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ABSTRACT 

As a novel non-volatile device, the memristive crossbar array has delivered many promises 

in giving low computation complexity, high energy efficiency, and high density for neuromorphic 

computing. However, the intrinsic variability of switching behavior, energy consumption, and 

stuck at fault are still major obstacles to their implementation. Here we report our investigations 

of a model that experimentally demonstrates the natural stochasticity of cycle-to-cycle variations. 

In addition, we propose three techniques to mitigate the adverse impact of cycle-to-cycle variations, 

optimize energy consumption, reduce system latency, and improve fault tolerance. The 

relationship of the level of conductance and cycle-to-cycle variation was studied, and experiment 

results show an optimal number of the levels to mitigate cycle-to-cycle variations in the system. 

Additionally, the system compresses the number of pulses when the conductance is updated by the 

pulse stimulus to reduce cycle-to-cycle variations, resulting in a great energy and latency reduction. 

What’s more, the fault tolerance of the memristor-based system has been improved by a novel 

weight mapping method. This work paves the way of adopting memristors for more efficient 

applications in the era of edge computing and the Internet of Things.  
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1. INTRODUCTION 

1.1. Background 

The internet of things (IoT) system is a network of devices, sensors, and other items of 

various functionalities that interact and exchange data electronically [1]. In recent years, there has 

been significant progress in edge devices and wireless sensor networks, creating unprecedented 

opportunities to deploy deep learning and artificial intelligence (AI) technologies in IoT, while 

significantly adding calculation burdens in edges [2]. However, edges consisting of mobile devices 

and embedded systems usually have limited resources and power, especially when they are used 

for real-time applications, so resource and power deficiency will result in recognition and 

prediction accuracy loss in a learning system and malfunctions in IoT [1-6].  

IoT is receiving a great attention due to its potential strength and ability to be integrated 

into any complex systems and it is becoming a great tool to acquire data from environment to the 

cloud. Data that are acquired from wireless sensor nodes could be predicted using Artificial Neural 

Networks (ANNs) models. ANNs that are also called neural networks, are computing systems that 

originated from the neural network structure in biology, which constitute animal brains. The 

working principle of the calculation system of artificial neural networks imitates the working 

principle of biological neural networks. Thus, the scientific and technological terms of the 

computing system of artificial neural networks have therefore inherited the terms of biological 

neural networks.  

The history of neural learning in biology begins with Hebbian theory in 1949. The Hebbian 

theory is a neuroscience theory that claims that the increase in synaptic efficacy stems from the 

repeated and continuous stimulation of presynaptic cells to postsynaptic cells. It attempts to 

explain synaptic plasticity, the adaptation of brain neurons during learning.  The biological 
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learning process is a complex one because the basic kinds of connections between neurons are 

synapses including both chemical and electrical synapses. One principle of this is excitations at 

the postsynaptic membrane will sum up in the cell body.  An action excitation will occur that 

travels down the axon to the terminal endings to transmit a signal to other neurons. It is noted that 

different synapses have different responses when receiving excitations and this property is called 

synaptic plasticity. These are often divided into short-term plasticity and long-term plasticity. 

Long-term synaptic plasticity is often contended to be the most likely memory substrate. The 

induction of long-term changes in synaptic efficacy, by long-term potentiation (LTP) or depression 

(LTD).  

In my research, terms LTP and LTD are adopted to present such a learning process. This 

excitation travels in a way of a forward propagation and in some cells, but neural backpropagation 

does occur through the dendritic branching and may have important effects on synaptic plasticity 

and computation. ANNs imitate the biological neural network and developed various Learning 

paradigms, such as supervised learning, unsupervised learning, reinforcement learning, and self-

learning. ANNs also developed various networks’ structures, such as multilayer perceptron neural 

networks, convolutional neural network, and recurrent neural network. Basically, the components 

of ANNs include neurons, connections, weights, learning rates, cost function, forward propagation 

function, and backpropagation function. 

For training an ANN model, optimization algorithm is utilized for achieving a solution (i.e. 

a set of weights). In the context of an optimization algorithm, the function used to evaluate a 

candidate solution is referred to as the objective function. Typically, with neural networks, we seek 

to minimize the error. As such, the objective function is often referred to as a cost function or a 

loss function and the value calculated by the loss function is referred to as simply “loss”. A loss 
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function is a way to measure how bad the performance of the current model is given the current 

input and expected output by feedforward process; because it is based on a training set it is, in fact, 

an empirical loss function [7]. The loss function has an important job in that it must faithfully 

distill all aspects of the model down into a single number in such a way that improvements in that 

number are a sign of a better model [8]. 

After defining the loss function, we want to adjust the parameters so that the loss is 

minimized. In fitting a neural network, backpropagation [9] computes the gradient of the loss 

function for the weights of the network for a single input-output example, and does so efficiently, 

unlike a naive direct computation of the gradient for each weight individually. This efficiency 

makes it feasible to use gradient methods for training multilayer networks, updating weights to 

minimize loss; gradient descent [10], or variants such as stochastic gradient descent (SGD) [11], 

are commonly used. The backpropagation algorithm works by computing the gradient of the loss 

function for each weight by the chain rule [12], computing the gradient one layer at a time, iterating 

backward from the last layer to avoid redundant calculations of intermediate terms in the chain 

rule.    

After having above some basic concepts of ANNs, the workflow of ANNs is described as 

following. ANNs transform inputs to desired outputs by feedforward neural networks that 

comprise many layers. A simple neural network with one hidden layer is shown in Figure 1. Each 

node in the network is a neuron that takes a weighted sum of the outputs of the prior layer, and 

then transmits the sum to the next layer. Finally, the output of network is prediction for a certain 

task. The main work of a training ANN is to learn the feature that is represented by weight from a 

large volume of training data. During the training process, weight is updated in each iteration by 
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weight change that is calculated based on an algorithm and backpropagation process. The model 

is trained when the prediction accuracy achieves a requirement by updating the weights.  

 

Figure 1. 3-layer fully connected structure of a neural network. The input layer, hidden layer, and 

output layer are composed of different neurons. Between two neuron layers, there are Weight 1 

and Weight 2 that represent the strength of the connection. 

For implementing ANNs by hardware, we choose memristor in this research. The 

conventional complementary metal-oxide-semiconductor (CMOS) transistor technology plateaus 

the process scaling [13, 14], which cannot provide satisfactory solutions for the emerging edge 

computing with designated learning systems [6]. Memristors are theoretically postulated by Chua 

in 1971 [15] and later are physically fabricated by Hewlett-Packard in 2008 [16]. The memristor-

based crossbar arrays with storage and computing capability show great potential in neural network 

and machine learning applications [16-21]. They are characterized by low computational 

complexity [22], low power consumption [23], fast switching speed [24], high endurance [25], 

excellent scalability [26], and CMOS compatibility [27], which are especially appropriate for edge 

computing in IoT. Memristor enables in-memory computing and then implements ANNs [16, 17]. 
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Memristive crossbar arrays conduct in-situ dot products and learns the feature of data by updating 

each memristor’s conductance [18], as shown in Figure 2.  

During tunning conductance process, the switching process in transition metal oxides is 

believed to be driven by the nanoscale motion of donor-type defects such as oxygen vacancies, 

which may tune the resistance of the oxide layer or the resistance of the electrode/oxide interface, 

which can be realized by input pulse [28-30]. Every row gets an input voltage signal which is a 

vector. Each conductance of a memristor in every cross point composes the matrix. Every column 

transmits an output current which is the sum of the product by the input signal and conductance in 

the same column. Due to the efficient implementations on vector-matrix multiplication operations, 

memristive crossbar array is suitable and efficient hardware for ANNs in edges. For instance, the 

input data in an ANN is converted to reading pulses for inputting a memristive crossbar array. The 

output current in each column is the weighted sum for the value of one neuron.  

Thus, this reading process is a feedforward process in an ANN. At the same time, one 

reading operation can be done for the whole array, which accelerates the calculation of the 

weighted sum in an ANN. For backpropagation, the signal is input from columns and output from 

rows and then the loss function is obtained, which significantly improves the speed of calculation. 

Those properties determine the analog memristive crossbar array is suitable for implementing 

ANNs. The conductance of a memristor with multilevel as shown in Figure 2, is increased by 

supplying a positive pulse until the conductance reaches the maximum. This increasing process is 

LTP. Conversely, LTD is the process of decreasing the conductance by supplying a negative pulse 

until the conductance gets to the minimum. Simultaneously, the memristor can store the 

information even when the power supply is turned off, because of its non-volatile property. The 

memristor, therefore, is a device that combines learning, storage, and computing, making it an 
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essential part of the hardware for ANNs, especially for edges with limited resources, but a real-

time response in IoT systems.  

 

Figure 2. Hardware implementation of neural networks using memristor crossbar. Vi, Gij, and Ij 

represent the input signal in ith row, the conductance of the memristor in jth column and ith row, 

and the output current that represent the dot product result of V and G, respectively. The 

conductance of the memristor is regulated with the number of pulses. The LTP/LTD is triggered 

by positive/negative pulses.  

However, because of the inherent material properties, the intrinsic variation in switching 

conductance is a major challenge for some applications such as non-volatile memory [31]. Since 

the switching mechanism of the memristor conductance is prompted by the applied voltage, a 

memristor switches its conductance from one to another when the voltage of a pulse is larger than 

a threshold voltage for at least the minimum switching time [32]. Cycle-to-cycle variation is a 

deviation between target conductance and updated conductance when the same updating signal in 

different updating cycles is applied in a memristor, even when the initial conductance is the same 

[33], as shown in Figure 3. For instance, for some given updating pulses, a memristor starting at 

conductance A and target conductance is B, may end up between C and D, as shown in insert 

Figure 3. The relative error with desired value is shown in Figure 3. The maximum variation is 

9.3% with desired value in this testing result. It significantly affects the accuracy of conductance 

in updating process and then affects the system prediction accuracy.  
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Memristors exhibit cycle-to-cycle variation because of the shape of the conductive 

filament, the oxygen vacancy distribution at and around the filament, and the changing location of 

the active filament between one cycle to the next. These mechanisms originate from the 

coexistence of multiple subfilaments and that the active, current-carrying filament may change 

from cycle to cycle [33]. Thus, cycle-to-cycle variation is a type of inherent randomness associated 

with the randomness in internal atomic configurations [34-36]. One of the major obstacles to the 

implementation of redox-based memristive memory or logic technology is the large cycle-to-cycle 

variation [33]. The memristor-based crossbar arrays suffer from serious cycle-to-cycle variation 

especially when arrays are used in the neuromorphic computing system that the conductance of 

the memristor needs to be updated innumerable times during the training and testing process [34, 

37-40].  

  

Figure 3. Cycle-to-cycle variation and relative error with the desired value of the memristive 

device. 

Additionally, similar to CMOS circuits, the high-performance functionality of a 

memristive crossbar array that is utilized in neural networks translates into high power densities, 

high operating temperatures, and low reliability [41-43]. If the memristive crossbar array runs at 
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the edge for an IoT system, overheat will reduce the effectiveness and lifespan of components. 

Furthermore, learning algorithms, usually routinely considering accuracy nowadays, rarely pay 

attention to energy efficiency and latency. In fact, uneven weight updates for different memristors 

caused by algorithms inevitably leads to local overlarge energy consumption. Also, the writing 

process of a memristor consumes much more energy than the reading process. Therefore, most of 

the energy during the training process of a memristive crossbar array comes from the writing for 

the weight update [44]. Consequently, the energy consumption becomes a significant contributor 

to the decline system reliability, deteriorates memristors’ retention and endurance, and causes 

severe timing uncertainty [45-47]. 

In addition to the energy consumption issue, stuck-at-fault is also a barrier that prevents 

the memristor from becoming a practical technology and using it in real hardware implementations 

is the reliability issue [48, 49]. The stuck-at-fault defect will lead the memristor’s conductance to 

be fixed to a maximum or minimum conductance, regardless of its programmed, as known as the 

stuck-on fault (SA1) or stuck-off fault (SA0). The unstable fabrication and test factors will affect 

the defects, the fabrication yield, and the forming process of the shape of the conductive filament, 

which causes the device failure [48-50].  For the implementation of a neuromorphic computing 

system, when mapping the well trained ANNs model to the memristor crossbars, the stuck-at-fault 

defects result in a mismatch between target weights and the actual values mapped onto the crossbar 

and eventually lead to an undesirable drop in  prediction accuracy of ANNs [51-53]. 

We studied the memristor’s characteristics in-depth by fabricating, testing, modeling, and 

simulating to improve the performance of a system, including mitigating the effect of variation, 

reducing energy consumption, lowering system latency, and ameliorating reliability. With the 
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proposed model and techniques, the improvement of our work against the state-of-the-art is shown 

in this dissertation.  

1.2. Research Challenges 

This research focuses on the design and optimization of a memristor-based neuromorphic 

computing system to reduce the effect of variation of memristor and improve the performance of 

the system. Traditional optimization techniques usually come with significant implementation 

costs that two of the most common costs are the silicon area overhead and performance penalty.  

