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ABSTRACT 

Online communities provide a unique environment where interactions performed among 

its subscribers who have shared interest. Members of these virtual communities are typically 

classified as trustworthy and untrustworthy. Trust and reputation became indispensable properties 

due to the rapid growth of uncertainty and risk. This risk is a result of cyber-attacks carried out by 

untrustworthy actors. A malicious attack may produce misleading information making the 

community unreliable. Trust mechanism is a substantial instrument for empowering safe 

functioning within a community. Most virtual communities are centralized, which implies that 

they own, manage, and control trust information without given permission from the legitimate 

owner. The problem of ownership arises as actors may lose their reputations if the community 

decided to shut down its business. Sharing information is another valuable feature that aids 

lessening the impact of dishonest behavior.  

A new trust model called “TrustMe” was developed in this research as a reliable 

mechanism that generates precise trust information for virtual communities. TrustMe consists of 

several factors that aim to confuse untrustworthy actors, and to make the generated trust score is 

hardly reversed. A blockchain-based trust model is also developed to address the problem of 

ownership as well as offering a decentralized information sharing mechanism through a distributed 

application called “DATTC.” The efficiency of the proposed models was identified by conducting 

various analytic experimental studies. An unsupervised machine learning method (density-based 

clustering) was applied using two different datasets. Also, graph analysis was conducted to study 

the evolvement of communities and trust by finding connections between graph metrics and trust 

scores generated by TrustMe. Finally, a set of simulations using stochastic models to evaluate the 

accuracy and success rates of TrustMe, and a simulation set mimicked the blockchain-model in 
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alleviating the influence of Sybil attack. The relationships among actors were hypothesized as 

actors divided into trustworthy and untrustworthy performing cooperative and malicious attacks. 

The results of the study prove that TrustMe can be promising and support the first hypothesis as 

TrustMe outperformed other trust models. Additionally, the results confirm that the blockchain-

based trust model efficiently mitigates malicious cyber-attack by employing cross-community 

trust and preserves ownership property. 
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1. INTRODUCTION 

1.1. Overview 

The rapid growth of new technologies introduces many solutions to a range of today's 

problems but, at the same time, comes with several challenges. The world of the internet is 

evolving with new emerged technologies such as cloud computing and blockchain. These 

technologies are designed to leverage the use of online applications such as open electronic 

markets, peer-to-peer (P2P) applications, social media. These applications foster the interaction 

between users; people can easily interact with each other to use services, to sell/buy products, to 

chat, to deliver/receive goods, etc. Online applications involve entities and individuals as central 

players. As these entities play a vital role in online communities, their actions have a significant 

influence on the system's reliability and the experiences of others. 

P2P communities are distributed decentralized applications that directly allow peers to 

transact, share, and exchange information [1]. The dynamism of P2P communities means that 

nodes/peers can join and leave without informing the others. In this case, anonymity, risk, and 

uncertainty become key attributes of such communities. Authors [2] state that the rate occurrence 

of cyber-attacks is increasing, meanwhile it enforces entities to find out sufficient protection.  

Potential incomplete or distorted information can be exploited by malicious attacks that urge the 

need to establish a mechanism that aids in addressing and managing risks and uncertainty.  

Generally, online users need to make their own decisions and judge others with the absence 

of face-to-face cues [3, 4]. With the lack of knowledge plus the lack of historical information, how 

can people trust each other? The rate of risk usually reaches at high levels when dealing with 

anonymous entities/individuals. Therefore, addressing the issue of uncertainty is to develop a 

mechanism that can establish trust and reputation relationships among peers, and the trust level or 
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trust score should be accessible to all members in a community. Trust has become an essential 

dimension that helps members achieving their reasonable expectations.   

Although the development of trust mechanism can assist online entities, the majority of the 

proposed models/mechanism is still subjected to malicious behaviors which means trust can be 

manipulated. Many researchers have proposed a large set of reputation-based trust models to 

address uncertainty problems and ease the decision-making process [5, 6, 7, 8]. However, most of 

these models deal with direct, straightforward malicious behaviors but fail to deal with clever 

malicious behaviors [9, 10]. Also, the miscalculation of the trust score is a major problem of 

computing reputations [11]. Several reputation systems measure the trustworthiness of users by 

summing a peer’s ratings and finding the average to calculate the overall reputation score. 

