ(λdτ, dy), J (b)(s) =

∫ s
0

∫
R+ J

(b)
Z (λdτ, dy); then for the log-

return of the market share for soybeans for the improved BN-S model given by (3.17), (3.20), and

(3.21),

Corr(Xt, Xs) =

∫ s
0 σ

2
τdτ + ρ2(1− θ)2J(s) + ρ2θ2J (b)(s)√

α(t)α(s)
, (3.25)

for t > s, where α(ν) =
∫ ν

0 σ
2
τdτ + νρ2λ((1− θ)2Var(Z1) + θ2Var(Z

(b)
1 )).

We denote the cumulant transforms as κ(i)(θ) = logEP[eθZ
(i)
1 ]. In this work, we make the

following assumption similar to [40, 50].

Assumption 3.2.2. Assume that θ̂(i) = sup{θ ∈ R : κ(i)(θ) < +∞} > 0, for i = 1, . . . , n.

We state the following well-known result from [40, 50] and denote the real part and imagi-

nary part of z ∈ C as <(z) and =(z), respectively.

Theorem 3.2.3. Let Z be a subordinator with cumulant transform κ, and let f : R+ → C be a

complex-valued, left continuous function such that <(f) ≤ 0. Then

E

[
exp

(∫ t

0
f(s) dZλs

)]
= exp

(
λ

∫ t

0
κ(f(s)) ds

)
. (3.26)

24



The above formula still holds if Z = Z(i) satisfies Assumption 3.2.2 and f is such that <(f) ≤ θ̂(i)

(1+ε) ,

i = 1, . . . , n, for ε > 0.

The Laplace transform of XT |t, the conditional distribution of XT given the information

up to time t ≤ T , is given by φ(z) = EP[exp(zXT )|Ft], for z ∈ C such that the expectation is

well-defined.

Theorem 3.2.4. In the case of the stochastic model as described in equations (3.17), (3.20) and

(3.21), the Laplace transform φ(z) = E[exp(zXT )|Ft] of XT |t is given by

φ(z) = exp

(
z(Xt + µ(T − t)) +

1

2
(z2 + 2βz)ε(t, T )σ2

t + λ

n∑
i=1

∫ T

t
G(i)(s, z) ds

)
, (3.27)

where G(i)(s, z) = κ(i)
(

(ρz + 1
2(z2 + 2βz)ε(s, T ))θ

(i)
s

)
.

The transform φ(z) is well defined in the open strip S = {z ∈ C : <(z) ∈ (θ−, θ+)}, where

θ
(i)
− = sup

t≤s≤T

[(
−β − ρ

ε(s, T )
−
√

∆
(i)
1

)
θ(i)
s

]
, θ− = max

i
θ

(i)
−

and

θ
(i)
+ = inf

t≤s≤T

[(
−β − ρ

ε(s, T )
+

√
∆

(i)
1

)
θ(i)
s

]
, θ+ = min

i
θ

(i)
+

where ∆
(i)
1 = (β + ρ

ε(s,T ))2 + 2 θ̂(i)

ε(s,T ) .

Proof. We obtain from equation (3.20)

XT = ζ + βσ2
I +

∫ T

t
σs dWs + ρ

∫ T

t

n∑
i=1

θ(i)
s dZ

(i)
λs ,
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where ζ = Xt + µ(T − t). Let G denote the σ-algebra generated by Z(i), i = 1, . . . , n, up to time T

by Ft. Then, proceeding by iterated conditional expectations, we obtain

φ(z) = EP[exp(zXT )|Ft]

= EP

[
EP

[
exp

(
z(ζ + βσ2

I +

∫ T

t
σs dWs + ρ

∫ T

t

n∑
i=1

θ(i)
s dZ

(i)
λs )

)
|G

]
|Ft

]

= EP

[
exp

(
z(ζ + βσ2

I + ρ

∫ T

t

n∑
i=1

θ(i)
s dZ

(i)
λs )

)
EP
[
exp(z

∫ T

t
σs dWs)|G

]
|Ft

]

= EP

[
exp

(
z(ζ + βσ2

I + ρ

∫ T

t

n∑
i=1

θ(i)
s dZ

(i)
λs ) +

1

2
σ2
Iz

2

)
|Ft

]
.

Using (3.23) we obtain

φ(z) = exp

(
ζz +

1

2
ε(t, T )σ2

t (z
2 + 2βz)

)
EP

[
exp

(∫ T

t

(
ρz +

1

2
(z2 + 2βz)ε(s, T )

) n∑
i=1

θ(i)
s dZ

(i)
λs

)]
.

Using the independence of the processes Z(i), i = 1, . . . , n, we obtain

EP

[
exp

(∫ T

t

(
ρz +

1

2
(z2 + 2βz)ε(s, T )

) n∑
i=1

θ(i)
s dZ

(i)
λs

)]

= Πn
i=1E

P
[
exp

(∫ T

t

(
ρz +

1

2
(z2 + 2βz)ε(s, T )

)
θ(i)
s dZ

(i)
λs

)]
.

Clearly if z ∈ S, then <((ρz+ 1
2(z2+2βz)θ

(i)
s ) < θ̂(i). Thus the result follows from (3.26).

In order to study the characteristic of the “importance factors” (θ
(i)
t , i = 1, . . . , n), the

following result is useful. In is providing a decomposition of first exit-time (3.20) in terms of the

individual subordinators. For simplicity, we assume that σt = σ is constant and the positive factors

(θ
(i)
t , i = 1, . . . , n) are incorporated in the subordinators Z(i), i = 1, . . . , n.
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4. THE FIRST EXIT TIME ANALYSIS

4.1. First-Exit Time for a Combination of a Brownian Motion and a Lévy Subordinator

In this section, we develop a couple of results related to the first-exit time analysis of log-

return processes [5] of the form (3.12). At first, we develop the result related to the first-exit time

of a simpler process Wt + Yt, where Y is a Lévy subordinator, with W0 = Y0 = 0. If X1 and X2

are independent random variables, we denote X1 ⊥ X2 .

Theorem 4.1.1. For a Brownian motion Wt and a Lévy subordinator Yt, and a, b > 0,

inf{τ > 0 : Wτ + Yτ ≥ a+ b} = inf{t > 0 : Wt ≥ a}+ inf{α > 0 : Yα ≥ b}, (4.1)

with probability

P =

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

P1(ε; t, α)P2(ε; t, α) dε dt dα, (4.2)

where

P1(ε; t, α) =

∫ ∞
−∞

e
−τ2
2α

√
2πα

∫ ∞
max(a,a−ε−τ)

e
−s2
2t

√
2πt

ds

 dτ, (4.3)

and

P2(ε; t, α) =

∫ ∞
0

fYt(β)

(∫ ∞
max(max(b,b+ε−β),0)

fYα(s)ds

)
dβ, (4.4)

where the probability density function of Yt is given by fYt(·).

Proof. The first-exit time of a combination of Wt and Yt, in the sense that its value is more than

a+ b, is given by

inf{τ > 0 : Wτ + Yτ ≥ a+ b}

= inf{t+ α > 0 : Wt+α + Yt+α ≥ a+ b, t > 0, α > 0}.

For a fixed ε ∈ R, we define

P1(ε; t, α) = P (Wt+α ≥ a− ε,Wt ≥ a), (4.5)
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P2(ε; t, α) = P (Yt+α ≥ b+ ε, Yα ≥ b). (4.6)

We proceed to compute P1(ε; t, α) and P2(ε; t, α). We observe,

P1(ε; t, α) = P (Wt+α ≥ a− ε,Wt ≥ a)

= P (Wt+α −Wt ≥ a− ε−Wt,Wt ≥ a)

= P (Wt ≥ a− ε− (Wt+α −Wt),Wt ≥ a)

= P (Wt ≥ max(a, a− ε− χ)) , χ ∼ N (0, α), χ ⊥Wt

=

∫ ∞
−∞

e
−τ2
2α

√
2πα

∫ ∞
max(a,a−ε−τ)

e
−s2
2t

√
2πt

ds

 dτ.

On the other hand,

P2(ε; t, α) = P (Yt+α ≥ b+ ε, Yα ≥ b)

= P (Yt+α − Yα ≥ b+ ε− Yα, Yα ≥ b)

= P (Yα ≥ b+ ε− (Yt+α − Yα), Yα ≥ b)

= P (Yα ≥ max(b, b+ ε− η)), η ⊥ Yα.

As the probability density function of Yt is given by fYt(·), therefore we obtain

P2(ε; t, α) =

∫ ∞
0

fYt(β)

(∫ ∞
max(max(b,b+ε−β),0)

fYα(s)ds

)
dβ.

Clearly, {t > 0 : Wt ≥ a} + {α > 0 : Yα ≥ b} = {t + α > 0 : Wt+α + Yt+α ≥ a + b, t > 0, α > 0},

with probability P , where P is given by (4.2), and P1(ε; t, α) and P2(ε; t, α) are obtained by (4.3)

and (4.4), respectively. This leads to (4.1).

Next, we generalize the result in Theorem 4.1.1 for the log-return stochastic process (3.12) in

the approximation of the BN-S model. In the BN-S model ρ < 0 is assumed in order to incorporate

the leverage effect of the market. Typically in a derivative market, a significant fluctuation always

corresponds to a “big-downward-movement” of the asset prices. Consequently, for the next theorem
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we focus on the first-exit time corresponding to a “downward-movement” of the log-return process

(3.12). For the following theorem we assume W0 = Z0 = 0.

Theorem 4.1.2. For a Brownian motion Wt and a Lévy subordinator Zt, if µ ∈ R, σ > 0, ρ < 0,

and a, b > 0, then

inf{τ > 0 : µτ + σWτ + ρZτ ≤ −a− b}

= inf{t1 > 0 : µt1 + σWt1 ≤ −a}+ inf{t2 > 0 : µt2 + ρZt2 ≤ −b}, (4.7)

with probability

P =

∫ ∞
0

∫ ∞
0

(∫ ∞
−∞

P1(ε; t1, t2)P2(ε; t1, t2) dε

)
dt1 dt2, (4.8)

where

P1(ε; t1, t2) =

∫ ∞
−∞

e
−τ2
2t2

√
2πt2

∫ min
(

(−a−µt1)
σ

,
(−a−ε)

σ
−τ−µ(t1+t2)

2σ

)
−∞

e
−s2
2t1

√
2πt1

ds

 dτ, (4.9)

and

P2(ε; t1, t2) =

∫ ∞
0

fZt1 (β)

(∫ ∞
max

(
max

(
(−b−µt2)

ρ
,
(−b+ε)

ρ
−β−µ(t2+t1)

2ρ

)
,0
) fZt2 (s)ds

)
dβ, (4.10)

where the probability density function of Zt is given by fZt(·).