Therefore, the first goal is to come up with some novel variation-immune techniques with 

simplified additional logic in order to minimize the area overhead. The second goal is to propose 

some novel methods to improve the performance of the system. The third goal is to perform 

simulations to make sure the effectiveness.  

1.3. Statement and Contributions 

The main focus of this dissertation is on modeling and mitigating the effect of cycle-to-

cycle variation, improving the energy efficiency and system latency, enhancing fault tolerance for 

the memristor-based ANNs, thereby enhancing the performance of the edge computing in IoT 

systems. A model of cycle-to-cycle variation and an overview of the pulse distribution of the 

memristor-based ANNs and their relation to the energy consumption, system latency, and fault 

tolerance are provided. Specifically, this paper makes the following contributions: 

1) A model for the cycle-to-cycle variation of memristor: Cycle-to-cycle variation is 

modeled according to the testing data that was obtained by testing in-house 

fabricated memristor arrays. The model gives the relationship within one update 

process between the total cycle-to-cycle variation and the number of updating 

pulses.   
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2) Two cost-friendly methods to mitigate the effect of cycle-to-cycle variation of the 

memristor in ANNs: According to the model of cycle-to-cycle variation of 

memristor, two methods are proposed. The proposed methods will maximally 

mitigate the effect of cycle-to-cycle variation by optimizing the way to use 

memristor. 

3) A mechanism for smoothing the learning process, thereby avoiding extra energy 

consumption and writing latency in edge computing: With the proposed method, 

the weight updating fluctuation is reduced. Therefore, the energy consumption and 

the writing latency that is decided by the number of pulses are drastically reduced 

by the compressing mechanism. Additionally, the timing regularity of the system 

is improved. 

4) A method for fault tolerance of memristor-based ANNs: By a novel weight 

mapping method, the weight can be mapped to suitable conductance of memristor, 

which improves the fault tolerance of memristor-based ANNs. 

5) Thorough evaluation: We evaluate the proposed methods based on the standard 

image classification tasks [54] and the hardware-based online learning simulator, 

NeuroSim+ [55], enabling a system under different failure rates, different network 

architecture, nonlinearity, and various variations. 

1.4. Organization 

This dissertation is organized into 8 chapters. Chapter 2 introduces the prior art work and 

contains an in-depth discussion of the fundamental terminology and concepts, which will provide 

the foundation for the rest of the dissertation. Modeling cycle-to-cycle variation and mitigating the 
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effect of the cycle-to-cycle variation are introduced and followed by improving system 

performance. Techniques introduced are compared in this work. 

Chapter 3 introduces a complete flow to fabricate and test memristor. Based on the CMOS 

cleanroom facility, memristor crossbar arrays are fabricated on a 4-inch wafer, which includes 

baking, coating, photolithography, development, deposition, lift-off, and etching processes.  

Measurement data is then extracted from the test results using a semiconductor parameter analyzer. 

The data of this result is a cornerstone of cycle-to-cycle variation in this dissertation.  

Chapters 4 presents an analysis of test data and modeling the cycle-to-cycle variation. 

According to previous work, the cycle-to-cycle variation is a true random value and confirms 

normal distribution. By analyzing test data, the relationship within one update process between the 

total cycle-to-cycle variation and the number of updating pulses is studied. A model for presents 

this relationship is proposed.  

 Chapters 5 introduces two techniques for mitigating the effect of cycle-to-cycle variation 

of memristor that includes level scaling method and pulse regulating method. The optimal number 

of levels is obtained via the level scaling method to reduce the effect of cycle-to-cycle variation. 

Additionally, the pulse regulating method is proposed according to the model of cycle-to-cycle 

variation to minimizing the effect of cycle-to-cycle variation by reducing the number of updating 

pulses during one update process.  

In Chapter 6, the pulse regulating method for reducing energy consumption and system 

latency is discussed. By reducing the number of updating pulses during one update process, the 

pulse regulating method decreases the total number of updating pulses and then saves energy 

consumption. Because the total number of updating pulses is saved, the time of updating process 

is saved, thereby the system latency is reduced.   
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In Chapter 7, the differential mapping method is used to enhance fault tolerance of 

memristor-based ANNs. Utilizing the difference of conductance between two memristors to 

represent one weight value in ANNs, the fault tolerance of memristor-based neuromorphic 

computing system is enhanced according to the property of distribution of weight value. 

Chapter 8 summarizes the major conclusions of this dissertation and suggests a direction 

for future research. 
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2. PREVIOUS WORK 

To optimize the performance of a memristor-based ANNs system, researchers provide 

different techniques according to the issues that include cycle-to-cycle variation, energy 

consumption, system latency, and fault tolerance. However, the improvements in the relative 

topics of those general-purpose design techniques are often achieved with significant design 

complexity, increased silicon area, power penalty, and system latency.   

2.1. Previous Work on Modeling and Mitigating the Effect of the Cycle-to-cycle Variation 

There exist several works on cycle-to-cycle variation modeling. According to the 

accumulation of the previous conductance changes, the distribution of memristor conductance 

after the nth pulse has been modeled [56, 57]. The cycle-to-cycle variation is modeled based on 

sigmoid function [34, 58]. Although those methods can model the given experimental data, they 

are not suitable for our data. Although cycle-to-cycle variation is considered in simulations [59], 

the amount of cycle-to-cycle variation is expressed in terms of the percentage of the entire 

conductance range and cannot present the relationship within one update process between the total 

cycle-to-cycle variation and the number of updating pulses, explicitly.   

In previous works, researchers also proposed some solutions including three aspects to 

mitigate such impact of the cycle-to-cycle variation. 

From a software-based and algorithm perspective: a conversion algorithm is invented to 

map arbitrary matrix values appropriately to memristor conductance to reduce computational 

errors [60]. The algorithms of the mutual decision between the conductance of memristor and 

Boolean functions are used to tolerate a maximum variation [61]. A novel off-device neural 

network training method is used to improve the performance of the neural network [62]. However, 
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because variation comes from memristor devices - hardware of the neuromorphic computing 

system, the software-based methods are usually resource-consuming. 

From a circuit perspective: the smart programming scheme (read the conductance before 

writing it) and dummy column technologies to eliminate the off-state current are utilized to 

improve immunity to cycle-to-cycle variations [63, 64]. The experimental result shows the 

accuracy is improved to 95% from 70%. In addition, a variation-aware training scheme is used to 

enhance training robustness [65]. Sophisticated circuits are needed to ensure the quality of 

conductance switching and either drastically increase the area of circuit and power consumption 

or bring additional circuit latency.  

From a device perspective: instead of using a single memristor, the multiple cells 

technology using several memristors connected in parallel are applied to improve the variation 

tolerance [66, 67]. But the multiple cells produce area overhead in the system. In addition, the 

different materials, such as TiOx as buffer layer [68] and CeO2/Ti/CeO2 tri-layered as active layer 

[69], are proposed and investigated to improve the resistance of ratio between a high-resistance 

state and low-resistance state, enhance the endurance of switching, and reduce the variation of the 

threshold voltage.  

Therefore, in this context, it is necessary to propose a new modeling method to model the 

realistic cycle-to-cycle variation of the memristor. Developing a cycle-to-cycle variation model on 

memristor is urgent for mitigating that impact so that it is accessible to apply the great potential 

and advantages of the memristor in practical applications. 

2.2. Previous Work on Optimizing Energy Consumption and Latency 

Recently, researchers proposed several techniques to improve energy efficiency and system 

latency from different levels. Dual-element memristors are used to achieve low-power memory 
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design [70]. A memristor-based predictor is designed to reduce energy consumption comparing to 

the digital counterpart [71]. The hybrid crossbar architecture for improving the performance of 

energy efficiency and system latency is studied in [72]. In [73], the error-correcting code is 

proposed to relax the Bit Error Rate requirement of a single memory to improve the write energy 

consumption and latency for both the CMOS-based and crosspoint-based memristor resistive 

random-access memory (ReRAM) designs. PRCoder as an algorithm was proposed for different 

RRAM applications [42]. The cycle-rehabilitate technique was used to alleviate thermal crosstalk 

[43]. At the same time, increasing the size of the insulator or utilizing new materials with higher 

thermal conductivity for improving performance were proposed in [74, 75]. A new structure, 

thermal-house, was presented to optimize thermal management [76]. However, those new 

algorithms or new material/structure of device-based designs inevitably increase the complexity 

of peripheral circuits or the difficulty of the manufacture process, even increasing the latency. 

2.3. Previous Work on Improving Fault Tolerance of Memristive ANNs  

Some techniques have been proposed to model and detect the faults in memristor crossbar 

array including fault model with testing scheme [77], a marching algorithm to cover defect [50], 

and analyzing impacts of stuck-at faults on the accuracy of a sparse coding network [78]. Various 

schemes to tolerate faults in memristor crossbar array have also been proposed in some prior works. 

At hardware level, isolating faulty memristors is proposed by switching off the access transistors 

[79]. However, for the large memristor crossbar array that is implemented in complicated neural 

networks, tremendous routing and area overheads are inevitable utilizing controlling individual 

access transistors. redundant columns of memristors are utilized as a substitution for some columns 

of memristors that have more failures [49]. However, this method not only introduces nontrivial 

area overhead but also increases the design complexity of peripheral circuits. Unlike hardware-
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level schemes, fault aware network retraining with weight mapping/remapping are commonly 

composed in software level optimizations. For example, a fault-aware neural network training 

method is proposed or the order of the crossbar rows and columns is permuted to improve fault 

tolerance [49, 51, 62, 65]. However, the bi-partite algorithm only utilizes zero value weights in 

sparse networks to benefit SA0 faults. Moreover, besides SA0 faults, there are also many SA1 

faults that is much more than SA0 in the memristor crossbar array [50], which cannot be 

accommodated well. Moreover, retraining and remapping schemes, on one hand, increase 

computing and interaction costs, furthermore, on the other hand, they are unpractical in some 

scenarios especially at the edge of the IoT [14, 80-82]. 

These methods require an individual optimization process for each ReRAM crossbar, and 

may also introduce complex control circuits, resulting in additional hardware overhead. Although 

these methods are effective in mitigating the accuracy drop caused by the stuck-at-fault defects, 

even [52] can restore 99% of the accuracy drop, but for mass-produced IoT products, applying 

optimization for each product (IoT device) will bring a huge time cost, and is not realistic. Thus, 

it is desirable to have a universal approach to improve the DNN fault tolerance. 
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3. MEMRISTOR FABRICATION AND TEST 

The mechanism of multilevel conductance is introduced in this chapter. Also, the details 

of fabrication and test are included, which shows the fabricated memristor device possesses a 

multilevel conductance characteristic.  

In terms of memristor, changes of the resistance are caused by external electrical stimuli 

cause within an oxide layer that is sandwiched between two metal electrodes [33]. The switching 

process in transition metal oxides is believed to be driven by the nanoscale motion of donor-type 

defects such as oxygen vacancies, which may tune the resistance of the oxide layer or the resistance 

of the electrode/oxide interface [28-30]. The stochastic nature of the resulting conductive filament 

has been suspected phenomenologically to result from an interplay of the thermodynamic stability 

of the filament [83], generation/recombination effects of oxygen vacancies [84], and especially the 

shape and oxygen vacancy distribution of the conductive filament [85-87]. It has therefore been 

attempted to achieve higher switching uniformity employing filament precursors [88] or preferred 

sites for oxygen vacancy enrichment [89, 90]. 

3.1. Memristor Fabrication  

In this work, 4 inch Si wafers are used that have 100 nm thermally grown SiO2 on top as 

the substrates. For the 40μm x 40μm memristive device, the bottom electrodes were patterned by 

ultraviolet photolithography. After that, a 100 nm thick Al bottom electrode was deposited in a 

Kurt Leaker CMS-18 Sputterer, followed by a lift-off process in acetone. A 100 nm-TiO2/100 nm-

TiO2-x active layer was prepared by sputtering of a Ti target under an oxygen atmosphere (power 

for TiO2/TiO2-x: 262 W). Top electrodes were defined by a photolithography step, deposition of a 

100 nm Al using sputtering (650 W), and lift-off. The exposure of bottom electrodes was done by 

etching the active layer through HF.   
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Before showing all of steps for fabricating in this research, some concepts are introduced 

as following. 

• HMDS: The Hexamethyldisilazane promotes good photoresist-to-wafer adhesion because 

it ensures the wafer surface is hydrophobic. After HMDS treatment the silicon surface 

oxide becomes silated, leaving a non-polar surface. It creates a bridge of organic to 

inorganic molecules between the surface of the silicon wafer and photoresist. Without it, 

the photoresist does not form a secure bond with the wafer. 

• Coating: Photoresist (light-sensitive solution) is coated and formed into a film over the 

SiO₂ film. 

• Softbake: Prebake, also known as softbake or preexpose bake, is the physical process of 

conversion of a liquid-cast resist into a solid film. 

• Exposure: Lithography in the MEMS context is typically the transfer of a pattern to a 

photosensitive material by selective exposure to a radiation source such as light. 

• Development: In a developer, the wafers are uniformly covered with a developing solution 

to develop the mask patterns. 

• Rinse/Dry: The excess develop solution and water are removed by this step.  

