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ABSTRACT 

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a devastating disease of 

rapeseed/canola that causes significant seed yield loss, reduced oil content, and quality. Lack of 

complete immune genotypes and polygenic resistance between host and pathogen often impedes 

the development of functional molecular markers and gene identification to enable SSR 

resistance breeding. However, genomics-assisted breeding approaches such as genome-wide 

association (GWA) mapping and genomic prediction (GP) are considered most promising for the 

genetic improvement of complex traits over classical breeding. Therefore, the objective of this 

study was to perform GWA mapping and GP in a diverse rapeseed/canola panel using ~24,000 to 

~28,000 single nucleotide polymorphisms (SNPs) under field and greenhouse environments. 

Extensive phenotyping against S. sclerotiorum infection revealed few lines had promising 

resistance at seedling and adult stages in both environments. Adult plant resistance (APR) was 

characterized in four field environments by recording four traits and found strong associations 

among them. GWA models using the four traits identified 133 SNPs and 69 putative candidate 

genes associated with APR. The predictive ability (PA) ranged from 0.41-0.64 depending on trait 

specifications. For seedling resistance (SR) under a greenhouse environment, multiple GWA 

models using multiple traits detected 219 SNPs. Multiple GP models resulted in 0.45-0.68 PA 

for these traits. Association analyses for APR under controlled environments using five traits 

identified 37 and 50 significant SNPs in spring (SP) and semi-winter & winter populations 

(SWP), respectively. GP analyses revealed 0.48-0.60 and 0.10-0.19 PA in SP and SWP, 

respectively. Based on the GWA results collected from all experiments, we detected previously 

mapped overlapping genomic regions as well as new regions on chromosome A09 (33.34-39.13 

Mb), C02 (59.17-62.79 Mb), and C6 (32.24-37.67 Mb). These findings would provide exciting 
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opportunities to narrow the genomic regions to guide map-based cloning of SSR resistance genes 

to assist in future marker-assisted selection. Moreover, we have achieved a medium to high PA 

by implementing GP. Our study concludes that GWA mapping and GP hold promise to lead a 

step forward towards the genomics-assisted SSR resistance rapeseed/canola breeding that would 

help to achieve rapid gains from the selection. 
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CHAPTER 1: GENERAL INTRODUCTION 

Rapeseed/canola (Brassica napus L., genomes = AACC, 2n = 4x = 38), is the second 

largest cultivated oilseed crop in the world after soybean (USDA Foreign Agricultural Service, 

2021). It is an interspecific amphidiploid Brassica species, derived from hybridization between 

diploid B. rapa (AA, 2n = 2x = 20) and B. oleracea (CC, 2n = 2x =18). The name “Canola” 

stands for “Canadian Oil Low Acid” and was developed by lowering the erucic acid and 

glucosinolate content of traditional B. napus. In the United States, canola production is mainly 

concentrated in the state of North Dakota (ND) which accounts for approximately 83% of the 

area planted to canola in the US. In 2020, the estimated US canola production was 15.67 x 105 

metric tons, which is about 41% higher than the 11.10 x 105 metric tons produced in 2011. 

Nevertheless, approximately 5.67 x 105 metric tons were imported in the year 2020-21 to meet 

the increasing demand of canola oil (USDA, 2021). Meeting the increasing demand for canola 

oil will require additional acreages devoted to its production and the use of canola cultivars with 

improved agronomically important traits and resistance to biotic and abiotic stresses. 

Rapeseed/canola is constantly affected by several biotic and abiotic stresses. Intensified 

cultivation of B. napus to meet the increasing demands for oil and other uses, has resulted in 

increased incidence and disease severity caused by various pathogens (Sanogo et al., 2015; Van 

de Wouw et al., 2016). However, the type of ailments that become important vary from one 

geographic region to another. In North Dakota, sclerotinia stem rot (SSR), caused by Sclerotinia 

sclerotiorum (Lib.) de Bary, is one of the most destructive fungal diseases affecting canola 

production (Del Río et al., 2007). In the US, this disease causes approximately US$ 24 million in 

seed yield losses per year (USDA, 2016). The estimated economic loss to ND canola growers 

could reach US$ 17 to 21 million every year (Lamey et al., 2000, 2001). On average, every unit 
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increase in SSR incidence results in a 0.5-0.7% reduction in canola yield. In addition to the 

major seed yield loss, seeds from infected plants have reduced oil content and inferior in oil 

quality (McCartney et al., 1999; Sharma et al., 2015).  

Proper management of S. sclerotiorum is a challenging, inconsistent, and uneconomical 

due to the wide host range of this pathogen and the long-term survival of its melanized resting 

reproducing structures called sclerotium. Control measures include use of cultural practices, 

fungicide application, and host resistance. Cultural practices include crop rotations with non-host 

crop species and zero tillage to reduce the sclerotial load. However, the latter is not always 

effective, because sclerotia can remain active in the soil for up to 8-10 years (Adams and Ayers, 

1979; Hegedus and Rimmer, 2005; Sharma et al., 2015). Biological control using mycoparasitic 

fungi and bacteria which antagonize sclerotia can also help to reduce the sclerotial load in the 

soil. Recently, the use of viral particles that perturb the growth of S. sclerotiorum has been 

evaluated (Yu et al., 2013). However, the effectiveness of SSR management using bio-control 

agents is population-density dependent. Moreover, the efficacy of some of the commercialized 

products were inconsistent and limited number of grower’s have adopted this technique to 

control S. sclerotiorum. Fungicides applications during the flowering stage are routinely used for 

the management of SSR disease. Although the application of fungicides has some positive 

effects on controlling SSR infection spreading, applying fungicides at the most effective time is 

difficult to achieve. Failure to apply fungicides at the proper time might result in an economic 

cost to the growers. Moreover, use of fungicides may impose negative impact on environment 

and increases farming costs. Breeding and cultivation of resistant cultivars is the most efficient, 

economic, environment-friendly, and sustainable approach to manage S. sclerotiorum. Breeding 

for SSR-resistant cultivars in rapeseed/canola, however, is often impeded by two major 
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problems; the unavailability of complete immune among B. napus germplasm and a poor 

understanding of the molecular mechanisms involved in the interaction between the pathogen 

and resistant hosts. Over three decades of investigation of SSR resistance in B. napus have 

identified few partial SSR resistant lines (Han-zhong et al., 2004; Li et al., 2009; Gyawali et al., 

2016). Breeding and genetic analyses for SSR resistance were mainly depend on the utilization 

of these partially resistant lines. Therefore, it is necessary to explore diverse B. napus germplasm 

collections to identify highly genetically durable resistant genotypes and to identify the 

corresponding loci and responsible genes associated with SSR resistance through genetic 

mapping and genomics-assisted studies. 

Genetic improvement of breeding lines for resistance to SSR is complicated by diverse 

factors. For example, several screening methods such as petiole inoculation technique (PIT) 

(Zhao et al., 2004; Bradley et al., 2006), detached leaf inoculation (Zhao and Meng, 2003; Wu et 

al., 2013), detached stem inoculation (Wu et al., 2013, 2016, 2019; Wei et al., 2016), and intact 

plant stem inoculation (Li et al., 2004, 2006; Gyawali et al., 2016; Qasim et al., 2020; Roy et al., 

2021; Shahoveisi et al., 2021) have been used to evaluate the physiological resistance of 

rapeseed/canola germplasm at different developmental stages. Use of diverse inoculation 

methods, isolates of the pathogen, and phenotyping methods, results in inconsistent performance 

of B. napus lines. In other words, some B. napus cultivars may be identified as partially resistant 

in one study and susceptible in another. The identification of genetic control of SSR resistance is 

further complicated by the influence of physiological traits, such as flowering time, as SSR 

resistant quantitative trait loci (QTL) have been mapped in the same genomic regions that control 

flowering time (Wei et al., 2014; Wu et al., 2019; Zhang et al., 2019). Further, inconsistencies in 

time and type of inoculation, differences in used isolates across studies also further hamper the 
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identification of resistant genes against S. sclerotiorum (Otto-Hanson et al., 2011; Neik et al., 

2017). The use of common inoculation times and methods, phenotypic evaluation of genotypes, 

phenotypic measurements, and S. sclerotiorum isolates would assist in moving this research 

forward to accomplish the desired goals. Standardization of these factors would lead to the 

identification of materials with resistant reaction across multiple environments and to the 

development of durable SSR resistant cultivars. 

Classical genetic analyses have shown that the nature of S. sclerotiorum resistance in B. 

napus is quantitatively inherited, controlled by polygenes with additive effect, and displays 

medium to high heritability (Zhao et al., 2006; Yin et al., 2010; Wu et al., 2013; Wei et al., 2016; 

Roy et al., 2021). Linkage mapping studies using bi-parental populations derived from one 

partially resistant and one susceptible parent, have been routinely used to identify QTLs 

associated with SSR resistance. Under this condition, a number of QTLs have been reported on 

chromosomes A01, A02, A03, A06, A07, A08, A09, A10, C01, C02, C03, C04, C05, C06, C07, 

C08, and C09 (Zhao and Meng, 2003; Zhao et al., 2006; Yin et al., 2010; Wu et al., 2013, 2019; 

Wei et al., 2014; Zhang et al., 2019; Qasim et al., 2020; Shahoveisi et al., 2021). However, these 

QTL were specific for each study and varied with mapping populations, environments, 

inoculation methods, and developmental stages. In only few instances, common QTL were 

mapped in different mapping populations (Behla et al., 2017; Shahoveisi et al., 2021). Moreover, 

bi-parental linkage analyses suffer from poor mapping resolution and often results in larger 

confidence intervals that could harbor too many genes. This makes it difficult to identify the 

putative candidate genes for SSR resistance to carry out further research (Korte and Farlow, 

2013).   
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Genome-wide association (GWA) mapping based on linkage disequilibrium (LD) has 

been widely used to identify the marker-trait associations (MTAs) in complex traits, as it 

overcomes the limitations of traditional bi-parental linkage mapping. GWA study utilizes natural 

populations that have undergone extensive historical recombination events, which provides 

promising opportunities to achieve high mapping resolution that makes possible to map the 

genetic markers/QTL nearer to the gene of interest (Nordborg and Weigel, 2008). Despite its 

wide use, few GWA studies have been performed to identify the linked markers associated with 

SSR resistance in rapeseed/canola (Gyawali et al., 2016; Wei et al., 2016; Wu et al., 2016; Roy 

et al., 2021). Among these four GWA mapping studies, Roy et al. (2021) found few overlapping 

quantitative trait nucleotides (QTNs) with the detected SNPs by Wei et al. (2016) and Wu et al. 

(2016). Results obtained from the linkage and GWA mapping studies clearly indicates that more 

mapping studies are necessary to validate these QTNs/QTLs and identify more significant SNPs 

associated with enhanced SSR resistance in rapeseed/canola.  

The main limitation of association mapping is the low power for detecting rare variants 

that may be associated with the trait of interests (Bernardo, 2016). The majority of detected 

MTAs for SSR resistance from classical linkage and GWA mapping studies explained less than 

12% of the phenotypic variance by each associated SNPs/QTLs, with few exceptions. This point 

out that a significant amount of untapped genomic potential, which need to be captured to exploit 

full genetic potential for SSR resistance breeding. Genomic selection (GS) has emerged as a 

promising genomics-assisted based approach for the genetic improvement of complex traits 

(Meuwissen et al., 2001). The aim of GS is to predict breeding and/or genetic values. In GS, the 

genomic estimated breeding values (GEBVs) are obtained by constructing the genomic 

prediction models, generated using phenotypic information from a genotyped population to 



 

6 

estimate additive effects of alleles throughout the genome. Subsequently the estimated allelic 

effects are used to estimate the GEBVs in a testing population that have been genotyped but not 

phenotyped (Meuwissen et al., 2001; Crossa et al., 2017; Derbyshire et al., 2021). Previous 

genomic prediction (GP) studies for various traits including seed yield and quality-related traits 

(Würschum et al., 2014), oil quality (Werner et al., 2018), various agronomic traits and blackleg 

disease resistance (Jan et al., 2016; Fikere et al., 2020) have shown the potential of GP to 

accelerate the rapeseed/canola breeding. Recent GP studies in rapeseed/canola for S. 

sclerotiorum resistance by Derbyshire et al. (2021) and Roy et al. (2021) achieved medium to 

high predictive ability, clearly indicating the potential of GS for improving SSR resistance. This 

further motivated us to implement and explore its effectiveness in predicting SSR resistant 

genotypes. The implementation of genomics-assisted breeding approaches such as GWA 

mapping and GP may be especially useful in reducing the required breeding time to incorporate 

resistance to SSR compared with classical breeding and to achieve rapid gains from selection.  

The objectives of this study were: 

1. To study the differential phenotypic responses of spring, semi-winter, and winter 

ecotypes rapeseed/canola germplasm collections against Sclerotinia sclerotiorum 

infection at seedling and adult plant growth stages under greenhouse and field 

environments, 

2.  To identify genotypes resistant to sclerotinia stem rot disease at different growth 

stages using (a) petiole inoculation technique, and (b) mycelial agar plug intact stem 

inoculation method, 

3. To identify significant markers and genomic regions associated with multiple 

sclerotinia stem rot resistance traits at different developmental stages in both the 
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greenhouse and field environments through genome-wide association mapping 

approach, 

4. To identify putative disease resistance candidate genes, close to the physical location 

of the identified significant molecular markers or genomic regions associated with 

sclerotinia stem rot resistance, 

5. To explore and evaluate the effectiveness of genomic prediction for the selection of 

genotypes conferring seedling and adult plant stage sclerotinia stem rot resistance in 

rapeseed/canola under greenhouse and field environments. 

  



 

8 

CHAPTER 2: LITERATURE REVIEW 

2.1. Rapeseed/canola 

2.1.1. Brassica species 

The genus Brassica belongs to the Brassicaceae family and is the most economically 

important genus, containing 37 different species (Gómez-Campo and Prakash, 1999). 

Interspecific hybridization and development of stable hybrids has led to the creation of new and 

diverse Brassica species. Some of the Brassica species are Brassica nigra, B. napus, B. rapa, B. 

oleracea, B. juncea, B. carinata. They are flowering plants widely used in human diet as oilseed, 

meal, vegetables, condiments and pickles. They are also used as a supplement in animal feed 

rations. Biofuel production is relative a new use for some of the brassica species in different 

regions of the world (Abbadi and Leckband, 2011).  

2.1.2. Brassica triangle of “U” 

Six oil producing species of Brassica genus are cytogenetically interrelated with each 

other. The natural process of interspecific hybridization of three diploid species led to the 

evolvement of three amphidiploid Brassica species. The Korean-Japanese botanist Nagaharu U 

first described the interrelationship between these amphidiploids and his illustration is known as 

the “triangle of U” (Nagaharu, 1935). According to this theory, three diploid species such as B. 

rapa/campestris (AA, 2n=20), B. nigra (BB, 2n=16), and B. oleracea (CC, 2n=18), lead to the 

development of three new allotetraploid species by natural hybridization. The allotetraploid 

species B. juncea (AABB, 2n=36) originated from the hybridization between B. rapa and B. 

nigra; B. napus (AACC, 2n=38) originated from hybridization between B. rapa and B. oleracea; 

and B. carinata (BBCC, 2n=34) from the hybridization between B. nigra and B. oleracea (Figure 

2.1).  
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Figure 2.1. The U-triangle showing the genetic relationship among six Brassica species 

according to Nagaharu U (1935). [Figure source: Adapted from Purty et al. 2008] 

2.1.3. Brassica napus and rapeseed 

Brassica napus is an amphidiploid allotetraploid species containing A and C genomes. It 

is commonly known as rapeseed, swede rape, argentine rape, oil rape, and oilseed rape, among 

others. The term “Rape” was derived from the Latin word “Rapum” which means “Turnip” in 

reference to a close relative of rapeseed. Seeds from traditional rapeseed varieties, whether from 

B. napus or B. rapa, usually contain 22-60% of erucic acid and less than 100 µmol 

glucosinolates per g of air-dried oil-free meal. Oil containing high erucic fatty acid is considered 

undesirable for human nutrition, while high glucosinolate contents in the seed meal lead to 

inadequate palatability, and are generally considered nutritionally undesirable as it limits the use 

of this protein-rich meal in animal feed (Clandinin and Robblee, 1981; Bell, 1993).  
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2.1.4. Canola 

The term “Canola” was derived from the description Canadian oil low acid and referred 

to the low erucic acid rapeseed cultivars produced from B. napus, B. rapa and more recently 

from B. juncea. To use the name canola, products must need to meet internationally regulated 

standard, seeds of the genus Brassica including three species i.e. B. napus, B. rapa, B. juncea 

from which oil must contain less than 2% erucic acid in its fatty acid profile and the solid 

components must contain less than 30 µmol g-1 of glucosinolates in their seed meal. Canola oil is 

very popular for its nutritional qualities. Canola oil contains “good for health” Omega-6 (Alpha-

linolenic acid) and Omega-3 fatty acid in a ratio of 2:1, which is considered as ideal in nutrition. 

These unsaturated fatty acids reduce the bad cholesterol in human body and lower the risk of 

heart diseases. Moreover, canola contains lowest “bad for health” saturated fatty acid among all 

the vegetable oils and no trans fats at all (Canola Council of Canada, 2021; Available on: 

https://www.canolacouncil.org/about-canola/oil/#health-benefits). In 1985, United States Food 

and Drug Administration certified canola oil “generally recognized as safe” (GRAS). 

2.1.5. History of canola 

During World War II, rapeseed oil was mainly used as a high temperature lubricant in 

steam ships. Due to its high content of erucic acid (20-60%), demands of oil for human 

consumption were very negligible. At the end of the war, the dramatic reduction in the number of 

steam ships led to the decline of the industrial demand for rapeseed oil. Therefore, scientists 

initiated an intensive program to breed rapeseed for human consumption. In 1959, a B. napus 

rapeseed line namely “Liho” containing lower levels of erucic acid was identified in nature 

(Eskin and Przybylski, 2003), which created the possibility of developing rapeseed lines with 

low erucic acid in its oil. Through repeated backcrossing and selection, low erucic acid traits 
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were transferred into agronomically adapted cultivars. Their continued effort led to release of the 

first low-erucic-acid cultivar of B. napus, “Oro”, in 1968 and the first low-erucic-acid B. 

rapa cultivar, “Span”, in 1971 (Eskin and Przybylski, 2003). The only source of low 

glucosinolates was identified in a Polish line “Bronowski” in late 1967, which directed into a 

new scope of reducing harmful glucosinolates in the rapeseed meal. After years of continued 

research, Dr. Stefansson developed the double low B. napus cultivar “Tower” in 1974 at the 

University of Manitoba (Stefansson and Downey, 1995). The newly developed cultivar “Tower” 

had less than 1% erucic acid in oil and less than 30 µmol g-1 aliphatic glucosinolates in air-dried 

oil-free meal. 

2.1.6. Diseases in rapeseed/canola 

The incidence and severity of disease caused by various pathogen has increased due to 

the intensified cultivation of B. napus in many countries, to meet the growing demands for oil 

(Sanogo et al., 2015; Van de Wouw et al., 2016). Rapeseed/canola plant could be affected by 

major diseases and key pathogens that cause serious damage worldwide include sclerotinia stem 

rot (Sclerotinia sclerotiorum), blackleg (Leptosphaeria maculans), clubroot (Plasmodiophora 

brassicae), white rust (Albugo candida), light leaf spot (Pyrenopeziza brassicae), alternaria 

blight (Alternaria brassicae, A. brassicicola, other Alternaria spp.) and white leaf spot 

(Pseudocercosporella capsellae); downy mildew (Hyaloperonospora parasitica), and blackrot 

pathogen (Xanthomonas campestris pv. campestris). 

In North Dakota, there are two major fungal diseases affecting canola production are 

sclerotinia stem rot (SSR) and blackleg (Del Río et al., 2007). SSR disease is commonly more 

prevalent and severe in the northcentral and northeastern regions of ND. However, SSR 

incidence and intensity could vary depending on environmental conditions.  



 

12 

2.2. Sclerotinia stem rot disease in rapeseed/canola 

2.2.1. The pathogen: Sclerotinia sclerotiorum 

Sclerotinia sclerotiorum is a cosmopolitan, host-nonspecific, soil-borne, ascomycetous 

fungal plant pathogens. This pathogen attacks a broad range of host including at least 408 

described species of plant from 278 genera in 75 families primarily dicotyledonous and a few 

monocotyledonous species (Purdy, 1979; Boland and Hall, 1994). The diseases caused by S. 

sclerotiorum in agriculture are known to have more than 60 names. For example, S. sclerotiorum 

causes sclerotinia stem rot (SSR) in rapeseed/canola and soybean (Glycine max), white mold in 

dry bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), and pea 

(Pisum sativum); Sclerotinia wilt, stalk rot, and head rot in sunflower (Purdy, 1979). 

S. sclerotiorum (Lib.) de Bary belongs to the family Sclerotiniaceae of the order 

Helotiales in the phylum Ascomycota (Bolton et al., 2006).  All species in the Sclerotiniaceae 

family produce asci on brownish apothecia that arise from a sclerotial stroma within or 

associated with a host plant (Whetzel, 1945; Holst-Jensen et al., 1997). S. sclerotiorum hyphae 

are multinucleate, septate, hyaline, branched and white to tan color in culture (Bolton et al., 

2006).  

Oxalic acid production is an important pathogenicity factor for Sclerotinia sclerotiorum. 

Oxalic acid accumulation is much higher in wilted plants than healthy plants as host colonization 

advances in the wilted leaves (Bateman and Beer, 1965). Noyes and Hancock (1981) observed 

oxalic acid accumulation in sunflower plants and they revealed that the level of oxalic acid was 

15 times higher in wilted leaves than the healthy leaves. 
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2.2.2. Economic importance of sclerotinia stem rot disease 

Sclerotinia stem rot (SSR) disease causes significant yield losses in rapeseed/canola by 

affecting plant structural integrity, and causing loss of photosynthetic area, wilting by blocking 

the transportation of water and nutrients to the developing seeds, and causing premature death of 

the plant. Yield losses may be 10-30% but can reach up to 80% in severely infected fields (Wu et 

al., 2016). In severe cases, SSR incidence can be reached up to 92% (Sharma et al., 2015). Del 

Río et al. (2007) estimated that on average for each 1% infected plants, there is 0.5 to 0.7% yield 

reduction. They also reported that economic losses caused by 17% disease incidence had the 

same cost of fungicide application. Therefore, 17% disease incidence should be considered as 

economic threshold.  

According to USDA (2016), the annual economic loss of soybean, sunflowers, dry edible 

beans, canola, and pulses due to sclerotinia damage has been estimated at US$ 482 million, with 

estimated losses for canola accounting for US$ 24 million. This huge economic loss led to the 

development of the USDA-ARS National Sclerotinia Initiative, a program whose objectives is to 

reduce losses due to this disease in several crops. In North Dakota and Minnesota, average yield 

losses have been estimated at 13%, however, the loss can reach up to 50% in some locations. The 

canola growers in Minnesota and North Dakota have seen disease caused economic losses of 

17.3, 20.8, and 16.8 million dollars in 1999, 2000, and 2001, respectively (Lamey et al., 2000, 

2001).  

The disease not only reduces seed yield, but also affects seed quality. Seeds from infected 

plants have reduced  oil content, and contain oil of inferior quality which could threaten human 

health (McCartney et al., 1999; Pressete et al., 2019).         
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2.2.3. The sclerotinia stem rot disease symptomatology 

Sclerotinia stem rot develops on rapeseed/canola plants during flowering. Spores infect 

flower petals and when petals are casted, it moves from there to leaves or stems. The first visible 

symptoms on leaves and stems appear as a mushy, light brown color lesions on and around the 

cast petals. Infected senescent petals are the predominant source of infection which helps to 

spread the infection into the adjacent plants leaves, branches and stems (Thatcher et al., 2017). 

On young stems, lesions appear as water-soaked which progress in all directions and causes the 

stem girdling which results stem to wilt and premature ripening. On leaves, irregular water-

soaked lesions appear which later turn into bright like lesions (Bardin and Huang, 2001).  

Infected stems become bleached, taking on a whitish appearance. On severely affected 

plants, they become brittle and their epidermis looks shredded. Infected plants may die early and 

are prone to lodging. As the disease progresses, black sclerotia can be produced inside or on the 

surface of the infected stems (Bardin and Huang, 2001).  

2.2.4. The sclerotia 

A densely mass of white mycelia known as sclerotia is the primary survival structure of 

S. sclerotiorum. It acts as a vegetative reproductive and long-term survival structures for the 

fungus. The pathogen can be viable in soil in the form of sclerotia for 8 to 10 years (Adams and 

Ayers, 1979; Hegedus and Rimmer, 2005).  

A sclerotium consists of two parts, the medulla and the outer rind. The former is light 

colored, while the outer is black and composed of several layers of highly melanized cells.  The 

medulla contains β-glucans, and proteins (Tourneau, 1979), whereas rind contains melanin, a 

compound that plays an important role in protection from adverse condition and make the 

sclerotia highly resistant to degradation (Bell and Wheeler, 1986; Henson et al., 1999). The size 
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and shape of sclerotia of S. sclerotiorum varies with the host. The disease cycle begins after the 

germination of overwintered sclerotia in soil.     

Survival of sclerotia in the field depends on a number of factors. High soil temperature, 

high soil moisture, and reduced oxygen level in irrigated fields have an adverse effect on 

sclerotia survival (Wu et al., 2008). Adams and Ayers (1979) reported that soil temperatures 

between 10-30℃ have no adverse effect on the survival of sclerotia, but temperatures of 35℃ 

for 3 weeks or more cause reduced sclerotial survival. Microbial degradation is the most 

significant factor adversely affecting sclerotia survival in soil (Adams and Ayers, 1979). Many 

fungi, bacteria and other soil organisms parasitize sclerotia and use them as their carbon source 

including Coniothyrium minitans, Sporidesmium sclerotivorum, Fusarium spp., Trichoderma 

spp. Penicillium spp, Aspergillus spp., Stachybotrys spp. and Verticillium spp. (Adams and 

Ayers, 1979). 

2.2.5. Disease cycle 

The disease cycle starts with germination of sclerotia. Continuous soil moisture for a 

minimum period of ten days, accompanied by 60- 77° F (15-25 °C) soil temperatures are 

required. Depending on weather conditions, sclerotia can germinate myceliogenically or 

carpogenically. Myceliogenic germination results in the production of hyphae that can directly 

infect plant tissues (Tourneau, 1979; Bardin and Huang, 2001). On the other hand, in carpogenic 

germination the sclerotia germinate to produce apothecia (sexual fruiting bodies). Apothecia is 

capable of producing millions of ascospores (sexual spores) that are released into moving air 

currents. Ascospores normally cannot infect the leaves and stems directly, as they require an 

exogenous source of nutrients, like petals, and degrading tissues to infect above ground parts of 

the host (Jamaux et al., 1995; Bardin and Huang, 2001). The fungus colonizes infected petals and 
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eventually penetrate other host tissue. Conducive environments such as continuous moisture 

(free water) at 21℃ for 48 h is necessary for the ascospores to germinate and move from petals 

to leaves for establishing the pathogen infection (Shahoveisi and del Río Mendoza, 2020). The 

infection process begins when ascospores land on flower petals and subsequently germinate and 

colonize the tissue (Turkington, 1993). Then, subsequently the fungus grows from the flower 

petals to leaves, leaf axils, branches, and stems. Once the S. sclerotiorum penetrates the plant, it 

will colonize and feed on the plant tissues as a source of their nutrient. Sclerotia will be formed 

inside or on the stem once the nutritional value of infected plant tissues has been exhausted or if 

environmental conditions become unfavorable for the pathogen (Figure 2.2). 

 

Figure 2.2. Disease cycle of Sclerotinia stem rot caused by Sclerotinia sclerotiorum (photo 

credits: https://www.canolacouncil.org/download/157/canola-encyclopedia/18611/sclerotinia-

updated-final-2). 
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2.3. Breeding for durable resistance to sclerotinia stem rot in rapeseed/canola 

2.3.1. Host resistance 

Genetic resistance offers the most economically feasible, environment friendly and 

sustainable approach to control sclerotinia stem rot (SSR) diseases in rapeseed/canola. Therefore, 

development of SSR resistant varieties is the priority of breeding programs to manage this 

disease and to make canola production profitable to the growers. Although no highly resistant or 

immune accessions have been found in rapeseed germplasm resources, there is wide variation in 

resistance among varieties. In recent years, some progress has been made in the identification 

and breeding for varieties resistant to S. sclerotiorum infection. Partially SSR-resistant lines such 

as ‘Zhongyou 821’, ‘Zhongshuang’, and ‘Ning RS-1’ were developed (Han-zhong et al., 2004; 

Li et al., 2009). In North America, commercial spring hybrid canola cultivars such as Pioneer 

45S51, Pioneer 45S52, Pioneer 45S56, with enhanced resistance to SSR disease were developed.  

Several efforts were also made to search for resistance sources in close relatives of B. napus. 

Among these, B. oleracea has the greatest resistance and B. rapa has the lowest, while B. juncea, 

B. napus, and B. nigra are intermediate (Ding et al., 2021). Screening for resistant sources is the 

basis of resistance breeding in crop plants. Even though some of the partial SSR resistant line 

have been identified, the quest for complete host resistance still encourage the plant breeders and 

pathologists to explore diverse germplasm collections to identify resistant genotypes.  

2.3.2. Disease screening methods and phenotypic measurements 

A number of methods have been used with varying results and occasional correlation 

with field screening. Many of the implemented methods also showed varying results across 

studies, populations and crops. However, there is no single, widely accepted method for 
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evaluating resistance in rapeseed/canola, which creates difficulty in identifying resistance source 

across different study and populations.  

Various methods have been used to screen the germplasm accessions and to evaluate 

resistance to sclerotinia stem rot disease in various crops. In some cases, same screening methods 

were used in different crops. For example, ascospore suspension spray was used for snap bean 

(Abawi et al., 1978), soybean (Cline, 1982) and rapeseed (Bailey, 1987); petiole inoculation 

technique (PIT) was used in soybean (Hoffman et al., 2002) and rapeseed (Zhao et al., 2004; 

Bradley et al., 2006); stem inoculation was used in soybean (Wegulo et al., 1998), sunflower 

(Vuong et al., 2008) and rapeseed (Gyawali et al., 2016; Qasim et al., 2020; Roy et al., 2021; 

Shahoveisi et al., 2021); oxalic acid assay in soybean (Wegulo et al., 1998) and canola (Bradley 

et al., 2006) were used to evaluate resistance to sclerotinia stem rot with or without 

modifications.   

Screening of resistance to S. sclerotiorum can be broadly divided into two categories (a) 

field evaluation, and (b) controlled environment evaluation. Field evaluations can be performed 

by growing plants on naturally infested fields (Kim and Diers, 2000; Bradley et al., 2006) or by 

artificially inoculating plants in the field (Bradley et al., 2006; Yin et al., 2010). Screening in 

controlled environments provide better evaluation of physiological resistance. In general, 

evaluations in controlled environments are easier and quicker to do, and they can be performed 

anytime during the year. 

Zhao et al. (2004) screened 47 B. napus accessions to evaluate resistance to sclerotinia 

stem rot using petiole inoculation technique (PIT) in greenhouse. Petioles of the third fully 

expanded leaves of four weeks old plants were severed 2.5 cm from the main stem using a razor 

blade and loaded tips were placed into the severed petioles. Days to wilt (DW) were recorded 
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daily for 7 to 11 days post inoculation (dpi). In addition to DW, they also recorded phenotypic 

responses on a scale of 0 to 4, where 0 means no symptoms and four means expanded, sunken, 

water-soaked lesions resulting in wilt of the foliage. Phenotypic responses of accessions were 

consistent and high correlations were found between DW and lesion phenotypes. Bradley et al. 

(2006) compared the response of canola cultivars to SSR using oxalic acid assay, petiole 

inoculation technique, and detached leaf assay in both controlled environments and field 

conditions. Significant differences were observed for SSR and yields among cultivars in the 

controlled environment for all three techniques. However, in the field environments significant 

differences were recorded for the oxalic acid and petiole inoculation method but not for the 

detached leaf assay method. PIT was also used successfully by Zhao et al. (2006) and Behla et al. 

(2017) to identify QTL for resistance to SSR using DH populations in B. napus. 

Cotyledon assay for SSR resistance evaluation was also used by Garg et al. (2008) by 

inoculating 10 days old cotyledon with mycelial suspension. Phenotypic differences were 

collected by measuring lesions diameter at 4 dpi. Significant differences among the genotypes 

were observed on the collected phenotypic data.   

Stem inoculation method either in the form of detached stem assay (Wu et al., 2013, 

2016, 2019; Wei et al., 2016) or intact plant stem assay (Li et al., 2004, 2006; Gyawali et al., 

2016; Qasim et al., 2020; Roy et al., 2021; Shahoveisi et al., 2021) were implemented to evaluate 

the phenotypic performance of rapeseed/canola genotypes against S. sclerotiorum attack. Stem 

inoculation methods are usually applied when the plants are at full flowering stage, because this 

is the most prevalent stage for SSR infection. This method mimics natural SSR infection and has 

successfully been used by many researchers to evaluate the resistance performance of B. napus 

genotypes under field (Li et al., 2006; Qasim et al., 2020; Roy et al., 2021) and greenhouse 



 

20 

environment (Li et al., 2004; Gyawali et al., 2016; Shahoveisi et al., 2021). Various mapping 

studies such as bi-parental linkage (Wu et al., 2013, 2019; Qasim et al., 2020; Shahoveisi et al., 

2021) and genome wide association (GWA) (Gyawali et al., 2016; Wei et al., 2016; Wu et al., 

2016; Roy et al., 2021) mapping were performed to identify the marker-trait associations 

(MTAs) for SSR resistance in rapeseed/canola. Stem lesion length measured at 3-9 dpi were 

most commonly used phenotypic trait in this inoculation method to differentiate the phenotypic 

response of resistant and susceptible genotypes.  

Besides the above-mentioned disease screening techniques, oxalic acid assay technique 

was also used as screening methods to evaluate SSR resistance in B. napus. Some methods such 

as the detached leaf assay, the cotyledon leaf assay and the petiole inoculation technique are 

suitable for large scale SSR phenotyping, while other techniques require more resources. 

Therefore, it is necessary to identify the resistance with differential methods over a longer period 

and improve the accuracy of the methods with evaluating multiple phenotypic traits. Studies are 

needed to further develop a universally accepted screening method which is simple, reliable and 

positively correlated with field screening. 

2.3.3. Molecular markers and quantitative trait loci (QTL) mapping 

Genetic improvement of crops resistance to biotic and abiotic stresses requires 

identification of useful sources of the trait variations and subsequently their introgression into the 

adapted elite cultivars. Significant crop improvements in terms of yield, biotic and abiotic 

stresses have been made through the implementation of conventional breeding and genetics. 

However, the required time and progress in genetic gains through classical breeding approaches 

alone is slow, particularly in targeting traits with complex inheritance that are influenced by 

pathogen population diversity, and changing climates (Araus et al., 2008; Cooper et al., 2009). In 
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recent years molecular marker technology has offered great potential for plant breeding by 

providing solutions to overcome some of the limitations faced by classical breeding. Recent 

advances in molecular marker technologies have allowed researchers to explore the potential of 

improving varieties by examining the genetic makeup of a particular genotype. Molecular 

markers linked with the trait of interest can facilitate pyramiding of target traits into adapted 

cultivars with greater precision, reduced loss of genetic gain and shorter breeding cycles (Xu and 

Crouch, 2008). Genetic mapping of trait of interest, plant disease diagnostics, and assessment of 

genetic diversity were also done using molecular markers. With the availability of more marker 

data and advances in statistical modeling, genomic selection approaches have also been 

introduced to characterize phenotypic performance of individuals based on genomic estimated 

breeding values (Meuwissen et al., 2001; Nakaya and Isobe, 2012). 

Different types of DNA-based molecular markers have been developed. DNA molecular 

markers can be divided into hybridization-based markers, PCR-based markers and sequenced 

based markers. Hybridization based Restriction Fragment Length Polymorphisms (RFLP) was 

the first DNA based molecular marker used for genotyping and creating genetic linkage map 

(Botstein et al., 1980). Later, several PCR-based molecular markers, Random Amplified 

Polymorphic DNA (RAPD) (Williams et al., 1990), Simple Sequence Repeats (SSR) (Hearne et 

al., 1992), sequence characterized amplified region (SCAR) (Paran and Michelmore, 1993), 

cleaved amplified polymorphic sequences (CAPS) (Konieczny and Ausubel, 1993), Sequence 

Tagged Sites (STS) (Fukuoka et al., 1994), Amplified Fragment Length Polymorphism (AFLP) 

(Vos et al., 1995), and Sequence Related Amplified Polymorphism (SRAP) (Li and Quiros, 

2001) were developed. However, genotyping of above-mentioned markers is performed for 
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individual markers, and are restricted in addressing high-throughput required for genotyping 

large number of individuals in a large population.  

Single nucleotide polymorphism (SNP) results from single base changes in the DNA 

sequence and are the most abundant source of variation in plant and animal genome (Ganal et al., 

2011). Among all the molecular markers, SNPs are now the most popular due to its high 

abundance in the genome and low-cost discovery (He et al., 2014). More recently, the adoption 

of microarrays/chips and next generation sequencing technologies for SNP detection and 

validation has revolutionized the development of new marker systems. This high throughput-

genotyping platform are cost effective and saving time for routine use in most plant molecular 

research (Gupta et al., 2010). The subsequent shift to SNP markers and its rapid advancement 

has made excellent progress to characterize genetic diversity of major crop species, to map QTL 

for trait of interest, and to clone genes important for crop improvement. 

2.3.4. Linkage based QTL mapping for sclerotinia stem rot resistance in rapeseed/canola 

Linkage-based QTL mapping has been a key approach for genetic dissection of complex 

traits of agriculturally important traits in crops (Holland, 2007). In this method, mapping 

populations were developed through the hybridization of two parents with contrasting 

phenotypes i.e. one parent disease resistant and second parent is disease susceptible. Bi-parental 

segregating populations such as F2, recombinant inbred lines (RIL), double haploid (DH), near-

isogenic (NIL), and backcross (BC) lines could be used in QTL mapping. Genetic linkage maps 

were constructed based on the recombination occurred in the two parents during meiosis 

(Mammadov et al., 2012). It is particularly useful in tagging QTL of rare variants and small-

effect alleles. However, bi-parental linkage mapping suffers from two major limitations. One 

major limitation is the restricted number of recombination events that occurred during the 
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development of bi-parental mapping population. These results in low mapping resolution, often 

in the range of 10-30 cM genomic interval (Korte and Farlow, 2013). The second major 

limitation is the low allelic diversity since only two alleles descended from two parents are used 

(Korte and Farlow, 2013).  

QTL mapping using bi-parental mapping populations were extensively used for the 

identification of genomic loci associated to SSR resistance in B. napus (Zhao and Meng, 2003; 

Zhao et al., 2006; Yin et al., 2010; Wu et al., 2013, 2019; Wei et al., 2014; Zhang et al., 2019; 

Qasim et al., 2020; Shahoveisi et al., 2021). These studies were performed using different 

inoculation procedures, different plant developmental stages such as seeding and adult (Zhao and 

Meng, 2003; Wu et al., 2013). QTLs identified from these studies were specific to different 

growth stages and different inoculation methods in the rapeseed/canola genotypes. Zhao et al. 

(2006) used two double haploid (DH) populations (HUA and MS) to identify QTL associated to 

sclerotinia stem rot disease using petiole inoculation technique. Using two scoring criteria, days 

to wilt and stem lesion length at 4dpi, they detected eight (HUA) and one (MS) QTL and found 

that none of the QTL overlapped between the two studied populations. Yin et al. (2010) studied 

DH populations to identify QTL linked with SSR resistance using three different inoculation 

techniques on mature B. napus plants. One to 10 QTLs were mapped depending on the 

inoculation technique, and the explained phenotypic variation by each QTL varied between 10.2 

to 36.1%. Another study by Wei et al. (2014) identified 5 and 6 QTLs under controlled and field 

environments, where inoculation was done at the flowering stage and identified three flowering 

time (FT) QTLs those were co-localized with the SSR resistance QTL. Similar trends were also 

observed by Wu et al. (2019), and Zhang et al. (2019). Wu et al. (2019) mapped four co-

localized QTL hotspots for SSR resistance and FT. Similarly, Zhang et al. (2019) also detected 
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few co-localized FT QTL with SSR resistance. Both of studies results revealed a genetic link 

between SSR resistance and FT in B. napus. Similar finding was also reported by Qasim et al. 

(2020) who indicated that SSR resistance was negatively correlated with flowering time. They 

detected17 QTL associated with SSR resistance on chromosomes A02, A09, C02, C03, C04, and 

C06 by evaluating 181 DH for three years in field environments. The observed phenotypic 

variance by these QTL varied between 5.94 to 14.75%. Shahoveisi et al. (2021) evaluated two 

DH populations under greenhouse environments and used multiple phenotypic scoring system 

for QTL identification. Sixteen QTLs were detected and 12 QTL were located on chromosomes 

A02, and C01. Moreover, they also detected a QTL co-localized in both populations.  Despite 

these efforts, no fine mapping or map-based cloning of the SSR resistant QTL or gene has been 

reported so far. This ultimately limits the utilization of the identified QTL to implement in the 

MAS SSR breeding. The potential reasons behind this would be highly polygenic nature of SSR 

resistance making difficult in pyramiding small-effect SSR resistant loci and lack of 

identification of common QTLs across different studies, mapping populations, different growth 

stages of SSR phenotyping, and different inoculation methods. Only few instances, common 

markers have been detected in different mapping populations (Shahoveisi et al., 2021). 

Therefore, more mapping studies are needed to validate these identified QTL, which will provide 

more confidence and could possible narrowed down the associated genomic regions. 

2.3.5. Genome-wide association mapping  

Identification of molecular markers and QTL associated with a trait of interest is the main 

prerequisite for successful implementation of MAS (Collard et al., 2005). Genome-wide 

association mapping is another approach, which is widely used for the genetic dissection of 

economically important complex traits. It is an approach that utilizes natural populations, 
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historical recombination and natural genetic variation within the ex situ conserved genetic 

resources. Association mapping identifies significant marker-trait associations by exploiting 

linkage disequilibrium (LD) created through ancestral and evolutionary recombination events at 

the population level. LD-based association studies enable the most effective utilization of 

conserved genetic diversity among globally distributed germplasm resources (Abdurakhmonov 

and Abdukarimov, 2008). Moreover, unlike linkage mapping, association mapping also leads to 

a higher resolution mapping because of the increased number recombination events from a large 

number of meiosis that occurred throughout generations that makes it possible to map the QTL 

near to the gene of interest (Nordborg and Weigel, 2008). It is a timesaving and cost-effective 

approach compared to bi-parental populations, as no mapping populations are required 

(Abdurakhmonov and Abdukarimov, 2008; Korte and Farlow, 2013). Association mapping has 

some limitations too. One of the major limitations is detection of false positives due to the 

confounding effects of population structure and genetic relatedness present within the 

populations, if unaccounted (Korte and Farlow, 2013). Fortunately, recent improvement in the 

statistical models for GWA mapping can handle population structure by accounting for the 

phenotypic covariance that is due to population structure and genetic relatedness. 

Few GWA studies have been performed on S. sclerotiorum resistance in B. napus 

(Gyawali et al., 2016; Wei et al., 2016; Wu et al., 2016; Roy et al., 2021). Gyawali et al. (2016) 

conducted a GWA study using 152 B. napus lines and evaluated plants phenotypic performance 

during the full flowering stage by challenging plants against S. sclerotiorum. GWA analyses 

identified 34 significant loci associated with disease traits, out of which 21 alleles contributed to 

the resistance explained 6 to 25% phenotypic variance by each locus. In another study by Wu et 

al. (2016) mapped a total of 26 SNPs corresponding to three loci on chromosome C04, C06, and 
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C08 associated with adult plant SSR resistance. Moreover, they also predicted 39 putative 

candidate resistant genes. Wei et al. (2016) detected a total of 17 significant associations, five of 

which were on A8, and 12 on C6 for stem resistance from two years field data using detached 

stem assay. Furthermore, they also detected candidate genes specific to the resistant genotypes 

involved with jasmonic acid pathway, lignin biosynthesis, defense response, signal transduction 

and encoding transcription factors through the transcriptomic analyses of resistant and 

susceptible lines. 

Comparison of these three GWA mapping (Gyawali et al., 2016; Wei et al., 2016; Wu et 

al., 2016) in B. napus using stem inoculation method (detached stem or intact plant stem) on SSR 

resistance revealed that none of the resistance loci were shared among these three GWA mapping 

results. In these three studies, different forms of stem inoculation methods (detached stem/intact 

plant stem), and the measurement of stem lesion length at 3 dpi (Wei et al., 2016), 5 dpi (Wu et 

al., 2016), and 7,14, and 21 dpi (Gyawali et al., 2016) were used for phenotyping of 

rapeseed/canola genotypes against S. sclerotiorum infection. The inability to detect common 

markers in the three GWA studies could be due to differences in phenotyping method. Also, B. 

napus germplasm collection contribute to variation of the detected SNPs/genomic regions among 

the various mapping studies. However, recently a GWA mapping study by Roy et al. (2021) 

detected few significant SNPs that were found to be overlap with the genomic regions reported 

by Wei et al. (2016) and Wu et al. (2016). Therefore, more GWA studies are needed to validate 

these genomic regions before implementing marker-assisted-selection (MAS) in breeding 

programs. 
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2.3.6. Genomic prediction 

Breeding for quantitative disease resistance is a challenging task because of its complex 

mode of inheritance. Therefore, it is important to devise strategies for more effective evaluation 

and exploitation of this resistance. Recent advancements in the fields of genotyping and 

statistical modelling helped us to develop new selection schemes that enabled the development 

of low-cost efficient selection methods for complex traits (Jannink et al., 2010; Bentley et al., 

2014). Genomic prediction (GP) uses dense genome wide markers and selects for large numbers 

of both minor and large effects QTL without prior knowledge of their genomic location 

(Meuwissen et al., 2001). GP is receiving considerable attention as an alternative approach to the 

traditional marker-assisted breeding. Instead of identifying statistically significant markers 

associated with single large effect QTL, GP enables simultaneous estimation of all marker 

effects to predict breeding values, also referred to as genomic estimated breeding values 

(GEBVs), of complex traits (Lorenzana and Bernardo, 2009; Lorenz et al., 2011). Genomic 

selection (GS) has been shown to be effective for improving quantitative traits, both in 

simulations (Bernardo and Yu, 2007) and in empirical studies (Crossa et al., 2010, 2014; Ornella 

et al., 2012; Heslot et al., 2012; Lorenz et al., 2012; Rutkoski et al., 2014; Derbyshire et al., 

2021). GS uses a ‘training population’ comprising individuals that have been genotyped and 

phenotyped for the trait of interest to estimate effects of genome-wide markers or breeding 

values (BVs). The estimated marker effects or BVs are then used to predict the breeding values 

(genomic estimated breeding values (GEBVs) of any genotyped individuals that have not been 

phenotyped (called the selection candidates) (Goddard et al., 2010). Selection of favorable 

individuals among the selection candidates is then performed based on the predicted GEBVs. 
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The performance of GS depends primarily on the accuracy of predicting GEBs. GS can 

increase the frequency of favorable offspring in a population and accelerate gain from selection, 

when the accuracy of GEBVs are high (Pérez-Cabal et al., 2012). Prediction accuracy is defined 

as the correlation between GEBVs and the true breeding values. Since in the breeding program, 

the true breeding values of these traits are not known, we approximated the prediction accuracy 

by the correlation between the GEBVs and the phenotypic values divided by the square root of 

the phenotypic heritability (√𝐻2) following Lorenz et al. (2011) and Jarquín et al. (2014). 

Several factors could affect the GS accuracy which includes gene effects, genetic composition of 

the training population, level of LD, marker density, model performance, QTL number, 

relationship between training population and the validation population or selection candidates, 

training population size, and trait heritability (Zhong et al., 2009; Desta and Ortiz, 2014; 

Rutkoski et al., 2015). 

The potential of implementing GS in rapeseed/canola were explored. Previous GS studies 

for various agronomic traits, including blackleg and S. sclerotiorum disease resistance have 

shown the potential of GP to accelerate the rapeseed/canola breeding (Würschum et al., 2014; 

Fikere et al., 2020; Roy et al., 2021; Derbyshire et al., 2021). Wei et al. (2016) investigated the 

potential of genomic prediction (GP) in a panel of 347 Brassica napus lines and they found only 

0.27 predictive ability for adult plant SSR stem resistance. Recent studies by Derbyshire et al. 

(2021) and Roy et al. (2021) achieved 0.35-0.42, and 0.41-0.64 predictive ability for adult plant 

S. sclerotiorum resistance in rapeseed/canola clearly indicated the potential of GS for improving 

complex SSR resistance inheritance in rapeseed/canola. 
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CHAPTER 3: GENOME-WIDE ASSOCIATION MAPPING AND GENOMIC 

PREDICTION FOR ADULT STAGE SCLEROTINIA STEM ROT RESISTANCE IN 

BRASSICA NAPUS (L) UNDER FIELD ENVIRONMENTS1 

3.1. Abstract 

Sclerotinia stem rot (SSR) is a fungal disease of rapeseed/canola that causes significant 

seed yield losses and reduces its oil content and quality. In the present study, the reaction of 187 

diverse canola genotypes to SSR was characterized at full flowering stage using an agar plug to 

inoculate stems in four environments. Genome-wide association (GWA) analyses using three 

different algorithms identified 133 significant SNPs corresponding with 123 loci for disease 

traits like stem lesion length (LL), lesion width (LW), and plant mortality at 14 (PM_14D) and 

21 (PM_21D) days. The explained phenotypic variation of these SNPs ranged from 3.6-12.1%. 

Nineteen significant SNPs were detected in two or more environments and disease traits data by 

at least two GWAS algorithms. The strong correlations observed between LL and the other three 

disease traits, suggest they could be used as proxies for SSR resistance phenotyping. Sixty-nine 

candidate genes associated with disease resistance mechanisms were identified. Genomic 

prediction (GP) analysis with all four traits employing genome-wide markers resulted in 0.41-

0.64 predictive ability depending on the model specifications. The highest predictive ability for 

PM_21D with three models was about 0.64. From our study, the identified resistant genotypes  

 

1This article was published in Scientific Reports. This chapter was co-authored by Jayanta Roy, 

T. M. Shaikh, Luis del Río Mendoza, Shakil Hosain, Venkat Chapara, and Mukhlesur Rahman. 

JR carried out the experiment, collected the data, analyzed the data, interpreted the results and 

wrote the manuscript. LRM analyzed the data, interpreted the results, and reviewed the 

manuscript. TMS, SH, and VC collected the data, and reviewed the manuscript. MR principal 

investigator of the project, designed the project, coordinated the study, and reviewed the 

manuscript. 
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and stable significant SNP markers will serve as a valuable resource for future SSR resistance 

breeding. Our study also suggests that genomic selection holds promise for accelerating canola 

breeding progress by enabling breeders to select SSR resistance genotypes at the early stage by 

reducing the need to phenotype large numbers of genotypes. 

Key words: Genome-wide association (GWA) study, genomic prediction (GP), canola, 

sclerotinia stem rot (SSR), single nucleotide polymorphism (SNP), marker-trait-associations 

(MTAs) 

3.2. Introduction 

Sclerotinia sclerotiorum (Lib.) de Bary is a devastating non-host specific, necrotrophic, 

and ubiquitous plant pathogenic fungus that infects at least 408 plant species including 

economically important dicotyledonous crops such as oilseed rape, edible dry bean, soybean, 

sunflower, pea, chickpea, lentils, and different types of vegetables and some monocotyledonous 

crops such as tulip and onion (Boland and Hall, 1994; Bolton et al., 2006). The disease caused by 

this pathogen in rapeseed/canola is commonly referred to as Sclerotinia Stem Rot (SSR), and it 

significantly limits rapeseed yield/production worldwide. This disease imposes 10-20% yield 

loss per year in China, but the loss could be up to 80% in severely infected fields (Oilcrop 

Research Institute, Chinese Academy of Sciences, 1975). In the United States, where every 

percentage unit of incidence reduces on average 0.5% of canola potential yields (Del Río et al., 

2007), the annual seed loss due to this pathogen attack has been estimated at about $24 million 

(United States Department of Agriculture, 2016). Besides seed yield loss, the disease also 

reduces the oil content and makes changes in the fatty acid profile of affected plants that reduces 

oil quality (Purdy, 1979; McCartney et al., 1999; Sharma et al., 2015). 
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The pathogen survives in the soil up to 8-10 years by producing long-lived melanized 

resting structures called sclerotia (Adams and Ayers, 1979; Hegedus and Rimmer, 2005). Under 

favorable conditions (i.e., moderate to high moisture and moderate soil temperatures) the 

sclerotia germinate carpogenically. Airborne ascospores released during the day (Qandah and del 

Río Mendoza, 2011) and start infection by colonizing on senescent petals. In the presence of free 

moisture, ascospores germinate and move from petals to leaves (Shahoveisi and del Río 

Mendoza, 2020) and main stems, where forming lesions may completely girdle the stem and 

cause death of plant (Rimmer et al., 2003).  

Currently, rapeseed/canola growers depend primarily on use of crop rotation with non-

host crop species and prophylactic fungicide applications for SSR management due to the 

unavailability of SSR resistant varieties (Bradley et al., 2006). However, long-term persistent 

survivability of the sclerotia in the soil and wider host range of the fungus makes crop rotations 

less effective. Moreover, properly timing fungicide applications to manage the disease is a 

difficult task to achieve; adds additional input cost and has a negative impact on the 

environment. Therefore, breeding for disease resistant rapeseed/canola varieties would be an 

economically feasible, more efficient, and environmentally friendly option. Hereafter, it is 

crucial to study different germplasm from diverse regions in order to unravel the nature of 

durable genetic resistance and identify responsible genes for the resistance to S. sclerotiorum. 

Subsequently, such identified SSR resistance genes can be introduced into high performing elite 

canola cultivars which ultimately diminish the dependence of the canola growers on cultural 

practices and use of fungicides and making canola production more profitable.  

Unfortunately, breeding for SSR resistance is a challenging task as sources of complete 

resistance to this disease have not been identified in Brassica napus and its close relatives in 
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more than three decades of investigation (Zhao et al., 2006; Yin et al., 2010). Instead, few 

germplasms with partial resistance have been identified and utilized in the SSR resistance 

breeding. Several genetic studies have shown that the mode of SSR resistance is quantitatively 

inherited with additive effect and have medium to high heritability (Yonghong et al., 2001; Wei 

et al., 2016; Wu et al., 2016; Qasim et al., 2020). To date, genetic mapping studies has been 

carried out to identify the sclerotinia resistance loci in multiple bi-parental mapping populations 

developed from crosses between resistant and susceptible parents (Zhao and Meng, 2003; Zhao 

et al., 2006; Yin et al., 2010; Wu et al., 2013; Wei et al., 2014; Qasim et al., 2020; Shahoveisi et 

al., 2021). QTL mapping using bi-parental populations have detected several QTLs for SSR 

resistance, and the majority of them located on chromosomes A09, C02, and C06. However, in 

very few instances common markers have been detected in different mapping populations 

(Shahoveisi et al., 2021), which makes it difficult to identify the overlapping QTLs. The 

availability of the B. napus reference genome sequence (Chalhoub et al., 2014) offers an 

opportunity to determine the physical location of the previously identified QTLs by aligning the 

QTL primers with the B. napus genome. Integration and comparative analyses of the previously 

identified SSR resistance QTLs from various mapping studies with the reference genome 

sequence have detected conserved QTLs on chromosome A9 (22.5–27.5 Mb) and C6 (29.5–36.1 

Mb) (Li et al., 2015). Despite these successes, no fine mapping or map-based cloning for 

sclerotinia resistance gene has been reported so far, which ultimately circumvents the utilization 

of identified QTL in the SSR resistance breeding strategy. To date, all identified sclerotinia 

resistance QTLs only explained a small portion of phenotypic variance and few QTLs could be 

detected in different populations, different growth stages, or different screening methods. 

Moreover, bi-parental QTL mapping strategy suffers from low allelic diversity since only two 
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allelic effects were evaluated for a single locus and limited recombination events leads to the 

lower mapping resolution (Korte and Farlow, 2013). Apart from bi-parental linkage mapping 

strategy, genome-wide association study (GWAS) uses natural population originated from non-

cross derived lines which offer extensive historical recombination events and shortened linkage 

disequilibrium (LD) segments thus provides a promising opportunity of having high mapping 

resolution for the marker-trait-association (Nordborg and Weigel, 2008).  

Recently, the dramatic reduction of sequencing cost and quick turn-around time has led to 

the development of genome-wide dense molecular markers, which further accelerated the 

application of GWA mapping and genomic selection (GS) towards the genetic improvement of 

complex traits. To highlight the effectiveness of GWA study to improve the enhanced SSR 

resistance and marker-assisted selection, to date, only a few genetic mapping studies through 

GWA for SSR on rapeseed/canola have been reported. Gyawali et al. (2016) used 84 simple 

sequence repeat markers to conduct a GWA study using 152 B. napus accessions at the flowering 

stage in a controlled environment and identified 34 significantly associated loci of which 21 

alleles contributed to the SSR resistance. Wei et al. (2016) used 30,932 SNP markers to conduct 

a GWA study and detected five significant associations on A8, and twelve on C6 using detached 

stem inoculation method. A total of 26 SNPs associated with SSR resistance were identified on 

chromosome C4, C6, and C8 from a field study based on detached stem inoculation assay and 

the genotyping data of 25,573 SNPs by Wu et al. (2016). However, the effectiveness of GWA 

mapping may be limited in detecting common alleles with very small effects, as well as rare 

variants with small effect (Tam et al., 2019). Similar to GWA, the GS is performed by 

employing genome-wide markers distributed throughout the genome. GWA analysis detects 

significant SNP-trait associations that account only a small portion of phenotypic variance, 
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indicating that there is a significant amount of genetic information that could be captured with a 

whole genome modeling. Contrary to GWA study, GS has emerged as a promising genomics-

assisted technique that uses all the molecular markers information and phenotype data of the 

training population to develop statistical models that predict genomic estimated breeding values 

(GEBVs) in testing individuals based only on the genotype information (Meuwissen et al., 2001; 

Crossa et al., 2017). A number of GS studies have been reported in several crops such as wheat 

(Heffner et al., 2011; Poland et al., 2012; Odilbekov et al., 2019), and maize (Albrecht et al., 

2011; Technow et al., 2013; Liu et al., 2021) in the past ten years. The potential of GS in 

rapeseed/canola was investigated for various agronomic traits including resistance to blackleg 

disease (Würschum et al., 2014; Fikere et al., 2020) and concluded as a promising tool for 

rapeseed breeding. However, the application of genomic prediction for SSR resistance in 

rapeseed/canola has been limited to date. Recently, Derbyshire et al. (2021) implemented GP for 

adult plant SSR resistance in B. napus and reported that the GS can be used for the improvement 

of S. sclerotiorum resistance.  

The objectives of the study were i) to identify SSR resistant genotypes, ii) dissect the 

genetic architecture of SSR resistance, iii) identify the genomic regions, marker-trait-associations 

(MTAs), and putative candidate genes conferring SSR resistance, iv) to explore and evaluate the 

effectiveness of genomic prediction (GP) for selection of genotypes for SSR resistance. 

3.3. Materials and methods 

3.3.1. Plant materials and experimental design 

A panel of 187 diverse spring and semi-winter B. napus germplasm accessions and 

breeding lines originating from 17 countries in the world were collected from North Central 

Regional Plant Introduction Station (NCRPIS), Ames, Iowa, USA and North Dakota State 
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University (NDSU) (Table A1). Both NCRPIS and NDSU are public institutions that comply 

with all necessary regulations to use the seed materials for research and development purposes. 

The panel was planted in North Dakota State University Agricultural Experiment Station at 

Carrington, and Langdon in 2019; Carrington and Osnabrock (similar weather conditions and 

near to Langdon Research Station) in 2020. All the field experiments were carried out using a 

randomized complete block design with three replications. Each line was grown in six-rows plots 

(1.5m x 1.2 m) with 40 plants per row. Rows in each plot were distanced 25 cm apart. The field 

management was done essentially using regular breeding practices. Two commercially available 

spring canola hybrid cultivars, Pioneer 45S51 and Pioneer 45S56, as resistant checks, and 

publicly available cultivar Westar as a susceptible check were used in the study. 

3.3.2. Disease phenotypic evaluation and plant phenotypic measurements 

In this study, we used S. sclerotiorum isolate WM031 for all inoculations. This isolate 

has been used in previous studies because of its high virulence to canola (Shahoveisi et al., 

2021). The isolate was cultured on autoclaved potato dextrose agar medium (24 gL-1 potato 

dextrose broth and 1.5 gL-1 agar) at 22-24℃ for 48h. The canola plants were inoculated at full 

flowering stage. The main stem of eight arbitrarily selected plants from each row were 

inoculated by placing a 7 mm agar plug containing actively growing hyphal tips approximately at 

a height of 40-50 cm above the ground (Figure 3.1a). Each plug had the hyphal side facing the 

epidermis of the plant and was held in place by wrapping it to the stem with parafilm to ensure 

close contact between the pathogen and the stem surface to maintain humidity. The lesion length 

(LL) on the main stem was measured at 7 days post inoculation (dpi) using a measuring scale. 