Proof. For fixed ε ∈ R, we define and compute the following joint probabilities. At first, we

compute, for a > 0:

P1(ε; t1, t2) = P (Wt1+t2 +
µ(t1 + t2)

2σ
≤ −a

σ
− ε

σ
,Wt1 +

µt1
σ
≤ −a

σ
)

= P (Wt1+t2 −Wt1 +
µt1
2σ
≤ −a

σ
− ε

σ
−Wt1 −

µt2
2σ

,Wt1 +
µt1
σ
≤ −a

σ
)

= P (Wt1 +
µt1
2σ
≤ −a− ε

σ
− (Wt1+t2 −Wt1)− µt2

2σ
,Wt1 +

µt1
σ
≤ −a

σ
)

= P (Wt1 ≤
−a− ε
σ

− (Wt1+t2 −Wt1)− µ(t1 + t2)

2σ
,Wt1 ≤

−a− µt1
σ

)

= P

(
Wt1 ≤ min

(
(−a− µt1)

σ
,
(−a− ε)

σ
− χ− µ(t1 + t2)

2σ

))
,

=

∫ ∞
−∞

e
−τ2
2t2

√
2πt2

∫ min
(

(−a−µt1)
σ

,
(−a−ε)

σ
−τ−µ(t1+t2)

2σ

)
−∞

e
−s2
2t1

√
2πt1

ds

 dτ,
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where in the second to last step χ ∼ N (0, t2), and χ ⊥Wt1 . With ρ < 0, we compute for b > 0,

P2(ε; t1, t2) = P (Zt1+t2 +
µ(t1 + t2)

2ρ
≥ −b

ρ
+
ε

ρ
, Zt2 +

µt2
ρ
≥ −b

ρ
)

= P (Zt1+t2 +
µ(t1 + t2)

2ρ
− Zt2 ≥

−b
ρ

+
ε

ρ
− Zt2 , Zt2 +

µt2
ρ
≥ −b

ρ
)

= P

(
Zt2 ≥

(−b+ ε)

ρ
− (Zt1+t2 − Zt2 +

µ(t2 + t1)

2ρ
), Zt2 ≥

−b− µt2
ρ

)
= P

(
Zt2 ≥ max

(
(−b− µt2)

ρ
,
(−b+ ε)

ρ
− η − µ(t2 + t1)

2ρ

))
,

where Since η ⊥ Zt2 , therefore we obtain (4.10). For a, b > 0, we define a set

A = {τ > 0 : µτ + σWτ + ρZτ ≤ −a− b}

= {t1 + t2 > 0 : µ(t1 + t2) + σWt1+t2 + ρZt1+t2 ≤ −a− b, t1 > 0, t2 > 0}.

Consequently, we obtain

A = {t1 + t2 > 0 : µ(t1 + t2) + σWt1+t2 + ρZt1+t2 ≤ −a− b}

= {t1 > 0 : µt1 + σWt1 ≤ −a}+ {t2 > 0 : µt2 + ρZt2 ≤ −b},

with probability P given by (4.8). Consequently,

inf A = inf{t1 > 0 : µt1 + σWt1 ≤ −a}+ inf{t2 > 0 : µt2 + ρZt2 ≤ −b}.

This proves (4.7).

The purpose of Theorem 4.1.1 and Theorem 4.1.2 is to decompose the first-exit time process

of a linear combination of a Brownian motion and a Lévy subordinator into the individual first-exit

time processes of a Brownian motion and a Lévy subordinator. However, as observed in both of

the theorems, such decomposition holds only with certain probability.

Remark 4.1.3. It is well known (see [4, 32]) that for the process Gt = inf{s > 0 : Ws + γs ≥ δ1t},

with γ, δ1 > 0, known as the inverse Gaussian (IG) process, Gt follows an IG(δ1t, γ) distribution.

As the process Ws + γs is continuous, we also have Gt = inf{s > 0 : Ws + γs = δ1t}. The
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distribution IG(δ1, γ) is concentrated on R+ and has probability density:

p(x) =
1√
2π
δ1e

δ1γx−3/2 exp

(
−δ

2
1x
−1 + γ2x

2

)
, γ, δ1 > 0.

Consequently, for Theorem 4.1.2 with µ < 0 and a > 0, the first term on the right hand side of

(4.37) has the distribution inf{t1 > 0 : µt1 + σWt1 ≤ −a}
d
= inf{t1 > 0 : −µt1 + σWt1 ≥ a} ∼

IG
(
a
σ ,
−µ
σ

)
.

The case is not the same if the Brownian motion does not have any drift term. In that case,

it is known (see [7]) that inf{s > 0 : σWs ≥ a}, with a > 0, satisfies a Lévy distribution with the

probability density function

a

σ
√

2πx3
exp

(
− a2

2σ2x

)
, x > 0.

Consequently, for Theorem 4.1.1, the first term on the right hand side of (4.1), i.e., inf{t > 0 :

Wt ≥ a} = inf{t > 0 : Wt = a}, with a > 0, has the probability density function a√
2πx3

exp
(
− a2

2x

)
,

x > 0. A similar result holds for the first term on the right hand side of (4.7) in Theorem 4.1.2

with µ = 0.

Note that, for the case when µ = 0 and a > 0, inf{s > 0 : σWs ≤ −a} = inf{s > 0 : σWs =

−a} d= inf{s > 0 : σWs = a} = inf{s > 0 : σWs ≥ a}.

We note that for Theorem 4.1.1, if a, b ≤ 0, then (4.1) is trivially satisfied. Similarly, for

Theorem 4.1.2, if a, b ≤ 0, then (4.7) is trivially satisfied. As W0 = Z0 = 0, therefore all the related

first-exit times are zero in those cases.

4.2. First-Exit Time Distribution For Some Self-Decomposable Processes

Consider the log-return dynamics Xt given by (3.12), in the approximation of the BN-S

model (3.17) and (3.12). In Theorem 4.1.2, it is shown that with certain probability, the first-exit

time process inf{t > 0 : Xt ≤ −a − b}, is decomposable into the sum of the first exit time of two

processes- (1) the Brownian motion with drift, and (2) a Lévy subordinator with drift. We denote

three stochastic processes: Aa+b = inf{t > 0 : Xt ≤ −a−b} = inf{t > 0 : µt+σWt+ρZt ≤ −a−b},

Ba = inf{t > 0 : µt+ σWt ≤ −a}, and Cb = inf{t > 0 : µt+ ρZt ≤ −b}, with ρ < 0, and a, b > 0.

In these expressions σ and µ are given by (3.10) and (3.11), respectively. Thus, σ > 0. Also, in
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general, for financial applications µ ≤ 0. With these notations, from Theorem 4.1.2 we obtain that

Aa+b = Ba + Cb.

The probability density function of the process B, with µ ≤ 0, is discussed in Remark 4.1.3.

In this section we discuss the probability density function of the process C for some special cases.

Accordingly, with probability P given by (4.8), the probability density function of the process A is

equal to the convolution of the probability density functions of the processes B and C.

The goal of this section is to analyze the first-exit time distribution for the Lévy subordinator

in the decompositions provided in Theorem 4.1.1 and Theorem 4.1.2. For simplicity we assume

µ = 0. We consider the distribution of the corresponding process Cb = inf{s > 0 : Zs ≥ −b
ρ }, for

three self-decomposable distributions. As b > 0 and ρ < 0, in general, C can be written as the

stochastic process Tt = inf{s > 0 : Zs ≥ t}, t > 0.

In Subsection 4.2.1, we describe some results related to special functions and Laplace trans-

forms that are implemented for the subsequent analysis. Subsections 4.2.2, 4.2.3, and 4.2.4, deal

with various analysis of Tt in relation to Gamma, IG, and PTS subordinators, respectively.

4.2.1. Laplace Transform and Some Relevant Special Functions

At first, we describe some special functions necessary for the development of the rest of this

paper.

• The MacRobert E-function is denoted as

E(m; a1 : n; bj : x) = E(a1, · · · , am : b1, · · · , bn : x).

For m ≥ n+ 1, with |x| < 1, the MacRobert E-function is defined as

m∑
i=1

∏m
j=1 ∗̃Γ(aj − ai)Γ(ai)x

ai∏n
k=1 Γ(bk − ai)

n+1F̃m−1A(x), (4.11)
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where A(x) =

 ai, ai − b1 + 1, · · · , ai − bn + 1;

ai − a1 + 1, · · · , ∗̃, · · · , ai − am + 1;
(−1)m+nx

. For m ≤ n+ 1, with |x| > 1,

the MacRobert E-function is defined as

∏m
i=1 Γ(ai)∏n
j=1 Γ(bj)

mF̃n

a1, · · · , am;

b1, · · · , bn;

−1

x

 . (4.12)

For n = 0, the notation E(· :: ·) is used. The ∗̃ denotes that the term containing aj − ai

corresponding to j = i is omitted. Here mF̃n[·] is generalized hypergeometric functions,

defined as

mF̃n

a1, · · · , am;

b1, · · · , bn;
x

 =
∞∑
n=0

(a1)1 · · · (am)nx
n

(b1)1 · · · (bn)nn!
,

where (·)n is the Pochhammer symbol.

• The Gauss hypergeometric function 2F1 (a, b, c;x) is defined as

2F1 (a, b, c;x) =
∞∑
n=0

(a)n(b)nx
n

(c)nn!
,

where (·)n is the Pochhammer symbol, c 6= 0,−1,−2, . . . ;, and |x| ≤ 1. For x ∈ C, with

|x| ≥ 1, the series can be analytically continued along any path in the complex plane that

avoids the branch points 1 and infinity. An integral representation of the hypergeometric

function is given by 2F1 (a, b, c;x) =
Γ(c)

∫ 1
0 t

b−1(1−t) c−b−1(1−xt) −adt
Γ(b)Γ(c−b) .

• Modified Bessel functions are solutions of the modified Bessel equation. The modified Bessel

function of the first kind is defined by

Iν(z) = i−νJν(iz),

with ν ∈ R, and Jν(·) is the Bessel function of the first kind.
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• Upper incomplete gamma function is given by

Γ(a, x) =

∫ ∞
x

ta−1e−tdt.

For x > 0, Γ(a, x) converges for all real a. In particular, Γ(0, x) is the exponential integral∫∞
x t−1e−t dt.