• Deposition: The specified materials is deposited on the surface of wafer. 

• Lift Off: The lift-off process is a method of creating structures (patterning) of a target 

material on the surface of a substrate using a sacrificial material (e.g. photoresist).  

• Etching: Etching is traditionally the process of using strong acid or mordant to cut into the 

unprotected parts of a metal surface to create a design in the metal. In this work, etching 

technique is utilized to expose the pad of bottom metal. Before etching, coating, softbake, 

exposure, and development steps are needed to obtain the pattern for etching. 
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For one layer material fabrication, the process steps typically include from coating step to 

lift off step. In this work, repeating three times of those steps for fabricating three layers including 

bottom metal (Al), active layer (TiO2/TiO2-x), and top metal (Al). Table 1 shows every step for 

fabricating memristive crossbar array. Figure 4 shows the cross-section of main steps. Note that, 

(e) shows the cross-section (x direction) of the fabricated top metal layer, which process includes 

coating, exposure, deposition, and lift-off for fabricating top metal. Every procedure for this layer 

doesn’t be shown in figure because mask patten for this layer is along the y direction rather than x 

direction. At the same time, etching process doesn’t be shown in this figure because it has the same 

cross-section with (e). The size of memristor discussed in this research is 40 μm x 40 μm. 

Table 1. Process Steps for Fabricating Memristive Crossbar Array. 

Process Equipment Comment 

HMDS YES Oven 

Creating a bridge of organic to inorganic molecules 

between the surface of the silicon wafer and 

photoresist.  

Coating RC8 Photoresist is coated and formed into a film. 

Softbake Flex Oven 
The physical process of conversion of a liquid-cast 

photoresist into a solid film 

Exposure MA8 
Transferring a pattern to a photosensitive material by 

light for bottom metal layer. 

Development Solvent Station 
The wafer is uniformly covered with a developing 

solution to develop the mask patterns. 

Rinse/Dry Solvent sink 
Removing the development solution and drying the 

wafer.   

Inspection MX50 Make sure photoresist is fully cleared. 

Metal deposition PVD1 
Bottom metal (Al) is deposited on the surface of 

wafer by spattering. 

Lift Off Solvent Station 
Creating structures (patterning) of bottom metal on 

the surface of a substrate using photoresist. 

Inspection MX50 Check the pattern of the bottom metal. 
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Table 1. Process Steps for Fabricating Memristive Crossbar Array (continued). 

Process Equipment Comment 

Metal deposition PVD1 
Active layer (TiO2/TiO2-x) is deposited on surface of 

wafer by spattering with Ti and O2. 

Coating RC8 
Photoresist is coated and formed into a film for top 

metal layer. 

Softbake Flex Oven 
The physical process of conversion of a liquid-cast 

photoresist into a solid film 

Exposure MA8 
Transferring a pattern to a photosensitive material by 

light for top metal layer. 

Development Solvent Station 
The wafer is uniformly covered with a developing 

solution to develop the mask patterns. 

Rinse/Dry Solvent sink 
Removing the development solution and drying the 

wafer.   

Inspection MX50 Make sure photoresist is fully cleared. 

Metal deposition PVD1 
Top metal (Al) is deposited on surface of wafer by 

spattering with Al. 

Lift Off Solvent Station 
Creating structures (patterning) of top metal on the 

surface of a substrate using photoresist. 

Inspection MX50  Check the pattern of the top metal. 

Coating RC8 
Photoresist is coated and formed into a film for 

etching. 

Softbake Flex Oven 
The physical process of conversion of a liquid-cast 

photoresist into a solid film 

Exposure MA8 
Transferring a pattern to a photosensitive material by 

light for etching. 

Development Solvent Station 
The wafer is uniformly covered with a developing 

solution to develop the mask patterns. 

Rinse/Dry Solvent sink 
Removing the development solution and drying the 

wafer.   

Inspection MX50 Make sure photoresist is fully cleared. 

Etching Trion Etching for exposing the bottom layer pad.  
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Figure 4. The flowchart detailing various processing steps for fabrication of memristor crossbar 

array. Note that, (e) shows the cross-section (x direction) of the fabricated top metal layer, which 

process includes coating, exposure, deposition, and lift-off for fabricating top metal. Every 

procedure for this layer doesn’t be shown in figure because mask patten for this layer is along the 

y direction rather than x direction. At the same time, etching process doesn’t be shown in this 

figure because it has the same cross-section with (e). The size of memristor discussed in this 

research is 40 μm x 40 μm. 
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The optical image and geometry of TiO2/TiO2-x based memristive crossbar arrays used in 

this work are schematically shown in Figure 5a. The array is composed of 20 x 20 memristors, as 

shown in Figure 5b. Physically, a memristor is a 40 μm x 40 μm two-terminal device formed by 

two aluminous electrodes sandwiching a thin active layer that is TiO2/TiO2-x material to achieve 

stable tunable multilevel conductance with a nonlinear current-voltage (IV) relationship, as 

illustrated in Figure 5c. Figure 5d shows the memristor has an Al/TiO2/TiO2-x/Al stack in cross-

section. In fabrication, a typical memristor presents a very high resistance across its electrodes (an 

unformed state) and an initial one-time electroforming step is needed [39] for multilevel 

conductance. This can be done by applying voltage or current sweep across the two electrodes 

until a soft breakdown of the active layer occurs, generating a conductive filament that changes 

the conductance [91]. (see next section for more test details) 

 

                    (a)                                       (b)                                        (c)                             (d) 

Figure 5. Memristive crossbar arrays and device. (a) An optical image of a wafer with 

memristive crossbar arrays, (b) Close-up of chip image showing crossbar array, (c) Microscope 

image showing one memristor device, and (d) Cross-sectional schematic diagram of the 

TiO2/TiO2-x memristor device structure. 

3.2. Memristor Test  

The I-V characteristics from positive and negative voltage sweeping were carried out using 

a Kaysight B1500a semiconductor parameter analyzer in a voltage-sweep and voltage-pulse mode. 
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The wafer was set on the Micromanipulator probe station and the pads were contacted by gold 

probe tips with 50 Ω as sensing impedance as shown in Figure 6. 

 

Figure 6. Testing platform.  

This TiO2/TiO2-x memristor displays obvious multilevel conductance. Figure 7 shows the 

current-voltage response of the memristor when the full range voltage sweeps during different 

cycles. For further investigating this multilevel property, the positive and negative voltage 

sweeping is separately applied in the same memristor with ten cycles, as shown in Figure 8 and 

Figure 9. The conductance of the memristor is changed when the voltage achieves the threshold 

voltage, which is caused by conducting filament formation across the electrodes [92, 93]. 

Memristive crossbar arrays carry out the vector-matrix multiplication as shown in Figure 10. Every 

row of the crossbar array gets input voltage pulses that are the vector. Each conductance of the 

device in every cross point composes the matrix. Every column of the crossbar array transmits an 

output current that is the sum of multiplication by the input signal and conductance in each cross 

point. To update the conductance of a memristor that has multilevel conductance from the 

minimum to the maximum, a positive pulse signal is applied to increase the conductance, which is 

LTP. Conversely, LTD is the process of decreasing the conductance by supplying a negative pulse 

signal until the conductance gets to the minimum. Multilevel memristors effectively utilize such 
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multi-value conductance to learn the features of data and realize a neuromorphic computing system 

[17, 18, 40].  

 

Figure 7. I-V characteristics (current-voltage response) from the full range voltage (-3 V to 3V) 

sweeps during different cycles in the memristor.  

 

Figure 8. I-V characteristics from consecutive positive voltage pulse sweep showing a 

continuous increase in conductance. The width of pulses is 1 ms and the step of voltage is 1.5 

mV. 
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Figure 9. Consecutive negative voltage pulse sweep showing a continuous decrease in 

conductance. The width of pulses is 1 ms and the step of voltage is 1.5 mV. 

 

Figure 10. Hardware implementation of the vector-matrix-multiplication using memristor 

crossbar. Vi, Gij, and Ij represent the input signal in ith row, the conductance of the memristor in 

jth column and ith row, and the output current that represent the dot product result of V and G, 

respectively. 
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In practice, the width of the pulse signal that is used to update the weight cannot be 

infinitely narrow and limits the accuracy of the conductance updating. Different widths of the 

pulses change the different amounts of conductance. Therefore, the widths of different pulses that 

are used for weight update decide the number of the levels as shown in Figure 11. The number of 

these levels can be expressed qualitatively as equation (1): 

⌈(Gmax - Gmin)/ Wpulse⌉ = number of levels                                       (1)  

where Gmax and Gmin are the maximum conductance and the minimum conductance, Wpulse is the 

width of the updating pulse. Note that although a higher number of the levels gives more precise 

conductance in the weight update of the memristor, the influence of cycle-to-cycle variation will 

increase, which is shown in the next chapter. 

 

Figure 11. Level of conductance with different widths of the updating pulses. 

3.3. Conclusion 

At this point, the TiO2/TiO2-x 40 μm x 40 μm two-terminal memristor crossbar array that 

is composed of 20 x 20 devices is fabricated. This study on the behavior of fabricated memristor 

laid a solid foundation for the study of cycle-to-cycle variation and relative techniques. In 
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particular, the fabricated memristor possesses multiple levels that are a typical characteristic of the 

analog device.  
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4. CYCLE-TO-CYCLE VARIATION QUANTIZATION 

Although existing models for cycle-to-cycle variation can model the given experimental 

data, they are not suitable for our data. In this chapter, the test data from the previous chapter is 

analyzed in-depth for modeling the cycle-to-cycle variation and then get a significant conclusion 

that is a cornerstone for the rest study of this dissertation.  

4.1. Test Data Analyzation 

Due to the multilevel conductance of the memristor, Figure 12 shows the LTP and LTD 

processes with different pulse widths. We can fit these LTP and LTD experimental data with 

exponential formulas [63], as shown in Figure 12 fitting curves and Figure 13 for more details. 

 

Figure 12. The LTP and LTD process with different pulse widths from 520 μs to 2000 μs. The 

black curves are fitted by the exponential formula. 
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                                                    (a)                                                                                  (b)      

            

                                                    (c)                                                                                  (d)      

            

                                                    (e)                                                                                  (f)      

Figure 13. Exponential formula [63] fitting for the LTP/LTD with different width of pulses.  

From (a) to (t), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 μs, 1400 μs, 

1600 μs, 1800 μs, and 2000 μs, respectively. One pulse width has LTP and LTD processes that 

are separated. The squire dots are experimental data and solid lines are fitting curves. 
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                                                    (g)                                                                                  (h)      

            

                                                    (i)                                                                                  (j)      

            

                                                    (k)                                                                                  (l)      

Figure 13. Exponential formula [63] fitting for the LTP/LTD with different width of pulses 

(continued).  From (a) to (t), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 

μs, 1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. One pulse width has LTP and LTD 

processes that are separated. The squire dots are experimental data and solid lines are fitting 

curves. 
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                                                    (m)                                                                                  (n)      

            

                                                    (o)                                                                                  (p)      

            

                                                    (q)                                                                                  (r)      

Figure 13. Exponential formula [63] fitting for the LTP/LTD with different width of pulses 

(continued).  From (a) to (t), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 

μs, 1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. One pulse width has LTP and LTD 

processes that are separated. The squire dots are experimental data and solid lines are fitting 

curves. 
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                                                    (s)                                                                                  (t)      

Figure 13. Exponential formula [63] fitting for the LTP/LTD with different width of pulses 

(continued).  From (a) to (t), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 

μs, 1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. One pulse width has LTP and LTD 

processes that are separated. The squire dots are experimental data and solid lines are fitting 

curves. 

Residual analysis is done after exponential formula fitting as shown in Figure 14. We 

normalized the residual data by dividing the difference of maximum conductance and minimum 

conductance corresponding width of pulses. 

               

                                                    (a)                                                                                  (b)      

Figure 14. Residual data after exponential formula fitting. Every single point of residual was 

plotted with the order of the number of points as an X-axis. The squire points are the residual 

value of the LTP and the triangle points are the residual value of the LTD with different widths 

of pulses. From (a) to (j), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 μs, 

1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. 
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                                                    (c)                                                                                  (d)      

               

                                                    (e)                                                                                  (f)      

               

                                                    (g)                                                                                  (h)      

Figure 14. Residual data after exponential formula fitting (continued). Every single point of 

residual was plotted with the order of the number of points as an X-axis. The squire points are 

the residual value of the LTP and the triangle points are the residual value of the LTD with 

different widths of pulses. From (a) to (j), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 

1000 μs, 1200 μs, 1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. 
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                                                    (i)                                                                                  (j)      

Figure 14. Residual data after exponential formula fitting (continued). Every single point of 

residual was plotted with the order of the number of points as an X-axis. The squire points are 

the residual value of the LTP and the triangle points are the residual value of the LTD with 

different widths of pulses. From (a) to (j), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 

1000 μs, 1200 μs, 1400 μs, 1600 μs, 1800 μs, and 2000 μs, respectively. 