Unfortunately, there is no way for such a system to distinguish between a peer who consistently 

receives a certain rating and a peer whose behavior has resulted in a variety of negative and positive 

reviews. Likewise, the number of reviewers is important in such a system, since, for example, a 

peer with a few good reviews in total can outshine a peer with thousands of mixed reviews.  

Additionally, any data-driven model is customarily experienced the problem of cold-start. 

Trust models are among these data-driven models that encounter this problem. The difficulty of 

drawing a logical conclusion or drawing inferences for users or for whatever entity due to lack of 

sufficient information is called cold-start problem [12]. When a newcomer joins a community with 

no prior history or interaction, he/she will suffer from this problem [13, 14]. Cold-start is known 

as the main disadvantage/challenge of any reputation-based trust model. For example, when a new 

seller joins an online community and starts his/her own business, he/she has no prior transaction 

which means no history and no reputation [12]. Buyers may be afraid of dealing with sellers who 

have no reputation. The business owner will suffer at the beginning until building a good 
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reputation, but the business may be gotten collapsed before building a reputation. According to the 

best knowledge of the researcher, there is no reputation-based trust model that addresses the 

problem of cold-start, all cold-start solutions are connected to recommender systems, not to 

reputation-based trust models. Therefore, a model that is called Trust-By-Contract is proposed as 

a complementary model to the TrustMe model to solve the cold-start problem.  

Furthermore, the need for managing identity is particularly noticeable in the virtual world. 

Even in the real world, this problem still exists.  One person may have a bunch of identity 

documents such as driver licenses, passport, library Id, and others. In cyberspace, online identity 

is globalized, and it does not recognize national boundaries. Thus, the problem is more 

complicated. Identity management (IdM) concerns the management of identities that are 

commonly connected to individuals, their authentications, authorizations, and privileges [15]. IdM 

models are confined to specific domains with a commitment to be tied to these domains’ 

boundaries. The aim of these models is to find an environment that is secure and effective in 

reducing cost, time, and repetitive tasks. However, the main challenge is that the majority of these 

models are centralized. Being centralized means these models are controlled by a single entity and 

vulnerable to a data breach. The data breach has become a critical problem since it constantly 

happens on a regular basis. In 2017, Yahoo suffered a significant data leakage of its users’ data 

which around 3 billion accounts were breached. Another accident occurred with Uber when 57 

million users’ private data got breached [16]. As soon as the leakage occurred, it is possible that 

the dark web gets advantages of masquerading identity, damaging reputation, and invading 

privacy.  

This study is focusing on managing identity from the angle of trust and reputation. In many 

cases, it is sometimes unfair to have multiple identities and multiple reputations for the same 
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person, particularly in e-commerce communities. For instance, one seller is running a business on 

Amazon; this seller may decide to expand the business and open a new account on eBay selling 

goods or services. The same seller has multiple accounts and multiple reputations. This seller may 

desire to migrate his/her good previous Amazon reputation to be used on eBay. All of these online 

platforms do have a mechanism to share reputation information. Here, blockchain technology can 

play a significant role in solving this problem. Building a blockchain-based trust model that can 

map all necessary information from different platforms to generate a trust score for each 

individual/entity. The idea of using blockchain brings decentralization which means all reputation 

data can be stored in a ledger that has no single authority, tamper-resistant, and transparency. 

Moreover, sharing information among multiple online platforms (cross-community trust) help to 

lessen the impact of malicious attacks that aim to manipulate reputation dishonestly. The 

foundation of this blockchain-based trust model is the TrustMe model that we propose in this 

study. 

1.2. Statement of Problem 

In peer to peer environment, a peer regularly deals with others to accomplish a payoff. 

However, collaboration in uncertain environments like cyberspace exposes peers to risk.  Fraud 

and deception are common practices that grow continuously in cyberspace [2, 9, 10, 16]. 

Misplacing trust is a major element to be a victim of fraud due to two possible reasons: a lack of 

enough information or misleading information [17]. People need to identify with whom to deal 

and with whom not to deal. Classifying people into trusted and distrusted is not a simple process 

even with users who have a certain level of skills. This process is exhausted which is hard to be 

done manually. Before cooperation, peers need to investigate both the worth and risk of interacting 

with other peers. This helps peers to decide whether to cooperate or not. The evaluation process 
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requires a trust model that serves as a decision criterion. Thus, delivering a precise trust score to 

serve as decision criteria is a critical step that assists users in making proper decisions easily and 

avoids interacting with malicious entities [6, 8, 7, 18].  