Next, we describe some results related to the Laplace transform. For t ≥ 0, and s ∈ C,

we denote the Laplace transform of f(t) by L(f(t)) = F (s), where f(t) is piecewise continuous

function on every finite interval in [0,∞) satisfying |f(t)| < Meat, for some M > 0 and for all t ∈

[0,∞). The Laplace transform and the inverse Laplace transform are related by:

F (s) =

∫ ∞
0

f(t)e−st dt,

and

f(t) =
1

2πi

∫ x0+i∞

x0−i∞
est F (s)ds,

for some x0 ∈ R, where x0 is greater than the real part of all singularities of F (s), and F (s) is

bounded on the line Re(s) = x0 in the complex-plane. We list some useful properties related to the

Laplace transform. The following result is elementary and can be found in [45].

Lemma 4.2.1. The following results hold: (1) L−1 (aF (as− b)) = e
bt
a f( ta), with a > 0, b ∈ R; (2)

L−1
(
−dF (s)

ds

)
= tf(t); (3) L−1

(
F (s)
s

)
=
∫ t

0 f(u)du; (4) L−1 (sF (s)− f(0)) = df(t)
dt .

The following results provide various relations between the Laplace transform and special

functions. These results can be found in [45].

Lemma 4.2.2. The following results hold.

(1) L
(
t
−3
2

∫∞
0 ue

−u2
4t f(u)du

)
= 2(
√
π)F (

√
s).

(2) L−1
(
e
a
s

s

)
= I0(2

√
at), where I0(x) is the modified Bessel function of the first kind, and

Re(s) > 0.

(3) L−1
(
e−a
√
s
)

= ae
−a2
4t

2
√
πt

3
2

, Re(a2) > 0, Re(s) > 0.
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(4) L (Γ(v, at)) = Γ(v)
s [1 − (1 + s

a)−v], where Γ(v, at) is the upper incomplete gamma function,

and Re(ν) > 0, Re(s) > −Re(a).

(5) L
(
(
√
at)
)

=
√
a

s
√
s+a

, where (x) = 2√
π

∫ x
0 e
−t2 dt,

Re(s) > max(0,−Re(a)).

(6) L−1
(

1√
s+a

)
= e−at√

πt
, Re(s) > −Re(a).

(7) L−1
(√

s+a
s

)
= e−at√

πt
+
√
a[
√
at], Re(s) > max(0,−Re(a)).

(8)

L−1

(
sc−1e−(bs)

1
m

)
=

m
1
2

+mc

(2π)
m+1

2 bc

∑
i,−i

1

i
E

(
c, c+

1

m
, . . . , c+

m− 1

m
::
beiπ

mmt

)
,

where E(· : · : ·) is the MacRobert E-function, Re(s) > 0,Re(c) > 0,Re(b) > 0,m = 2, 3, . . . .

In the above expression
∑

i,−i denotes that in expression following the summation sign, i is

to be replaced by −i and two expressions are to be added.

In the two-dimension, for x ∈ R, let F (x, s) =
∫∞

0 f(x, t)e −stdt, be the Laplace transform

of function f(x, t) with respect to the t variable. Note that, for a subordinator Xt, with probability

density function fXt(·), and Lévy measure πX , the Lévy-Khinchin representation gives (see[13])

∫ ∞
0

e −ztfXs(t)dt = e−sψX(z) (4.13)

where ψX(·) is the Laplace exponent of X and is given by ψX(z) =
∫∞

0 (1 − e−zu)πX(du), where

πX is the Lévy measure of X. The following result can be found in [13].

Theorem 4.2.3. The Lévy density w(x) and Lévy measure πX(t,∞) of the subordinator X (with

πX(t,∞) =
∫∞
t w(x)dx) satisfy L(πX(t,∞)) = ψX(s)

s , where ψX(s) is the Laplace exponent of the

subordinator X.

The following results are proved in [61].
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Theorem 4.2.4. Let X = {Xt}t>0 be a subordinator with the probability density function p(x, t).

Suppose p(x, t) admits continuous partial derivatives. Let Tt = inf{τ > 0 : Xτ ≥ t}, for t > 0,

represents the first-exit time process of X. Denote the probability density function of Tt by ht(·) =

h(·, t). Then,

L(h(x, t)) =
ψX(s)e−xψX(s)

s
, (4.14)

where ψX(·) is the Laplace exponent of the subordinator X.

Theorem 4.2.5. Denote the q-th moment of the first-exit time of the subordinator X by Mq(x, t).

Then,

L(Mq(x, t)) =
qΓ(1 + q)

s(ψX(s))q
. (4.15)

4.2.2. Gamma Subordinators

Let Xt be a Gamma subordinator with Lévy density given by wX(x) = νe−αx

x , x > 0, with

ν, α > 0. In this case, the Laplace exponent of X is given by ψX(s) = ν ln
(
1 + s

α

)
(see [23, 40]).

Theorem 4.2.6. For xν = n + 1, n = 0, 1, 2, . . . , the probability density function of the first-exit

time of X is given by

h(x, t) =

∫ t

0

e−uααxc (ν(−u)νx2F1 (−νx,−νx, 1− νx; 1) + νuνx)

(xν − 1)!
du, (4.16)

where 2F1 (−νx,−νx, 1− νx; 1) is the hypergeometric function.

Proof. By Theorem 4.2.4, the Laplace transform of probability density of the first-exit time of

Gamma subordinator is given as

L(h(x, t)) =
ln(1 + s

α)ν

s(1 + s
α)xν

=
K(x, s)

s
, (4.17)

whereK(x, s) = F (x, s)G(x, s), with F (x, s) = ν ln(1+ s
α),andG(x, s) = 1

(1+ s
α

)xν . Then L(h(x, t)) =

K(x,s)
s . Let the inverse Laplace transforms for F (x, s) and G(x, s) be f(x, t) and g(x, t), respectively.

Note that L−1(ln(1 + s)) = − e−t

t , (see [45]). Using Lemma 4.2.1(1), we obtain,

f(x, t) = −νe
−tα

t
.
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For xν = n + 1, where n is a non-negative integer, L−1
(
− 1

(s+1)xν

)
= txν−1e−t

(xν−1)! . Hence, by using

Lemma 4.2.1(1), we obtain g(x, t) = αxνtxν−1e−tα

(xν−1)! . Consequently, by standard convolution proce-

dure, we obtain

k(x, t) =

∫ t

0
f(x, τ)g(x, t− τ)dτ =

∫ t

0
−νe

−τααxν(t− τ)xν−1e−α(t−τ)

(xν − 1)!
dτ

=
e−tααxν [ν(−t)νx2F1 (−νx,−νx, 1− νx; 1) + νtνx]

(xν − 1)!
.

Hence, with the application of Lemma 4.2.1(3), we obtain (4.16).

The next result provides the first and the second order moment of the first-exit time of

Gamma subordinator.

Theorem 4.2.7. The first order moment (mean) the first-exit time of Gamma subordinator Xt is

given by

m(x, t) =

t∫
0

∞∫
0

αe−λα(λα)u−1 du dλ

νΓ(u)
. (4.18)

Proof. Using Theorem 4.2.5, we obtain the Laplace transform of the q-th moment of the first-exit

time of the Gamma subordinator as qΓ(1+q)
s(ψX(s))q . Consequently, the Laplace transform of the first

order moment of the first-exit time of the Gamma subordinator is given by

M(x, s) =
Γ(2)

sν ln(1 + s
α)
. (4.19)

We observe that L−1
(

Γ(2)
ln(s)

)
=
∫∞

0
Γ(2)tu−1

Γ(u) du. Consequently, using Lemma 4.2.1(2), we obtain

L−1

(
Γ(2)

ν ln(1 + s
α)

)
=

∫ ∞
0

αΓ(2)e−tα(tα)u−1

νΓ(u)
du.

Consequently, L−1(M(x, s)) can be computed using Lemma 4.2.1(3) to obtain (4.18).

We conclude this subsection by considering the case when the subordinator Z, that appears

in (3.12) and (3.5), is related to the Gamma subordinator in the BN-S model. As observed in

Section 3.1, if the stationary distribution of σ2
t is given by gamma law Γ(ν, α), then the Lévy

density of Z1 is given by w(x) = ναe−αx, x > 0.
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Theorem 4.2.8. The probability density function of the first-exit time of a subordinator Z with

Lévy density w(x) = ναe−αx, is given by

h(x, t) = νe−xνI0

(
2
√
xναt

)
e−αt,

where I0(·) is the modified Bessel function of the first kind.

Proof. For this case, the Lévy measure of Z is given by πZ(t,∞) =
∫∞
t ναe−αxdx = νe−αt. Using

Theorem 4.2.3, we obtain ψZ(s)
s = ν

s+α . Consequently, ψZ(s) = νs
s+α . The Laplace transform of the

probability density function of the first-exit time of Z is given by H(x, s) = νe
−xνs
s+α

s+α . Consequently,

the probability density function of the first-exit time of Z is given by h(x, t) = L−1(H(x, s)), where

H(x, s) =
νe
−xνs
s+α

s+ α
=
νe−xν(1− α

s+α
)

s+ α
=
νe−xνe

xνα
s+α

s+ α
. (4.20)

Using Lemma 4.2.1(1) and Lemma 4.2.2(2), we obtain

h(x, t) = νe−xνI0

(
2
√
xναt

)
e−αt.

4.2.3. Inverse Gaussian Subordinators

The first-exit time of IG processes is described in [61]. In this subsection we consider the

subordinator Z, that appears in (3.12), is related to the IG subordinator in the BN-S model.If

the stationary distribution of σ2
t is given by IG(δ1, γ) law, then the Lévy density of Z1 is given by

w(x) = δ1
2
√

2π
x−

3
2 (1 + γ2x)e−

1
2
γ2x, x > 0, and δ1, γ > 0.

For the results in Subsections 4.2.3 and 4.2.4, we define the convolution of two functions

p(x, t) and q(x, t) by

p(x, t) ∗ q(x, t) =

∫ t

0
p(x, τ)q(x, t− τ)dτ.