Stem lesion width (LW) with a visual estimation of the percentage of the main stem were girdled 

by the lesion was also collected at 7 dpi. The status of inoculated plants, dead/alive was recorded 
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14 and 21 dpi and used to calculate percentage of plant mortality, therefore designated as 

PM_14D and PM_21D, respectively. Eight inoculated plants per replication of each genotype 

were sampled for disease evaluation, which resulted in a total about 96 (8 plants x 3 replications 

x 4 environments) plants evaluation for each accession throughout the study.  

Flowering time (FT) is an important developmental stage of the flowering plants in which 

they switch from the vegetative stage to the reproductive stage and it may have a role in the plant 

pathogen interactions (Kazan and Lyons, 2016). Therefore, data on days to flowering (DF) was 

recorded from days of seeding to flowering (when 50% of the plants in each replication of each 

genotype started flowering) during the year of 2019 and 2020 in both locations. In addition to 

FT, stem diameter (SD) and stem internode length (IL) may have an effect on SSR disease 

prevalence on B. napus. Therefore, to investigate its effect on SSR resistance, we collected the 

data on plant SD and IL of the inoculated plant keeping in mind to have the equal number of 

plants in each plot considering the plant development stage. Data on stem diameter (SD) in both 

years was measured using a Vernier caliper from the inoculated internodes slightly above where 

the inoculum was applied at 7 dpi. The internode length (IL) was taken using a measuring scale 

from the inoculated internode stems at 7 dpi from all the studied environments. 

3.3.3. Statistical analyses 

The four field experiments were designated as 2019 Carrington (CARR_19), 2019 

Langdon (LANG_19), 2020 Carrington (CARR_20), and 2020 Osnabrock (OSN_20), were 

analyzed individually and as a combined set with SAS 9.4 (SAS Institute Inc., USA). The best 

linear unbiased estimates (BLUEs) were calculated within single environment analysis and 

combined analysis across environments (combENV). For the combined analysis across all 

environments (combENV), homogeneity of variance was determined by dividing the 
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environment with the highest error mean squares by the environment with the lowest error mean 

squares. If the calculated ratio was less than 10-fold, then the data from all environments were 

combined (Tabachnick and Fidell, 2000; Arifuzzaman and Rahman, 2020). For the environment-

wise analyses, genotypes were considered as fixed effects and replications as random effects.  

For the combENV, a mixed linear model was implemented considering genotypes as 

fixed effects, environment, replication within the environment, and genotype-by-environment 

interaction as random effects. The broad-sense heritability (H2) for each trait was computed for 

the combENV set as  

𝐻2 =
𝜎𝑔
2

𝜎𝑔2 +
𝜎𝑔𝑒2

𝑛 +
𝜎𝑒2

𝑛𝑟

 

where σ2
g is the genotypic variance, σ2

ge is the genotype by environment variance, σ2
e is the 

residual error variance, n is the number of environments, and r is the number of replications per 

environment. Environment-wise and combENV BLUEs for LL and LW phenotypic trait, and 

only combENV BLUEs for PM_14D and PM_21D were used to perform GWAS analyses. 

Correlations among all traits were performed by calculating Pearson correlation coefficients in 

SAS 9.4. To determine whether the collected data was normally distributed, the Shapiro–Wilk 

test was conducted for all traits in both single environment and a combined dataset. Simple linear 

regression analysis was performed with stem LL, LW, PM_14D, and PM_21D as dependent 

variables and flowering time as independent variable in R (R Core Team, 2020) (R Development 

Core Team). The same analysis was performed to examine the relationship between SD and IL 

as independent variables and stem LL, LW, PM_14D, and PM_21D as dependent variables.  
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3.3.4. Genotyping 

Fresh young leaf tissues were harvested from each germplasm and lyophilized at -80 ̊C 

until used. The total genomic DNA was extracted from the lyophilized tissues using Qiagene 

DNeasy kit (Qiagen, CA, US) following the manufacturer’s protocol. Then the extracted DNA 

was quantified using NanoDrop 2000/2000c Spectrophotometer (Thermofisher Scientific) and 

optimized to get the same concentration of DNA. The GBS library was prepared using the ApekI 

enzyme following the protocol described by Elshire et al. (2011). The prepared GBS library was 

sent to the University of Texas Southwestern Medical Center, Dallas, Texas, USA for DNA 

sequencing using Illumina HiSeq 2500 sequencer. Single end sequencing reads were mapped to 

the B. napus ‘ZS11’ reference genome (Sun et al., 2017) using Bowtie 2 (version 2.3.0) 

alignment tool (Langmead and Salzberg, 2012) with the default parameters. SNP calling was 

done using TASSEL 5 GBSv2 pipeline (Glaubitz et al., 2014) and 497,336 unfiltered SNPs were 

identified. High quality SNP were identified through filtering with VCFtools (Danecek et al., 

2011) with the following criteria: minor allele frequency (MAF) ≥ 0.05, missing values (max-

missing) ≤ 25%, depth (minDP) ≥ 3 and physical distance (thin) ≤ 500 bp. As canola is a self-

pollinating crop, more than 25% heterozygous SNP were removed using TASSEL (Bradbury et 

al., 2007). The SNPs that were located outside of the chromosomes (i.e. unknown position), were 

removed. Thus, a total of 38,510 high quality SNPs were retained. For the present study, we 

utilized the polymorphic SNP markers data with minor allele frequencies greater than 0.05 on 

187 genotypes.  

3.3.5. Marker-trait-associations 

Marker-trait-association analyses were implemented in the GAPIT R package (version 

3.0) (Wang and Zhang, 2021) and GEMMA-MLM (Zhou and Stephens, 2012). In the GAPIT 
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analysis, we computed principal component (PC) analysis for accounting population structure 

using prcomp () function (Price et al., 2006) in R and kinship (K) matrix by VanRaden method 

(VanRaden, 2008) for relationships among individual, both using molecular marker data. The 

first four PCs were used for model-based clustering analysis to determine the subpopulations 

using the Mclust package in R. The first four PCA as a population structure and kinship matrix 

were incorporated in the GWA models to control false-positives. The single locus mixed linear 

model (MLM) (Yu et al., 2006), and the multi-locus model fixed and random model circulating 

probability unification (FarmCPU) (Liu et al., 2016) were implemented in GAPIT. Additionally, 

the identified significant MTAs were verified by performing GWA analyses in another 

commonly used software i.e. GEMMA-MLM (version 0.98.1) through the execution of the 

command: “gemma -g [genotype file] -a [genotype annotation file] -p [phenotype] -c [first 

4PCA] -k [kinship/centered relatedness matrix] -o [output file]. For this analysis, the 

incorporated first four PCs were the same that we used for FarmCPU and MLM. The kinship 

matrix was generated using the centered relatedness procedure in GEMMA, used as a random 

effect variable in the random model. P-wald test (the improved calibrated P-value in GEMMA) 

was calculated for the given model. The significant threshold of P value for the association 

between SNPs and traits were determined following the method proposed by Li and Ji (2005). 

The effective number of independent tests (Meff) among the used 25,809 SNPs were determined 

by calculating the correlation matrix and eigenvalue decomposition Then the Bonferroni 

correction was applied based on the effective number of independent tests (loci). The effective 

number of independent tests was estimated as 127, thus by applying genome-wide type I error 

rate at α = 0.05, the determined significant threshold of P = 0.05/127 =0.0004 or -log10 (P) = 3.4. 

Therefore, the significant threshold value for the association between SNP and traits were 
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determined by -log10 (P) ≥ 3.4, which is equivalent to P ≤ 0.0004, for FarmCPU, MLM, and 

GEMMA-MLM. The SNPs detected by at least two models in at least one environment were 

declared as significant and considered as relatively stable significant SNPs. To identify the 

common significant SNP markers present in more than one environment, a threshold value of -

log10 (P) ≥ 3.00 was used, only when those SNPs that had a lower association threshold (P ≤ 

0.0004) in one environment were considered common. Manhattan plot and P value distributions 

by plotting the observed P values against expected P values shown in Q-Q plots were created 

using the mhplot package in R language. 

3.3.6. Candidate gene identification 

Candidate genes were searched for those significant SNPs that were detected in more 

than two environments, and two or more GWA models. Genes present within 50 kb upstream 

and downstream of the significant markers were considered as candidate genes based on the 

genome and the gene models by ‘ZS11’ reference genome sequence (Sun et al., 2017). Protein 

sequences from the gene models were blasted against TAIR 10 protein database to determine the 

gene annotation. Genes associated with defense response were identified based on the Gene 

Ontology terms (GO terms) from TAIR website and gene functions found in the previous 

literature, TAIR 10, and Uniport-KB.  

3.3.7. Genomic prediction 

The genomic prediction (GP) models were constructed with the following formula: 

𝑦 = 𝜇 + 𝑋𝛽 + 𝜀 

where y is the vector of the phenotypic observations, µ is the grand mean, X is the marker 

genotype matrix, β is the estimated random additive marker effect, and e is the residual error 

term. Three GS models i.e. ridge regression best linear unbiased prediction rrBLUP (Endelman, 

2011) and two Bayesian models: Bayes C (Gianola et al., 2009), and Bayesian Ridge Regression 
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(BRR) (Meuwissen et al., 2001) were used for implementing genomic prediction. All models 

were analyzed in R language. The GP model rrBLUP and two Bayesian models were constructed 

using the package “rrBLUP” and BGLR (version 4.0.4) (Pérez and de los Campos, 2014) 

package, respectively. For all the analyses, Bayesian models were performed for 5,000 Monte 

Carlo Markov chain iterations with a 1,000 burn-iterations. The environment-wise BLUEs of LL, 

LW, and the combENV BLUEs of LL, LW, PM_14D, and PM_21D were used as phenotypic 

values for subsequent GP analyses. All SNP markers (25,809 SNPs) distributed in the whole 

genome were employed in the GP. A five-fold cross validation (150 individuals as training 

population and 37 individuals as validation individuals) with 100 iterations or 100 rounds of 

random sampling were implemented to assess the accuracy and predictive ability of the GP 

model for each predicting phenotypic traits with the validation populations. Predictive ability 

was defined as the correlation (Pearson’s r) between genomic estimated breeding values 

(GEBVs) and the observed phenotypic value. The measure of prediction accuracy is the 

correlation between GEBV and an estimate of true breeding value. However, true breeding 

values for this trait are typically unknown. Therefore, the prediction accuracy was indirectly 

estimated by dividing the correlation between GEBV and observed phenotypic value by an 

estimate of square root of heritability (√ℎ2) (Ould Estaghvirou et al., 2013; Derbyshire et al., 

2021). Thus, the prediction accuracy of each model was estimated by dividing the mean 

predictive ability by square root of heritability (√h2).  

3.3.8. Genomic heritability 

Genomic heritability (narrow-sense heritability, h2) was estimated for the combined 

datasets of all the evaluated traits for each model using all the markers. The additive variance 

components (Va) and the residual variance components (Ve) were estimated with mixed.solve 
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function in rrBLUP for the rrBLUP model (Endelman, 2011). Narrow-sense heritability (h2) was 

assessed by dividing the additive genetic variance (Va) by the total variance estimate (sum of 

additive variance and the residual variance). For the Bayesian models, h2 was estimated by taking 

the average proportion of variance explained by the regression of phenotypes on molecular 

markers as described by de los Campos et al. (2015) (https://github.com/gdlc/BGLR-

R/blob/master/inst/md/heritability.md).  

3.4. Results 

3.4.1. Phenotypic evaluations 

A continuous and broad range of reactions to inoculation with S. sclerotiorum was 

observed among the 187 B. napus accessions in this study (Table 3.1, Figure 3.1a-d). The main 

stems LL of the genotypes at 7 dpi varied from 2.3 to 9.0 cm and LW ranged from 19.3 to 81.4% 

among the studied environments (Table 3.1, Figure 3.1b-c). In the CARR_19, the main stems LL 

ranged from 3.0-7.3 cm with the mean of 5.1 cm, whereas LANG_19, CARR_20, and OSN_20 

had a range (mean) of 2.8-8.7 cm (5.6 cm), 2.5-7.3 cm (5.0 cm), 2.3-9.0 cm (5.9 cm), 

respectively (Table 3.1, Figure 3.1b). In the case of stem LW, the CARR_19, LANG_19, 

CARR_20, and OSN_20 had a range (mean) of 26.9-70.3% (47.7%), 26.7-81.4% (55.1%), 21.9-

68.0% (48.1%), and 19.3-78.6% (53.6%), respectively (Table 3.1, Figure 3.1c). The mean LL 

(5.9 cm) was the highest in OSN_20, and the lowest (5.0 cm) was recorded in CARR_20, 

whereas the highest overall mean LW (55.1%) was observed in LANG_19 followed by the 

lowest mean (47.7%) in both CARR_19 environments (Table 3.1, Figure 3.1b-c). The resulting 

BLUEs for PM_14D and PM_21D for SSR scores across all (combENV) environments ranged 

from 2 to 63% with an average of 33%, and from 16 to 94% with a mean of 66%, respectively 

(Table 3.1, Figure 3.1d). The diversity of phenotypic responses observed in this study is 

https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
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consistent with observations made by other researchers (Wu et al., 2013, 2016; Wei et al., 2016; 

Qasim et al., 2020; Shahoveisi et al., 2021) and reinforce the notion that resistance to sclerotinia 

infections is quantitatively inherited and controlled by multiple genes. The combENV BLUEs of 

the top five promising source of resistance ranged between 2.6 to 4.2 cm for LL, from 23.7 to 

40.6% for LW, had between 2 to 10% PM_14D, and between 16 to 37% PM_21D. These ranges 

were smaller than the respective phenotypic responses observed on the resistant checks “Pioneer 

45S51” 5.2 cm, 51.9%, 32%, and 66% for LL, LW, PM_14D, and PM_21D, respectively, and 

“Pioneer 45S56” 5.2 cm, 49.5%, 31%, and 62% for LL, LW, PM_14D, and PM_21D, 

respectively, and susceptible check “Westar” 6.8 cm, 65%, 63%, and 94% for LL, LW, 

PM_14D, and PM_21D, respectively. Therefore, these promising genotypes will serve as a 

valuable resource to transfer resistance gene into the elite canola cultivars to develop SSR 

resistant cultivars for the growers. A two-way analysis of variance (ANOVA) indicated that 

genotype, interaction of genotype and environment had significant effects (P ≤ 0.001) on both 

LL and LW for stem resistance. Similar results were obtained from the ANOVA analysis of the 

combENV sets for PM_14D and PM_21D with the exception of the interaction between 

genotype and environment on PM_21D, which was not-significant (P ≤ 0.05) (Table A2). 

Combined across all environments, high broad-sense heritability of 0.88 and 0.86 was observed 

for LL and LW, respectively (Table 3.1).   

Plant phenotypic variables measured on the 187 genotypes in all environments displayed 

a wide variation. DF values ranged from 37 to 88 days and had a coefficient of variation (CV) 

ranging from 3.7 to 6.4 (Table 3.1). IL varied from 7.7 to 20.4 cm with CV between 17.9 to 28.3, 

whereas SD ranged from 4.0 to 12.9 mm with a CV ranging from 21.9 to 31.2 (Table 3.1). The 

frequency distributions of phenotypic values for each trait are presented in the Figure A1. 
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Table 3.1. Phenotypic variation obtained through BLUEs in the response of 187 Brassica napus 

genotypes against sclerotinia stem rot 

Traitsa Env.b Unit Min Mean Max Median CV c 

Shapiro–

Wilk 

test p value  

H2 (family 

mean 

basis) 

LL 

CARR_19 cm 3.0 5.1 7.3 4.7 24.8 0.0001 

0.88 

LANG_19 cm 2.8 5.6 8.7 5.4 26.6 0.0152 

CARR_20 cm 2.5 5.0 7.3 4.7 22.7 0.0000 

OSN_20 cm 2.3 5.9 9.0 5.6 26.8 0.2339 

CombENV cm 2.6 5.4 7.9 5.1 25.6 0.0002 

LW 

CARR_19 % 26.9 47.7 70.3 45.0 24.9 0.0006 

0.86 

LANG_19 % 26.7 55.1 81.4 50.0 28.8 0.6422 

CARR_20 % 21.9 48.1 68.0 45.0 25.4 0.0007 

OSN_20 % 19.3 53.6 78.6 50.0 29.1 0.0694 

CombENV % 23.7 51.2 71.3 50.0 27.5 0.0077 

PM_14D CombENV % 2.4 32.6 63.1 28.6 53.3 0.7399 0.90 

PM_21D CombENV % 15.5 66.2 71.4 78.5 26.4 0.0002 0.96 

DF 

CARR_19 days 41.3 50.7 79.3 48.0 3.7 0.0000 

0.98 

LANG_19 days 37.3 46.7 77.3 44.0 4.0 0.0000 

CARR_20 days 43.0 57.6 87.0 52.0 3.8 0.0000 

OSN_20 days 42.7 54.5 88.0 50.0 6.4 0.0000 

CombENV days 41.1 51.9 82.3 49.0 4.7 0.0000 

SD 

CARR_19 mm 4.4 7.0 12.0 6.7 31.2 0.0022 

0.88 

LANG_19 mm 4.5 6.9 10.2 6.7 21.9 0.1440 

CARR_20 mm 4.0 6.9 11.6 6.6 23.7 0.0007 

OSN_20 mm 5.1 7.5 12.9 7.2 29.4 0.0001 

CombENV mm 4.9 7.1 9.9 6.8 27.1 0.0032 

IL 

CARR_19 cm 7.8 11.6 14.5 11.4 17.9 0.1622 

0.79 

LANG_19 cm 8.1 12.0 15.4 12.0 19.1 0.0002 

CARR_20 cm 8.4 10.8 18.9 10.5 28.3 0.0000 

OSN_20 cm 7.7 12.6 20.4 12.3 25.9 0.0139 

CombENV cm 8.6 11.7 14.9 11.5 23.1 0.0922 

Traitsa: LL, lesion length measured at 7 days post inoculation (dpi), LW, lesion width measured at 7 dpi, PM_14D, 

plant mortality at 14 dpi; PM_21D, plant mortality at 21 dpi; DF, days to flowering; SD, stem diameter; IL, 

internode length. 

Env.b: Environments: CARR_19, Carrington 2019, LANG_19, Langdon 2019, CARR_20, Carrington 2020, 

OSN_20, Osnabrock 2020, CombENV, combined across all environments 

CVc = Co-efficient of variation. 
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Figure 3.1. Average disease phenotypic characteristics of 187 Brassica napus genotypes 

evaluated at Carrington in 2019 (CARR_19) and 2020 (CARR_20), Langdon in 2019 

(LANG_19), Osnabrock in 2020 (OSN_20), and combined across four environments 

(CombENV), North Dakota. Sclerotinia stem rot lesions on the most resistant (left) and 

susceptible (right) genotypes at 7 days post inoculation (dpi) (a). Boxplots of BLUEs values for 

lesion length (cm) measured at 7 dpi (b); lesion width (%) measured at 7 dpi (c); and percentages 

of plant mortality estimated at 14 and 21 dpi (d). BLUEs for plant mortality are averages of all 

environments. Box edges represent the upper and lower quartile with median value shown as a 

bold line in the middle of each box. Mean values are represented by red circle, and the upper and 

lower whiskers represent the extreme values. 
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3.4.2. Correlation among internode length, stem diameter, lesion length, and lesion width 

To determine the effects of IL and SD on the reaction of genotypes to SSR resistance in 

respect to stem LL, LW, PM_14D, and PM_21D, efforts were made to maintain homogenous 

plant densities in every row. We found that combENV BLUEs of LL was negatively correlated 

with SD [r = -0.34, P= < 0.0001] (Figure 3.2). Similarly, significant negative correlations were 

also observed between combENV data set of LW and SD (r = -0.44, P= < 0.0001), LW and 

PM_14D (r = -0.45, P= < 0.0001), LW and PM_21D (r = -0.44, P= < 0.0001) (Figure 3.2). The 

regression analyses showed that the stem LL and LW were also significantly and negatively 

associated with SD (r = -0.34, R2=0.11, P= 1.7 x 10-6 for LL; r = -0.44, R2=0.19, P= 1.5 x 10-10 

for LW) (Figure 3.3b, e). However, stem LL and IL had significant positive correlation (r =0.49, 

P= < 0.0001), and similarly a significant positive correlation was also found to be associated 

between stem LW and IL (r =0.42, P= < 0.0001), LW and PM_14D (r =0.40, P= < 0.0001), LW 

and PM_21D (r =0.47, P= < 0.0001) (Figure 3.2). The regression analyses between stem LL, 

stem LW with IL also showed positive correlation (r = 0.49, R2=0.24, P= 6.9 x 10-13 for LL, and 

r = 0.42, R2=0.17, P= 1.9 x 10-9 for LW) (Figure 3.3a, d). Regression analyses among the stem 

LW, PM_14D, PM_21D with IL, and SD were presented in the Figure 3.3 and Figure A2. 

Interestingly, a highly significant positive correlation was observed among stem LL, LW, 

PM_14D, and PM_21D for stem resistance across all the studied environments and combENV 

analyses (Figure 3.2). The correlation between stem LL and LW was strong and positive in 

CARR_19 (r = 0.91), LANG_19 (r = 0.90, P= < 0.0001), CARR_20 (r = 0.91, P= < 0.0001), 

OSN_20 (r = 0.90, P= < 0.0001), and combined (r = 0.94, P= < 0.0001) environments. Highly 

significant correlations were also reported between stem LL and PM_14D (r = 0.83, P= < 

0.0001), LL and PM_21D (r = 0.75, P= < 0.0001) (Figure 3.2). These results suggest that stem 



 

47 

LW, PM_14D, and PM_21D could serve as proxies for LL during assessment of stem resistance 

to S. sclerotiorum in rapeseed/canola. Therefore, breeders could select any of the phenotypic trait 

out of four to evaluate the resistance performance of the genotypes in response to S. sclerotiorum 

attack, which might need further verification.  

 

Figure 3.2. Correlation heatmap for different sclerotinia stem rot phenotypic traits in four 

environments and the combined dataset across environments. Traits: DF= days to flowering; IL= 

internode length; LL= lesion length, LW= lesion width, PM_14D= plant mortality at 14 days 

post inoculation (dpi); PM_21D= plant mortality at 21 dpi; SD= stem diameter. Environments: 

Carrington 2019 (CARR_19) and 2020 (CARR_20), Langdon 2019 (LANG_19), Osnabrock 

2020 (OSN_20), and combined across all environments (CombENV). Plant mortality are 

averages of all environments.  
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Figure 3.3. Regression analysis of sclerotinia stem rot (SSR) resistance in respect to stem lesion 

length, lesion width with stem internode length, stem diameter and days to flowering. R is 

Pearson’s correlation coefficient between the two traits, R2
adj is the coefficient of determination. 

3.4.3. Correlation between days to flowering and sclerotinia stem rot resistance  

The DF was significantly and negatively associated with combENV BLUEs of LL, LW, 

PM_14D, and PM_21D (r = - 0.39, P = < 0.0001 for LL; r = - 0.44, P= < 0.0001 for LW; r = - 

0.49, P = < 0.0001 for PM_14D; and r = - 0.59, P = < 0.0001 for PM_21D) (Figure 3.2). The 

regression analyses showed that DF were negatively and significantly associated with stem LL, 

LW, PM_14D, and PM_21D (r = -0.39, R2 = 0.14, P = 4.0 x 10-8 for LL; r = -0.44, R2 = 0.19, 

P=1.7 x 10-10 for LW; r = -0.49, R2 = 0.24, P = 5.9 x 10-13 for PM_14D; r = -0.59, R2 = 0.34, P = 
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2.2 x 10-16 for PM_21D) (Figure 3.3; Figure A2). These negative correlation results further 

confirmed that there is a connection between the DF and SSR resistance in B. napus, indicating 

that early flowering genotypes tend to be more vulnerable to the S. sclerotiorum attack with 

increased stem LL, LW, and plant mortality than the late maturing genotypes. 

3.4.4. Genotypic data and principal component analysis 

After eliminating markers with missing data greater than 25%, a total of 25,809 

polymorphic SNPs with minor allele frequency (MAF) greater than 5% were obtained and 

employed for association analysis. The highest proportions of SNPs had MAF between 0.10 and 

0.15 (20%) and between 0.05 and 0.10 (20%) (Figure A3). The other seven MAF classes 

represent between 3 to 14% each of the total markers. To scan the population stratification of the 

association panel, principal component analysis and kinship matrix were performed on the 

genotypes based on 25,809 SNPs. The first and second PCA accounted for 9.1 and 5.8 % of the 

variance, respectively. The first 4 PCA accounted for 22% of the variance, and at PC4 the 

inflection point occurred, so we used four PCs in association mapping to avoid the confounding 

effect due to population structure. The model-based cluster analysis using the first four PCs 

suggested that there were 5 subgroups within the genotypes (Figure 3.4). 
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Figure 3.4. Population structure of rapeseed/canola genotypes as reflected by the scatter plot of 

PC1 and PC2 derived from a principal component analysis  

3.4.5. Marker-trait-association (MTA) analysis 

Association analyses using the phenotypic data and SNP marker data were conducted for 

each phenotypic trait for stem resistance (LL, LW, and PM) in each year and with the combENV 

BLUEs data to identify best MTAs. To reduce false positive or false negative associations i.e. the 

chance of committing Type I and Type II errors, three different GWA mapping algorithms i.e. 

FarmCPU, MLM, and GEMMA-MLM were used to identify the MTAs. The population 

structures using four PCA and familial relatedness with kinship matrix were incorporated in the 

implemented MLM and GEMMA-MLM models to control pseudo associations. Incorporation of 

PCA and kinship matrix in the MLM models as covariates adjusts the correction tests to control 

false positives, but could not solve the confounding problem between the covariates and test 

marker, resulting false negatives (Liu et al., 2016). FarmCPU is the model that effectively 
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corrects both false positives and false negatives. In FarmCPU, the Multiple Loci Linear Mixed 

Model (MLMM) is divided into two parts: fixed effect model (FEM) and a random effect model 

(REM) and uses them iteratively. The first part (FEM) contains testing maker, one at a time, and 

multiple associated markers fitted as covariates to control false positives. To avoid the over 

fitting model problem in FEM, the associated markers are estimated through maximum 

likelihood method in REM by using them to define kinship (Liu et al., 2016). In the current 

study, the SNPs detected in any two GWA models were considered reliable and declared as 

significant SNP for the studied trait. Significant MTAs were determined on the basis of modified 

Bonferroni correction by calculating the effective number of independent tests (loci) from the 

tested 25,809 SNPs by Li and Ji (2005). The Q-Q plots generated from all GWA analyses models 

of the analyzed phenotypic traits showed a sharp deviation from the expected P value 

distribution in the tail area, indicating that population structure and familial relatedness were well 

controlled and false positive associations were reduced (Figure 3.5a-e, Figure 3.6a-b).  

3.4.5.1. Stem lesion length  

Association analysis was performed using BLUEs of LL of all four environments and 

combENV BLUEs separately (Figure 3.5a-e, Figure A4, and A5). A total of 64 significant SNPs 

corresponding to 62 loci were identified at the level of [−log10 (P) ≥ 3.4; P ≤ 0.0004] by at least 

two of the GWA models, and thus were regarded as more reliable. These SNPs were unevenly 

distributed among the B. napus chromosomes (Figure 3.5a-e, Figure A4, and A5; Table A3, A6). 

The majority of significant SNPs were detected on chromosomes A01 (5), A03 (5), A09 (6), C03 

(8), and C06 (12). Significant SNPs that were present in the LD block on the same chromosome 

were regarded as single locus. Among these, thirty-eight significant SNPs were detected in two 

or more environments and in at least two of the GWA tested models and explained phenotypic 
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variance of the SNPs ranged from 4.5 to 9.9%. Allelic effects of these identified SNPs varied 

from -0.84 to 0.83 (Table A3, A6).  

3.4.5.2. Stem lesion width  

GWA analyses using LW BLUEs of all environments and combENV detected a total of 

70 significant SNPs in 66 loci in at least one of the four environments and combENV datasets 

(Table A4, A6). Out of these 70 significant SNPs, a total of 30 were found in at least two or 

more environments of two GWA models out of three GWA models. The estimated allelic effects 

of those 70 significant SNPs varied from -6.83 to 7.55. The phenotypic variation accounted for 

by these SNP markers varied between 4.9 to 12.1% (Table A4, A6). Manhattan and Q-Q plots 

summarizing the analysis of stem LW for SSR resistance by FarmCPU, MLM, and GEMMA-

MLM are shown in (Figure A6, A7, and A8).  

3.4.5.3. Plant mortality  

CombENV BLUEs value of 14 and 21 dpi plant mortality were used to perform the 

GWA analyses. Marker-trait-association analyses identified a total of 21 and 30 significant 

markers for PM_14D and PM_21D, respectively, which were commonly identified in at least 

two of the GWA analysis models (Figure 3.6a-b, Table A5, A6). A total of 11 significant SNP 

markers were commonly found in PM_14D and PM_21D (Table A5). About 3.6 to 7.7% of the 

phenotypic variation were explained by these significant SNP markers. The estimated allelic 

effects were ranged between -11.29 to 9.37 (Table A5, A6). The MTAs resulting from 

FarmCPU, MLM, GEMMA-MLM for PM_14D and PM_21D were presented in the Manhattan 

and Q-Q plots (Figure 3.6a-b, Figure A9).  
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Figure 3.5. Manhattan and Q-Q plots showing the results of marker-trait association for 

sclerotinia stem rot resistance in 187 rapeseed/canola genotypes by the FarmCPU GWAS model. 

a) Lesion length, Carrington 2019; b) lesion length, Langdon, 2019; c) lesion length, Carrington 

2020; d) lesion length, Osnabrock 2020; e) lesion length, combined data (CombENV). The -log10 

(P) values from a genome-wide scan are plotted against positions on each of the 19 

chromosomes. Discontinued horizontal lines indicate the genome-wide significance threshold. 
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Figure 3.6. Manhattan and Q-Q plots showing the results of marker-trait association for 

sclerotinia stem rot resistance in 187 rapeseed/canola genotypes by the FarmCPU GWAS model. 

a) plant mortality at 14 days post inoculation (dpi), combined data (CombENV); and b) plant 

mortality at 21 dpi, combined data (CombENV). The -log10 (P) values from a genome-wide scan 

are plotted against positions on each of the 19 chromosomes. Discontinued horizontal lines 

indicate the genome-wide significance threshold. 

3.4.6. Candidate genes 

Significant SNPs detected in at least two environments (four environments and 

combENV) were used to search for the candidate genes for sclerotinia stem rot resistance using 

“ZS11” reference genome sequence (Sun et al., 2017). A total of 69 candidate genes with known 

functions associated with plant disease resistance mechanisms were identified within ± 50 kb of 

the respective significant SNPs. A list of these genes, their biological functions based on TAIR 

10 and Uniport-KB, their annotations and corresponding details is provided in Table A7. The 
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candidate genes are involved in the biological process of defense response, defense response to 

fungus, programmed cell death, response to molecule of fungal origin, response to salicylic acid, 

indole glucosinolate biosynthetic process, induced systemic resistance, response to chitin, 

jasmonic acid mediated signaling pathway, ethylene-dependent systemic resistance, systemic 

acquired resistance, camalexin biosynthetic process, pattern recognition receptor signaling 

pathway, response to wounding, response to nematode, response to oxidative stress, toxin 

catabolic process, immune response,  reactive oxygen species metabolic process, brassinosteroid 

mediated signaling pathway and other biological processes which might play key role in SSR  

resistance in rapeseed/canola (Table A7). 

Table 3.2. Genomic heritability (narrow-sense heritability) of the combined analyzed phenotypic 

traits of Brassica napus genotypes for sclerotinia stem rot obtained using all SNPs 

Model Traitsa Narrow-sense heritability (h2) 

rrBLUP LL 0.65 

Bayes C LL 0.68 

BRR LL 0.65 

rrBLUP LW 0.6 

Bayes C LW 0.67 

BRR LW 0.64 

rrBLUP PM_14D 0.51 

Bayes C PM_14D 0.62 

BRR PM_14D 0.62 

rrBLUP PM_21D 0.89 

Bayes C PM_21D 0.77 

BRR PM_21D 0.77 

Traitsa: LL, lesion length; LW, lesion width; PM_14D, plant mortality at 14 days post 

inoculation; PM_21D, plant mortality at 21 days post inoculation. 

3.4.7. Genomic prediction 

The three GS models used in this study showed more or less similar results across all 

traits that we evaluated (Figure 3.7a-b, Figure 3.8a-d). However, rrBLUP tended to generate 
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better results than others in most cases. Slightly differences in the predictive abilities were 

observed among the used models for the studied traits. The predictive abilities applying genome-

wide markers for stem LL and LW traits varied from 0.06-0.51 and 0.12-0.52, respectively, for 

four individual environments (Figure 3.7a-b). The LANG_19 environment showed the highest 

predictive ability for both LL (0.51) and LW (0.52) by rrBLUP, whereas the lowest predictive 

ability of 0.06 and 0.12 was observed for the CARR_20 environment by Bayes C model (Figure 

3.7a-b). For environment-wise LL and LW traits, 1 to 9-unit and 0 to 6-unit differences in 

predictive ability was observed among the models, respectively and the highest differences were 

found in CARR_20 environment for both traits. However, slightly differences (1 to 2-unit) in the 

predictive ability was observed for the combENV datasets of all traits. The average correlation 

between the GEBVs and the observed resistance to SSR by GP models were ranged by 0.41-

0.43, 0.42-0.44, 0.47-0.49, and 0.63-0.64 for combENV LL, LW, PM_14D, and PM_21D, 

respectively (Figure 3.8a-d). Overall, Bayes C and BRR models perform slightly poor over the 

rrBLUP model for all traits with an exception for PM_21D trait, where both Bayesian models 

resulted 1-unit increase in predictive ability than rrBLUP model. The predictive ability of 

PM_21D trait was about 47-56%, 43-52%, and 28-31% higher than the LL, LW, and PM_14D 

traits, respectively. 

Since, the true breeding value of these traits are unknown, we estimate the approximate 

prediction accuracy to divide the correlation between the phenotypes and the mean predictive 

ability obtained through cross-validation sets by the square root of heritability (√h2). Therefore, 

we estimated the narrow-sense heritability based on the whole datasets using the same GS model 

used to fit the cross-validation sets. The genomic heritability varied, depending on the traits and 

used GS models as shown in Table 3.2. Thus, after using the genomic heritability, the estimated 
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prediction accuracy ranged from 0.49 to 0.53 for LL, 0.51 to 0.56 for LW, 0.59 to 0.68 for 

PM_14D, and 0.67 to 0.77 for PM_21D traits, depending on the used GS models (Figure 3.8a-d). 

Overall, the predictive ability and accuracy results suggested that genomic predictions were 

stronger when plant mortality data were used rather than the lesion length and width. 
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Figure 3.7 Predictive ability for sclerotinia stem rot resistance estimated from the five-fold 

cross-validation schemes of the association panel. Boxplot showing the result of average 

predictive ability (r) (y axis) for lesion length (a), and lesion width (b) in four environments with 

rrBLUP, Bayes C and Bayesisan ridge regression (BRR) models (x-axis). E1, E2, E3, and E4 

represents Carrington 2019; Langdon 2019; Carrington 2020; Osnabrock 2020 environements, 

respectively. The boxes show second and third quartiles and wishkers show interquertile range. 

The red dot in each box plot represent the mean predictive ability. The number above horizontal 

black bars are the predictive ability (r). 
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Figure 3.8. Predictive ability and accuracy for sclerotinia stem rot resistance associated 

phenotypic traits estimated from the five-fold cross-validation schemes of the association panel. 

Boxplot showing the result of average predictive ability (r) (y axis) and accuracy for combENV 

stem lesion length (a), combENV stem lesion width (b), combENV plant mortality at 14 days 

post inoculation (PM_14D) (c), combENV plant mortality at 21 days post inoculation (PM_21D) 

(d) with rrBLUP, Bayes C and Bayesisan ridge regression (BRR) models (x-axis). The boxes 

show second and third quartiles and wishkers show interquertile range. The red dot in each box 

plot represent the mean predictive ability. The number above horizontal black bars are the 

predictive ability (r) (at the top) and prediction accuracy (below in brackets). 
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3.5. Discussion 

Sclerotinia stem rot (SSR) is one of the most economically important and devastating 

fungal disease of rapeseed/canola that significantly limits seed yield, oil content, and oil quality 

worldwide. SSR is a highly heritable complex trait, controlled by many genes with minor 

additive effects (Yonghong et al., 2001; Wei et al., 2016; Wu et al., 2016; Qasim et al., 2020). 

Since, source of completely durable genetically resistant genotypes against this disease have not 

been identified to date in rapeseed/canola, breeding for SSR resistance is primarily dependent to 

a large extent on the utilization of partially resistant source (Zhao et al., 2006; Yin et al., 2010). 

In this study, we explored our rapeseed/canola diversity panel, including released cultivars, 

advanced breeding lines, and landraces from the different geographical regions with high genetic 

diversity against SSR in field trials conducted in four environments by inoculating plants 

artificially.  

This study was designed to obtain the most accurate phenotypic and genotypic data 

possible. S. sclerotiorum isolates can vary widely in their virulence, or ability to cause damage to 

plants and consequently, plant genotypes may respond differently to different isolates (Garg et 

al., 2010; Otto-Hanson et al., 2011). We used a highly virulent S. sclerotiorum isolate, WM031, 

for this study. This selection allowed us to increase the infection efficiency and effective 

phenotypic screening for SSR resistance. The effective screening would allow us to evaluate 

genotypes to produce reliable phenotypic value to identify MTAs with SSR resistance. To 

generate stable phenotypic values, we have conducted the study at four location-years with three 

replications in each location. To mimic the natural sclerotinia infections on rapeseed/canola 

plants, we used agar-plug stem inoculation method to inoculate the plants. This screening 

method has been implemented successfully by other researchers for the effective identification of 
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SSR resistance (Li et al., 2006; Qasim et al., 2020; Shahoveisi et al., 2021). Plants were 

inoculated during the flowering, because this is the most prevalent stage for SSR infection in 

natural field conditions (Wu et al., 2013). Moreover, the occurrence of SSR at the adult plant 

stage is a major cause for the seed yield loss and reduced oil content and quality. Therefore, we 

decided to identify the SSR resistance genotypes and significant MTAs at the mature plant stage 

in order to incorporate the resistance into the elite canola breeding cultivars and to facilitate 

MAS in rapeseed/canola breeding program. Hereafter, we analyzed 187 rapeseed/canola diverse 

genotypes for SSR resistance under field conditions. This germplasm primarily originates from 

North America, Europe, Asia and comprises of 26.7, 26.2, and 47.1%, respectively.  Gyawali et 

al. (2016) carried out GWA analyses for resistance to SSR under controlled conditions using 152 

accessions collected from 18 countries consisting of 0.7% Australia, 69.7% Asia, 20.4% Europe, 

7.2% North America, 0.7% South America, and 1.3% from the unknown origin. Another GWA 

study for SSR resistance conducted by Wu et al. (2016) used a panel of 448 germplasm 

accessions comprised of 93.8% (Asia), 1.1% (Australia), 1.1% (North America), and 4.0% 

(Europe) geographical origins. The geographic distribution of the genotypes used in our study 

provides a good coverage of world-wide germplasm accessions. 

The reaction of the 187 rapeseed/canola diverse genotypes was evaluated and measured 

in three different ways, lesion length (LL), lesion width (LW), and plant mortality for SSR 

resistance. In our study, wide phenotypic variability was observed in the stem LL (2.3-9.0 cm), 

LW (19.3-81.4%), PM_14D (2.0-63%), and PM_21D (16-94%) against the disease infection, 

indicating that this diversity panel was ideal for performing GWAS. Phenotypic variability 

together with ideal diversity panel and high number of SNPs would potentially increase the 

effectiveness and efficiency of significant association detection via marker-trait-associations 
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(MTAs) (Josephs et al., 2017; Karikari et al., 2020). Lesion length on the main stem is the most 

commonly used phenotypic parameter in studies that evaluate the resistant performance of 

genotypes against SSR in rapeseed/canola (Li et al., 2006; Wei et al., 2016; Wu et al., 2016; 

Qasim et al., 2020). The association study implemented by Gyawali et al. (2016) used lesion 

length and percentage of soft and collapsed lesions on the inoculated stem by noting depth of 

penetration for the assessment of SSR resistance. However, Wei et al. (2016), and Wu et al. 

(2016) used lesion length as a phenotypic trait for the evaluation of SSR resistance and GWA 

analyses. In addition to LL, the LW and PM were also recorded. There were significant 

differences among the genotypes in relation to LL, LW, and PM at 14 dpi and 21 dpi. Results of 

this study clearly indicated that LW, PM_14D, and PM_21D could be used as alternative 

phenotypic disease traits for the assessment of SSR resistance in rapeseed/canola. Since, plant 

mortality is directly related to yield performance, therefore it may be necessary to record plant 

mortality in addition to the other associated traits for sclerotinia phenotyping. Plant mortality has 

successfully been used by Shahoveisi et al. (2021). However, Li et al. (2006) evaluated 42 B. 

napus and 12 B. juncea genotypes for SSR resistance for PM at 21 dpi under field conditions and 

did not find any significant differences among the genotypes. Interestingly, we found strong 

significant correlations among the LL, LW, PM_14D, and PM_21D. Therefore, LW and PM 

could be used as an alternative phenotypic trait/parameter for breeders and pathologists to 

successfully differentiate and identify the potential SSR resistance genotypes under field 

conditions. To the best of our knowledge, this is the first record where LW was used as an 

alternative to LL, and we demonstrated a significantly high positive correlation between these 

two traits. The heritability of the stem resistance measured using LL was high which is consistent 

with previous studies (Wei et al., 2016; Wu et al., 2016; Qasim et al., 2020). Medium to high 
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heritability for LW, PM_14D, and PM_21D was also estimated from the replicated multiple-

location trials and combENV analyses, implying that phenotypic variation is mostly derived 

from genetic variance and phenotypic selection is effective for improving SSR resistance and 

subsequent association analyses to identify favorable alleles associated with SSR resistance to 

utilize in MAS.  

Several agronomic traits such as plant height, canopy architecture, stem diameter, and 

flowering time were reported as associated with the sclerotinia disease severity in different crops 

such as canola, soybean, dry bean etc (Kim and Diers, 2000; Kolkman and Kelly, 2002; Li et al., 

2006; Wu et al., 2019; Zhang et al., 2019; Qasim et al., 2020). Therefore, the relationships 

between SSR disease phenotypic traits (LL, LW, PM_14D, and PM_21D) and three agronomic 

traits such as FT, SD, and IL were also explored to assess whether they have direct or indirect 

effects on the SSR resistance. Results from this study showed that FT and SD had a significant 

and negative correlation with LL, LW, PM_14D, and PM_21D on B. napus. A similar 

association was reported in previous studies of this pathosystem (Zhao et al., 2006; Wei et al., 

2014; Wu et al., 2019; Zhang et al., 2019; Qasim et al., 2020), and implied that early flowering 

genotypes were more prone to SSR susceptibility with increased stem LL, LW, and plant 

mortality. A similar association has been reported on other pathosystems, like Arabidopsis-

Verticillium dahlia (Veronese et al., 2003); Arabidopsis-Fusarium oxysporum (Lyons et al., 

2015); rice-Pyricularia oryzae (Zhao et al., 2011). Studies carried out by Wu et al. (2019) and 

Zhang et al. (2019) detected few co-localized QTL for the SSR resistance and FT in B. napus. 

They suggested a possible genetic linkage between these two traits. However, the underpinning 

genetic and molecular mechanisms controlling these associations are still not evident (Wu et al., 

2019). In addition to the effect of FT, Qasim et al. (2020) found a weak negative correlation 
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between LL and SD, which is in agreement with our current study. Li et al. (2006) observed 

lower stem LL and plant mortality when the stem diameter was around 10 mm. However, 

increased lesion length and plant mortality were observed when SD was smaller or larger than 10 

mm.  Also, significant, positive, but moderate correlations were detected between IL and stem 

LL, IL and stem LW, IL and PM_14D, and IL and PM_21D. Therefore, this is an indication that 

evaluation of IL could be another useful parameter for an indirect selection for potential SSR 

disease resistant genotypes to use in the rapeseed/canola breeding program. Based on the 

findings from our study as well as from previous studies, effect of agronomic traits i.e. stem IL 

and SD need to be taken into careful consideration for the breeders and pathologists to identify 

and select the accurate promising SSR resistance genotypes phenotypically from the field 

screening. 

Bi-parental linkage mapping and association mappings have been used to dissect the 

complex traits such as SSR resistance in B. napus in order to identify the genetic loci conferring 

resistance. GWA mapping is a powerful genetic mapping strategy for the dissection of complex 

traits in plants (Rahman et al., 2016; Wei et al., 2016; Liu et al., 2021). Therefore, in this study, 

GWA analysis was implemented using three different models for SSR resistance associated traits 

i.e. LL, LW, PM_14D, and PM_21D with the objectives to maximizing opportunities to identify 

reliable and stable specific genomic regions and SNPs conferring SSR resistance in 

rapeseed/canola germplasm. This is the first time to use different single locus (MLM and 

GEMMA-MLM) and multi-locus (FarmCPU) GWA models to identify common markers 

associated with this disease. The purpose of using three different GWA softwares/algorithms was 

to reduce the chances of committing type I (false-positive association) and type II (false-negative 

association) errors. The identification of commonly detected SNPs simultaneously with multiple 
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GWA models and traits would improve the reliability of the detected MTAs associated with SSR 

resistance. As the SSR resistance is a quantitatively inherited complex trait and the number of 

SNP markers is larger than the sample size, it would be necessary to simultaneously use multiple 

methods for GWAS mapping to identify stable MTAs. Bonferroni-Holm correction (Holm, 

1979) for multiple testing (α = 0.05) was too conservative, since it assumes that all the tests are 

independent but in reality, some SNPs may not be independent and they might be in linkage 

disequilibrium (LD) due to their physical distance or other associated factors. Moreover, with 

this Bonferroni-type correction, no significant associations between markers and evaluated traits 

in most of the environments were detected. The use of stringent significant probability threshold 

reduces the risk of accepting false positives but does not necessarily reduce the risk of rejecting 

true MTAs. Therefore, the significant threshold value for the association between SNP and traits 

were estimated by the method proposed by Li and Ji (2005). In this study, most of the significant 

SNP markers associated with the SSR resistance traits (LL, LW, PM_14D, and PM_21D) 

detected in the environment-wise and combENV datasets showed small effects, explaining 3.5-

12.1% of the observed phenotypic variance. These finding are in an agreement with previous 

genetic mapping studies (QTL and GWA) on sclerotinia resistance. This suggests and validates 

that SSR resistance in B. napus is a complex genetic trait, quantitatively inherited and 

determined by multiple minor QTL with small effects (Zhao and Meng, 2003; Zhao et al., 2006; 

Yin et al., 2010; Wu et al., 2013, 2016, 2019; Wei et al., 2014; Qasim et al., 2020). Li et al. 

(2015) conducted an integrated and comparative QTL analyses for SSR resistance using 

previously identified QTLs from various mapping studies with the Darmor-bzh reference 

genome (Chalhoub et al., 2014) and determined that chromosomes A9 (22.5–27.5 Mb) and C6 

(29.5–36.1 Mb) are conserved QTL regions. The putative disease resistance nucleotide-binding-
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site, leucine-rich-repeat (NBS-LRR) genes were found in this region in a cluster. GWA analyses 

from our study revealed a total of 14 significant SNPs located on C6 (22.3-39.4 Mb) genomic 

regions, and 5 of them were located on the chromosome C06 (33.2- 34.1 Mb) region that was 

reported by Li et al. (2015). However, the SNP markers on chromosome C06 identified in this 

study have shown overlapping confidence intervals with the QTLs for stem resistance detected 

by Zhao et al. (2006), Wu et al. (2013), Wei et al. (2016), Wu et al. (2016), and Qasim et al. 

(2020). Identification of the SNPs in our study which aligned with previously identified 

overlapping genomic regions provide strong evidence that fine-mapping using large segregating 

mapping population could help us to narrow down the genomic regions. This may lead us to 

identify the putative candidate gene conferring SSR resistance in rapeseed/canola, and therefore, 

guide us for the map-based cloning of the sclerotinia resistance gene in future to assist MAS.    

Several QTLs reported here were localized in the vicinity of QTL identified by other 

researchers. GWA study conducted by Wu et al. (2016) identified five significant SNPs on 

chromosome A08 (15.09-15.10 Mb) region based on the alignment of Darmor-bzh (Chalhoub et 

al., 2014) reference genome. We detected six SNPs on chromosome A08 (13.7-22.9 Mb) region 

based on ‘ZS11’ reference genome sequence (Sun et al., 2017). The ‘ZS11’ reference genome 

sequence was aligned with ‘Darmor-bzh’ reference genome (Chalhoub et al., 2014). Therefore, 

our finding was a close agreement with Wu et al. (2016). We also identified significant SNPs on 

chromosome C08 (SCM002776.2_29886188, SCM002776.2_37107013) which located near or 

overlapped with the identified QTL genomic regions of chromosome C8 (31.4-33.5 Mb, 38.2-

38.5 Mb) reported by Wu et al. (2013). A significant SNP (SCM002777.2_46851981) for LL 

located on chromosome C09 repeatedly detected on multiple environments (CARR_19, 

CARR_20, OSN_20, CombENV) were found to be overlapped with the physical interval of 



 

67 

Sll19 for stem lesion length using petiole inoculation technique by Zhao et al. (2006). Moreover, 

another stable SNP marker (SCM002777.2_48885679) on chromosome C09 identified in almost 

all the environments and combENV with all the traits except PM_21D located at the physical 

position of 48.9 Mb in the ‘ZS11’ reference genome sequence. Detection of these stable genomic 

regions (46.8-48.9) on chromosome C09 in our current study as well as from the previous study 

provide an exciting opportunity to further explore these regions to develop molecular markers for 

future MAS in the rapeseed/canola breeding program for SSR resistance. Shahoveisi et al. (2021) 

reported QTL SR54.C3.1 associated with SSR resistance in the physical region of (23.4-31.6 

Mb) on chromosome C03, the two SNPs [SCM002771.2_22853068 (22.9 Mb), 

SCM002771.2_27877818 (27.9 Mb)] in our study was found in close proximity or within the 

genomic regions. Moreover, we collected information on the previously identified QTLs, SNPs 

and their physical positions based on marker information from the past studies and compared it 

with our findings. In addition to the identification of significant SNPs in the previously detected 

genomic regions, to best of our knowledge, hereafter we are reporting new genomic regions on 

chromosome A09 (35.6-45.8 Mb) consisting of ten significant SNP markers, chromosome A03 

(28.2-36.2 Mb) with seven significant SNPs, and chromosome A05 (15.9-28.6 Mb) with six 

markers are associated with SSR resistance. 

One of the key objectives of GWA study is the identification and utilization of the 

candidate genes. Thereby we searched for candidate genes associated with disease resistance 

mechanisms that were located within 50 kb upstream and downstream of significant SNPs 

detected in at least two environments. We choose 50 kb because LD for this population is low (< 

45 kb genome wise, < 21 kb for A genome and < 93 kb for C genome (Rahman et al., 2021). 

Based on these criteria, sixty-nine genes associated with defense response mechanisms were 
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identified. A TIR-NB-LRR gene (LOC106415792) that putatively encodes RPP1 proteins was 

located in the vicinity of SNP (SCM002777.2_48885679) detected in all the environments and 

combENV with stem LL, LW, PM_14D traits on chromosome C09. TIR-NB-LRR genes provide 

defense response against fungi through the activation of the salicylic acid (SA)-dependent 

resistance pathway (Michael Weaver et al., 2006). SA has been known to be involved in the 

activation of defense response against biotrophic and hemi-biotrophic pathogens. However, 

recent findings suggest S. sclerotiorum has a brief biotrophic phase followed by a necrotrophic 

phase (Kabbage et al., 2015; Chittem et al., 2020). Our findings are in agreement with Nováková 

et al. (2014). Two annotated candidate genes, WRKY transcription factor 33 (WRKY33) and a 

peroxidase C3-like, were detected 7.1 kb upstream and 4.6 kb downstream of marker 

SCM002772.2_65359864 on chromosome C4. This marker was detected using stem LL and LW 

data sets in multiple environments. WRKY33 is involved in defense response to fungus and the 

camalexin biosynthetic processes which was found to be involved in providing resistance against 

S. sclerotiorum (Stotz et al., 2011). Wang et al. (2014) demonstrated that overexpression of 

BnWRKY33 markedly enhanced resistance to S. sclerotiorum in B. napus. Another candidate 

gene annotated peroxidase C3-like to be involved in defense response. The remaining sixty-six 

genes reported in this study also encode proteins involved in the disease resistance mechanisms 

according to TAIR 10 and Uniport-KB.   

Identification of stable QTL/MTAs is a prerequisite for their use in a breeding program to 

facilitate MAS. In this study, thirty-three significant MTAs were found to be co-localized or in 

close proximity with the earlier bi-parental and GWA mapping studies reporting QTL/MTAs that 

could be exploited and integrated for SSR resistance into the breeding program (Table A7). To 

our knowledge, this is the first study that used three different GWA algorithms and four 
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phenotypic traits (stem LL, LW, PM_14D, and PM_21D) under field conditions to identify 

genomic regions associated with reaction to S. sclerotiorum. Further, this is the first time that 

comprehensive phenotypic evaluation of three physiological traits, days to flowering, stem 

diameter, and stem internode length, indicate these traits play an important indirect role for the 

selection of SSR resistance genotypes in the field. Out of one-hundred thirty-three significant 

SNPs, nineteen of them were detected in at least two environments by at least two GWA models 

and two phenotypic traits. Detection of stable and common MTAs with multiple traits, 

implementing multiple GWA models in multiple environments could provide more confidence 

and reliability on the reported MTAs, and new genomic regions for SSR resistance from our 

current study.  

Genomic selection is an effective genomic approach for the improvement of complex 

traits in crops (Crossa et al., 2014, 2017; Würschum et al., 2014; Odilbekov et al., 2019). GP 

models with the environment-wise BLUEs of stem LL, and LW resulted 0.06-0.51 and 0.12-0.52 

predictive abilities, respectively. Moreover, predictive abilities implementing three GS models 

i.e. rrBLUP, Bayes C and BRR for the combENV datasets for stem LL, LW, PM_14D, and 

PM_21D for SSR resistance were 0.41 to 0.3, 0.42-0.44, 0.47-0.49, and 0.63-0.64, respectively. 

These results clearly demonstrate that genome-wide markers are efficient in predicting SSR 

resistance. None of the models outperform than the others, with an exception for CARR_20 

environment, consistent with results obtained by other researchers (Spindel et al., 2015; de 

Azevedo Peixoto et al., 2017; Derbyshire et al., 2021). The observed differences in the predictive 

abilities among the used models for the combENV traits were mostly 1 to 2 units, which were 

likely due to GS model’s underlying assumptions. For example, rrBLUP model assumes that all 

the marker effects have identical variance and all markers effects have drawn from the same 
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gaussian/normal distribution (Heffner et al., 2011). Bayes C assumes a priori that markers have 

normally distributed effects with probability π and no effect with probability (1- π) (Meuwissen 

et al., 2017). BRR produces homogeneous shrinkage of all marker effects towards zero and 

yields a normal distribution of the marker effects (Desta and Ortiz, 2014). The consistent results 

were also reported by Derbyshire et al. (2021), where Bayesian models perform similar or worse 

than G-BLUP model to predict S. sclerotiorum resistance in B. napus. The predictive ability in 

this study ranging from medium to high, were comparable or higher than the estimated predictive 

ability of SSR resistance in two previous studies (Wei et al. 2016; Derbyshire et al., 2021). The 

differences in predictive ability could be attributed due to the difference in populations, diversity, 

linkage disequilibrium, and trait heritability (Crossa et al., 2017; Daetwyler et al., 2010; Isidro et 

al., 2015). However, the estimated predictive ability was more or less similar with the reported 

predictive ability by Derbyshire et al. (2021) when lesion length data was used as a target trait. 

Interestingly, in our current study, using PM_21D data we achieved 47-56% increase in 

predictive ability. The results suggest that use of PM_21D data rather than pathogen spreading 

(stem lesion length and lesion width) could be used as a useful phenotypic trait, which would 

potentially enable the breeders to achieve higher predictive ability and leading towards the 

selection of superior genotypes for SSR resistance breeding in rapeseed/canola. GWA mapping 

results from this study indicated that most of the significant SNPs explained only 3.6-12.1% of 

the phenotypic variance. However, most of the identified significant SNPs or QTL from the 

GWA and bi-parental linkage mapping studies also showed small effects, explaining less than 

10% of the observed phenotypic variance (Zhao and Meng, 2003; Zhao et al., 2006; Yin et al., 

2010; Wei et al., 2014; Wu et al., 2016). Thus, genomic selection offers promising opportunities 

by capturing the effects of both minor and major genes to exploit the full genetic potential over 
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selection based on few significant markers for the improvement of SSR resistance in 

rapeseed/canola. In future, this study could be further improved by including more genotypes, as 

well as integrating other independent biological information. 

In this study, we have identified resistant genotypes from a genetically diverse resource 

will serve as a potential donor for improving canola cultivars with SSR resistance at North 

Dakota State University canola breeding program. The use of multiple phenotypic data sets and 

GWA models used on data collected in multiple field environments allowed for the detection of 

one-hundred thirty-three significant SNPs, some of them were in novel regions of the genome. 

Some SNPs were detected in multiple datasets and models, suggesting their association with the 

resistant trait may be stronger than that of others. At the same time, they validate the notion that 

multiple approaches, e.g., phenotypic data sets and GWA models, may yield additional 

information that otherwise would not be captured. The significant stable and new MTAs detected 

from this study could be used for future MAS of SSR resistance in rapeseed/canola breeding. 

Further, the strong and significant correlation detected among the phenotypic traits suggested 

that, stem LW, PM_14D, and PM_21D could be used as proxies for stem LL when evaluating 

genotypes for their reaction to SSR. This study also assessed the potential of GP using different 

GS models and revealed a medium to high predictive ability depending on various phenotypic 

traits. Our results suggest that GS holds promise for the improvement of SSR resistance, and its 

application would enable the breeders for early SSR resistance genotype selection to accelerate 

the breeding efficiency by reducing the need to phenotype large number of genotypes in the field 

at maturing stage.   
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CHAPTER 4: GENETIC MAPPING AND GENOMIC PREDICTION OF 

SCLEROTINIA STEM ROT RESISTANCE TO RAPESEED/CANOLA AT SEEDLING 

STAGE 

4.1. Abstract 

The complex resistance mechanisms between rapeseed/canola and Sclerotinia 

sclerotiorum limits the development of functional molecular markers and gene identification that 

enables sclerotinia stem rot (SSR) resistance breeding. However, genomic selection has the 

potential to accelerate the genetic improvement of SSR resistance. Therefore, genome-wide 

association (GWA) mapping and genomic prediction (GP) was performed using a diverse panel 

of 337 rapeseed/canola genotypes. Phenotyping was done twice by challenging 3-week old 

seedlings to SSR attack using petiole inoculation technique (PIT). Days to wilt (DW) upto 2 

weeks and lesion phenotypes (LP) at 3, 4, and 7 days post inoculation (dpi) were recorded. 

Strong correlation (r = -0.94) between DW and LP_4dpi implied that single time point scoring 

LP_4dpi could be used as a proxy trait instead of multiple times collected DW trait for SSR 

evaluation. GWA analyses using single-locus (SL) and multi-locus (ML) models identified a 

total of 35, and 219 significantly associated SNPs, respectively. Out of these, seventy-one SNPs 

were identified by a combination of the SL model and any of the ML models, at least two ML 

models, or two traits. These SNPs explained 1.4-13.3% of the phenotypic variance, and 

considered as significant, could be associated with SSR resistance. Eighty-one putative candidate 

genes associated with disease resistance mechanisms corresponding to annotated significant 

SNPs were found to underlie SSR resistance. Six GP models resulted in moderate to high (0.45-

0.68) predictive ability depending on SSR resistance traits. The resistant genotypes and 

significant SNPs identified in the present study will serve as valuable resources for future SSR 
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resistance rapeseed/canola breeding. Our results also highlight the potential of genomic selection 

towards the improvement of highly polygenic SSR resistance that could lead a step forward 

towards the genomics-assisted rapeseed/canola breeding.   

Keywords: Sclerotinia stem rot, rapeseed/canola, genome-wide association (GWA) mapping, 

single nucleotide polymorphism (SNP), Quantitative trait nucleotides (QTNs), genomic 

prediction (GP) 

4.2. Introduction 

Rapeseed/canola (Brassica napus L., genomes=AACC, 2n=4x=38) is an amphidiploid 

Brassica species and the second largest cultivated oilseed crop in the world after soybean (USDA 

Foreign Agricultural Service, 2021). Sclerotinia stem rot (SSR), caused by the necrotrophic plant 

pathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary, is one of the most economically 

important diseases affecting rapeseed/canola, that significantly limits worldwide rapeseed/canola 

production (Boland and Hall, 1994; Bolton et al., 2006). The yield losses due to this pathogen 

vary from 10-80% from year to year depending on the disease development environments (Del 

Río et al., 2007; Wu et al., 2016). However, in the United States, each unit increase in SSR 

incidence imposes 0.5-0.7% loss in canola seed yields (Del Río et al., 2007; Koch et al., 2007). 