Building a trust model is a big challenge. The trust model needs to generate a trust score 

for all participants and usually based on several factors. Several approaches and models have been 

suggested to generate trust scores and categorize users into trusted and distrusted. The majority of 

trust models employ rating values in calculating trust. However, these models usually ignore the 

possibility of dealing with a single rating between two peers. In other words, some rating systems 

use the principle of keeping only the last ratings. When a user provides a rating for a first 

transaction and provides a rating for a second transaction, the system will update the first rating 

by the second rating which means the first rating is disappeared.   

Also, one of the main disadvantages of reputation-based trust models is their inability to 

address the problem of cold-start.  Forming a newcomer's behavior and predicting his/her future 

actions is a major challenge for reputation-based trust models. This challenge is known as a cold-

start issue that appears when newcomers boot for the first time. Assigning an accurate trust value 

for these newcomers requires a strong mechanism. 

Moreover, one-identity but multiple evaluation issues. Here, blockchain plays a significant 

role. It has been stated that reputation-based trust models work better when getting a good volume 

of information that increases the accuracy of the generated trust score. Also, more information 

helps in detecting malicious attacks and malicious users. 

1.3. Significance of the Research 

The significance of the work is that it provides a reputation-based trust model that helps to 

reduce the uncertainty levels among users in a peer-to-peer environment. Malicious users may tend 
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to deceive to change the reputation of one peer. Without such a trust model, those malicious users 

can achieve their goals easily.  This model mainly aims to identify the trust score of a user through 

scanning the history of the user’s transactions/interactions over time. The model can be applied by 

users themselves and online platforms as well. Before performing a transaction, participants can 

explore the trust score of each other by using this model as a tool to ease the process of decision-

making. In this case, peers can lessen the likelihood of being victims of fraud.  

Furthermore, online communities are vulnerable to scams and frauds which lead to the 

necessity of trust models. Users are highly subjected to malicious attacks or dealing with dishonest 

users. Thus, the proposed model is designed with a focus on reducing such malicious attacks. The 

impact of outlier ratings is minimized in this model. These outliers are usually a product of 

launching a malicious campaign in conjunction with temporal information to upgrade or degrade 

the reputation of the target.  

Another important significance is that the proposed work targets to solve the problem of 

having multiple identities and multiple trust scores. Here, the importance of blockchain technology 

presents to be a possible solution to this problem by linking multiple separate online platforms to 

a decentralized platform that preserves all trust information. This station can provide trust 

information to anyone who inquiries about it. Indeed, blockchain technology offers two important 

values: traceability and transparency. One possible scenario is that there are two different online 

platforms such as eBay and Amazon, and users have two accounts (eBay account and Amazon 

account). The blockchain-trust-station can be informed by the required information to update the 

trust score of a specific user after performing a transaction on one platform. If a new transaction 

needs to be performed on any platform, people can learn about the reputation of users even if their 

previous transactions occurred on other platforms. In this case, participants and the operators of 
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the platforms as well can track the users’ behavior, and this is clear transparent since anyone can 

ask for trust information.  

Cold-Start problem is another issue that the proposed work addresses. One of the principal 

shortcomings of the reputation-based trust model is a cold-start problem where a newcomer joins 

a community and has no prior interactions/no history to compute the reputation. The majority of 

the available reputation-based trust models do not take into account this problem. The main point 

is that the solution of the cold-start problem cannot be injected into the trust model which means 

it needs to be addressed separately. Therefore, our work builds a sub-model that aims to address 

the cold-start problem, but it is only applicable to e-commerce communities.   

Another additional significance is that the model operator can regulate some of the model’s 

parameters/factors, depending upon their preferences. For instance, one operator may decide to 

assign higher weights to the most recent transactions and to assign lower weights to the old 

transactions to increase or decrease the power of the transactions. Additionally, the threshold of 

the trust score may differ from one to another. The application may offer some flexibility to the 

user to set his/her own thresholds to categorize users as trusted or distrusted in the case of binary 

evaluation or to categorize users as trusted, semi-trusted, distrusted in the case of multiple 

evaluations. Uncharitable peers may enforce a higher threshold, while lenient peers may choose a 

lower threshold. 

1.4. Research Questions and Hypotheses 

This thesis will have three research questions designed to examine our developed model.  

These research questions and their hypotheses are given below. 