Consequently, for three functions p(x, t), q(x, t), and r(x, t),

(p(x, t) ∗ q(x, t)) ∗ r(x, t) =

∫ t

0

∫ u

0
p(x, τ)q(x, u− τ)r(x, t− u) dτ du.
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Theorem 4.2.9. The probability density function of the first-exit time of a subordinator Z with

Lévy density w(x) = δ1
2
√

2π
x−

3
2 (1 +γ2x)e−

1
2
γ2x, is given by h(x, t) = (p(x, t)∗ q(x, t))∗ r(x, t), where

p(x, t) =
−δ1γ(γ

√
t√

2
)

2
+
δ1γ

2
+

Γ(−1
2 ,

γ2t
2 )δ1γ

4
√
π

, (4.21)

q(x, t) =
e
−xγδ1

2 e
−tγ2

2 t
−3
2

2
√
π

∫ ∞
0

ue
−u2
4t

(
I ′0

(
2

√
xγ2δ1

2
√

2
u

)(√
xγ2δ1

2
√

2u

)
+ δ(u)

)
du, (4.22)

where δ(·) is the Dirac delta function, I0(·) is the modified Bessel function of the first kind, and

r(x, t) =
xδ1γ

6e
−γ2t

2 e
xδ1γ

2 e
−δ21x

2γ4

32t

8
√
π(2t)

3
2

. (4.23)

Proof. We obtain the Lévy measure for Z as

πZ(t,∞) =

∫ ∞
t

w(x)dx =

∫ ∞
t

δ1x
−3
2 e
−γ2x

2 + δ1(γ2)x
−1
2 e
−γ2x

2

2
√

2π
dx

=
−δ1γ(γ

√
t√

2
)

2
+
δ1γ

2
+

Γ(−1
2 ,

γ2t
2 )δ1γ

4
√
π

.

Using Theorem 4.2.3, Lemma 4.2.2(4), and Lemma 4.2.2(5) we obtain,

L(πZ(t,∞)) =
ψZ(s)

s
=
δ1γ

2s
− δ1γ

2

2
√

2s(
√
s+ γ2

2 )
−
δ1γ[1−

√
(1 + 2s

γ2
)]

2s
. (4.24)

Consequently, by Theorem 4.2.4, we obtain that the Laplace transform of the probability density

function of the first-exit time of Z is given by

H(x, s) =

δ1γ

2s
− δ1γ

2

2
√

2s(
√
s+ γ2

2 )
−
δ1γ[1−

√
(1 + 2s

γ2
)]

2s

 e−xB(s)

= P (x, s)Q(x, s)R(x, s),

where

B(s) =

δ1γ

2
− δ1γ

2

2
√

2
√
s+ γ2

2

−
δ1γ[1−

√
(1 + 2s

γ2
)]

2

 ,
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P (x, s) =
δ1γ

2s
− δ1γ

2

2
√

2s
√
s+ γ2

2

−
δ1γ[1−

√
(1 + 2s

γ2
)]

2s
, (4.25)

Q(x, s) = exp

−xγδ1

2
+

xγ2δ1

2
√

2
√
s+ γ2

2

,
and

R(x, s) = exp

xδ1γ

2
−
xδ1γ

√
(1 + 2s

γ2
)

2

.
We denote the inverse Laplace transforms of P (x, s), Q(x, s), and R(x, s) by p(x, t), q(x, t), and

r(x, t), respectively.

We have p(x, t) = L−1

(
δ1γ
2s −

δ1γ2

2
√

2s(

√
s+ γ2

2
)
−

δ1γ[1−
√

(1+ 2s
γ2

)]

2s

)
. From this, comparing with

(4.24), we note that p(x, t) = L−1(ψZ(s)
s ). Hence p(x, t) is given by (4.21).

Next, we compute q(x, t) using Lemma 4.2.2(2), Lemma 4.2.2(1), and Lemma 4.2.1(4).

Lemma 4.2.2(2) gives L−1
(
e
a
s

s

)
= I0(2

√
at).

With L(s) = e
a
s

s , we find l(t) = L−1(L(s)) = I0(2
√
at). We notice I0(0) = 1. Consequently,

using Lemma 4.2.1(4), we have L−1(sL(S)− l(0)) = l′(t). Hence, we obtain, L−1(e
a
s )− L−1(1) =

I ′0(2
√
at)(

√
a
t ), and thus L−1(e

a
s ) = I ′0(2

√
at)(

√
a
t ) + δ(t), where δ(·) is the Dirac delta-function.

Using Lemma 4.2.2(1), we obtain

L−1(eas
−1/2

) =
t
−3
2

2
√
π

∫ ∞
0

ue
−u2
4t (I ′0(2

√
au)(

√
a

u
) + δ(u))du.

Therefore, using Lemma 4.2.1(1) we obtain

q(x, t) =
e
−xγδ1

2 e
−tγ2

2 t
−3
2

2
√
π

∫ ∞
0

ue
−u2
4t

(
I ′0

(
2

√
xγ2δ1

2
√

2
u

)(√
xγ2δ1

2
√

2u

)
+ δ(u)

)
du. (4.26)

Finally,

r(x, t) = L−1(R(x, s)) = L−1

exδ1γ2 e−
xδ1γ

√
(1+ 2s

γ2
)

2

 .

Using Lemma 4.2.2(3), we obtain L−1(e
xδ1γ

2 e−
xδ1γ

√
s

2 ) = e
xδ1γ

2 (xδ1γ)e
−δ21x

2γ2

16t

4
√
πt

3
2

. Consequently, using

Lemma 4.2.1(1), we obtain (4.23).
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Finally, if h(x, t) is the probability density function of the first-exit time of Z, then h(x, t) =

L−1(H(x, s)) = L−1(P (x, s)Q(x, s)R(x, s)) = (p(x, t) ∗ q(x, t)) ∗ r(x, t).

4.2.4. Positive Tempered Stable Subordinators

Let Xt be a positive tempered stable (PTS) subordinator with Lévy density given by

u(x) = βk−2γ γ

Γ(γ)Γ(1− γ)
x−γ−1 exp

(
−1

2
k2x

)
, x > 0,

with β > 0, 0 < γ < 1, and k ≥ 0.

Theorem 4.2.10. The probability density function of the first-exit time of X is given by h(x, t) =

p(x, t) ∗ q(x, t), where

p(x, t) = aΓ

(
−γ, k

2t

2

)
, (4.27)

where a = βγ
2γΓ(γ)Γ(1−γ) , and

q(x, t) =

e−xaΓ(−γ)e
−k2t

2

( 1
γ )

γ+2
2γ

(2π)
γ+1
2γ (−xa( 2

k2
)γΓ(−γ))

1
γ

∑
i,−i

1

i
E (1, 1 + γ, . . . , 2− γ :: C(x)) , (4.28)

where C(x) =
(( 2
k2

)γ(−xa)Γ(−γ))
1
γ eiπ

γ
−1
γ t

. In (4.28), E(· : · : ·) is the MacRobert E-function, and∑
i,−i denotes that in expression following the summation sign, i is to be replaced by −i and two

expressions are to be added.

Proof. We have

πX(t) =

∫ ∞
t

u(x)dx =

∫ ∞
t

βk−2γγx−γ−1e
−k2x

2

Γ(γ)Γ(1− γ)
dx =

βγΓ(−γ, k2t2 )

Γ(γ)Γ(1− γ)2γ
.

We compute L(πX(t)) using Theorem 4.2.3 to obtain the Laplace exponent of density function of

X as

ψX(s) =
βγΓ(−γ)[1− (1 + 2s

k2
)γ ]

Γ(γ)Γ(1− γ)2γ
.
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Now using Theorem 4.2.4, we obtain the Laplace transform of the probability density function of

the first-exit time of X as

H(x, s) = L(h(x, t)) =

(
aΓ(−γ)[1− (1 + 2s

k2
)γ ]

s

)
e−axΓ(−γ)[1−(1+ 2s

k2
)γ ],

where a = βγ
Γ(γ)Γ(1−γ)2γ . To compute h(x, t), the probability density function of the first-exit time

of X, we find

p(x, t) = L−1

(
aΓ(−γ)[1− (1 + 2s

k2
)γ ]

s

)
,

and

q(x, t) = L−1
(
e−axΓ(−γ)[1−(1+ 2s

k2
)γ ]
)
,

and use the convolution result. By using Lemma 4.2.2(4), we obtain, the expression of p(x, t) as

(4.27).

Next, compute q(x, t). Denote Q(x, s) = exp
(
−axΓ(−γ)[1− (1 + 2s

k2
)γ ]
)
. We observe

Q(x, s) = e−xaΓ(−γ) exp

(
−
(

(−xaΓ(−γ))
1
γ +

2s

k2
(−xaΓ(−γ))

1
γ

)γ)
= e−xaΓ(−γ) exp

(
−

(
(−xaΓ(−γ))

1
γ + s

(
−xa

(
2

k2

)γ
Γ(−γ)

) 1
γ

)γ)
.

Hence, by using Lemma 4.2.2(8) and Lemma 4.2.1(1), we obtain the expression of q(x, t) as (4.28).

We conclude this subsection by considering a subordinator Z related to the PTS subordi-

nator in the BN-S model. If the stationary distribution of σ2
t is given by PTS(κ, δ, γ) law, then

that the Lévy density of Z1 is given by

w(x) =
βk−2γγx−γ−1e

−k2x
2

Γ(γ)Γ(1− γ)

(
γ +

k2x

2

)
, x > 0, β > 0, 0 < γ < 1, k ≥ 0. (4.29)

As in the previous sections, Z is the subordinator that appears in (3.12).
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Theorem 4.2.11. The probability density function of the first-exit time of a subordinator Z, with

Lévy density (4.29), is given by h(x, t) = (p(x, t) ∗ q(x, t)) ∗ r(x, t), where

p(x, t) = a

(
γΓ(−γ, k

2t

2
) + Γ(1− γ, k

2t

2
)

)
, (4.30)

where a = βγ
2γΓ(γ)Γ(1−γ) , and

q(x, t) = e−xaγΓ(−γ)e
−k2t

2

( 1
γ )

γ+2
2γ

(2π)
γ+1
2γ (−xaγ( 2

k2
)γΓ(−γ))

1
γ

S1, (4.31)

where

S1 =
∑
i,−i

1

i
E

(
1, 1 + γ, . . . , 2− γ ::

(( 2
k2

)γ(−xaγ)Γ(−γ))
1
γ eiπ

γ
−1
γ t

)
,

and

r(x, t) = e−xaΓ(1−γ)e−
k2t
2

( 1
γ−1)

γ+1
2γ−2

(2π)
γ

2γ−2 (−xa( 2
k2

)γ−1Γ(1− γ))
1

γ−1

S2, (4.32)

where

S2 =
∑
i,−i

1

i
E

1, γ, . . . , 3− γ ::
(( 2
γ2

)γ−1(−xa)Γ(1− γ))
1

γ−1 eiπ

(γ − 1)
−1
γ−1 t

 .

In the expressions of S1 and S2, E(· : · : ·) is the MacRobert E-function, and
∑

i,−i denotes that

in expression following the summation sign, i is to be replaced by −i and two expressions are to be

added.