Because the fitted curve and stochastic behavior of the cycle-to-cycle variation can be 

approximated with a normal distribution [35, 36, 94], the residual data is normal distribution fitted 

after normalization, as illustrated in Figure 15 and Figure 16 for more details. 

 

Figure 15. Residual analysis of fitted normal distribution data after normalization of the 

deviation from Figure 14 in different pulse widths. 
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                                                    (a)                                                                                  (b)      

              

                                                    (c)                                                                                  (d)      

              

                                                    (e)                                                                                  (f)     

Figure 16. Normal distribution analysis for the residual data after exponential formula fitting. 

The red and blue lines are normal distribution fitting curves that are LTP and LTD, respectively. 

In this way, the relative parameters, such as standard deviation, can be obtained. From (a) to (j), 

the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 μs, 1400 μs, 1600 μs, 1800 

μs, and 2000 μs, respectively. 
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                                                    (g)                                                                                  (h)      

              

                                                    (i)                                                                                  (j)      

Figure 16. Normal distribution analysis for the residual data after exponential formula fitting 

(continued). The red and blue lines are normal distribution fitting curves that are LTP and LTD, 

respectively. In this way, the relative parameters, such as standard deviation, can be obtained. 

From (a) to (j), the width of pulses is 520 μs, 540 μs, 600 μs, 800 μs, 1000 μs, 1200 μs, 1400 μs, 

1600 μs, 1800 μs, and 2000 μs, respectively. 

4.2. Model for Cycle-to-cycle Variation 

Because stochastic behavior of the cycle-to-cycle variation can be approximated as 

Gaussian distribution, the value of cycle-to-cycle variation corresponding to one pulse can be 

defined as 

                       𝜓 = 𝑁(0, 𝛿)                                                            (2) 

where 𝜓 is cycle-to-cycle variation that is generated for one pulse update process, 𝑁(0, 𝛿) is 

Gaussian noise, and 𝛿  is the standard deviation. The value of cycle-to-cycle variation 

corresponding to two pulses can be calculated as 
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                    𝜓1+2 = 𝑁1(0, 𝛿1) +  𝑁2(0, 𝛿2)                                         (3) 

Because different cycle-to-cycle variation obey Gaussian distributions and that are 

independent and identically distributed corresponding to different one pulse, 𝛿1 = 𝛿2 = 𝛿 , the 

equation (2) can be converted as [95] 

                𝜓1+2 = 𝑁(0, 𝛿1 +  𝛿2) = 𝑁(0, 2𝛿) = 𝑁(0, 𝛿) ∗ √2                            (4) 

Therefore, the total cycle-to-cycle variation that is generated for one memristor at one 

update process with 𝑛 pulses can be calculated as 

𝜓𝑡𝑜𝑡𝑎𝑙 = 𝑁(0, 𝛿) ∗  √𝑛                                                 (5) 

δ = 𝛼 * (Gmax – Gmin)                                                    (6) 

where  𝜓𝑡𝑜𝑡𝑎𝑙 is the total cycle-to-cycle variation that is generated for one memristor at one update 

process, 𝑁(0, 𝛿) is Gaussian noise, n is the number of pulses for this memristor at this update 

process,  α is coefficient that is a percentage of difference of the maximum conductance and the 

minimum conductance, Gmax is the maximum conductance, and Gmin is the minimum conductance.  

According to the normal distribution, the coefficient, 𝛼, can be obtained and shown in 

Table 2. Note that, this 𝛼 value is determined by structure and material of device. The values with 

different type of memristors can be obtained by this testing and analyzing method.  
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Table 2. The Coefficient Values (𝛼) with Different Width of Pulses. 

Width of pulse (μs) 𝛼  (LTP) 𝛼  (LTD) 

520 0.04354 0.03712 

540 0.0506 0.06754 

600 0.03846 0.03279 

800 0.03714 0.03109 

1000 0.04077 0.02746 

1200 0.03191 0.02173 

1400 0.03278 0.02064 

1600 0.03277 0.02444 

1800 0.0328 0.03045 

2000 0.05307 0.02825 

Average 0.03577 

 

4.3. Conclusion 

After Gaussian distribution fitting, we get a distribution of α values with different pulse 

widths such that the average is 0.03577, as shown in Figure 17. The lines are linear fitting for α 

values of LTP and LTD. Both slopes are negative. Therefore, it can be concluded that increasing 

the pulse width does not increase the cycle-to-cycle variation when using the same number of 

pulses to tune conductance. This conclusion provides an experimental and theoretical basis for 

subsequent research on mitigating the effect of the cycle-to-cycle variation. 
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Figure 17. Extraction of the coefficient that is between 0 to 1 from the standard deviation of the 

Gaussian distribution fitting from Figure 16 in different pulse widths. 
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5. MITIGATING THE EFFECT OF THE CYCLE-TO-CYCLE VARIATION 

We already knew that cycle-to-cycle variation is a type of inherent random mechanism 

associated with the randomness in internal atomic configurations. One of the major obstacles to 

the implementation of redox-based multilevel memristive memory or logic technology is the large 

cycle-to-cycle variation. In this chapter,  two techniques are proposed to mitigate the effect of 

cycle-to-cycle variation.  

5.1. Level Scaling Method 

Theoretically, the prediction accuracy is higher if the system utilizes a higher number of 

conductance levels [63, 96]. However, this relationship is broken by the cycle-to-cycle variation - 

sometimes a higher number of the levels yields diminishing accuracy. The number of levels of 

memristor conductance is set in the circuit parameter configuration step, to determine how many 

levels can be obtained between the maximum and minimum conductance, inclusively. The 

specified number of levels will determine the width of the pulse output from the pulse generator 

hardware. A larger number of levels corresponds to narrower pulses, which theoretically would 

allow the system to achieve higher weight precision for a given value of conductance; however, a 

larger number of levels also introduces more cycle-to-cycle variation when the system updates 

conductance because more pulses are required to update conductance for the same delta-weight, 

compared to a system with fewer conductance levels. Therefore, the level scaling method is 

applied, as described next section, to appropriately select the number of levels to achieve 

maximum accuracy.  

5.2. Evaluation Methodology and Results  

In order to evaluate the memristor-based crossbar arrays in the different number of the 

levels and to find optimal conductance levels under the cycle-to-cycle variation, the multilayer 
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perceptron platform (MLP platform) is used to emulate the learning classification scenario with 

the Modified National Institute of Standards and Technology (MNIST) handwritten dataset [63]. 

We adopt the hardware platform, NeuroSim+ [55, 63], to perform handwriting recognition as 

shown in Figure 18 for the hardware implementation and Figure 19 for the processing flow chart. 

 

Figure 18. Hardware implementation of the multilayer perceptron platform.  

 

Figure 19. Working flow of the multilayer perceptron platform. An optimized number of the 

level value and measured cycle-to-cycle variation are set at the circuit parameters configuration 

step. m equals 8000. 

The crossbar array architecture with memristors had been proposed for on-chip 

implementation of weighted sum and weight update in the training process of learning algorithms 
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[59]. This platform contains a three-layer with 400 neurons for the input layer, 100 neurons for the 

hidden layer, and 10 neurons for the output layer. The perceptron neural network is simulated that 

basis on memristive crossbar arrays that refers to a special subset of the memristor that can tune 

the conductance by voltage pulse stimulus. The desired weight update for each layer is calculated 

in software [7],  then applied to the crossbar by the system as illustrated in Figure 18 for the 

hardware implementation block diagram, and in Figure 19 for the processing flow chart. For the 

level scaling method, each evaluation trains 125 epochs, and every epoch randomly selects 8000 

images from 60000 training images. A different set of 10000 images are included in the testing 

dataset. Note that, the networks will continually learn the feature of input data after the last epoch 

since this platform is an online learning network [55]. In this platform, parameters of memristor 

come from the measurement results of our fabricated devices. In summary, this MLP platform that 

combines from device level to algorithm level system in neural networks is a standalone functional 

platform that is able to evaluate the learning accuracy and device-level performance during the 

learning process. 

The Stochastic Gradient Descent (SGD) algorithm is one possible solution to accelerate 

the gradient descent process to use approximate methods that goes through the data in samples 

composed of random examples drawn from the original dataset [7, 11], which is the major 

algorithm used in this simulator. In fact, SGD is a rough approximation, producing a non-smooth 

convergence. Because of that, variants were proposed to compensate, such as the Momentum [97], 

Adaptive Gradient (AdaGrad) [98], Root Mean Square Prop (RMSProp) [99], and Adaptive 

Moment Estimation (Adam) [100], which are included in this simulator. 

To study the relationship between the number of the levels and cycle-to-cycle variation, 

the different number of the level for the LTP and LTD is set. The ideal circumstances (𝛼 = 0) with 
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the number of the levels from 10 to 200 and step 10 are set with five algorithms as shown in Figure 

20. When the cycle-to-cycle variation is not involved, with the increasing number of the level, the 

accuracy goes up to the high area (bright area) from the low area (dark area), where the highest 

accuracy appears at the number of the levels = 200 at LTP and LTD (upper right corner). It can be 

concluded that increasing the number of levels does increase the recognition accuracy without the 

cycle-to-cycle variation. In bright areas of the figures, the recognition accuracies are around 90% 

in the lower-left corner and higher than 93% in the upper right corner.  

                 

                       (a)                                                       (b)                                                      (c)    

                                                         

                                                    (d)                                                                  (e)             

Figure 20. Recognition accuracy without cycle-to-cycle variation (𝛼 = 0) with different LTP and 

LTD number of the levels (from 10 to 200, step is 10) in 5 algorithms. The x-axis is number of 

LTP levels and y-axis is number of LTD levels. The color from dark to bright represents the 

system prediction accuracy from low to high. From (a) to (e), the corresponding algorithm is 

SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively.                                     

Figure 21 depicts the realistic case that includes a cycle-to-cycle variation for the 5 weight 

updating algorithms, using the average α value of 0.03577, calculated in Chapter 4. The added 
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cycle-to-cycle variation reduces accuracy, and the bright areas where accuracies are higher than 

88% are much smaller than in the ideal case. The highest accuracies occur at LTP/LTD levels of 

50/40 for SGD, 60/50 for Momentum, 60/50 for AdaGrad, 50/50 for RMSProp, and 50/40 for 

Adam, resulting in maximum accuracies of 89.2%, 91.4%, 90.0%, 91.0%, and 91.7%, respectively. 

Therefore, when cycle-to-cycle variation is considered, the best performance of memristor-based 

neuromorphic computing systems occurs when the number of LTP and LTD levels are far fewer 

than the maximum. This level scaling method is used to optimize the number of levels so that the 

system achieves maximum recognition accuracy. 

                   

                       (a)                                                       (b)                                                      (c)    

                   

                                            (d)                                                                 (e)                

Figure 21. Recognition accuracy with different LTP and LTD number of the level values (from 

10 to 200, step is 10) in 5 algorithms under measured cycle-to-cycle variation (α = 0.03577). The 

x-axis is number of LTP levels and y-axis is number of LTD levels. The color from dark to 

bright represents the system prediction accuracy from low to high. From (a) to (e), the 

corresponding algorithm is SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively.                                      
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For a given memristive crossbar array, the distribution of cycle-to-cycle variation can be 

modeled by equation (5). At the same time, according to Figure 11, a lower number of the levels 

means larger conductance change between two consecutive pulses, and the system uses wider and 

fewer updating pulses for the same weight change that is calculated through any machine learning 

algorithm. According to experiment results and equation (5), the wider pulse does not increase the 

cycle-to-cycle variation and fewer updating pulses correspond to a smaller n, which reduces the 

cycle-to-cycle variation. Therefore, level scaling is an effective method to mitigate the effect of 

cycle-to-cycle variation. Note that, an extremely low number of levels will influence the accuracy 

of the conductance, which means some desired values of conductance cannot be achieved as shown 

in Figure 11, so reducing the precision of the system. This influence also is reflected by the low 

recognition accuracy as shown in the low (dark) number of the levels area of Figure 20. Thereby, 

for multilevel memristive crossbar arrays that are used in machine learning systems, the highest 

recognition accuracy of the system occurs when the memristor uses an optimized number of levels 

rather than the highest number of levels.  

In a further comparison of Figure 20 and Figure 21, some accuracies with cycle-to-cycle 

variations and with certain LTP/LTD levels are higher than those without cycle-to-cycle variation 

as shown in Figure 22.   
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                      (a)                                                     (b)                                                    (c)                                                    

                      

                                                 (d)                                                              (e)                                                     

Figure 22. The difference of accuracy between ideal case (α=0) and that with cycle-to-cycle 

variation (α=0.03577). The black squares represent the negative values that mean the recognition 

accuracy with cycle-to-cycle variation is higher than that without the cycle-to-cycle variation. 

The x-axis is number of LTP levels and y-axis is number of LTD levels. The color from dark to 

bright represents the system prediction accuracy from low to high. From (a) to (e), the 

corresponding algorithm is SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively.  

This is because only an integer number of pulses are generated in the circuit. As for the 

mechanism of the updating process, the amount of conductance that is increased or decreased will 

be calculated by the algorithm, then the accurate number of pulses is gotten accordingly. However, 

at the circuit level (hardware), only an integer number of pulses is available to update the 

conductance. Hence, the truncation function for an integer number of pulses is employed for 

hardware implementation. The updated weight gets the deviation by an integer number of pulses. 