Moreover, SSR affected plants often tend to have reduced oil content, and inferior oil quality due 

to the changing of oil’s fatty acid profile (McCartney et al., 1999; Sharma et al., 2015).  

To manage the associated risk of SSR disease, growers primarily depend on the use of 

conventional rotation with non-host crop species and chemical controls which are neither 

completely effective nor economically and environmentally feasible (Derbyshire and Denton-

Giles, 2016; Roy et al., 2021). Therefore, breeding for durable SSR resistant varieties would be a 

more economically feasible, environment-friendly, and sustainable strategy to manage this 
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disease. However, no accessions conferring high level of resistance or complete immunity to S. 

sclerotiorum have been identified over the last three decades of investigation (Zhao et al., 2004; 

Bradley et al., 2006; Yin et al., 2010). Thus, the current breeding strategy for improved SSR 

resistance is solely dependent on the utilization of such partially resistant germplasm. Therefore, 

it is crucial to screen a worldwide collection of diverse genotypes with an appropriate screening 

method to identify genetically resistant genotypes to improve SSR resistance in rapeseed/canola. 

Several disease screening methods including petiole inoculation technique (PIT) (Zhao et al., 

2004; Bradley et al., 2006), detached leaf inoculation (Zhao and Meng, 2003; Wu et al., 2013), 

and stem inoculation (Li et al., 2006; Wu et al., 2013; Wei et al., 2016; Qasim et al., 2020; Roy 

et al., 2021; Shahoveisi et al., 2021) have been used to evaluate the genetic resistance of 

rapeseed/canola germplasm at different developmental stages under controlled and field 

environments. Moreover, rapeseed/canola cultivars differ in their plant architecture, growth 

habits, and maturity (Bradley et al., 2006; Arifuzzaman and Rahman, 2020; Rahman et al., 

2021). Cultivated canola express spring (no vernalization needed to induce flowering), semi-

winter (shorter period of vernalization require to induce flowering), or winter (vernalization 

needed over the winter to induce flowering) growth habits (Wang et al., 2011; Arifuzzaman and 

Rahman, 2020; Rahman et al., 2021). In North Dakota, the leading canola producing state in the 

USA, only spring canola is cultivated due to the shorter growing season. Poor winter hardiness 

prevents the cultivation of semi-winter and winter ecotypes canola. It is difficult to use the stem 

inoculation method to screen all ecotypes of B. napus because of the challenge to synchronous 

inoculation time and the vernalization requirement. Therefore, an early growth stage inoculation 

procedure that is quick, efficient, and reliable screening method that utilizes to circumvent 

bolting, flowering, or vernalization issues. This would ultimately accelerate the screening 
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process and allow the simultaneous screening of genotypes with any of the three growth habit 

types. Here we implemented a PIT screening at four to five leaf stage seedlings to evaluate a 

diverse set of rapeseed/canola germplasm for resistance to S. sclerotiorum. 

SSR resistance is a quantitatively inherited trait controlled by polygenes with minor 

additive and partially dominant effects, which are affected by the environment (Wei et al., 2016; 

Wu et al., 2016; Qasim et al., 2020; Roy et al., 2021; Derbyshire et al., 2021). Genetic mapping 

studies of SSR resistance through quantitative trait loci (QTL) analysis, based on classical 

linkage mapping strategy with bi-parental mapping populations, were commonly used for the 

purpose of identifying functional genes, and to position molecular DNA markers associated with 

SSR resistance. A majority of the SSR resistance QTL were located on chromosomes A01, A02, 

A03, A06, A7, A08, A09, C01, C02, C03, C04, C06, C08, and C09 (Zhao and Meng, 2003; Zhao 

et al., 2006; Yin et al., 2010; Wu et al., 2013; Wei et al., 2014; Behla et al., 2017; Qasim et al., 

2020; Shahoveisi et al., 2021) using a PIT, and detached leaf and/or stem inoculation technique 

at various developmental stages. Despite these efforts, no major QTL or gene conferring 

resistance to SSR were fine mapped or cloned, which seriously limits the research into genetic 

manipulation of SSR disease resistance breeding. Moreover, bi-parental mapping population 

lacks allelic diversity and have a fewer number recombination events which limits mapping 

resolution (Korte and Farlow, 2013). Genome-wide association (GWA) mapping has emerged as 

a robust approach to dissect complex traits and identify novel and superior alleles by capturing 

the resistance diversity in a germplasm collection to be utilized in marker-assisted breeding. 

GWA mapping is based on the utilization of linkage disequilibrium (LD) within a diverse 

population of genotypes which have undergone extensive historical and evolutionary 

recombination events leading to the development of shortened LD segments. Abundant genetic 
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allelic diversity and faster LD decay provides more promising opportunities to achieve high 

mapping resolution for the significant SNP/marker-trait-associations (MTAs) than the traditional 

linkage mapping (Nordborg and Weigel, 2008).  

To date, only a few GWA studies have been carried out to identify MTAs for mapping 

SSR resistance in rapeseed/canola (Gyawali et al., 2016; Wei et al., 2016; Wu et al., 2016; Roy 

et al., 2021). The screening procedure used in these studies were based on direct inoculation of 

mycelium to the main intact stem of the growing plant and/or to its detached stem during the 

flowering stage. Several investigations on SSR resistance reported a significant interaction and 

negative correlation between flowering time and stem resistance (Wu et al., 2019; Zhang et al., 

2019; Roy et al., 2021). Therefore, we screened our association panel using a PIT method to 

evaluate the performance of the genotypes for SSR resistance to eliminate the conflicts between 

early maturation and SSR resistance in rapeseed/canola breeding. To the best of our knowledge, 

this report is the first GWA analysis to identify useful SNPs associated with SSR resistance in 

rapeseed/canola using the PIT disease screening method at the seedling stage.  

One main issue with association mapping (AM) is the low power of detecting rare 

variants with small effects, which might be associated with economically important traits 

(Bernardo, 2016). Typically, individual SNPs/QTLs identified from GWA and bi-parental 

linkage mapping explain less than 12% of the phenotypic variance with some exceptions, which 

suggests uncaptured genetic potential for SSR resistance breeding in B. napus remains to be 

discovered. To obtain the maximum genetic potential for SSR resistance traits, genomic selection 

(GS) has emerged as a promising genomics-assisted breeding approach that account for both 

major and minor QTLs effects into prediction framework. GS utilizes the full genome 

information regardless of its significance, for genomic-enabled prediction of the superior 
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genotypes as a candidate for selection (Meuwissen et al., 2001; Crossa et al., 2017). GS 

combines genome-wide molecular markers and phenotypic data of a training population to 

develop a statistical model that predicts the breeding and/or genetic values of selection 

individuals/candidates which are only genotyped (Meuwissen et al., 2001; Crossa et al., 2017; 

Derbyshire et al., 2021). Previous GS studies for various agronomic traits, including blackleg 

and S. sclerotiorum disease resistance have shown the potential of GP to accelerate the 

rapeseed/canola breeding (Würschum et al., 2014; Fikere et al., 2020; Roy et al., 2021; 

Derbyshire et al., 2021). The predictive abilities on adult plant resistance against S. sclerotiorum 

in rapeseed/canola by Derbyshire et al. (2021) and Roy et al. (2021) clearly indicating the 

potential of GS for improving complex SSR resistance. This further motivated us to explore the 

effectiveness of GP in predicting SSR resistant genotypes using B. napus plants at the seedling 

stage. 

In this work, we used a diverse panel of 337 rapeseed/canola lines with the aim to i) 

identify new sources of SSR resistant genotypes at the seedling stage; ii) detect significant 

genomic regions, SNPs associated with SSR resistance at the seedling stage by performing 

single-locus and multi-locus GWA models; and iii) to assess the potential of GP for seedling 

stage SSR resistance in rapeseed/canola. 
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4.3. Materials and methods 

4.3.1. Germplasm collection 

In all, 337 diverse B. napus germplasm accessions, and breeding lines with worldwide 

geographical origin of 23 countries were collected from the North Central Regional Plant 

Introduction Station (NCRPIS), Ames, Iowa, USA and North Dakota State University (Table 

A8). The plant materials consisted of spring, semi-winter, and winter ecotypes/growth habits of 

rapeseed/canola. The experiments were conducted in the Agricultural Experiment Station 

Research Greenhouse Complex, North Dakota State University, Fargo, ND, USA during 2019 

and 2020. Plants were grown in the greenhouse at 22 ± 2 ℃ temperature with a 16-h photoperiod 

provided by natural sunlight supplemented with 400 W HPS PL 2000 lights (P.L. Light Systems 

Inc.).  

4.3.2. Experimental design, inoculum preparation and Sclerotinia sclerotiorum disease 

phenotyping 

The experiments were conducted twice using a randomized complete block design 

(RCBD) with three replications in each experiment. For each replicate, six individual plants were 

inoculated with S. sclerotiorum pathogen, which resulted in a total of 36 (6 plants x 3 

replications x 2 experiments) plants being evaluated for each genotype. All genotypes were 

screened in batches with two commercially available spring canola hybrid cultivars, “Pioneer 

45S51” and “Pioneer 45S56” as resistant checks, and the publicly available Canadian cultivar 

“Westar” as a susceptible check. Throughout the study, a highly virulent single isolate WM031 

of S. sclerotiorum was used for all inoculations to rapeseed/canola (Roy et al., 2021; Shahoveisi 

et al., 2021). The inoculum was prepared by culturing the surface sterilized sclerotia of the 

isolate on autoclaved potato dextrose agar (PDA) medium (24 gL-1 potato dextrose broth and 15 
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gL-1 agar) at 22-24℃. Then mycelium plugs from the actively growing edges were sub-cultured 

on another PDA plates at room temperature for 48 hrs. Three weeks old 4-5 leaf stage seedlings 

were inoculated using the PIT method described by Zhao et al. (2004) with a few modifications. 

In brief, the petiole of the second fully expanded leaf of the seedling were excised 2.5 cm from 

the main stem using scissors. Then two mycelium plugs of sclerotinia isolates from the actively 

growing edges of growing mycelium were loaded into a sterilized 200 µl pipette tips by pushing 

the open end of the micropipette tip into the 48 hrs old culture plates. After that, the loaded tips 

were carefully pushed onto the severed petioles making sure the inner side of the agar plug flush 

with the top of the petiole tip (Figure 4.1a). Two separate disease scoring systems were used to 

classify the phenotypic response. The inoculated plant was observed for two weeks and the 

response of individual plants of each line was determined by days to wilt (DW). A plant was 

considered wilted when the infected main stem girdled completely or the leaves of the infected 

plant became irreversibly flaccid (Figure 4.1f). DW were recorded daily for the next two weeks 

starting on the third day after inoculation. In addition to DW, lesion phenotypes (LP) were 

scored in a 1-to-5 rating scale at 3, 4, and 7 days post inoculation (dpi) denoted as LP_3dpi, 

LP_4dpi, LP_7dpi. The phenotypic response was categorized according to Zhao et al. (2004) 

with following modifications: 1 = unaffected, no symptoms on the main stem; 2 = slightly 

affected, small size lesions (≤ 1.0 cm) at junction of petiole and stem, no water-soaked lesion, no 

wilt; 3 = moderately affected, small water-soaked lesions ( 1.0 to ≤ 2.0 cm), no wilt; 4 = severely 

affected, expanded and sunken water-soaked lesion ( ≥ 2.0 cm), no wilt; and 5 = dead, expanded, 

sunken, and water-soaked lesion resulting complete wilting or topple over of the infected plant 

(Figure 4.1b-f).  
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4.3.3. Phenotypic data analyses  

Collected data on DW and LP on 3 (LP_3dpi), 4 (LP_4dpi), and 7 (LP_7dpi) data were 

subjected to analysis of variance (ANOVA) in SAS version 9.4 (SAS Institute, Cary, NC). Data 

from the both experiments were combined if the ratio of the effective error variance for each trait 

was less than 10-fold (Tabachnick and Fidell, 2000; Rahman et al., 2019; Arifuzzaman and 

Rahman, 2020; Roy et al., 2021). Best linear unbiased predictions (BLUPs) for all studied traits 

were used as the phenotypic values for the subsequent GWA analyses. BLUP estimation was 

calculated considering genotypes as random effects using the MIXED procedure 

(PROCMIXED) of SAS. Variance components were used to compute the broad-sense 

heritability (H2) for each trait as 

𝐻2 =
𝜎𝑔
2

𝜎𝑔2 +
𝜎𝑔𝑒2

𝑛 +
𝜎𝑒2

𝑛𝑟

 

where, σ2
g, σ

2
ge, and σ

2
e represent the genotype, genotype-by-experiment interaction, and residual 

error variances, respectively; n and r were the number of experiments, and replicates per 

experiments, respectively.  

Pearson’s correlation was conducted to examine the relationship between all traits using 

R (R Core Team, Vienna, Austria). The Shapiro-Wilk test was performed to verify the normal 

distributions of the collected data.  

4.3.4. Genotyping data and quality control 

Each member of the diversity panel was genotyped as described by Roy et al. (2021) and 

Rahman et al. (2021). In brief, total genomic DNA was extracted from fresh young and 

lyophilized leaf tissues using Qiagene DNeasy kit (Qiagen, CA, USA). The extracted DNA was 

quantified with a NanoDrop 2000/2000c Spectrophotometer (Thermo Fisher Scientific), and 
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diluted to 50 ng/µl. Genomic libraries were prepared using ApekI enzyme digestion described by 

Elshire et al. (2011). The library was sequenced as single-end reads at the University of Texas 

Southwestern Medical Center, Dallas, Texas, USA, using Illumina Hi-Seq 2500 sequencer. 

Bowtie 2 (Langmead and Salzberg, 2012) was used to align the single end sequencing reads 

against the “ZS11” reference genome sequence (Sun et al., 2017). TASSEL 5 GBSv2 pipeline 

(Glaubitz et al., 2014) was used to call the bi-allelic variant, which resulted in 497,336 unfiltered 

SNPs. Low-quality SNP markers were filtered with an individual read depth greater than 3, 

missing data less than 25%, minor allele frequency (MAF) greater than 5%, and physical 

distance (thin) less than 500 bp with VCFtools (Danecek et al., 2011). Since canola is a self-

pollinated crop, SNPs that were more than 25% heterozygous were removed using TASSEL 

(Bradbury et al., 2007). After applying quality filtering, a total of 38,510 high quality SNPs was 

obtained. SNP loci with missing values were imputed in Beagle 5.1 (Browning et al., 2018).  

4.3.5. Single-locus genome-wide association analyses 

SNPs with less than 5% MAF were removed from a total of 38,510 markers, leaving 27, 

282 high quality SNPs for subsequent GWA analyses. GEMMA software (version 0.98.1) (Zhou 

and Stephens, 2012) was used for single-locus (SL) GWA analyses using a mixed linear model 

(MLM). The first three principal components (PCA) calculated by prcomp () function in R (R 

Core Team, 2020) were embedded as covariates in the GWA analyses to control the confounding 

effect of population structure. Model-based clustering was performed using the first three PCAs 

to determine the subpopulations among the association panel with Mclust package in R. The 

GEMMA-MLM was executed with the following command in the GEMMA (version 0.98.1) 

software: “gemma -g [genotype data] -p [phenotype] -a [genotype annotation data] -c [first 

3PCA] -k [centered relatedness matrix/kinship matrix] -o [output]”. A kinship matrix was 
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incorporated as a random effect. The matrix was computed using the centered relatedness 

procedure in GEMMA. The significance threshold was determined using the method proposed 

by Li and Ji (2005) to determine the significant threshold value for the identified SNPs. In this 

method, for the 27, 282 SNPs we calculated the effective number of independent loci (Meff) by 

estimating correlation matrix and eigenvalue decomposition. The test criteria were then adjusted 

using the Meff with the following correction by Sidak (1967): 

𝛼𝑝 = (1 − 𝛼𝑒)
1/𝑀𝑒𝑓𝑓  

where, αp is the comparison-wise error rate and αe is the experiment-wise error rate (αe =0.05). 

4.3.6. Multi-locus genome-wide association analyses 

Multi-locus (ML) GWA analyses were implemented using three multi-locus GWA 

algorithms that includes MLMM (Segura et al., 2012), FarmCPU (Liu et al., 2016), and mrMLM 

(Wang et al., 2016). For the ML models, we selected the three PCA to control population genetic 

stratification that we used for GEMMA-MLM. The MLMM, and FarmCPU models were carried 

out using the GAPIT (version 3.0) R package (Wang and Zhang, 2021). The mrMLM GWA 

model was implemented using the R package “mrMLM” (Wang et al., 2016) with default 

parameters. The critical significant threshold between a trait and SNPs for all ML models were 

set to P ≤ 1.0 x 10-3 [- log10 (P) ≥ 3.0], which has been broadly adopted by other researchers in 

various studies (Li et al., 2018; Xu et al., 2018; Karikari et al., 2020). The GWA results were 

visualized with Manhattan plot and comparative quantile-quantile (Q-Q) plots by plotting the 

observed P values against expected P values generated using the CMplot package in R language 

(https://github.com/YinLiLin/R-CMplot).  
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4.3.7. Candidate gene search 

The significant MTAs identified in at least two traits or two or more GWA models (either 

SL or ML) were selected for potential candidate gene search that may be associated with disease 

resistance. Candidate genes were searched within the LD blocks, where associated significant 

SNPs were located, were regarded as the candidate gene search interval. If the detected SNPs 

were not located in the LD block, genomic regions spanning ± 50 kbp flanking regions of the 

significant MTAs were used as potential candidate gene interval in B. napus “ZS11” reference 

gene models (Sun et al., 2017). LD blocks analyses on the same chromosome were computed by 

Haploview v4.1 with the default settings (Barrett et al., 2005). 

4.3.8. Genomic prediction 

Genomic prediction was conducted implementing six GS models, i.e. rrBLUP, and five 

Bayesian models: Bayes A (BA), Bayes B (BB) (Meuwissen et al., 2001), Bayes C (BC) 

(Gianola et al., 2009), Bayesian LASSO (BL) (de los Campos et al., 2009), and Bayesian Ridge 

Regression (BRR) (Meuwissen et al., 2001). All models were performed in R language. The GP 

model rrBLUP was constructed using the package “rrBLUP” (Endelman, 2011) and BGLR 

(version 4.0.4) package was used to fit the Bayesian genomic prediction models (Pérez and de 

los Campos, 2014). All the analyses for Bayesian models were performed for 5,000 Monte Carlo 

Markov chain iterations with a 1,000 burn-iterations. All of GP models were constructed using 

the following formula:  

𝑦 = 𝜇 + 𝑋𝛽 + 𝜀 

Where, y is the vector of phenotypic values, µ is the intercept/grand mean, X is the standardized 

marker genotype matrix, β is the estimated random additive marker effects, and ε is the residual 

error term. 
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In brief, the rrBLUP model assumes that all the markers effects are normally distributed 

and all these marker effects have identical variance (Meuwissen et al., 2001). Whereas, Bayesian 

models may utilize different prior distributions which result in different levels of effect size 

shrinkage with various proportions of zero effect markers (Meuwissen et al., 2001; Habier et al., 

2011). In BA, the effect of each marker is estimated from a gaussian distribution and markers are 

assumed to have different variances. The BB model is similar to BA, but allows some of the 

marker effects with zero variance. The BC model assumes a priori that markers have normally 

distributed effects with probability π and no effect with probability (1- π) (Meuwissen et al., 

2017). The BL model applies both shrinkage and variable selection. The marker effects of the 

BL method are estimated from a double exponential distribution (de los Campos et al., 2009). 

The BRR creates equal shrinkage of all the marker effects towards zero and produces a Gaussian 

distribution of the marker effects (Desta and Ortiz, 2014).    

The predictive ability of the GP models was tested with five-fold cross validation (with 

270 individuals as training set and remaining 67 individuals as validation set in each fold) and 

replicated 100 times to avoid biases in the estimation. Predictive ability of each trait is calculated 

as the Pearson correlation (r) between the average of the predicted genomic estimated breeding 

values (GEBVs) and the observed phenotypes in all the cross-validation sets. Prediction accuracy 

is defined as the correlation between GEBVs and the true breeding values. The true breeding 

values of tested traits are not known, we approximated the prediction accuracy by the correlation 

between the GEBVs and the observed phenotypic values divided by the square root of the 

phenotypic heritability (√𝐻2) following Lorenz et al. (2011) and Jarquín et al. (2014). Thus, the 

accuracy of the models was estimated by dividing the mean of Pearson’s r between GEBVs and 
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phenotype values from all cross-validations with 100 cycles by square root of broad-sense 

heritability (H).  

4.4. Results  

4.4.1. Phenotypic variations for Sclerotinia sclerotiorum reactions and correlation among 

phenotypic traits 

SSR disease reactions can be variable under field environments, therefore, phenotyping 

the collection of germplasm against S. sclerotiorum was performed in the greenhouse under a 

controlled environment. A continuous and broad range of phenotypic variations were observed 

for days to wilt (DW) and lesion phenotypes (LP) traits among the genotypes in the study (Figure 

4.1a-f, Figure 4.2a-d; Table 4.1). The BLUP values for DW varied from 3.5 to 9.9 days with an 

overall mean of 5.4 days and standard deviation (SD) of 0.87 (coefficient of variation is 30.9%). 

The variations observed for LP scores at 3, 4, and 7 dpi, ranged (mean ± SD) from 2.0 to 4.3 (2.8 

± 0.50), 2.6 to 4.8 (3.8 ± 0.45), and 3.7 to 5.0 (4.8 ± 0.16), respectively. The coefficient of 

variation (CV) of LP scores of the association population at different days varied from 6.7 to 

19.2% (Table 4.1). Based on the phenotypic data, a few genotypes, which performed better level 

the resistant check cultivars used in this study, were identified as promising sources of resistance 

to SSR at the seedling stage. The BLUP values of the top five promising resistant genotypes 

ranged from 7.1 to 9.9 for DW, 2.0 to 2.2 for LP_3dpi, 2.6 to 2.8 for LP_4dpi, and 3.7 to 4.4 for 

LP_7dpi. However, the observed phenotypic responses of the resistant checks ‘Pioneer 45S51’ 

were 4.7, 3.3, 4.2, and 4.9 for DW, LP_3dpi, LP_4dpi, and LP_7dpi, respectively, and ‘Pioneer 

45S56’ were 5.3, 2.9, 3.8, and 4.9 for DW, LP_3dpi, LP_4dpi, and LP_7dpi, respectively. The 

phenotypic response of susceptible check ‘Westar’ cultivar was 3.5, 4.3, 4.8, and 5.0 for DW, 

LP_3dpi, LP_4dpi, and LP_7dpi, respectively (Table 4.1). Analysis of variance (ANOVA) for 
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SSR reaction in terms of DW and LP scores on different days revealed significant differences (P 

≤ 0.001) among the genotypes, and interaction of genotype by experiment with an exception for 

LP at 7 dpi (interaction non-significant) (Table 4.2). Highly significant correlations were 

observed among the phenotypic traits for SSR reaction. For instance, significant negative 

associations were found for DW with LP_3dpi (r = -0.84), LP_4dpi (r = -0.94), and LP_7dpi (r = 

-0.87) at P ≤ 0.001 (Figure 4.3).  

The estimated broad-sense heritability of SSR resistance on entry mean basis across the 

two experiments were 0.71, 0.69, 0.70, 0.62 for DW, LP_3dpi, LP_4dpi, and LP_7dpi, 

respectively (Table 4.1). Medium to high heritability for SSR resistance in the phenotypic traits 

indicated that the phenotypic data was suitable for further genetic analyses.   

Table 4.1. Phenotypic variation obtained through BLUP values in the response of Brassica 

napus genotypes against sclerotinia stem rot  

Traitsa Min Mean Max CVb 

Shapiro–

Wilk test 

p value 

H2 c 

Check cultivars (mean)c 

Pioneer 

45S51 

Pioneer 

45S56 
Westar 

DW 3.5 5.4 9.9 30.9 3.5e10-7 0.71 4.7 5.3 3.5 

LP_3dpi 2.0 2.8 4.3 19.2 1.1e10-12 0.69 3.3 2.9 4.3 

LP_4dpi 2.6 3.8 4.8 12.2 0.003 0.70 4.2 3.8 4.8 

LP_7dpi 3.7 4.8 5.0 6.7 2.2e10-16 0.62 4.9 4.9 5.0 

Traitsa: DW, days to wilt; LP, lesion phenotypes measured in 1 to 5 categorical scale at 3 (LP_3dpi), 4 

(LP_4dpi), and 7 (LP_7dpi) days post inoculation (dpi); CVb, coefficient of variation; Check cultivars 

(mean)c, mean phenotype scores of the resistant checks (Pioneer 45S51 and Pioneer 45S56) and 

susceptible check (Westar) cultivars of the evaluated traits; H2 c (Broad sense heritability) 
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Figure 4.1. Differential responses of Brassica napus genotypes against Sclerotinia sclerotiorum 

attack. a) Inoculated plant; b) unaffected plant [Lesion phenotype (LP) score 1]; c) slightly 

affected plant (LP score 2); d) moderately affected plant (LP score 3); e) severely affected plant 

(LP score 4); f) wilted or dead plant (LP score 5). 
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Table 4.2. Combined analysis of variance (ANOVA) of sclerotinia stem rot resistance trait in 

canola/rapeseed genotypes (including check cultivars) 

Source of variation 
Traitsa 

DW LP_3dpi LP_4dpi LP_7dpi 

Genotype *** *** *** *** 

Genotype x Experiment *** ** *** ns 

**, ***, and ns indicate significance at P ≤ 0.01, P ≤ 0.001, and not significant, respectively.  

Traitsa: DW, days to wilt; LP, lesion phenotypes measured in 1 to 5 categorical scale at 3 

(LP_3dpi), 4 (LP_4dpi), and 7 (LP_7dpi) days post inoculation (dpi). 

 

 

Figure 4.2. Distribution of phenotypic BLUP values of evaluated rapeseed/canola lines 

including check cultivars for Sclerotinia sclerotiorum resistance in terms of a) days to wilt b) 

lesion phenotype at 3 days post inoculation (LP_3dpi); c) lesion phenotype scores at 4dpi 

(LP_4dpi); and d) lesion phenotype scores at 7dpi (LP_7dpi). Mean values are presented by the 

dotted vertical lines; SD represents standard deviation; Shapiro–Wilk represents the probability 

values of the test for normal distribution. 
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Figure 4.3. Correlation heatmap of various Sclerotinia sclerotiorum resistance phenotypic traits. 

Traits: DW= Days to wilt; LP_3dpi= lesion phenotype scores at 3 days post inoculation (dpi); 

LP_4dpi= lesion phenotype scores at 4dpi; LP_7dpi= lesion phenotype scores at 7dpi. *** 

indicate significance at P ≤ 0.001 level. 

4.4.2. SNP distribution and population structure analysis 

After quality filtering and removal of markers with MAF < 5%, a total of 27, 282 high 

quality SNPs were used in the current study. These SNPs span a length of 854.3 Mb genome 

sequence representing 75.6% coverage of the B. napus genome (~ 1130 Mb). The number of 

SNPs were uneven among the 19 chromosome and ranged from 714-2386 SNPs per 
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chromosome with the average SNP per chromosome was 1436, where the chromosome 4 and 13 

having the lowest (714 SNPs) and highest (2386 SNPs), respectively, while the average SNP per 

chromosome was 1436. The mean SNP density was approximately one SNP per 31.3 kb (Figure 

4.4a). Based on the 27, 282 markers, principal component analysis (PCA) and kinship analyses 

were performed to identify the underlying genetic differences of the genotypes. The first three 

PCA explained 22.2% of the genotypic variation and were included in the GWA mapping model 

to control the confounding effect of population stratification. Furthermore, model-based 

clustering analysis using the first three PCA identified five subgroups within the genotypes based 

on three ecotypes (Figure 4.4b).    
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Figure 4.4. Single nucleotide polymorphism (SNP) density and distribution across the 19 

chromosomes (a); and population structure as reflected by the scatter plot of PC1 and PC2 

derived from a principal component analysis (b) of 337 rapeseed/canola genotypes. 

4.4.3. Marker-trait-association detected for SSR resistance by single-locus GWA analyses 

The single-locus (SL) GWA analyses, was performed with the GEMMA-MLM model 

that included the first three PCs as fixed effect and genetic relatedness matrix as random effect. 

The SL GWA results for DW and LP scores at 3, 4, and 7 dpi are presented in Table A9. Based 
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on the method developed by Li and Ji (2005), the significance threshold was P ≤ 2.40E-04; LOD 

≥ 3. A total of 35 SNPs were identified for the SSR resistance phenotypic traits. The SNPs were 

detected on chromosomes A01, A03, A04, A05, A06, A08, A09, C01, C02, C03, C04, C05, C06, 

C08, and C09. The majority of the significant SNPs were located on chromosomes C08 (5), A09 

(4), A04 (3), A05 (3), A06(3), C02 (3), and C03 (3). The highest (n=15) number of significant 

SNPs were identified for DW while the lowest (n=11) number of SNPs were for the LP_3dpi 

SSR trait. Among these, 18 significant SNPs were detected for two or more of the SSR resistance 

traits (Table A9, A10). 

4.4.4. Marker-trait-associations detected for SSR resistance by multi-locus GWA analyses 

Three multi-locus (ML) GWA algorithms: MLMM, FarmCPU, and mrMLM detected a 

total of 219 SNPs corresponding to 216 loci across all the 19 chromosomes of B. napus genome 

[-log10 (P) =3.0-12.3] (Table A9). The number of SNPs detection by the three ML-GWA 

methods ranged from 10-48. The highest number of 48 SNPs were detected for DW trait by 

FarmCPU whereas the lowest number of 10 SNPs were found to be associated for LP_7dpi by 

mrMLM method. A total of 44 out of 219 SNPs were identified simultaneously in at least two 

phenotyped SSR resistance traits by two or more ML methods for any of the trait. The estimated 

allelic effects ranged between -0.54 to 0.63, -0.29 to 0.27, -0.21 to 0.19, and -0.14 to 0.12 for 

DW, LP_3dpi, LP_4dpi, and LP_7dpi traits, respectively. The explained phenotypic variation 

accounted for by the significant SNPs ranged from 2.0-9.30%, 1.60-11.90%, 1.35-13.30%, and 

2.48-9.52% for DW, LP_3dpi, LP_4dpi, and LP_7dpi traits, respectively (Table A9, A10). 
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4.4.5. Commonly identified marker-trait-associations among the SSR resistance traits, 

among and between single-locus and multi-locus GWA studies methods 

Of the 35 detected QTNs by SL-GWA methods, 18 were also associated with two or 

more SSR resistance traits. GEMMA-MLM detected a maximum of 15 SNPs for DW, 14 SNPs 

for both LP_4dpi and LP_7dpi respectively and 11 SNPs for LP_3dpi traits (Figure A10). Seven 

SNPs were mutually identified between DW and LP_4dpi, DW and LP_7dpi; followed by 5 

SNPs between LP_3dpi and LP_4dpi trait, and only single SNP between DW and LP_3dpi 

(Table A9, A10). Moreover, only a single, SNP SCM002771.2_77997199, on chromosome C03 

were co-localized by the SL methods for DW, LP_3dpi, and LP_4dpi traits. All of the QTNs 

detected with the SL methods were also associated with the four SSR resistance traits by any of 

the ML-GWA models. In addition to the 35 QTNs identified by SL, GWA analyses by ML-

methods detected additional 184 SNPs associated with SSR phenotypic traits. The number of 

identified QTNs by all the ML models for SSR resistance traits varied between 54-88 whereas 

the number of QTNs for each of the ML models ranged between 10-48. The highest (48) number 

of QTNs were detected by FarmCPU (DW), and the lowest (10) QTNs by mrMLM model out of 

the three ML models for LP_7dpi (Figure A7). Comparison of the three ML models 

demonstrated that each model has the power to detect QTNs concurrently from each other and a 

few QTNs (ranged 1 to 9) were detected by all the three models for each trait. However, no 

common SNPs were identified by all three ML models with all SSR resistance traits. The number 

of commonly detected SNPs varied between and among the studied SSR resistance phenotypic 

traits: DW & LP_4dpi (20) > LP_3dpi & LP_4dpi (14) > DW & LP_7dpi (13) > DW & LP_3dpi 

(8) > DW, LP_3dpi & LP_4dpi (5) > LP_4dpi & LP_7dpi (3) > DW, LP_4dpi & LP_7dpi (2) 

(Table A9, A10). However, to obtain more reliable results, only the SNPs that were 
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simultaneously detected by both SL and any of the ML methods or at least two of the ML 

methods or at least two traits were considered as significant QTNs. Thus, a total of 71 QTNs 

controlling SSR resistance traits were obtained (Table A10). These QTNs will serve as a 

valuable source and could provide promising opportunities to facilitate MAS breeding for SSR 

resistance. Manhattan and Q-Q plots summarizing the GWA results of all the phenotypic traits 

for SSR resistance by SL (GEMMA-MLM) and ML (MLMM, FarmCPU, mrMLM) algorithms 

were present in Figure 4.5a-b, Figure 4.6a-b, and Figure A11, A12, A13, and A14. All GWA 

models were compared with the studied phenotypic traits to determine if the models control false 

positives and false negatives. The Q-Q plot depicts the expected negative log10 (P) values versus 

the expected negative log10 (P) values across all markers. Q-Q plots of models including 

GEMMA-MLM, and MLMM had a straight line with slightly deviated tail, which indicated that 

these two models reduced false positives (Figure 4.5a-b, Figure 4.6a). However, most of SNPs 

were close to the straight line or little bit inflates downward, indicating that they might have been 

reported as false negatives (Figure 4.5a-b, Figure 4.6a). In contrast, examination of Q-Q plots of 

FarmCPU, and mrMLM models showed a sharp upward deviation from the expected P value 

distribution in the tail area, indicating these models controlled both false positives and false 

negatives (Figure 4.5a-b, Figure 4.6a). 
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Figure 4.5. Circular Manhattan plots showing statistically significant SNPs based on single-

locus (SL) GEMMA-MLM, and three multi-locus (ML) MLMM, FarmCPU, and mrMLM 

models located on 19 chromosomes for Sclerotinia sclerotiorum resistance at the seedling stage. 

Associations for the days to wilt (a), and lesion phenotype (LP) scores at 3 days post inoculation 

(dpi) (b) were shown. A multi-track Q-Q plot for each trait with all the GWA models are 

presented to the right of each Manhattan plot. The threshold values for SL and ML models were 

set up at -log10 (P) ≥ 3.6 and -log10 (P) ≥ 3.0, respectively.  
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Figure 4.6. Circular Manhattan plots showing statistically significant SNPs based on single-

locus (SL) GEMMA-MLM, and three multi-locus (ML) MLMM, FarmCPU, and mrMLM 

models located on 19 chromosomes for Sclerotinia sclerotiorum resistance at the seedling stage. 

Associations for the lesion phenotype (LP) scores at 4dpi (a), and LP scores at 7dpi (b) were 

shown. A multi-track Q-Q plot for each trait with all the GWA models are presented to the right 

of each Manhattan plot. The threshold values for SL and ML models were set up at -log10 (P) ≥ 

3.6 and -log10 (P) ≥ 3.0, respectively.  
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4.4.6. Candidate gene prediction 

To identify the potential candidate genes for the SSR resistance, the significant SNPs 

detected in at least two traits or with two or more GWA models were used for candidate gene 

mining using the “ZS11” reference genome sequence database (Sun et al., 2017). With this 

criterion, 81 putative candidate genes with known functions associated with plant disease 

resistance mechanisms were identified. Candidate gene protein were used as a query against the 

Uniport database (https://www.uniprot.org/uniprot/) to discover a putative biological function 

(Table A11). The biological processes of the detected candidate genes were involved in defense 

response, defense response to fungus, response to a molecule of fungal origin, response to chitin, 

programmed cell death, callose deposition in cell wall, response to salicylic acid, indole 

glucosinolate biosynthetic process, induced systemic resistance, jasmonic acid mediated 

signaling pathway, ethylene-dependent systemic resistance, systemic acquired resistance, pattern 

recognition receptor signaling pathway, response to wounding, protein kinase activity, response 

to oxidative stress, toxin catabolic process, immune response, reactive oxygen species metabolic 

process, brassinosteroid mediated signaling pathway and other biological processes which might 

play a key role in early stage SSR resistance in rapeseed/canola (Table A11).  

4.4.7. Genomic prediction (GP) 

The mean predictive ability and prediction accuracy of six GS models are shown in 

Figure 4.7a-d. There was a little difference in the predictive ability among the six GS statistical 

models for all the analyzed SSR resistance traits. The average predictive ability i.e. the 

correlation between observed and predicted resistance to SSR (i.e. GEBVs) were 0.60-0.62 for 

DW; 0.67-0.68 for LP_3dpi; 0.63 for LP_4dpi; and 0.45-0.48 for LP_7dpi (Figure 4.7a-d). In 

order to approximate the prediction accuracy, the mean predictive ability obtained from the 



 

98 

cross-validation sets were divided by √H2. Therefore, the prediction accuracy estimates for DW, 

LP_3dpi, LP_4dpi, and LP_7dpi were, 0.71-0.73, 0.81-0.82, 0.75-0.76, and 0.57-0.60, 

respectively (Figure 4.7a-d). The highest genomic predictions explained ~ 67-68% of the 

variation was observed in LP_3dpi traits, whereas the lowest ~ 45-48% explained variation was 

recorded in LP_7dpi trait. Predictive abilities estimated from the various models had 0 to 3-unit 

differences depending on the traits. These slight differences are likely due to variations in genetic 

architecture and underlying model’s assumptions. No model consistently resulted higher 

predictive ability across the traits. For example, in case of LP_3dpi, 0.68 predictive ability were 

recorded from rrBLUP, whereas all the Bayes models yielded a 0.67 predictive ability. However, 

the predictive ability for the LP_7dpi trait was 0.45 by rrBLUP and BL method, which was 3 

units lower than the BB, and BRR model’s estimation of 0.48. For LP_4dpi, all the implemented 

GS models resulted ~0.63 predictive ability. Therefore, slightly observed differences between the 

predictive ability could not be a criterion for selecting best GS model for SSR resistance 

prediction.   
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Figure 4.7. Predictive ability and accuracy of six genomic selection models, rrBLUP, Bayes A 

(BA), Bayes B (BB), Bayes C (BC), Bayesian Lasso (BL) and Bayesisan ridge regression (BRR) 

to detect sclerotinia stem rot resistant genotypes using phenotypic data of days to wilt (a), lesion 

phenotypes at 3 days post inoculation (b), lesion phenotypes at 4 days post inoculation (c), and 

lesion phenotypes at 7 days post inoculation (d) obtained from canola/rapeseed plants inoculated 

at the seedling stage with S. sclerotiorum using the petiole inoculation method. Boxplots show 

second and third quartiles and wishkers show interquertile range of predictive ability (r). The red 

dot in each box plot represents the mean predictive ability. The numbers above horizontal black 

bars represent the predictive ability (r) at the top and prediction accuracy in brackets. 

4.5. Discussion 

Sclerotinia sclerotiorum is a cosmopolitan fungal pathogen that causes significant seed 

yield loss, reduced oil content, and quality in the major rapeseed/canola growing regions 

including North America, Europe, Australia, India, and China (Barbetti et al., 2013; Wu et al., 
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2016).  The lack of a genotype with complete genetic resistance and useful molecular markers to 

select for SAR resistance limits MAS breeding towards development of durable SSR resistant 

cultivars for the growers to mitigate the economic loss associated with this pathogen attack. 

Therefore, it is necessary to identify stable resistance sources to the pathogen and to discover 

useful molecular markers significantly associated with SSR resistance to facilitate the SSR 

resistance MAS breeding.  

A variety of artificial inoculation methods were used to screen B. napus genotypes 

against S. sclerotiorum. However, there is no single, and widely accepted method to evaluate 

SSR resistance. The stem inoculation method was previously used to evaluate the SSR resistance 

at the flowering stage. However, rapeseed/canola genotypes express spring, semi-winter, and 

winter growth habits while differing in plant architecture, stem diameter, stem internode length, 

and most importantly, flowering time (Li et al., 2006; Wu et al., 2019; Zhang et al., 2019; Qasim 

et al., 2020; Roy et al., 2021). Previous studies found that early flowering genotypes were prone 

to S. sclerotiorum infection compared to the late flowering genotypes. In addition to flowering 

time, plants smaller in stem diameter and longer in stem internode length were also found to be 

vulnerable to S. sclerotiorum infection (Li et al., 2006; Qasim et al., 2020; Roy et al., 2021).  

Therefore, it is necessary to implement an inoculation method which allows to evaluate all three 

ecotypes rapeseed/canola genotypes against S. sclerotiorum infection without being affected by 

any associated architectural or physiological traits. Thus the current study was designed to 

phenotype B. napus diversity panel at the same growth stages against S. sclerotiorum using 

petiole inoculation technique (PIT) by inoculating 3-weeks old seedlings. The PIT inoculation 

method was used by other researchers to successfully differentiate the resistant and susceptible 

lines/cultivars under the controlled and field environments. Zhao et al. (2004) successfully 
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implemented PIT for the evaluation of resistance of 47 B. napus seedlings to S. sclerotiorum 

under greenhouse conditions. Another study carried out by Bradley et al. (2006) screened 19 

canola cultivars and found that PIT could differentiate resistant and susceptible canola cultivars 

for their reaction to S. sclerotiorum. The PIT inoculation method was also used by Zhao et al. 

(2006) and Behla et al. (2017) to identify QTL for resistance to SSR using DH populations in B. 

napus.   

In the present study, 337 rapeseed/canola genotypes were evaluated for DW and LP at 3, 

4, and 7dpi to identify the potential SSR resistant genotypes. The LP scores were recorded at 

different time points to distinguish differences in disease progress among the genotypes and to 

identify a single time point for phenotypic scoring that correlates with the commonly used DW 

data for SSR phenotyping. QTL mapping studies conducted by Zhao et al. (2006) used DW and 

stem lesion length data at 4 dpi, whereas Behla et al. (2017) used only DW. The use of multiple 

phenotyping scoring systems would provide valuable insights to accurately evaluate the 

resistance performance of the genotypes and detect additional QTNs associated with disease 

resistance (Roy et al., 2021; Shahoveisi et al., 2021). Furthermore, the evaluation of extensive 

phenotyping with multiple scoring systems would enable researchers to select a single time point 

to score disease phenotype. Based on our phenotyping screening results, a wide range of 

phenotypic variability were recorded in response to the S. sclerotiorum infection in the studied 

rapeseed/canola germplasm. The continuous and broad range of observed phenotypic responses 

reinforces the notion that SSR resistance in B. napus is a quantitatively inherited trait, controlled 

by many minor genes with small effect (Zhao et al., 2006; Wu et al., 2013, 2016; Wei et al., 

2016; Qasim et al., 2020; Roy et al., 2021). Pearson correlation analyses among the phenotypic 

traits revealed that DW trait was significantly and strongly correlated with the different time 



 

102 

points LP scores data (r = -0.84 to -0.94). However, LP score at 4 dpi was found to have the 

strongest association (r = -0.94) with the DW. The strong association among DW and LP scores 

were also reported by Zhao et al. (2004, 2006). Therefore, based on these findings, LP_4dpi 

could be used as proxy criterion to DW when evaluating rapeseed/canola germplasm for 

resistance to S. sclerotiorum. The estimated broad sense heritability (H2) for SSR resistance in 

the 337 B. napus germplasm (62.5 to 70.7%) implied the majority of the observed phenotypic 

variation was controlled by genetic factors. This level of heritability is consistent with the 

previous SSR resistance studies (Zhao et al., 2006; Wu et al., 2013; Wei et al., 2016; Qasim et 

al., 2020; Roy et al., 2021), which further indicate that phenotypic selection is effective and 

therefore suitable for subsequent GWA analyses to detect favorable alleles conferring SSR 

resistance to facilitate MAS breeding.  

The power of detecting MTAs by GWA study is limited by several factors including 

population size, cryptic population structure, linkage disequilibrium, heritability of the trait, 

underlying genetic architecture of the trait of interest, and the statistical models used (Gupta et 

al., 2005; Yu et al., 2006; Josephs et al., 2017). The diversity panel used here consists of 337 

rapeseed/canola genotypes originating from 23 countries and comprised of 0.3% Australian, 

28.8% Asian, 35.0% European, and 35.9% North American origin. Therefore, the geographical 

distribution of the used genotypes in our study provides an ideal diverse panel with all forms of 

ecotypes collected from the major rapeseed/canola growing regions. The high phenotypic 

variability among the genotypes coupled with ideal diversity panel with good worldwide 

geographical coverage, high mean SNP density (~ one SNP per 31.3 kb) enhances QTN 

detection via GWA analyses. Hereafter, we implemented the first GWA study at the seedling 

stage to identify the significant SNPs, genomic regions, and putative candidate genes conferring 
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SSR resistance in rapeseed/canola. As the pattern of quantitatively inherited SSR resistance is 

complex and controlled by many genes with small effect, we simultaneously used multiple GWA 

models i.e. one SL (GEMMA-MLM) and three ML (MLMM, FarmCPU, and mrMLM) GWA 

models to discover SNPs associated with the traits. Although SL model (MLM) is widely used to 

detect the genetic variants for traits of interest in many crop species, it has several limitations to 

dissect complex traits. SL models perform one-dimensional genomic scan by testing one marker 

at a time, and also fail to simultaneously match the true overall genetic model of 

complex/quantitative traits controlled by multiple loci. False-negative (Type II error) could also 

result from the MLM-based SL models due to the model overfitting, where some potentially 

important associations could be missed (Liu et al., 2016). On the other hand, tremendous 

statistical improvement efforts were made over the few years to overcome the problems 

associated with SL GWA models for the dissection of complex traits. Several multi-locus (ML) 

GWA algorithms, such as MLMM (Segura et al., 2012), FarmCPU (Liu et al., 2016), mrMLM 

(Wang et al., 2016), FASTmrEMMA (Wen et al., 2018), ISIS EM-BLASSO (Tamba et al., 

2017), and pLARmEB (Zhang et al., 2017), were developed. The advantages of these ML 

methods are that no multiple test correction is required due to the multi-locus nature of the 

model, and also have more statistical power and accuracy to detect associations than SL models 

(Wang et al., 2016; Xu et al., 2017). Similar trends were also observed in the current study, 

where for most of the traits, where ML GWAS models detected more QTNs compared to the SL 

model. Among all the GWA models implemented, FarmCPU has shown the highest power to 

detect MTAs and while controlling for both Type I and Type II errors. Similar results were also 

found in other studies where SL models generate more false negatives (Tamba et al., 2017; Wen 

et al., 2018; Kaler et al., 2020). Other studies were also reported, where ML models including 
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FarmCPU, mrMLM, FASTmrEMMA, and LASSO (ISIS EM-BLASSO), performed better than 

MLM-based models (Tamba et al., 2017; Wen et al., 2018; Kaler et al., 2020). Based on the Q-Q 

plot comparison, we also observed that ML (FarmCPU, mrMLM) models perform better in 

reducing false positives and false negatives; whereas even though GEMMA-MLM (SL) and 

MLMM (ML) models reduced the false positives, but increases false negatives in some 

instances. Among all the GWA models implemented, FarmCPU had the highest detection power, 

while controlling for both Type I and Type II errors. Similar results were observed by other 

researchers in other studies where SL models generated more false negatives (Tamba et al., 

2017; Wen et al., 2018; Kaler et al., 2020).  

GWA analyses revealed a total of 219 significant SNPs corresponding 216 loci for all the 

studied SSR resistance traits. All the mapped 35 QTNs by SL model were simultaneously 

identified by the ML models. Moreover, ML GWA analyses identified an additional 184 SNPs 

distributed across all the 19 chromosomes. However, to obtain more reliable results, only SNPs 

simultaneously detected by both SL and any of the ML methods or at least two of the ML 

methods or two phenotypic traits were considered as significant QTNs. Thus, a total of 71 SNPs 

controlling SSR resistance traits were obtained. Additionally, 44 QTNs were simultaneously 

mapped for at least two SSR resistance traits. Use of SL and multiple ML models for GWA 

analyses with four SSR resistance phenotypic traits improved the reliability of QTNs detection 

and were also complementary to each other in identifying common and more significant QTNs 

for the trait of interest. The ML models detected more significant QTNs over SL models which 

confirm the power and robustness of ML GWAS models compared to SL. Similar trend were 

also observed in cotton (Li et al., 2018), maize (Xu et al., 2018), and soybean (Kaler et al., 2020; 

Karikari et al. 2020), where ML models detected more significant SNPs over SL models. 
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Therefore, implementing GWA analyses using ML models in conjunction with SL models would 

enable the detection of more QTNs associated with trait of interests and provide promising 

opportunities to facilitate the genomics-assisted SSR resistance rapeseed/canola breeding. 

Presently, several QTLs/markers associated with early (seedling) and adult stage SSR 

resistance either in the form of stem, leaf, and days to wilt resistance have been identified using 

bi-parental linkage mapping and association mapping studies (Zhao and Meng, 2003; Zhao et al., 

2006; Yin et al., 2010; Wu et al., 2013, 2016; Wei et al., 2014, 2016; Gyawali et al., 2016; Zhang 

et al., 2019; Qasim et al., 2020; Roy et al., 2021; Shahoveisi et al., 2021). The physical position 

of the previously reported QTLs/MTAs were based on the ‘Darmor-bzh’ reference genome 

(Chalhoub et al., 2014). However, in our current study, we used ‘ZS11’ as reference genome 

sequence (Sun et al., 2017), which was aligned with ‘Darmor-bzh’ reference genome. The 

physical location comparison of our identified 219 SNPs with the previously reported 

QTLs/markers revealed a total of 19 SNPs corresponded to previously reported SNPs/QTLs 

detected based on linkage and/or association studies. Markers that are linked with QTLs for SSR 

resistance located within ~500 kb of the same genomic regions, were considered as the same 

loci. In our current study, a total of 12 significant SNPs was detected on chromosome A09 with 

multiple GWA models and traits. Among them 2 SNPs (SCM002767.2_21520686, and 

SCM002767.2_21528172) (21.52-21.53 Mb), located ~7.5 kb apart, were in the close proximity 

of the mapped QTL by (Wu et al., 2013), and (Qasim et al., 2020) for stem resistance at adult 

stage. Another SNP (SCM002767.2_27713481) on chromosome A09 (27.71 Mb) co-localized 

with the qSR11-1 QTL between the physical position of 27.13-29.36 Mb (Wei et al., 2014). Li et 

al. (2015) defined the genomic regions spanned 22.5–27.5 Mb on chromosome A09 as the 

conserved QTL regions for S. sclerotiorum resistance based on the integrated and comparative 
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QTL analyses of the previously identified QTLs. Our findings also corroborate that this physical 

interval is rich in QTLs conferring resistance to SSR both at the seedling and adult plant stage. 

Moreover, these genomic regions might be a potential hotspot of stable QTL to carry out fine 

mapping or map-based cloning to take the full advantage of MAS in SSR resistance breeding. 

Two additional SNPs identified by multiple models and traits located on C02 (4.60-6.16 Mb) 

were also detected by other researchers. For instance, Zhao et al. (2006) detected Sll 12 (stem 

lesion length) and Dw 12 (days to wilt) QTL within the physical interval of 0.31-6.71 Mb for 

SSR resistance using PIT. More QTLs such as qSR10-3 (1.03-3.95 Mb) and qSR11-2 (1.03-3.95 

Mb) by Wei et al. (2014); qSRC2 (0.02-4.33 Mb) by Wu et al. (2019); SRC2a (0.23-5.55 Mb) 

and SRC2b (0.12-5.19 Mb) by Qasim et al. (2020), were previously detected using stem 

inoculation method as a screening technique for adult plant resistance. A GWA study conducted 

by Roy et al. (2021) identified 10 significant SNPs on A09 at 35.6-45.8 Mb for SSR resistance 

using stem inoculation technique under field environments. Our GWA results also mapped 5 

significant SNPs in this genomic regions. The simultaneous detection of common QTNs 

controlling seedling and adult plant stage SSR resistance in different populations and genetic 

mapping methods provide valuable insights that warrants further exploration of these genomic 

regions to develop functional molecular markers that could potentially be used in MAS of target 

traits at all development stages. Besides the identification of the previously detected SNPs/QTLs, 

our study also revealed new genomic regions [A01 (1.54-7.38 Mb); A06 (2.50-7.49 Mb); C02 

(24.24-26.03 Mb) and (54.98-61.78 Mb)] that may contribute to better understanding of the 

architecture of S. sclerotiorum reaction and could provide more opportunities for SSR resistance 

breeding in rapeseed/canola.  
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The identification of stable QTNs/genomic regions is necessary to provide useful 

information to facilitate MAS. Therefore, the QTNs detected in two or more traits and two or 

more multiple GWA algorithms were selected for mining potential disease resistance candidate 

genes for further gene cloning and functional verifications. A total of 81 defense response 

candidate genes surrounding the stable QTNs were identified using the ‘ZS11’ reference genome. 

These candidate genes were categorized on the basis of their functional characteristics for 

disease resistance from several databases. A TIR-NB-LRR receptor like protein (Gene ID: 

LOC106378095) annotated as disease resistance protein RPP1 was located on chromosome C02 

(25.75-26.03 Mb) for multiple traits with multiple GWA algorithms. This candidate was also 

detected as a potential candidate gene for adult plant stage SSR resistance under field 

environments by Roy et al. (2021). Recent findings on the lifestyle of S. sclerotiorum revealed 

that there is a brief biotrophic phase followed by a necrotrophic phase, which suggests S. 

sclerotiorum is a hemi-biotrophic pathogen rather than necrotrophic (Kabbage et al., 2015; 

Chittem et al., 2020). TIR-NB-LRR proteins regulate the activation of salicylic acid (SA)-

dependent pathway to confers defense response against biotrophic and hemi-biotrophic 

pathogens. Therefore, SA may play a positive role in the defense responses against S. 

sclerotiorum in rapeseed/canola, which agree with Weaver et al. (2006), and Nováková et al. 

(2014) findings. Another two significant SNPs (SCM002770.2_25782525, 

SCM002770.2_25886609) identified by multiple traits and multiple models are in close genomic 

proximity. These SNPs are linked with a germin-like protein subfamily 3 member 1 (GPL1) gene 

(Gene ID: LOC106378104). GLPs have diverse functions including contribution to plant defense 

reactions against different pathogens. Expression of GLPs was found to be associated with 

increased resistance against Sclerotinia sp. pathogen (Dong et al., 2008). Enhanced resistance in 
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Arabidopsis thaliana plants against Verticillium longisporum and Rhizoctonia solani were also 

reported through the transgenic expression of BvGLP-1 by Knecht et al. (2010), whereas 

increased susceptibility was reported to the rice blast fungal pathogen when GLP genes were 

silenced (Manosalva et al., 2009). However, in B. napus BnGLP3, and BnGLP12 was found to 

be upregulated and generated more H2O2 formation in the partially resistant cultivars compared 

to the susceptible cultivars upon S. sclerotiorum infection. The tolerant lines also generate an 

increase in H2O2 leading to the oxidative burst at the early state of S. sclerotiorum-infected 

leaves and thereby restricting lesion formation compared with the susceptible cultivar (Rietz et 

al., 2012). Other candidate genes for SSR resistance would also provide useful insights for 

efforts to achieve S. sclerotiorum resistance rapeseed/canola germplasm.    

The advantage of GS over GWA study is that it simultaneously exploits the predictive 

power of all the genome-wide distributed markers (Meuwissen et al., 2001). Therefore, GS is 

considered as an effective genomic strategy for the improvement of complex traits in crops, that 

could potentially capture minor-to medium effect loci (Meuwissen et al., 2001; Würschum et al., 

2014; Crossa et al., 2017). Since, SSR resistance is a polygenic trait, controlled by numerous 

minor-effect QTL, genomic prediction would be suitable for resistance breeding purposes. This 

led us to assess the predictive ability and accuracy by implanting six GS models. The predictive 

ability of SSR resistance traits were moderate to high, depending on trait specifications. These 

results clearly demonstrated that genome-wide markers are efficient in predicting resistance of 

rapeseed/canola genotypes in response to S. sclerotiorum attack. All the GS models used in the 

present study yielded generally similar predictive ability values for all traits, and there were no 

models found that outperform others, which is consistent with other researchers findings 

(Spindel et al., 2015; Yu et al., 2016; de Azevedo Peixoto et al., 2017; Azodi et al., 2019; Roy et 
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al., 2021; Derbyshire et al., 2021). There were 0 to 3-unit differences in the predictive ability 

existed among the used different GS models across traits. Derbyshire et al. (2021) assessed the 

predictive ability for adult stage SSR resistance and achieved moderate predictive ability 

depending on GS model specification. Comparison of the models revealed that Bayesian models 

resulted similar or worse predictive ability than the G-BLUP model. In soybean, several GP 

methods including rrBLUP and Bayesian methods were compared for white mold resistance, but 

no differences between the GP methods were found (de Azevedo Peixoto et al., 2017). Our 

results agree with de Azevedo Peixoto et al. (2017) findings in common bean and those of 

Derbyshire et al. (2021) in B. napus for S. sclerotiorum resistance. Another study in 

rapeseed/canola for SSR resistance carried out by Roy et al. (2021) reported medium to high 

0.43-0.68 predictive ability depending on the assessment of various phenotypic traits i.e. lesion 

length, lesion width, and plant mortality. Wei et al. (2016) used a panel of 347 B. napus 

genotypes, where a five-fold cross validation schemes resulted only 0.27 predictive ability for 

SSR stem resistance. The higher predictive ability (0.45-0.68) and prediction accuracy (0.57-

0.82) observed from this study clearly demonstrates that GS holds promise as a potential 

genomics-assisted tool to predict genotypes as a potential donor/parents at the early stage 

(seedling) in efforts to breed SSR resistant rapeseed/canola cultivars. However, evaluation of the 

genotypes and testing of the GP models in the field screenings would definitely help to boost up 

application of GS for SSR resistance as the performance of the genotypes would be more 

representative in the farmer’s field.  

Finally, the use of PIT as an inoculation method to screen diverse 337 B. napus 

accessions consisting of three ecotypes i.e. spring, semi-winter, and winter, against S. 

sclerotiorum attack enabled us to identify promising resistant genotypes at the early 



 

110 

developmental stage. The identified resistant lines will provide a valuable source for canola 

breeding efforts to improve durable resistance by developing SSR resistant cultivars for the 

growers. Moreover, screening of genotypes at the same growth stage will help to 

eliminate/overcome the effects of several physiological traits, which were known to have an 

indirect effect for SSR resistance evaluation. However, we agree with Zhao et al. (2004) and 

Bradley et al. (2006), that the identified resistance source should be verified under field 

environments for their reaction to S. sclerotiorum using PIT or other inoculation methods. In 

addition to common use of DW as a phenotypic response, the highly correlated single time point 

phenotypic score LP_4dpi could be used as a potential phenotypic trait for large scale 

phenotyping of SSR resistant genotypes. Due to the quantitatively inherited nature of SSR 

resistance, it is more likely that QTNs identified here had small effects on resistance in B. napus. 

The detected significant markers identified by GWA or QTL mapping could be converted into 

kompetitive allele-specific PCR (KASP) markers for SNP validation (Semagn et al., 2014). Our 

future efforts would be directed towards validating the effects of these QTNs and the 

development of tightly linked markers to facilitate the cost-effective MAS resistance breeding in 

rapeseed/canola. Considering the potential of GS for the improvement of polygenic traits, we 

explored the feasibility of genomic prediction for SSR resistance. High predictive ability coupled 

with high prediction accuracy demonstrates that GS holds promise for the improvement of SSR 

resistance in rapeseed/canola. However, assessment of disease resistance and GS models under 

multilocation field environment might be warranted in the future for effective SSR resistance 

genomics-assisted rapeseed/canola breeding.  



 

111 

CHAPTER 5: ASSOCIATION MAPPING AND GENOMIC PREDICTION FOR 

SCLEROTINIA STEM ROT DISEASE RESISTANCE IN BRASSICA NAPUS (L.) USING 

STEM INOCULATION METHOD 

5.1. Abstract 

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a destructive disease 

that seriously reduces seed yield and oil quality in rapeseed/canola. In this study, we screened a 

panel of 144 spring (Study_1), and 152 semi-winter and winter (Study_2) populations two times 

by inoculating plants at the full flowering stage. Extensive phenotypic evaluation with five traits 

identified few lines as the potential resistant sources, which showed better resistance over the 

resistant check cultivars. Genome-wide association (GWA) study with two models identified 37 

and 50 SNPs in Study_1 and Study_2 populations, respectively with two or more traits, were 

regarded as significant. Ten and twelve significant SNPs from Study_1 and Study_2 populations 

respectively, were found to be co-localized with the previously reported SNPs/QTLs by 

linkage/GWA mapping studies. In the Study_1 and Study_2 populations, a total of 35 and 46 

putative candidate genes associated with plant disease resistance respectively, were annotated 

within or adjacent to the significant SNPs markers. The genomic prediction (GP) revealed higher 

predictive ability for Study_1 population (0.48-0.60) over Study_2 population (0.10-0.19), 

depending on trait specifications. Overall, our study revealed that favorable alleles from 

significant SNPs from GWA mapping could be utilized as an important resource to transfer and 

pyramiding resistance genes to improve SSR resistance. Genomic selection could also be used as 

a potential genomics-based approach for the improvement of SSR resistance in rapeseed/canola. 