Proof. We obtain πZ(t,∞) as

πZ(t,∞) =

∫ ∞
t

w(x)dx =

∫ ∞
t

βk−2γγx−γ−1e
−k2x

2

Γ(γ)Γ(1− γ)
(γ +

k2x

2
) dx

=
βγ

2γΓ(γ)Γ(1− γ)

(
Γ(−γ, k

2t

2
)γ + Γ(1− γ, k

2t

2
)

)
.

We use Theorem 4.2.3 to obtain

ψZ(s)

s
=

βγ

2γΓ(γ)Γ(1− γ)

(
γΓ(−γ)

s
(1− (1 +

2s

k2
)γ) +

Γ(1− γ)

s
(1− (1 +

2s

k2
)γ−1)

)
. (4.33)
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Consequently,

ψZ(s) = a

(
γΓ(−γ)(1− (1 +

2s

k2
)γ) + Γ(1− γ)(1− (1 +

2s

k2
)γ−1)

)
,

where a = βγ
2γΓ(γ)Γ(1−γ) . Using Theorem 4.2.4, we obtain the Laplace transform of the probability

density function of the first-exit time of Z as

H(x, s) = L(h(x, t)) = P (x, s)Q(x, s)R(x, s),

where

P (x, s) = a

(
γΓ(−γ)

s
− γΓ(−γ)

s
(1 +

2s

k2
)γ +

Γ(1− γ)

s
− Γ(1− γ)

s
(1 +

2s

k2
)γ−1

)
, (4.34)

Q(x, s) = exp

(
−xa

(
γΓ(−γ)(1− (1 +

2s

k2
)γ)

))
,

and

R(x, s) = exp

(
−xa

(
Γ(1− γ)(1− (1 +

2s

k2
)γ−1

))
.

We denote the inverse Laplace transform for P (x, s), Q(x, s), and R(x, s), by p(x, t), q(x, t), and

r(x, t), respectively. Using Lemma 4.2.2(4), we obtain

L−1(
γΓ(−γ)

s
(1− (1 +

2s

k2
)γ) = γΓ(−γ, k

2t

2
).

Also, using Lemma 4.2.2(4), we obtain L−1(Γ(1−γ)
s − Γ(1−γ)

s (1 + 2s
k2

)γ−1) = Γ(1− γ, k2t2 ). Hence, we

obtain p(x, t) as given by (4.30).

Next, we observe that Q(x, s) can be written as:

Q(x, s) = e−xaγΓ(−γ) exp

(
−
(

(−xaγΓ(−γ))
1
γ +

2s

k2
(−xaγΓ(−γ))

1
γ

)γ)
(4.35)

= e−xaγΓ(−γ) exp

(
−

(
(−xaγΓ(−γ))

1
γ + s

(
−xaγ

(
2

k2

)γ
Γ(−γ)

) 1
γ

)γ)
. (4.36)
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Hence by using Lemma 4.2.2(8) and Lemma 4.2.1(1), we obtain (4.31). Finally, we observe that

R(x, s) can be written as

R(x, s) = e−xaΓ(1−γ) exp

(
−
(

(−xaΓ(1− γ))
1

γ−1 +
2s

k2
(−xaΓ(1− γ))

1
γ−1

)γ−1
)

= e−xaΓ(1−γ) exp
(
−D(x)γ−1

)
,

whereD(x) =

(
(−xaΓ(1− γ))

1
γ−1 + s

(
−xa

(
2
k2

)γ−1
Γ(1− γ)

) 1
γ−1

)
. Hence by using Lemma 4.2.2(8)

and Lemma 4.2.1(1), we obtain (4.32). Finally, by convolution theorem, we obtain the probability

density function of the first-exit time of Z as h(x, t) = L−1(H(x, s)) = (p(x, t)∗q(x, t))∗r(x, t).

4.3. A Generalized Result

At this point, we prove a generalized version of Theorem 4.1.2. This can be implemented

for the analysis of the commodity market as described in a previous chapter.

Theorem 4.3.1. For a Brownian motion Wt and a Lévy subordinators Z
(i)
t , i = 1, . . . , n, if µ ∈ R,

σ > 0, ρ < 0, and a, b1, . . . , bn > 0, then

inf{τ > 0 : µτ + σWτ + ρ
n∑
i=1

Z(i)
τ ≤ −a−

n∑
i=1

bi}

= inf{t1 > 0 : µt1 + σWt1 ≤ −a}+
n∑
i=1

inf{t2 > 0 : µt2 + ρZ
(i)
t2
≤ −bi}, (4.37)

with probability

P =

∫ ∞
0

∫ ∞
0

(∫ ∞
−∞

P1(ε; t1, t2)
n∏
i=1

P
(i)
2 (ε; t1, t2) dε

)
dt1 dt2, (4.38)

where

P1(ε; t1, t2) =

∫ ∞
−∞

e
−τ2
2t2

√
2πt2

∫ min
(

(−a−µt1)
σ

,
(−a−ε)

σ
−τ−µ(t1+t2)

2σ

)
−∞

e
−s2
2t1

√
2πt1

ds

 dτ, (4.39)

and for i = 1, . . . , n,

P
(i)
2 (ε; t1, t2) =

∫ ∞
0

f
Z

(i)
t1

(β)

(∫ ∞
max

(
max

(
(−nbi−µt2)

ρn
,
(−nbi+ε)

nρ
−β−µ(t2+t1)

2ρn

)
,0
) fZ(i)

t2

(s)ds

)
dβ, (4.40)
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where the probability density function of Z
(i)
t is given by f

(i)
Zt

(·).

Proof. For fixed ε ∈ R, we define and compute the following joint probabilities. At first, we

compute, for a > 0:

P1(ε; t1, t2) = P (Wt1+t2 +
µ(t1 + t2)

2σ
≤ −a

σ
− ε

σ
,Wt1 +

µt1
σ
≤ −a

σ
)

= P (Wt1+t2 −Wt1 +
µt1
2σ
≤ −a

σ
− ε

σ
−Wt1 −

µt2
2σ

,Wt1 +
µt1
σ
≤ −a

σ
)

= P (Wt1 +
µt1
2σ
≤ −a− ε

σ
− (Wt1+t2 −Wt1)− µt2

2σ
,Wt1 +

µt1
σ
≤ −a

σ
)

= P (Wt1 ≤
−a− ε
σ

− (Wt1+t2 −Wt1)− µ(t1 + t2)

2σ
,Wt1 ≤

−a− µt1
σ

)

= P

(
Wt1 ≤ min

(
(−a− µt1)

σ
,
(−a− ε)

σ
− χ− µ(t1 + t2)

2σ

))
,

=

∫ ∞
−∞

e
−τ2
2t2

√
2πt2

∫ min
(

(−a−µt1)
σ

,
(−a−ε)

σ
−τ−µ(t1+t2)

2σ

)
−∞

e
−s2
2t1

√
2πt1

ds

 dτ,

where in the second to last step χ ∼ N (0, t2), and χ ⊥ Wt1 . For i = 1, . . . , n, with ρ < 0, we

compute for bi > 0,

P
(i)
2 (ε; t1, t2) = P (Z

(i)
t1+t2

+
µ(t1 + t2)

2ρn
≥ −bi

ρ
+

ε

ρn
, Z

(i)
t2

+
µt2
nρ
≥ −bi

ρ
)

= P (Z
(i)
t1+t2

+
µ(t1 + t2)

2ρn
− Z(i)

t2
≥ −bi

ρ
+

ε

ρn
− Z(i)

t2
, Z

(i)
t2

+
µt2
nρ
≥ −bi

ρ
)

= P

(
Z

(i)
t2
≥ (−nbi + ε)

ρn
− (Z

(i)
t1+t2

− Z(i)
t2

+
µ(t2 + t1)

2ρn
), Z

(i)
t2
≥ −nbi − µt2

nρ

)
= P

(
Z

(i)
t2
≥ max

(
(−nbi − µt2)

ρn
,
(−nbi + ε)

nρ
− η(i) − µ(t2 + t1)

2ρn

))
,

where η(i) ∼ the distribution of Z
(i)
t1

. Since η(i) ⊥ Z(i)
t2

, therefore we obtain (4.40). For a, b > 0, we

define a set

A = {τ > 0 : µτ + σWτ + ρ

n∑
i=1

Z(i)
τ ≤ −a−

n∑
i=1

bi}

= {t1 + t2 > 0 : µ(t1 + t2) + σWt1+t2 + ρ

n∑
i=1

Z
(i)
t1+t2

≤ −a−
n∑
i=1

bi, t1 > 0, t2 > 0}.
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Consequently, we obtain

A = {t1 + t2 > 0 : µ(t1 + t2) + σWt1+t2 + ρ
n∑
i=1

Z
(i)
t1+t2

≤ −a−
n∑
i=1

bi}

= {t1 > 0 : µt1 + σWt1 ≤ −a}+
n∑
i=1

{t2 > 0 : µt2 + ρZ
(i)
t2
≤ −bi},

with probability P given by (4.38). Consequently,

inf A = inf{t1 > 0 : µt1 + σWt1 ≤ −a}+

n∑
i=1

inf{t2 > 0 : µt2 + ρZ
(i)
t2
≤ −bi}.

This proves (4.37).

The purpose of Theorem 4.1.2 is to decompose the first-exit time process of a linear com-

bination of a Brownian motion and Lévy subordinators into the individual first-exit time processes

of a Brownian motion and Lévy subordinators. However, as observed in the theorem, such decom-

position is attained only with certain probability.
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5. DATA ANALYSIS

5.1. Data Description and Analytical Framework

The data set in our study consistsed of 418 observations and 34 features. The data set is

a time series with weekly observations over the period 2012 to 2020. This captures a period of

growing intensity in competition, and during which a trade war had influenced the results. The

target variable was the share of world soybean exports shipped from the US Gulf to China. This

value was derived from USDA soybean market reports (see [67, 68, 69, 70]). A set of feature variables

were developed as having potential impacts on the target variable. These variables depicted costs,

time, logistics in addition to binary variable by month and for the duration of the trade war. The

variables are summarized in Table 5.1 along with their source. In the following table “Grain TR”

stands for “Grain Transportation Report”.
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Table 5.1. Variables and Data Sources.