Research Question 1: Does the TrustMe model mitigate the problem of Biased/Malicious 

Reviews? 
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Hypothesis 1: TrustMe model mitigates the problem of Biased/Malicious Reviews. 

Research Question 2: Does the developed model alleviate the problem of cold start? 

(Postponed for future work) 

Hypothesis 2: The developed model alleviates the problem of cold-start. (Postponed for 

future work) 

Research Question 3: Does the blockchain-based trust model efficiently manage multiple 

trusts and alleviate the impact of malicious attacks? 

Hypothesis 3: The blockchain-based trust model efficiently manages multiple trusts and 

alleviates the impact of malicious attacks. 

1.5. Motivations of the Research 

A large number of trust models have been proposed to compute the trust score of peers [6, 

8, 7, 18]. These models aimed to analyze all previous transactions done between peers in order to 

distinguish between dishonest behavior and honest behavior of a peer and then compute its trust 

score. Miscalculation of the trust score is a central problem of computing reputations [11]. This 

can be true when measuring the trustworthiness of peers by simply finding the overall reputation 

score by aggregating a peer’s ratings and thereafter finding the average. Unfortunately, there is no 

way for such a system to distinguish between a peer who consistently receives a certain rating and 

a peer whose behavior has resulted in a variety of negative and positive reviews. Likewise, the 

number of reviewers is important in such a system, since, for example, a peer with little good 

feedback in total can outshine a peer with thousands of mixed reviews.  

Furthermore, running a verification of peers’ identities is a key factor in building a reliable 

trust model. Unfortunately, it is easy for malicious users to create multiple accounts with fake 

identities and use them to increase their own reputation or harm other users. Equally as important, 

because of the increased number of collusion and Sybil attacks, it is extremely problematic to 
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consider only feedback as the single factor to measure the trust of a peer. There is a need to 

improves the kinds of reputation systems by introducing a trust model that incorporates several 

factors to comprehensively measure the trustworthiness of a peer. 

Fraud is increasing in peer to peer environment, especially in e-commerce. Reputation 

systems in e-commerce are at risk of malicious attacks, such as campaigns to falsely upgrade or 

degrade one user’s reputation. In fact, in 2014, the number of fraud attempts was 1.39%, while in 

2015, the number increase to 1.49%. In 2017, the global retail fraud attempts grew by nearly 31% 

according to ACI Worldwide [19]. Also, the fraudulent transactions are increasing during the 

holiday season such as Christmas, Thanksgiving (2%), Black Friday. It is stated in [20] that sales 

on Amazon and eBay are among these transactions that susceptible to fraud with 69%. They further 

stated that the fraudulent transactions on mobile sales reach 64%, while the retailer-owned e-

commerce sites have 55%. This implies that fraud affects all types of e-commerce and can cause 

business failure if not handled correctly. 

1.6. Research Methodology 

This section briefly describes the research methodologies and what types of experiments 

were conducted to evaluate the work under study. 

1.6.1. TrustMe Model Evaluation 

We performed initial experiments to evaluate the promise of the proposed trust model 

“TrustMe.” The method of this research will go through three phases. The first phase focuses on 

applying some analysis techniques ranged from unsupervised approaches, supervised approaches 

to statistical analysis. The second phase focuses on evaluating the TrustMe model in terms of bias 

and malicious attacks by conducting a simulation experiment and using randomly generated data 

based on some settings. In our study, we synthesize the available dataset by adding some extra 
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information that is needed to represent some factors in the proposed model. The third phase 

includes designing an experiment that is based upon the assumption of using blockchain. This 

experiment will mimic the use of blockchain and study its effectiveness in reducing malicious 

attacks and managing online identities. 

1.6.2. Phase-1: Experimental Analysis 

• Density-Based Clustering: evaluating the goodness of the produced clusters.  

• Graph Analysis: selecting some use cases and study the characteristics of these 

cases. Then, clarifying some connections between being trusted or distrusted and 

the characteristics of each user.  

• Correlation Analysis: studying the correlation between each factor and the 

generated trust score to see how each factor influences the produced score as well 

as studying at what rate these factors are correlated to each other. 

1.6.3. Phase-2: Experimental Evaluation  

We are designing a simulation that mimics a set of experiments to evaluate the TrustMe 

model and show its effectiveness and benefits. The first set of experiments evaluates TrustMe in 

terms of its accuracy. The second set of experiments demonstrates the benefit of the TrustMe 

model when it is used in a distributed community, for instance. 