Key words: Sclerotinia stem rot, genome-wide association study, single nucleotide 

polymorphism (SNP), genomic prediction, predictive ability. 
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5.2. Introduction 

The fungus Sclerotinia sclerotiorum (Lib.) de Bary is a cosmopolitan plant pathogen 

which infects a wide range of dicotyledonous plant species, including soybean, dry bean, pulses, 

lettuce, and sunflower (Purdy, 1979; Boland and Hall, 1994). This pathogen also infects one of 

the most economically important oilseed crop rapeseed/canola (Brassica napus L.), in which the 

disease is commonly referred to as sclerotinia stem rot (SSR) (Barbetti et al., 2013; Wu et al., 

2013). SSR disease can impose serious seed yield losses in the major rapeseed/canola growing 

regions, reaching up to 80% in the severely infected fields (Barbetti et al., 2013; Wu et al., 

2016). However, in the United States, for each unit increase in SSR incidence imposes 0.5-0.7% 

reduction in seed yields (Del Río et al., 2007). In addition to yield loss, S. sclerotiorum infected 

plants also have shown to result in reduced oil content, and oil quality by changing oil’s fatty 

acid composition (McCartney et al., 1999; Sharma et al., 2015).  

The pathogen produces sclerotia, a long-lived melanized resting structure, which can 

survive in soil up to 8-10 years (Adams and Ayers, 1979; Hegedus and Rimmer, 2005), which 

sometimes makes SSR management using crop rotation ineffective.  Although, management of 

SSR disease through fungicide application has some positive effects, but pinpointing the 

optimum time in fungicide application is difficult to achieve. Furthermore, use of fungicides may 

impose a negative impact on the environment and increase additional input costs, which makes 

rapeseed/canola production less profitable for the growers (Bradley et al., 2006). Therefore, the 

use of durable disease resistant cultivars is the most effective, environment friendly, and 

economically feasible to control the disease. Although some partially resistant varieties are 

available, complete resistance to SSR still has not been identified. Therefore, the identification of 
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resistant genotypes in diverse germplasm accessions is one of the best options to develop SSR 

resistant cultivars.  

There are three ecotypes of cultivated rapeseed/canola cultivars based on their growth 

habit differences in terms of flowering time and vernalization requirements (Wang et al., 2011; 

Rahman, 2013; Arifuzzaman and Rahman, 2020).  The winter type requires a long period of 

vernalization, mainly grown in Europe, whereas semi-winter types grown in China, which needs 

a shorter period of vernalization. No vernalization is required for spring ecotypes 

rapeseed/canola to induce flowering and primarily cultivated in North America (USA and 

Canada) and Australia. In the USA, approximately 83% of the US canola production comes from 

North Dakota (USDA-NASS, 2021). However, only spring canola is cultivated in North Dakota. 

Semi-winter and winter types canola are superior in yield than the spring types (Rahman and 

Mcclean, 2013; Arifuzzaman and Rahman, 2020), but shorter growing season and poor winter 

hardiness prevents their cultivation in ND. Nevertheless, the identification of resistant sources 

among semi-winter and winter types is important since their resistance could be introgressed into 

spring type canola to develop SSR resistant spring cultivars with high yield potential. 

Phenotyping of B. napus genotypes against S. sclerotiorum with commonly used stem 

inoculation method usually applied when the plants are in the flowering stage, because SSR 

infection is more prevalent in this stage. This further complicates the screening of all growing 

types of rapeseed/canola against S. sclerotiorum under field environments. Therefore, in addition 

to screening of spring types rapeseed/canola against S. sclerotiorum, the present study was also 

designed to phenotype semi-winter and winter ecotypes by providing 6-weeks vernalization to 

induce flowering in the controlled environments.  
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Genetic studies have demonstrated that SSR resistance to rapeseed/canola is a heritable 

quantitative trait, which is determined by multiple genes with minor or major effects (Wu et al., 

2013, 2016; Wei et al., 2016; Qasim et al., 2020). Genetic mapping studies such as classical bi-

parental linkage mapping (Zhao and Meng, 2003; Zhao et al., 2006; Yin et al., 2010; Mei et al., 

2013; Wu et al., 2013; Wei et al., 2014; Behla et al., 2017; Qasim et al., 2020) and genome-wide 

association (GWA) study (Gyawali et al., 2016; Wei et al., 2016; Wu et al., 2016; Roy et al., 

2021) are the two different strategies that have been applied for the identification of quantitative 

trait nucleotides (QTNs)/QTL, and putative candidate resistant genes against SSR in 

rapeseed/canola. The majority of QTL detected by linkage mapping studies were mapped mainly 

on chromosomes A01, A02, A03, A06, A07, A08, A09, A10, C01, C02, C03, C04, C05, C06, 

C07, C08, and C09 (Zhao and Meng, 2003; Zhao et al., 2006; Yin et al., 2010; Wu et al., 2013, 

2019; Wei et al., 2014; Zhang et al., 2019; Qasim et al., 2020; Shahoveisi et al., 2021). However, 

QTL detected from different linkage mapping studies were inconsistent and varied in different 

environments, different mapping populations, different inoculation methods, and various 

developmental stages. Moreover, in very few instances common QTLs were detected in different 

mapping populations (Behla et al., 2017; Shahoveisi et al., 2021). Therefore, more mapping 

studies are necessary to validate these QTLs and fine mapped or cloned the SSR resistant QTLs 

or genes to take the full advantage of the genetic manipulation through implementing marker-

assisted selection (MAS). However, the mapping resolution and accuracy of QTL detection by 

linkage mapping is often limited by the higher confidence intervals, low allelic diversity, and 

limited number of recombination events, since only two alleles descended from the two parental 

lines were analyzed (Korte and Farlow, 2013). In contrast to linkage mapping, genome-wide 

association (GWA) study has emerged as a promising strategy to dissect quantitative traits 
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because it overcomes the limitations of the bi-parental populations. GWA mapping exploits 

natural populations genetic diversity and ancestral historical meiotic recombination events 

present in germplasm collections. The aim of the GWA mapping is to identify the genetic 

markers strongly associated with the traits of interest by using linkage disequilibrium (LD) 

between genes and molecular markers. Extensive historical recombination events led to the 

development of shorter LD fragments in natural populations and high-density genetic maps 

allowing an increased mapping resolution that makes possible to map the genetic markers/QTLs 

near to the gene of interest (Nordborg and Weigel, 2008).  

To date, several GWA analyses have been performed for genetic mapping of SSR 

resistance in rapeseed/canola (Gyawali et al., 2016; Wei et al., 2016; Wu et al., 2016; Roy et al., 

2021). A GWA study by Gyawali et al. (2016) identified 34 significant associated loci, out of 

which 21 alleles contributed to the resistance. Twenty-six SNPs, located on chromosome C04, 

C06, and C08, were detected by Wu et al. (2016) using detached stem inoculation assay. Wei et 

al. (2016) mapped 17 significant associations distributed on chromosome A08, and C06, from 

two years field evaluations using detached stem inoculation method. Another study by Roy et al. 

(2021) mapped a total of 133 significant SNPs using four SSR resistance traits from the four 

environments field evaluations by directly inoculating the plant into the main stem. Of these four 

GWA studies, no overlapping or common significant SNPs were detected from the study carried 

out by Gyawali et al. (2016); Wei et al. (2016); and Wu et al. (2016). However, Roy et al. (2021) 

found few overlapping QTNs with the SNPs detected by Wei et al. (2016) and Wu et al. (2016). 

These outcomes clearly highlight that more GWA analyses are needed to identify more 

significant SNPs associated with enhanced SSR resistance to identify all the variable nature of 

SSR disease interaction. Moreover, most of the detected QTNs only explained a small portion of 
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phenotypic variance, and were highly influenced by the genetic backgrounds of the studied 

populations. These results limit in pyramiding the small-effect favorable alleles to take the 

advantage of MAS for improving SSR resistance in rapeseed/canola. 

Genomic selection (GS) has emerged as an alternative to MAS, offering promising 

potential for the genetic improvement of complex traits (Meuwissen et al., 2001).  In GS, 

genome-wide markers were used to predict the genomic estimated breeding values (GEBVs) of 

the individuals by capturing both large and small-effect loci (Meuwissen et al., 2001; Poland and 

Rutkoski, 2016). The GEBVs are estimated from a trained genomic prediction (GP) model, 

developed using the phenotypic information of a genotyped population called the training 

population. Then the trained GP model is used to predict the genetic values (GEBVs) in a 

validating population that have been only genotyped but not phenotyped. Relatively few GP 

studies have been reported in rapeseed/canola for various traits including seed yield and quality-

related traits (Würschum et al., 2014), oil quality (Werner et al., 2018), various agronomic traits 

and blackleg disease resistance (Jan et al., 2016; Fikere et al., 2020). GS studies for SSR 

resistance, a complex trait in rapeseed/canola, suggested that GS is promising to enhance genetic 

improvement of SSR resistance (Roy et al., 2021; Derbyshire et al., 2021).   

In the present study, we evaluated spring, semi-winter, and winter types B. napus lines in 

the greenhouse with aimed to i) identify the SSR resistant genotypes at the adult plant stage; ii) 

reveal SNPs or genomic regions significantly associated with SSR resistance; iii) search for SSR 

resistance candidate genes in the identified SNP regions for further study; iv) assess the potential 

of GS for predicting SSR resistance genotypes.  
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5.3. Materials and methods 

5.3.1. Plant materials and experimental design 

In this study, we used a panel of 144 spring types, and 152 semi-winter and winter types 

B. napus germplasm accessions and advanced breeding lines, collected from North Central 

Regional Plant Introduction Station (NCRPIS), Ames, Iowa, USA and North Dakota State 

University (Table A12, Table A13). The experiments were carried out in the Agricultural 

Experiment Station Research Greenhouse Complex, North Dakota State University, Fargo, ND, 

USA. Each genotype was planted in a randomized complete block design (RCBD) with three 

replicates. In each replicate, five plants were sampled for inoculation. The temperature of the 

greenhouse was maintained at 22 ± 2 ℃ provided with 16-hours of photoperiod supplemented 

with 400 W HPS PL 2000 lights (P.L. Light Systems Inc.). The whole experiments were divided 

into different batches by taking a subset of genotypes in each batch with respective used check 

cultivars. For the phenotyping of spring types canola, two commercially available spring canola 

cultivars, “Pioneer 45S51” and “Pioneer 45S56”, were used as resistant checks, and publicly 

available Canadian spring type canola cultivar “Westar” were included as a susceptible check. 

SSR resistant semi-winter types genotype “NEP63” (Chittem et al., 2020; Shahoveisi et al., 

2021), was used as a resistant check for the screening of semi-winter and winter types of 

rapeseed/canola. 

5.3.2. Vernalization of semi-winter and winter type genotypes to induce flowering 

The S. sclerotiorum pathogen mainly infects the plant during the flowering stage. 

Therefore, we decided to evaluate the reaction of the respective genotypes by inoculating the 

plants at the full flowering stage. To induce flowering in semi-winter and winter type 

rapeseed/canola lines, three weeks old seedlings were transferred into a plant growth chamber for 
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six weeks of vernalization at 4℃ temperature with 16-h/8-h day/night cycle with high-pressure 

sodium light provided. After vernalization, the plants were moved into the greenhouse room and 

allowed them to induce flowering. 

5.3.3. Assessment of resistance to Sclerotinia sclerotiorum  

The screening of three ecotypes rapeseed/canola were divided into two separate 

experiments. Since, no vernalization is required to induce flowering in spring canola, therefore, 

the spring type was grouped into the first study designated as Study_1. Vernalization was 

required to induce flowering in semi-winter and winter types, and was grouped into the second 

study designated as Study_2. Phenotyping of each study population was conducted twice to 

evaluate the performance of rapeseed/canola genotypes against S. sclerotiorum reaction. A single 

high virulence isolates of S. sclerotiorum (WM031) was used for inoculating plants (Roy et al., 

2021; Shahoveisi et al., 2021). Inoculum was prepared by culturing the surface sterilized 

sclerotia on autoclaved potato dextrose agar (PDA) medium (24 gL-1 potato dextrose broth and 

15 gL-1 agar) containing in a petri dish and incubated at 22-24 ℃ temperature. When the plants 

reached at full flowering stage, the main stem was inoculated following a protocol described by 

Li et al. (2004). Briefly, mycelium agar plugs (5-7 mm) were cut from the actively growing 

margin of the 2 days old mycelium with the help of 1000 µl pipette tips before hyphae reached at 

the edge of the petri dish. Each mycelium plug was placed on a 3×6 cm piece of parafilm by 

making a small pole with the help of finger and attached to the main stem with the mycelium 

facing the stem epidermis. For each accession, lesion lengths on the main stem and lesion width 

(visual estimation of the percentage of the main stem that is girdled by the lesion) were recorded 

3, 5, 7, 9, 11, 13, and 15 days post inoculation (dpi). The status of inoculated plant was recorded 

as dead or alive at 15 dpi. Plants were considered as dead when infected main stem girdled 
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completely and irreversible wilting symptoms were observed on plant parts above the inoculated 

stem.  

5.3.4. Phenotypic measurements and statistical analyses 

5.3.4.1. Stem lesion length (LL), lesion width (LW), and plant mortality (PM) 

We have collected data on lesion length (LL) and lesion width (LW) at 7 dpi. Data 

collection on LL and LW was stopped once the inoculated plant was considered dead. We also 

calculated % of plant mortality (PM) of each genotype at 15 dpi.  

5.3.4.2. Area under disease progress curve (AUDPC) 

Area under disease progress curve (AUDPC) on LL (LL_AUPDC) and LW 

(LW_AUDPC) for each evaluated accession were calculated using the following formula: 

 

where yi is symptom lesion length and lesion width on the ith day, ti is time in days on the ith day, 

and n is the number of measurements (seven in this study).  

Since, we did not record data once the inoculated plant was dead, therefore we adjusted 

the LL and LW data by replacing the dead plant value with the recorded maximum lesion length 

and lesion width value of the respective replication within the same batches following 

Shahoveisi et al. (2021). However, we ensured that the calculated AUDPC value of susceptible 

lines would be larger than the resistant lines to reflect the true phenotypic performance of the 

evaluated genotypes.  

Statistical analyses of all phenotypic traits were carried out using SAS 9.4 software (SAS 

Institute 2012). Common check cultivars were used in every batches within each experiment. To 
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homogeneity of variance tests was performed by Levene’s test using common check cultivars 

phenotypic performance. Hence after, the data from two experiments were combined if the ratio 

of the effective error variance of each trait is less than 10-fold (Tabachnick and Fidell, 2000; 

Arifuzzaman and Rahman, 2020). For each study, best linear unbiased estimates (BLUEs) of five 

traits (LL, LW, PM, LL_AUDPC, and LW_AUPDC) were calculated for each genotype by 

considering genotypes as a fixed effect, whereas replication and experiments were considered as 

random effects.   

5.3.5. Genotyping 

Fresh, young leaves of 12 days old seedlings were lyophilized, and total genomic DNA 

was extracted using Qiagen DNeasy kit (Qiagen, CA, USA) according to manufacturer’s 

protocol. Extracted DNA was quantified and diluted to 50 ng/µl.  The DNA Libraries were 

prepared using ApekI enzyme digestion described by Elshire et al. (2011). Single-end reads were 

sequenced from the developed libraries at the University of Texas Southwestern Medical Center, 

Dallas, Texas, USA, using Illumina Hi-Seq 2500 sequencer. The sequencing reads were aligned 

with the “ZS11” reference genome sequence of B. napus (Sun et al., 2017) with Bowtie 2.0 

(Langmead and Salzberg, 2012). The SNP discovery and genotype calling were performed using 

the TASSEL 5 GBSv2 pipeline (Glaubitz et al., 2014). SNP markers were filtered with an 

individual read depth > 3, minor allele frequency (MAF) > 0.05, and missing data < 25% with 

VCFtools (Danecek et al., 2011). As canola is a self-pollinated crop, more than 25% 

heterozygous SNPs were removed with TASSEL 5.0 (Bradbury et al., 2007). Moreover, we also 

removed the SNP markers which were located outside of the chromosomes (i.e. unknown 

physical position). After applying all these quality filtering, 38,150 SNPs markers were obtained. 
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5.3.6. Genome-wide association studies 

After filtering for MAF at 5% level, a total of 23,768 SNPs and 27,580 SNPs was used 

for subsequent association analyses for Study_1 (Spring) and Study_2 (Semi-winter and winter) 

populations, respectively. Two GWAS algorithms i.e. GEMMA-MLM (Zhou and Stephens, 

2012) and FarmCPU (Liu et al., 2016) were used to identify the marker-trait-associations 

(MTAs) in both studies. The principal component analysis (PCA) was calculated by prcomp () 

function in R language (R Core Team, 2020). Mclust R package was used to perform model-

based clustering using first three PCA to determine the number of subpopulations among the 

association panel from each study. To account for confounding effect of population structure and 

genetic relatedness, the first three PCA and a kinship matrix were incorporated in both GWA 

models as covariates to control the detection of spurious associations. The GEMMA-MLM was 

performed through the execution of following commands in the GEMMA (version 0.98.1) 

software: “gemma -g [genotype data] -p [phenotype] -a [genotype annotation data] -c [first 

3PCA] -k [centered relatedness matrix] -o [output]. The kinship matrix was generated using from 

the centered relatedness procedure in GEMMA, used as a random effect variable in the random 

model. The PCA used in the GMMA-MLM model was obtained from the prcomp () function. P-

wald test (the improved calibrated P-value in GEMMA) was calculated for the given model. 

FarmCPU is a multi-locus R based GWA mapping model that was developed to control false 

positives without comprising false negatives (Liu et al., 2016). In FarmCPU, Multiple Loci 

Linear Mixed Model (MLMM) is divided into two parts, a Fixed Effect Model (FEM) and a 

Random Effect Model (REM), which were used iteratively. False positives are controlled by 

FEM that contains testing markers, one at a time, and associated multiple markers as a covariate. 

To avoid model overfitting problem in FEM, REM uses estimated associated markers to define 
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the kinship. FarmCPU was run using the following command line in R: FarmCPU (Y = myY, 

GD = myGD, GM = myGM, CV = myCV). Y, GD and GM represent phenotype, genotype and 

genotypic map data respectively. CV represents the first three principal components files that 

were also used in GEMMA-MLM. The automatically estimated kinship matrix by FarmCPU was 

used. The purpose of using two different models was to reduce the chances of committing type 1 

and type 2 errors.  

The GWA significant threshold determined by Bonferroni correction was too stringent, 

which results in elimination of many important loci associated with trait of interest. Therefore, 

we used a method proposed by Li and Ji (2005) to determine the significant threshold value for 

the identified QTNs in both studied populations. In this method, we calculated the effective 

number of independent loci (Meff) by estimating correlation matrix and eigenvalue 

decomposition. Then the test criteria were adjusted using the Meff with the following correction 

by Sidak (1967): 

𝛼𝑝 = (1 − 𝛼𝑒)
1/𝑀𝑒𝑓𝑓  

where, αp is the comparison-wise error rate and αe is the experiment-wise error rate (αe =0.05). 

5.3.7. Candidate gene predictions 

Candidate genes, located within ± 50-kb genomic regions of each significant SNP, were 

searched using B. napus “ZS11” reference genome sequence (Sun et al., 2017). The obtained 

gene models found within the genomic interval regions of the genome sequence were subjected 

to search on Uniport website (https://www.uniprot.org/uniprot/) to validate their putative 

functions. The genes associated with defense response mechanisms were identified based on 

TAIR 10, Uniport-KB database, and gene functions found in previous literature and considered 

as putative candidate genes for S. sclerotiorum resistance in rapeseed/canola.  

https://www.uniprot.org/uniprot/
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5.3.8. Genomic prediction 

For both studies, the rrBLUP GS model was implemented in the R package for estimating 

the predictive ability of all the phenotypic traits for SSR resistance (Endelman, 2011). The 

rrBLUP model is described as follows: 

𝑦 = 𝜇 + 𝑋𝛽 + 𝜀 

where y is the vector of phenotypic values, µ is the intercept/grand mean, X is the standardized 

marker genotype matrix, β is the estimated random additive marker effects, and ε is the residual 

error term. 

The predictive ability of the GP model was tested with five-fold cross validation sets. For 

Study_1, out of 144 lines 115 individuals were used as training set and remaining 29 individuals 

as validation sets. In the case of Study_2 (Semi-winter and winter), 122 genotypes were 

considered as training individuals and 30 genotypes as validation individuals from a total of 152 

semi-winter and winter type genotypes. The cross-validation procedures were replicated 100 

times to avoid biases in the estimation of predictive ability.  Prediction ability of each trait was 

defined as the estimation of Pearson correlation between the average of the predicted Genomic 

Estimated Breeding Values (GEBVs) and the observed phenotypes in all the cross-validation 

sets. 

5.4. Results 

5.4.1. Phenotypic responses of Brassica napus cultivars to Sclerotinia sclerotiorum infection 

5.4.1.1. Study_1 population (Spring) 

None of the phenotypic datasets i.e. LL, LW, PM, LL_AUDPC, LW_AUDPC were 

normally distributed (Figure A15a-e). A broad range and distinct phenotypic variations existed 

for the recorded phenotypic traits upon the challenge of S. sclerotiorum infection on spring types 

genotypes (Table 5.1, Figure 5.1a-b). Among the recorded five SSR traits, LL ranged from 2.8-
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13.3 cm with the mean ± standard deviation (SD) of 7.6 (mean) ± 2.7 cm (SD), whereas LW, 

PM, LL_AUDPC, and LW_AUDPC had a range (mean ± SD) of 21.2-97.3% (63.4 ± 18.2 %), 

6.7-100.0 % (64.1 ± 24.9%), 38.6-143.1 (96.7 ± 26.9), and 308.3-1054.8 (790.0 ± 173.0) 

respectively. The coefficient of variation (CV) were 31.4, 26.7, 38.8, 24.7, and 19.6 for LL, LW, 

PM, LL_AUDPC, and LW_AUDPC, respectively (Table 5.1). Among the evaluated 144 spring 

types genotypes, only 4 lines had less than or equal to 20% plant mortality at 15 dpi. These 

genotypes were considered as the promising SSR resistant genotypes. Moreover, they showed 

better level of resistant performance compared to the used commercial resistant check cultivars 

in the current study. The phenotypic responses of the top four promising spring ecotypes were 

ranged 2.8-4.3 cm for LL, 21.2-38.5 % for LW, 6.7-20.0% for PM, 38.6-57.4 for LL_AUDPC, 

and 308.3-503.7 for LW_AUDPC. However, phenotypic responses in terms of LL, LW, PM, 

LL_AUDPC, and LW_AUDPC traits for resistant check “Pioneer 45S51” were 5.6 cm, 49.4%, 

46.9%, 78.5, and 649.1, respectively, and “Pioneer 45S56” were 5.1 cm, 41.1%, 31.3%, 70.9, 

and 556.9, respectively. The recorded performance of the susceptible spring cultivar “Westar” 

was 9.1 cm, 79.9%, 100.0%, 108.4, and 925.5, for LL, LW, PM, LL_AUDPC, and LW_AUDPC 

traits, respectively (Table 5.1). Analysis of variance (ANOVA) for all SSR traits revealed 

significant differences (P ≤ 0.05) among the genotypes, interaction of genotypes by experiment 

with an exception for LW_AUDPC trait (interaction non-significant) (Table A14). The estimated 

broad-sense heritability (H2) was high, varying from 0.68 to 0.92 (Table 5.1).  

5.4.1.2. Study_2 population (Semi-winter and winter) 

Continuous and distinct phenotypic difference was observed in terms of resistance 

responses among the 152 semi-winter and winter lines after inoculation with S. sclerotiorum 

(Table 5.2, Figure 5.1c-d).  Among the five collected SSR resistance traits, four traits such as LL, 
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LW, LL_AUDPC, LW_AUDPC were normally distributed based on the Shapiro Wilk normality 

test P-value (P > 0.05) (Table 5.2, Figure A15f-j). However, plant mortality data was found not 

to be distributed normally (P < 0.05) (Figure A15h). The average LL, LW, PM, LL_AUDPC, 

and LW_AUDPC were 7.8 cm, 58.2%, 57.3%, 100.3, and 725.1, respectively. The coefficient of 

variation (CV) of the association population for different SSR traits varying from 21.7 to 48.8% 

(Table 5.2). The percentage of plant mortality among the genotypes varied from 16.7 to 100 %. 

Nine genotypes had less than or equal to 20% plant mortality at 15 dpi. However, few genotypes 

showed promising resistance performance by producing smaller lesions on the main stem and the 

lowest percentage of plant mortality compared to the susceptible genotypes. The phenotypic 

response of the top four resistance genotypes in terms of LL, LW, PM, LL_AUDPC, and 

LW_AUDPC ranged from 4.4 to 5.6 cm, 32.2 to 42.0 %, 16.7 to 20.0 %, 57.1 to 71.3, and 427.7 

to 533.0, respectively. However, performance of the used resistant check “NEP63” was 7.1 cm, 

54.7%, 45.6%, 95.4, and 705.3 for LL, LW, PM, LL_AUDPC, and LW_AUDPC traits, 

respectively. ANOVA of all SSR traits revealed significant differences (P ≤ 0.05) among the 

genotypes, interaction of genotypes by experiment (Table A15). The broad sense heritability (H2) 

estimate for these phenotypic traits were low to medium, ranging from 0.25 to 0.44 (Table 5.2). 
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Figure 5.1. Differential phenotypic responses of Brassica napus genotypes against Sclerotinia 

sclerotiorum attack. The top promising spring resistant line at 7 days post inoculation (7dpi) (a); 

susceptible check spring cultivar (Westar) at 5 dpi (b); top semi-winter and winter ecotypes 

resistant line at 7 dpi (c); susceptible semi-winter and winter line at 11 dpi (d) 
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Table 5.1. Phenotypic variation obtained through BLUE values in the response of Brassica napus spring genotypes against sclerotinia 

stem rot  

Traitsa Min Mean Max 

 

Median SDb CVc 

Shapiro–

Wilk test p 

value 

H2  

Check cultivars (mean)d 

Pioneer 

45S51 

Pioneer 

45S56 
Westar 

LL 2.8 7.6 13.3 6.4 2.7 31.4 1.0e-8 0.85 5.6 5.1 9.1 

LW 21.2 63.4 97.3 60.0 18.2 26.7 8.6e-5 0.92 49.4 41.1 79.9 

PM 6.7 64.1 100.0 80.0 24.9 38.8 1.1e-5 0.68 46.9 31.3 100.0 

LL_AUDPC 38.6 96.7 143.1 93.6 26.9 24.7 4.7e-7 0.83 78.5 70.9 108.4 

LW_AUDPC 308.3 790.0 1054.8 818.0 173.0 19.6 0.001 0.89 649.1 556.9 925.5 

Traitsa: LL, Lesion length measured at 7 days post inoculation (dpi); LW, lesion width at 7 dpi; PM, plant mortality at 15 dpi; LL_AUDPC, lesion 

lengths area under disease progress curve (AUDPC) calculated using 7 time points reading; LW_AUDPC, lesion widths AUDPC calculated using 

7 time points reading; SDb: standard deviation; CVc: co-efficient of variation; Check cultivars (mean)d: mean phenotype scores of the resistant 

checks (Pioneer 45S51 and Pioneer 45S56) and susceptible check (Westar) cultivars of the evaluated traits  
 

Table 5.2. Phenotypic variation obtained through BLUE values in the response of Brassica napus semi-winter and winter ecotypes 

genotypes against sclerotinia stem rot  

Traitsa Min Mean Max 

 

Median SDb CVc 

Shapiro–

Wilk test p 

value 

H2  

NEP-63 

(Resistant 

check) 

LL 4.4 7.8 12.3 6.7 1.6 41.1 0.18 0.25 7.1 

LW 32.2 58.2 86.5 55.0 10.8 36.3 0.79 0.40 54.7 

PM 16.7 57.3 100.0 60.0 18.1 48.8 0.001 0.35 45.6 

LL_AUDPC 57.1 100.3 143.3 97.7 16.9 28.7 0.34 0.25 95.4 

LW_AUDPC 427.7 725.1 986.8 723.5 110.0 21.7 0.72 0.44 705.3 

Traitsa: LL, Lesion length measured at 7 days post inoculation (dpi); LW, lesion width at 7 dpi; PM, plant mortality at 15 dpi; LL_AUDPC, lesion 

lengths area under disease progress curve (AUDPC) calculated using 7 time points reading; LW_AUDPC, lesion widths AUDPC calculated using 

7 time points reading; SDb: standard deviation; CVc: co-efficient of variation. 
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5.4.2. Relationships/correlations among the sclerotinia stem rot resistance traits 

Highly significant correlations were found among the studied phenotypic traits in the 

spring population for SSR reaction. For instance, the significant positive associations were found 

for LL with LW (r = 0.96), PM (r = 0.88), AUDPC_LL (r = 0.98), and AUDPC_LW (r = 0.94) 

at P ≤ 0.001 (Figure 5.2a). Similarly, strong positive associations (r = 0.78-0.93, P ≤ 0.001) were 

found to be associated among the five phenotypic traits in the studied 152 semi-winter and 

winter ecotypes genotypes (Figure 5.2b).  

 

Figure 5.2. Correlation heatmap of various Sclerotinia sclerotiorum resistance phenotypic traits 

in spring ecotypes (a), and semi-winter and winter populations (b). Traits: LL = Lesion length 

measured at 7 days post inoculation (dpi); LW = lesion width at 7 dpi; PM = plant mortality at 15 

dpi; LL_AUDPC = lesion lengths area under disease progress curve (AUDPC) calculated using 7 

time points reading; LW_AUDPC = lesion widths AUDPC calculated using 7 time points 

reading. 

5.4.3. Genotypic data and principal component analysis 

In the spring type population, the first and second PCA explained 8.9% and 5.9% of the 

variance, respectively (Figure 5.3a), whereas the first three PCA total accounted for 19.6% of the 

variance (Figure 5.3b). In the Study_2 (Semi-winter and winter), the first three PCA accounted 
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for a total of 19.0% of the variance, and at PC3 the inflection point occurred. Therefore, we 

selected the first three PCA for both studied populations to incorporate as a covariate in the 

GWA analyses to correct the problems associated with population structure. Furthermore, 

model-based clustering analysis using the first three PCA in both populations suggested that 

there were seven and six subgroups within the genotypes (Figure 5.3a-b).  

 

Figure 5.3. Population structure as reflected by the scatter plot of PC1 and PC2 derived from a 

principal component analysis of a) 144 spring ecotypes rapeseed/canola genotypes using 23,768 

SNP markers, and b) 152 semi-winter and winter ecotypes rapeseed/canola genotypes using 

26,768 SNP markers. 
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5.4.4. Marker-trait association analyses 

Combined analyses BLUEs for each trait were used for the subsequent GWA analyses in 

both populations. The P-value threshold to declare significant SNPs were determined on the 

basis of modified Bonferroni correction by calculating the effective number of independent loci 

from the tested SNP markers for both populations according to the proposed method by Li and Ji 

(2005). Using this method, a total of 100 and 111 independent markers were identified for 

Study_1 and Study_2 populations, respectively. Therefore, the significant threshold for spring 

population was (P ≤ 5.12E-04; LOD ≥ 3.29 ~3.3), and (P ≤ 4.62E-04; LOD ≥ 3.34 ~3.3) for 

semi-winter and winter ecotypes. Moreover, to identify the common significant SNPs present in 

more than one trait, a threshold value of P ≤ 0.001 (LOD =3.0) was used, but only if the 

representative SNP had an association in the determined threshold P- value in a second trait by 

any of the GWA models.  

5.4.4.1. Study_1 (Spring population) 

GWA analyses with five associated traits for SSR disease have varied from 10-17 QTNs 

depending on trait specifications and used GWA mapping algorithms at the threshold value of (P 

≤ 5.12E-04; LOD ≥ 3.3) (Figure 5.4a-b; Table A16). The highest 17 SNPs were detected for PM 

traits by the GEMMA-MLM model followed by the lowest 10 SNPs for LL (GEMMA-MLM) 

and PM (FarmCPU) traits. A total of 46 SNPs was detected among the five traits for SSR 

resistance. The detected SNPs were distributed unevenly in the 17 chromosomes of B. napus 

genome. Seven SNPs were found to be commonly mapped among all the phenotypic traits. Out 

of the 46 SNPs, 37 SNPs were commonly identified by at least two or more traits by any of the 

GWA models and declared as significant, which could be associated with SSR resistance in 

rapeseed/canola (Table A17). The estimated allelic effects of the identified SNPs ranged between 



 

131 

-2.65 to 1.28 for LL, -25.19 to 11.83 for LW, -35.55 to 22.26 for PM, -36.83 to 17.35 for 

LL_AUDCP, and -267.28 to 120.17 for LW_AUDPC, respectively (Table A16, A17). 

 

Figure 5.4. A circular Manhattan plot showing the significantly detected SNPs for five 

phenotypic traits in spring ecotype populations based on GEMMA-MLM (a), and FarmCPU (b) 

models located on 19 chromosomes for the Sclerotinia sclerotiorum resistance at adult plant 

stage. Traits:  LL = lesion length measured at 7 days post inoculation (dpi); LW = lesion width at 

7 dpi; PM = plant mortality at 15 dpi; LL_AUDPC = lesion lengths area under disease progress 

curve (AUDPC) calculated using 7 time points reading; LW_AUDPC = lesion widths AUDPC 

calculated using 7 time points reading. A multi-track Q-Q plot for each trait with the two GWAS 

models is presented at the upper right corner of the circular Manhattan plot. The threshold values 

for both models were set up at -log10 (P) ≥ 3.3 (P ≤ 5.12 x 10-4). 
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Figure 5.5. A circular Manhattan plot showing the significantly detected SNPs for five 

phenotypic traits in semi-winter and winter ecotype populations based on a) GEMMA-MLM, 

and b) FarmCPU models located on 19 chromosomes for the Sclerotinia sclerotiorum resistance 

at adult plant stage. Traits:  LL = Lesion length measured at 7 days post inoculation (dpi); LW = 

lesion width at 7 dpi; PM = plant mortality at 15 dpi; LL_AUDPC = lesion lengths area under 

disease progress curve (AUDPC) calculated using 7 time points reading; LW_AUDPC = lesion 

widths AUDPC calculated using 7 time points reading. A multi-track Q-Q plot for each trait with 

the two GWAS models is presented at the upper right corner of the circular Manhattan plot. The 

threshold values for both models were set up at -log10 (P) ≥ 3.3 (P ≤ 4.62 x 10-4). 
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5.4.4.2. Study_2 (Semi-winter and winter population) 

The results of GWA analyses for SSR resistance on five traits using GEMMA-MLM, and 

FarmCPU methods were shown in Figure 5.5a-b, and Table A18, A19. In total, 34, 18, 8, 23, and 

19 SNPs were significantly associated with disease resistance at the P- value threshold of 4.62 x 

10-4 were identified in the LL, LW, PM, LL_AUDPC, and LW_AUDPC traits, respectively. The 

GWA analyses for all traits detected a total of 59 SNPs (Table A18). Among these 59 SNPs, 50 

SNPs were commonly identified in two or more phenotypic traits that are distributed on 

chromosome A01, A02, A03, A04, A05, A06, A09, A10, C01, C02, C03, C04, C05, C06, C07, 

C08 and C09 (Table A19). These 50 SNPs were considered as significant SNPs, and could be 

associated with adult plant stage resistance to SSR reaction. Five SNPs, including two SNPs 

SCM002759.2_7025054, SCM002759.2_7052802 on chromosome A01, two SNPs 

SCM002767.2_38082926, SCM002767.2_38774352 on chromosome A09, and one SNP 

SCM002772.2_7708586 on chromosome C04 were simultaneously detected in all the five 

phenotypic traits. The allelic effect of the detected SNPs for LL, LW, PM, LL_AUDPC, and 

LW_AUDPC traits varying from -1.75 to 1.92, -10.72 to 9.16, -19.61 to 11.14, -17.63 to 18.16, 

and -109.46 to 116.08, respectively (Table A18, A19).  

5.4.5. Candidate genes 

To identify the putative disease resistance candidate genes, only the significant SNPs 

detected in at least two or more traits in both populations were used. Candidate gene mining was 

done using “ZS11” reference genome sequence within ± 50 kb of the respective SNPs on 

genomic regions. We selected 50 kb genomic interval because LD for this population is low 

(< 45 kb genome wise, < 21 kb for A genome and < 93 kb for C genome) (Rahman et a l., 

2021). A total of 35 and 46 potential candidate genes in the spring population, and semi -
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winter and winter populations, respectively, with known functions associated with plant 

disease resistance mechanisms were identified. The detailed list of the genes of these 

populations, their biological functions based on TAIR 10, Uniport-KB database, and 

corresponding details are provided in Table A20 and Table A21. The detected candidate 

genes are involved in the biological process of defense response, defense response to 

fungus, innate immune response, programmed cell death, response to molecule of fungal 

origin, response to salicylic acid, indole glucosinolate biosynthetic process, induced 

systemic resistance, response to chitin, jasmonic acid mediated signaling pathway, systemic 

acquired resistance, pattern recognition receptor signaling pathway, response to wounding, 

response to nematode, response to oxidative stress, toxin catabolic process, immune 

response, cell wall organization, reactive oxygen species metabolic process, protein serine 

kinase activity, signal transduction, calcium-mediated signaling, ethylene-activated 

signaling pathway, brassinosteroid mediated signaling pathway and other biological 

processes which might play key role in SSR resistance in rapeseed/canola (Table A20, 

A21). 

5.4.6. Predictive ability of different traits for Sclerotinia sclerotiorum resistance 

The implementation of rrBLUP GP model with five-fold cross validations resulted in 

different predictive ability across different SSR resistance traits and across two studied 

populations. In the case of spring type population, using all 23,768 genome-wide SNPs the 

average predictive ability values were high (r = 0.48-0.60) depending on the used phenotypic 

traits (Figure 5.6a). The highest (r = 0.60) value was obtained for 7 days main stem lesion length 

(LL), and the lowest (r = 0.48) for 15 dpi plant mortality traits. There are 1 to 4-unit differences 

in predictive ability observed among the four SSR traits such as LL (0.60), LW (0.59), 
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LL_AUDPC (0.57), and LW_AUDPC (0.56). However, the observed predictive ability was 

lower in the semi-winter and winter type population than the spring type population. The 

estimated mean predictive ability for five SSR traits in semi-winter and winter type populations 

employing genome-wide markers (26,768 SNPs) ranged from 0.10 to 0.19 (Figure 5.6b). The 

predictive ability was highest (r = 0.19) for LL_AUDPC trait, whereas the lowest predictive 

ability (r = 0.10) was observed in PM trait. The observed higher and lower predictive ability 

between the two populations were partially related to trait heritability. For example, LL had a 

high heritability of 0.85 and high predictive ability of 0.60 in the spring population, whereas low 

heritability (0.25) and predictive ability (r = 0.17) was observed for LL in semi-winter and 

winter type populations. 
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Figure 5.6. Average predictive ability for sclerotinia stem rot resistance associated five 

phenotypic traits estimated from the five-fold cross-validation schemes of the a) spring ecotype, 

and b) semi-winter and winter ecotypes association panel. The boxes show second and third 

quartiles and wishkers show interquertile range. The red dot in each box plot represent the mean 

predictive ability. The studied five traits were: LL = Lesion length measured at 7 days post 

inoculation (dpi); LW = lesion width at 7 dpi; PM = plant mortality at 15 dpi; LL_AUDPC = 

lesion lengths area under disease progress curve (AUDPC) calculated using 7 time points 

reading; LW_AUDPC = lesion widths AUDPC calculated using 7 time points reading. 

5.5. Discussion 

Sclerotinia stem rot is one of the destructive fungal diseases in rapeseed/canola. Lack of 

complete immune genotypes against this pathogen makes it difficult to improve SSR resistance 

using only classical breeding methods. Genomics-assisted breeding approaches such as GWA 

mapping and GP may be especially useful for the genetic improvement of complex traits by 

a 

b 
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reducing the required breeding time compared with classical breeding (Varshney et al., 2005). 

Therefore, we implemented GWA and GP approaches to study the complexly inherited S. 

sclerotiorum resistance in rapeseed/canola to facilitate the future genomics-enabled SSR 

resistance breeding. 

In GWA study, the power of QTL detection is not only dependent on the sample size, but 

also on the underlying genetic architecture of the trait, cryptic population structure, heritability of 

the trait and statistical models (Yu et al., 2006; Josephs et al., 2017). Therefore, precise 

phenotypic evaluation with appropriate inoculation method for the trait of interest is crucial. To 

obtain reliable phenotypic data, we have evaluated our studied B. napus populations under 

optimized agar plug stem inoculation procedures in controlled environments. Throughout the 

study, we used a single highly virulent S. sclerotiorum isolate WM031 (Roy et al., 2021; 

Shahoveisi et al., 2021), because the isolates of this pathogen vary in aggressiveness (Garg et al., 

2010; Taylor et al., 2015). The inoculation was done using the stem inoculation method during 

the full flowering stage which is the most prevalent stage of SSR infection in rapeseed/canola 

(Wu et al., 2013; Roy et al., 2021). Moreover, the used agar-plug stem inoculation technique 

mimics the natural SSR infections in B. napus plants and used successfully by many researchers 

to distinguish responses of rapeseed/canola lines inoculated by S. sclerotiorum (Li et al., 2006; 

Qasim et al., 2020; Roy et al., 2021; Shahoveisi et al., 2021; Derbyshire et al., 2021). In the 

present study, resistance performance of the inoculated spring, semi-winter, and winter types 

genotypes were evaluated by taking the measurement of main stem lesion length, lesion width 

starting at 3 dpi and continued on each alternate day up to 15 dpi. As a day advanced after plant 

infection by the pathogen, susceptible genotypes started to die, which resulted in loss of data 

points as we stopped data taking on LL and LW once the plants were considered dead. However, 
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LL and LW data at 7 dpi were selected for both populations because at this single time point the 

prominent phenotypic differences were observed among the genotypes without sacrificing data 

points due to the increase of plant mortality. The use of single reading of lesion length developed 

on the main stem, usually recorded between 3-9 dpi, is commonly used for bi-parental linkage 

mapping and GWA analyses for SSR resistance in rapeseed/canola (Yin et al., 2010; Wu et al., 

2013, 2016; Gyawali et al., 2016; Wei et al., 2016; Qasim et al., 2020; Roy et al., 2021; 

Shahoveisi et al., 2021). In addition to the commonly used stem LL data, we also recorded lesion 

width (LW) at 7dpi, and plant mortality (PM) at 15 dpi. Data on LW (Roy et al., 2021) and PM 

(Roy et al., 2021; Shahoveisi et al., 2021) were successfully used to differentiate the performance 

of the susceptible and resistant genotypes upon S. sclerotiorum attack. Moreover, we also 

calculated AUDPC considering 7 readings data points for stem LL (LL_AUDPC) and LW 

(LW_AUDPC). Pearson correlation analyses among the five traits in both populations revealed 

strong associations among the traits. The strong associations among the SSR resistance traits 

clearly demonstrated that each phenotypic trait complement each other and use of any of the 

traits out of five could be used for large scale phenotyping of B. napus genotypes against S. 

sclerotiorum reaction. Moreover, instead of data on different time points (7 time points in this 

study), a single time point i.e.7 dpi LL and LW scoring would be enough for SSR phenotyping. 

This would ultimately reduce the excessive workloads related to data collection, and would 

facilitate the large-scale screening of B. napus germplasm against S. sclerotiorum infection. 

In the current study, two approaches such as (i) multiple phenotypic scoring systems and 

(ii) two GWA algorithms (GEMMA-MLM and FarmCPU) were applied to improve the detection 

power and robustness of GWA mapping to identify the MTAs associated with SSR resistance.  

In GWA study, the control of false positives is very crucial, but the effect of false negatives also 
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should not be ignored. To reduce the chance of committing Type I (false positives) and Type II 

errors (false negatives), two GWA algorithms i.e. GEMMA-MLM, and FarmCPU were 

implemented by incorporating PCA and kinship matrix to control the confounding effect of 

population structure and familial relatedness. Moreover, the use of stringent Bonferroni-Holm 

correction (Holm 1979) as a threshold value to determine significant MTAs could lead to 

detection of spurious associations due to false negatives (Type II error). Therefore, the P-value 

threshold to declare association between SNPs and trait of interests were determined on the basis 

of modified Bonferroni correction by calculating the effective number of independent loci from 

the tested SNP markers for both populations according to the proposed method by Li and Ji 

(2005).  Thirty-seven (37) SNPs were commonly mapped by at least two or more traits by any of 

the two GWA models were considered stable and significantly associated with SSR resistance. 

Likewise to the spring population, SNPs detected in two or more traits were regarded as 

significant and the total 50 SNPs as significant were determined. The use of multiple phenotypic 

traits, one single locus (GEMMA-MLM), and one multi-locus (FarmCPU) GWA model in the 

current study contributed to the detection of additional significant SNPs compared to the use of 

single trait. Similar trends were also demonstrated by Shahoveisi et al. (2021) for linkage 

mapping study in controlled environment and Roy et al. (2021) for association mapping study 

under field environment for SSR resistance in rapeseed/canola. Moreover, detection of common 

or overlapping significant SNPs across multiple scoring systems and multiple methods for the 

trait of interest could provide more confidence and reliability of the detected MTAs to facilitate 

future MAS. 

Comparison of identified SNPs revealed that no SNPs were found exactly in the same 

physical location in both populations. The discrepancy could be explained by different mapping 
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populations, different B. napus ecotypes, and application of vernalization to induce flowering. 

Zhao et al. (2006) evaluated two double haploid (DH) populations using petiole inoculation 

technique (PIT) to identify QTL for SSR resistance. They detected a total of 9 QTLs, however no 

common QTL were identified between two populations. Three GWA mapping (Gyawali et al., 

2016; Wei et al., 2016; Wu et al., 2016) in B. napus using stem inoculation method (detached 

stem or intact plant stem) for SSR resistance identified numerous resistance loci located on 

different chromosomes. However, none of the resistance loci were shared among the three GWA 

results. In these three studies, different forms of stem inoculation methods (detached stem/intact 

plant stem), and the measurement of stem lesion length at 3 dpi (Wei et al., 2016), 5 dpi (Wu et 

al., 2016), and 7,14, and 21 dpi (Gyawali et al., 2016) were used for phenotyping of 

rapeseed/canola genotypes against S. sclerotiorum infection. This further explained that 

differences in phenotyping method, and B. napus germplasm collection contribute to variation of 

the detected SNPs/genomic regions among the various mapping studies. Moreover, the effect of 

vernalization on flowering induction in the semi-winter and winter populations could lead to the 

variation in the detected MTAs. Several studies have reported that vernalization of overwintering 

crops can enhance the disease resistance to several pathogens. Associations between 

vernalization and increased disease resistance has been reported in the various pathosystems, like 

winter wheat and triticale- Puccinia striiformis (Rodriguez-Algaba et al., 2020), winter cereals- 

Microdochium nivale and Typhula ishikariensis (Tronsmo, 1986; Hofgaard et al., 2006; 

Kuwabara and Imai, 2009), winter barley-Blumeris graminis f.sp. hordei (White and Jenkyn, 

1995). Application of vernalization treatment in semi-winter and winter type populations may 

contribute to the variation of SSR phenotyping which might ultimately affect the detection of 

MTAs. Therefore, differences in the identified SNPs in two populations could be due to the 
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different ecotypes of B. napus germplasm collection, and effect of vernalization. Therefore, 

future research is necessary to elucidate whether vernalization in semi-winter and winter 

genotypes might have an effect in contributing resistance to S. sclerotiorum attack. 

Few SNPs mapped in multiple traits in both populations were found to be associated in 

the close proximity in the B. napus genome. In spring population, four SNPs 

(SCM002771.2_1951273, SCM002771.2_2495279, SCM002771.2_4764427, 

SCM002771.2_5119497) mapped in multiple traits and methods were positioned between 1.95-

5.12 Mb genomic regions on chromosome C03, were in close proximity of the SNP 

SCM002771.2_5548449 (C03, 5.55 Mb) found to be associated with multiple traits in semi-

winter and winter populations. The simultaneously the SNP SCM002774.2_32559985 by 

multiple phenotypic traits and GWA methods on C06 (32.56 Mb) in semi-winter and winter 

population was located ~779 kb apart from the SNP SCM002774.2_33338934 with multiple 

traits in spring population. Mapping of these two SNPs on C06 (32.56-33.34 Mb) in the current 

studied two populations overlapped with the defined conserved QTL regions (29.5-36.1 Mb) by 

Li et al. (2015) and other detected QTNs or QTLs genomic regions for SSR resistance (Zhao et 

al., 2006; Wu et al., 2013; Qasim et al., 2020; Roy et al., 2021). Another two SNPs 

(SCM002775.2_9203423, SCM002775.2_11411683) detected in spring population, located on 

C07 in the physical genomic regions of (9.20-11.41 Mb) were found near to the SNP 

SCM002775.2_12215584 (12.22 Mb) in semi-winter and winter type populations.  

Classical linkage and GWA mapping for SSR resistance have identified a number of 

QTLs/SNPs located in the different chromosomes in B. napus genome (Zhao and Meng, 2003; 

Zhao et al., 2006; Yin et al., 2010; Wu et al., 2013, 2019; Wei et al., 2014; Zhang et al., 2019; 

Qasim et al., 2020; Shahoveisi et al., 2021). The previously reported QTNs/QTLs physical 
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position was determined based on ‘Darmor-bzh’ reference genome sequence (Chalhoub et al., 

2014). In the present study, we map the physical location of the SNPs using ‘ZS11’ as B. napus 

reference genome sequence (Sun et al., 2017), which was aligned with ‘Darmor-bzh’ reference 

genome sequence. Therefore, the identified SNPs in the current study found within ~500 kb of 

the previously mapped QTNs/QTLs were considered as the same loci that could be associated 

with SSR resistance. Thus 10 and 12 QTNs detected in our GWA analyses in Study_1 and 

Study_2 populations, respectively corresponded to previously reported SNPs and QTLs detected 

based on linkage and/or association mapping. These QTNs/QTLs simultaneously detected in 

different populations with different genetic backgrounds, different phenotypic and GWA 

methods, could potentially be exploited and integrated in the MAS for target traits of interest. 

Moreover, additionally detected novel QTNs with multiple SSR resistance traits, and GWA 

methods in the current study, may contribute to better understanding of the architecture of S. 

sclerotiorum reaction and could provide more opportunities conferring SSR resistance breeding 

in rapeseed/canola. These detected putative genes from the current study would provide 

opportunities for future gene cloning and functional verifications as a candidate for controlling S. 

sclerotiorum resistance in rapeseed/canola.    

The results from this study provide insight into the potential of genomic prediction of 

adult plant SSR resistance in rapeseed/canola. The potential of GS has been assessed for simple 

and complex traits in rapeseed/canola (Würschum et al., 2014; Jan et al., 2016; Werner et al., 

2018; Fikere et al., 2020; Roy et al., 2021; Derbyshire et al., 2021). GS allows to capture the 

contribution of small and large effect loci distributed throughout the genome. The resulted 

predictive ability of spring populations in the current study is in accordance with the previous 

study by Roy et al. (2021), and higher than that of mean predictive ability resulted from 
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Derbyshire et al. (2021), and Wu et al. (2016) findings. However, the predictive ability was low 

in semi-winter and winter ecotypes populations. The differences in predictive ability could be 

attributed to their low heritability, impact of vernalization on SSR phenotyping. Therefore, it is 

necessary to implement an inoculation method which would allow to evaluate different ecotypes 

of B. napus germplasm during S. sclerotiorum infection at the same developmental stage without 

being affected by any other physiological effects such as vernalization requirement. However, 

future investigations are warranted to determine whether vernalization of B. napus genotypes 

have any effect on physiological resistance to SSR disease.     

The extensive phenotypic evaluation of diverse B. napus germplasm in response to S. 

sclerotiorum attack revealed a few promising genotypes of different ecotypes with moderate 

levels of resistance against this pathogen. These resistance sources would serve as a valuable 

resource to transfer and pyramid the SSR resistant genes/QTLs into the elite cultivars leading 

towards the development of durable SSR resistant canola cultivars for the growers. GWA scan in 

two studied populations identified few overlapping/co-localized SNPs with the previously 

reported SNPs/QTLs as well novel significant SNPs associated with SSR resistance, would 

provide exciting opportunities to explore their potential in integrating into the MAS resistance 

breeding in rapeseed/canola. However, further research is warranted on validating the effects of 

identified SNPs, candidate genes that these QTNs and genes engender resistance to S. 

sclerotiorum infection. Impact of vernalization on SSR resistance phenotyping also needs further 

verification to be used in future for screening. GS results revealed higher (spring population) and 

low to medium (semi-winter and winter population) predictive ability could be implemented to 

accelerate the breeding cycle by selecting SSR resistant genotypes at early growth stages.  
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CHAPTER 6: SUMMARY 

In this research, we investigated the phenotypic performance of a diverse panel of 

Brassica napus germplasm collections consisting of spring, semi-winter, and winter ecotypes 

against Sclerotinia sclerotiorum disease infection. Extensive screening of the studied genotypes 

under field and greenhouse environments were carried out using agar plug intact plant stem 

inoculation method (greenhouse and field environments) for adult plant resistance, and petiole 

inoculation technique (PIT) (greenhouse) for seedling resistance. Both inoculation methods 

showed statistically significant differences among the genotypes for all phenotypic traits in all 

experiments. This clearly demonstrates that these methods are reliable, repeatable, and can be 

used successfully to distinguish the response of B. napus accessions to S. sclerotiorum infection. 

In addition, we also assessed the effectiveness of multiple sclerotinia stem rot (SSR) phenotypic 

traits to evaluate the phenotypic response of genotypes in response to the S. sclerotiorum 

infection. Finally, using the multiple phenotypic traits from each experiment, we expedited two 

strategies, genome-wide association (GWA) mapping to identify significant markers associated 

with trait of interests, and genomic prediction (GP) to utilize all marker effects to predict the 

performance of SSR resistant genotypes at seedling and adult plant stage. 

In each experiment, we recorded multiple phenotypic traits for the assessment of 

rapeseed/canola lines against S. sclerotiorum infection. In field study, a total of 187 B. napus 

lines were characterized for adult plant resistance using intact stem inoculation method in four 

environments. Phenotypic measurements were done by taking the commonly used stem lesion 

length at 7 days post inoculation (dpi) with three additional phenotypic traits such as lesion width 

at 7 dpi, plant mortality at 14 and 21 dpi, for the evaluation of corresponding genotypes against 

SSR resistance. Strong correlations observed among the traits which suggest that they could be 
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used as proxies for SSR phenotyping. Moreover, we also investigated the relationships between 

SSR disease phenotypic traits with three physiological traits such as flowering time (FT), 

stem diameter (SD), and stem internode length (IL) under field environments. The FT and 

SD were negatively, and IL was positively correlated with the SSR phenotypic traits. We 

also characterized our B. napus association panel consisting of 337 lines for seedling 

resistance using PIT two times in the greenhouse. Phenotypic response of the infected plants 

was determined by days to wilt (DW) and scored on each day up to two weeks. The DW was 

strongly correlated with lesion phenotypes (LP) (scored using a categorical scale based on 

developed lesions on the main stem) recorded on 3, 4, and 7 dpi. DW had the highest 

associations with LP scores at 4dpi. This implied that single time point scoring data (LP_4dpi) 

could be used as a potential proxy trait instead of DW for large scale phenotyping of SSR 

resistant genotypes, which would eliminate the excessive workload associated with SSR 

phenotyping. Moreover, adult plant resistance against S. sclerotiorum were also characterized 

under greenhouse environments including 144 spring and 152 semi-winter and winter types in 

two separate experiments. Screening of each population was done two times. Multiple traits such 

as lesion length, lesion width, and plant mortality were collected as phenotype response for the 

evaluation of genotypes. Similar to field study, highly significant correlations existed among the 

phenotypic traits in spring, and semi-winter and winter populations. Extensive phenotypic 

evaluation in the field and greenhouse environments helped us to identify few promising lines 

conferring resistance to SSR at both seedling and adult developmental stages. However, 

developmental stage specific disease resistance genotypes were also identified. In the present 

study, the promising resistant lines showed better resistance performance than the used 

commercial resistant check cultivars.  
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In field study, genome-wide association (GWA) analyses using three algorithms 

identified 133 significant SNPs for four traits associated with SSR resistance. The explained 

phenotypic variation of these SNPs varied from 3.6-12.1%. Among these, 19 SNPs were mapped 

in two or more environments, disease traits and at least by two GWA algorithms. Candidate gene 

search based on disease resistance annotated 69 putative genes found within ± 50 kb genomic 

interval of the significant SNPs. In case of seedling resistance using PIT inoculation method, one 

single-locus (GEMMA-MLM) and three multi-locus (MLMM, FarmCPU, mrMLM) GWA 

mapping models with 27, 282 SNP markers mapped a total of 79 significant SNPs detected by at 

least two traits or two models, explaining 1.35-13.30% of the phenotypic variance with multiple 

phenotypic traits. Eighty-one putative annotated candidate genes associated with disease 

resistance mechanisms corresponding to the significant SNPs were found to underlie SSR 

resistance. In the greenhouse, we phenotyped 144 spring types population (SP), 152 semi-winter 

and winter types populations (SWP) using stem inoculation method at the full flowering stage. 

GWA mapping with two models and five phenotypic traits identified 37 and 50 significant SNPs 

in SP, and SWP, respectively. Candidate gene search using ± 50 kb flanking genomic regions 

around the significant SNPs revealed a total of 35, and 46 for SP and SWP respectively. The 

putative annotated candidate genes known to have plant disease resistance mechanism, which 

could be associated with SSR resistance. The defined conserved QTL genomic regions for SSR 

resistance were positioned on chromosomes A09 (22.5-27.5 Mb) and C06 (29.5-36.1 Mb). In this 

study, we mapped 3 significant SNPs on chromosome A09 (21.5-27-7 Mb), which is located 

near to the defined conserved QTL regions. A total of 9 significant SNPs detected from all 

experiments were positioned on chromosome C06 (31.7-34.1 Mb) genomic regions, which 

overlapped with the conserved SSR resistance QTL genomic regions. We simultaneously 



 

147 

detected few significant SNPs, which are overlapped in the certain genomic regions on 

chromosomes from different experiments, different environments and different inoculation 

methods. These narrowed down genomic regions were located on chromosome A09 (33.3-39.1 

Mb) consisting of 20 significant SNPs, C02 (59.2-62.8 Mb) with 7 significant SNPs, and C6 

(31.7-37.7 Mb) with 10 significant SNPs (Figure 6.1). These genomic regions may contribute to 

better understanding of the genetic architecture of S. sclerotiorum and could provide more 

opportunities for SSR resistance breeding in rapeseed/canola. A TIR-NB-LRR gene encodes 

RPP1 proteins, detected in both field (adult plant resistance) and greenhouse (seedling 

resistance) study were found as a potential candidate gene could be associated with SSR 

resistance. Moreover, we also identified WRKY transcription factor 33 (WRKY33) as a potential 

candidate gene, which is known to be involved in providing resistance against S. sclerotiorum 

infection.  

We also explored and evaluated the effectiveness of genomic prediction (GP) for 

predicting SSR resistant genotypes. Under field environments, the GP models resulted in 

moderate to high predictive ability in predicting adult plant stage SSR resistance. Plant mortality 

trait yielded the highest predictive ability compared to the stem lesion length and lesion width 

phenotypic traits. In terms of seedling stage SSR resistance, medium to high predictive ability 

resulted from the four phenotypic traits predicted by six genomic selection models. All the six 

GP models gave similar results and none of the models outperform others in terms of achieving 

high predictive ability. Single time point scoring data LP_3dpi and LP_4dpi resulted in higher 

predictive ability compared to DW. In the case of adult plant resistance under greenhouse 

environment, moderate to high, and low to moderate predictive ability in SP and SWP, 

respectively, were observed. Our study concludes that the genomics-assisted approach i.e. GWA 
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mapping and genomic prediction hold promise and could be implemented for the genetic 

improvement of complexly inherited SSR resistance in rapeseed/canola to achieve higher 

predictive ability and rapid gains from selection, thereby reducing the required time compared 

with conventional breeding. 

 

Figure 6.1. Significant markers detected from the field and greenhouse study at seedling and 

adult plant stage neighboring on the same chromosome. FD_SM, field study using stem 

inoculation method at adult plant stage; PIT, greenhouse study at the seedling stage using petiole 

inoculation technique; SM_SP, greenhouse study at the adult plant stage using stem inoculation 

method for spring growth habit genotypes; SM_SW, greenhouse study at the adult plant stage 

using stem inoculation method for semi-winter and winter growth habit genotypes. Map were 

constructed using MapChart software (Voorrips, 2002).  
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CHAPTER 7: FUTURE DIRECTION 

These resistance genotypes will serve as a valuable resource for NDSU canola breeding 

program to transfer the resistant genes into elite cultivars leading towards the development of 

high yielding canola cultivars with improved SSR resistance for the canola growers. Multi-parent 

advanced generation inter-cross (MAGIC) lines could be generated using these SSR resistant 

lines, together with other parents carrying economically important traits, with an aim to 

incorporate all the useful traits into a single background. These MAGIC lines could be used for 

various genetic mapping studies and as a potential parent to extract canola cultivars with multiple 

useful traits. The development of MAGIC lines is in progress including identified SSR resistant 

genotypes from the current study. 