Variable Name Description Source

DCV Rail car values Tradewest

Velocity Rail car cycle time BNSF

Outstanding Sales Export sales USDA Grain TR

Pnw in port Ships in port at the PNW USDA Grain TR

Wtime santos Ship wait time Brazil USDA Grain TR

Gulf duenext10d Ships due in US Gulf next 10 days USDA Grain TR

barge mm Monthly barge rate USDA Grain TR

gulf in port Ships in port at the US Gulf USDA Grain TR

gulf loaded post 7 days Ships loaded in past 7 days USDA Grain TR

usg b Basis at the US Gulf Thompson Reuters Eikon

pnw b Basis at the PNW Thompson Reuters Eikon

braz fre Ocean shipping from Brazil Thompson Reuters Eikon

arg fre Ocean shipping from Argentina Thompson Reuters Eikon

twar dummy Trade war

usg fre Ocean shipping from US Gulf Thompson Reuters Eikon

Pnw fre Ocean shipping from PNW Thompson Reuters Eikon

exrate arg Exchange rate Argentina Thompson Reuters Eikon

exrate bra Exchange rate Brazil Thompson Reuters Eikon

Monthly binary variables

Our goal in this study is to predict the US Gulf soybean export market shares using Random

Forest (RF) and Recurrent Neural Network (RNN) techniques. Once a prediction was obtained

with sufficient accuracy, we used variable importance plot for RF, and LIME for RNN to examine

which features are important in interpreting the prediction of shares of USA. The main motivation

behind using variable importance plot for RF, and LIME for RNN stems from the fact that former

technique helps in understanding the global interpretation while later one focuses more on local
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interpretation. Global interpretation helps in understating the inputs and and their relationship

with prediction target, while local interpretation helps us understanding model predictions for single

observation or group of similar observations.

We note that the Random Forest method is an ensemble method for classification and

regression. Output from Random Forest is based on ensemble of decisions made by various decision

trees. Studies have shown that ensemble method significantly improves predictive performances.

On the other hand, Recurrent Neural Network (RNN) is a neural network algorithm that is used

for time series data. The common problem that RNN faces is vanishing gradient, to solve this issue,

Long Short Term Memory (LSTM) is used. The improvement of RNN can be further incorporated

by the “LIME” technique.

LIME, that stands for Local Interpretable Model-agnostic Explanations, is a method for

visualizing individual predictions. LIME uses an interpretable model locally around the prediction

to clarify any classifier’s predictions in an interpretable and faithful manner. It is model agnostic,

which means that it will work with every supervised regression or classification model. LIME is

based on the premise that any complex model is linear on a local scale and that it is possible to

solve it. The simple model can then be used to illustrate the more complicated model’s predictions

locally. LIME is useful when there is possibility of dataset shift. LIME is also very useful when

there is chance of data leakage. LIME can explain predictions of any machine learning algorithm,

by approximating it locally with an interpretable model. SP-LIME uses submodular optimization

to address the trusting the model issue.

Unlike in econometrics or linear policy modeling analytics such as hypothesis testing, it is

not possible to take a partial derivative of an exogenous variable’s coefficient in a deep learning

model’s functional form with respect to the endogenous. The ability to do this in a regression

model allows for a pure ceteris paribus interpretation of the model. In contrast, in Deep Learning

there are often a large number of variables and an often-attributed presence of multicollinearity,

each variable having complex relations among other variables’ “marginal” influences. Additionally,

the presence of dynamic interrelations within the network, not only with feature scale, but with

relational feature distance and differentials, a linear interpretation fails to capture these complex and

nonlinear relations, notwithstanding nonstationary assumptions. As an alternative, it is possible to
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evaluate model determination and feature importance through non-conventional methods including

Variable in Importance (VIP) or through Local Interpretable Model-Agnostic Explanation (LIME).

LIME as presented by [44] is a novel technique that explains classifiers or regression models

at a local prediction. In doing this the method develops a linear, interpretable, and understandable

model that defines the observation. It is exceptionally effective at identifying local model interpre-

tation, but in deriving a global interpretation of a deep learning model, it is important to evaluate

perturbations at varying points in the sample dataset. This is because it is entirely possible that

if evaluated at differing observations, the ranking and signs of the variables may vary. Global

interpretation is difficult, even if model weights and biases can be evaluated.

A method of Submodular Pick Local Interpretable Model-Agnostic Explanation (SP-LIME)

was developed in [44] as a method to attempt a global perspective of model interpretability.

Through sub-modular optimization, by selecting a few individual instances and corresponding pre-

dictions of the observation set, in such a way that they are representative of the model upon the

individual, local predictions. In using SP-LIME, a feature attribution matrix is developed through

perturbation search and estimation. By averaging this matrix, one can observe the global feature

attribution. Though this method approaches linear interpretation, marginal essentialism cannot

be attained like it can in statistical and linear approaches which is accomplished by taking partial

derivatives of the function.

5.2. Numerical Results and Conclusion

For the analysis [6], 300 observation (numbered from 1 to 300) were used for training data,

while 118 (numbered from 1 to 118) were used for testing. For the training data, the number 1

represents June 1, 2012, while the number 300 represents September 22, 2017. For the testing data

(Figures 2 and 4), the number 1 (in the x-axis) represents September 29, 2017, while the number

118 represents March 1, 2020. Variables were chosen based on a priori expectations and some were

excluded due to multicollinearity. The RF model is used, and based on variable importance plot

the following variables were considered as important variables.

The data analysis is connected to the mathematical model. For all the feature variables we

assign a binary “importance factor” θ(i) as either 0 or 1. We list the features that are obtained

with θ(i) = 1. We discard the features with θ(i) = 0. Variable Importance Plot is based on

IncNodePurity. IncNodePurity relates to loss function by which best split is chosen in Table 4.2.
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Loss function is our analysis is Mean Square Error. More useful variables achieve higher increases

in node purities, that is to find a split which has a high inter node variance and a small intra-node

variance.

Plots between Predicted shares and Actual shares are presented below in Figures 4.1 and

4.3. These plots show that the RF model has fairly well. In RNN, LSTM was used with 50 nodes

and 1 dense layer. For optimization “Adam” was used. RNN was trained for 100 epochs. Batch

size of 72 was used in training of RNN model. For RNN model, we made sure that all the variables

were normalized so-that variables with higher variance do not unnecessarily dominate in model.

For training of RNN, we used timestamp of value 1.

Figure 5.1. Soyabean Export Shares from US Gulf to China.
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Table 5.2. Variable Importance Plot for Shares of USA.

Variable Name IncNodePurity

DCV 0.22

velocity 0.82

Outstanding Sales 0.70

Pnw in port 0.27

Wtime santos 0.71

Gulf duenext10d 2.29

barge mm 2.39

gulf in port 0.72

gulf loaded post 7 days 3.21

usg b 0.20

pnw b 0.24

braz fre 0.41

arg fre 0.33

usg fre 0.34

Pnw fre 0.48

santos b 1.92

arg b 0.81

exrate arg 1.24

exrate bra 0.85

jan dummy 0.73

feb dummy 0.30

mar dummy 0.29

apr dummy 0.10

sep dummy 0.18

nov dummy 0.11

dec dummy 0.20
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Results from RF: Variable importance plot for shares of USA is presented in Table 4.2.

We can infer that “gulf loaded post 7 days”, “barge mm”, “Gulf duenext10d”, “Wtime santos”,

“exrate arg” are the important variables on average. Figure 5.2 provides a description of predicted

shares vs. actual shares using the RF algorithm.

Result from RNN:

In the Figure 5.2, orange colored variables support the feature variables, while blue colored

variables oppose the feature variables.

LIME plot in Figure 5.2, shows that “twar dummy”, “Wtime santos”, “braz fre”, “arg

fre”, “gulf loaded post 7 days”, “Pnw fre” variables positively correlates with USA shares, while

“Velocity”, “gulf in port”, “usg fre”, “Pnw in port”, “arg fre” negatively correlates with USA share.

Comparison between predicted shares and actual shares is given below in Figure 5.3.

Figure 5.2. LIME Plot.
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Figure 5.3. Predicted Shares Vs. Actual Shares using RNN.

Next, we incorporate Theorem 4.1.2 in the empirical data analysis. In the plots in Figure

5.4, 5.5, and 5.6, we provide the histograms corresponding to the first-exit time of the variables

“exrate arg”, “Gulf duenext10d”, “gulf loaded post 7 days”, and , respectively, for the empirical

dataset for various values of t. Along with the histograms, we use Gamma-type subordinators (Z)

described with Lévy density w(x) = ναe−αx. After finding appropriate parameter values, in those

plots, we plot the probability density functions of inf{s > 0 : Zs ≥ t}, for various values of t. This

is motivated by Theorem 4.1.2, and the analysis in [5].

In Figure 5.4 we use t = 1, 2, 3, and in Figure 5.5 we use t = 1, 2, 3. In Figure 5.6 we

use t = 1, 2, 3. From these figures, it is clear that for the time duration when there is no big

fluctuation of the empirical dataset, inf{s > 0 : Ws = t} plays the dominant role in determining

the distribution of inf{s > 0 : Xs ≥ t}. However, for the time duration of big fluctuation of the

empirical dataset, inf{s > 0 : Zs ≥ t} plays the dominant role in determining the distribution of

inf{s > 0 : Xs ≥ t}.

Deep learning models have advantages in providing analysis of competition, particularly

in this case. Many features of competition influence this sector which limits or constrains the

ability of traditional “equilibrium” models normally specified in economics. Most important are

the randomness of most variables, changes over time in the underlying relationships and functions,

as well as periodic interventions. In this paper we developed a deep learning model of competition

in soybean exports to China, the largest and fastest growing market in the world.
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The results indicate that export market shares, which are otherwise highly volatile, can be

effectively explained (predicted) using deep learning methodologies and a set of association vari-

ables. Some of the variables have significant influences, particularly using the Variable Importance.

These factors include “Gulf duenext10D”, “barge mm”, “gulf loaded past 7 days”, in addition to a

number of other variables including monthly binary variables.

Figure 5.4. First-Exit Time for “exrate arg”.

Figure 5.5. First-Exit Time for “Gulf duenext10d”.
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Figure 5.6. First-Exit Time for “gulf loaded post 7 days”.

5.3. S&P 500 Data Analysis

Similar thing can be done for stock price too,we use the S&P 500 daily close price dataset

for the period May 11, 2010 to May 8, 2020. Table 5.3 summarizes some features of this empirical

dataset.

Table 5.3. Properties of the Empirical Dataset.

S&P 500 Daily Close Price

Mean 2027.003

Median 2036.709

Maximum 3386.149

Minimum 1022.580

Figure 5.7 shows a line plot of the empirical dataset. The log-return process for the corre-

sponding dataset is shown in Figure 5.8. Figure 5.9 and Figure 5.10 show the histograms of the

S&P 500 daily close price, and corresponding log-returns respectively.