But when the cycle-to-cycle variation is involved in every weight update, in some cases, they make 

the updated weight achieve closer to the accurate weight that the algorithm requires, and then the 
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system gets even higher recognition accuracy. To proof this hypothesis, the simulations without 

the truncation function are done and as shown in Figure 23, Figure 24, and Figure 25. 

      

                              (a)                                                (b)                                               (c)                                                    

 

          

                                                     (d)                                                     (e) 

Figure 23. Recognition accuracy without cycle-to-cycle variation (𝛼 = 0) with different LTP and 

LTD number of levels values (from 10 to 200, step is 10) in 5 algorithms. The x-axis is number 

of LTP levels and y-axis is number of LTD levels. The color from dark to bright represents the 

system prediction accuracy from low to high. From (a) to (e), the corresponding algorithm is 

SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively. 
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                              (a)                                                (b)                                               (c)                                                    

                   

                                                  (d)                                                            (e)            

Figure 24. Recognition accuracy with a different number of the levels (from 10 to 200, step is 

10) in 5 algorithms under measured cycle-to-cycle variation (α = 0.03577). The x-axis is number 

of LTP levels and y-axis is number of LTD levels. The color from dark to bright represents the 

system prediction accuracy from low to high. From (a) to (e), the corresponding algorithm is 

SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively.                                      
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                          (a)                                                    (b)                                                    (c)                                                    

                         

                                                (d)                                                                (e)            

Figure 25. The difference of accuracy between ideal case (α=0) and that with cycle-to-cycle 

variation (α=0.03577). The black squares represent the negative values. The x-axis is number of 

LTP levels and y-axis is number of LTD levels. The color from dark to bright represents the 

system prediction accuracy from low to high. From (a) to (e), the corresponding algorithm is 

SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively.                                            

In Figure 23, the truncation function for converting delta-weight to an integer number of 

pulses is disabled, which means the number of pulses can be a decimal number. Therefore, the 

number of the levels doesn’t limit the accuracy of weight that the system desires to reach. Thus, 

all of the predictions are higher than 93% and there is no difference between a low number of the 

levels and a high number of the levels. In Figure 24, when cycle-to-cycle variation is involved, 

although the number of update pulses can be decimal and the desired value of weight still can be 

reached, according to equation (5), a higher number of the levels introduces more cycle-to-cycle 

variation even when the system has the same delta-weight that needs to be updated. Therefore, the 

recognition of accuracy is higher when the system has a lower number of levels than that with a 
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higher number of levels. In Figure 25, note that, all of the difference in recognition accuracies are 

positive, which means the accuracy in the ideal case is higher than that with cycle-to-cycle 

variations.  

Thereby, with the truncation function, the cycle-to-cycle variation compensates for the 

decrease of the accuracy by truncating the number of update pulses. That is why some accuracies 

with cycle-to-cycle variation and with certain LTP/LTD levels in Figure 21 are higher than those 

without cycle-to-cycle variation in Figure 20. 

5.3. Pulse Regulating Method 

As for the conventional method to update the conductance of a memristor, according to the 

value of weight change that is calculated by the algorithm, the control circuit will generate 

corresponding signals to control the pulse generator and update time for producing 

positive/negative pulses and tuning the conductance of the memristor. Note that a memristor has 

the characteristics of finite conductance states, specific switching time, and fixed threshold 

voltage. Thus, some small delta-weights cannot be converted to pulses. Therefore, the precision of 

conductance during the update process is limited. 

The traditional system originally has writing pulses whose widths are appropriate, on the 

one side, to regulate the conductance of a memristor, on the other side, not to damage the device. 

Simultaneously, each writing pulse is identical during different update processes. During the 

training process of ANNs, the weight change that is calculated by the algorithm is converted to 

positive/negative pulses that are n in equation (5) to update the conductance of the memristor. 

According to parameter, n, in equation (5), drastically change in conductance by positive or 

negative pulses for LTP or LTD process causes more cycle-to-cycle variations in corresponding 

memristors. To mitigate the effect of cycle-to-cycle variation, we propose a universal pulse 
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regulating method in this work. The proposed pulse regulating method, instead of updating the 

weight by the number of the pulses that are directly converted from the value of weight change in 

each iteration, only applies one pulse and keeps the original width of the writing pulse, as shown 

in Figure 26. The decoder gets a signal from an arithmetic logic unit (ALU) for selecting one row 

to update. At the same time, the registers get the values of weight change that are calculated by an 

ALU. Then these values are transmitted to multiplexers as control signals. Multiplexers select one 

writing pulse that comes from a pulse generator as output when control signals are enabled. The 

enabled signal means the corresponding memristor needs to be updated. In the other words, the 

system will check if the current memristor needs to be written according to the result of the 

algorithm calculation. If the conductance of this memristor needs to be updated, then the system 

will generate one pulse that is an identical pulse with the traditional system to update the 

conductance (increasing or decreasing) no matter how big the delta weight is. For instance, in the 

evaluation platform (next section), one writing pulse with a certain width and amplitude is enough 

to change a conductance of a memristor. Thus, pulse regulating compresses all updating numbers 

of the pulses to the minimum, so that the update time in different iterations are the same. 

 

Figure 26. Circuit level design of the pulse regulating method. Each cell includes one selection 

transistor forming the one-transistor one-memristor (1T1M) array to avoid sneak path current 

problems. 
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5.4. Evaluation Methodology and Results 

In order to verify the effectiveness of the proposed pulse regulating method in the edge AI, 

the MLP simulator is used to emulate the learning classification scenario with the MNIST 

handwritten dataset [59]. The memristive crossbar has energy efficiency and area superiority 

compared with CMOS synapses in the very large scale integrated (VLSI) circuit in online learning 

and can be necessary to overcome the effect of device variability and alternate current paths [38]. 

The crossbar array architecture with memristors had been proposed for on-chip implementation of 

weighted sum and weight update in the training process of learning algorithms [59]. We adopt the 

online learning hardware platform, NeuroSim+ [55], that needs to constantly writes the crossbar 

array to perform handwriting recognition. The networks in this simulator contain a three-layer with 

400 neurons, 100 neurons, and 10 neurons, respectively, and base on memristors that can tune the 

conductance by voltage pulse stimulus. Since the edges of the images are not the most informative, 

one handwritten digit is cropped into 20 x 20. The recognitions of networks are ten digits. Thus, 

the input layer is 400 neurons and the output layer is 10 neurons. Note that, the availability of the 

pulse regulating method is not constrained by the number of hidden layers and the dimensions of 

each hidden layer and therefore can be adapt to any architecture and dimension in a given network 

and realize performance improvement. Parameters that are set in the simulator come from the 

results of the real memristor measurement [101]. 

In this platform, each simulation trains up to 100 epochs, and every epoch randomly selects 

500 images from 60000 training images. The testing dataset has 10000 images and the system runs 

test after each training epoch. The networks will continually learn the feature of input data after 

100 epochs since this simulator is an online learning network [59]. The metrics are evaluated with 

100 epochs in this work. As for the flow of the training and testing, firstly, at the beginning of the 
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training process, all weights are initialized to simulate the conductance of untrained memristors. 

Secondly, the system randomly selects one image from the dataset and follows the ANN 

algorithms to process forward propagation and backpropagation. Thirdly, the system gets delta-

weight that will be converted to the number of pulses to be applied for weight updating. Fourthly, 

the pulse regulating method is applied to compress the number of pulses to one in this system. 

Using one pulse that is processed by the pulse regulating method to update the corresponding 

conductance of a memristor. Fifthly, the second to fourth steps are repeated until the system trains 

500 images and the system runs the test process. Finally, the above procedures except for the first 

step will repeat 100 times. 

Specifically, the hardware implementation block diagram of the pulse regulating method 

for one image training is shown in Figure 27. The system follows ANN algorithms by forwarding 

propagation to get recognition results, which includes vector-matrix multiplication operations. The 

“label” data of the training dataset is involved by backpropagation to get delta-weight for each 

memristor that is the value of weight needs to be updated, as shown in Figure 27. Then the pulse 

regulating method is implemented to compress the number of pulses. In our case, the system 

compresses the number of pulses to one. Therefore, when the delta-weight is larger than that 

corresponding to one pulse, the multiplexer will generate the signal that selects only one pulse to 

update the memristor, as shown in Figure 26. The basic peripheral and internal circuits that are 

included in this platform such as MUX, Adder, and MUL, and so on are explained in [55] and 

[59]. 
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Figure 27. Hardware implementation block diagram of the pulse regulating method. The red path 

is forward propagation and prediction. The blue path is backpropagation and weight update. PR 

represents the pulse regulating method. 

In this platform, SGD and its’ variants are utilized, such as the Momentum, AdaGrad, 

RMSProp, and Adam. The pulse regulating is suitable for all five algorithms that the accuracies 

are higher than that without the pulse regulating method as shown in Figure 28. The negative 

impact of the pulse regulating method is reducing the learning speed, which only exits at the 

several beginning learning epochs and is reflected by the red curves below the blue curves in Figure 

28. Although the learning speed is reduced by the pulse regulating method at the several beginning 

learning epochs, all recognition accuracies of five algorithms have significant improvement with 

the pulse regulating method after 100 epochs. In addition, the pulse regulating method effectively 

produces a smoother convergence of the training process, which reduces the excessive fluctuation 

of the recognition accuracy. The regressions are carried out by the exponential model to fit the 

experimental data without and with the pulse regulating method. The Reduced Chi-Sqr values that 

are represented as 𝜒𝜐
2 with the pulse regulating method are smaller (closer to 1) than that without 
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the pulse regulating method as shown in Figure 28, which demonstrates that the fluctuation of the 

recognition accuracy is reduced by the pulse regulating method [102]. 

 

                              (a)                                                   (b)                                                  (c)                                                    

         

                                                     (d)                                                           (e) 

Figure 28. Pulse regulating method for mitigating the effect of the cycle-to-cycle variation. 

Recognition accuracy with/without the pulse regulating method in 5 algorithms (from a to e). 𝜒𝜐
2 

is the Reduced Chi-Sqr values with analyzing data. PR represents the pulse regulating method. 

Each curve includes 100 epochs, and each epoch includes 500 images. The x-axis is number of 

training epoch and y-axis is the system prediction accuracy. From (a) to (e), the corresponding 

algorithm is SGD, Momentum, AdaGrad, RMSProp, and Adam, respectively. 

Therefore, for every update, the cycle-to-cycle variation is limited with one pulse’s impact, 

which minimizes the cycle-to-cycle variation for the system. Note that, the recognition accuracies 

have significant improvement with the pulse regulating method as shown in Figure 28. The reasons 

are two aspects that include the pulse regulating method minimizes the cycle-to-cycle variation 
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and each update step uses at most one pulse to tune conductance. One pulse to tune conductance 

means smaller steps is achieved in the direction of convergence, while  a big step will make the 

learning jump over the minimum point of weight [103]. 

5.5. Conclusion 

We proposed and evaluated the level scaling method and the pulse regulating method, 

which are simple and feasible universal methods to effectively mitigate the impact of cycle-to-

cycle variation. Under cycle-to-cycle variation, the recognition accuracy in the maximum number 

of the levels is not optimal for the real device. As for different materials-based multilevel 

memristors, using the same analysis method, the level scaling method can be used to optimize the 

neuromorphic computing system by selecting appropriately the number of the levels. Similarly, 

the pulse regulating method mitigates the impact of cycle-to-cycle variation by compressing the 

number of updating pulses to one. Furthermore, both methods can be implemented at edge 

computing, which paves the way for the adoption of memristors for more efficient applications for 

the era of the IoT.    
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6. ENERGY CONSUMPTION AND LATENCY IMPROVEMENT  

In the training process of ANNs, the drastic update occurs by these positive or negative 

pulses at the beginning stage, which causes more energy consumption in corresponding 

memristors. Because specific features are various for different given training data, and only 

corresponding conductance of memristors will be updated to record features in one iteration, 

inevitably, this will lead to uneven pulse distribution in a crossbar array. Additionally, the 

maximum number of pulses determines the writing latency of the update stage in one iteration as 

a critical path. Note that, such maximum number for updating weight in different iterations are 

different due to the presence of the different training data and status of the current conductance. In 

this chapter, we utilize the pulse regulating method to optimize energy consumption and system 

latency by saving the number of updating pulses.  