We have simultaneously detected new genomic regions across different experiments, 

different inoculation methods and different environments. These narrowed down genomic 

regions were located on chromosome A09 (33.3-39.1 Mb), C02 (59.2-62.8 Mb), and C6 (31.7-

37.7 Mb). These genomic regions may contribute to better understanding of the genetic 

architecture of S. sclerotiorum reaction and could provide more opportunities for SSR resistance 

breeding in rapeseed/canola. Therefore, future efforts would be directed to validate the identified 

SNPs and develop tightly linked markers to facilitate the marker-assisted-selection (MAS) 

resistance breeding in rapeseed/canola. SNP validation could be done by converting the 

identified SNPs into kompetitive allele-specific PCR (KASP) markers. Semi-thermal asymmetric 

reverse PCR (STARP) also provides a new flexible, scalable, and cost-effective approach for 

using SNP markers in MAS.  Another approach would be to perform gene expression analyses 

by collecting RNA samples from the identified highly resistant and susceptible lines by infecting 

with S. sclerotiorum. The repeatedly detected putative disease resistance candidate genes could 
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be selected as potential candidate genes to observe their differential gene expression in the 

contrasting phenotyped rapeseed/canola lines upon S. sclerotiorum infection. In addition to that, 

gene editing with CRISPR could be used to validate the putative function of the detected 

candidate genes. This could be done by knocking-out the disease resistant candidate genes, and 

by observing the phenotype of the corresponding lines. 
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APPENDIX 

Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study 

Name of the accessions Country of origin/obtained Growth habit 

Pioneer 45S51a Pioneer (Check) Spring 

Pioneer 45S56a Pioneer (Check) Spring 

Galant USA Spring 

Galaxy Sweden Spring 

Gido Germany Spring 

Girita Germany Semi-winter 

Gisora Germany Spring 

Global Sweden Spring 

Golden Canada Spring 

Gora Germany Spring 

Gulle Sweden Spring 

Gullivar Sweden Spring 

Gylle South Korea Semi-winter 

Helga Germany Semi-winter 

Hi-Q Canada Spring 

INRA-R-2000 France Spring 

IR-2 Hungary Spring 

Janetzkis South Korea Spring 

Jasna Serbia Spring 

Kanada Poland Spring 

Klinki South Korea Spring 

Kosa Germany Spring 

Kovalevskjj Ukraine Spring 

Kraphhauser South Korea Spring 

Kritmar rape South Korea Spring 

Laura Germany Spring 

Legend Sweden Spring 

Lieikoposki South Korea Semi-winter 

Aviso Canada Spring 

Lifura South Korea Spring 

Azuma South Korea Semi-winter 
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Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Lisora Germany Semi-winter 

Major France Semi-winter 

Mali South Korea Semi-winter 

Azumasho South Korea Semi-winter 

Mar'janovskij Ukraine Spring 

Matador South Korea Semi-winter 

Mazowiecki Poland Spring 

Midas Canada Spring 

Miekuro Dane South Korea Spring 

Miochowski France Semi-winter 

Mlochowski Poland Semi-winter 

Mura yamasho South Korea Spring 

Murame nadame South Korea Semi-winter 

N001-28-246-5-4 South Korea Semi-winter 

NDC-A14026 USA Spring 

NDC-A14032 USA Spring 

NDC-A14033 USA Spring 

NDC-A14035 USA Spring 

NDC-A14036 USA Spring 

NDC-A14045 USA Spring 

NDC-A14046 USA Spring 

NDC-A14050 USA Spring 

NDC-A14055 USA Spring 

NDC-A14056 USA Spring 

NDC-E12009 USA Spring 

NDC-E12023 USA Spring 

NDC-E12025 USA Spring 

NDC-E12027 USA Spring 

NDC-E12044 USA Spring 

NDC-E12079 USA Spring 

NDC-E12081 USA Spring 
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Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDC-E12086 USA Spring 

NDC-E12119 USA Spring 

NDC-E12120 USA Spring 

NDC-E12121 USA Spring 

NDC-E12131 USA Spring 

NDC-E12133 USA Spring 

NDC-E13193 USA Spring 

NDC-E13279 USA Spring 

NDC-E13285 USA Spring 

NDC-E15031 USA Spring 

NDC-E15146 USA Spring 

NDC-E15174 USA Spring 

NDC-E15200 USA Spring 

NDC-E15234 USA Spring 

NDC-E15294 USA Spring 

NDC-E16015 USA Spring 

NDC-E16053 USA Spring 

NDC-E16152 USA Spring 

NDC-E16169 USA Spring 

NDC-E16198 USA Spring 

NDC-E17132 USA Spring 

NDSU01104 USA Spring 

NDSU0417 USA Spring 

NDSU0472 USA Spring 

NDSU0473 USA Spring 

NDSU0474 USA Spring 

NDSU0475 USA Spring 

NDSU0521 USA Spring 

NDSU0522 USA Spring 

NDSU0619 USA Spring 

NDSU0620 USA Spring 

NDSU0726 USA Spring 
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Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDSU0728 USA Spring 

NDSU0729 USA Spring 

NDSU10999 USA Spring 

NDSU12989 USA Spring 

NDSU151000 USA Spring 

NDSU15989 USA Spring 

NDSU161013 USA Spring 

NDSU31001 USA Spring 

NDSU31011 USA Spring 

Bingo USA Spring 

NDSU41000 USA Spring 

NDSU7997 USA Spring 

NDSU81000 USA Spring 

NDSU91013 USA Spring 

Nilla 1022 South Korea Semi-winter 

Nilla glossy South Korea Semi-winter 

NU 41737 Turkey Spring 

NU 51084 Sweden Spring 

Nugget South Korea Semi-winter 

NY-12 China Semi-winter 

NY-20 China Semi-winter 

NY-7 China Semi-winter 

NY-8 China Semi-winter 

O 84 China Semi-winter 

BO-63 Canada Spring 

Oro Canada Spring 

Orpal France Spring 

Peace Canada Spring 

Petanova-lihonova South Korea Semi-winter 

Polo canola USA Spring 

Premier USA Spring 

Printol USA Spring 
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Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Prota Germany Spring 

Q2 Canada Spring 

Rang South Korea Semi-winter 

Ratnik Serbia Spring 

Rebel USA Semi-winter 

Regent Canada Spring 

Regina II Canada Spring 

Reston USA Spring 

Rico Germany Spring 

Romeo France Spring 

Russia 5 Russian Federation Spring 

S.V. Gulle South Korea Spring 

Seoul South Korea Spring 

Sera Germany Semi-winter 

Silex Canada Spring 

Brio France Spring 

Su weon chag South Korea Semi-winter 

Sunrise USA Spring 

Sval of Gullen South Korea Spring 

Taichang South Korea Semi-winter 

Bronowski Poland Spring 

Taiwan Taiwan Spring 

Tanka South Korea Semi-winter 

Tanto France Spring 

Target Sweden Spring 

Todane South Korea Semi-winter 

Buk Wuk 3 South Korea Spring 

Tokiwa South Korea Semi-winter 

Tonus South Korea Spring 

Topas Sweden Spring 

Tower Canada Spring 

Turret Canada Spring 
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Table A.1. Name, origin, and growth habits of the 189 germplasm accessions (including check 

cultivars) used in this study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Vostochno-sibirskii Russian Federation Spring 

Wasefuji South Korea Spring 

Weal dong cho South Korea Semi-winter 

Westarb Canada Spring 

Willa South Korea Spring 

Wipol Norway Semi-winter 

Yong dang South Korea Semi-winter 

Zhoungyou-821 China Semi-winter 

Cescaljarni repka South Korea Semi-winter 

Ceskia Tabor Czech Republic Spring 

Chisaya natane Japan Semi-winter 

Colt USA Spring 

Colza South Korea Spring 

Colza 18 Miroc South Korea Semi-winter 

Comet Sweden Spring 

Conquest Canada Spring 

Cougar Canada Spring 

Cresor France Spring 

Cresus France Spring 

Czyzowski Poland Spring 

Czyzowskich Poland Semi-winter 

Dae cho sen South Korea Semi-winter 

Delta Sweden Spring 

Drakkar France Spring 

Eckendorfer Mali South Korea Semi-winter 

Evvin Russian Federation Spring 

Flint USA Spring 

Fonto South Korea Spring 

France 1 France Spring 

Fu 58 Drakkar  France Spring 

Fuji South Korea Spring/ semi 
a Accessions used as resistant check 
b Accession used as susceptible check 
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Table A.2. Results for ANOVA of sclerotinia stem rot resistance traits and other traits in each 

environment and combined across environments. 

SOVa Environmentb LL LW PM_14Dc PM_21Dc SD IL DF 

Genotype CARR_19 *** *** ---- ---- *** *** *** 

Genotype LANG_19 *** *** ---- ---- *** *** *** 

Genotype CARR_20 *** *** ---- ---- *** *** *** 

Genotype OSN_20 *** *** ---- ---- *** *** *** 

Genotype CombENV *** *** *** *** *** *** *** 

Genotype x Env. CombENV *** *** *** ns *** *** *** 

*** and ns indicate differences were significant at P ≤ 0.0001 levels of significance, and not 

significant 

SOVa, source of variation; Env., environment; LL, lesion length; LW, lesion width; PM_14D, 

plant mortality at 14 days post inoculation (dpi); PM_21D, plant mortality at 21 dpi; SD, stem 

diameter; IL, internode length; DF, days to flowering. 

Environmentb: CARR_19, carrington 2019; CARR_20, carrington 2020; LANG_19, langdon 

2019, OSN_20, osnabrock 2020, CombENV, combined across all environments 

PM_14Dc and PM_21Dc, combined analyses across all environments 
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Table A.3. Marker-trait-associations (MTAs) with stem lesion length (cm) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic effecte R2 f 

1 1 SCM002759.2_1471693 1471693 A/T 4.3-3.1 E1123, E223, E423, CombENV123 -0.30, -0.22 4.8-7.0 

2 1 SCM002759.2_1766199 1766199 A/G 3.6-3.0 E2123, CombENV123 0.47, 0.37 4.6-5.6 

3 1 SCM002759.2_4239970 4239970 A/C 4.8-3.3 E2123, E423, CombENV23  -0.34; -0.25 5.4-7.3 

4 1 SCM002759.2_5478454 5478454 C/T 3.5-3.3 E223 0.38 5.1 

5 1 SCM002759.2_11482241 11482241 C/T 3.1-3.4 E1123, E33, CombENV13 -0.28; -0.27 5.4 

6 2 SCM002760.2_1865667 1865667 A/C 4.8-3.0 E223, E4123, CombENV23 -0.70, -0.43 4.5-7.7 

7 2 SCM002760.2_10378033 10378033 G/A 3.5-3.3 E423 -0.28 5.3 

8 2 SCM002760.2_30827371 30827371 C/G 3.6-3.1 E3123 -0.22; -0.21 6.2 

9 3 SCM002761.2_17320071 17320071 T/A 3.8-3.1 E2123 -0.56; -0.51 4.8 

10 3 SCM002761.2_28225133 28225133 T/C 3.7-3.4 E3123 -0.36 7.2 

11 3 SCM002761.2_30742237 30742237 T/C 3.4-3.0 E1123, CombENV3 0.41 5.4 

12 3 SCM002761.2_35236913 35236913 C/A 3.5-3.2 E3123 -0.20 6.7 

13 3 SCM002761.2_36170515 36170515 G/A 5.4-4.0 E1123, E3123, CombENV123 0.26, 0.23 7.0-9.9 

14 4 SCM002762.2_3551539 3551539 C/T 3.4-3.0 E4123, CombENV123 0.61, 0.45 4.8-5.2 

15 4 SCM002762.2_20212672 20212672 T/A 4.5-3.0 E3123, CombENV13 -0.56; -0.44 5.0-8.6 

16 5 SCM002763.2_15914063 15914063 G/A 5.2-3.0 E2123, E4123, CombENV123 -0.59; -0.33 5.0-8.0 

17 5 SCM002763.2_16279322 16279322 A/C 3.7-3.1 E3123, CombENV23 -0.39; -0.34 5.1-7.2 

18 5 SCM002763.2_28142332 28142332 A/G 3.9-3.1 E2123 0.24; 0.27 4.7 

19 5 SCM002763.2_28608175 28608175 A/G 3.5-3.3 E2123 0.42; 0.38 5.1 

20 6 SCM002764.2_25241979 25241979 C/A 3.3-3.0 E113, E323, CombENV123 -0.47; -0.45 5.0-5.9 

21 7 SCM002765.2_25991221 25991221 G/C 3.7-3.1 E1123, E2123, CombENV3 -0.63; -0.51 5.4-5.5 

22 8 SCM002766.2_1982656 1982656 G/C 4.6-3.1 E3123, E4123, CombENV123 -0.57; -0.38 7.0-7.5 

23 8 SCM002766.2_13657808 13657808 T/G 3.5-3.0 E3123 -0.41 6.0 

24 8 SCM002766.2_13864870 13864870 A/G 3.7-3.1 E2123, E4123, CombENV123 0.67, 0.47 5.2-5.7 

25 9 SCM002767.2_37664281 37664281 A/G 3.9-3.7 E4123 -0.34 6.2 
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Table A.3. Marker-trait-associations (MTAs) with stem lesion length (cm) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models (continued) 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic effecte R2 f 

26 9 SCM002767.2_37671479 37671479 G/A 3.6-3.1 E1123, E21 -0.31; -0.27 5.9 

27 9 SCM002767.2_39128782 39128782 T/C 3.6-3.2 E1123, CombENV123 -0.60; -0.56 5.4-6.0 

28 9 SCM002767.2_43041855 43041855 C/T 3.8-3.5 E3123 0.65 7.1 

29 9 SCM002767.2_45297735 45297735 T/C 4.0-3.3 E2123, E413, CombENV2 -0.47; -0.33 5.1-6.1 

30 9 SCM002767.2_45841268 45841268 A/T 3.5-3.0 E3123, CombENV13 0.44, 0.43 6.0 

31 11 SCM002769.2_6223969 6223969 T/C 4.4-3.3 E1123, E3123, CombENV123 -0.45; -0.38 6.0-7.3 

32 11 SCM002769.2_46192098 46192098 T/C 4.2-3.0 E2123, E423, CombENV23  -0.74; -0.52 4.9-6.4 

33 12 SCM002770.2_25096010 25096010 A/T 3.6-3.0 E3123, CombENV1 0.50, 0.49 6.1 

34 12 SCM002770.2_32020747 32020747 A/G 4.0-3.0 E2123, E413, CombENV123 0.46, 0.34 5.1-6.0 

35 12 SCM002770.2_62791159 62791159 T/C 3.6-3.3 E3123 -0.35; -0.34 7.0 

36 13 SCM002771.2_7893201 7893201 C/G 5.0-3.1 E2123, E4123, CombENV13 0.78, 0.47 5.7-7.9 

37 13 SCM002771.2_22853068 22853068 G/A 3.7-3.0 E2123, E4123, CombENV123 -0.50; -0.38 4.9-5.3 

38 13 SCM002771.2_45250459 45250459 T/G 3.8-3.5 E1123 0.26 6.2 

39 13 SCM002771.2_56900783 56900783 G/A 3.8-3.0 E1123, E3123, CombENV13 0.40, 0.34 4.9-7.4 

40 13 SCM002771.2_69833085 69833085 C/T 3.7-3.2 E223 0.40 5.6 

 13 SCM002771.2_69833922 69833922 C/G 3.4-3.2 E223 0.37 5.0 

41 13 SCM002771.2_78761785 78761785 G/T 3.5-3.0 E43, CombENV123 0.68, 0.63 5.3 

42 13 SCM002771.2_80035604 80035604 C/T 3.4-3.0 E13; E33; CombENV23 0.64 5.3 

43 14 SCM002772.2_65359864 65359864 C/T 4.5-3.1 E1123, E213, CombENV123 0.82; 0.72 6.6-7.6 

44 15 SCM002773.2_29580386 29580386 A/T 3.7-3.0 E33, E423, CombENV23 0.78, 0.60 5.1-6.0 

45 15 SCM002773.2_38993115 38993115 A/C 3.9-3.0 E1123, CombENV23 0.51, 0.44 5.0-6.6 

46 16 SCM002774.2_22279509 22279509 A/G 3.8-3.0 E4123, CombENV123 -0.45, -0.28 4.9-5.7 

47 16 SCM002774.2_22321613 22321613 C/A 3.5-3.1 E413, CombENV1 0.39, 0.26  

48 16 SCM002774.2_22403960 22403960 A/C 4.0-3.0 E4123, CombENV1 -0.42, -0.27 5.0 

49 16 SCM002774.2_23837210 23837210 A/T 3.4-3.1 E413, CombENV13 -0.36, -0.26  

50 16 SCM002774.2_25678898 25678898 T/C 3.8-3.0 E223, E4123 0.35, 0.23 4.7-6.0 
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Table A.3. Marker-trait-associations (MTAs) with stem lesion length (cm) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models (continued) 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic effecte R2 f 

51 16 SCM002774.2_25739024 25739024 T/C 3.7-3.0 E1123, E313, E41, CombENV123 0.29, 0.21 5.0-5.4 

52 16 SCM002774.2_33238118 33238118 G/T 3.4-3.0 E3123 -0.32 5.9 

 16 SCM002774.2_33265642 33265642 G/C 3.4-3.1 E3123 0.31 6.2 

53 16 SCM002774.2_33563646 33563646 T/A 4.0-3.0 E1123, E21, E3123, E41, CombENV123 0.32, 0.25 5.4-6.0 

54 16 SCM002774.2_34137593 34137593 C/T 4.5-3.0 E1123, E2123, E4123, CombENV123 -0.36, -0.25 4.6-6.8 

55 16 SCM002774.2_34149554 34149554 T/C 3.8-3.0 E21, E4123, CombENV1 0.37, 0.24 4.7 

56 16 SCM002774.2_39405155 39405155 A/G 4.0-3.4 E3123 -0.25 6.9 

57 17 SCM002775.2_43529605 43529605 C/G 4.0-3.1 E4123; CombENV12 0.51; 0.34 5.1-6.3 

58 17 SCM002775.2_49740638 49740638 C/A 3.5-3.1 E423; CombENV23 -0.53; -0.39 5.1-5.2 

59 18 SCM002776.2_29886188 29886188 G/C 3.4-3.0 E2123, E423 -0.45, -0.41 4.8-5.0 

60 19 SCM002777.2_15808490 15808490 G/A 3.8-3.5 E3123 0.38 7.2 

61 19 SCM002777.2_46851981 46851981 G/A 4.0-3.1 E1123, E3123, E4123, CombENV123 -0.84, -0.59 5.3-6.8 

62 19 SCM002777.2_48885679 48885679 C/T 5.8-3.3 E1123, E2123, E3123, E4123, CombENV123 0.83, 0.52 5.8-9.2 

Chra, Brassica napus chromosome 

Allelesb, (_/_) Major allele/minor allele 

-log10 (P)c, The highest and lowest -log10 (P) value resulted from the studied environments with different GWAS models where the identified SNPs -log10 (P) 

value ≥3.4 by at least of the GWAS models 

Env & Modeld, Environments: E1, Carrington 2019; E2, Landon 2019; E3, Carrington 2020; E4, Osnabrock 2020; CombENV, combined analysis across four 

environments; Model: superscript 1, 2 & 3 represents FarmCPU, MLM and GEMMA-MLM GWAS models respectively 

Allelic effecte, difference in mean stem lesion length (cm) between genotypes with major allele and minor allele. Positive sign indicates major allele is associated 

with increased lesion length (cm). Negative sign indicates that the major allele is associated with reduced lesion length (cm) 

R2 f, Percentage of phenotypic variation explained by the identified significant SNP derived from the results of MLM method 
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Table A.4. Marker-trait associations (MTAs) with stem lesion width (%) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic 

effecte 

R2 f 

1 1 SCM002759.2_1471693 1471693 A/T 6.9-3.3 CombENV123 -1.97; -1.56 5.50 

2 1 SCM002759.2_2561773 2561773 C/T 6.6-3.0 E3123, CombENV23 4.42, 1.90 4.9-12.1 

3 1 SCM002759.2_4235780 4235780 A/C 3.5-3.2 E2123 2.42, 2.32 5.10 

 1 SCM002759.2_4239970 4239970 A/C 4.0-3.3 E2123, E4123, CombENV23  -3.26, -2.26 5.7-6.0 

4 1 SCM002759.2_5478454 5478454 C/T 3.4-3.0 E43, CombENV23 2.78 5.20 

5 1 SCM002759.2_12025515 12025515 A/G 3.5-3.3 E1123 2.35; 2.33 6.10 

6 1 SCM002759.2_31973754 31973754 A/C 3.5-3.2 E4123 -2.48; -2.50 5.40 

7 2 SCM002760.2_1865667 1865667 A/C 4.5-3.6 E4123, CombENV23 -4.27, -5.98 6.2-7.3 

8 3 SCM002761.2_6322149 6322149 C/G 3.8-3.3 E2123 -2.70; -2.78 5.70 

9 3 SCM002761.2_11084205 11084205 G/A 3.7-3.1 E223; CombENV1 5.2; 2.4 4.90 

10 3 SCM002761.2_11191427 11191427 T/A 3.4-3.3 E213 -6.47  

11 3 SCM002761.2_28225133 28225133 T/C 3.7-3.4 E323 -3.34 6.70 

12 3 SCM002761.2_28954312 28954312 T/C 3.4-3.2 E4123 4.91; 4.76 5.30 

13 3 SCM002761.2_35236913 35236913 C/A 8.7-3.6 E1123, E3123 -2.07, -1.84 6.7-8.2 

14 3 SCM002761.2_36170515 36170515 G/A 7.0-3.3 E1123, E323, CombENV123 2.24, 1.52 5.6-8.7 

15 5 SCM002763.2_1779846 1779846 G/A 4.4-3.1 E13; E323; CombENV23 -2.47; -2.15 5.2-7.1 

16 5 SCM002763.2_15914063 15914063 G/A 5.1-3.3 E2123, E4123, CombENV23  -5.49, -3.18 5.5-7.8 

 5 SCM002763.2_15924240 15924240 T/C 3.5-3.2 E213 2.73  

17 5 SCM002763.2_16279322 16279322 A/C 5.8-3.0 E113, E3123, CombENV123 -3.89, -2.66 5.4-8.0 

18 5 SCM002763.2_24009625 24009625 C/G 3.5-3.2 E1123 2.69; 2.58 6.00 

19 5 SCM002763.2_28608175 28608175 A/G 3.5-3.0 E2123, CombENV3 4.16 5.20 

20 6 SCM002764.2_25241979 25241979 C/A 4.5-3.2 E1123, E3123, CombENV123 -5.10, -3.15 5.2-8.0 

21 6 SCM002764.2_29348402 29348402 A/C 5.3-3.1 E21, E413, CombENV123 -2.60, -1.43 5.50 

22 6 SCM002764.2_33502340 33502340 C/A 3.6-3.2 E113; E33 -3.20  

23 6 SCM002764.2_33622715 33622715 T/C 3.4-3.0 E23; E43; CombENV23 1.77 5.30 

24 8 SCM002766.2_13657808 13657808 T/G 3.6-3.1 E323 -3.76 5.90 

 



 

 

1
8
0
 

Table A.4. Marker-trait associations (MTAs) with stem lesion width (%) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models (continued) 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic 

effecte 

R2 f 

25 8 SCM002766.2_20621551 20621551 A/T 3.6-3.4 E223 2.64 5.40 

26 8 SCM002766.2_20760271 20760271 G/C 3.9-3.2 E323; CombENV23 2.35; 2.06 5.4-7.2 

27 9 SCM002767.2_37671479 37671479 G/A 4.0-3.2 E1123, CombENV3 -2.60; -2.64 6.90 

28 9 SCM002767.2_45297735 45297735 T/C 3.4-3.1 CombENV23 -2.95 5.10 

29 9 SCM002767.2_45841268 45841268 A/T 5.9-3.8 E3123 4.58; 3.56 7.60 

30 10 SCM002768.2_2190513 2190513 A/C 3.5-3.1 E1123, E323 3.57; 3.41 6.00 

31 10 SCM002768.2_12144744 12144744 T/C 3.4-3.2 E323 2.62 6.30 

32 10 SCM002768.2_21099405 21099405 G/C 3.5-3.0 E213; E413 2.89; 2.47  

33 11 SCM002769.2_6223969 6223969 T/C 3.4-3.1 E1123; CombENV1 -3.43 5.70 

34 11 SCM002769.2_46192098 46192098 T/C 3.9-3.0 E2123, CombENV23 -7.37, -4.75 5.0-5.8 

35 12 SCM002770.2_25096010 25096010 A/T 3.8-3.1 E1123, E323; CombENV3 4.70, 4.50 5.9-6.2 

36 12 SCM002770.2_32020747 32020747 A/G 4.3-3.0 E1123, E21, E4123, CombENV123 4.04, 1.80 4.9-6.2 

37 12 SCM002770.2_43963414 43963414 A/T 3.6-3.0 E213, E4123 -3.02; -2.71 5.10 

 12 SCM002770.2_44006308 44006308 G/A 3.5-3.1 E213; E413 2.88; 2.51  

 12 SCM002770.2_44012322 44012322 C/T 3.6-3.0 E4123, CombENV1 -2.78, -2.68 5.50 

38 12 SCM002770.2_59170961 59170961 A/C 3.7-3.4 E323 -5.15 6.80 

39 12 SCM002770.2_62791159 62791159 T/C 3.7-3.4 E323 -3.20 6.70 

40 13 SCM002771.2_7893201 7893201 C/G 5.0-3.5 E2123, E4123, CombENV23  7.51, 4.54 6.0-7.1 

41 13 SCM002771.2_22853068 22853068 G/A 3.4-3.0 E413, CombENV23 -4.24, -3.34 4.90 

42 13 SCM002771.2_27877818 27877818 G/C 3.4-3.2 E4123 -5.67; -5.77 5.40 

43 13 SCM002771.2_45250459 45250459 T/G 3.4-3.2 E1123 2.22; 2.20 5.90 

44 13 SCM002771.2_48097242 48097242 G/A 3.9-3.1 E1123, CombENV23 -4.19, -3.81 5.2-6.9 

45 13 SCM002771.2_56900783 56900783 G/A 3.5-3.1 E323 3.52 6.50 

46 14 SCM002772.2_8693165 8693165 A/G 3.4-3.2 E1123, E323 5.90, 5.49 5.8-6.2 

47 14 SCM002772.2_10285794 10285794 T/G 3.5-3.3 E4123 4.12, 4.05 5.60 
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Table A.4. Marker-trait associations (MTAs) with stem lesion width (%) for sclerotinia stem rot resistance in 187 canola/rapeseed 

genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models (continued) 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 (P)c Env & Modeld Allelic 

effecte 

R2 f 

48 14 SCM002772.2_12898850 12898850 G/A 3.9-3.6 E1123 -4.07, -4.02 6.80 

49 14 SCM002772.2_13679559 13679559 C/T 3.9-3.6 E323 3.90 7.20 

50 14 SCM002772.2_65359864 65359864 C/T 3.8-3.2 E1123, E3123, CombENV23 6.07, 3.28 5.5-6.8 

51 14 SCM002772.2_70479506 70479506 A/G 4.0-3.0 E23, E4123 -6.83, -6.75 6.40 

52 15 SCM002773.2_9748366 9748366 T/C 3.6-3.2 E4123, CombENV23 4.15, 3.08 5.2-5.7 

53 15 SCM002773.2_10201221 10201221 C/T 7.2-3.9 E3123 7.75, 6.43 7.80 

54 15 SCM002773.2_35983051 35983051 G/A 3.9-3.1 E123 2.69; 1.52 5.60 

55 16 SCM002774.2_25673001 25673001 G/A 3.4-3.1 E2123, E4123 3.33, 3.05 5.0-5.2 

56 16 SCM002774.2_25678898 25678898 T/C 5.0-3.0 E2123, E4123, CombENV23 3.81, 2.15 4.9-7.6 

57 16 SCM002774.2_25739024 25739024 T/C 10.9-3.4 E323, E4123, CombENV123 2.78, 2.17 6.1-6.9 

58 16 SCM002774.2_33238118 33238118 G/T 3.4-3.0 E323 -2.91 5.80 

59 16 SCM002774.2_33563646 33563646 T/A 3.4-3.0 E1123; CombENV23 2.16; 2.13 5.0-5.5 

60 16 SCM002774.2_39405155 39405155 A/G 3.7-3.2 E323 -2.23 6.30 

61 17 SCM002775.2_41131780 41131780 A/G 3.5-3.2 E223 -2.58 5.00 

62 17 SCM002775.2_49740638 49740638 C/A 3.6-3.0 E4123, CombENV3 -5.08, -4.98 5.70 

63 17 SCM002775.2_56829232 56829232 C/G 3.7-3.0 E13, E43, CombENV23 -2.84 5.80 

64 18 SCM002776.2_37107013 37107013 C/T 3.8-3.5 CombENV23 3.33 5.90 

65 19 SCM002777.2_28925630 28925630 C/A 3.4-3.1 E1123 4.64 5.70 

66 19 SCM002777.2_48885679 48885679 C/T 8.2-3.8 E1123, E2123, E3123, E4123, CombENV123 7.60, 3.37 7.0-10.3 

Chra, Brassica napus chromosome 

Allelesb (_/_), Major allele/minor allele 

-log10 (P)c, The highest and lowest -log10 (P) value resulted from the studied environments with different GWAS models where the identified SNPs -log10 (P) 

value ≥3.4 by at least of the GWAS models 

Env & Modeld, Environments: E1, Carrington 2019; E2, Landon 2019; E3, Carrington 2020; E4, Osnabrock 2020; CombENV, combined analysis across four 

environments; Model: superscript 1, 2 & 3 represents FarmCPU, MLM and GEMMA-MLM GWAS models respectively 

Allelic effecte, difference in mean stem lesion width (%) between genotypes with major allele and minor allele. Positive sign indicates major allele is associated 

with increased lesion width (%). Negative sign indicates that the major allele is associated with reduced lesion width (%) 

R2 f, Percentage of phenotypic variation explained by the identified significant SNP derived from the results of MLM method 
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Table A.5. Marker-trait-associations (MTAs) with combENV plant mortality (14D, 21D) for sclerotinia stem rot resistance in 187 

canola/rapeseed genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 (P)c Model & Modeld Allelic effecte R2 f 

1 1 SCM002759.2_1471693 1471693 A/T 4.0-3.2 PM_14D123; PM_21D23 -3.51; -3.34 3.9-5.3 

2 1 SCM002759.2_5322870 5322870 T/A 3.5-3.3 PM_21D23 -6.28 3.9 

 1 SCM002759.2_5323805 5323805 G/A 3.4-3.2 PM_21D23 -6.12 3.8 

3 3 SCM002761.2_660936 660936 T/A 5.7-3.5 PM_21D123 6.49, 4.85 4.3 

4 3 SCM002761.2_8296124 8296124 G/A 3.4-3.2 PM_14D123 5.41 4.8 

5 3 SCM002761.2_31300829 31300829 G/A 3.4-3.2 PM_21D23 7.94 3.8 

6 3 SCM002761.2_31986941 31986941 G/A 3.9-3.0 PM_14D123, PM_21D23 4.43, 4.15 3.6-5.5 

7 4 SCM002762.2_16168004 16168004 G/C 3.5-3.1 PM_14D13, PM_21D23 4.07, 3.79 4.0 

8 4 SCM002762.2_20789292 20789292 G/A 3.7-3.1 PM_21D23 -3.32 3.7 

9 4 SCM002762.2_20860192 20860192 A/T 4.0-3.7 PM_21D23 4.11 4.6 

10 6 SCM002764.2_8266872 8266872 G/C 3.5-3.0 PM_21D23 5.36 3.6 

11 6 SCM002764.2_24985572 24985572 G/A 3.4-3.2 PM_21D23 3.20 3.8 

12 8 SCM002766.2_17407234 17407234 G/T 3.5-3.3 PM_21D23 -10.66 4.0 

13 8 SCM002766.2_20760271 20760271 G/C 4.3-3.6 PM_14D123, PM_21D23 4.01, 3.82 5.0-5.4 

14 8 SCM002766.2_22920266 22920266 T/C 3.8-3.3 PM_14D3, PM_21D23 7.24 4.4 

15 9 SCM002767.2_35588232 35588232 T/C 6.8-3.9 PM_21D123 -7.47, -5.64 4.8 

16 9 SCM002767.2_36527400 36527400 T/C 3.8-3.1 PM_14D123, PM_21D3 -5.83 5.4 

17 9 SCM002767.2_43331392 43331392 C/A 3.4-3.0 PM_14D123, PM_21D23 -3.43, -3.30 3.6-4.6 

 9 SCM002767.2_43506803 43506803 G/T 3.4-3.1 PM_21D23 3.26 3.7 

18 10 SCM002768.2_4273597 4273597 G/A 4.0-3.1 PM_14D13, PM_21D23 -11.29, -9.48 4.5 

19 10 SCM002768.2_5144576 5144576 T/C 7.4-3.2 PM_14D123, PM_21D123 5.74, 4.04 4.7-7.7 

20 11 SCM002769.2_6223969 6223969 T/C 3.5-3.3 PM_14D123 -6.05 5.0 

21 11 SCM002769.2_46192098 46192098 T/C 4.1-3.0 PM_14D123, PM_21D123 -9.69, -5.60 4.4-4.8 

22 13 SCM002771.2_7740873 7740873 C/A 3.5-3.0 PM_14D13, PM_21D23 4.19, 3.97 3.7 

23 14 SCM002772.2_3422830 3422830 G/A 3.5-3.3 PM_14D123 7.66 4.9 

24 14 SCM002772.2_29581828 29581828 C/A 4.6-3.1 PM_14D123, PM_21D123 -9.74, -5.74 3.7-6.6 

25 14 SCM002772.2_53077839 53077839 A/G 4.2-3.9 PM_14D123 4.22 6.0 

26 15 SCM002773.2_9748366 9748366 T/C 4.1-3.5 PM_21D123 5.77, 3.23 4.3 

27 15 SCM002773.2_36238886 36238886 G/T 3.6-3.4 PM_21D23 -3.94 4.2 

28 15 SCM002773.2_36273958 36273958 A/G 3.7-3.4 PM_21D23 -3.89 4.2 
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Table A.5. Marker-trait-associations (MTAs) with combENV plant mortality (14D, 21D) for sclerotinia stem rot resistance in 187 

canola/rapeseed genotypes analyzed by the FarmCPU, MLM, and GEMMA-MLM models (continued) 

Locus Chra SNP ID Position 

(bp) 

Allelesb -log10 

(P)c 

Env & Modeld Allelic effecte R2 f 

29 16 SCM002774.2_14148427 14148427 G/A 3.6-3.4 PM_21D23 6.91 4.10 

30 16 SCM002774.2_23440605 23440605 G/T 4.0-3.6 PM_21D23 -8.68 4.5 

31 16 SCM002774.2_25739024 25739024 T/C 4.0-3.8 PM_14D123 3.64 5.7 

32 16 SCM002774.2_33563646 33563646 T/A 4.0-3.7 PM_14D123 4.06 5.7 

33 18 SCM002776.2_7320194 7320194 G/T 4.0-3.7 PM_14D123 6.27 5.7 

34 18 SCM002776.2_12692146 12692146 T/G 3.6-3.3 PM_21D23 -4.71 4.0 

35 18 SCM002776.2_41681055 41681055 C/T 3.5-3.3 PM_14D123 7.14 5.0 

36 19 SCM002777.2_34413846 34413846 C/T 7.0-3.2 PM_21D123 -10.25, -9.21 3.8 

37 19 SCM002777.2_48885679 48885679 C/T 4.6-4.3 PM_14D123 9.37 6.7 

Chra, Brassica napus chromosome 

Allelesb, ( / ) Major allele/minor allele 

-log10 (P)c, The highest and lowest -log10 (P) value resulted from the studied environments with different GWAS models where the identified SNPs -log10 (P) 

value ≥3.4 by at least of the GWAS models 

Trait & Modeld, Trait: PM_14D, combENV average plant mortality at 14 days post inoculation across four environments; PM_21D, combENV average plant 

mortality at 21 days post inoculation; Model: superscript 1, 2 & 3 represents FarmCPU, MLM and GEMMA-MLM GWAS models respectively 

Allelic effecte, difference in mean stem plant mortality (%) between genotypes with major allele and minor allele. Positive sign indicates major allele is 

associated with increased plant mortality (%). Negative sign indicates that the major allele is associated with reduced plant mortality (%) 

R2 f, Percentage of phenotypic variation explained by the identified significant SNP derived from the results of MLM method 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported 

MTAsg 

1 1 SCM002759.2_1471693 1471693 4.3-3.1 
LL_E1123, LL_E223, LL_E423, 

LL_CombENV123 
-0.30, -0.22 4.8-7.0  

 1 SCM002759.2_1471693 1471693 6.9-3.3 LW_CombENV123 -1.97; -1.56 5.5  

 1 SCM002759.2_1471693 1471693 4.0-3.2 PM_14D123; PM_21D23 -3.51; -3.34 3.9-5.3  

2 1 SCM002759.2_1766199 1766199 3.6-3.0 LL_E2123, LL_CombENV123 0.47, 0.37 4.6-5.6  

3 1 SCM002759.2_2561773 2561773 6.6-3.0 LW_E3123, LW_CombENV23 4.42, 1.90 4.9-12.1  

4 1 SCM002759.2_4235780 4235780 3.5-3.2 LW_E2123 2.42, 2.32 5.1  

 1 SCM002759.2_4239970 4239970 4.8-3.3 
LL_E2123, LL_E423, 

LL_CombENV23 
-0.34; -0.25 5.4-7.3  

 1 SCM002759.2_4239970 4239970 4.0-3.3 
LW_E2123, LW_E4123, 

LW_CombENV23 
-3.26, -2.26 5.7-6.0  

5 1 SCM002759.2_5322870 5322870 3.5-3.3 PM_21D23 -6.28 3.9  

 1 SCM002759.2_5323805 5323805 3.4-3.2 PM_21D23 -6.12 3.8  

6 1 SCM002759.2_5478454 5478454 3.4-3.0 LW_E43, LW_CombENV23 2.78 5.2  

 1 SCM002759.2_5478454 5478454 3.5-3.3 LL_E223 0.38 5.1  

7 1 SCM002759.2_11482241 11482241 3.1-3.4 
LL_E1123, LL_E33, 

LL_CombENV13 
-0.28; -0.27 5.4 

Wu et al. 2013 

(12.44-19.86 

Mb) 

8 1 SCM002759.2_12025515 12025515 3.5-3.3 LW_E1123 2.35; 2.33 6.1 

Wu et al. 2013 

(12.44-19.86 

Mb) 

9 1 SCM002759.2_31973754 31973754 3.5-3.2 LW_E4123 -2.48; -2.50 5.4  

10 2 SCM002760.2_1865667 1865667 4.8-3.0 
LL_E223, LL_E4123, 

LL_CombENV23 
-0.70, -0.43 4.5-7.7  

 2 SCM002760.2_1865667 1865667 4.5-3.6 LW_E4123, LW_CombENV23 -4.27, -5.98 6.2-7.3  
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported 

MTAsg 

11 2 SCM002760.2_10378033 10378033 3.5-3.3 LL_E423 -0.28 5.3 

Shahoveisi et 

al. 2021 

(7.32-10.93 

Mb); (7.59-

10.93 Mb) 

12 2 SCM002760.2_30827371 30827371 3.6-3.1 LL_E3123 -0.22; -0.21 6.2  

13 3 SCM002761.2_660936 660936 5.7-3.5 PM_21D123 6.49, 4.85 4.3  

14 3 SCM002761.2_6322149 6322149 3.8-3.3 LW_E2123 -2.70; -2.78 5.7  

15 3 SCM002761.2_8296124 8296124 3.4-3.2 PM_14D123 5.41 4.8  

16 3 SCM002761.2_11084205 11084205 3.7-3.1 LW_E223; CombENV1 5.2; 2.4 4.9  

17 3 SCM002761.2_11191427 11191427 3.4-3.3 LW_E213 -6.47   

18 3 SCM002761.2_17320071 17320071 3.8-3.1 LL_E2123 -0.56; -0.51 4.8  

19 3 SCM002761.2_28225133 28225133 3.7-3.4 LL_E3123 -0.36 7.2  

 3 SCM002761.2_28225133 28225133 3.7-3.4 LW_E323 -3.34 6.7  

20 3 SCM002761.2_28954312 28954312 3.4-3.2 LW_E4123 4.91; 4.76 5.3  

21 3 SCM002761.2_30742237 30742237 3.4-3.0 LL_E1123, LL_CombENV3 0.41 5.4  

22 3 SCM002761.2_31300829 31300829 3.4-3.2 PM_21D23 7.94 3.8  

23 3 SCM002761.2_31986941 31986941 3.9-3.0 PM_14D123, PM_21D23 4.43, 4.15 3.6-5.5  

24 3 SCM002761.2_35236913 35236913 3.5-3.2 LL_E3123 -0.20 6.7  

 3 SCM002761.2_35236913 35236913 8.7-3.6 LW_E1123, LW_E3123 -2.07, -1.84 6.7-8.2  

25 3 SCM002761.2_36170515 36170515 5.4-4.0 
LL_E1123, LL_E3123, 

LL_CombENV123 
0.26, 0.23 7.0-9.9  

 3 SCM002761.2_36170515 36170515 7.0-3.3 
LW_E1123, LW_E323, 

LW_CombENV123 
2.24, 1.52 5.6-8.7  
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported 

MTAsg 

26 4 SCM002762.2_3551539 3551539 3.4-3.0 LL_E4123, LL_CombENV123 0.61, 0.45  4.8-5.2  

27 4 SCM002762.2_16168004 16168004 3.5-3.1 PM_14D13, PM_21D23 4.07, 3.79 4.0  

28 4 SCM002762.2_20212672 20212672 4.5-3.0 LL_E3123, LL_CombENV13 -0.56; -0.44 5.0-8.6  

29 4 SCM002762.2_20789292 20789292 3.7-3.1 PM_21D23 -3.32 3.7  

 4 SCM002762.2_20860192 20860192 4.0-3.7 PM_21D23 4.11 4.6  

30 5 SCM002763.2_1779846 1779846 4.4-3.1 
LW_E13; LW_E323; 

LW_CombENV23 
-2.47; -2.15 5.2-7.1  

31 5 SCM002763.2_15914063 15914063 5.2-3.0 
LL_E2123, LL_E4123, 

LL_CombENV123 
-0.59; -0.33 5.0-8.0  

 5 SCM002763.2_15914063 15914063 5.1-3.3 
LW_E2123, LW_E4123, 

LW_CombENV23  
-5.49, -3.18 5.5-7.8  

 5 SCM002763.2_15924240 15924240 3.5-3.2 LW_E213 2.73   

32 5 SCM002763.2_16279322 16279322 3.7-3.1 LL_E3123, LL_CombENV23 -0.39; -0.34 5.1-7.2  

 5 SCM002763.2_16279322 16279322 5.8-3.0 
LW_E113, LW_E3123, 

LW_CombENV123 
-3.89, -2.66 5.4-8.0  

33 5 SCM002763.2_24009625 24009625 3.5-3.2 LW_E1123 2.69; 2.58 6.0  

34 5 SCM002763.2_28142332 28142332 3.9-3.1 LL_E2123 0.24; 0.27 4.7  

35 5 SCM002763.2_28608175 28608175 3.5-3.3 LL_E2123 0.42; 0.38 5.1  

 5 SCM002763.2_28608175 28608175 3.5-3.0 LW_E2123, LW_CombENV3 4.16 5.2  

36 6 SCM002764.2_8266872 8266872 3.5-3.0 PM_21D23 5.36 3.6  

37 6 SCM002764.2_24985572 24985572 3.4-3.2 PM_21D23 3.20 3.8 

Wu et al. 

2019 (21.63-

23.50 Mb) 

38 6 SCM002764.2_25241979 25241979 3.3-3.0 
LL_E113, LL_E323, 

LL_CombENV123 
-0.47; -0.45 5.0-5.9 

 6 SCM002764.2_25241979 25241979 4.5-3.2 
LW_E1123, LW_E3123, 

LW_CombENV123 
-5.10, -3.15 5.2-8.0 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld Allelic effecte R2 f 

Previously 

reported 

MTAsg 

39 6 SCM002764.2_29348402 29348402 5.3-3.1 
LW_E21, LW_E413, 

LW_CombENV123 
-2.60, -1.43 5.5  

40 6 SCM002764.2_33502340 33502340 3.6-3.2 LW_E113; LW_E33 -3.20   

41 6 SCM002764.2_33622715 33622715 3.4-3.0 
LW_E23; LW_E43; 

LW_CombENV23 
1.77 5.3  

42 7 SCM002765.2_25991221 25991221 3.7-3.1 
LL_E1123, LL_E2123, 

LL_CombENV3 
-0.63; -0.51 5.4-5.5  

43 8 SCM002766.2_1982656 1982656 4.6-3.1 
LL_E3123, LL_E4123, 

LL_CombENV123 
-0.57; -0.38 7.0-7.5  

44 8 SCM002766.2_13657808 13657808 3.5-3.0 LL_E3123 -0.41 6.0 

Wei et al. 

2016 (15.01-

15.43 Mb) 

 8 SCM002766.2_13657808 13657808 3.6-3.1 LW_E323 -3.76 5.9 

45 8 SCM002766.2_13864870 13864870 3.7-3.1 
LL_E2123, LL_E4123, 

LL_CombENV123 
0.67, 0.47 5.2-5.7 

46 8 SCM002766.2_17407234 17407234 3.5-3.3 PM_21D23 -10.66 4.0  

47 8 SCM002766.2_20621551 20621551 3.6-3.4 LW_E223 2.64 5.4  

48 8 SCM002766.2_20760271 20760271 3.9-3.2 LW_E323; LW_CombENV23 2.35; 2.06 5.4-7.2  

49 8 SCM002766.2_20760271 20760271 4.3-3.6 PM_14D123, PM_21D23 4.01, 3.82 5.0-5.4  

50 8 SCM002766.2_22920266 22920266 3.8-3.3 PM_14D3, PM_21D23 7.24 4.4  

51 9 SCM002767.2_35588232 35588232 6.8-3.9 PM_21D123 -7.47, -5.64 4.8  

52 9 SCM002767.2_36527400 36527400 3.8-3.1 PM_14D123, PM_21D3 -5.83 5.4  

53 9 SCM002767.2_37664281 37664281 3.9-3.7 LL_E4123 -0.34 6.2  

54 9 SCM002767.2_37671479 37671479 3.6-3.1 LL_E1123, LL_E21 -0.31; -0.27 5.9  

 9 SCM002767.2_37671479 37671479 4.0-3.2 LW_E1123, LW_CombENV3 -2.60; -2.64 6.9  
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld Allelic effecte R2 f 

Previously 

reported 

MTAsg 

55 9 SCM002767.2_39128782 39128782 3.6-3.2 LL_E1123, LL_CombENV123 -0.60; -0.56 5.4-6.0  

56 9 SCM002767.2_43041855 43041855 3.8-3.5 LL_E3123 0.65 7.1  

57 9 SCM002767.2_43331392 43331392 3.4-3.0 PM_14D123, PM_21D23 -3.43, -3.30 3.6-4.6  

 9 SCM002767.2_43506803 43506803 3.4-3.1 PM_21D23 3.26 3.7  

58 9 SCM002767.2_45297735 45297735 4.0-3.3 
LL_E2123, LL_E413, 

LL_CombENV2 
-0.47; -0.33 5.1-6.1  

 9 SCM002767.2_45297735 45297735 3.4-3.1 LW_CombENV23 -2.95 5.1  

59 9 SCM002767.2_45841268 45841268 3.5-3.0 LL_E3123, LL_CombENV13 0.44, 0.43 6.0  

 9 SCM002767.2_45841268 45841268 5.9-3.8 LW_E3123 4.58; 3.56 7.6  

60 10 SCM002768.2_2190513 2190513 3.5-3.1 LW_E1123, LW_E323 3.57; 3.41 6.0  

61 10 SCM002768.2_4273597 4273597 4.0-3.1 PM_14D13, PM_21D23 -11.29, -9.48 4.5  

62 10 SCM002768.2_5144576 5144576 7.4-3.2 PM_14D123, PM_21D123 5.74, 4.04 4.7-7.7  

63 10 SCM002768.2_12144744 12144744 3.4-3.2 LW_E323 2.62 6.3  

64 10 SCM002768.2_21099405 21099405 3.5-3.0 LW_E213; LW_E413 2.89; 2.47   

65 11 SCM002769.2_6223969 6223969 4.4-3.3 
LL_E1123, LL_E3123, 

LL_CombENV123 
-0.45; -0.38 6.0-7.3  

 11 SCM002769.2_6223969 6223969 3.4-3.1 LW_E1123, LW_CombENV1 -3.43 5.7  

 11 SCM002769.2_6223969 6223969 3.5-3.3 PM_14D123 -6.05 5.0  

66 11 SCM002769.2_46192098 46192098 4.2-3.0 
LL_E2123, LL_E423, 

LL_CombENV23  
-0.74; -0.52 4.9-6.4  

 11 SCM002769.2_46192098 46192098 3.9-3.0 LW_E2123, LW_CombENV23 -7.37, -4.75 5.0-5.8  

 11 SCM002769.2_46192098 46192098 4.1-3.0 PM_14D123, PM_21D123 -9.69, -5.60 4.4-4.8  
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported 

MTAsg 

67 12 SCM002770.2_25096010 25096010 3.6-3.0 LL_E3123, LL_CombENV1 0.50, 0.49 6.1  

 12 SCM002770.2_25096010 25096010 3.8-3.1 
LW_E1123, LW_E323; 

LW_CombENV3 
4.70, 4.50 5.9-6.2  

68 12 SCM002770.2_32020747 32020747 4.0-3.0 
LL_E2123, LL_E413, 

LL_CombENV123 
0.46, 0.34 5.1-6.0  

 12 SCM002770.2_32020747 32020747 4.3-3.0 
LW_E1123, LW_E21, LW_E4123, 

LW_CombENV123 
4.04, 1.80 4.9-6.2  

69 12 SCM002770.2_43963414 43963414 3.6-3.0 LW_E213, LW_E4123 -3.02; -2.71 5.1  

 12 SCM002770.2_44006308 44006308 3.5-3.1 LW_E213; LW_E413 2.88; 2.51   

 12 SCM002770.2_44012322 44012322 3.6-3.0 LW_E4123, LW_CombENV1 -2.78, -2.68 5.5  

70 12 SCM002770.2_59170961 59170961 3.7-3.4 LW_E323 -5.15 6.8  

71 12 SCM002770.2_62791159 62791159 3.6-3.3 LL_E3123 -0.35; -0.34 7.0  

 12 SCM002770.2_62791159 62791159 3.7-3.4 LW_E323 -3.20 6.7  

72 13 SCM002771.2_7740873 7740873 3.5-3.0 PM_14D13, PM_21D23 4.19, 3.97 3.7  

 13 SCM002771.2_7893201 7893201 5.0-3.1 
LL_E2123, LL_E4123, 

LL_CombENV13 
0.78, 0.47 5.7-7.9  

 13 SCM002771.2_7893201 7893201 5.0-3.5 
LW_E2123, LW_E4123, 

LW_CombENV23  
7.51, 4.54 6.0-7.1  

73 13 SCM002771.2_22853068 22853068 3.7-3.0 
LL_E2123, LL_E4123, 

LL_CombENV123 
-0.50; -0.38 4.9-5.3 Qasim et al. 

2020 (22.21-

30.60 Mb)  13 SCM002771.2_22853068 22853068 3.4-3.0 LW_E413, LW_CombENV23 -4.24, -3.34 4.9 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported 

MTAsg 

74 13 SCM002771.2_27877818 27877818 3.4-3.2 LW_E4123 -5.67; -5.77 5.4 

Qasim et al. 

2020 (22.21-

30.60 Mb); 

Shahoveisi et 

al. 2021 (23.5-

31.7 Mb) 

75 13 SCM002771.2_45250459 45250459 3.8-3.5 LL_E1123 0.26 6.2 Qasim et al. 

2020 (30.60-

47.86 Mb) 

and (47.86-

50.63 Mb) 

 13 SCM002771.2_45250459 45250459 3.4-3.2 LW_E1123 2.22; 2.20 5.9 

76 13 SCM002771.2_48097242 48097242 3.9-3.1 LW_E1123, LW_CombENV23 -4.19, -3.81 5.2-6.9 

77 13 SCM002771.2_56900783 56900783 3.8-3.0 
LL_E1123, LL_E3123, 

LL_CombENV13 
0.40, 0.34 4.9-7.4  

 13 SCM002771.2_56900783 56900783 3.5-3.1 LW_E323 3.52 6.5  

78 13 SCM002771.2_69833085 69833085 3.7-3.2 LL_E223 0.40 5.6  

 13 SCM002771.2_69833922 69833922 3.4-3.2 LL_E223 0.37 5.0  

79 13 SCM002771.2_78761785 78761785 3.5-3.0 LL_E43, LL_CombENV123 0.68, 0.63 5.3  

80 13 SCM002771.2_80035604 80035604 3.4-3.0 LL_E13; E33; CombENV23 0.64 5.3  

81 14 SCM002772.2_3422830 3422830 3.5-3.3 PM_14D123 7.66 4.9 
Wu et al. 2013 

(3.06-7.93 Mb) 

82 14 SCM002772.2_8693165 8693165 3.4-3.2 LW_E1123, E323 5.90, 5.49 5.8-6.2  

83 14 SCM002772.2_10285794 10285794 3.5-3.3 LW_E4123 4.12, 4.05 5.6 
Zhao et al. 

2006 (11.7-28.7 

Mb) 

84 14 SCM002772.2_12898850 12898850 3.9-3.6 LW_E1123 -4.07, -4.02 6.8 

85 14 SCM002772.2_13679559 13679559 3.9-3.6 LW_E323 3.90 7.2 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported MTAsg 

86 14 SCM002772.2_29581828 29581828 4.6-3.1 PM_14D123, PM_21D123 -9.74, -5.74 3.7-6.6 

Zhao et al. 2006 

(11.7-28.7 Mb); 

Qasim et al. 2020 

(28.37-37.43 Mb) 

87 14 SCM002772.2_53077839 53077839 4.2-3.9 PM_14D123 4.22 6.0  

88 14 SCM002772.2_65359864 65359864 4.5-3.1 
LL_E1123, LL_E213, 

LL_CombENV123 
0.82; 0.72 6.6-7.6  

 14 SCM002772.2_65359864 65359864 3.8-3.2 
LW_E1123, LW_E3123, 

LW_CombENV23 
6.07, 3.28 5.5-6.8  

89 14 SCM002772.2_70479506 70479506 4.0-3.0 LW_E23, LW_E4123 -6.83, -6.75 6.4  

90 15 SCM002773.2_9748366 9748366 3.6-3.2 LW_E4123, LW_CombENV23 4.15, 3.08 5.2-5.7  

 15 SCM002773.2_9748366 9748366 4.1-3.5 PM_21D123 5.77, 3.23 4.3  

91 15 SCM002773.2_10201221 10201221 7.2-3.9 LW_E3123 7.75, 6.43 7.8  

92 15 SCM002773.2_29580386 29580386 3.7-3.0 
LL_E33, LL_E423, 

LL_CombENV23 
0.78, 0.60 5.1-6.0  

93 15 SCM002773.2_35983051 35983051 3.9-3.1 LW_E123 2.69; 1.52 5.6  

94 15 SCM002773.2_36238886 36238886 3.6-3.4 PM_21D23 -3.94 4.2  

 15 SCM002773.2_36273958 36273958 3.7-3.4 PM_21D23 -3.89 4.2  

95 15 SCM002773.2_38993115 38993115 3.9-3.0 LL_E1123, LL_CombENV23 0.51, 0.44 5.0-6.6  

96 16 SCM002774.2_14148427 14148427 3.6-3.4 PM_21D23 6.91 4.1  

97 16 SCM002774.2_22279509 22279509 3.8-3.0 LL_E4123, LL_CombENV123 -0.45, -0.28 4.9-5.7 

Zhao et al. 2006 

(23.18-35.47 Mb) 

 

98 16 SCM002774.2_22321613 22321613 3.5-3.1 LL_E413, LL_CombENV1 0.39, 0.26  

99 16 SCM002774.2_22403960 22403960 4.0-3.0 LL_E4123, LL_CombENV1 -0.42, -0.27 5.0 

100 16 SCM002774.2_23440605 23440605 4.0-3.6 PM_21D23 -8.68 4.5 

101 16 SCM002774.2_23837210 23837210 3.4-3.1 LL_E413, LL_CombENV13 -0.36, -0.26  
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported MTAsg 

102 16 SCM002774.2_25673001 25673001 3.4-3.1 LW_E2123, LW_E4123 3.33, 3.05 5.0-5.2 

Zhao et al. 2006 

(23.18-35.47 

Mb); Wu et al. 

2016 (25.8-26.47 

Mb) 

 

103 16 SCM002774.2_25678898 25678898 3.8-3.0 LL_E223, LL_E4123 0.35, 0.23 4.7-6.0 

 16 SCM002774.2_25678898 25678898 5.0-3.0 
LW_E2123, LW_E4123, 

LW_CombENV23 
3.81, 2.15 4.9-7.6 

104 16 SCM002774.2_25739024 25739024 3.7-3.0 
LL_E1123, LL_E313, LL_E41, 

LL_CombENV123 
0.29, 0.21 5.0-5.4 

 16 SCM002774.2_25739024 25739024 10.9-3.4 
LW_E323, LW_E4123, 

LW_CombENV123 
2.78, 2.17 6.1-6.9 

 16 SCM002774.2_25739024 25739024 4.0-3.8 PM_14D123 3.64 5.7 

105 16 SCM002774.2_33238118 33238118 3.4-3.0 LL_E3123 -0.32 5.9 
Zhao et al. 2006 

(23.18-35.47 Mb) 

and (28.55-35.47 

Mb); Wu et al. 

2013 (30.28-

34.59 Mb) and 

(34.59-36.61 

Mb); Wei et al. 

2016 (30.78-

31.34 Mb); 

Qasim et al. 2020 

(32.95-34.44 Mb) 

 16 SCM002774.2_33238118 33238118 3.4-3.0 LW_E323 -2.91 5.8 

 16 SCM002774.2_33265642 33265642 3.4-3.1 LL_E3123 0.31 6.2 

106 16 SCM002774.2_33563646 33563646 4.0-3.0 
LL_E1123, LL_E21, LL_E3123, 

LL_E41, LL_CombENV123 
0.32, 0.25 5.4-6.0 

 16 SCM002774.2_33563646 33563646 3.4-3.0 LW_E1123; LW_CombENV23 2.16; 2.13 5.0-5.5 

 16 SCM002774.2_33563646 33563646 4.0-3.7 PM_14D123 4.06 5.7 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld 

Allelic 

effecte 
R2 f 

Previously 

reported MTAsg 

107 16 SCM002774.2_34137593 34137593 4.5-3.0 

LL_E1123, LL_E2123, 

LL_E4123, 

LL_CombENV123 

-0.36, -0.25 4.6-6.8 

Zhao et al. 2006 

(23.18-35.47 Mb) 

and (28.55-35.47 

Mb); Wu et al. 

2013 (30.28-

34.59 Mb) and 

(34.59-36.61 

Mb); Wei et al. 