For the empirical dataset we consider the log-return process Xt, with X0 = 0. For the

first-exit time process of the log-return, inf{s > 0 : Xs ≥ t}, we consider the associated first-

exit time processes of the Brownian motion inf{s > 0 : Ws = t}, and the Lévy subordinator

inf{s > 0 : Zs ≥ t}. In the plots in Figure 5.11, we provide the histograms corresponding to

the first-exit time of Xt for the empirical dataset for various values of t. In the plots of Figure
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5.12, we use Remark 4.1.3 to plot the probability density functions of inf{s > 0 : Ws = t}, for

t = 1, 2, 3, 4. Finally, we use Gamma-type subordinators described in Section 4.2.2 with Lévy

density w(x) = ναe−αx. After finding appropriate parameter values, in the plots of Figure 5.13,we

use Theorem 4.2.8 to plot the probability density functions of inf{s > 0 : Zs ≥ t}, for t = 1, 2, 3, 4.

From these figures, it is clear that for the time duration when there is no big fluctuation of the

empirical dataset, inf{s > 0 : Ws = t} plays the dominant role in determining the distribution of

inf{s > 0 : Xs ≥ t}. However, for the time duration of big fluctuation of the empirical dataset,

inf{s > 0 : Zs ≥ t} plays the dominant role in determining the distribution of inf{s > 0 : Xs ≥ t}.

Figure 5.7. S&P 500 Daily Close Price from May, 2010 -May, 2020.

Figure 5.8. S&P 500 Log-Returns from May, 2010 -May, 2020.
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Figure 5.9. Histogram for the S&P 500 Daily Close Price.

Figure 5.10. Histogram for the Log-Return.
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Figure 5.11. Histograms Corresponding to inf{s > 0 : Xs ≥ t}, for (left to right) t = 1, 2, 3, 4.

Figure 5.12. Probability Density Functions of inf{s > 0 : Ws = t}, for (left to right) t = 1, 2, 3, 4.
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Figure 5.13. Probability Density Functions of inf{s > 0 : Zs ≥ t}, for (left to right) t = 1, 2, 3, 4.
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6. OPTION PRICING AND IMPLIED VOLATILITY

6.1. Option Pricing

Option pricing has a significant influence on quantitative finance. In Black-Scholes model,

value of the option depends on future volatility of stock rather than its expected return. One of the

biggest drawbacks of Black-Scholes is the mismatch between the model volatility of the underlying

option and observed volatility from market. The paper [3] has shown the extension of classical Hull

and White formula for option pricing when noise driving the volatility process correlates with the

noise driving the stock prices. Price of a European call option, as obtained in [3] is given by,

Vt = E∗(CBS(t,Xt; νt)|Ft) +
1

2
E∗
(∫ T

t
ert−rs

(
∂3

∂x3
− ∂2

∂x2

)
CBS(s,Xs, νs)

(∫ T

s
DW
s σ

2
r

)
σsds|Ft

)
,

(6.1)

where, CBS(t,Xt; νt) is the price of European call option, σ = {σs, s ∈ [0, T ]} is an adopted and

square integrable process and stock price is given by,

dSt = µStdt+ σtStdWt, t ∈ [0, T ], (6.2)

Xt = log(St),

where E∗ denotes the expectation with respect to risk-neutral probalility P ∗, Ft denotes the σ−

algebra generated by volatility process, r is the risk free interest rate and ν2
t is expected average

volatility under the risk-neutral probability P ∗.

It has been observed that jump in stock prices correlates with jump in volatility. Hence in

our approach, we assume that both the stock price and volatility are driven by a correlated jump

term.

Assumption 6.1.1. we assume that jump term in stock price and volatility is bounded.

62



We assume that the Stock price X1
t is given by,

X1
t = X0 +

∫ T

t
σs dWs +

1

2

∫ T

t
σ2
s ds+

∫ T

t

∫ n

−n
c(s, z)Ñ(ds, dz). (6.3)

Where c(s, z) be a Skorohod integrable stochastic process. We also assume that volatility process

is given by :,

Yt =

T∫
t

n∫
−n

σ2(s, z)Ñ(ds, dz). (6.4)

Theorem 6.1.2. Assume that the stock price and volatility dynamics are given by (6.3) and (6.4)

respectively. Then under (6.1.1), the price of a European call option is given by:

Vt = E∗(CBS(t,X1
t ;X2

t )|Ft) +
1

2
E∗[

∫ T

t
x1e

rt−rsCBS(s,Xs−)σ2
sds]

+ E∗[x2e
rt−rsCBS(s,Xs−)

X2
sds

2(T + δ − s)
] + E∗[

∫ T

t
sert−rsCBS(s,Xs)ds]

+ E∗[

∫ T

t
A11

∂2ert−rsCBS(s− δ,XS)

∂x2
1

ds+

∫ T

t
A12

∂2ert−rsCBS(s− δ,XS)

∂x1x2
ds

+

∫ T

t
A21

∂2ert−rsCBS(s− δ,XS)

∂x2x1
ds+

∫ T

t
A22

∂2ert−rsCBS(s− δ,XS)

∂x2
2

ds]

+ E∗[

∆Xs 6=0∑
0≤s≤t

ert−rsCBS(s,X−s + ∆Xs)− ert−rsCBS(s,X−s )

−∆X1
sx1e

rt−rsCBS(s,X−s )−∆X2
sx2e

rt−rsCBS(s,X−s )].

Here Xs = (X1
s , X

2
s ) are multidimensional Lev́y process and ∆Xs = Xs −Xs−.

Proof. With a similar argument as in [3] we observe, CBS(T,X1
T ;X2

T ) = VT , as e−rtVt is a P ∗

martiangle. Now we will apply Itô lemma for multidimensional Lev́y process, since derivatives of

CBS(t, x, y) are not bounded, we will make use of approximating argument. Consider the process,

e−rtCBS(t− δ,X1
t ;X2

t ), (6.5)

where

X2
t =

√
Yt

2n(T + δ − t)
. (6.6)
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It can be shown that,

dX1
s = σsdWs +

1

2
σ2
s +

∫ n

−n
c(s, z)Ñ(ds, dz). (6.7)

dX2
s =

X2
s

2(T + δ − s)
+
X2
s

∫ n
−n σ

2(s, z)Ñ(ds, dz)

2Ys
. (6.8)

Now using Itô formula for multidimensional Lévy process (see [48]), we obtain

e−rTCBS(T − δ,X1
T ;X2

T ) = e−rtCBS(t− δ,X1
t ;X2

t ) +

∫ T

t
x1e
−rsCBS(s,Xs−)dX1

s

+ x2e
−rsCBS(s,Xs−)dX2

s ) +

∫ T

t
e−rssCBS(s,Xs)ds

+

∫ T

t
A11

∂2e−rsCBS(s− δ,XS)

∂x2
1

ds+

∫ T

t
A12

∂2e−rsCBS(s− δ,XS)

∂x1x2
ds

+

∫ T

t
A21

∂2e−rsCBS(s− δ,XS)

∂x2x1
ds+

∫ T

t
A22

∂2e−rsCBS(s− δ,XS)

∂x2
2

ds

+

∆Xs 6=0∑
0≤s≤t

[e−rsCBS(s,X−s + ∆Xs)− e−rsCBS(s,X−s )

−∆X1
sx1e

−rsCBS(s,X−s )−∆X2
sx2e

−rsCBS(s,X−s )],
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where Xs = (X1
s , X

2
s ) is multidimenisonal Lev́y process. Consequently,

e−rTCBS(T − δ,X1
T ;X2

T ) = e−rtCBS(t− δ,X1
t ;X2

t ) +

∫ T

t
x1e
−rsCBS(s,Xs−)(σsdWs +

1

2
σ2
sds

+

∫ n

−n
c(s, z)Ñ(ds, dz))

+ x2e
−rsCBS(s,Xs−))(

X2
sds

2(T + δ − s)
+
X2
s

∫ n
−n σ(s, z)Ñ(ds, dz)ds

2Ys
)

+

∫ T

t
se−rsCBS(s,Xs)ds

+

∫ T

t
A11

∂2e−rsCBS(s− δ,XS)

∂x2
1

ds+

∫ T

t
A12

∂2e−rsCBS(s− δ,XS)

∂x1x2
ds

+

∫ T

t
A21

∂2e−rsCBS(s− δ,XS)

∂x2x1
ds+

∫ T

t
A22

∂2e−rsCBS(s− δ,XS)

∂x2
2

ds

+

∆Xs 6=0∑
0≤s≤t

[e−rsCBS(s,X−s + ∆Xs)− e−rsCBS(s,X−s )

−∆X1
sx1e

−rsCBS(s,X−s )−∆X2
sx2e

−rsCBS(s,X−s )].

Now taking conditional expectations and multiplying by ert,we obtain,

E∗
[
CBS(T − δ,X1

T ;X2
T )|Ft

]
= CBS(T − δ,X1

t ;X2
t ) + E∗[

∫ T

t
(x1e

rt−rsCBS(s,Xs−)(σsdWs +
1

2
σ2
s

+

∫ n

−n
c(s, z)Ñ(ds, dz))]

+ E∗[x2e
rt−rsCBS(s,Xs−))(

X2
sds

2(T + δ − s)
+
X2
s

∫ n
−n σ(s, z)Ñ(ds, dz)ds

2Ys
)]

+ E∗[

∫ T

t
sert−rsCBS(s,Xs)ds]

+ E∗[

∫ T

t
A11

∂2ert−rsCBS(s− δ,XS)

∂x2
1

ds+

∫ T

t
A12

∂2ert−rsCBS(s− δ,XS)

∂x1x2
ds

+

∫ T

t
A21

∂2ert−rsCBS(s− δ,XS)

∂x2x1
ds+

∫ T

t
A22

∂2ert−rsCBS(s− δ,XS)

∂x2
2

ds]

+ E∗[

∆Xs 6=0∑
0≤s≤t

ert−rsCBS(s,X−s + ∆Xs)− ert−rsCBS(s,X−s )

−∆X1
sx1e

rt−rsCBS(s,X−s )−∆X2
sx2e

rt−rsCBS(s,X−s )].

Now letting δ to 0, we obtain,
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Vt = E∗(CBS(t,X1
t ;X2

t )|Ft) +
1

2
E∗[

∫ T

t
x1e

rt−rsCBS(s,Xs−)σ2
s ]

+ E∗[x2e
rt−rsCBS(s,Xs−)

X2
sds

2(T + δ − s)
] + E∗[

∫ T

t
sert−rsCBS(s,Xs)ds]

+ E∗[

∫ T

t
A11

∂2ert−rsCBS(s− δ,XS)

∂x2
1

ds+

∫ T

t
A12

∂2ert−rsCBS(s− δ,XS)

∂x1x2
ds

+

∫ T

t
A21

∂2ert−rsCBS(s− δ,XS)

∂x2x1
ds+

∫ T

t
A22

∂2ert−rsCBS(s− δ,XS)

∂x2
2

ds]

+ E∗[

∆Xs 6=0∑
0≤s≤t

ert−rsCBS(s,X−s + ∆Xs)− ert−rsCBS(s,X−s )

−∆X1
sx1e

rt−rsCBS(s,X−s )−∆X2
sx2e

rt−rsCBS(s,X−s )].