6.1. Pulse Regulating Method  

One multiplexer is used to compress the number of updating pulses to one whenever a 

conductance of a memristor needs to tune as shown in Figure 26. The decoder gets a signal from 

an ALU for selecting one row to update. At the same time, the registers get the values of delta-

weight that are calculated by an ALU. Then these values are transmitted to multiplexers as control 

signals. Multiplexers select one writing pulse that comes from a pulse generator as output when 

control signals are enabled. The enabled signal means that the corresponding memristor needs to 

be updated and that the corresponding delta-weight value is greater than or equals to the weight 

change of one pulse. In this way, the pulse regulating method directly affects every weight update 

and minimizes the number of pulses, and then optimizes the performance of the system.  
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6.2. Evaluation Methodology and Results 

The same platform as mentioned in the previous chapter is utilized for evaluating the 

effectiveness with 125 epochs and 8000 images each epoch. In the simulation, the reading voltage 

is 0.5 V and the reading pulse’s width is 5 ns. For the writing process, the voltage of the LTP and 

LTD is 3.2 V, -2.8 V, respectively. The pulse width of writing is 300 μs for both LTP and LTD 

[55, 101]. Reading and writing energy are determined by both the operations of the periphery 

circuit and the reading/writing within the crossbar array. In terms of the reading energy, it includes 

the operation energy of the periphery circuit - decoder, multiplexer, register, and analog-to-digital 

converter, etc., and the energy within the crossbar array - word lines, bit lines, and memristors. As 

for writing energy, it includes the operation energy of the periphery circuit – decoder, pre-charger, 

etc., and the energy within the crossbar array - word lines, bit lines, and memristors that are 

selected to update [55]. 

As for the training process, the latency of the memristor-based crossbar array includes 

reading and writing latency that is determined by both the operations of the periphery circuit and 

the reading/writing within the crossbar array. In terms of the reading latency, it includes the 

operation latency of the periphery circuit - decoder, multiplexer, register, and analog-to-digital 

converter, etc., and the latency within the crossbar array that is the width of the reading pulse. As 

for writing latency, it includes the operation latency of the periphery - decoder and pre-charger 

circuit, etc., and the latency within the crossbar array - both in the LTP and LTD that is calculated 

by multiplication of the number of update pulses and width of pulses. Note that, for each row, the 

latency of the writing is determined by both the latency of the maximum LTP process and the 

maximum LTD process, as shown in equation (7). 

𝐿 = 𝑤𝑝𝑢𝑙𝑠𝑒 ∗ ∑ (𝑚𝑎𝑥 (𝑝1, 𝑝2, … 𝑝𝑚) + 𝑚𝑎𝑥 (𝑑1, 𝑑2, … 𝑑𝑚)𝑛
1 )                     (7) 
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where 𝐿 is the latency of the writing within the whole crossbar array at a certain iteration, 𝑤𝑝𝑢𝑙𝑠𝑒 

is the width of writing pulse, 𝑛 is the number of rows, 𝑝 is a latency of the LTP process for one 

memristor, 𝑑  is a latency of the LTD process in one memristor, and 𝑚  is the number of the 

corresponding columns [55]. 

6.2.1. Energy Consumption  

As for the memristive crossbar array, reading energy and writing energy constitute the total 

energy consumption, as listed in Table 3. The reading energy for different algorithms is determined 

by the size of the crossbar array and the number of total iterations. According to the process of a 

vector-matrix multiplication in a given memristive crossbar array including 41000 memristors in 

our experiments, the reading energy is always the same - 0.4 nJ for each iteration. However, the 

writing energy is much larger than reading energy, this is because 1) voltage of reading pulse is 

lower than the voltage of writing pulse [44], as mentioned in Section 6.2; and 2) the number of the 

pulses for the reading is usually much less than the writing. As shown in Figure 29, the writing 

energy for the crossbar array changes with the number of epochs without and with the pulse 

regulating method. It demonstrates the system consumes less writing energy with the pulse 

regulating method than that without the pulse regulating method, and the energy-saving is 

increased with the increased number of epochs. Furthermore, the details of numerical writing 

energy are shown in Figure 30. The red and blue bars represent the writing energy after 125 epochs 

without and with the pulse regulating method with five algorithms, respectively. Because less pulse 

is used in weight updating following the pulse regulating method, the writing energy saving is 

from 7.7% to 26.9% with five algorithms. Furthermore, the AdaGrad consumes the least writing 

energy in five algorithms that is respectively 3.9 mJ and 3.6 mJ without and with the pulse 

regulating method, which realizes 7.7% writing energy saving. Meanwhile, as listed in Table 3, 
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the total energy of the AdaGrad is respectively 4.3 mJ and 4.0 mJ without and with the pulse 

regulating method, which realizes 7.0% total energy saving. Additionally, the RMSProp is the 

most energy-saving among the five algorithms. It consumes respectively 17.1 mJ and 12.5 mJ 

writing energy without and with the pulse regulating method, which realizes 26.9% writing energy 

saving. The total energy is respectively 17.5 mJ and 12.9 mJ without and with the pulse regulating 

method, which realizes 26.3% total energy saving. Such energy-saving makes the proposed pulse 

regulating method especially suitable for the edge AI in IoT systems with serious energy constrain.   

Table 3. Total Energy and Saving Percentage of Neural Network with/without Pulse Regulating 

Method with Five Algorithms 

 Algorithm Without PR (mJ)  With PR (mJ) Energy Saved (%) 

Total 

Energy 

SGD 6.6 5.8 12.1 

Momentum  6.7 5.7 14.9 

AdaGrad 4.3 4.0 7.0 

RMSProp 17.5 12.9 26.3 

Adam 12.2 9.8 19.7 
 

 
Figure 29. Writing energy as a function of epoch with five algorithms. Red and blue lines 

represent without and with the pulse regulating method. 
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Figure 30. Writing energy with five algorithms. The red and blue bars represent the writing 

energy after 125 epochs without and with the pulse regulating method.  

Table 4 shows the recognition accuracy of the five algorithms after the first image, first 

epoch, and 125th epoch training, respectively. All accuracy is higher than 92.3% after 125 epochs 

training. The difference without and with the pulse regulating method is smaller than 1.0%. 

Additionally, the accuracy is limited by the number of bits of input data and hardware-based 

constraint that includes ADC precision and circuit noise in this platform [55]. Therefore, the pulse 

regulating method does not hurt recognition accuracy much. 

Table 4. Recognition Accuracy of Neural Network with Different Training Stage (%) 

Algorithm 
1st image 

without/with PR 

1st epoch 

without/with PR 

125th epoch 

without/with PR  

Fluctuation  

(after 125 epoch)  

SGD 14.8 / 14.8 70.4 / 71.8 92.7 / 92.8 +0.1 

Momentum 14.8 / 14.8 76.9 / 72.4 93.1 / 93.7 +0.6 

AdaGrad 12.9 / 14.7 70.1 / 84.0 93.3 / 92.3 -1.0 

RMSProp 11.3 / 14.7 79.8 / 83.0 93.6 / 94.5 +0.9 

Adam 12.5 / 14.8 83.4 / 83.4 94.2 / 94.7 +0.5 
 

In addition, the pulse regulating method effectively produces a smoother convergence of 

the training process, which reduces the excessive fluctuation of the recognition accuracy. Taking 

SGD as an example, Figure 31 shows the recognition accuracy with increasing epochs. The 
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regressions are carried out by the Nelder model to fit the experimental data of the simulation 

without and with the pulse regulating method. The Reduced Chi-Sqr with the pulse regulating 

method, 0.4, is higher than that without one, 0.2, which demonstrates that the fluctuation of the 

recognition accuracy is reduced by the pulse regulating method [102]. Therefore, a smooth 

convergence of the training process is another reason that the total writing energy is lower than 

that without the pulse regulating method. Indeed, the pulse regulating method theoretically impacts 

the learning speed, but this impact only occurs at the beginning of the first epoch, which can be 

neglected comparing 125 epochs, as shown in the inserted figure in Figure 31. Only before the 

cross point - 1250, the accuracy without the pulse regulating method is higher than that with the 

pulse regulating method. Therefore, the drawback of the pulse regulating method can be neglected. 

 
Figure 31. Nelder model fit without and with the pulse regulating method. 

Finally, we calculate the sum of the number of the updating pulses required for 125 epochs, 

taking SGD as an example, without and with the pulse regulating method as shown in Table 5. 
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Note that the power (energy/latency) with the pulse regulating method is higher than that without 

the pulse regulating method. The reason is that the saved latency with the pulse regulating method 

is more significant than the saved energy with the pulse regulating method. However, the total 

number of the pulses is saved 46.6% and 37.8% for weight 1 and weight 2 layer, respectively. The 

fewer pulses are utilized, the less energy is consumed. Those results further prove that the proposed 

method can effectively reduce energy consumption during the training process in ANN. 

Table 5. Number of the Pulses and Power Consumption for Weight Update 

Layer  
Pulse number  

without PR   

Pulse number  

with PR   
Pulse saved (%) 

Weight 1 70250859 37498805 46.6% 

Weight 2 16541627 10283640 37.8% 

Power (nW) 
     Without PR   With PR   

354 586 

 

Following discussion is about the energy consumption of the peripheral circuit. As the 

weight increase and decrease need different programming voltage polarities (LTP and LTD), the 

weight update process requires 2 steps with different voltage bias schemes. In weight update, the 

selected memristors will be on the same row, and programming pulses or biases (if no update) are 

provided, allowing the selected memristors to be tuned differently in parallel. To perform weight 

updates for the entire array, a row-by-row operation is necessary. The pulse generator in the system 

with the pulse regulating method is the same as the system with the normal method. In the system 

with the normal method, each row needs registers and counter to record and control the updating 

process since the time of updating process in the different training iterations is probably different 

[7, 55, 104]. In the system with the pulse regulating method, those two components are not needed 

because the selected row only uses one pulse to update the conductance of the memristor. Instead, 



 

64 

 

one multiplexer is added to the system. Therefore, the energy of the peripheral circuit with the 

pulse regulating method is not increased compared with the system that uses the normal method. 

6.2.2. Pulse Distribution 

The energy of the pulses in the reading and writing process will generate thermal power. 

The more pulses are generated for updating conductance, the more heat the crossbar array 

generates. Since the reading pulse is evenly distributed, now we only analyze the writing pulse 

distribution. Additionally, the accuracy of the recognition at the beginning stage is very low since 

the weight is randomly initialized before training. Therefore, the weight change is larger at the 

beginning stage than later, which can be reflected by the difference of accuracies, as shown in 

Table 4 after training of the first image and first epoch without and with the pulse regulating 

method in five algorithms. All the accuracies are lower than 15.0% after training of the first image 

and higher than 70.0% after training of the first epoch. The increment of the accuracy is more than 

55.0%. Thereby, it needs more pulses at the beginning stage of the training for large weight 

updating.  

Because of more writing pulses at the beginning stage of the training, we extracted the 

weight update’s pulse distribution at the 1st and 1000th iteration at the first epoch with the 

AdaGrad algorithm as an example. Each iteration will update weight 1 and 2 layers. Figures 32 (a) 

and (c) represent the weight 1 layer with 400 input and 100 output for the 1st and 1000th 
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(a)                                                                                   (b) 

                                       
(c)                                                                                   (d) 

             
(a’)                                                                                    (b’)                                            

             
(c’)                                                                                    (d’) 

Figure 32. Pulse distribution of crossbar array in 1st and 1000th iteration without and with the 

pulse regulating method. (a) and (c) represent the weight 1 layer with 400 input and 100 output 

for the 1st and 1000th iteration, and Figures 32 (b) and (d) represent the weight 2 layer with 100 

input and 10 output for the 1st and 1000th iteration. The Z-axis is the number of pulses for 

weight update that includes LTP and LTD. 
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iteration, and Figures 32 (b) and (d) represent the weight 2 layer with 100 input and 10 output for 

the 1st and 1000th iteration. The Z-axis is the number of pulses for weight update that includes 

LTP and LTD. As shown in Figures 32 (a) and (b), for the 1st iteration without the pulse regulating 

method, in the weight 1 layer, the maximum number of the pulses is 52 that is in the 91st-column 

covering the related 125 rows; in the weight 2 layer, the maximum number of the pulses is 30 that 

is in the 60th-row 6th-column and the 91st-row 6th-column. Similarly, as shown in Figures 32 (c) 

and (d), for the 1000th iteration without the pulse regulating method, in the weight 1 layer, the 

maximum number of the pulses is 5 that is in the 75th-column covering the related 90 rows; in the 

weight 2 layer, the maximum number of the pulses is 10 that is in the 2nd-column covering 7 rows. 

With increasing the iterations, the weight is closer to the global minimum. Therefore, the number 

of pulses decreases with an increasing number of iterations. It is concluded that without the pulse 

regulating method, extremely uneven heat distribution is caused by pulses’ uneven distribution. 

Figures 32 (a’), (b’), (c’), and (d’) show the distribution of the pulses with the pulse regulating 

method at the same update stage. All of the numbers of the pulses are compressed to one. Note 

that, the position of the pulses that are used to update at 1,000th iteration in Figures 32 (c) and (c’) 

are different, and pulse distribution in Figure 32 (c’) cannot be obtained directly by compressing 

all pulses in Figure 32 (c) to one. The reason is that after weight updating based on the first image 

without and with the pulse regulating method, the following weight updating between both of that 

is totally different since the current pulse distribution in Figure 32 (c) and Figure 32 (c’) only bases 

on the present image and current weight. It is the same reason for different pulses distribution in 

Figures 32 (d) and (d’). For further analysis, Table 6 shows the mean and standard deviation of 

those number of update pulses without and with the pulse regulating method. With the pulse 

regulating method, the mean of the number of pulses decreases by 18.8, 9.5, 1.6, and 4.5 for weight 
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layers at 1st and 1,000th iteration, respectively. All the standard deviation of the number of update 

pulses with the pulse regulating meth65od is 0, but that is 20.0, 11.2, 1.6, and 3.6 without the pulse 

regulating method, respectively. Thus, it is verified that even pulse distribution is achieved using 

the pulse regulating method in the ANN system. 