2016 (30.78-

31.34 Mb); 

Qasim et al. 2020 

(32.95-34.44 Mb) 

108 16 SCM002774.2_34149554 34149554 3.8-3.0 
LL_E21, LL_E4123, 

LL_CombENV1 
0.37, 0.24 4.7 

109 16 SCM002774.2_39405155 39405155 4.0-3.4 LL_E3123 -0.25 6.9  

 16 SCM002774.2_39405155 39405155 3.7-3.2 LW_E323 -2.23 6.3  

110 17 SCM002775.2_41131780 41131780 3.5-3.2 LW_E223 -2.58 5.0  

111 17 SCM002775.2_43529605 43529605 4.0-3.1 
LL_E4123; 

LL_CombENV12 
0.51; 0.34 5.1-6.3  

112 17 SCM002775.2_49740638 49740638 3.5-3.1 LL_E423; LL_CombENV23 -0.53; -0.39 5.1-5.2  

 17 SCM002775.2_49740638 49740638 3.6-3.0 
LW_E4123, 

LW_CombENV3 
-5.08, -4.98 5.7  

113 17 SCM002775.2_56829232 56829232 3.7-3.0 
LW_E13, LW_E43, 

LW_CombENV23 
-2.84 5.8  

114 18 SCM002776.2_7320194 7320194 4.0-3.7 PM_14D123 6.27 5.7  

115 18 SCM002776.2_12692146 12692146 3.6-3.3 PM_21D23 -4.71 4.0  

116 18 SCM002776.2_29886188 29886188 3.4-3.0 LL_E2123, LL_E423 -0.45, -0.41 4.8-5.0 

Wu et al. 2013 

(31.40-32.04 

Mb); (31.40-

33.50 Mb) 
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Table A.6. List of significant single-nucleotide polymorphisms (SNPs) associated with stem lesion length (LL), stem lesion width 

(LW), and combENV plant mortality (PM_14D, PM_21D) traits for sclerotinia stem rot resistance identified by the FarmCPU, MLM, 

and GEMMA-MLM models (continued) 

Locus Chra SNP ID 
Position 

(bp) 

-log10 

(P)c 
Traits, Env & Modeld Allelic effecte R2 f 

Previously 

reported MTAsg 

117 18 SCM002776.2_37107013 37107013 3.8-3.5 LW_CombENV23 3.33 5.9 
Wu et al. 2013 

(38.19-38.47 Mb) 

118 18 SCM002776.2_41681055 41681055 3.5-3.3 PM_14D123 7.14 5.0  

119 19 SCM002777.2_15808490 15808490 3.8-3.5 LL_E3123 0.38 7.2  

120 19 SCM002777.2_28925630 28925630 3.4-3.1 LW_E1123 4.64 5.7  

121 19 SCM002777.2_34413846 34413846 7.0-3.2 PM_21D123 -10.25, -9.21 3.8  

122 19 SCM002777.2_46851981 46851981 4.0-3.1 
LL_E1123, LL_E3123, 

LL_E4123, LL_CombENV123 
-0.84, -0.59 5.3-6.8 

Zhao et al. 2006 

(46.58-46.75 Mb) 

123 19 SCM002777.2_48885679 48885679 5.8-3.3 

LL_E1123, LL_E2123, 

LL_E3123, LL_E4123, 

LL_CombENV123 

0.83, 0.52 5.8-9.2  

 19 SCM002777.2_48885679 48885679 8.2-3.8 

LW_E1123, LW_E2123, 

LW_E3123, LW_E4123, 

LW_CombENV123 

7.60, 3.37 7.0-10.3  

 19 SCM002777.2_48885679 48885679 4.6-4.3 PM_14D123 9.37 6.7  

Chra, Brassica napus chromosome 

Allelesb, (_/_) Major allele/minor allele 

-log10 (P)c, The highest and lowest -log10 (P) value resulted from the studied environments with different GWAS models where the identified SNPs -log10 (P) value ≥ 3.4 by at 

least of the GWAS models 

Traits, Env & Modeld, Traits: LL, Lesion length; LW, Lesion width; PM_14D, Combined environment (CombENV) plant mortality at 14 days post inoculation (dpi); PM_21D, 

Combined environment (CombENV) plant mortality at 21 dpi; Environments: E1, Carrington 2019; E2, Landon 2019; E3, Carrington 2020; E4, Osnabrock 2020; CombENV, 

combined analysis across four environments; Model: superscript 1, 2 & 3 represents FarmCPU, MLM and GEMMA-MLM GWAS models respectively 

Allelic effecte, difference in mean stem lesion length (cm) between genotypes with major allele and minor allele. Positive sign indicates major allele is associated with increased 

lesion length (cm). Negative sign indicates that the major allele is associated with reduced lesion length (cm) 

R2 f, Percentage of phenotypic variation explained by the identified significant SNP derived from the results of MLM method 

Previously reported MTAs g, previously reported marker-trait-associations (MTAs) along with their physical positions from various QTL and GWAS-related studies which 

overlapped or in close proximity with the genomic regions in this study. 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers 

Significant SNP Chra Gene symbol and 

ID 

Distance (kb)b AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002759.2_1471693 1 LOC106353725 27.6 AT4G36690.1 
splicing factor U2af 

large subunit A 

defense response to 

bacterium 

SCM002759.2_1766199 1 LOC106349418 -46.8 AT5G17880.1 
disease resistance-like 

protein CSA1 
signal transduction 

SCM002759.2_1766199 1 LOC106349225 -38.0 AT5G45260.1 
disease resistance 

protein RRS1-like 

cell death, defense 

response 

SCM002759.2_1766199 1 LOC106348260 15.0 AT4G36010.1 
thaumatin-like protein 

1b 
defense response 

SCM002759.2_1766199 1 LOC106347663 42.8 ……….. 
la-related protein 1C-

like 

response to jasmonic acid; 

response to salicylic 

acid Source: UniProtKB 

SCM002759.2_11482241 1 LOC106364078 -43.7 AT4G15400.1 
BAHD acyltransferase 

BIA1-like 

brassinosteroid mediated 

signaling pathway 

SCM002759.2_11482241 1 LOC106364076 -28.1 AT5G39580.1 probable peroxidase 61 
defense response to 

fungus 

SCM002759.2_11482241 1 LOC106364075 -22.9 AT3G15356.1 Acidic endochitinase 

cellular response to 

chitin, cellular response to 

jasmonic acid stimulus 

SCM002759.2_11482241 1 LOC106364071 -6.4 AT5G24110.1 
probable WRKY 

transcription factor 30 

response to hydrogen 

peroxide, response to 

salicylic acid 

SCM002759.2_11482241 1 LOC106364076 -28.1 AT5G39580.1 probable peroxidase 61 
defense response to 

fungus 

SCM002759.2_11482241 1 LOC106364075 -22.9 AT3G15356.1 acidic endochitinase 

cellular response to 

chitin, cellular response to 

jasmonic acid stimulus 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002759.2_11482241 1 LOC106364071 -6.4 AT5G24110.1 
probable WRKY 

transcription factor 30 

response to hydrogen 

peroxide, response to salicylic 

acid 

SCM002759.2_11482241 1 LOC106366011 45.2 …………….. 
glucan endo-1,3-beta-

glucosidase-like 

defense response Source: 

UniProtKB-KW 

SCM002760.2_1865667 2 LOC106428331 27.6 AT1G18870.1 
isochorismate synthase 

2, chloroplastic-like 

salicylic acid biosynthetic 

process, phylloquinone 

biosynthetic process 

SCM002760.2_1865667 2 LOC106431790 49.5 AT5G01900.1 
probable WRKY 

transcription factor 62 

salicylic acid mediated 

signaling pathway; defense 

response to bacterium 

SCM002761.2_36170515 3 LOC106440304 -42 AT3G05800.1 
transcription factor 

bHLH147-like 

brassinosteroid mediated 

signaling pathway 

SCM002762.2_16168004 4 LOC106450030 -11.9 AT2G19190.1 

probable leucine-rich 

repeat receptor-like 

protein kinase 

At2g28990 

defense response to bacterium 

SCM002762.2_20212672 4 LOC106447450 -1.5 AT2G39940.1 
coronatine-insensitive 

protein 1-like 

defense response to 

fungus, jasmonic acid 

mediated signaling pathway, 

response to wounding 

SCM002763.2_15914063 5 BNAA05G15190D -15.6 …………. 

stress-response A/B 

barrel domain-

containing protein 

DABB1 

defense response to fungus, 

incompatible 

interaction Source: TAIR 

SCM002763.2_28608175 5 LOC106415470 4.1 AT4G27320.1 
universal stress protein 

PHOS34-like 

response to molecule of 

fungal origin 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002764.2_25241979 6 LOC106351996 41.1 AT5G24400.1 

probable 6-

phosphogluconolactonas

e 3 

cellular response to redox 

state, defense response to 

oomycetes, defense 

response to bacterium 

SCM002764.2_25241979 6 LOC106348257 48.3 AT5G24400.1 

probable 6-

phosphogluconolactonas

e 3 

cellular response to redox 

state, defense response to 

oomycetes, defense 

response to bacterium 

SCM002764.2_29348402 6 LOC106408214 15 AT5G47910.1 
respiratory burst oxidase 

homolog protein D-like 

defense response to 

fungus, negative regulation 

of programmed cell death, 

response to wounding 

SCM002767.2_36527400 9 LOC106411656 -45.4 AT4G28110.1 
transcription factor 

MYB41 
response to chitin 

SCM002767.2_36527400 9 LOC106415606 23.3 AT3G61440.1 

bifunctional L-3-

cyanoalanine 

synthase/cysteine 

synthase C1, 

mitochondrial-like 

 immune response 

SCM002767.2_36527400 9 LOC106416331 34 AT3G61460.1 
E3 ubiquitin-protein 

ligase RHA1B 

response to 

brassinosteroid, response to 

chitin 

SCM002767.2_37671479 9 LOC106368555 33 AT2G25620.1 
probable protein 

phosphatase 2C 22 

regulation of defense 

response to virus 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002767.2_37671479 9 LOC106365129 40.3 AT5G59270.1 

putative L-type lectin-

domain containing 

receptor kinase II.2 

defense response to oomycetes; 

defense response to bacterium 

SCM002767.2_37671479 9 LOC106363673 48.4 AT5G27420.1 
NEP1-interacting 

protein-like 2 

defense response to other 

organism, response to chitin 

SCM002767.2_43331392 9 LOC106399775 15.3 AT1G02930.1 
glutathione S-

transferase F6-like 

response to oxidative stress, 

toxin catabolic process 

SCM002767.2_45841268 9 LOC106369308 42.5 AT1G09340.1 

chloroplast stem-loop 

binding protein of 41 

kDa a, chloroplastic 

response to wounding 

SCM002768.2_2190513 10 LOC106371170 -3 AT1G05630.1 

type I inositol 

polyphosphate 5-

phosphatase 13-like 

 response to wounding 

SCM002768.2_5144576 10 LOC106370828 -33.3 AT1G02120.1 

protein VASCULAR 

ASSOCIATED 

DEATH 1, 

chloroplastic 

negative regulation of 

programmed cell death, response 

to ethylene, response to salicylic 

acid 

SCM002769.2_6223969 11 LOC106418377 -31 AT1G61850.1 patatin-like protein 8 
jasmonic acid biosynthetic 

process 

SCM002769.2_6223969 11 LOC106416990 -28.8 AT1G61850.1 patatin-like protein 8 
jasmonic acid biosynthetic 

process 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002769.2_46192098 11 LOC106435207 73.7 AT3G17860.1 protein TIFY 6B-like 

regulation of defense 

response, regulation of 

jasmonic acid mediated 

signaling pathway 

SCM002771.2_7740873 13 LOC106418114 -26.4 AT2G01980.1 
sodium/hydrogen 

exchanger 7-like 

 response to oxidative 

stress, response to reactive 

oxygen species 

SCM002771.2_7740873 13 LOC111198287 -17.7 AT2G01980.1 
sodium/hydrogen 

exchanger 7-like 

 response to oxidative 

stress, response to reactive 

oxygen species 

SCM002771.2_22853068 13 LOC106420603 -4.7 AT2G39660.1 

serine/threonine-

protein kinase BIK1-

like 

defense response to 

fungus, pattern recognition 

receptor signaling pathway 

SCM002771.2_22853068 13 LOC106420698 20.6 AT2G39730.1 

ribulose bisphosphate 

carboxylase/oxygenase 

activase, chloroplastic-

like 

response to jasmonic acid 

SCM002771.2_48097242 13 LOC111203738 15.5 AT2G18060.1 

NAC domain-

containing protein 37-

like 

response to chitin 

SCM002771.2_78761785 13 LOC106427438 -39.7 AT1G51700.1 
dof zinc finger protein 

DOF1.7 
response to chitin 

SCM002772.2_29581828 14 LOC106429730 38 AT1G61120.1 
(E, E)-geranyllinalool 

synthase-like 

response to jasmonic acid, 

response to wounding 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002772.2_29581828 14 LOC106429715 9.5 AT1G61120.1 
(E,E)-geranyllinalool 

synthase-like 

response to jasmonic acid, 

response to wounding 

SCM002772.2_65359864 14 LOC106403148 -21.9 AT3G49120.1 peroxidase C3 

defense response to 

fungus, pattern recognition 

receptor signaling pathway 

SCM002772.2_65359864 14 LOC111205825 -15.8 AT3G49120.1 peroxidase C3-like 

defense response to 

fungus, pattern recognition 

receptor signaling pathway 

SCM002772.2_65359864 14 LOC106402880 -8.6 AT3G49120.1 peroxidase C3 

defense response to 

fungus, pattern recognition 

receptor signaling pathway 

SCM002772.2_65359864 14 LOC106402879 -4.6 AT3G49120.1 peroxidase C3-like 

defense response to 

fungus, pattern recognition 

receptor signaling pathway, 

SCM002772.2_65359864 14 LOC106405881 7.1 AT2G38470.1 
probable WRKY 

transcription factor 33 

defense response to 

fungus, response to 

chitin, systemic acquired 

resistance, camalexin 

biosynthetic process 

SCM002772.2_65359864 14 LOC106406388 40.6 AT2G38530.1 
non-specific lipid-

transfer protein A 
programmed cell death 

SCM002772.2_70479506 14 LOC106392319 -5.1 AT4G27320.1 
universal stress protein 

PHOS34-like 

response to molecule of 

fungal origin 

SCM002773.2_38993115 15 LOC106435386 44.8 ………….. 
protein EMSY-LIKE 1-

like 
defense response to fungus  

SCM002773.2_38993115 15 LOC106435387 -38 AT3G12500.1 endochitinase CH25 

defense response to 

fungus, jasmonic acid and 

ethylene-dependent 

systemic resistance 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002773.2_38993115 15 LOC106435413 -35.7 AT3G12490.2 
cysteine proteinase 

inhibitor 6-like 
response to oxidative stress 

SCM002773.2_38993115 15 LOC106435414 -22.9 ………….. 

nascent polypeptide-

associated complex 

subunit alpha-like protein 

1 

wound healing Source: 

BHF-UCL 

SCM002774.2_22279509 16 LOC106411532 21.4 ………….. 
aldehyde oxidase GLOX-

like 

defense response to 

fungus Source: UniProtKB 

SCM002774.2_22403960 16 LOC106410769 -5.8 AT5G54430.1 
universal stress protein 

PHOS34 

response to molecule of 

fungal origin 

SCM002774.2_23837210 16 LOC106406682 -33 AT3G56400.1 
probable WRKY 

transcription factor 70 

indole glucosinolate 

biosynthetic 

process, induced systemic 

resistance, jasmonic acid 

mediated signaling pathway 

SCM002774.2_25678898 16 LOC106428228 43.3 …………….. 
F-box/LRR-repeat protein 

At3g59200-like 

defense response to 

oomycetes 

SCM002774.2_33563646 16 LOC106426248 6.8 AT2G37710.1 

L-type lectin-domain 

containing receptor 

kinase IV.2-like 

response to salicylic acid, 

defense response to 

oomycetes 

SCM002774.2_34137593 16 LOC106352125 33.9 AT1G66700.1 
paraxanthine 

methyltransferase 1 

 response to molecule of 

fungal origin, response to 

salicylic acid 

SCM002775.2_56829232 17 LOC106409984 -18.6 AT2G14610.1 
pathogenesis-related 

protein PR-1 

systemic acquired 

resistance 
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Table A.7. Candidate genes for different sclerotinia stem rot resistance traits within 50 kb region at either side of the significant 

markers (continued) 

Significant SNP Chra Gene symbol and 

ID 

Distance 

(kb)b 

AT Equivalent Gene Description GO biological Function 

(TAIR) 

SCM002776.2_29886188 18 LOC106359636 -40 AT3G55970.1 

probable 2-oxoglutarate-

dependent dioxygenase 

JRG21 

regulation of jasmonic acid 

mediated signaling 

pathway, regulation of 

defense response to fungus 

SCM002776.2_29886188 18 LOC106360811 -18.1 AT3G55980.1 

zinc finger CCCH 

domain-containing 

protein 47 

response to chitin 

SCM002777.2_46851981 19 LOC106372283 -42.5 AT5G13580.1 
ABC transporter G 

family member 6 
response to nematode 

SCM002777.2_48885679 19 LOC106415792 34.22 …………….. 
probable disease 

resistance protein RPP1 

TIR-NB-LRR receptor-like 

protein that confers 

resistance to the pathogen, 

defense response to fungus 

SCM002777.2_48885679 19 LOC106416705 -21.9 ……………. 
transcriptional 

corepressor SEUSS 

response to 

fungus, response to 

oxidative stress  

Chra: Brassica napus chromosome 

Distance (kb)a: negative values= genes are downstream of the marker, positive values = genes are upstream of the marker
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study 

Name of the accessions Country of origin/obtained Growth habit 

Pioneer 45S51a Pioneer (Check) Spring 

Pioneer 45S56a Pioneer (Check) Spring 

Abilene USA Winter 

ARC 97019 USA Winter 

Galant USA Spring 

Galaxy Sweden Spring 

Galileo Canada Winter 

Gebr Dippes South Korea Winter 

Gido Germany Spring 

Girita Germany Semi-winter 

Gisora Germany Spring 

GK Savaria Hungary Winter 

Glacier Sweden Winter 

Global Sweden Spring 

ARC-2180-1 USA Winter 

Golden Canada Spring 

Gora Germany Spring 

Goya Canada Winter 

Gulle Sweden Spring 

Gullivar Sweden Spring 

Gylle South Korea Semi-winter 

Helga Germany Semi-winter 

Hi-Q Canada Spring 

Armander South Korea  

HOBSON UK Winter 

Host rape regel South Korea Winter 

Ibiza Canada Winter 

INRA-R-2000 France Spring 

IR-2 Hungary Spring 

Isek urodane South Korea Semi-winter 

Iwao natane South Korea Winter 

Iwashiro-natane South Korea Winter 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Iwawoochi South Korea Winter 

Janetzkis South Korea Spring 

Janpol Poland Winter 

Jantar Poland Winter 

Jasna Serbia Spring 

Jet Neuf Canada Winter 

Jupiter USA Winter 

Kanada Poland Spring 

Kasuya South Korea Winter 

Kasuyashu South Korea Winter 

Arwin Germany Winter 

Klinki South Korea Spring 

Korina Germany Winter 

Kosa Germany Spring 

Koubun South Korea Spring 

Kovalevskjj Ukraine Spring 

Kraphhauser South Korea Spring 

Krasnodarskii Russian Federation Winter 

Kritmar rape South Korea Spring 

KS3579 USA Winter 

Kuju South Korea Winter 

Kutkowski South Korea Winter 

Ladoga Canada Winter 

Laura Germany Spring 

Legend Sweden Spring 

Lembkes South Korea Winter 

Lesira Germany Winter 

Lester Germany Winter 

Librador Germany Winter 

Lieikoposki South Korea Semi-winter 

Aviso Canada Spring 

Lifura South Korea Spring 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Lindora-00 Germany Winter 

Lindore Germany Winter 

Linglandor Germany Winter 

Linus South Korea Winter 

Lirabon-00 Germany Winter 

Lirama Germany Winter 

Azuma South Korea Semi-winter 

Liratrop Germany Winter 

Liropa Germany Winter 

Lisora Germany Semi-winter 

Lorenze Canada Winter 

Luna Germany Winter 

Major France Semi-winter 

Mali South Korea Semi-winter 

Azumasho South Korea Semi-winter 

Mar 160059 Poland Winter 

Marinus Germany Winter 

Mar'janovskij Ukraine Spring 

Matador South Korea Semi-winter 

Mazowiecki Poland Spring 

Mendel Germany Winter 

Midas Canada Spring 

Miekuro Dane South Korea Spring 

Mihonatane South Korea Winter 

Baraska Germany Winter 

Miochowski France Semi-winter 

Mirander Germany Winter 

Mlochowski Poland Semi-winter 

MR 1 South Korea Winter 

Mu.che! South Korea Winter 

Mulchower South Korea Winter 

Mura yamasho South Korea Spring 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Murame nadame South Korea Semi-winter 

Barkant Netherlands Winter 

N001-28-246-5-4 South Korea Semi-winter 

Nabo South Korea Semi-winter 

NDC-A14026 USA Spring 

NDC-A14032 USA Spring 

NDC-A14033 USA Spring 

NDC-A14035 USA Spring 

NDC-A14036 USA Spring 

NDC-A14045 USA Spring 

NDC-A14046 USA Spring 

NDC-A14050 USA Spring 

Barnapoli Germany Winter 

NDC-A14055 USA Spring 

NDC-A14056 USA Spring 

NDC-E12009 USA Spring 

NDC-E12023 USA Spring 

NDC-E12025 USA Spring 

NDC-E12027 USA Spring 

NDC-E12044 USA Spring 

NDC-E12079 USA Spring 

NDC-E12081 USA Spring 

NDC-E12086 USA Spring 

Barplina South Korea Winter 

NDC-E12119 USA Spring 

NDC-E12120 USA Spring 

NDC-E12121 USA Spring 

NDC-E12131 USA Spring 

NDC-E12133 USA Spring 

NDC-E13193 USA Spring 

NDC-E13279 USA Spring 

NDC-E13285 USA Spring 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDC-E15031 USA Spring 

NDC-E15146 USA Spring 

Beryl Poland Winter 

NDC-E15174 USA Spring 

NDC-E15200 USA Spring 

NDC-E15234 USA Spring 

NDC-E15294 USA Spring 

NDC-E16015 USA Spring 

NDC-E16053 USA Spring 

NDC-E16152 USA Spring 

NDC-E16169 USA Spring 

NDC-E16198 USA Spring 

NDC-E17132 USA Spring 

Bienvenu USA Winter 

NDSU01104 USA Spring 

NDSU0417 USA Spring 

NDSU0472 USA Spring 

NDSU0473 USA Spring 

NDSU0474 USA Spring 

NDSU0475 USA Spring 

NDSU0521 USA Spring 

NDSU0522 USA Spring 

NDSU0619 USA Spring 

NDSU0620 USA Spring 

Billy Sweden Winter 

NDSU0726 USA Spring 

NDSU0728 USA Spring 

NDSU0729 USA Spring 

NDSU10999 USA Spring 

NDSU12989 USA Spring 

NDSU151000 USA Spring 

NDSU15989 USA Spring 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDSU161013 USA Spring 

NDSU31001 USA Spring 

NDSU31011 USA Spring 

Bingo USA Spring 

NDSU41000 USA Spring 

NDSU7997 USA Spring 

NDSU81000 USA Spring 

NDSU91013 USA Spring 

Nemercanskjj 2268 Ukraine Winter 

Niedera-rubacher South Korea Winter 

Nilla 1022 South Korea Semi-winter 

Nilla glossy South Korea Semi-winter 

NU 41737 Turkey Spring 

NU 51084 Sweden Spring 

Nugget South Korea Semi-winter 

NY-10 China Semi-winter 

NY-12 China Semi-winter 

NY-20 China Semi-winter 

NY-7 China Semi-winter 

NY-8 China Semi-winter 

O 84 China Semi-winter 

Oleifera South Korea Semi-winter 

BO-63 Canada Spring 

Oro Canada Spring 

Orpal France Spring 

Panter Germany Winter 

Peace Canada Spring 

Petanova-lihonova South Korea Semi-winter 

Polo canola USA Spring 

Premier USA Spring 

Bolko Poland Winter 

Primer France Semi-winter 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Printol USA Spring 

Prota Germany Spring 

Q2 Canada Spring 

Quinta Germany Winter 

R. Creaus South Korea Winter 

Rafal France Winter 

Ramses South Korea Winter 

Rang South Korea Semi-winter 

BRA 1168/85 Italy Winter 

Rapifera South Korea Winter 

Ratnik Serbia Spring 

Rebel USA Semi-winter 

Regal South Korea Winter 

Regent Canada Spring 

Regina II Canada Spring 

Reston USA Spring 

Rico Germany Spring 

Ridana Germany Winter 

Bridger USA Winter 

Riley USA Winter 

Romeo France Spring 

Rubin Germany Winter 

Ruby USA Rutabaga 

S.V. Gulle South Korea Spring 

Santana Germany Winter 

Scherwitz South Korea Winter 

Sei yoshu South Korea Semi-winter 

Seoul South Korea Spring 

Sera Germany Semi-winter 

Siberian USA Winter 

Silesia Czech Republic Winter 

Silex Canada Spring 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Skrzeszowicki Poland Winter 

Start Poland Winter 

Brio France Spring 

Status Sweden Winter 

Su weon chag South Korea Semi-winter 

Sumner USA Winter 

Sunrise USA Spring 

Sval of Gullen South Korea Spring 

Svaloefs Karab Sweden Winter 

Svalof Victoria South Korea Winter 

Synra South Korea Winter 

Taichang South Korea Semi-winter 

Bronowski Poland Spring 

Taiwan Taiwan Spring 

Takagi MS South Korea Semi-winter 

Tamara Germany Winter 

Tanka South Korea Semi-winter 

TANTAL France Semi-winter 

Tanto France Spring 

Target Sweden Spring 

Titus South Korea Winter 

Todane South Korea Semi-winter 

Buk Wuk 3 South Korea Spring 

Tokiwa South Korea Semi-winter 

Tonus South Korea Spring 

Topas Sweden Spring 

Tosharshu South Korea Winter 

Tower Canada Spring 

Trebicska Czech Republic Winter 

Tsukushishu South Korea Winter 

Turret Canada Spring 

Capricorn UK Winter 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Ujfertodi Hungary Winter 

Valdor France Winter 

Vanda Germany Winter 

Viking Denmark Winter 

Vinnickij 15/59 Ukraine Winter 

Vision Canada Winter 

Vostochno-sibirskii Russian Federation Spring 

Wasefuji South Korea Spring 

Weal dong cho South Korea Semi-winter 

Weibulls margo South Korea Semi-winter 

Cascade USA Winter 

Westarb Canada Spring 

Wichita USA Winter 

Wielkopolski South Korea Winter 

Willa South Korea Spring 

Winfield USA Spring 

Wipol Norway Semi-winter 

Wira Germany Winter 

Yong dang South Korea Semi-winter 

Yonkkaichi kwo South Korea Semi-winter 

Cathy USA Winter 

Yonkokuban South Korea Winter 

Zhoungyou-584 China Semi-winter 

Zhoungyou-821 China Semi-winter 

Zhoungyou-9 China Semi-winter 

NEP-63 USA Winter 

Aspen USA Winter 

LB2125 Canada  

Celebra Sweden Spring 

Norin 16 Japan  

Licantara Germany Winter 

Merrick USA Winter 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Cescaljarni repka South Korea Semi-winter 

Ceskia Tabor Czech Republic Spring 

Chisaya natane Japan Semi-winter 

Chon nam South Korea Semi-winter 

CHUN-NUNG 1 China Winter 

Cobra Germany Winter 

Colza 18 Miroc South Korea Semi-winter 

Comet Sweden Spring 

AR-256 Russian Federation Winter 

Conquest Canada Spring 

Corvette UK Winter 

Cougar Canada Spring 

Cresor France Spring 

Cresus France Spring 

Crop France Spring 

Crystal Sweden Winter 

AR91004 USA Winter 

Cult Canada Winter 

Czyzowski Poland Spring 

Czyzowskich Poland Semi-winter 

Da vinci Canada Winter 

Dae cho sen South Korea Semi-winter 

Delta Sweden Spring 

DKW-46-5 USA Winter 

Dong Buk South Korea Winter 

AR91017 USA Winter 

Doon Major Swede New Zealand Winter 

Drakkar France Spring 

Dramor Poland Winter 

Drawft South Korea Winter 

ECD06 UK Winter 

ECD07 UK Winter 
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Table A.8. Name, origin, and growth habits of the 339 germplasm accessions (including check 

cultivars) used in the seedling stage sclerotinia stem rot resistance study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

ECD08 UK Winter 

ECD09 UK Winter 

ARC 90016 USA Winter 

Eckendorfer Mali South Korea Semi-winter 

Elena Germany Winter 

Englu South Korea Winter 

Eragi Germany Winter 

Erra Germany Winter 

Evvin Russian Federation Spring 

Expander Germany Winter 

Fashion Canada Winter 

ARC 97018 USA Winter 

Fertodi South Korea Winter 

Flint USA Spring 

Fonto South Korea Spring 

France 1 France Spring 

France 12 France Winter 

Fuji South Korea Spring/ semi 

G 32327 Albania Winter 

a Accessions used as resistant check 
b Accession used as susceptible check 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies  

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 

R2 

(%)h 

1 LP_4dpi SCM002759.2_1538720 1 1538720   FarmCPU 0.110 3.1  

2 LP_7dpi SCM002759.2_1842985 1 1842985   FarmCPU 0.068 3.0  

3 DW SCM002759.2_1985056 1 1985056   mrMLM -0.198 3.2 2.70 

4 LP_4dpi SCM002759.2_5225099 1 5225099   FarmCPU -0.065 3.1  

5 DW SCM002759.2_7316181 1 7316181 GEMMA-MLM 3.6 MLMM -0.220 3.4 2.44 

 LP_7dpi SCM002759.2_7316181 1 7316181 GEMMA-MLM 3.6 
MLMM, 

FarmCPU 

0.044-

0.046 
3.3-3.5 3 

 LP_7dpi SCM002759.2_7376806 1 7376806   mrMLM -0.035 3.7 2.90 

6 LP_7dpi SCM002759.2_10122721 1 10122721   MLMM 0.080 3.1 2.63 

7 DW SCM002759.2_10302868 1 10302868   MLMM -0.179 3.1 2.20 

8 LP_3dpi SCM002759.2_12777356 1 12777356   FarmCPU -0.089 6.0  

9 DW SCM002759.2_20706751 1 20706751   FarmCPU 0.135 3.8  

10 LP_7dpi SCM002759.2_31473630 1 31473630   
MLMM, 

FarmCPU 

0.059, 

0.066 
3.0-3.3 2.48 

11 DW SCM002760.2_5112867 2 5112867   FarmCPU 0.150 3.2  

12 DW SCM002760.2_5283289 2 5283289   mrMLM -0.204 7.0 4.39 

 LP_7dpi SCM002760.2_5283289 2 5283289   FarmCPU -0.038 3.0  

13 DW SCM002760.2_9186001 2 9186001   FarmCPU -0.336 3.3  

14 LP_3dpi SCM002760.2_11237590 2 11237590   FarmCPU 0.182 3.2  

15 LP_7dpi SCM002760.2_14854978 2 14854978   mrMLM 0.041 3.8 4.05 

16 LP_7dpi SCM002760.2_18393359 2 18393359   MLMM -0.074 3.3 2.77 

17 LP_7dpi SCM002760.2_20228240 2 20228240   FarmCPU 0.088 3.3  

18 LP_4dpi SCM002760.2_20844443 2 20844443   
MLMM, 

mrMLM 

-0.174, 

0.128 
3.1-3.3 

2.3-

4.3 

19 DW SCM002760.2_30564102 2 30564102   mrMLM -0.196 4.7 5.03 

 LP_4dpi SCM002760.2_30564102 2 30564102   MLMM 0.094 3.0 2.06 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 

R2 

(%)h 

20 DW SCM002761.2_1762853 3 1762853   FarmCPU -0.123 3.2  

21 DW SCM002761.2_3034487 3 3034487   FarmCPU 0.217 3.7  

22 LP_7dpi SCM002761.2_4059294 3 4059294   FarmCPU 0.077 3.0  

23 LP_3dpi SCM002761.2_5046706 3 5046706   
MLMM, 

mrMLM 

 0.119, 

0.109 
3.2-3.5 

2.08-

2.40 

24 DW SCM002761.2_5607745 3 5607745 GEMMA-MLM 3.7 MLMM -0.282 3.6 2.56 

 LP_4dpi SCM002761.2_5607745 3 5607745 GEMMA-MLM 3.5 

MLMM, 

FarmCPU, 

mrMLM 

-0.117, 

0.139 
3.4-5.7 

2.4-

2.7 

25 LP_3dpi SCM002761.2_6227578 3 6227578   FarmCPU 0.098 5.6 NA 

26 DW SCM002761.2_20918043 3 20918043   MLMM -0.175 3.0 2.06 

 LP_3dpi SCM002761.2_20918043 3 20918043   

MLMM, 

FarmCPU, 

mrMLM 

-0.100, 

0.110 
3.0-7.9 

1.99-

3.07 

 LP_4dpi SCM002761.2_20918043 3 20918043   
MLMM, 

mrMLM 

-0.083, 

0.093 
3.2-5.9 

2.23-

2.59 

 DW SCM002761.2_20921893 3 20921893   
MLMM, 

FarmCPU 

0.107, 

0.145 
3.0-4.1 2.00 

27 DW SCM002761.2_23584078 3 23584078   MLMM 0.226 3.0 2.10 

28 LP_7dpi SCM002761.2_23664593 3 23664593 GEMMA-MLM 4.2 
MLMM, 

FarmCPU 

0.035,0.0

38 
3.3-4.0 3.60 

29 LP_3dpi SCM002761.2_24009249 3 24009249   MLMM 0.212 3.2 2.12 

30 LP_7dpi SCM002761.2_31481512 3 31481512   mrMLM 0.030 3.4 3.66 

31 LP_4dpi SCM002761.2_31766146 3 31766146   FarmCPU 0.103 3.4  

32 LP_3dpi SCM002761.2_31948050 3 31948050   FarmCPU -0.099 6.1  

33 DW SCM002761.2_32875227 3 32875227   mrMLM 0.196 5.4 3.36 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

33 DW SCM002761.2_32875227 3 32875227   mrMLM 0.196 5.4 3.36 

34 DW SCM002761.2_33164427 3 33164427   mrMLM -0.143 4.0 2.19 

35 LP_3dpi SCM002761.2_34924695 3 34924695   FarmCPU 0.096 3.1  

36 DW SCM002761.2_45757845 3 45757845   mrMLM -0.269 4.0 9.30 

 LP_4dpi SCM002761.2_45757845 3 45757845   MLMM 0.156 3.1 2.11 

37 LP_3dpi SCM002761.2_45882841 3 45882841   MLMM 0.228 3.0 2.00 

38 LP_7dpi SCM002762.2_263464 4 263464   FarmCPU -0.077 3.1  

39 LP_7dpi SCM002762.2_10716343 4 10716343 GEMMA-MLM 4.3 

MLMM, 

FarmCPU, 

mrMLM 

0.072, 

0.084 
3.6-4.8 3.5-6.8 

40 LP_7dpi SCM002762.2_11910128 4 11910128   MLMM 0.064 3.3 2.78 

41 LP_3dpi SCM002762.2_13620028 4 13620028 GEMMA-MLM 3.4 MLMM 0.108 3.2 2.10 

 LP_4dpi SCM002762.2_13620028 4 13620028 GEMMA-MLM 4.3 

MLMM, 

FarmCPU, 

mrMLM 

0.058, 

0.111 
3.3-5.3 

1.50-

2.76 

42 DW SCM002762.2_14955165 4 14955165   mrMLM  '0.265 6.4 5.21 

43 DW SCM002762.2_15836859 4 15836859   mrMLM 0.185 3.7 4.50 

44 LP_7dpi SCM002762.2_19685094 4 19685094 GEMMA-MLM 3.8 
MLMM, 

FarmCPU 

0.052, 

0.055 
3.5 3.00 

45 LP_3dpi SCM002762.2_21806203 4 21806203   FarmCPU 0.098 3.9  

46 DW SCM002763.2_659551 5 659551   FarmCPU 0.392 3.4  

47 LP_7dpi SCM002763.2_746381 5 746381 GEMMA-MLM 4.0 
MLMM, 

FarmCPU 

-0.115, -

0.108 
3.6-3.8 3.30 

48 DW SCM002763.2_1914189 5 1914189 GEMMA-MLM 3.3 MLMM 0.298 3.1 2.20 

 LP_7dpi SCM002763.2_1914189 5 1914189   

MLMM, 

FarmCPU, 

mrMLM 

-0.075, 

0.066 
3.8-5.4 

4.33-

5.30 

49 LP_7dpi SCM002763.2_2070843 5 2070843   
MLMM, 

mrMLM 

-0.033, 

0.028 
3.0-3.4 

2.47-

2.55 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued)    

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

50 LP_4dpi SCM002763.2_12372445 5 12372445   MLMM -0.129 3.0 2.06 

51 LP_7dpi SCM002763.2_19842238 5 19842238   FarmCPU 0.047 3.0  

52 LP_7dpi SCM002763.2_26512878 5 26512878   FarmCPU -0.082 4.2  

53 LP_3dpi SCM002763.2_28498462 5 28498462 GEMMA-MLM 3.8 MLMM 0.207 3.6 2.50 

 LP_4dpi SCM002763.2_28498462 5 28498462   MLMM 0.169 3.0 2.05 

54 DW SCM002763.2_28503051 5 28503051   MLMM -0.244 3.3 2.30 

55 DW SCM002763.2_29583961 5 29583961   MLMM -0.271 3.1 2.20 

56 DW SCM002764.2_2497618 6 2497618   MLMM -0.190 3.2 2.24 

57 LP_7dpi SCM002764.2_3011988 6 3011988 GEMMA-MLM 4.2 
MLMM, 

FarmCPU 

-0.064, 

-0.063 
3.7-4.0 3.50 

58 LP_3dpi SCM002764.2_7193358 6 7193358 GEMMA-MLM 3.5 
MLMM, 

FarmCPU 

-0.095, 

-0.064 
3.1-3.4 2.24 

 LP_4dpi SCM002764.2_7193358 6 7193358 GEMMA-MLM 3.7 MLMM -0.090 3.6 2.54 

59 LP_3dpi SCM002764.2_7381974 6 7381974   MLMM 0.103 3.3 2.20 

 LP_4dpi SCM002764.2_7381974 6 7381974   MLMM 0.089 3.0 2.08 

60 DW SCM002764.2_7471454 6 7471454   

MLMM, 

FarmCPU, 

mrMLM 

-0.192, 

0.174 
3.0-7.6 2.17-4.74 

 LP_3dpi SCM002764.2_7471454 6 7471454 GEMMA-MLM 4.4 

MLMM, 

FarmCPU, 

mrMLM 

-0.117, 

0.104 
3.8-8.7 2.9-4.2 

 LP_4dpi SCM002764.2_7471454 6 7471454 GEMMA-MLM 4.0 

MLMM, 

FarmCPU, 

mrMLM 

-0.100, 

0.086 
3.7-4.8 2.66-3.56 

61 LP_4dpi SCM002764.2_10061186 6 10061186   FarmCPU -0.116 3.1  

62 DW SCM002764.2_15841609 6 15841609   FarmCPU 0.198 3.8  

63 LP_3dpi SCM002764.2_20413466 6 20413466   MLMM 0.144 3.2 2.10 

64 LP_3dpi SCM002764.2_33897878 6 33897878   FarmCPU -0.163 3.3  

65 DW SCM002765.2_3858871 7 3858871   FarmCPU 0.163 3.0  

66 LP_7dpi SCM002765.2_11787278 7 11787278   MLMM 0.054 3.1 2.63 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

67 LP_4dpi SCM002765.2_15407314 7 15407314   FarmCPU -0.086 3.3  

68 DW SCM002765.2_22697279 7 22697279   FarmCPU 0.438 3.9  

69 LP_7dpi SCM002765.2_26044299 7 26044299   MLMM -0.050 3.4 2.88 

70 DW SCM002765.2_26141436 7 26141436   FarmCPU -0.131 3.2  

 LP_4dpi SCM002765.2_26141436 7 26141436   FarmCPU 0.076 3.6  

71 DW SCM002766.2_3646103 8 3646103   MLMM -0.237 3.2 2.26 

72 DW SCM002766.2_6170383 8 6170383   FarmCPU 0.351 3.3  

73 LP_4dpi SCM002766.2_6576920 8 6576920   FarmCPU -0.053 3.2  

74 DW SCM002766.2_8308223 8 8308223 GEMMA-MLM 3.7 
MLMM, 

FarmCPU 

-0.516, 

-0.348 
3.5-4.7 2.49 

 LP_7dpi SCM002766.2_8308223 8 8308223   MLMM 0.093 3.0 2.50 

75 LP_3dpi SCM002766.2_8408776 8 8408776   mrMLM 0.101 3.0 1.60 

76 LP_7dpi SCM002766.2_9991617 8 9991617   FarmCPU -0.070 3.0  

77 LP_4dpi SCM002766.2_11253257 8 11253257   FarmCPU 0.059 3.2  

78 LP_3dpi SCM002766.2_17142324 8 17142324   MLMM -0.154 3.1 2.04 

79 LP_4dpi SCM002766.2_18839525 8 18839525   FarmCPU 0.056 3.0  

80 DW SCM002766.2_25236628 8 25236628   FarmCPU -0.235 3.2  

81 LP_3dpi SCM002767.2_6778855 9 6778855   MLMM -0.097 3.0 1.93 

82 DW SCM002767.2_6830741 9 6830741   MLMM -0.182 3.0 2.10 

 LP_4dpi SCM002767.2_6830741 9 6830741 GEMMA-MLM 4.0 

MLMM, 

FarmCPU, 

mrMLM 

0.084, 

0.106 
3.8-5.4 

2.35-

2.7 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

83 DW SCM002767.2_12982760 9 12982760   
FarmCPU, 

mrMLM 

-

0.179,0.

173 

4.2-6.1 1.5-2.34 

 LP_3dpi SCM002767.2_12982760 9 12982760   
MLMM, 

mrMLM 
-0.091 3.2-5.7 1.96-2.3 

 LP_4dpi SCM002767.2_12982760 9 12982760   

MLMM, 

FarmCPU, 

mrMLM 

-0.110, 

0.104 
3.0-6.3 2.0-3.54 

84 DW SCM002767.2_21520686 9 21520686 GEMMA-MLM 3.7 MLMM 0.188 3.6 2.60 

 LP_4dpi SCM002767.2_21520686 9 21520686   

MLMM, 

FarmCPU, 

mrMLM 

-0.071, 

0.064 
3.0-4.2 

1.47-

2.07 

 LP_7dpi SCM002767.2_21520686 9 21520686 GEMMA-MLM 3.4 MLMM -0.035 3.3 2.80 

85 DW SCM002767.2_21528172 9 21528172   MLMM 0.268 3.0 2.10 

 LP_4dpi SCM002767.2_21528172 9 21528172   FarmCPU -0.109 3.5  

86 DW SCM002767.2_27713481 9 27713481   mrMLM 0.214 3.6 2.20 

 LP_4dpi SCM002767.2_27713481 9 27713481   mrMLM  -0.086 3.6 1.35 

87 DW SCM002767.2_34295849 9 34295849 GEMMA-MLM 4.2 MLMM 0.340 4.0 2.90 

 LP_4dpi SCM002767.2_34295849 9 34295849 GEMMA-MLM 3.8 MLMM -0.167 3.7 2.64 

88 DW SCM002767.2_34792904 9 34792904   MLMM -0.540 3.1 2.20 

 LP_7dpi SCM002767.2_34792904 9 34792904   MLMM 0.111 3.3 2.87 

89 DW SCM002767.2_36616904 9 36616904 GEMMA-MLM 3.4 MLMM -0.375 3.3 2.30 

 LP_7dpi SCM002767.2_36616904 9 36616904 GEMMA-MLM 3.7 MLMM 0.077 3.5 3.07 

90 LP_3dpi SCM002767.2_36951909 9 36951909   
MLMM, 

FarmCPU 

0.077, 

0.101 
3.0-3.5 1.94 

 LP_4dpi SCM002767.2_36951909 9 36951909   FarmCPU 0.068 3.0  

91 DW SCM002767.2_37453827 9 37453827   FarmCPU -0.122 4.2 NA 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

92 DW SCM002768.2_3376886 10 3376886   FarmCPU -0.211 3.3  

93 DW SCM002768.2_14496342 10 14496342   mrMLM -0.144 3.8 2.69 

94 LP_3dpi SCM002768.2_15292534 10 15292534   FarmCPU 0.076 3.1  

95 LP_3dpi SCM002768.2_15438080 10 15438080   mrMLM 0.074 5.2 2.16 

 LP_4dpi SCM002768.2_15438080 10 15438080   mrMLM 0.063 4.7 1.94 

96 DW SCM002768.2_16001293 10 16001293   FarmCPU -0.122 4.1  

97 LP_4dpi SCM002769.2_15972249 11 15972249   MLMM 0.102 3.1 2.11 

98 LP_3dpi SCM002769.2_16506702 11 16506702   

MLMM, 

FarmCPU, 

mrMLM 

-0.129, 

0.104 
3.0-6.7 2.0-2.7 

99 LP_3dpi SCM002769.2_24927831 11 24927831 GEMMA-MLM 3.6 
MLMM, 

FarmCPU 

0.181, 

0.231 
3.4-3.8 2.30 

100 DW SCM002769.2_30433458 11 30433458   FarmCPU -0.314 3.0  

101 LP_3dpi SCM002769.2_43323649 11 43323649 GEMMA-MLM 3.8 MLMM 0.193 3.6 2.45 

102 LP_4dpi SCM002770.2_959722 12 959722   MLMM -0.208 3.1 2.13 

103 LP_4dpi SCM002770.2_4598582 12 4598582   mrMLM 0.113 3.2 6.15 

104 LP_3dpi SCM002770.2_6162074 12 6162074 GEMMA-MLM 3.7 

MLMM, 

FarmCPU, 

mrMLM 

0.088, 

0.103 
3.6-7.0 2.4-4.21 

 LP_4dpi SCM002770.2_6162074 12 6162074 GEMMA-MLM 3.9 
MLMM, 

FarmCPU 

0.058, 

0.089 
3.7-4.4 2.70 

105 LP_3dpi SCM002770.2_10543365 12 10543365 GEMMA-MLM 3.7 MLMM 0.241 3.5 2.37 

106 LP_3dpi SCM002770.2_12757488 12 12757488   MLMM 0.096 3.0 1.93 

107 LP_7dpi SCM002770.2_15588436 12 15588436   MLMM -0.035 3.1 2.64 

108 LP_3dpi SCM002770.2_19302314 12 19302314   FarmCPU 0.056 3.0  

 LP_3dpi SCM002770.2_19391550 12 19391550   FarmCPU 0.067 3.3  

109 DW SCM002770.2_19427637 12 19427637   mrMLM 0.158 4.0 3.23 

 LP_3dpi SCM002770.2_19427637 12 19427637   FarmCPU -0.082 4.6  

110 LP_3dpi SCM002770.2_19481389 12 19481389   FarmCPU -0.066 3.4  
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

111 LP_3dpi SCM002770.2_24237417 12 24237417   FarmCPU 0.070 3.4  

112 LP_3dpi SCM002770.2_25745655 12 25745655   FarmCPU -0.099 3.9  

 LP_4dpi SCM002770.2_25782525 12 25782525   FarmCPU 0.062 3.2  

113 DW SCM002770.2_25886609 12 25886609   FarmCPU -0.139 5.2  

 LP_4dpi SCM002770.2_25886609 12 25886609   
FarmCPU, 

mrMLM 

-0.073, 

0.071 
3.3-3.8 2.51 

114 LP_3dpi SCM002770.2_25911411 12 25911411   FarmCPU -0.067 3.2  

115 LP_4dpi SCM002770.2_25988684 12 25988684   FarmCPU -0.064 3.5  

116 LP_3dpi SCM002770.2_26027936 12 26027936   FarmCPU 0.070 3.5  

117 LP_4dpi SCM002770.2_35869952 12 35869952   FarmCPU -0.132 3.0  

118 LP_7dpi SCM002770.2_39644852 12 39644852   mrMLM 0.051 4.9 9.52 

119 LP_7dpi SCM002770.2_40023010 12 40023010   FarmCPU 0.050 3.7 NA 

120 LP_7dpi SCM002770.2_46013498 12 46013498   FarmCPU -0.088 3.3  

121 DW SCM002770.2_54978115 12 54978115   FarmCPU 0.094 3.1  

122 DW SCM002770.2_55268968 12 55268968   FarmCPU -0.104 3.0  

123 LP_7dpi SCM002770.2_59170961 12 59170961   FarmCPU -0.104 3.4  

124 DW SCM002770.2_60099459 12 60099459 GEMMA-MLM 4.6 
MLMM, 

FarmCPU 

0.547, 

0.625 
4.3-7.6 3.20 

 LP_7dpi SCM002770.2_60099459 12 60099459 GEMMA-MLM 3.3 
MLMM, 

FarmCPU 

-0.121, 

-0.101 
3.1-3.5 2.60 

125 LP_4dpi SCM002770.2_61095811 12 61095811   
FarmCPU, 

mrMLM 

-0.061, 

0.064 
3.8-4.8 1.83 

126 DW SCM002770.2_61783724 12 61783724   MLMM 0.352 3.4 2.40 

127 LP_3dpi SCM002771.2_7949135 13 7949135   FarmCPU -0.115 3.1  

128 DW SCM002771.2_9976695 13 9976695   MLMM 0.191 3.1 2.17 

129 LP_7dpi SCM002771.2_12476994 13 12476994 GEMMA-MLM 4.2 MLMM 0.088 4.0 3.55 

130 DW SCM002771.2_12892646 13 12892646   FarmCPU 0.208 3.3  

131 LP_3dpi SCM002771.2_13382147 13 13382147   MLMM -0.134 3.2 2.08 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

132 DW SCM002771.2_32935711 13 32935711   FarmCPU 0.187 3.0  

 LP_4dpi SCM002771.2_32935711 13 32935711   MLMM -0.152 3.4 2.35 

133 DW SCM002771.2_41249711 13 41249711   FarmCPU 0.174 3.3  

134 LP_7dpi SCM002771.2_46004351 13 46004351   FarmCPU -0.138 3.2  

135 LP_3dpi SCM002771.2_54279046 13 54279046   MLMM -0.229 3.3 2.17 

136 LP_3dpi SCM002771.2_55583051 13 55583051   MLMM 0.147 3.0 1.96 

137 DW SCM002771.2_62907726 13 62907726   MLMM 0.227 3.2 2.21 

138 LP_3dpi SCM002771.2_64722553 13 64722553   FarmCPU -0.100 5.9  

139 LP_4dpi SCM002771.2_68049798 13 68049798 GEMMA-MLM 3.8 MLMM 0.107 3.6 2.55 

140 DW SCM002771.2_69685367 13 69685367   
MLMM, 

FarmCPU 

0.151, 

0.218 
3.1-4.9 2.10 

141 LP_3dpi SCM002771.2_69898422 13 69898422   MLMM -0.124 3.1 2.06 

142 DW SCM002771.2_77997199 13 77997199 GEMMA-MLM 4.3 
MLMM, 

FarmCPU 

0.268, 

0.337 
4.0-6.0 3.00 

 LP_3dpi SCM002771.2_77997199  77997199 GEMMA-MLM 4.2 
MLMM, 

FarmCPU 

-0.189, 

-0.163 
4.0-6.4 

2.75-

5.78 

 LP_4dpi SCM002771.2_77997199 13 77997199 GEMMA-MLM 5.4 

MLMM, 

FarmCPU, 

mrMLM 

-0.199, 

-0.187 
5.1-9.7 3.8-13.3 

143 LP_7dpi SCM002772.2_396291 14 396291   
MLMM, 

FarmCPU 

0.062, 

0.065 
3.0-3.3 2.80 

144 DW SCM002772.2_2193400 14 2193400   MLMM -0.338 4.9 2.20 

145 LP_3dpi SCM002772.2_7462457 14 7462457   FarmCPU 0.091 3.1  

146 LP_3dpi SCM002772.2_10363577 14 10363577   MLMM -0.180 3.0 1.98 

147 LP_7dpi SCM002772.2_12876714 14 12876714   MLMM 0.064 3.0 2.51 

148 LP_3dpi SCM002772.2_16918673 14 16918673   
MLMM, 

mrMLM 

-0.203, 

0.180 
3.2-4.1 2.3-8.15 

 



 

 

2
2
3
 

Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

149 LP_7dpi SCM002772.2_17256004 14 17256004   FarmCPU -0.089 3.2  

150 LP_7dpi SCM002772.2_18471902 14 18471902   FarmCPU -0.092 3.4  

151 LP_3dpi SCM002772.2_18961270 14 18961270 GEMMA-MLM 4.2 

MLMM, 

FarmCPU, 

mrMLM 

-0.169, 

-0.184 
4.0-9.7 2.75-11.9 

 LP_4dpi SCM002772.2_18961270 14 18961270   mrMLM -0.088 4.9 3.62 

152 LP_3dpi SCM002772.2_27563465 14 27563465   FarmCPU 0.131 7.0  

153 DW SCM002772.2_28114395 14 28114395   FarmCPU 0.201 3.1  

154 DW SCM002772.2_31266664 14 31266664   
MLMM, 

FarmCPU 

-0.295, 

-0.241 
3.2-9.8 2.20 

 LP_4dpi SCM002772.2_31266664 14 31266664   
FarmCPU, 

mrMLM 

0.082, 

0.122 

4.9-

12.3 
4.28 

155 DW SCM002772.2_32008911 14 32008911   FarmCPU 0.146 3.2  

 LP_7dpi SCM002772.2_32008911 14 32008911   
MLMM, 

mrMLM 

-0.040, 

0.037 
3.1-3.3 2.62-5.68 

156 LP_3dpi SCM002772.2_46691195 14 46691195   
FarmCPU, 

mrMLM 

-0.131, 

-0.083 
3.4-6.0 5.50 

157 LP_7dpi SCM002772.2_50481857 14 50481857   FarmCPU 0.108 3.1  

158 DW SCM002772.2_57995332 14 57995332   MLMM 0.164 3.0 2.10 

159 DW SCM002772.2_58049994 14 58049994   mrMLM 0.264 5.9 5.77 

160 DW SCM002773.2_610542 15 610542   FarmCPU 0.151 5.6  

161 DW SCM002773.2_2102213 15 2102213   MLMM 0.293 3.3 2.30 

162 DW SCM002773.2_3543525 15 3543525   FarmCPU 0.140 3.2  

163 LP_3dpi SCM002773.2_6001138 15 6001138 GEMMA-MLM 3.8 

MLMM, 

FarmCPU, 

mrMLM 

-0.178, 

0.165 
3.7-4.3 2.51-8.56 

164 LP_4dpi SCM002773.2_8136668 15 8136668   FarmCPU -0.123 3.7  

165 LP_3dpi SCM002773.2_10198222 15 10198222   MLMM -0.289 3.0 1.98 

166 LP_3dpi SCM002773.2_12105076 15 12105076   mrMLM -0.076 3.9 1.61 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

167 LP_3dpi SCM002773.2_12868611 15 12868611   MLMM -0.207 3.2 2.12 

168 LP_3dpi SCM002773.2_16562786 15 16562786   MLMM 0.097 3.0 1.98 

169 LP_4dpi SCM002773.2_19013399 15 19013399   FarmCPU -0.159 3.0  

170 LP_3dpi SCM002773.2_31319827 15 31319827   
MLMM, 

FarmCPU 

0.172, 

0.205 
3.0-4.3 2.00 

171 DW SCM002773.2_42992177 15 42992177   FarmCPU -0.164 4.2  

172 DW SCM002774.2_5170460 16 5170460   FarmCPU 0.102 3.0  

173 DW SCM002774.2_10918047 16 10918047 GEMMA-MLM 3.3 
MLMM, 

FarmCPU 

0.110, 

0.173 
3.2-3.8 2.20 

 LP_4dpi SCM002774.2_10918047 16 10918047 GEMMA-MLM 3.5 
MLMM, 

FarmCPU 

-0.091, 

-0.058 
3.4-3.5 2.40 

174 LP_4dpi SCM002774.2_11948447 16 11948447   FarmCPU -0.059 4.7  

175 LP_3dpi SCM002774.2_13414096 16 13414096   FarmCPU -0.168 3.3  

176 DW SCM002774.2_14241506 16 14241506   FarmCPU 0.339 6.9  

177 LP_3dpi SCM002774.2_15647651 16 15647651   MLMM -0.128 3.0 1.98 

 LP_4dpi SCM002774.2_15647651 16 15647651 GEMMA-MLM 3.6 MLMM -0.127 3.5 2.44 

178 LP_3dpi SCM002774.2_20726433 16 20726433   FarmCPU -0.106 5.2  

179 LP_4dpi SCM002774.2_26766858 16 26766858   FarmCPU 0.086 3.1  

180 DW SCM002774.2_28747745 16 28747745   FarmCPU 0.183 3.3  

181 LP_4dpi SCM002774.2_31650615 16 31650615   MLMM -0.108 3.1 2.10 

182 LP_3dpi SCM002774.2_32688891 16 32688891   FarmCPU -0.069 3.1  

183 DW SCM002774.2_39728849 16 39728849   MLMM 0.454 3.0 2.10 

184 LP_3dpi SCM002775.2_8016185 17 8016185   MLMM -0.112 3.0 1.98 

185 DW SCM002775.2_13344420 17 13344420   FarmCPU -0.291 3.0  

 LP_3dpi SCM002775.2_13344420 17 13344420   MLMM 0.267 3.3 2.15 

186 LP_3dpi SCM002775.2_27882458 17 27882458   FarmCPU -0.093 3.2  

187 LP_4dpi SCM002775.2_40154705 17 40154705   
MLMM, 

mrMLM 

0.065, 

0.088 
3.3-3.5 

1.93-

2.32 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 

-log10 

(P)g 
R2 (%)h 

188 LP_7dpi SCM002775.2_40831558 17 40831558   FarmCPU 0.041 3.1  

189 LP_3dpi SCM002775.2_42751463 17 42751463   MLMM -0.116 3.0 1.98 

190 LP_4dpi SCM002775.2_44433020 17 44433020   FarmCPU 0.106 3.0  

191 LP_7dpi SCM002775.2_50645830 17 50645830   

MLMM, 

FarmCPU, 

mrMLM 

-0.057, 

0.046 
3.3-4.0 2.8-4.5 

192 LP_7dpi SCM002775.2_55718256 17 55718256   FarmCPU 0.067 3.0  

193 LP_3dpi SCM002776.2_1006878 18 1006878   FarmCPU 0.132 3.4  

194 LP_3dpi SCM002776.2_2935480 18 2935480   FarmCPU 0.082 4.7  

195 DW SCM002776.2_3485443 18 3485443 GEMMA-MLM 4.1 MLMM 0.227 3.8 2.73 

 LP_4dpi SCM002776.2_3485443 18 3485443 GEMMA-MLM 4.2 MLMM -0.120 4.0 2.89 

196 DW SCM002776.2_3494019 18 3494019 GEMMA-MLM 4.1 
MLMM, 

FarmCPU 

-0.228, 

-0.150 
3.6-4.3 2.55 

 LP_4dpi SCM002776.2_3494019 18 3494019 GEMMA-MLM 3.7 
MLMM, 

FarmCPU 

0.080, 

0.112 
3.4-4.2 2.40 

 LP_7dpi SCM002776.2_3494019 18 3494019   FarmCPU 0.043 3.0  

197 LP_4dpi SCM002776.2_5249316 18 5249316   FarmCPU 0.102 3.0  

 DW SCM002776.2_5358231 18 5358231   FarmCPU 0.311 3.2  

198 DW SCM002776.2_11945389 18 11945389   MLMM -0.360 3.0 2.06 

 LP_7dpi SCM002776.2_11945389 18 11945389 GEMMA-MLM 3.6 
MLMM, 

FarmCPU 

0.077, 

0.085 
3.3-3.4 2.90 

199 LP_7dpi SCM002776.2_11998032 18 11998032   MLMM -0.095 3.2 2.71 

200 DW SCM002776.2_12692146 18 12692146 GEMMA-MLM 3.8 MLMM 0.277 3.7 2.60 

 LP_7dpi SCM002776.2_12692146 18 12692146 GEMMA-MLM 4.0 
MLMM, 

FarmCPU 

-0.057, 

-0.049 
3.0-3.9 3.40 

201 LP_3dpi SCM002776.2_27101496 18 27101496   MLMM 0.270 3.0 1.96 

202 DW SCM002776.2_27672332 18 27672332 GEMMA-MLM 3.3 MLMM -0.316 3.2 2.30 

 LP_3dpi SCM002776.2_27672332 18 27672332   MLMM 0.171 3.1 2.02 
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 
-log10 (P)g R2 (%)h 

202 DW SCM002776.2_27672332 18 27672332 GEMMA-MLM 3.3 MLMM -0.316 3.2 2.30 

 LP_3dpi SCM002776.2_27672332 18 27672332   MLMM 0.171 3.1 2.02 

 LP_4dpi SCM002776.2_27672332 18 27672332 GEMMA-MLM 4.3 

MLMM, 

FarmCPU, 

mrMLM 

0.152, 

0.185 
4.0-5.1 

2.97-

8.66 

203 LP_3dpi SCM002776.2_29554663 18 29554663   FarmCPU 0.138 4.2  

204 DW SCM002776.2_34159337 18 34159337   FarmCPU 0.123 3.0  

205 DW SCM002776.2_42850291 18 42850291   FarmCPU 0.137 3.0  

206 LP_3dpi SCM002777.2_2395391 19 2395391   FarmCPU 0.092 3.1  

207 DW SCM002777.2_13355921 19 13355921   MLMM 0.247 3.2 2.30 

 LP_3dpi SCM002777.2_13355921 19 13355921   mrMLM -0.107 3.1 4.35 

208 LP_4dpi SCM002777.2_24890194 19 24890194   FarmCPU 0.082 3.6  

 LP_7dpi SCM002777.2_24890194 19 24890194   mrMLM -0.037 4.2 4.69 

209 LP_7dpi SCM002777.2_29273334 19 29273334   FarmCPU -0.094 3.1  

210 LP_4dpi SCM002777.2_29633297 19 29633297   FarmCPU -0.107 3.1  

211 LP_7dpi SCM002777.2_34107430 19 34107430   FarmCPU -0.073 3.4  

212 DW SCM002777.2_36581746 19 36581746 GEMMA-MLM 3.7 
MLMM, 

FarmCPU 

-0.330, 

-0.522 
3.4-4.1 2.40 

 LP_7dpi SCM002777.2_36581746 19 36581746 GEMMA-MLM 4.9 
MLMM, 

FarmCPU 

0.116, 

0.122 
4.0-4.5 4.00 

213 DW SCM002777.2_42617889 19 42617889   FarmCPU 0.223 3.0  

214 DW SCM002777.2_47487736 19 47487736   FarmCPU 0.244 3.7  
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Table A.9. List of significant single-nucleotide polymorphisms (SNPs) associated with days to wilt, lesion phenotypes at 3, 4, and 7 

days post inoculation traits for sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