6.2. Implied Velocity

Main motivation of this section is to study at-the-money implied volatility of a European

call option when stock price is defined by (6.9). We will use Malliavin calculus to derive an exact

expression. In this section, we assume log-price of a stock under a risk neutral probability measure

P the model is given by,

Xt = X0 −
1

2

∫ t

0
σ2
s ds+

∫ t

0
σs dWs +

∫ t

0

∫
Ro

c(s, z)Ñ(ds, dz), t ∈ [0, T ], (6.9)

where X0 is current log-price, Wt is standard Brownian motions defined on a complete probability

space (Ω,F ,P ) and σs is a square integrable and right continuous stochastic process and Ñ(ds, dz)

is a compenstaed poisson process. The price of the European call with strike price K is given by

the following formula,

Vt = Et[(e
XT −K)+], (6.10)

where Et denotes the Ft conditional expectation with respect to P . In the following, we used

following notation: v(t, Yt) =
√

Yt
T−t , where Yt =

∫ T
t σ2

udu. Suppose v represents future average

volatility, BS(t, T, x, k, σ) denotes the price of a European call option under Black-Scholes model
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with current log price x, constant volatility σ,time to maturity T − t and strike price K = exp(k),

BS(t, T, x, k, σ) = exp(x)N(d+(k, σ))− exp(k)N(d−(k, σ)), (6.11)

where N is the cumulative distribution function of the standard normal law and

d±(k, σ) =
k∗t − k
σ
√
T − t

± σ(T − t)
2

, (6.12)

where k∗t denotes the at-the-money strike,which coincides with x when interest rate is 0. The inverse

function BS−1(t, T, x, k, .) of the Black-Scholes formula with respect to the volatility parameter is

defined, for all λ > 0, (see [2]):

BS(t, T, x, k,BS−1(t, T, x, k, λ)) = λ. (6.13)

For any fixed t, T,Xt, k, we define the implied volatility I(t, T,Xt, k) as the quantity such that

BS(t, T,Xt, k, I(t, T,Xt, k)) = Vt. (6.14)

Following notations are used for following section: D1,2
W is domain of Malliavin derivative operator

DW with respect to the Brownian motion Wt. We consider the iterated derivative DnW for n > 1,

whose domains are denoted by Dn,2W .We also define Ln,2W = L2([0, T ] : Dn,2W ).

It is shown in [2] that at-the-money implied volatility has following form.

I(t, T,Xt, k
∗
t ) = Et[vt]−

1

32(T − t)
Et

∫ T

t

ψr
(N ′(d+(k∗t , ψr)))

2

(
Er

[
N
′
(d+(k∗t , vt))

∫ T
r DW

r σ
2
sds

vt

])2

dr

 ,
(6.15)

where, Λr = Er[BS(t, T,Xt, k
∗
t , vt)],

and ψr = BS−1(k∗t , vt).
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Consider the following hypotheses:

(1) There exist positive constant a, b such that a ≤ σt ≤ b for all t ∈ [0, T ].

(2) σ2 ∈ L1,2
W .

Theorem 6.2.1. Consider the model (6.9). Then, the at-the-money implied volatility is given as,

I(t, T,Xt, k
∗
t ) = Et[vt]−

1

32(T − t)
Et

∫ T

t

ψr
(N ′(d+(k∗t , ψr)))

2

(
Er

[
N
′
(d+(k∗t , vt))

∫ T
r DW

r σ
2
sds

vt

])2

dr

 ,
(6.16)

where, Λr = Er[BS(t, T,Xt, k
∗
t , vt)]

ψr = BS−1(k∗t , vt).

Proof. We have,

Vt = Et[BS(t, T,Xt, k
∗
t , vt)].

Then

I(t, T,Xt, k
∗
t ) = BS−1(k∗t , Vt)

= Et[BS
−1(k∗t , Et[BS(t, T,Xt, k

∗
t , vt)])]

= Et[BS
−1(k∗t , Et[BS(t, T,Xt, k

∗
t , vt)])−BS−1(K∗t , BS(t, T,Xt, k

∗
t , vt))] + Et[vt].

(6.17)

where Et[BS
−1(k∗t , BS(t, T,Xt, k

∗
t , vt))] = Et[vt].

From [2], we obtain,

BS(t, T,Xt, k
∗
t , vt) = Et[BS(t, T,Xt, k

∗
t , vt)] +

∫ T

t
USdWs, (6.18)
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Where Us can be computed by Clark-Ocone formula and W is Brownian motion that derives the

volatility process.

Et[BS
−1(k,Et[BS(t, T,Xt, k

∗
t , vt)])−BS−1(k,BS(t, T,Xt, k

∗
t , vt))]

= Et[BS
−1(k∗t ,Λt)−BS−1(k∗t ,ΛT )]

= −Et[
∫ T

t
(BS−1)

′
(k∗t ,Λr)UrdWr +

1

2

∫ T

t
(BS−1)

′′
(k∗t ,Λr)U

2
r dr. (6.19)

Where (BS−1)
′
,(BS−1)

′′
denote first and second derivative of BS−1with respect to last variable λ.

Ur = Er

[
exp (Xt)N

′
(d+(k∗t , vt))

∫ T
r DW

r σ
2
s

2
√
T − tvt

]
. (6.20)

Clearly (6.20) along with hypothesis (1) imply that

Et

[∫ T

t

(
(BS−1)

′
(k∗t ,Λr)Ur

)2
dr

]
≤ C(T, t). (6.21)

This gives us expectation of stochastic integral is zero. Then we get,

Et[BS
−1(Xt, Et[BS(t, T,Xt, k

∗
t , vt)])−BS−1(Xt, BS(t, T,Xt, k

∗
t , vt))]

= −1

2
Et

[∫ T

t
(BS−1)

′′
(k∗t ,Λr)U

2
r dr

]
. (6.22)

Now we estimate at the money implied volatility under specific framework. We assume that

volatility follows a mean-reverting OU process, i.e., Stein and Stein model.

Under Stein and Stein Model,volatility process assumes following form,

dσt = −α(m− σt)dt+ cdWt, (6.23)

where α, m and c are positive real constants and Wt is a standard Brownian motion. Analytical

soluttion of (6.23) is given as,

σs = m+ (σt −m)e−α(s−t) + c

∫ s

t
e−α(s−u)dWu. (6.24)
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Theorem 6.2.2. Assuming Model (6.9) and volatility process follows Stein and Stein model, the

at-the-money implied volatility I(t, T,Xt, k
∗
t ) is given as,

Et[vt]−
1

32(T − t)
Et

[∫ T

t

ψr
(N ′(d+(k∗t , ψr)))

2

(
Er

[
N
′
(d+(k∗t , vt))

2cρσre
−αr[eαT − eαr]
αvt

])2

dr

]
.

Proof. We have already shown in (6.2.1), the explicit expression for implied volatility I(t, T,Xt, k
∗
t ).

Now using (6.24) for volatility process,we compute Malliavin derivative as

DW
s σ

2
r = 2σrDsσr = 2cρσre

−α(r−s). (6.25)

This completes the proof.
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7. CONCLUSION

It is shown in this dissertation that an analytically tractable expression can be obtained for

the probability density function of the first-exit time process of an approximate BN-S process. For

the financial data, the density function of the first-exit time of the corresponding log-return process

provides an important insight. In particular, such density function facilitates the understanding of

a “crash-like” future fluctuation of the market. In addition, this analysis has two-fold advantages.

Firstly, based on the insight from the probability density function of the first-exit time process, the

empirical data analysis for the future market is improved. Secondly, and more importantly, this

provides a concrete way to improve existing stochastic models. For example, most of the existing

financial models suffer from the lack of long-range dependence problem. An understanding of the

density function of the first-exit time of stochastic models driven by a general Lévy process can

contribute positively to mitigate this issue.

In the numerical results, we show various plots in support of the theoretical analysis pro-

vided in this dissertation. However, the analysis is dependent on the accurate estimation of model

parameters for the empirical dataset. At present, we are implementing various machine learning

based calibration techniques to improve the estimates of the parameter values for the empirical

dataset. In effect, this may significantly improve the numerical results.

In this dissertation, it is also showed that data-science driven models have advantages in

providing analysis of competition in the soybean market. Many features of competition in a soybean

sector which limits or constrains the ability of traditional “equilibrium” models normally specified

in economics. Most important are the randomness of most variables, changes over time in the

underlying relationships and functions, as well as periodic interventions. In this dissertation, we

develop a data-science driven model of competition in soybean exports to China, the largest and

fastest growing market in the world.

The results indicate that export market shares, which are otherwise highly volatile, can be

effectively explained (predicted) using deep learning methodologies and a set of logical feature vari-

ables. Some of the variables have significant influences, particularly using the Variable Importance.
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These factors include “Gulf duenext10D”, “barge mm”, “gulf loaded past 7 days”, in addition to

several other variables including monthly binary variables.

We conclude this dissertation with an analysis of option pricing and implied volatility in

the case when the market is driven by a jump-stochastic volatility model. We find the price of

the European call option in this case. In addition, we implement Malliavin calculus to analyze the

implied volatility. This is a novel way generates simple formulas for various stochastic models. We

plan to explore this more in our future works.
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Lévy Processes with Application to Reliability, Methodol Comput Appl Probab, 17, 351-372.

[43] Patel R., Carron A. and Bullo F. (2016), The Hitting Time of Multiple Random Walks, SIAM

Journal on Matrix Analysis and Applications, 37(3), 933-954.

[44] Ribeiro M., Singh S. and Guestrin C. (2016), “Why Should I Trust You?”: Explaining the Pre-

dictions of Any Classifier, Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Demonstrations, 10.18653/v1/N16-3020.

[45] Roberts G. E. and Kaufman H. (1966), Table of Laplace Transforms, W.B. Saunders, First

Edition.

[46] Roberts M.and SenGupta I. (2020), Infinitesimal generators for two-dimensional Lévy process-

driven hypothesis testing, Annals of Finance, 16 (1), 121-139.

76

https://doi.org/10.1088/1751-8121/ab0836
https://doi.org/10.1088/1751-8121/ab0836
10.18653/v1/N16-3020


[47] Roberts M.and SenGupta I. (2020), Sequential hypothesis testing in machine learning, and

crude oil price jump size detection, Applied Mathematical Finance, 27(5), 374-395.
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