Table 6. Statistics of Number of the Pulses with Different Iterationa 

 1st iteration without/with PR 1000th iteration without/with PR 

M of weight 1  19.8 / 1.0 2.6 / 1.0 

M of weight 2  10.5 / 1.0 5.5 / 1.0 

SD of weight 1 20.0 / 0 1.6 / 0 

SD of weight 2 11.2 / 0 3.6 / 0 
a M represents mean. SD represents standard deviation. 
 

6.2.3. System Latency 

For a given ANN structure in edges, every iteration has stable reading latency since the 

process of a vector-matrix multiplication is executed using a parallel reading strategy. However, 

the system updates its weight row by row, which indicates a parallel writing strategy cannot be 

implemented for all rows at the same time. In the learning process, the system will randomly take 

one image and feed-forward according to machine learning algorithms [7]. The machine learning 

algorithm will calculate the weight change according to backpropagation [9, 55, 104]. In this way, 

the weight change can be either a positive value or negative value, which corresponds to LTP and 

LTD process. Each row’s writing latency is determined by the maximum number of writing pulses 

as a critical path. Thereby, the main latency for the crossbar array is writing latency that strongly 

depends on the maximum update pulses of each row. For example, as shown in Figure 33, suppose 

the writing latency is four pulses without the pulse regulating method for the selected row, but it 

is only one pulse with the pulse regulating method, reducing the latency of the pulses by 75.0%. 

In some extreme cases, suppose the one change is from the minimum conductance to the maximum 
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conductance, which has 100 levels (default in simulator [55]), theoretically, the maximum number 

of the needed writing pulses without the pulse regulating method is 100. However, with the pulse 

regulating method, the maximum number of the writing pulses is still one, since the number of the 

writing pulses is compressed to one, reducing the latency of the pulses by up to 99.0%. Therefore, 

with the pulse regulating method, equation (7) can be improved to: 

𝐿 = 𝑤𝑝𝑢𝑙𝑠𝑒 ∗ (( 𝑁𝑂. 𝑜𝑓 𝑝 ) + ( 𝑁𝑂. 𝑜𝑓 𝑑 ))                                            (8) 

where 𝐿 is the latency of the writing within the whole crossbar array at a certain iteration, 𝑤𝑝𝑢𝑙𝑠𝑒 

is the width of writing pulse, 𝑁𝑂. 𝑜𝑓 𝑝 and 𝑁𝑂. 𝑜𝑓 𝑑 are the total number of rows that are selected 

for the LTP and LTD process. Latency schematic diagram of the writing process is reduced by the 

pulse regulating method as shown in Figure 34. In each iteration, the system will read memristor 

that is forward propagation, then calculate delta-weights that include backpropagation, and finally 

write memristor. When applying the pulse regulating method, the time of writing will be decreased 

to a minimum by compressing to one pulse.  

 
                                           (a)                                          (b) 

Figure 33. Weight update by pulse signal in a selected row. (a) without the pulse regulating 

method, (b) with the pulse regulating method.  
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Figure 34. Latency schematic diagram. (a) The latency of the write stage is reduced by the pulse 

regulating method compared to the original system. (b) Latency diagram of the original system. 

The latency of write stage may different, which depends on the max number of pulses for LTP 

and LTD processes. 

Figure 35 shows the total writing latency that is normalized after 125 epochs without and 

with the pulse regulating method. The total writing latency is decreased by 30.0%-50.0% for five 

algorithms, respectively. Therefore, the pulse regulating method extremely effective in reducing 

writing latency, which is preferred by the edge AI with real-time requirements. Additionally, 

because of the pulse regulating method, every iteration has the same number of the writing pules, 

and then the timing regularity of the system and the reliability of the system is greatly improved. 

 

Figure 35. Writing latency of crossbar array without and with the pulse regulating method. 
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For the system with the pulse regulating method, the system reduces the number of pulses 

to one at every single update. Some weights need to be updated several times to reach a certain 

value during the entire training process according to a global minimum of the loss function that is 

calculated by the algorithm. Thus, multiple pulses and updates are implemented at the entire train 

process rather than within one update. Such necessary multiple updates consume indispensable 

energy. Thus, energy saving is limited. But as for latency, because the pulse regulating method 

reduces the number of pulses to one at every single update, although sometimes several updates 

are needed for a memristor, each update can be parallel with the update for the other memristor in 

the same row, which is actually all memristors in a row shared the update time without additional 

latency. Therefore, the latency reduction is more notable. 

6.2.4. Nonlinear Property of Memristors 

Ideally, when LTP or LTD occurs, the change in the conductance of an ideal synapse device 

is proportional to the number of writing pulses. However, in reality, such change mismatches the 

writing pulses due to the nonlinearity of memristors [20, 105, 106]. In our simulation, the actual 

conductance curve is labeled with a nonlinearity value from +3 to -3 [20, 105], which represents 

the extent to the curve deviates from the ideal linear device. 

Taking the AdaGrad algorithm as an example, Table 7 shows the total writing energy 

without and with the pulse regulating method, under the significant nonlinear property. The 

recognition accuracy does not have significant fluctuation. The accuracy recovery is done by the 

piecewise linear method [20] that regains accuracy over 90% under 3/-3 circumstances. All of the 

total writing energy with the pulse regulating method is lower than without the pulse regulating 

method. Energy saved is from 7.7% to 13.0%, respectively. Thus, the pulse regulating method is 

proved to effectively reduce writing energy even with the nonlinear property of a memristor. 
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Table 7. Writing Energy and Recognition Accuracy of Neural Network  with Nonlinearity 

NLa   

(LTP/LTD) 

Writing energy  

without PR (mJ)  

Writing energy  

with PR (mJ)  
Energy saved (%) 

0 / 0 3.9 3.6 7.7 

1 / -1 4.6 4.0 13.0 

2 / -2 4.6 4.2 8.7 

3 / -3 4.7 4.1 12.8 

NL   

(LTP/LTD) 

Recognition accuracy  

without PR (%)  

Recognition accuracy  

with PR (%) 

0 / 0 93.3 92.3 

1 / -1 92.2 92.0 

2 / -2 89.1 88.3 

3 / -3 84.6 86.7 
a NL represents the value of nonlinearity. 
 

6.2.5. Variations of Memristors 

Because of the physical limitations of a memristor, minimum conductance variation 

(Gmin), maximum conductance variation (Gmax), ON/OFF ratio variation (Gmax/Gmin), cycle-

to-cycle variation (CtoC), and device-to-device variation (DtoD) [18] exist in the application of 

memristor-based hardware implementation, as shown in Figure 36. To explore the effectiveness 

of the pulse regulating method, we take the AdaGrad algorithm as an example and investigate 

these variations following standard/Gaussian distribution N (µ, σ) into consideration. In our 

experiments, minimum conductance subjects to N (Gmin, σ×Gmin), and maximum conductance 

subjects to N (Gmax, σ×Gmax). Device-to-device variation subjects to N (NL, σ) distribution. A 

cycle-to-cycle variation that subjects to N (0, σ×(Gmax-Gmin)2) represents conductance 

deviations in each weight update [105]. 

Above, NL, Gmax, and Gmin are fixed parameters for each simulation. ON/OFF ratios are 

configured as 17 in variation 1 and 15 in variation 2. For Variations 1 and 2 in Table 8, we set σ 

of the minimum conductance, maximum conductance, device-to-device, and cycle-to-cycle 
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variation as 5.0%, 5.0%, 0.5, 1.0%, and 15.0%, 15.0%, 1.4, 2.5%, respectively [20, 105]. Table 8 

shows the result of simulations under different circumstances. 

 
Figure 36. Variations of a memristor. DtoD, CtoC, Gmax, and Gmin represent device to deice, 

cycle to cycle, maximum conductance, and minimum conductance, respectively [55]. 

Table 8. Experimental Results of Neural Network with Variations 

 Variation 1 

without/with PR 

Variation 2 

without/with PR 

Writing Energy (mJ) 3.9 / 3.5 3.8 / 3.2 

Writing Latency (normalized) 1 / 0.7 1 / 0.6 

 

In Table 8, for different circumstances without the pulse regulating method, the total 

writing energy is 3.9 mJ and 3.8 mJ. After utilizing the pulse regulating method, the total writing 

energy is saved by 10.4% and 15.3%, respectively. Additionally, writing latency is reduced by 

30.0% and 40.0%. Thus, even with many variations, the pulse regulating method is still efficient 

to reduce energy consumption and writing latency of the crossbar array. 

6.2.6. Failure Rate, Endurance, and Aging 

A typical manufacturing process typically seeks a failure rate of <10% [50]. To evaluate 

the influence of failure rate in a crossbar array for the edge AI, 5%, 10%, and 15% of the fault in 

the crossbar array are simulated, as shown in Figure 37 [107]. The random positions of the fault 

memristors are chosen in the crossbar array. The ratio of the stuck at 0 and 1 is 1 : 5.2 [50]. Taking 
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the SGD algorithm as an example, Table 9 shows the accuracy under the influence of the failure 

rate in this network. The neural network with the pulse regulating method still has accuracy 

improvement as compared to that without the pulse regulating method according to results of the 

mean and standard deviation that are obtained from 500 random cases of each failure rate. When 

the failure rate is 15%, the accuracies of the neural network without and with the pulse regulating 

method both reduce by about 3%.  

 

Figure 37. Random positions of the failure memristors in crossbar array with 5% failure rate.  

Table 9. Recognition Accuracy and Standard Deviation with Different Failure Rates 

Failure rate 
Meana Standard deviationa 

Without PR With PR Without PR With PR 

5% 91.7% 92.0% 0.0050 0.0039 

10% 91.0% 91.4% 0.0058 0.0044 

15% 88.5% 89.6% 0.0071 0.0047 
a Mean and Standard deviation are obtained including 500 random cases of each failure rate. 

 

Memristors can only be programmed reliably for a given number of times. Afterward, the 

conductance tunability of the memristor deviates from the initial state, which is called aging, and 

it limits the lifetime of memristor-based crossbars in the edge computing system [108]. The 

conductance is assumed to drift towards different final states, or randomly drift, based on different 
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various drift rates, which are equivalent to conductance drift different amounts over 10 years, 

respectively [109]. Taking the SGD algorithm as an example, Figure 38 shows the accuracies 

under the influence of aging in this network. The precision, recall, and F1 score are shown in Table 

10. The restoration of accuracy can be completed by retaining and remapping method [49]. The 

pulse regulating method is still effective by comparing to the accuracy that is without the pulse 

regulating method. 

 
Figure 38. Recognition accuracy with different conductance drift ratios that are 0.02, 0.06, 0.10, 

0.20, 0.30, and 0.40.  

Table 10. Classification Reporta 

Class 
Without PR method With PR method 

P R F1 P R F1 

0 0.742 0.956 0.836 0.812 0.945 0.874 

1 0.628 0.990 0.768 0.753 0.990 0.856 

2 0.727 0.806 0.765 0.740 0.850 0.791 

3 0.805 0.784 0.794 0.781 0.665 0.719 

4 0.630 0.764 0.690 0.811 0.797 0.804 

5 0.840 0.577 0.684 0.789 0.609 0.687 

6 0.770 0.863 0.814 0.923 0.864 0.893 

7 0.890 0.714 0.792 0.832 0.791 0.811 

8 0.887 0.507 0.645 0.843 0.633 0.723 

9 0.810 0.449 0.578 0.757 0.798 0.777 

Micro

_avg 
0.773 0.741 0.737 0.804 0.794 0.793 

a The result with 0.4 conductance drift ratios. P, R, and F1 represent precision, recall, and F1-
score, respectively.  

 
In addition, the endurance of a memristor is one limitation for high-frequency writing in 

an ANN system [101, 104]. The pulse regulating method extremely saves the number of writing 
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pulses, as shown in Table 5. Therefore, this method is still effective with failure and aging 

circumstances and benefits the cycling endurance performance of a memristor. 

6.2.7. Different Architecture and Database 

To verify the pulse regulating method in different architecture, different hidden layers are 

simulated as shown in Figure 39. As expected, the recognition accuracy for using the pulse 

regulating method is higher than that without the pulse regulating method. However, the leakage 

power is increasing when increasing the neurons of the hidden layer as shown in Figure 39. The 

leakage power with the pulse regulating method is a little higher (<10%) than that without the 

pulse regulating method because multiplexors are added. Thus, the pulse regulating method is 

effective with different architectures.   

 

Figure 39. Leakage power with the different number of neurons of the hidden layer. Recognition 

accuracy with the different number of neurons of the hidden layer.  