     Single-locus GWAS Multi-locus GWAS 

Locus Traitsa SNP_ID Chrb 
Position 

(bp) 
Method 

-log10 

(P)d 
Methodse 

QTN 

effectf 
-log10 (P)g R2 (%)h 

215 LP_4dpi SCM002777.2_50176743 19 50176743   

MLMM, 

FarmCPU, 

mrMLM 

-0.154, 

0.166 
3.1-6.1 2.1-7.8 

216 DW SCM002777.2_51133509 19 51133509   
MLMM, 

FarmCPU 

-0.218, 

-0.139 
3.2-4.1 2.20 

Traitsa: Days to wilt (DW); LP_3dpi, lesion phenotype scores at 3 days post inoculation; LP_4dpi, lesion phenotype scores at 4 days post inoculation; LP_7dpi, 

lesion phenotype scores at 7 days post inoculation 

Chrb: Brassica napus chromosome 

-log10 (P)d, The -log10 (P) value resulted from the GEMMA-MLM GWA model 

Methodse: Three multi-locus i.e., MLMM, FarmCPU, and mrMLM GWA models 

QTN effectf: difference in mean phenotypic values between genotypes with major allele and minor allele. Positive sign indicates major allele is associated with 

increased phenotypic values. Negative sign indicates that the major allele is associated with reduced 

-log10 (P)g, The highest and lowest -log10 (P) value resulted from the various studied traits with different multi-locus GWA models 

R2 (%) h; The range of the percentage of phenotypic variation explained by the identified significant SNP derived from the results of MLMM, and mrMLM GWA 

models 
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Table A.10. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected by at least two GWAS models or at 

least two traits associated with sclerotinia stem rot resistance by single-locus and multi-locus GWA studies 

    Single-locus GWAS Multi-locus GWAS 

Locus SNP_ID Chrma 
Position 

(bp) 
Method and Traitsc 

-log10 

(P)d 
Methods and Traitsf 

-log10 

(P)g 
R2 (%)h 

1 SCM002759.2_7316181 1 7316181 GEMMA-MLM14 3.6 MLMM14, FarmCPU4 3.3-3.5 2.4-3.0 

2 SCM002759.2_31473630 1 31473630   MLMM4, FarmCPU4 3.0-3.3 2.5 

3 SCM002760.2_5283289 2 5283289   FarmCPU4, mrMLM1 3.0-7.0 4.4 

4 SCM002760.2_20844443 2 20844443   MLMM3, mrMLM3 3.1-3.3 2.3-4.3 

5 SCM002760.2_30564102 2 30564102   MLMM3, mrMLM1 3.0-4.7 2.1-5.0 

6 SCM002761.2_5046706 3 5046706   MLMM2, mrMLM2 3.2-3.5 2.1-2.4 

7 SCM002761.2_5607745 3 5607745 GEMMA-MLM13 3.5-3.7 
MLMM13, FarmCPU3, 

mrMLM3 
3.4-5.7 2.4-2.7 

8 SCM002761.2_20918043 3 20918043   
MLMM123, FarmCPU2, 

mrMLM23 
3.0-7.9 2.0-3.07 

 SCM002761.2_20921893 3 20921893   MLMM1, FarmCPU1 3.0-4.1 2.0 

9 SCM002761.2_23664593 3 23664593 GEMMA-MLM4 4.2 MLMM4, FarmCPU4 3.3-4.0 3.6 

10 SCM002761.2_45757845 3 45757845   MLMM3, mrMLM1 3.1-4.0 2.1-9.3 

11 SCM002762.2_10716343 4 10716343 GEMMA-MLM4 4.3 
MLMM4, FarmCPU4, 

mrMLM4 
3.6.-4.8 3.5-6.8 

12 SCM002762.2_13620028 4 13620028 GEMMA-MLM23 3.4 
MLMM23, FarmCPU3, 

mrMLM3 
3.2-5.3 1.5-2.8 

13 SCM002762.2_19685094 4 19685094 GEMMA-MLM4 3.8 MLMM4, FarmCPU4 3.50 3.0 

14 SCM002763.2_746381 5 746381 GEMMA-MLM4 4.0 MLMM4, FarmCPU4 3.6-3.8 3.3 

15 SCM002763.2_1914189 5 1914189 GEMMA-MLM1 3.3 
MLMM14, FarmCPU4, 

mrMLM4 
3.1-5.4 2.2-5.3 

16 SCM002763.2_2070843 5 2070843   MLMM4, mrMLM4 3.0-3.4 2.5-2.6 

17 SCM002763.2_28498462 5 28498462 GEMMA-MLM2 3.8 MLMM23 3.0-3.6 2.1-2.5 

18 SCM002764.2_3011988 6 3011988 GEMMA-MLM4 4.2 MLMM4, FarmCPU4 3.7-4.0 3.5 

19 SCM002764.2_7193358 6 7193358 GEMMA-MLM23 3.5-3.7 MLMM23, FarmCPU2 3.1-3.6 2.2-2.5 

20 SCM002764.2_7381974 6 7381974   MLMM23 3.0-3.3 2.1-2.2 

21 SCM002764.2_7471454 6 7471454 GEMMA-MLM23 4.0-4.4 
MLMM123, FarmCPU123, 

mrMLM123 
3.0-8.7 2.2-4.7 

22 SCM002765.2_26141436 7 26141436   FarmCPU13 3.2-3.6 NA 

23 SCM002766.2_8308223 8 8308223 GEMMA-MLM1 3.7 MLMM14, FarmCPU1 3.0-4.7 2.50 

24 SCM002767.2_6830741 9 6830741 GEMMA-MLM3 4.0 
MLMM13, FarmCPU3, 

mrMLM3 
3.0-5.4 2.0-2.7 
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Table A.10. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected by at least two GWAS models or at 

least two traits associated with sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

    Single-locus GWAS Multi-locus GWAS 

Locus SNP_ID Chrma 
Position 

(bp) 
Method and Traitsc 

-log10 

(P)d 
Methods and Traitsf 

-log10 

(P)g 
R2 (%)h 

25 SCM002767.2_12982760 9 12982760   
FarmCPU13, mrMLM123, 

MLMM23 
3.0-6.3 1.5-3.5 

26 SCM002767.2_21520686 9 21520686 GEMMA-MLM14 3.4-3.7 
MLMM134, FarmCPU3, 

mrMLM3 
3.0-4.2 1.5-2.8 

27 SCM002767.2_21528172 9 21528172   FarmCPU3, MLMM1 3.0-3.5 2.10 

28 SCM002767.2_27713481 9 27713481   mrMLM13 3.60 1.4-2.2 

29 SCM002767.2_34295849 9 34295849 GEMMA-MLM13 3.8-4.2 MLMM13 3.7-4.0 2.6-2.9 

30 SCM002767.2_34792904 9 34792904   MLMM14 3.1-3.4 2.2-2.9 

31 SCM002767.2_36616904 9 36616904 GEMMA-MLM14 3.4-3.7 MLMM14 3.3-3.5 2.3-3.1 

32 SCM002767.2_36951909 9 36951909   MLMM2, FarmCPU23 3.0-3.5 1.9 

33 SCM002768.2_15438080 10 15438080   mrMLM23 4.7-5.2 1.9-2.2 

34 SCM002769.2_16506702 11 16506702   
MLMM2, FarmCPU2, 

mrMLM2 
3.0-6.7 2.0-2.7 

35 SCM002769.2_24927831 11 24927831 GEMMA-MLM2 3.6 MLMM2, FarmCPU2 3.4-3.8 2.30 

36 SCM002769.2_43323649 11 43323649 GEMMA-MLM2 3.8 MLMM2 3.6 2.45 

37 SCM002770.2_6162074 12 6162074 GEMMA-MLM23 3.7-3.9 
MLMM23, FarmCPU23, 

mrMLM2 
3.6-7.0 2.4-4.21 

38 SCM002770.2_10543365 12 10543365 GEMMA-MLM2 3.7 MLMM2 3.50 2.37 

39 SCM002770.2_19427637 12 19427637   FarmCPU2, mrMLM1 4.0-4.6 3.23 

40 SCM002770.2_25886609 12 25886609    FarmCPU13, mrMLM3 3.3-5.2 2.51 

41 SCM002770.2_60099459 12 60099459 GEMMA-MLM14 3.3-4.6 MLMM14, FarmCPU14 3.1-7.6 2.6-3.2 

42 SCM002770.2_61095811 12 61095811   FarmCPU3, mrMLM3 3.8-4.8 1.83 

43 SCM002771.2_12476994 13 12476994 GEMMA-MLM4 4.2 MLMM4 4.01 3.55 

44 SCM002771.2_32935711 13 32935711   MLMM3, FarmCPU1 3.0-3.4 2.35 
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Table A.10. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected by at least two GWAS models or at 

least two traits associated with sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

    Single-locus GWAS Multi-locus GWAS 

Locus SNP_ID Chrma 
Position 

(bp) 
Method and Traitsc 

-log10 

(P)d 
Methods and Traitsf 

-log10 

(P)g 
R2 (%)h 

45 SCM002771.2_68049798 13 68049798 GEMMA-MLM3 3.8 MLMM3 3.6 2.55 

46 SCM002771.2_69685367 13 69685367   MLMM1, FarmCPU1 3.1-4.9 2.10 

47 SCM002771.2_77997199 13 77997199 GEMMA-MLM123 4.2-5.4 
MLMM123, FarmCPU123, 

mrMLM3 
4.0-9.7 2.8-13.3 

48 SCM002772.2_396291 14 396291   MLMM4, FarmCPU4 3.0-3.3 2.8 

49 SCM002772.2_16918673 14 16918673   MLMM2, mrMLM2 3.2-4.1 2.3-8.2 

50 SCM002772.2_18961270 14 18961270 GEMMA-MLM2 4.2 
MLMM2, FarmCPU2, 

mrMLM23 
4.0-9.7 2.8-11.9 

51 SCM002772.2_31266664 14 31266664   
FarmCPU13, mrMLM3, 

MLMM1 
3.2-12.3 2.2-4.3 

52 SCM002772.2_32008911 14 32008911   
MLMM4, mrMLM4, 

FarmCPU1 
3.1-3.3 2.6-5.7 

53 SCM002772.2_46691195 14 46691195   FarmCPU2, mrMLM2 3.4-6.0 5.50 

54 SCM002773.2_6001138 15 6001138 GEMMA-MLM2 3.8 
MLMM2, FarmCPU2, 

mrMLM2 
3.7-4.3 2.5-8.6 

55 SCM002773.2_31319827 15 31319827   MLMM2, FarmCPU2 3.0-4.3 2.00 

56 SCM002774.2_10918047 16 10918047 GEMMA-MLM13 3.3-3.5 MLMM13, FarmCPU13 3.2-3.8 2.2-2.4 

57 SCM002774.2_15647651 16 15647651 GEMMA-MLM3  MLMM23 3.0-3.5 2.0-2.4 

58 SCM002775.2_13344420 17 13344420   MLMM2, FarmCPU1 3.0-3.3 2.15 

59 SCM002775.2_40154705 17 40154705   MLMM2, mrMLM2 3.3-5.0 1.9-2.3 

60 SCM002775.2_50645830 17 50645830   
MLMM4, FarmCPU4, 

mrMLM4 
3.3-4.0 2.8-4.5 

61 SCM002776.2_3485443 18 3485443 GEMMA-MLM13 4.1-4.2 MLMM13 3.8-4.0 2.7-2.9 

62 SCM002776.2_3494019 18 3494019 GEMMA-MLM13 3.7-41 MLMM13, FarmCPU134 3.0-4.2 2.4-2.6 

63 SCM002776.2_11945389 18 11945389 GEMMA-MLM4 3.6 MLMM14, FarmCPU4 3.0-3.4 2.1-2.9 

64 SCM002776.2_12692146 18 12692146 GEMMA-MLM14 3.8-4.0 MLMM14, FarmCPU4 3.0-3.9 2.6-3.4 

65 SCM002776.2_27672332 18 27672332 GEMMA-MLM13 3.3-4.3 
MLMM123, FarmCPU3, 

mrMLM3 
3.1-5.1 2.0-8.7 
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Table A.10. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected by at least two GWAS models or at 

least two traits associated with sclerotinia stem rot resistance by single-locus and multi-locus GWA studies (continued) 

    Single-locus GWAS Multi-locus GWAS 

Locus SNP_ID Chrma 
Position 

(bp) 
Method and Traitsc 

-log10 

(P)d 
Methods and Traitsf 

-log10 

(P)g 
R2 (%)h 

66 SCM002777.2_13355921 19 13355921   mrMLM2, MLMM1 3.1-3.2 2.3-4.4 

67 SCM002777.2_24890194 19 24890194   FarmCPU3, mrMLM4 3.6-4.2 4.69 

68 SCM002777.2_36581746 19 36581746 GEMMA-MLM14 3.7-4.9 MLMM14, FarmCPU14 3.4-4.5 2.4-4.0 

69 SCM002777.2_50176743 19 50176743   
MLMM3, FarmCPU3, 

mrMLM3 
3.1-6.1 2.1-7.8 

70 SCM002777.2_51133509 19 51133509   MLMM1, FarmCPU1 3.2-4.1 2.20 

Chrma: Brassica napus chromosome             

Method and Traitsc: Method, sinlge-locus GEMMA-MLM model; Traits, Days to wilt (DW); LP_3dpi, lesion phenotype scores at 3 days post inoculation (dpi); 

LP_4dpi, lesion phenotype scores at 4 dpi; LP_7dpi, lesion phenotype scores at 7 dpi 

-log10 (P)d, The highest and lowest -log10 (P) values resulted from different traits obtained by the GEMMA-MLM GWA model  

Methods and Traitsf: Methods, multi-locus GWA models i.e. MLMM, FarmCPU, mrMLM; Traits, Days to wilt (DW); LP_3dpi, lesion phenotype scores at 3 

days post inoculation (dpi); LP_4dpi, lesion phenotype scores at 4dpi; LP_7dpi, lesion phenotype scores at 7 dpi 

 -log10 (P)g, The highest and lowest -log10 (P) value resulted from the various studied traits with different multi-locus GWA models   

R2 (%)h; Percentage of phenotypic variation explained by identified significant SNP resulted from MLMM, and mrMLM GWA models  
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002759.2_7316181 7316181 1 LOC106360741 -57.42 

receptor-like 

cytosolic 

serine/threonine-

protein kinase 

RBK1 

defense response to 

fungus Source: UniProtKB; 

defense response to other 

organism Source: TAIR 

SCM002759.2_31473630 31473630 1 LOC106394796 -2.25 

ethylene-

responsive 

transcription factor 

ERF071-like 

ethylene-activated signaling 

pathway Source: 

UniProtKB-KW 

SCM002760.2_5283289 5283289 2 LOC106354437 -19.88 

NADP-dependent 

alkenal double 

bond reductase 

P2-like 

response to oxidative 

stress Source: TAIR 

SCM002760.2_5283289 5283289 2 LOC106355981 44.00 

probably inactive 

leucine-rich repeat 

receptor-like 

protein kinase 

At5g48380 

negative regulation of 

defense response Source: 

TAIR 

SCM002760.2_5283289 5283289 2 LOC106354440 7.41 
binding partner of 

ACD11 1-like 

defense response to 

fungus Source: TAIR; 

negative regulation of plant-

type hypersensitive 

response Source: TAIR 

SCM002760.2_30564102 30564102 2 LOC106403204 45.32 
sm-like protein 

LSM5 

response to 

bacterium Source: Ensembl 

SCM002760.2_30564102 30564102 2 LOC106414702 -10.43 

universal stress 

protein PHOS34-

like 

response to molecule of 

fungal origin Source: TAIR 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002761.2_5607745 5607745 2 LOC106452384 1.50 
endochitinase 

CH25-like 

chitin catabolic 

process Source: 

UniProtKB-KW 

SCM002761.2_5607745 5607745 2 LOC106452385 -7.98 
cysteine proteinase 

inhibitor 6 

defense response Source: 

UniProtKB-KW 

SCM002761.2_5607745 5607745 2 LOC106345435 -11.03 
cysteine proteinase 

inhibitor 6-like 

defense response Source: 

UniProtKB-KW 

SCM002761.2_23664593 23664593 3 LOC106353180 13.49 

E3 ubiquitin-

protein ligase 

RDUF2-like 

response to chitin Source: 

TAIR 

SCM002761.2_23664593 23664593 3 LOC106353179 12.56 

probable 

serine/threonine-

protein kinase 

PBL7 

positive regulation of 

brassinosteroid mediated 

signaling pathway Source: 

TAIR 

SCM002761.2_23664593 23664593 3 LOC106353181 1.04 

serine/threonine-

protein kinase 

EDR1-like 

response to fungus Source: 

TAIR, regulation of 

salicylic acid mediated 

signaling pathway Source: 

UniProtKB  

SCM002761.2_23664593 23664593 3 LOC106353190 -26.80 

serine/threonine-

protein 

phosphatase 

PP2A-4 catalytic 

subunit-like 

defense response Source: 

UniProtKB-KW 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002762.2_10716343 10716343 4 LOC106448335 21.39 

senescence-

specific cysteine 

protease SAG12-

like 

defense response to 

fungus Source: TAIR, 

programmed cell death 

involved in cell 

development 

SCM002762.2_19685094 19685094 4 LOC106447416 39.45 

phosphatidylinosit

ol:ceramide 

inositolphosphotra

nsferase 2 

defense response Source: 

TAIR 

SCM002762.2_19685094 19685094 4 LOC106447426 -2.33 

steroid 5-alpha-

reductase DET2-

like 

brassinosteroid 

biosynthetic 

process Source: TAIR 

SCM002763.2_1914189 1914189 5 LOC106454482 14.05 
transcription factor 

PAR1-like 

brassinosteroid mediated 

signaling pathway Source: 

UniProtKB-KW 

SCM002763.2_1914189 1914189 5 LOC106377403 -8.62 

serine/threonine-

protein 

phosphatase 5-like 

cellular response to 

hydrogen peroxide Source: 

Ensembl 

SCM002763.2_1914189 1914189 5 LOC106377404 -15.30 

protein TOO 

MANY 

MOUTHS-like 

defense response to fungus, 

regulation of antifungal 

innate immune 

response Source: 

UniProtKB 

SCM002763.2_2070843 2070843 5 LOC106421025 3.08 
transcription factor 

IBH1 

brassinosteroid mediated 

signaling pathway Source: 

UniProtKB-KW 

SCM002763.2_2070843 2070843 5 LOC106421020 -23.18 pirin-like protein 2 
defense response to 

bacterium Source: TAIR 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002764.2_7193358 7193358 6 LOC106346585 2.69 

probable LRR 

receptor-like 

serine/threonine-

protein kinase 

At1g14390 

defense response to 

nematode Source: TAIR 

SCM002764.2_7193358 7193358 6 LOC106351297 -6.56 
aldehyde oxidase 

GLOX-like 

defense response to 

fungus Source: UniProtKB 

SCM002766.2_8308223 8308223 8 LOC106360646 52.64 
RING-H2 finger 

protein ATL17 

defense response Source: 

UniProtKB-KW 

SCM002766.2_8308223 8308223 8 LOC106359593 46.16 

putative 

pectinesterase/pect

inesterase inhibitor 

43 

cell wall 

modification Source: 

InterPro 

SCM002767.2_12982760 12982760 9 LOC106433772 -16.27 

putative UDP-

glucuronate:xylan 

alpha-

glucuronosyltransf

erase 4 

cell wall 

organization Source: 

UniProtKB-KW 

SCM002767.2_21520686 21520686 9 LOC111201004 33.64 

protein 

ENHANCED 

DISEASE 

RESISTANCE 2-

like 

regulation of defense 

response to fungus Source: 

UniProtKB; response to 

salicylic acid Source: 

UniProtKB 

SCM002767.2_21520686 21520686  LOC106366744 23.88 
MOB kinase 

activator-like 1A 

regulation of jasmonic acid 

biosynthetic 

process Source: TAIR 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002767.2_34295849 34295849 9 LOC106368101 22.81 
staphylococcal-like 

nuclease CAN1 

May be involved in 

genomic DNA 

degradation during 

programmed cell death. 

SCM002767.2_34792904 34792904 9 LOC106363516 74.68 
transcription factor 

MYB56-like 

cellular response to 

brassinosteroid 

stimulus Source: TAIR 

SCM002767.2_34792904 34792904 9 LOC106363514 22.99 

lysM domain 

receptor-like kinase 

3 

defense response Source: 

TAIR, defense response to 

fungus Source: TAIR 

SCM002767.2_34792904 34792904 9 LOC106364931 7.07 
regulatory protein 

NPR6 

induced systemic 

resistance, jasmonic acid 

mediated signaling 

pathway Source: TAIR 

SCM002767.2_36616904 36616904 9 LOC106368478 -31.59 

ethylene-responsive 

transcription factor 

CRF6 

ethylene-activated 

signaling pathway Source: 

UniProtKB-KW 

SCM002767.2_36616904 36616904 9 LOC106368479 -34.13 
tubulin gamma-1 

chain 

response to 

nematode Source: 

UniProtKB 

SCM002767.2_36951909 36951909 9 LOC106368528 -24.09 
dnaJ protein 

ERDJ3B 

pattern recognition 

receptor signaling 

pathway Source: TAIR 

SCM002767.2_36951909 36951909 9 LOC111200369 -44.98 
dnaJ protein 

ERDJ3B-like 

pattern recognition 

receptor signaling 

pathway Source: TAIR 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol and 

ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002768.2_15438080 15438080 10 LOC106371937 47.76 

NADP-dependent 

alkenal double 

bond reductase P2-

like 

response to oxidative 

stress Source: TAIR 

SCM002768.2_15438080 15438080 10 LOC106371944 19.58 
binding partner of 

ACD11 1-like 

defense response to 

fungus Source: TAIR; 

negative regulation of 

plant-type hypersensitive 

response Source: TAIR 

SCM002768.2_15438080 15438080 10 LOC106370502 -3.30 
transcription factor 

MYB41-like 

response to chitin Source: 

TAIR 

SCM002769.2_24927831 24927831 11 LOC106373937 17.77 

protein 

SUPPRESSOR OF 

npr1-1, 

CONSTITUTIVE 

1-like 

systemic acquired 

resistance, salicylic acid 

mediated signaling 

pathway Source: T 

SCM002769.2_24927831 24927831 11 BNAC01G22450D 5.72 

senescence/dehydra

tion-associated 

protein At4g35985, 

chloroplastic 

response to 

oomycetes Source: 

UniProtKB 

SCM002770.2_6162074 6162074 12 LOC106377774 26.33 
la-related protein 

1C-like 

response to jasmonic 

acid Source: UniProtKB, 

response to salicylic 

acid Source: UniProtKB 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002770.2_6162074 6162074 12 LOC106379206 16.50 peroxidase 58-like 

hydrogen peroxide catabolic 

process Source: UniProtKB-

KW, response to oxidative 

stress 

SCM002770.2_6162074 6162074 12 LOC106379205 12.48 peroxidase N-like 

hydrogen peroxide catabolic 

process Source: UniProtKB-

KW, response to oxidative 

stress  

SCM002770.2_10543365 10543365 12 LOC106388390 -5.07 

glucan endo-1,3-

beta-glucosidase 6-

like 

defense response Source: 

UniProtKB-KW 

SCM002770.2_10543365 10543365 12 LOC106388425 -26.11 

temperature-

induced lipocalin-

1-like 

response to reactive oxygen 

species Source: 

GO_Central, positive 

regulation of response to 

oxidative stress Source: 

UniProtKB 

SCM002770.2_19427637 19427637 12 LOC106381160 10.67 
WAT1-related 

protein At1g70260 

negative regulation of 

defense response to 

oomycetes Source: TAIR, 

regulation of defense 

response to fungus Source: 

TAIR 

SCM002770.2_25745655 25745655 12 LOC106378095  

probable disease 

resistance protein 

RPP1 

defense response Source: 

TAIR, defense response to 

fungus Source: TAIR, 

response to 

oomycetes Source: TAIR 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002770.2_25886609 25886609 12 LOC106379438  
TSK-associating 

protein 1-like 

defense response to 

fungus Source: TAIR 

SCM002770.2_25886609 25886609 12 LOC106378104  

germin-like protein 

subfamily 3 

member 1 

May play a role in plant 

defense.  

SCM002770.2_61095811 61095811 12 LOC106379309 -23.80 

ethylene-responsive 

transcription factor 

ERF025-like 

defense response to 

fungus Source: TAIR, 

glucosinolate metabolic 

process Source: TAIR,  

SCM002771.2_12476994 12476994 13 LOC111204360 50.58 
heat shock protein 

90-2-like 

innate immune 

response Source: 

UniProtKB-KW 

SCM002771.2_12476994 12476994 13 LOC106387440 45.48 
heat shock protein 

90-2-like 

innate immune 

response Source: 

UniProtKB-KW 

SCM002771.2_32935711 32935711 13 LOC106388602 -3.56 cullin-1 

jasmonic acid mediated 

signaling pathway Source: 

TAIR, response to 

jasmonic acid Source: 

TAIR 

SCM002771.2_32935711 32935711 13 LOC106388601 -26.78 

NADH 

dehydrogenase 

[ubiquinone] 

flavoprotein 2, 

mitochondrial 

response to oxidative 

stress 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002771.2_32935711 32935711 13 LOC106388600 -29.26 
transcription factor 

UNE12-like 

regulation of defense 

response Source: TAIR 

SCM002771.2_77997199 77997199 13 LOC106358708 48.73 

protein 

ETHYLENE 

INSENSITIVE 3-

like 

defense response to 

bacterium Source: TAIR 

SCM002771.2_77997199 77997199 13 LOC106358707 43.91 

AP2/ERF and B3 

domain-containing 

transcription factor 

At1g51120-like 

defense response Source: 

UniProtKB-KW 

SCM002771.2_77997199 77997199 13 LOC106358706 42.23 

protein 

ETHYLENE 

INSENSITIVE 3- 

defense response to 

bacterium Source: TAIR 

SCM002771.2_77997199 77997199 13 LOC106358705 37.25 

AP2/ERF and B3 

domain-containing 

transcription factor 

At1g51120-like 

defense response Source: 

UniProtKB-KW 

SCM002772.2_18961270 18961270 14 LOC106378157 0.87 

branched-chain-

amino-acid 

aminotransferase 6-

like 

glucosinolate biosynthetic 

process from 

homomethionine Source: 

TAIR 

SCM002772.2_31266664 31266664 14 LOC106394890 -11.18 peroxidase 64-like 

response to oxidative 

stress Source: InterPro, 

response to pathogen 

attack and oxidative 

stress. 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002773.2_31319827 31319827 15 LOC106408757 -235.19 
cysteine protease 

XCP2-like 

defense response to 

bacterium Source: 

UniProtKB 

SCM002774.2_10918047 10918047 16 LOC106402791 28.55 
jacalin-related 

lectin 15-like 

Confers broad resistance 

to potexviruses.  

SCM002774.2_10918047 10918047 16 LOC106402792 26.66 
jacalin-related 

lectin 15-like 

Confers broad resistance 

to potexviruses.  

SCM002774.2_10918047 10918047 16 LOC106402793 21.23 
jacalin-related 

lectin 15 

Confers broad resistance 

to potexviruses.  

SCM002775.2_13344420 13344420 17 LOC106379304 -28.49 
RPM1-interacting 

protein 4-like 

innate immune response-

activating signal 

transduction Source: 

TAIR  

SCM002775.2_40154705 40154705 17 LOC106348985 27.41 

probably inactive 

leucine-rich repeat 

receptor-like 

protein kinase 

At5g48380 

negative regulation of 

defense response Source: 

TAIR 

SCM002775.2_50645830 50645830 17 LOC106421137 -8.11 protein LSD1-like 

negative regulation of 

programmed cell 

death Source: UniProtKB, 

Negative regulator 

pathogen-induced 

hypersensitive response 

(HR), basal disease 

resistance 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002775.2_50645830 50645830 17 LOC106421159 -32.88 
berberine bridge 

enzyme-like 19 

defense response to 

fungus Source: TAIR 

SCM002775.2_50645830 50645830 17 LOC106421160 -40.75 
berberine bridge 

enzyme-like 19 

defense response to 

fungus Source: TAIR 

SCM002776.2_12692146 12692146 18 LOC106412847 -29.94 protein NAR1-like 
response to oxygen 

levels Source: TAIR 

SCM002776.2_27672332 27672332 18 LOC106411008 -5.17 

cellulose synthase 

A catalytic subunit 

4 [UDP-forming] 

defense response to 

fungus Source: TAIR 

SCM002777.2_13355921 13355921 19 LOC106391263 10.91 

G-type lectin S-

receptor-like 

serine/threonine-

protein kinase 

At1g61500 

innate immune 

response Source: 

GO_Central 

SCM002777.2_50176743 50176743 19 LOC106449880 68.43 

probable L-type 

lectin-domain 

containing receptor 

kinase II.1 

defense response to 

oomycetes Source: 

GO_Central 

SCM002777.2_50176743 50176743 19 LOC106446564 203.16 

probable 

serine/threonine-

protein kinase 

BSK3 

positive regulation of 

brassinosteroid mediated 

signaling 

pathway Source: 

UniProtKB 

SCM002777.2_50176743 50176743 19 LOC111209304 -85.05 
defensin-like 

protein 22 

defense response to 

fungus 
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Table A.11. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits (continued) 

SNP_Markers 
Marker 

Position 
Chra 

Gene symbol 

and ID 

Distance 

(kb)b 
Gene Description GO biological Function  

SCM002777.2_50176743 50176743 19 LOC106406147 -94.88 

porphobilinogen 

deaminase, 

chloroplastic 

defense response to 

bacterium Source: TAIR 

SCM002777.2_50176743 50176743 19 LOC106387307 -164.79 
poly [ADP-ribose] 

polymerase 1-like 

cellular response to 

oxidative stress Source: 

MGI 

SCM002777.2_51133509 51133509 19 LOC111209972 1.24 

putative 

pentatricopeptide 

repeat-containing 

protein At1g56570 

defense response to 

fungus Source: TAIR 

Chra: Brassica napus chromosome 

Distance (kb)b: negative values= genes are downstream of the marker, positive values = genes are upstream of the marker 
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Table A.12. Name, origin, and growth habits of the 146 spring ecotype germplasm accessions 

(including check cultivars) used in the study 

Name of the accessions Country of origin/obtained Growth habit 

Pioneer 45S51a Pioneer (Check) Spring 

Pioneer 45S56a Pioneer (Check) Spring 

Galant USA Spring 

Galaxy Sweden Spring 

Gido Germany Spring 

Gisora Germany Spring 

Global Sweden Spring 

Golden Canada Spring 

Gora Germany Spring 

Gulle Sweden Spring 

Gullivar Sweden Spring 

Hi-Q Canada Spring 

INRA-R-2000 France Spring 

IR-2 Hungary Spring 

Janetzkis South Korea Spring 

Jasna Serbia Spring 

Kanada Poland Spring 

Klinki South Korea Spring 

Kosa Germany Spring 

Koubun South Korea Spring 

Kraphhauser South Korea Spring 

Kritmar rape South Korea Spring 

Legend Sweden Spring 

Aviso Canada Spring 

Lifura South Korea Spring 

Mar'janovskij Ukraine Spring 

Mazowiecki Poland Spring 

Midas Canada Spring 

Miekuro Dane South Korea Spring 

Mura yamasho South Korea Spring 

NDC-A14026 USA Spring 

NDC-A14032 USA Spring 
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Table A.12. Name, origin, and growth habits of the 146 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDC-A14033 USA Spring 

NDC-A14035 USA Spring 

NDC-A14036 USA Spring 

NDC-A14045 USA Spring 

NDC-A14046 USA Spring 

NDC-A14050 USA Spring 

NDC-A14055 USA Spring 

NDC-A14056 USA Spring 

NDC-E12009 USA Spring 

NDC-E12023 USA Spring 

NDC-E12025 USA Spring 

NDC-E12027 USA Spring 

NDC-E12044 USA Spring 

NDC-E12079 USA Spring 

NDC-E12081 USA Spring 

NDC-E12086 USA Spring 

NDC-E12119 USA Spring 

NDC-E12120 USA Spring 

NDC-E12121 USA Spring 

NDC-E12131 USA Spring 

NDC-E12133 USA Spring 

NDC-E13193 USA Spring 

NDC-E13279 USA Spring 

NDC-E13285 USA Spring 

NDC-E15031 USA Spring 

NDC-E15146 USA Spring 

NDC-E15174 USA Spring 

NDC-E15200 USA Spring 

NDC-E15234 USA Spring 

NDC-E15294 USA Spring 

NDC-E16015 USA Spring 

NDC-E16053 USA Spring 
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Table A.12. Name, origin, and growth habits of the 146 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

NDC-E16152 USA Spring 

NDC-E16169 USA Spring 

NDC-E16198 USA Spring 

NDC-E17132 USA Spring 

NDSU01104 USA Spring 

NDSU0417 USA Spring 

NDSU0472 USA Spring 

NDSU0473 USA Spring 

NDSU0474 USA Spring 

NDSU0475 USA Spring 

NDSU0521 USA Spring 

NDSU0522 USA Spring 

NDSU0619 USA Spring 

NDSU0620 USA Spring 

NDSU0726 USA Spring 

NDSU0728 USA Spring 

NDSU0729 USA Spring 

NDSU10999 USA Spring 

NDSU12989 USA Spring 

NDSU151000 USA Spring 

NDSU15989 USA Spring 

NDSU161013 USA Spring 

NDSU31001 USA Spring 

NDSU31011 USA Spring 

Bingo USA Spring 

NDSU41000 USA Spring 

NDSU7997 USA Spring 

NDSU81000 USA Spring 

NDSU91013 USA Spring 

NU 41737 Turkey Spring 

NU 51084 Sweden Spring 

BO-63 Canada Spring 
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Table A.12. Name, origin, and growth habits of the 146 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Oro Canada Spring 

Orpal France Spring 

Peace Canada Spring 

Polo canola USA Spring 

Premier USA Spring 

Printol USA Spring 

Prota Germany Spring 

Q2 Canada Spring 

Ratnik Serbia Spring 

Regent Canada Spring 

Regina II Canada Spring 

Reston USA Spring 

Rico Germany Spring 

Romeo France Spring 

Russia 5 Russian Federation Spring 

S.V. Gulle South Korea Spring 

Seoul South Korea Spring 

Silex Canada Spring 

Brio France Spring 

Sunrise USA Spring 

Sval of Gullen South Korea Spring 

Bronowski Poland Spring 

Taiwan Taiwan Spring 

Tanto France Spring 

Tobin USA Spring 

Buk Wuk 3 South Korea Spring 

Tonus South Korea Spring 

Topas Sweden Spring 

Tower Canada Spring 

Turret Canada Spring 

Vostochno-sibirskii Russian Federation Spring 

Wasefuji South Korea Spring 
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Table A.12. Name, origin, and growth habits of the 146 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Westarb Canada Spring 

Willa South Korea Spring 

Zhoungyou-821 China Spring 

Celebra Sweden Spring 

Ceskia Tabor Czech Republic Spring 

Colt USA Spring 

Comet Sweden Spring 

Conquest Canada Spring 

Cougar Canada Spring 

Cresor France Spring 

Crop France Spring 

Czyzowski Poland Spring 

Delta Sweden Spring 

Drakkar France Spring 

Evvin Russian Federation Spring 

Flint USA Spring 

Fonto South Korea Spring 

France 1 France Spring 

a Accessions used as resistant check 
b Accession used as susceptible check 
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Table A.13. Name, origin, and growth habits of the 152 spring ecotype germplasm accessions 

(including check cultivars) used in the study 

Name of the accessions Country of origin/obtained Growth habit 

AR91004 USA Winter 

AR91017 USA Winter 

ARC 97018 USA Winter 

ARC 97019 USA Winter 

ARC-2180-1 USA Winter 

Azuma South Korea Semi-winter 

Azumasho South Korea Semi-winter 

Baraska Germany Winter 

Barkant Netherlands Winter 

Barnapoli Germany Winter 

Barplina South Korea Winter 

Beryl Poland Winter 

Bienvenu USA Winter 

Billy Sweden Winter 

Bolko Poland Winter 

BRA 1168/85 Italy Winter 

Bridger USA Winter 

Capricorn UK Winter 

Cascade USA Winter 

Cathy USA Winter 

Cescaljarni repka South Korea Semi-winter 

Chisaya natane Japan Semi-winter 

Chon nam South Korea Semi-winter 

Cobra Germany Winter 

Colza South Korea Spring 

Colza 18 Miroc South Korea Semi-winter 

Corvette UK Winter 

Crystal Sweden Winter 

Cult Canada Winter 

Da vinci Canada Winter 

Dae cho sen South Korea Semi-winter 

DKW-46-5 USA Winter 
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Table A.13. Name, origin, and growth habits of the 152 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Dong Buk South Korea Winter 

Doon Major Swede New Zealand Winter 

Drawft South Korea Winter 

Eckendorfer Mali South Korea Semi-winter 

Elena Germany Winter 

Eragi Germany Winter 

Erra Germany Winter 

Expander Germany Winter 

Fashion Canada Winter 

Fertodi South Korea Winter 

Fuji South Korea Spring/ semi 

G 32327 Albania Winter 

Galileo Canada Winter 

Gebr Dippes South Korea Winter 

Girita Germany Semi-winter 

Glacier Sweden Winter 

Goya Canada Winter 

Gylle South Korea Semi-winter 

Helga Germany Semi-winter 

HOBSON UK Winter 

Host rape regel South Korea Winter 

Ibiza Canada Winter 

Iwao natane South Korea Winter 

Iwashiro-natane South Korea Winter 

Iwawoochi South Korea Winter 

Janpol Poland Winter 

Jupiter USA Winter 

Kasuya South Korea Winter 

Kasuyashu South Korea Winter 

Korina Germany Winter 

Krasnodarskii Russian Federation Winter 

KS3579 USA Winter 
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Table A.13. Name, origin, and growth habits of the 152 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Kuju South Korea Winter 

Kutkowski South Korea Winter 

Ladoga Canada Winter 

Lembkes South Korea Winter 

Lesira Germany Winter 

Lester Germany Winter 

Librador Germany Winter 

Lieikoposki South Korea Semi-winter 

Lindora-00 Germany Winter 

Lindore Germany Winter 

Linglandor Germany Winter 

Linus South Korea Winter 

Lirama Germany Winter 

Liratrop Germany Winter 

Liropa Germany Winter 

Lisora Germany Semi-winter 

Luna Germany Winter 

Major France Semi-winter 

Mali South Korea Semi-winter 

Marinus Germany Winter 

Mihonatane South Korea Winter 

Miochowski France Semi-winter 

Mlochowski Poland Semi-winter 

MR 1 South Korea Winter 

Mu.che! South Korea Winter 

Murame nadame South Korea Semi-winter 

Mutsumi Japan Semi-winter 

N001-28-246-5-4 South Korea Semi-winter 

Nabo South Korea Semi-winter 

Niedera-rubacher South Korea Winter 

Nilla 1022 South Korea Semi-winter 

Nilla glossy South Korea Semi-winter 
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Table A.13. Name, origin, and growth habits of the 152 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Nugget South Korea Semi-winter 

NY-10 China Semi-winter 

NY-20 China Semi-winter 

NY-7 China Semi-winter 

NY-8 China Semi-winter 

Oleifera South Korea Semi-winter 

Panter Germany Winter 

Per Sweden Winter 

Petanova-lihonova South Korea Semi-winter 

Quinta Germany Winter 

R. Creaus South Korea Winter 

Rafal France Winter 

Ramses South Korea Winter 

Rang South Korea Semi-winter 

Rapifera South Korea Winter 

Rebel USA Semi-winter 

Regal South Korea Winter 

Ridana Germany Winter 

Riley USA Winter 

Rubin Germany Winter 

Scherwitz South Korea Winter 

Sera Germany Semi-winter 

Silesia Czech Republic Winter 

Skrzeszowicki Poland Winter 

Status Sweden Winter 

Su weon chag South Korea Semi-winter 

Sumner USA Winter 

Svaloefs Karab Sweden Winter 

Synra South Korea Winter 

Taichang South Korea Semi-winter 

Takagi MS South Korea Semi-winter 

Tamara Germany Winter 
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Table A.13. Name, origin, and growth habits of the 152 spring ecotype germplasm accessions 

(including check cultivars) used in the study (continued) 

Name of the accessions Country of origin/obtained Growth habit 

Tanka South Korea Semi-winter 

Titus South Korea Winter 

Todane South Korea Semi-winter 

Tosharshu South Korea Winter 

Trebicska Czech Republic Winter 

Tri-Bridger USA Winter 

Tsukushishu South Korea Winter 

Ujfertodi Hungary Winter 

Valdor France Winter 

Vanda Germany Winter 

Viking Denmark Winter 

Vision Canada Winter 

Weal dong cho South Korea Semi-winter 

Weibulls margo South Korea Semi-winter 

Wichita USA Winter 

Wielkopolski South Korea Winter 

Wipol Norway Semi-winter 

Wira Germany Winter 

Yong dang South Korea Semi-winter 

Yonkokuban South Korea Winter 

Zhoungyou-584 China Semi-winter 

Zhoungyou-9 China Semi-winter 

NEP63a USA Semi-winter 

Licantara Germany Winter 

a Accession used as resistant check 
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Table A.14. Combined analysis of variance (ANOVA) of sclerotinia stem rot resistance traits in 

146 spring canola/rapeseed genotypes (including check cultivars) 

Source of variation 
Traitsa 

LL LW PM LL_AUDPC LW_AUDPC 

Genotype *** *** *** *** *** 

Genotype x Experiment *** *** *** * ns 

*, ***, and ns indicate differences were significant at P ≤ 0.05, P ≤ 0.0001 levels of significance, 

and not significant 

Traitsa: LL, Lesion length measured at 7 days post inoculation (dpi); LW, lesion width at 7 dpi; 

PM, plant mortality at 15 dpi; LL_AUDPC, lesion lengths area under disease progress curve 

(AUDPC) calculated using 7 time points reading; LW_AUDPC, lesion widths AUDPC 

calculated using 7 time points reading. 

 

 

Table A.15. Combined analysis of variance (ANOVA) of sclerotinia stem rot resistance traits in 

152 semi-winter and winter canola/rapeseed genotypes (including check cultivars) 

Source of variation 
Traitsa 

LL LW PM LL_AUDPC LW_AUDPC 

Genotype * ** ** * *** 

Genotype x Experiment *** *** * * * 

*, **, and *** indicate differences were significant at P ≤ 0.05, P ≤ 0.01, P ≤ 0.0001 levels of 

significance, and not significant 

Traitsa: LL, Lesion length measured at 7 days post inoculation (dpi); LW, lesion width at 7 dpi; 

PM, plant mortality at 15 dpi; LL_AUDPC, lesion lengths area under disease progress curve 

(AUDPC) calculated using 7 time points reading; LW_AUDPC, lesion widths AUDPC 

calculated using 7 time points reading. 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies  

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002760.2_20267096 2 20267096 GEMMA-MLM 3.3 0.18 -87.651 

PM SCM002760.2_20267096 2 20267096 GEMMA-MLM 3.4 0.18 -13.616 

PM SCM002760.2_20267096 2 20267096 FarmCPU 3.0 0.18 14.827 

LL SCM002761.2_1259602 3 1259602 FarmCPU 4.0 0.21 0.646 

LL SCM002761.2_1259602 3 1259602 GEMMA-MLM 3.2 0.21 -0.954 

LL_AUDPC SCM002761.2_1259602 3 1259602 FarmCPU 3.7 0.21 12.169 

LL_AUDPC SCM002761.2_1259602 3 1259602 GEMMA-MLM 3.1 0.21 -9.460 

LW SCM002761.2_1259602 3 1259602 FarmCPU 3.2 0.21 7.558 

LW_AUDPC SCM002761.2_1259602 3 1259602 FarmCPU 3.3 0.21 75.804 

PM SCM002761.2_1259602 3 1259602 FarmCPU 3.3 0.21 10.729 

LL SCM002761.2_33351214 3 33351214 GEMMA-MLM 3.0 0.20 -0.889 

LL_AUDPC SCM002761.2_33351214 3 33351214 GEMMA-MLM 3.3 0.20 -9.547 

LL_AUDPC SCM002761.2_33351214 3 33351214 FarmCPU 3.2 0.20 -11.308 

PM SCM002761.2_33351214 3 33351214 GEMMA-MLM 3.0 0.20 -8.825 

LL SCM002761.2_44267358 3 44267358 GEMMA-MLM 3.0 0.18 1.017 

LL_AUDPC SCM002761.2_44267358 3 44267358 GEMMA-MLM 3.3 0.18 10.850 

PM SCM002761.2_44267358 3 44267358 GEMMA-MLM 3.0 0.18 10.159 

LL SCM002761.2_44424417 3 44424417 FarmCPU 3.3 0.06 -0.901 

PM SCM002762.2_11094674 4 11094674 GEMMA-MLM 3.8 0.06 22.258 

LL SCM002763.2_7201665 5 7201665 GEMMA-MLM 3.4 0.15 -1.045 

LL_AUDPC SCM002763.2_7201665 5 7201665 GEMMA-MLM 4.2 0.15 -11.858 

LL_AUDPC SCM002763.2_7201665 5 7201665 FarmCPU 4.0 0.15 -13.102 

LW_AUDPC SCM002763.2_7201665 5 7201665 GEMMA-MLM 3.2 0.15 -65.850 

LW_AUDPC SCM002763.2_7201665 5 7201665 FarmCPU 3.1 0.15 -75.897 

PM SCM002763.2_7201665 5 7201665 FarmCPU 3.7 0.15 -11.927 

PM SCM002763.2_7201665 5 7201665 GEMMA-MLM 3.6 0.15 -10.644 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LL SCM002763.2_10442725 5 10442725 GEMMA-MLM 3.5 0.04 -2.646 

LL_AUDPC SCM002763.2_10442725 5 10442725 GEMMA-MLM 3.4 0.04 -26.240 

LL_AUDPC SCM002763.2_10442725 5 10442725 FarmCPU 3.4 0.04 -32.046 

LW SCM002763.2_10442725 5 10442725 GEMMA-MLM 4.0 0.04 -19.014 

LW SCM002763.2_10442725 5 10442725 FarmCPU 3.6 0.04 -22.376 

LW_AUDPC SCM002763.2_10442725 5 10442725 GEMMA-MLM 3.6 0.04 -176.372 

LW_AUDPC SCM002763.2_10442725 5 10442725 FarmCPU 3.2 0.04 -207.932 

PM SCM002763.2_10442725 5 10442725 GEMMA-MLM 3.7 0.04 -27.241 

PM SCM002763.2_10442725 5 10442725 FarmCPU 3.6 0.04 -31.608 

LW_AUDPC SCM002763.2_23237025 5 23237025 FarmCPU 3.3 0.03 -260.277 

LL SCM002763.2_25221820 5 25221820 GEMMA-MLM 3.8 0.21 0.920 

LL_AUDPC SCM002763.2_25221820 5 25221820 GEMMA-MLM 3.4 0.21 8.678 

LW SCM002763.2_25221820 5 25221820 GEMMA-MLM 3.0 0.21 5.392 

LL SCM002763.2_31228663 5 31228663 FarmCPU 4.7 0.11 -0.790 

LL SCM002763.2_31228663 5 31228663 GEMMA-MLM 3.7 0.11 -1.419 

LL_AUDPC SCM002763.2_31228663 5 31228663 FarmCPU 3.9 0.11 -16.589 

LL_AUDPC SCM002763.2_31228663 5 31228663 GEMMA-MLM 3.7 0.11 -14.453 

LW SCM002763.2_31228663 5 31228663 GEMMA-MLM 4.3 0.11 -10.482 

LW SCM002763.2_31228663 5 31228663 FarmCPU 4.0 0.11 -11.328 

LW_AUDPC SCM002763.2_31228663 5 31228663 FarmCPU 4.2 0.11 -114.020 

LW_AUDPC SCM002763.2_31228663 5 31228663 GEMMA-MLM 4.2 0.11 -101.048 

PM SCM002763.2_31228663 5 31228663 FarmCPU 3.8 0.11 -15.365 

PM SCM002763.2_31228663 5 31228663 GEMMA-MLM 3.8 0.11 -13.997 

LL_AUDPC SCM002764.2_27014783 6 27014783 FarmCPU 3.1 0.03 -36.833 

LL_AUDPC SCM002764.2_27014783 6 27014783 GEMMA-MLM 3.0 0.03 -29.709 

LW SCM002764.2_27014783 6 27014783 FarmCPU 3.2 0.03 -25.188 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LW SCM002764.2_27014783 6 27014783 GEMMA-MLM 3.2 0.03 -20.525 

LW_AUDPC SCM002764.2_27014783 6 27014783 FarmCPU 3.7 0.03 -267.275 

LW_AUDPC SCM002764.2_27014783 6 27014783 GEMMA-MLM 3.6 0.03 -214.376 

PM SCM002764.2_27014783 6 27014783 FarmCPU 3.2 0.03 -35.552 

PM SCM002764.2_27014783 6 27014783 GEMMA-MLM 3.1 0.03 -29.604 

LL SCM002764.2_33628221 6 33628221 FarmCPU 3.7 0.32 -0.516 

LL SCM002765.2_8200081 7 8200081 GEMMA-MLM 3.1 0.18 1.017 

LL_AUDPC SCM002765.2_8200081 7 8200081 FarmCPU 3.3 0.18 -12.383 

LW SCM002765.2_8200081 7 8200081 FarmCPU 3.5 0.18 -8.576 

LW_AUDPC SCM002765.2_8200081 7 8200081 FarmCPU 3.2 0.18 -81.221 

PM SCM002765.2_8200081 7 8200081 FarmCPU 3.0 0.18 -11.146 

LW SCM002765.2_8273774 7 8273774 FarmCPU 3.4 0.22 -7.566 

LW SCM002765.2_8273774 7 8273774 GEMMA-MLM 3.3 0.22 6.204 

LW_AUDPC SCM002765.2_8273774 7 8273774 FarmCPU 3.2 0.22 -72.490 

LW_AUDPC SCM002765.2_8273774 7 8273774 GEMMA-MLM 3.1 0.22 59.008 

LW SCM002765.2_8339128 7 8339128 GEMMA-MLM 3.4 0.42 -6.292 

LW SCM002765.2_8339128 7 8339128 FarmCPU 3.4 0.42 -7.329 

LW_AUDPC SCM002765.2_8339128 7 8339128 GEMMA-MLM 3.0 0.42 -57.198 

LL SCM002766.2_24223849 8 24223849 FarmCPU 3.8 0.06 1.059 

PM SCM002767.2_35641015 9 35641015 GEMMA-MLM 3.1 0.21 -14.873 

LL_AUDPC SCM002767.2_35737007 9 35737007 GEMMA-MLM 3.5 0.17 -11.354 

LL_AUDPC SCM002767.2_35737007 9 35737007 FarmCPU 3.3 0.17 -13.095 

PM SCM002767.2_35737007 9 35737007 GEMMA-MLM 3.0 0.17 -10.224 

LL_AUDPC SCM002768.2_1532243 10 1532243 FarmCPU 3.4 0.08 16.523 

LL_AUDPC SCM002768.2_1532243 10 1532243 GEMMA-MLM 3.1 0.08 -13.390 

LW_AUDPC SCM002768.2_1532243 10 1532243 FarmCPU 3.2 0.08 105.877 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002768.2_1532243 10 1532243 GEMMA-MLM 3.1 0.08 -88.014 

PM SCM002768.2_1532243 10 1532243 FarmCPU 3.4 0.08 15.649 

PM SCM002768.2_1532243 10 1532243 GEMMA-MLM 3.2 0.08 -13.467 

LL SCM002769.2_2668073 11 2668073 GEMMA-MLM 3.0 0.30 0.855 

LW SCM002769.2_2668073 11 2668073 GEMMA-MLM 3.4 0.30 6.206 

LW SCM002769.2_5529604 11 5529604 GEMMA-MLM 3.5 0.33 6.063 

LW_AUDPC SCM002769.2_5529604 11 5529604 GEMMA-MLM 3.2 0.33 56.162 

LL SCM002769.2_13591509 11 13591509 GEMMA-MLM 3.4 0.29 -0.855 

LL_AUDPC SCM002769.2_13591509 11 13591509 FarmCPU 3.5 0.29 10.676 

LL_AUDPC SCM002769.2_13591509 11 13591509 GEMMA-MLM 3.0 0.29 -8.132 

LW SCM002769.2_13591509 11 13591509 FarmCPU 3.4 0.29 7.059 

LW_AUDPC SCM002769.2_13591509 11 13591509 FarmCPU 3.3 0.29 68.805 

PM SCM002769.2_13591509 11 13591509 FarmCPU 3.1 0.29 9.548 

LW_AUDPC SCM002769.2_13914840 11 13914840 GEMMA-MLM 3.4 0.04 -151.178 

PM SCM002769.2_13914840 11 13914840 GEMMA-MLM 3.1 0.04 -21.939 

LL SCM002769.2_29417842 11 29417842 GEMMA-MLM 3.8 0.43 -0.958 

LL SCM002769.2_29417842 11 29417842 FarmCPU 3.2 0.43 -0.438 

LL_AUDPC SCM002769.2_29417842 11 29417842 FarmCPU 3.2 0.43 -10.817 

LL_AUDPC SCM002769.2_29417842 11 29417842 GEMMA-MLM 3.1 0.43 -8.589 

LW SCM002769.2_29417842 11 29417842 FarmCPU 4.0 0.43 -8.141 

LW SCM002769.2_29417842 11 29417842 GEMMA-MLM 3.8 0.43 -6.421 

LW_AUDPC SCM002769.2_29417842 11 29417842 FarmCPU 3.4 0.43 -74.084 

LW_AUDPC SCM002769.2_29417842 11 29417842 GEMMA-MLM 3.1 0.43 -56.235 

LL_AUDPC SCM002769.2_31445688 11 31445688 FarmCPU 3.0 0.32 -14.928 

LW SCM002769.2_31445688 11 31445688 FarmCPU 3.4 0.32 -10.646 

LW_AUDPC SCM002769.2_31445688 11 31445688 FarmCPU 3.3 0.32 -103.165 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

PM SCM002769.2_31445688 11 31445688 FarmCPU 3.1 0.32 -14.157 

LW_AUDPC SCM002770.2_27505977 12 27505977 GEMMA-MLM 3.4 0.09 -108.919 

PM SCM002770.2_27505977 12 27505977 GEMMA-MLM 3.8 0.09 -17.828 

LL_AUDPC SCM002770.2_35193244 12 35193244 FarmCPU 3.7 0.22 -20.592 

LL_AUDPC SCM002770.2_35193244 12 35193244 GEMMA-MLM 3.3 0.22 -15.767 

LW_AUDPC SCM002770.2_35193244 12 35193244 FarmCPU 3.0 0.22 -120.926 

PM SCM002770.2_35193244 12 35193244 FarmCPU 3.8 0.22 -19.722 

PM SCM002770.2_35193244 12 35193244 GEMMA-MLM 3.7 0.22 -16.637 

LL_AUDPC SCM002770.2_61242936 12 61242936 GEMMA-MLM 3.4 0.09 -13.618 

LL_AUDPC SCM002770.2_61242936 12 61242936 FarmCPU 3.1 0.09 15.245 

LW SCM002770.2_61242936 12 61242936 GEMMA-MLM 3.7 0.09 -9.592 

LW SCM002770.2_61242936 12 61242936 FarmCPU 3.1 0.09 10.228 

LW_AUDPC SCM002770.2_61242936 12 61242936 GEMMA-MLM 4.2 0.09 -100.099 

LW_AUDPC SCM002770.2_61242936 12 61242936 FarmCPU 3.6 0.09 110.361 

PM SCM002770.2_61242936 12 61242936 GEMMA-MLM 3.2 0.09 -12.962 

PM SCM002770.2_61242936 12 61242936 FarmCPU 3.0 0.09 14.316 

LL SCM002770.2_62330224 12 62330224 GEMMA-MLM 3.0 0.43 0.749 

LL_AUDPC SCM002770.2_62330224 12 62330224 FarmCPU 3.3 0.43 9.079 

LW SCM002770.2_62330224 12 62330224 FarmCPU 3.1 0.43 5.964 

LW_AUDPC SCM002770.2_62330224 12 62330224 FarmCPU 3.0 0.43 57.655 

LL SCM002771.2_1951273 13 1951273 GEMMA-MLM 4.4 0.18 -1.139 

LL_AUDPC SCM002771.2_1951273 13 1951273 GEMMA-MLM 4.8 0.18 -12.112 

LL_AUDPC SCM002771.2_1951273 13 1951273 FarmCPU 4.2 0.18 -13.149 

LW SCM002771.2_1951273 13 1951273 GEMMA-MLM 3.4 0.18 -6.648 

LW_AUDPC SCM002771.2_1951273 13 1951273 GEMMA-MLM 3.5 0.18 -66.636 

LW_AUDPC SCM002771.2_1951273 13 1951273 FarmCPU 3.3 0.18 -76.777 



 

 

2
6
0
 

Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

PM SCM002771.2_1951273 13 1951273 GEMMA-MLM 3.7 0.18 -10.231 

PM SCM002771.2_1951273 13 1951273 FarmCPU 3.6 0.18 -11.499 

PM SCM002771.2_2495279 13 2495279 GEMMA-MLM 3.4 0.16 -14.301 

LL SCM002771.2_4764427 13 4764427 GEMMA-MLM 3.2 0.13 -1.257 

LL_AUDPC SCM002771.2_4764427 13 4764427 GEMMA-MLM 3.9 0.13 -14.191 

LW SCM002771.2_4764427 13 4764427 GEMMA-MLM 3.3 0.13 -8.558 

LW_AUDPC SCM002771.2_4764427 13 4764427 GEMMA-MLM 3.8 0.13 -90.827 

PM SCM002771.2_4764427 13 4764427 GEMMA-MLM 4.2 0.13 -14.710 

LL_AUDPC SCM002771.2_5119497 13 5119497 FarmCPU 3.0 0.17 -11.649 

LL_AUDPC SCM002772.2_1456731 14 1456731 FarmCPU 3.0 0.17 10.832 

PM SCM002772.2_1456731 14 1456731 FarmCPU 3.4 0.17 11.064 

PM SCM002772.2_1456731 14 1456731 GEMMA-MLM 3.3 0.17 9.652 

LL SCM002772.2_30952459 14 30952459 FarmCPU 6.2 0.11 0.994 

LW SCM002772.2_31459241 14 31459241 GEMMA-MLM 3.0 0.18 8.895 

LL SCM002772.2_44203541 14 44203541 FarmCPU 3.8 0.04 -1.481 

LL SCM002772.2_54108357 14 54108357 GEMMA-MLM 3.6 0.17 1.284 

LL_AUDPC SCM002772.2_54108357 14 54108357 GEMMA-MLM 4.3 0.17 14.242 

LL_AUDPC SCM002772.2_54108357 14 54108357 FarmCPU 3.2 0.17 -15.208 

LW_AUDPC SCM002772.2_54108357 14 54108357 GEMMA-MLM 3.1 0.17 77.182 

PM SCM002772.2_54108357 14 54108357 GEMMA-MLM 3.0 0.17 11.595 

LL SCM002772.2_69471400 14 69471400 GEMMA-MLM 5.1 0.25 -1.208 

LL SCM002772.2_69471400 14 69471400 FarmCPU 4.0 0.25 0.590 

LL_AUDPC SCM002772.2_69471400 14 69471400 GEMMA-MLM 4.7 0.25 -11.797 

LL_AUDPC SCM002772.2_69471400 14 69471400 FarmCPU 4.6 0.25 14.054 

LW SCM002772.2_69471400 14 69471400 GEMMA-MLM 4.7 0.25 -7.833 

LW SCM002772.2_69471400 14 69471400 FarmCPU 4.4 0.25 9.284 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002772.2_69471400 14 69471400 GEMMA-MLM 4.1 0.25 -71.445 

LW_AUDPC SCM002772.2_69471400 14 69471400 FarmCPU 4.0 0.25 87.063 

PM SCM002772.2_69471400 14 69471400 GEMMA-MLM 4.0 0.25 -10.719 

PM SCM002772.2_69471400 14 69471400 FarmCPU 4.0 0.25 12.387 

LL SCM002773.2_22943594 15 22943594 FarmCPU 5.5 0.33 0.822 

LL_AUDPC SCM002773.2_22943594 15 22943594 FarmCPU 4.1 0.33 17.350 

LL_AUDPC SCM002773.2_22943594 15 22943594 GEMMA-MLM 3.2 0.33 -12.457 

LW SCM002773.2_22943594 15 22943594 FarmCPU 4.2 0.33 11.833 

LW SCM002773.2_22943594 15 22943594 GEMMA-MLM 3.2 0.33 -8.387 

LW_AUDPC SCM002773.2_22943594 15 22943594 FarmCPU 4.4 0.33 120.174 

LW_AUDPC SCM002773.2_22943594 15 22943594 GEMMA-MLM 3.6 0.33 -86.771 

PM SCM002773.2_22943594 15 22943594 FarmCPU 4.2 0.33 16.664 

PM SCM002773.2_22943594 15 22943594 GEMMA-MLM 3.9 0.33 -13.705 

LL SCM002773.2_28072565 15 28072565 FarmCPU 4.1 0.32 -0.600 

LL SCM002774.2_33338934 16 33338934 GEMMA-MLM 3.1 0.18 -1.005 

LW SCM002774.2_33338934 16 33338934 GEMMA-MLM 3.3 0.18 -7.106 

LW_AUDPC SCM002774.2_33338934 16 33338934 GEMMA-MLM 3.1 0.18 -67.328 

PM SCM002774.2_33338934 16 33338934 GEMMA-MLM 3.3 0.18 -10.324 

LL SCM002775.2_9203423 17 9203423 FarmCPU 6.2 0.09 -1.392 

PM SCM002775.2_9203423 17 9203423 GEMMA-MLM 3.4 0.09 -16.690 

LL SCM002775.2_11411683 17 11411683 GEMMA-MLM 3.3 0.18 0.999 

LL_AUDPC SCM002775.2_11411683 17 11411683 GEMMA-MLM 3.7 0.18 10.808 

LW SCM002775.2_11411683 17 11411683 GEMMA-MLM 3.7 0.18 7.158 

LW_AUDPC SCM002775.2_11411683 17 11411683 GEMMA-MLM 3.9 0.18 71.423 

LL_AUDPC SCM002776.2_8341541 18 8341541 FarmCPU 3.6 0.36 -10.659 

LW SCM002776.2_8341541 18 8341541 FarmCPU 3.3 0.36 -6.899 
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Table A.16. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in spring ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) genome-wide 

association studies (continued) 

Traitsa SNP Chrb Position GWA modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002776.2_8341541 18 8341541 FarmCPU 3.4 0.36 -68.812 

PM SCM002776.2_9877851 18 9877851 GEMMA-MLM 3.4 0.10 -13.349 

LL_AUDPC SCM002776.2_12072563 18 12072563 GEMMA-MLM 3.1 0.15 -10.761 

LW SCM002776.2_12072563 18 12072563 GEMMA-MLM 3.1 0.15 -7.306 

LW_AUDPC SCM002776.2_12072563 18 12072563 GEMMA-MLM 3.0 0.15 -69.408 

PM SCM002776.2_12072563 18 12072563 GEMMA-MLM 3.4 0.15 -11.024 

LL SCM002776.2_45864688 18 45864688 FarmCPU 3.5 0.32 0.644 

Traitsa: LL = Lesion length measured at 7 days post inoculation (dpi); LW = lesion width at 7 dpi; PM = plant mortality at 15 dpi; LL_AUDPC = lesion lengths 

area under disease progress curve (AUDPC) calculated using 7 time points reading; LW_AUDPC = lesion widths AUDPC calculated using 7 time points reading 

Chrb: Brassica napus chromosome 

GWA Modelsc: Two GWA mapping models i.e., GEMMA-MLM (Single-locus), FarmCPU (multi-locus)  
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Table A.17. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 144 spring populations by at least 

two or more traits associated with sclerotinia stem rot resistance by genome-wide association studies  

SNP Chra Position GWA models and Traitsb LODc MAF Previously Detected MTAsd 

SCM002760.2_20267096 2 20267096 GEMMA-MLM34; FarmCPU3 3.0-3.4 0.18 

Wu et al. (2013) [QTL: 

SRA2-1: Position: (16.67-

20.47 Mb)] 

SCM002760.2_31650036 2 31650036 GEMMA-MLM145 3.0-3.2 0.08  

SCM002761.2_1259602 3 1259602 
GEMMA-MLM14; 

FarmCPU12345 
3.1-4.0 0.21  

SCM002761.2_33351214 3 33351214 GEMMA-MLM134; FarmCPU1 3.0-3.3 0.20  

SCM002761.2_44267358 3 44267358 GEMMA-MLM134 3.0-3.3 0.18  

SCM002763.2_7201665 5 7201665 
GEMMA-MLM1345; 

FarmCPU345 
3.1-4.2 0.15  

SCM002763.2_10442725 5 10442725 
GEMMA-MLM12345; 

FarmCPU2345 
3.2-4.0 0.04  

SCM002763.2_25221820 5 25221820 GEMMA-MLM124 3.0-3.8 0.21  

SCM002763.2_31228663 5 31228663 
GEMMA-MLM12345; 

FarmCPU12345 
3.7-4.7 0.11  

SCM002764.2_27014783 6 27014783 
GEMMA-MLM2345; 

FarmCPU2345 
3.0-3.7 0.03  

SCM002765.2_8200081 7 8200081 GEMMA-MLM2345; FarmCPU1 3.0-3.5 0.18  

SCM002765.2_8273774 7 8273774 GEMMA-MLM25; FarmCPU25 3.0-3.4 0.22  

SCM002765.2_8339128 7 8339128 GEMMA-MLM25; FarmCPU2 3.0-3.4 0.42  

SCM002767.2_35737007 9 35737007 GEMMA-MLM34; FarmCPU4 3.0-3.5 0.17 

Roy et al. (2021) 

[SCM002767.2_35588232 

(35.59 Mb), 

SCM002767.2_36527400 

(36.53 Mb)] 
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Table A.17. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 144 spring populations by at least 

two or more traits associated with sclerotinia stem rot resistance by genome-wide association studies (continued) 

SNP Chra Position GWA models and Traitsb LODc MAF Previously Detected MTAsd 

SCM002768.2_1532243 10 1532243 
GEMMA-MLM345; 

FarmCPU345 
3.1-3.4 0.08  

SCM002769.2_2578220 11 2578220 GEMMA-MLM125 3.0-3.2 0.40  

SCM002769.2_13591509 11 13591509 
GEMMA-MLM14; 

FarmCPU2345 
3.0-3.5 0.29  

SCM002769.2_13914840 11 13914840 GEMMA-MLM35 3.1-3.4 0.04  

SCM002769.2_29417842 11 29417842 
GEMMA-MLM1245; 

FarmCPU1245 
3.1-4.0 0.43 

Shahoveisi et al. (2021) 

[SR63.C1.3 (21.85-31.35 

Mb)] 

SCM002769.2_31445688 11 31445688 FarmCPU2345 3.0-3.4 0.32 

Shahoveisi et al. (2021) 

[SR63.C1.3 (21.85-31.35 

Mb)] 

SCM002770.2_18672852 12 18672852 GEMMA-MLM1245; FarmCPU4 3.0-3.2 0.15  

SCM002770.2_35193244 12 35193244 GEMMA-MLM34; FarmCPU345 3.0-3.8 0.22  

SCM002770.2_61242936 12 61242936 
GEMMA-MLM2345; 

FarmCPU2345 
3.0-4.2 0.09  

SCM002770.2_62330224 12 62330224 GEMMA-MLM1; FarmCPU245 3.0-3.2 0.43 

Roy et al. (2021) 

[SCM002770.2_62791159 

(62.79 Mb)] 

SCM002770.2_63268428 12 63268428 GEMMA-MLM12; FarmCPU2 3.0-3.2 0.43  

SCM002771.2_1951273 13 1951273 
GEMMA-MLM12345; 

FarmCPU345 
3.3-4.8 0.18 

Wu et al. (2019) [qSRC3: 

0.19-3.39 Mb]; Qasim et al. 

(2020) [SRC3a: 2.26-3.47 

Mb] 

SCM002771.2_4764427 13 4764427 GEMMA-MLM12345 3.2-4.2 0.13  
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Table A.17. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 144 spring populations by at least 

two or more traits associated with sclerotinia stem rot resistance by genome-wide association studies (continued) 

SNP Chra Position GWA models and Traitsb LODc MAF Previously Detected MTAsd 

SCM002772.2_1456731 14 1456731 GEMMA-MLM3; FarmCPU34 3.0-3.4 0.17 
Zhao et al. (2006) [Sll14a 

(0.40-9.42 Mb)] 

SCM002772.2_54108357 14 54108357 GEMMA-MLM1345; FarmCPU4 3.0-4.3 0.17  

SCM002772.2_69471400 14 69471400 
GEMMA-MLM12345; 

FarmCPU12345 
4.0-5.1 0.25  

SCM002773.2_22943594 15 22943594 
GEMMA-MLM2345; 

FarmCPU12345 
3.2-5.5 0.33  

SCM002773.2_36045830 15 36045830 GEMMA-MLM1234 3.0-3.2 0.08  

SCM002774.2_11393878 16 11393878 GEMMA-MLM3; FarmCPU3 3.0 0.10  

SCM002774.2_33338934 16 33338934 GEMMA-MLM1245 3.1-3.3 0.18 

Zhao et al. (2006) [Sll16 

(23.18-35.47 Mb); Dw16 

(28.55-35.47 Mb)]; Wu et al. 

(2013) (SRC6-1, SRC6-2: 

30.28-34.59 Mb; Qasim et al. 

(2020) [SRC6 (32.95-34.45 

Mb)]; Roy et al. (2021) 

[SCM002774.2_33238118 

(33.24 Mb); 

SCM002774.2_33265642 

(33.27 Mb); 

SCM002774.2_33563646 

(33.56 Mb) 
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Table A.17. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 144 spring populations by at least 

two or more traits associated with sclerotinia stem rot resistance by genome-wide association studies (continued) 

SNP Chra Position GWA models and Traitsb LODc MAF Previously Detected MTAsd 

SCM002775.2_11411683 17 11411683 GEMMA-MLM1245 3.3-3.9 0.18  

SCM002776.2_8341541 18 8341541 FarmCPU245 3.3-3.6 0.36 
Wu et al. (2019) [qSRC8 

(1.62-12.09 Mb)] 

SCM002776.2_12072563 18 12072563 GEMMA-MLM2345 3.0-3.4 0.15 
Wu et al. (2019) [qSRC8 

(1.62-12.09 Mb)] 

Chra: Brassica napus chromosome 

GWA models and Traitsb: Methods, GEMMA-MLM and FarmCPU; Traits: Superscript 1, 2, 3, 4, and 5 represents lesion length (LL) 

measured at 7 days post inoculation (dpi), lesion width (LW) at 7 dpi, plant mortality (PM) at 15 dpi, lesion lengths area under disease 

progress curve (LL_AUDPC) calculated using 7 time points reading, and lesion widths AUDPC (LW_AUDPC) calculated using 7 

time points reading, respectively. 

LODc: The highest and lowest -log10 (P) value resulted from the various studied traits with different GWA models 

Previously reported MTAsd:  previously reported marker-trait-associations (MTAs) along with their physical positions from various 

QTL and GWA-related studies which overlapped or in close proximity with the genomic regions in this study 
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LL SCM002759.2_7025054 1 7025054 FarmCPU 3.3 0.47 0.52 

LL_AUDPC SCM002759.2_7025054 1 7025054 FarmCPU 3.6 0.47 3.56 

LW SCM002759.2_7025054 1 7025054 FarmCPU 3.4 0.47 6.23 

LW_AUDPC SCM002759.2_7025054 1 7025054 FarmCPU 3.7 0.47 5.81 

PM SCM002759.2_7025054 1 7025054 FarmCPU 4.0 0.47 38.36 

LL SCM002759.2_7025054 1 7025054 GEMMA-MLM 3.9 0.47  

LL_AUDPC SCM002759.2_7025054 1 7025054 GEMMA-MLM 4.3 0.47  

LW SCM002759.2_7025054 1 7025054 GEMMA-MLM 3.7 0.47  

LW_AUDPC SCM002759.2_7025054 1 7025054 GEMMA-MLM 4.1 0.47  

PM SCM002759.2_7025054 1 7025054 GEMMA-MLM 4.1 0.47  

LL SCM002759.2_7052802 1 7052802 FarmCPU 3.1 0.41 0.51 

LL_AUDPC SCM002759.2_7052802 1 7052802 FarmCPU 3.4 0.41 3.80 

LW SCM002759.2_7052802 1 7052802 FarmCPU 3.7 0.41 5.74 

LW_AUDPC SCM002759.2_7052802 1 7052802 FarmCPU 4.2 0.41 5.72 

PM SCM002759.2_7052802 1 7052802 FarmCPU 3.4 0.41 41.86 

LL SCM002759.2_7052802 1 7052802 GEMMA-MLM 3.3 0.41  

LL_AUDPC SCM002759.2_7052802 1 7052802 GEMMA-MLM 3.5 0.41  

LW SCM002759.2_7052802 1 7052802 GEMMA-MLM 3.8 0.41  

LW_AUDPC SCM002759.2_7052802 1 7052802 GEMMA-MLM 4.3 0.41  

PM SCM002759.2_7052802 1 7052802 GEMMA-MLM 3.4 0.41  

LL SCM002759.2_10710048 1 10710048 FarmCPU 3.4 0.07 -0.97 

LL_AUDPC SCM002759.2_10710048 1 10710048 FarmCPU 3.3 0.07 -10.12 

LL SCM002759.2_10710048 1 10710048 GEMMA-MLM 3.5 0.07  

LL_AUDPC SCM002759.2_10710048 1 10710048 GEMMA-MLM 3.4 0.07  
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LW SCM002759.2_22108854 1 22108854 FarmCPU 3.4 0.15 -4.74 

LW SCM002759.2_22108854 1 22108854 GEMMA-MLM 3.4 0.16  

LW SCM002760.2_3833184 2 3833184 GEMMA-MLM 3.3 0.10  

LL_AUDPC SCM002760.2_24777699 2 24777699 GEMMA-MLM 3.3 0.07  

LL SCM002761.2_9437414 3 9437414 GEMMA-MLM 3.4 0.04  

LL SCM002761.2_16323070 3 16323070 GEMMA-MLM 3.6 0.33 6.59 

LW SCM002761.2_27270949 3 27270949 FarmCPU 4.1 0.20 6.59 

LW_AUDPC SCM002761.2_27270949 3 27270949 FarmCPU 4.2 0.20 68.89 

LW SCM002761.2_27270949 3 27270949 GEMMA-MLM 4.4 0.20 -6.37 

LW_AUDPC SCM002761.2_27270949 3 27270949 GEMMA-MLM 4.4 0.20 -10.11 

PM SCM002761.2_29897262 3 29897262 FarmCPU 3.5 0.20 -11.89 

PM SCM002761.2_29897262 3 29897262 GEMMA-MLM 3.5 0.20  

LW_AUDPC SCM002761.2_49022900 3 49022900 FarmCPU 3.5 0.08 -68.94 

LL SCM002761.2_49022900 3 49022900 GEMMA-MLM 3.4 0.08  

LL_AUDPC SCM002761.2_49022900 3 49022900 GEMMA-MLM 3.4 0.08  

LW SCM002761.2_49022900 3 49022900 GEMMA-MLM 3.4 0.08  

LW_AUDPC SCM002761.2_49022900 3 49022900 GEMMA-MLM 3.5 0.08  

LW SCM002762.2_20793967 4 20793967 FarmCPU 3.7 0.47 -3.92 

LW SCM002762.2_20793967 4 20793967 GEMMA-MLM 3.9 0.47  

LW SCM002762.2_22210032 4 22210032 FarmCPU 3.8 0.11 -7.52 

LW SCM002762.2_22210032 4 22210032 GEMMA-MLM 4.0 0.11  

LL SCM002763.2_8993185 5 8993185 FarmCPU 4.0 0.13 0.92 

LL_AUDPC SCM002763.2_8993185 5 8993185 FarmCPU 3.6 0.13 6.18 

LW SCM002763.2_8993185 5 8993185 FarmCPU 4.0 0.13 9.36 
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002763.2_8993185 5 8993185 FarmCPU 4.1 0.13 64.89 

LL SCM002763.2_8993185 5 8993185 GEMMA-MLM 4.4 0.14  

LL_AUDPC SCM002763.2_8993185 5 8993185 GEMMA-MLM 3.6 0.14  

LW SCM002763.2_8993185 5 8993185 GEMMA-MLM 4.3 0.14  

LW_AUDPC SCM002763.2_8993185 5 8993185 GEMMA-MLM 4.2 0.14  

PM SCM002763.2_18946206 5 18946206 FarmCPU 3.3 0.04 -16.65 

PM SCM002763.2_18946206 5 18946206 GEMMA-MLM 3.3 0.04 42.14 

LL SCM002764.2_9194211 6 9194211 FarmCPU 3.4 0.04 1.92 

LL SCM002764.2_9194211 6 9194211 GEMMA-MLM 3.6 0.04 42.14 

LL_AUDPC SCM002764.2_17606602 6 17606602 GEMMA-MLM 3.4 0.20  

LW_AUDPC SCM002764.2_17606602 6 17606602 GEMMA-MLM 3.5 0.20  

LL SCM002764.2_17885307 6 17885307 GEMMA-MLM 3.4 0.05  

LW SCM002764.2_17885307 6 17885307 GEMMA-MLM 3.3 0.05  

PM SCM002767.2_29730 9 29730 FarmCPU 3.6 0.19 8.19 

PM SCM002767.2_29730 9 29730 GEMMA-MLM 3.6 0.19  

LL SCM002767.2_3253388 9 3253388 GEMMA-MLM 3.3 0.09  

LL_AUDPC SCM002767.2_5277679 9 5277679 FarmCPU 3.4 0.07 12.06 

LL SCM002767.2_5277679 9 5277679 GEMMA-MLM 3.3 0.07  

LL_AUDPC SCM002767.2_5277679 9 5277679 GEMMA-MLM 3.4 0.07  

LL SCM002767.2_5862687 9 5862687 FarmCPU 3.3 0.08 1.05 

LL SCM002767.2_5862687 9 5862687 GEMMA-MLM 3.5 0.08  

LL SCM002767.2_38044090 9 38044090 GEMMA-MLM 3.3 0.11  

LW_AUDPC SCM002767.2_38052182 9 38052182 FarmCPU 3.3 0.10 67.47 

LW_AUDPC SCM002767.2_38052182 9 38052182 GEMMA-MLM 3.4 0.10  
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LW SCM002767.2_38061266 9 38061266 FarmCPU 3.3 0.15 6.19 

LW SCM002767.2_38061266 9 38061266 GEMMA-MLM 3.4 0.15  

LW SCM002767.2_38082926 9 38082926 FarmCPU 3.7 0.13 7.08 

LW_AUDPC SCM002767.2_38082926 9 38082926 FarmCPU 3.4 0.13 11.14 

PM SCM002767.2_38082926 9 38082926 FarmCPU 3.6 0.13 69.68 

LW SCM002767.2_38082926 9 38082926 GEMMA-MLM 3.8 0.14  

LW_AUDPC SCM002767.2_38082926 9 38082926 GEMMA-MLM 3.4 0.14  

PM SCM002767.2_38082926 9 38082926 GEMMA-MLM 3.6 0.14  

LW_AUDPC SCM002767.2_38083442 9 38083442 FarmCPU 3.4 0.11 -65.33 

LW_AUDPC SCM002767.2_38083442 9 38083442 GEMMA-MLM 3.3 0.11  

LL SCM002767.2_38119743 9 38119743 GEMMA-MLM 3.3 0.09 -10.83 

LW_AUDPC SCM002767.2_38774352 9 38774352 GEMMA-MLM 3.3 0.10  

LL_AUDPC SCM002767.2_41958710 9 41958710 GEMMA-MLM 3.3 0.10  

LL_AUDPC SCM002767.2_41990070 9 41990070 FarmCPU 3.4 0.08 10.51 

LW_AUDPC SCM002767.2_41990070 9 41990070 FarmCPU 3.3 0.08 66.83 

LL_AUDPC SCM002767.2_41990070 9 41990070 GEMMA-MLM 3.4 0.08  

LW_AUDPC SCM002767.2_41990070 9 41990070 GEMMA-MLM 3.3 0.08  

LL SCM002767.2_42258678 9 42258678 GEMMA-MLM 3.4 0.14  

LL SCM002768.2_9952251 10 9952251 FarmCPU 3.6 0.12 -0.87 

LL SCM002768.2_9952251 10 9952251 GEMMA-MLM 3.9 0.12  

LW_AUDPC SCM002768.2_10253247 10 10253247 GEMMA-MLM 3.4 0.22  

LL SCM002768.2_14218999 10 14218999 GEMMA-MLM 3.3 0.50  

LL SCM002769.2_3794970 11 3794970 GEMMA-MLM 3.3 0.08  

LL SCM002769.2_8989138 11 8989138 FarmCPU 3.5 0.16 -0.94 
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LL_AUDPC SCM002769.2_8989138 11 8989138 FarmCPU 3.4 0.16 -6.04 

LW_AUDPC SCM002769.2_8989138 11 8989138 FarmCPU 3.3 0.16 -62.58 

LL SCM002769.2_8989138 11 8989138 GEMMA-MLM 3.6 0.16  

LL_AUDPC SCM002769.2_8989138 11 8989138 GEMMA-MLM 3.5 0.16  

LW SCM002769.2_8989138 11 8989138 GEMMA-MLM 3.4 0.16  

LL SCM002769.2_43565693 11 43565693 FarmCPU 3.5 0.05 -1.36 

LL SCM002769.2_43565693 11 43565693 GEMMA-MLM 3.9 0.05  

LL_AUDPC SCM002769.2_46229694 11 46229694 GEMMA-MLM 3.4 0.04  

LL SCM002769.2_47724348 11 47724348 FarmCPU 3.7 0.37 -0.54 

LL_AUDPC SCM002769.2_47724348 11 47724348 FarmCPU 3.7 0.37 -5.81 

LL SCM002769.2_47724348 11 47724348 GEMMA-MLM 3.8 0.37  

LL_AUDPC SCM002769.2_47724348 11 47724348 GEMMA-MLM 3.9 0.37  

LL_AUDPC SCM002770.2_66428152 12 66428152 FarmCPU 3.4 0.13 9.89 

LL SCM002770.2_66428152 12 66428152 GEMMA-MLM 3.4 0.13  

LL_AUDPC SCM002770.2_66428152 12 66428152 GEMMA-MLM 3.8 0.13  

LL SCM002771.2_5548449 13 5548449 FarmCPU 3.6 0.05 1.47 

LL SCM002771.2_5548449 13 5548449 GEMMA-MLM 3.9 0.05  

LW SCM002771.2_5548449 13 5548449 GEMMA-MLM 3.4 0.05  

LL SCM002771.2_30920466 13 30920466 FarmCPU 3.6 0.35 -0.71 

LW SCM002771.2_30920466 13 30920466 FarmCPU 3.9 0.35 -6.89 

LW_AUDPC SCM002771.2_30920466 13 30920466 FarmCPU 3.6 0.35 -49.01 

LL SCM002771.2_30920466 13 30920466 GEMMA-MLM 3.7 0.35  

LW SCM002771.2_30920466 13 30920466 GEMMA-MLM 4.0 0.35  

LW_AUDPC SCM002771.2_30920466 13 30920466 GEMMA-MLM 3.6 0.35  
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LL SCM002771.2_38591806 13 38591806 GEMMA-MLM 3.3 0.04  

LL_AUDPC SCM002771.2_44393183 13 44393183 GEMMA-MLM 3.4 0.14  

PM SCM002772.2_5924485 14 5924485 FarmCPU 3.5 0.45 -5.63 

PM SCM002772.2_5924485 14 5924485 GEMMA-MLM 3.7 0.45 -1.03 

LL_AUDPC SCM002772.2_7708586 14 7708586 FarmCPU 3.8 0.09 -14.11 

PM SCM002772.2_7708586 14 7708586 FarmCPU 4.8 0.09 -73.52 

LL_AUDPC SCM002772.2_7708586 14 7708586 GEMMA-MLM 3.9 0.09  

LW_AUDPC SCM002772.2_7708586 14 7708586 GEMMA-MLM 3.4 0.09  

PM SCM002772.2_7708586 14 7708586 GEMMA-MLM 5.1 0.09  

LL_AUDPC SCM002772.2_67533692 14 67533692 GEMMA-MLM 3.3 0.05  

LL SCM002773.2_5859014 15 5859014 FarmCPU 4.6 0.09 -1.75 

LL_AUDPC SCM002773.2_5859014 15 5859014 FarmCPU 3.8 0.09 -10.72 

LW SCM002773.2_5859014 15 5859014 FarmCPU 3.9 0.09 -16.86 

LW_AUDPC SCM002773.2_5859014 15 5859014 FarmCPU 3.7 0.09 -107.59 

LL SCM002773.2_5859014 15 5859014 GEMMA-MLM 5.0 0.09  

LL_AUDPC SCM002773.2_5859014 15 5859014 GEMMA-MLM 3.9 0.09  

LW SCM002773.2_5859014 15 5859014 GEMMA-MLM 4.1 0.09  

LW_AUDPC SCM002773.2_5859014 15 5859014 GEMMA-MLM 3.7 0.09  

LW SCM002773.2_11017178 15 11017178 FarmCPU 3.4 0.05 -9.73 

LL SCM002773.2_11017178 15 11017178 GEMMA-MLM 3.6 0.05  

LW SCM002773.2_11017178 15 11017178 GEMMA-MLM 3.6 0.05  

LW_AUDPC SCM002773.2_11017178 15 11017178 GEMMA-MLM 3.3 0.05  

LL SCM002773.2_17211900 15 17211900 FarmCPU 3.6 0.04 -1.64 

LL_AUDPC SCM002773.2_17211900 15 17211900 FarmCPU 3.7 0.04 -10.16 
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LW_AUDPC SCM002773.2_17211900 15 17211900 FarmCPU 3.4 0.04 -109.46 

LL SCM002773.2_17211900 15 17211900 GEMMA-MLM 4.0 0.04  

LL_AUDPC SCM002773.2_17211900 15 17211900 GEMMA-MLM 4.1 0.04  

LW SCM002773.2_17211900 15 17211900 GEMMA-MLM 3.4 0.04  

LW_AUDPC SCM002773.2_17211900 15 17211900 GEMMA-MLM 3.7 0.04  

LW SCM002773.2_29962917 15 29962917 FarmCPU 3.7 0.15 6.38 

LW_AUDPC SCM002773.2_29962917 15 29962917 FarmCPU 3.5 0.15 64.39 

LW SCM002773.2_29962917 15 29962917 GEMMA-MLM 3.8 0.16  

LW_AUDPC SCM002773.2_29962917 15 29962917 GEMMA-MLM 3.5 0.16  

LL SCM002773.2_43256138 15 43256138 GEMMA-MLM 3.3 0.06  

LL SCM002774.2_20774649 16 20774649 FarmCPU 3.5 0.10 -1.28 

LL SCM002774.2_20774649 16 20774649 GEMMA-MLM 3.7 0.10  

LL SCM002774.2_32559985 16 32559985 FarmCPU 3.3 0.04 1.48 

LL SCM002775.2_12215584 17 12215584 FarmCPU 3.6 0.10 -0.97 

LL_AUDPC SCM002775.2_12215584 17 12215584 FarmCPU 3.4 0.10 -9.93 

LL SCM002775.2_12215584 17 12215584 GEMMA-MLM 3.7 0.10  

LL_AUDPC SCM002775.2_12215584 17 12215584 GEMMA-MLM 3.4 0.10  

LL SCM002775.2_41663703 17 41663703 GEMMA-MLM 3.4 0.40  

LL_AUDPC SCM002775.2_41663703 17 41663703 GEMMA-MLM 3.3 0.40  

LL_AUDPC SCM002776.2_16868604 18 16868604 FarmCPU 3.5 0.08 -10.88 

LL_AUDPC SCM002776.2_16868604 18 16868604 GEMMA-MLM 3.7 0.08  
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Table A.18. List of significant single-nucleotide polymorphisms (SNPs) associated with five traits for sclerotinia stem rot resistance 

in semi-winter and winter ecotype rapeseed/canola genotypes detected by single-locus (GEMMA-MLM) and multi-locus (FarmCPU) 

genome-wide association studies (continued) 

Traitsa SNP Chrb Position GWA Modelsc LOD MAF Allelic effect 

LL SCM002777.2_32367681 19 32367681 FarmCPU 3.7 0.07 1.39 

LL_AUDPC SCM002777.2_32367681 19 32367681 FarmCPU 3.3 0.07 8.47 

LL SCM002777.2_32367681 19 32367681 GEMMA-MLM 3.9 0.07  

LL_AUDPC SCM002777.2_32367681 19 32367681 GEMMA-MLM 3.4 0.07  

Traitsa: LL = Lesion length measured at 7 days post inoculation (dpi); LW = lesion width at 7 dpi; PM = plant mortality at 15 dpi; LL_AUDPC = 

lesion lengths area under disease progress curve (AUDPC) calculated using 7 time points reading; LW_AUDPC = lesion widths AUDPC 

calculated using 7-time points readings 

Chrb: Brassica napus chromosome 

GWA Modelsc: Two GWA models i.e. GEMMA-MLM (Single-locus), FarmCPU (multi-locus) 
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Table A.19. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 152 semi-winter and winter 

populations by at least two or more traits associated with sclerotinia stem rot resistance by GWA studies 

SNP Chra Position GWA methods and Traitsb LODc MAF Previously Detected MTAsd 

SCM002759.2_7025054 1 7025054 
GEMMA-MLM12345; 

FarmCPU12345 
3.3-4.3 0.47  

SCM002759.2_7052802 1 7052802 
GEMMA-MLM12345; 

FarmCPU12345 
3.1-4.3 0.41  

SCM002759.2_10710048 1 10710048 GEMMA-MLM14; FarmCPU14 3.3-3.5 0.07  

SCM002759.2_22108854 1 22108854 GEMMA-MLM12; FarmCPU12 3.0-3.4 0.15  

SCM002760.2_3833184 2 3833184 
GEMMA-MLM12345; 

FarmCPU12345 
3.0-3.3 0.10 

Zhao et al. (2006) [Sll2: 0.03-

3.45 Mb)]; Wei et al. (2014) 

[qSR10-1 (1.61-7.71 Mb)] 

SCM002761.2_9437414 3 9437414 GEMMA-MLM1; FarmCPU15 3.0-3.4 0.04  

SCM002761.2_27270949 3 27270949 
GEMMA-MLM125; 

FarmCPU25 
3.0-4.4 0.20  

SCM002761.2_49022900 3 49022900 
GEMMA-MLM1245; 

FarmCPU1245 
3.1-3.5 0.08  

SCM002762.2_20793967 4 20793967 GEMMA-MLM25; FarmCPU25 3.0-3.9 0.47 

Roy et al. (2021) 

[SCM002762.2_20212672 

(20.21 Mb); 

SCM002762.2_20789292 

(20.79 Mb); 

SCM002762.2_20860192 

(20.86 Mb)] 

SCM002762.2_22210032 4 22210032 
GEMMA-MLM125; 

FarmCPU125 
3.1-4.0 0.11  

SCM002763.2_8993185 5 8993185 
GEMMA-MLM1245; 

FarmCPU1245 
3.6-4.4 0.13  
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Table A.19. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 152 semi-winter and winter 

populations by at least two or more traits associated with sclerotinia stem rot resistance by GWA studies (continued) 

SNP Chra Position GWA methods and Traitsb LODc MAF Previously Detected MTAsd 

SCM002763.2_18946206 5 18946206 
GEMMA-MLM34; 

FarmCPU34 
3.1-3.3 0.04  

SCM002764.2_17606602 6 17606602 
GEMMA-MLM1245; 

FarmCPU5 
3.0-3.5 0.20  

SCM002764.2_17885307 6 17885307 
GEMMA-MLM125; 

FarmCPU12 
3.0-3.4 0.05  

SCM002767.2_3253388 9 3253388 GEMMA-MLM12 3.1-3.3 0.09  

SCM002767.2_5277679 9 5277679 
GEMMA-MLM145; 

FarmCPU145 
3.1-3.4 0.07  

SCM002767.2_5862687 9 5862687 
GEMMA-MLM14; 

FarmCPU1 
3.0-3.5 0.08  

SCM002767.2_38044090 9 38044090 
GEMMA-MLM125; 

FarmCPU125 
3.0-5.3 0.11 

Roy et al. (2021) 

[SCM002767.2_37664281 

(37.66 Mb); 

SCM002767.2_37671479 

(37.67 Mb)] 

SCM002767.2_38052182 9 38052182 
GEMMA-MLM25; 

FarmCPU25 
3.0-3.4 0.10 

Roy et al. (2021) 

[SCM002767.2_37664281 

(37.66 Mb); 

SCM002767.2_37671479 

(37.67 Mb)] 

SCM002767.2_38061266 9 38061266 
GEMMA-MLM125; 

FarmCPU125 
3.0-3.4 0.15 

Roy et al. (2021) 

[SCM002767.2_37664281 

(37.66 Mb); 

SCM002767.2_37671479 

(37.67 Mb)] 
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Table A.19. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 152 semi-winter and winter 

populations by at least two or more traits associated with sclerotinia stem rot resistance by GWA studies (continued) 

SNP Chra Position GWA methods and Traitsb LODc MAF Previously Detected MTAsd 

SCM002767.2_38082926 9 38082926 
GEMMA-MLM1235; 

FarmCPU1235 
3.1-3.7 0.13 

Roy et al. (2021) 

[SCM002767.2_37664281 

(37.66 Mb); 

SCM002767.2_37671479 

(37.67 Mb)] 

SCM002767.2_38119743 9 38119743 GEMMA-MLM12; FarmCPU1 3.0-3.3 0.09 

Roy et al. (2021) 

[SCM002767.2_37664281 

(37.66 Mb); 

SCM002767.2_37671479 

(37.67 Mb)] 

SCM002767.2_38774352 9 38774352 
GEMMA-MLM12345; 

FarmCPU235 
3.0-3.3 0.10 

Roy et al. (2021) 

[SCM002767.2_39128782 

(39.13 Mb)] 

SCM002767.2_41958710 9 41958710 GEMMA-MLM14 3.1-3.3 0.10  

SCM002767.2_41990070 9 41990070 
GEMMA-MLM145; 

FarmCPU145 
3.0-3.4 0.08  

SCM002768.2_9952251 10 9952251 GEMMA-MLM14; FarmCPU14 3.0-3.9 0.12  

SCM002768.2_10253247 10 10253247 GEMMA-MLM235 3.1-3.4 0.22  

SCM002768.2_14218999 10 14218999 GEMMA-MLM14 3.1-3.3 0.50  

SCM002769.2_8989138 11 8989138 
GEMMA-MLM1245; 

FarmCPU1245 
3.2-3.6 0.16  

SCM002769.2_43565693 11 43565693 
GEMMA-MLM124; 

FarmCPU124 
3.0-3.9 0.05  
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Table A.19. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 152 semi-winter and winter 

populations by at least two or more traits associated with sclerotinia stem rot resistance by GWA studies (continued) 

SNP Chra Position GWA methods and Traitsb LODc MAF Previously Detected MTAsd 

SCM002769.2_46229694 11 46229694 
GEMMA-MLM145; 

FarmCPU45 
3.0-3.4 0.04 

Roy et al. (2021) 

[SCM002769.2_46192098 

(46.19 Mb)] 

SCM002769.2_47724348 11 47724348 
GEMMA-MLM124; 

FarmCPU14 
3.0-3.9 0.37  

SCM002770.2_66428152 12 66428152 GEMMA-MLM14; FarmCPU14 3.0-3.8 0.13  

SCM002771.2_5548449 13 5548449 GEMMA-MLM12; FarmCPU12 3.1-3.9 0.05  

SCM002771.2_30920466 13 30920466 
GEMMA-MLM1245; 

FarmCPU1245 
3.0-4.0 0.35 

Qasim et al. (2020) [SRC3b 

(22.22-30.60 Mb), SRC3c 

(30.60-47.86 Mb)] 

SCM002771.2_38591806 13 38591806 GEMMA-MLM14; FarmCPU14 3.1-3.3 0.04  

SCM002771.2_44393183 13 44393183 GEMMA-MLM34; FarmCPU34 3.1-3.4 0.13  

SCM002772.2_7708586 14 7708586 
GEMMA-MLM1345; 

FarmCPU1345 
3.0-5.1 0.09  

SCM002772.2_67533692 14 67533692 GEMMA-MLM145 3.0-3.3 0.05  

SCM002773.2_5859014 15 5859014 
GEMMA-MLM1245; 

FarmCPU1245 
3.7-5.0 0.09  

SCM002773.2_11017178 15 11017178 
GEMMA-MLM125; 

FarmCPU125 
3.2-3.6 0.05  

SCM002773.2_17211900 15 17211900 
GEMMA-MLM1245; 

FarmCPU1245 
3.1-4.1 0.04  

SCM002773.2_29962917 15 29962917 
GEMMA-MLM125; 

FarmCPU125 
3.1-3.8 0.15 

Roy et al. (2021) 

[SCM002773.2_29580386 

(29.58 Mb)] 

SCM002773.2_43256138 15 43256138 GEMMA-MLM14; FarmCPU14 3.0-3.3 0.06  
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Table A.19. List of significant single-nucleotide polymorphisms (SNPs) simultaneously detected in 152 semi-winter and winter 

populations by at least two or more traits associated with sclerotinia stem rot resistance by GWA studies (continued) 

SNP Chra Position GWA methods and Traitsb LODc MAF Previously Detected MTAsd 

SCM002774.2_20774649 16 20774649 GEMMA-MLM14; FarmCPU14 3.2-3.7 0.10  

SCM002774.2_32559985 16 32559985 
GEMMA-MLM14; 

FarmCPU145 
3.0-3.3 0.04 

Wu et al. (2013) [SRC6-1 

(30.28-34.59 Mb)]; Qasim et 

al. (2020) [SRC6 (32.95-

34.45 Mb)]; Roy et al. 

(20210) 

[SCM002774.2_33238118 

(33.24 Mb); 

SCM002774.2_33265642 

(33.27 Mb)] 

SCM002775.2_12215584 17 12215584 GEMMA-MLM14; FarmCPU14 3.4-3.7 0.10 SCM002775.2_12215584 

SCM002775.2_41663703 17 41663703 
GEMMA-MLM124; 

FarmCPU14 
3.0-3.4 0.40 SCM002775.2_41663703 

SCM002776.2_16868604 18 16868604 GEMMA-MLM45; FarmCPU4 3.0-3.7 0.08 SCM002776.2_16868604 

SCM002777.2_32367681 19 32367681 
GEMMA-MLM1245; 

FarmCPU1245 
3.0-3.9 0.07 SCM002777.2_32367681 

Chra: Brassica napus chromosome 

GWA methods and Traitsb: Methods, GEMMA-MLM and FarmCPU; Traits: Superscript 1, 2, 3, 4, and 5 represents lesion length (LL) 

measured at 7 days post inoculation (dpi), lesion width (LW) at 7 dpi, plant mortality (PM) at 15 dpi, lesion lengths area under disease 

progress curve (LL_AUDPC) calculated using 7 time points reading, and lesion widths AUDPC (LW_AUDPC) calculated using 7 

time points reading, respectively. 

LODc: The highest and lowest -log10 (P) value resulted from the various studied traits with different GWA models 

Previously reported MTAsd:  previously reported marker-trait-associations (MTAs) along with their physical positions from various 

QTL and GWA-related studies which overlapped or in close proximity with the genomic regions in this study 
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Table A.20. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for spring ecotypes 

rapeseed/canola genotypes 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002760.2_20267096 2 20267096 8.04 
LOC10638152

0 

YTH domain-

containing family 

protein 2-like 

innate immune 

response Source: 

UniProtKB-KW 

SCM002760.2_20267096 2 20267096 -16.45 
LOC10638151

9 
metacaspase-5 

positive regulation of 

programmed cell death 

SCM002760.2_31650036 2 31650036 39.64 
LOC11120757

1 

calmodulin-

binding protein 60 

G-like 

response to fungus Source: 

UniProtKB; regulation of 

systemic acquired 

resistance Source: TAIR; 

regulation of salicylic acid 

biosynthetic 

process Source: 

UniProtKB 

SCM002760.2_31650036 2 31650036 13.95 
LOC11120757

6 

lon protease 

homolog 1, 

mitochondrial 

cellular response to 

oxidative stress Source: 

UniProtKB 

SCM002760.2_31650036 2 31650036 -10.43 
LOC11119793

7 

BON1-associated 

protein 2-like 

defense response Source: 

UniProtKB-KW 

SCM002761.2_1259602 3 1259602 -30.57 
LOC10642935

6 

protein BONZAI 

2 

Negative regulator of cell 

death and defense 

responses; defense 

response Source: 

UniProtKB-KW 

SCM002761.2_1259602 3 1259602 -39.37 
LOC10644136

9 

ethylene-

responsive 

transcription 

factor ERF115 

ethylene-activated 

signaling pathway Source: 

UniProtKB-KW 
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Table A.20. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for spring ecotypes 

rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002761.2_33351214 3 33351214 -49.66 LOC111214229 

ethylene-

responsive 

transcription factor 

ERF104-like 

defense response to 

fungus Source: TAIR; 

ethylene-activated 

signaling pathway Source: 

UniProtKB-KW 

SCM002761.2_44267358 3 44267358 -36.65 LOC106345590 
putative 

Peroxidase 48 

response to wounding, 

pathogen attack and 

oxidative stress Source: 

UniProtKB-KW 

SCM002761.2_44267358 3 44267358 24.18 LOC106441054 
UDP-glucuronate 

4-epimerase 1-like 

defense response to 

fungus Source: TAIR 

SCM002763.2_7201665 5 7201665 -19.21 LOC106451045 
transcription factor 

AS1-like 

defense response to 

fungus Source: TAIR 

SCM002763.2_10442725 5 10442725 -20.00 LOC106454882 
glycine-rich 

protein-like 

defense response Source: 

UniProtKB-KW; response 

to biotic stimulus 

SCM002763.2_10442725 5 10442725 -20.00 LOC106454882 
glycine-rich 

protein-like 

defense response Source: 

UniProtKB-KW; response 

to biotic stimulus 

SCM002763.2_10442725 5 10442725 -32.54 LOC106451406 

oxygen-evolving 

enhancer protein 

2-1, chloroplastic 

defense response to 

bacterium Source: TAIR 

SCM002763.2_31228663 5 31228663 8.83 LOC106454400 
aspartic proteinase 

CDR1-like 

defense response to 

bacterium Source: TAIR; 

regulation of salicylic acid 

metabolic process Source: 

TAIR 
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Table A.20. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for spring ecotypes 

rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002763.2_31228663 5 31228663 -11.21 LOC111197868 

probable WRKY 

transcription 

factor 58 

defense response to 

bacterium 

SCM002764.2_27014783 6 27014783 33.36 LOC106407392 

F-box/LRR-

repeat/kelch-

repeat protein 

At1g09650-like 

response to chitin 

SCM002767.2_18969125 9 18969125 25.37 LOC106450125 
pathogenesis-

related protein 1 

defense response Source: 

TAIR; systemic acquired 

resistance Source: TAIR 

SCM002767.2_18969125 9 18969125 10.25 LOC106447109 hexokinase-1 
programmed cell 

death Source: TAIR 

SCM002767.2_18969125 9 18969125 -31.40 LOC106447113 

S-alkyl-

thiohydroximate 

lyase SUR1-like 

defense response to 

fungus Source: TAIR 

SCM002767.2_18969125 9 18969125 -46.15 LOC106447116 profilin-1-like 
defense response Source: 

UniProtKB-KW 

SCM002768.2_1532243 10 1532243 12.47 LOC106427016 

1-

aminocyclopropan

e-1-carboxylate 

oxidase homolog 

2-like 

defense response Source: 

UniProtKB-KW 

SCM002768.2_1532243 10 1532243 9.37 LOC106427011 

1-

aminocyclopropan

e-1-carboxylate 

oxidase homolog 

2-like 

defense response Source: 

UniProtKB-KW 
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Table A.20. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for spring ecotypes 

rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002769.2_13914840 11 13914840 12.40 LOC106423878 
subtilisin-like 

protease SBT1.3 

serine-type 

endopeptidase 

activity Source: InterPro 

SCM002769.2_2578220 11 2578220 28.92 LOC106354285 
phospholipase D 

delta-like 

programmed cell 

death Source: TAIR 

SCM002769.2_2578220 11 2578220 21.20 LOC106351615 
phospholipase D 

delta 

programmed cell 

death Source: TAIR 

SCM002769.2_29417842 11 29417842 -48.50 LOC106400149 

protein 

ACCELERATED 

CELL DEATH 6 

regulation of defense 

response to 

fungus Source: 

UniProtKB; cell 

death Source: TAIR 

SCM002770.2_18672852 12 18672852 -34.75 LOC111202568 

1-

aminocyclopropane-

1-carboxylate 

oxidase 5-like 

defense response Source: 

UniProtKB-KW 

SCM002771.2_1951273 13 1951273 9.49 LOC106448897 

probable 

serine/threonine-

protein kinase 

PBL11 

May be involved in plant 

defense 

signaling Source: 

UniProtKB-KW 

SCM002771.2_1951273 13 1951273 -24.51 LOC106448766 
E3 ubiquitin-protein 

ligase PRT6-like 

defense response to 

fungus Source: TAIR 

SCM002772.2_69471400 14 69471400 24.53 LOC106395637 

probable L-type 

lectin-domain 

containing receptor 

kinase V.3 

defense response Source: 

GO_Central; defense 

response to 

oomycetes Source: 

GO_Central 
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Table A.20. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for spring ecotypes 

rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description 

GO biological 

Function 

SCM002772.2_69471400 14 69471400 -1.64 LOC106394184 

probable 

polygalacturonase 

At2g43860 

cell wall 

organization Source: 

UniProtKB-KW 

SCM002772.2_69471400 14 69471400 -29.05 LOC106391815 
probable thiocyanate 

methyltransferase 2 

Involved in 

glucosinolate 

metabolism and defense 

against phytopathogens 

Source: UniProtKB-KW 

SCM002776.2_8341541 18 8341541 -36.09 LOC106414500 peroxidase 7-like 
response to oxidative 

stress Source: InterPro 

SCM002776.2_12072563 18 12072563 16.23 LOC106363590 
cystine lyase CORI3-

like 

response to jasmonic 

acid, response to 

wounding Source: TAIR 

Chra: Brassica napus chromosome 

Marker distance from gene (kb)b, Negative values = genes are downstream of the markers, positive values= genes are upstream of the 

marker 

 

  



 

 

2
8
5
 

Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol and 

ID 
Gene description GO biological Function 

SCM002759.2_7025054 1 7025054 49.94 LOC106437839 
disease resistance 

protein RRS1-like 

defense response Source: 

UniProtKB-KW 

SCM002759.2_7025054 1 7025054 13.99 LOC106358002 

heat stress 

transcription factor 

A-4a-like 

response to 

chitin Source: TAIR; 

response to reactive 

oxygen species Source: 

TAIR 

SCM002759.2_7025054 1 7025054 3.98 LOC106358009 

heat stress 

transcription factor 

A-4a-like 

response to 

chitin Source: TAIR; 

response to reactive 

oxygen species Source: 

TAIR 

SCM002759.2_7025054 1 7025054 -25.96 LOC106437694 
regulatory protein 

NPR4 

defense response to 

fungus; systemic 

acquired resistance, 

salicylic acid mediated 

signaling pathway; 

regulation of jasmonic 

acid mediated signaling 

pathway Source: 

UniProtKB 

SCM002759.2_7025054 1 7025054 -46.89 LOC106373483 
fe(2+) transport 

protein 1-like 

response to 

bacterium Source: TAIR 

SCM002759.2_22108854 1 22108854 7.12 BNAANNG08350D 

senescence/dehydra

tion-associated 

protein At4g35985, 

chloroplastic 

response to 

oomycetes Source: 

UniProtKB 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol and 

ID 
Gene description GO biological Function 

SCM002759.2_22108854 1 22108854 -5.34 LOC106451503 
protein GIGAS 

CELL1-like 

defense response Source: 

UniProtKB-KW 

SCM002759.2_22108854 1 22108854 -22.44 LOC106451458 
la-related protein 

1C 

response to jasmonic 

acid Source: UniProtKB; 

response to salicylic 

acid Source: UniProtKB 

SCM002760.2_3833184 2 3833184 45.53 LOC106416109 

L-type lectin-

domain containing 

receptor kinase 

IX.1-like 

defense response to 

oomycetes Source: 

UniProtKB; positive 

regulation of cell 

death Source: UniProtKB 

SCM002760.2_3833184 2 3833184 53.81 LOC106383204 

AP2-like ethylene-

responsive 

transcription factor 

AIL6 

defense response to 

fungus Source: 

UniProtKB 

SCM002760.2_3833184 2 3833184 49.52 LOC106383209 

receptor-like 

cytosolic 

serine/threonine-

protein kinase 

RBK1 

defense response to 

fungus Source: 

UniProtKB 

SCM002760.2_3833184 2 3833184 31.16 LOC106383222 HBS1-like protein signal transduction  

SCM002760.2_3833184 2 3833184 10.20 LOC106383257 histidine kinase 5 

defense response Source: 

UniProtKB-KW; 

ethylene-activated 

signaling 

pathway Source: 

UniProtKB-KW 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002760.2_3833184 2 3833184 -23.19 LOC111208285 
NDR1/HIN1-like 

protein 3 

response to salicylic acid; 

response to 

wounding Source: 

UniProtKB 

SCM002761.2_27270949 3 27270949 45.11 LOC106424437 
pathogenesis-

related protein 1 

defense response Source: 

UniProtKB-KW 

SCM002761.2_27270949 3 27270949 40.89 LOC106424421 

methionine 

aminotransferase 

BCAT4 

glucosinolate 

biosynthetic 

process Source: TAIR 

SCM002762.2_20793967 4 20793967 39.93 LOC106447554 

calcium-

transporting 

ATPase 4, plasma 

membrane-type 

negative regulation of 

programmed cell 

death Source: TAIR 

SCM002762.2_20793967 4 20793967 -33.42 LOC106447562 
cytochrome P450 

83A1-like 

glucosinolate 

biosynthetic 

process Source: TAIR 

SCM002762.2_20793967 4 20793967 -42.09 LOC106450307 
dihomomethionine 

N-hydroxylase-like 

glucosinolate 

biosynthetic 

process Source: TAIR 

SCM002762.2_22210032 4 22210032 24.60 LOC111215168 
putative defensin-

like protein 27 

defense response to 

fungus Source: 

UniProtKB-KW 

SCM002762.2_22210032 4 22210032 -6.31 LOC111215172 

eukaryotic 

translation initiation 

factor 4E-1-like 

response to virus Source: 

TAIR 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002763.2_8993185 5 8993185 25.93 LOC106454802 

UV-B-induced 

protein At3g17800, 

chloroplastic-like 

response to 

wounding Source: 

UniProtKB 

SCM002763.2_8993185 5 8993185 -21.30 LOC106451268 
ninja-family protein 

AFP3-like 
signal transduction  

SCM002764.2_17606602 6 17606602 15.09 LOC106351681 

putative respiratory 

burst oxidase 

homolog protein J 

peroxidase 

activity Source: 

UniProtKB-KW 

SCM002764.2_17606602 6 17606602 -49.25 LOC106347512 
mitogen-activated 

protein kinase 3 

response to 

chitin Source: TAIR 

SCM002764.2_17885307 6 17885307 38.24 LOC106347498 

classical 

arabinogalactan 

protein 9 

Programmed cell death 

source: UniProtKB-KW 

SCM002767.2_5277679 9 5277679 -19.10 LOC106432965 myrosinase-like 

glucosinolate catabolic 

process Source: TAIR; 

response to 

insect Source: TAIR 

SCM002767.2_5277679 9 5277679 -45.40 LOC106432973 myrosinase-like 

glucosinolate catabolic 

process Source: TAIR; 

response to 

insect Source: TAIR 

SCM002767.2_38044090 9 38044090 39.81 LOC106365141 peroxidase 18 
response to oxidative 

stress Source: InterPro 

SCM002767.2_41990070 9 41990070 30.29 LOC106367041 5'-3' exonuclease 

innate immune 

response Source: 

UniProtKB-KW 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002769.2_43565693 11 43565693 -29.28 LOC106374862 

mitogen-activated 

protein kinase 

kinase 5-like 

innate immune 

response Source: 

UniProtKB-KW 

SCM002769.2_46229694 11 46229694 -36.12 LOC106435207 
protein TIFY 6B-

like 

regulation of defense 

response; jasmonic acid 

mediated signaling 

pathway Source: TAIR 

SCM002769.2_47724348 11 47724348 -6.87 LOC111201803 

probable leucine-

rich repeat 

receptor-like 

serine/threonine-

protein kinase 

At3g14840 

jasmonic acid and 

ethylene-dependent 

systemic 

resistance Source: TAIR; 

regulation of innate 

immune response Source: 

TAIR 

SCM002769.2_47724348 11 47724348 -22.16 LOC111202397 

probable leucine-

rich repeat 

receptor-like 

serine/threonine-

protein kinase 

At3g14840 

jasmonic acid and 

ethylene-dependent 

systemic 

resistance Source: TAIR 

SCM002772.2_7708586 14 7708586 16.70 LOC106450940 

rop guanine 

nucleotide 

exchange factor 4 

defense response to 

fungus Source: TAIR 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002772.2_67533692 14 67533692 32.74 LOC106402216 

protein 

MICRORCHIDIA 

6-like 

defense response Source: 

UniProtKB-KW; positive 

regulation of defense 

response to 

oomycetes Source: 

UniProtKB 

SCM002772.2_67533692 14 67533692 5.64 LOC106401000 

two-component 

response regulator 

ARR7 

response to 

chitin Source: TAIR 

SCM002772.2_67533692 14 67533692 -36.94 LOC106400858 

germin-like protein 

subfamily T 

member 2 

May play a role in plant 

defense. Source: 

UniProtKB 

SCM002773.2_29962917 15 29962917 -47.29 LOC106401967 

wall-associated 

receptor kinase 2-

like 

response to salicylic 

acid Source: TAIR 

SCM002773.2_29962917 15 29962917 -10.61 LOC106397552 
wall-associated 

receptor kinase 2 

response to salicylic 

acid Source: TAIR 

SCM002773.2_43256138 15 43256138 -3.73 LOC106345645 
protein RALF-like 

22 

calcium-mediated 

signaling Source: 

UniProtKB; cell-cell 

signaling Source: TAIR 

SCM002773.2_43256138 15 43256138 -28.26 LOC106453048 

acyl-CoA-binding 

domain-containing 

protein 4 

response to jasmonic 

acid Source: UniProtKB 
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Table A.21. The significantly associated loci and candidate genes for different sclerotinia stem rot resistance traits for semi-winter and 

winter ecotypes rapeseed/canola genotypes (continued) 

Significant markers Chra 
Marker 

position 

Distance 

(kb)b 

Gene symbol 

and ID 
Gene description GO biological Function 

SCM002774.2_20774649 16 20774649 -49.29 LOC106454140 

probable LRR 

receptor-like 

serine/threonine-

protein kinase 

At4g36180 

protein serine kinase 

activity Source: 

UniProtKB-EC 

SCM002774.2_20774649 16 20774649 -17.35 LOC106345455 
transcription factor 

MYB27 

response to 

chitin Source: TAIR 

SCM002776.2_16868604 18 16868604 6.44 LOC106453139 
universal stress 

protein PHOS34 

response to molecule of 

fungal origin Source: 

TAIR 

SCM002776.2_16868604 18 16868604 -0.50 LOC106453135 
aspartyl protease 

AED3 

regulation of 

programmed cell death; 

systemic acquired 

resistance Source: TAIR 

Chra: Brassica napus chromosome 

Marker distance from gene (kb)b, Negative values = genes are downstream of the markers, positive values= genes are upstream of the 

marker. 
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Figure A.1. Phenotypic distribution of different phenotypic traits BLUE values for sclerotinia 

stem rot disease. Traits are stem lesion length (a), stem lesion width (b), plant mortality (c), stem 

internode length (d), stem diameter (e), and days to flowering (f). Four environments: Carrington 

in 2019 (CARR_19), 2020 (CARR_20), Langdon in 2019 (LANG_19), Osnabrock in 2020 

(OSN_20), and combined best linear unbiased estimates (CombENV_BLUEs) across all four 

environments. Mean values are represented by the vertical dashed line in the density distribution 

plot. 
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Figure A.2. Regression analysis of sclerotinia stem rot resistance in respect to plant mortality at 

14 days post inoculation (dpi), plant mortality at 21 dpi with stem internode length, stem 

diameter and days to flowering. R is Pearson’s correlation coefficient between the two traits, 

R2
adj is the coefficient of determination. 
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Figure A.3. Single-nucleotide polymorphism distribution with minor allele frequency in this 

population panel 
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Figure A.4. Manhattan and Q-Q plots showing the results of marker-trait-associations for stem 

lesion length associated with sclerotinia stem rot resistance in 187 canola/rapeseed genotypes by 

the MLM GWA model. a) MLM, Carrington 2019; b) MLM, Langdon, 2019; c) MLM, 

Carrington 2020; d) MLM, Osnabrock 2020; e) MLM, combined data (CombENV), f) GEMMA-

MLM, Carrington 2019. The -log10 (P) values from a genome-wide scan are plotted against 

positions on each of the 19 chromosomes. Discontinued horizontal lines indicate the genome-

wide significance threshold. 



 

 

296 

 

Figure A.5. Manhattan and Q-Q plots showing the results of marker-trait-associations for stem 

lesion length associated with sclerotinia stem rot resistance in 187 canola/rapeseed genotypes by 

the GEMMA-MLM GWA models. a) GEMMA-MLM, Carrington 2019; b) GEMMA-MLM, 

Langdon, 2019; c) GEMMA-MLM, Carrington 2020; d) GEMMA-MLM, Osnabrock 2020; e) 

GEMMA-MLM, combined data (CombENV). The -log10 (P) values from a genome-wide scan 

are plotted against positions on each of the 19 chromosomes. Discontinued horizontal lines 

indicate the genome-wide significance threshold. 
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Figure A.6. Manhattan and Q-Q plots showing the results of MTAs for stem lesion width 

associated with SSR resistance in 187 canola/rapeseed genotypes by the FarmCPU GWA model. 

a) FarmCPU, Carrington 2019; b) FarmCPU, Langdon, 2019; c) FarmCPU, Carrington 2020; d) 

FarmCPU, Osnabrock 2020; e) FarmCPU, combined data (CombENV). The -log10 (P) values 

from a genome-wide scan are plotted against positions on each of the 19 chromosomes. 

Discontinued horizontal lines indicate the genome-wide significance threshold. 
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Figure A.7. Manhattan and Q-Q plots showing the results of MTAs for stem lesion width 

associated with SSR resistance in 187 canola/rapeseed genotypes by the MLM GWA model. a) 

MLM, Carrington 2019; b) MLM, Langdon, 2019; c) MLM, Carrington 2020; d) MLM, 

Osnabrock 2020; e) MLM, combined data (CombENV). The -log10 (P) values from a genome-

wide scan are plotted against positions on each of the 19 chromosomes. Discontinued horizontal 

lines indicate the genome-wide significance threshold. 

a 

c 

e 

b 

d 

 

 

 

 

 

 



 

 

299 

 

Figure A.8. Manhattan and Q-Q plots showing the results of MTAs for stem lesion width 

associated with SSR resistance in 187 canola/rapeseed genotypes by the GEMMA-MLM GWA 

model. a) GEMMA-MLM, Carrington 2019; b) GEMMA-MLM, Langdon, 2019; c) GEMMA-

MLM, Carrington 2020; d) GEMMA-MLM, Osnabrock 2020; e) GEMMA-MLM, combined 

data (CombENV). The -log10 (P) values from a genome-wide scan are plotted against positions 

on each of the 19 chromosomes. Discontinued horizontal lines indicate the genome-wide 

significance threshold. 
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Figure A.9. Manhattan and Q-Q plots showing the results of marker-trait association for plant 

mortality associated with sclerotinia stem rot resistance in 187 canola/rapeseed genotypes by the 

MLM, and GEMMA-MLM GWA models. a) MLM, combined (CombENV) plant mortality at 

14 days post inoculation (dpi); b) MLM, combined (CombENV) plant mortality at 21 dpi; c) 

GEMMA-MLM, combined (CombENV) plant mortality at 14 dpi; d) GEMMA-MLM, combined 

(CombENV) plant mortality at 21 dpi. The -log10 (P) values from a genome-wide scan are 

plotted against positions on each of the 19 chromosomes. Discontinued horizontal lines indicate 

the genome-wide significance threshold. 
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Figure A.10. Total number of quantitative trait nucleotides (QTNs) detected by the 4 models in 

four sclerotinia stem rot resistance traits. The X axis represent the traits (DW, days to wilt; 

LP_3dpi, lesion phenotypes at 3 days post inoculation; LP_4dpi, lesion phenotypes at 4 days post 

inoculation; LP_7dpi, lesion phenotypes at 7 days post inoculation) and Y axis represent the 

number of detected QTNs by each of GWA models. 
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Figure A.11. Manhattan and quantile-quantile (Q-Q) plot of single-locus and multi-locus GWA 

models for Sclerotinia sclerotiorum resistance trait, days to wilt (DW) (a-d) in rapeseed/canola. 
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Figure A.12. Manhattan and quantile-quantile (Q-Q) plot of single-locus and multi-locus GWA 

models for Sclerotinia sclerotiorum resistance trait, lesion phenotype scores at 3 days post 

inoculation (LP_3dpi) (a-d) in rapeseed/canola. 
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Figure A.13. Manhattan and quantile-quantile (Q-Q) plot of single-locus and multi-locus GWA 

models for Sclerotinia sclerotiorum resistance trait, lesion phenotype scores at 4 days post 

inoculation (LP_4dpi) (a-d) in rapeseed/canola. 
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Figure A.14. Manhattan and quantile-quantile (Q-Q) plot of single-locus and multi-locus GWA 

models for Sclerotinia sclerotiorum resistance trait, lesion phenotype scores at 7 days post 

inoculation (LP_7dpi) (a-d) in rapeseed/canola. 
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Figure A.15. Distribution of five phenotypic traits BLUE values of evaluated rapeseed/canola 

lines for Sclerotinia sclerotiorum resistance. Five traits are: LL, lesion length; LW, lesion width; 

PM, plant mortality; LL_AUDPC, lesion lengths area under disease progress curve (AUDPC) 

calculated using 7 time points reading, LW_AUDPC, lesion widths AUDPC calculated using 7 

time points reading. (a-e) represents distribution of five traits for spring ecotypes genotypes; 

whereas (f-j) represents distribution of five traits for semi-winter and winter ecotypes genotypes. 

 

   

   

   

   