Furthermore, the pulse regulating method in VGG-8 with memristive crossbar array 

architecture and CIFAR-10 database are evaluated as shown in Table 11. The accuracy difference 

without and with the pulse regulating method is smaller than 1.0%. Therefore, the pulse regulating 
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method does not hurt recognition accuracy much. Additionally, the accuracy is limited by the 

hardware-based setting that includes variations and nonlinearity in this platform [104]. As 

expected, the pulse regulating method respectively reduces latency by 46.00% and energy 

consumption by 16.67% in the system.   

Table 11. Experimental Results of Neural Network with VGG-8 and CIFAR-10 

 Accuracy Latencya Energy 

With PR method 90.3% 0.54 0.25 J 

Without PR method 91.1% 1.00 0.30 J 

Difference 0.88% 46.00% 16.67% 
a Latency values are normalized. 
 

6.2.8. Pulse Regulating Method and Other Works 

PRCoder is an algorithm proposed for different RRAM applications [42]. The cycle-

rehabilitate technique was used to alleviate thermal crosstalk [43]. At the same time, increasing 

the size of the insulator or utilizing new materials with higher thermal conductivity for improving 

performance were proposed in [74, 75]. A new structure, thermal-house, was presented to optimize 

thermal management [76]. However, those new algorithms or new material/structure of device-

based solutions inevitably increase the complexity of peripheral circuits or the difficulty of the 

manufacturing process, even increasing the latency. 

The pulse regulating method is a simple and feasible method for edge computing in IoT 

systems. As shown in Table 12, as compared with the state-of-art, the pulse regulating method 

does not need to use special structure and material. Simultaneously, it does not need to add an 

extra algorithm to alleviate uneven pulse distribution. What’s more, with the pulse regulating 

method, the energy consumption is effectively reduced by 7.5%, and the writing latency is 

averagely reduced 38.0%.  
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Table 12. Comparison of the State-of-art 

 [105] This work 

Energy consumption 6.7 mJ 6.2 mJ 

Write latency (Normalized) 1 0.62 

 [42] [43] [74] [75] [76] 
This 

work 

Without new 

material or structure  
√ √ × × × √ 

Without adding the 

extra algorithm 
× × √ √ √ √ 

 

6.3. Conclusion 

In this chapter, we utilize the pulse regulating method to reduce energy consumption, 

decrease writing latency, and improve the timing regularity of memristor-based smart edge 

computing in IoT systems. The pulse regulating method is verified to be effective based on devices 

to algorithms architectures. Instead of modifying the traditional algorithm-based technology, the 

pulse regulating method that only needs to add a multiplexer circuit before every writing operation 

in the weight-updating process, to optimize the performance of the system, especially at several 

beginning iterations that have a dramatic change of weight, and effectively reduces the writing 

latency by reorganizing the update timing. ANNs in five algorithms with nonlinearity from (0/0) 

to (3/-3), different failure rates (5%, 10%, and 15%), two variations conditions, different 

architectures and datasets, and aging effect have been evaluated to investigate the effectiveness of 

the pulse regulating method in the edge computing. Note that, some accuracies with pulse 

regulating method are not higher than that without pulse regulating method because the cycle-to-

cycle variation is not involved. The results indicate that it saves the writing energy of the crossbar 

array by 7.7%-26.9% and reduces the writing latency by 30.0%-50.0%. It concludes: 1) The 

proposed pulse regulating method enables low energy consumption and even pulse distribution to 

reduce the heat resulted from intensive pulses. 2) Because the number of pulses for weight update 
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is compressed to one, the pulse regulating method effectively reduces the writing latency and 

improves timing regularity. 3) The pulse regulating method is still effective under different 

nonlinearity, failure rates, aged devices, architectures, datasets, and variation circumstances in 

memristor-based ANN for paving the way for the further development of edge computing in IoT 

systems. 
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7. FAULT TOLERANCE IMPROVEMENT 

Popular ANN weight initialization techniques [110, 111] consist of an effective layer-wise 

scaling of random weight values sampled from a Gaussian distribution. Assuming that weights 

follow a Gaussian distribution at time t = 0, owing to the central limit theorem weights will also 

converge towards a Gaussian distribution [112], which illustrates the weight distribution of a 

trained model in a VGG  8 [104, 113] is a Gaussian distribution as shown in Figure 40 and Figure 

41. It concludes that the most of weight values equal to or are close to 0. 

 

Figure 40. Weight distribution for the whole networks. 
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                                              (a)                                                                  (b) 

          

                                              (c)                                                                  (d) 

Figure 41. Weight distribution for each layer of the networks. (a) to (h) represent 8 layers’ 

weight distributions. 
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                                              (e)                                                                  (f) 

          

                                              (g)                                                                  (h) 

Figure 41. Weight distribution for each layer of the networks (continued). (a) to (h) represent 8 

layers’ weight distributions. 

At the same time, the performance of hardware implementation for memristive ANNs 

needs to consider both SA0 and SA1 fault. Moreover, according to [50], the failure rate of the SA1 

fault can be 5.2x higher than the failure rate of the SA0 faults. In this case, the SA1 fault becomes 

the major issue leading to the accuracy drop rather than the SA0 fault. To solve this problem, we 

propose a differential mapping technique to improve the network fault tolerance for the zero-rich 

networks.  
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7.1. Differential Mapping Method 

The defect model reported in [50] is utilized in this work. Note that the value of ANN 

weights can be either positive or negative, but the weights stored in memristors are represented by 

the conductance value that can only be positive values. Thus, there are two main mapping methods 

to make sure the results can be calculated correctly. The general way is to decompose each weight 

into a positive portion and a negative portion, then map them to two separate memristor columns. 

Another way is to add an offset to the original weights when mapping them to the crossbars. This 

will shift all negative weights to the positive range. By doing so, with a certain cost of offset 

circuitry, half of the crossbars can be saved compared to the two-column mapping method. Both 

mapping methods suffer severe accuracy loss compared to the ideal case, where the offset method 

shows much worse tolerance to the defect [114]. Therefore, in this chapter, we only study a two-

column mapping scheme.  

The traditional mapping scheme decomposes the weight into a positive magnitude portion 

w+ and a negative magnitude portion w-, and uses two memristor cells to represent positive and 

negative portions separately. Different from the traditional mapping scheme that decomposes the 

weight into a positive magnitude portion w+ and a negative magnitude portion w- and sums them 

to reconstruct the original weight value during the computation, the proposed differential mapping 

technique represents the weight value by using the difference between two memristor cells. 

Given a weight value w scaled to the range [-1,1], then it will be mapped as: 

𝑤_𝑎 =  {
1                  𝑤 ≥ 0,
1 −  |𝑤|     𝑤 < 0,

             𝑤_𝑏 =  {
1 −  𝑤     𝑤 > 0,
1               𝑤 ≤ 0,

                           (9) 

where the w_a and w_b are the two memristor cells (with normalized range to [0,1]) used to 

represent the weight. During the computations, the original weight value is obtained by using w_a 

– w_b. 
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Differential mapping scheme ensures a greater number of 1s to be mapped on the 

memristor-based crossbars. There is always at least one 1 to be mapped on one of the two 

memristors. At the same time, both memristors will be 1 when the weight value is zero or close to 

1 when the weight value is close to 0. In this way, the differential mapping technique can improve 

the performance significantly, since the failure rate of SA1 fault is higher than SA0 fault and will 

lead to a more significant accuracy drop, although the differential mapping scheme only improves 

the tolerance to the SA1 fault. 

Figure 42 shows the hardware implementation of the proposed differential mapping 

method. Compared with traditional hardware implementation [115] that weight values are 

calculated by two memristor columns and an operational amplifier-based subtractor, the 

differential mapping method still utilizes a similar arithmetic circuit without increasing hardware 

cost [116]. When performing differential mapping, the w_a and w_b values are mapped to the 

memristors in the G+ and G- columns, respectively. When reading the weight value, the current 

sum of the G+ and G- columns is subtracted by the arithmetic circuit to obtain an effective 

activation value. 

 

Figure 42. Hardware implementation of the proposed differential mapping scheme. 
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7.2. Evaluation Methodology and Results 

We evaluate the differential mapping method on the CIFAR10 dataset and ImageNet 

dataset using for an image classification task. The memristor failure model is adopted from [50] 

with the ratio of SA0 and SA1 fault is 1:5.2. The alternating direction method of multipliers 

(ADMM)-based pruning algorithm [117] is used for weight pruning during the hierarchical 

progressive pruning process. All model training, pruning, and accuracy evaluations are conducted 

on a GPU server using PyTorch. Each accuracy result is obtained by averaging the results of 100 

runs. 

 

Figure 43. The recognition accuracy on the CIFAR10 dataset under different failure rates. 

 

Figure 44. The recognition accuracy on the ImageNet under different failure rates. 
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7.3. Conclusion 

We first evaluate the model fault tolerance via model accuracy on the image classification 

task. As shown in Figure 43 and Figure 44, we compare the model fault tolerance results optimized 

by differential mapping method to the original model with traditional two-column mapping. On 

the CIFAR10 dataset, the original model accuracy is 94.1% without introducing the stuck-at faults. 

Under failure rate of 0.001, differential mapping method only has 0.2% accuracy drop on average, 

where the accuracy drop of the traditional mapping is 1.2%. It can be observed that a severe 

accuracy drop occurs to the traditional mapping under a failure rate of 0.005, where the differential 

mapping method can preserve a high accuracy under a failure rate of 0.01. For the ImageNet, since 

the classification task on ImageNet is harder than CIFAR10, the network is more sensitive to the 

stuck-at faults. As we can see, the differential mapping method clearly provides a better fault 

tolerance than the traditional two-column mapping.  

All the results show that the differential mapping method can tolerate almost an order of 

magnitude higher failure rate than the traditional two-column method, which demonstrates the 

effectiveness of the differential mapping method. 

 

 

 

 

 

 

 

  



 

86 

 

8. CONCLUSION AND FUTURE WORK 

This chapter summarizes the contributions presented within this dissertation and shows the 

improvement of state-of-the-art technologies. A direction for future work will also be introduced. 

In this research, the TiO2/TiO2-x 40 μm x 40 μm two-terminal memristor crossbar array that 

is composed of 20 x 20 devices is fabricated. Based on this fabricated memristor, one of the 

objectives of this research was to model the total cycle-to-cycle variation that is generated for one 

memristor at one update process with 𝑛 pulses. After Gaussian distribution fitting, we get the 

α values with different pulse widths. Both slopes of the linear fitting for α values of LTP and LTD 

are negative. Therefore, increasing the pulse width does not increase the cycle-to-cycle variation 

when using the same number of pulses to tune conductance. This conclusion provides a solid 

foundation for subsequent research on mitigating the effect of the cycle-to-cycle variation and 

relative techniques. 

The goal of the second phase of this research was to propose and determine the 

effectiveness of the level scaling method and the pulse regulating method that are simple and 

feasible universal methods to effectively mitigate the impact of cycle-to-cycle variation. Under 

cycle-to-cycle variation, the recognition accuracy in the maximum number of the levels is not 

optimal for the real device. As for the multilevel memristors, the level scaling method can be used 

to optimize the neuromorphic computing system by selecting appropriately the number of the 

levels. Similarly, the pulse regulating method mitigates the impact of cycle-to-cycle variation by 

compressing the number of updating pulses to one. 

The third objective of this research was to reduce energy consumption, decrease writing 

latency, and improve the timing regularity of memristor-based smart edge computing in IoT 

systems. Instead of modifying the traditional algorithm-based technology, the pulse regulating 
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method that only needs to add a multiplexer circuit before every writing operation in the weight-

updating process, to optimize the performance of the system. The results indicate that it saves the 

writing energy of the crossbar array by 7.7%-26.9% and reduces the writing latency by 30.0%-

50.0%. It concludes: 1) The proposed pulse regulating method enables low energy consumption 

and even pulse distribution to reduce the heat resulted from intensive pulses. 2) Because the 

number of pulses for weight update is compressed to one, the pulse regulating method effectively 

reduces the writing latency and improves timing regularity. 3) The pulse regulating method is still 

effective under different nonlinearity, failure rates, aged devices, architectures, and variation 

circumstances in memristor-based ANNs. 

In addition, the proposed differential mapping method is evaluated for optimizing fault 

tolerance of memristor-based ANNs system and compared with the traditional two-column 

mapping. The differential mapping method clearly provides a better fault tolerance than the 

traditional two-column mapping, which demonstrates differential mapping method can tolerate 

almost an order of magnitude higher failure rate than the traditional two-column method. 

According to the testing results with different pulse width, the changes of conductance vary 

in different pulse width. A wider pulse changes more conductance compared with a narrower pulse. 

The mechanism of effect of pulse variation and jitter is the same with the cycle-to-cycle variation 

because they all influence the formation of subfilaments through the input pulse and then 

introducing variation. In this way, the effect of pulse variations and jitter can be studied for future 

work. Simultaneously, even though those proposed techniques show significant improvements for 

mitigating the impact of the cycle-to-cycle variation, reducing energy consumption and system 

latency, and enhancing fault tolerance based on simulation, which paves the way for the adoption 
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of memristors for more efficient applications for the era of the IoT, more research needs be done 

with realistic integrated circuit and tape-out.  
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