1.6.4. Phase-3: Experimental Evaluation of Blockchain   

This phase will include designing an experiment that is based upon the assumption of using 

blockchain. This experiment will mimic the use of blockchain and study its effectiveness in 

reducing malicious attacks and managing a cross-community trust. 
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1.6.4.1. Simulation Setup 

Before starting the simulation process, we need to prepare and set some sub-models to be 

able to conduct the experiment. These models include a community model, trust model, evaluation 

model, threat model, and transaction model in conjunction with some parameters related to the 

simulation setup.  

1.6.4.2. Community Model 

The duty of this model is to generate a number of actors NOA to shape the community 

under study. Some available datasets are used since they represent real transactions. The actors of 

the given dataset are divided into three groups. The first step will start with the first group as an 

initial community plus injecting this community with a special group of untrustworthy users mu. 

The next step appends the second group of the actors by connecting them to the first group 

depending upon the real information. The final step will add the rest, and in all cases, a group of 

malicious actors will be injected. Mbr indicates the rate of behaving maliciously as the 

untrustworthy actors may behave honestly for a while and then behave maliciously.  

1.6.4.3. Threat Model 

The major threat usually comes from a malicious actor by providing a dishonest evaluation 

to their peers. In order to camouflage their malicious behavior, untrustworthy users tend to perform 

a set of transactions in an honest way to build an attractive reputation waiting for a decisive 

moment to carry out their attacks. This model mainly mimics simple attacks where actors behave 

maliciously overtime after performing transactions. Nevertheless, a malicious campaign attack can 

be conducted as well by launching a set of simple attacks but with more parameters such as time 

frame. A list of possible threats is provided in chapter three. The volume of risk that threatens the 

community is captured by the overall malicious behavior percentage:  
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𝑀𝐵𝑎𝑣𝑔 = (𝑈𝑎𝑟 ∗ 𝑁𝑂𝐴) ∗ 𝑀𝑏𝑟  

1.6.4.4. Transaction Model 

The transactions and ratings are already established in the given datasets. However, since 

the users are divided into groups, transactions need to be initiated correctly after appending each 

group. Untrustworthy users will provide ratings relying upon their plan. For instance, some 

untrustworthy users may want to harm the reputation of their target, while others want to improve 

the reputation of their target. The malicious behaviors as stated above occur based on the malicious 

attack rate Mbr. 

1.6.4.5. Evaluation Model 

The evaluation model simply solicitudes about specifying the assessment criteria to 

evaluate actors. Once a transaction completed, the participated actors may want to evaluate one 

another through a mechanism of evaluation. The rating model uses rating values range between [-

10, +10] as -10 indicates an ultimately negative experience and +10 indicates an ultimately positive 

experience. If a trustworthy actor involves in a transaction with an untrustworthy actor ended up 

with dishonest behavior, the trustworthy actor can provide a negative rating against the 

untrustworthy actor.  

1.6.4.6. Trust Model 

The trust model implements three trust models (TrustMe, PeerTrust, & RawMean) for 

comparison purposes. This component produces trust scores based on each model’s design, and as 

a result, each actor will get three different trust scores. Classifying actors using crisp evaluation 

(trustworthy or untrustworthy) is according to three different trust models and three different 

thresholds.  
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2. TRUST AND TRUST MODEL 

“Trust is a social good to be protected just as much as the air we breathe or the water we 

drink. When it is damaged, the community as a whole suffers; and when it is destroyed, societies 

falter and collapse,” Bok, 1978 [21]. 

2.1. Trust and Reputation  

The concept of trust is pervasive in human societies. By watching our daily lives, people 

can see how they trust the school bus to pick up their kids for the school, how they trust the doctor 

when he/she prescribes medication, or how they trust the police officer to protect their 

communities. There are a massive number of examples connected to trust.  

Trust is defined as a relationship between two parties when one party (trustor) is willing to 

reckon upon the behavior of another party (trustee) [7]. As the trustor has no control over the action 

of the trustee, an uncertainty level will appear as a sign of potential risk involved in the interaction. 

In a social context, trust can be attributed between people, people and objects, and social groups. 

Gambetta [22] defines trust as a level of subjective probability with an expectation that an agent 

evaluates other agents before executing the desired action. This implies that trust is present before 

performing the interaction, and it is calculated due to the trustor's expectations. 

 

Figure 1. Trust and Reputation. 

Reputation is another important term that differs from trust but highly relevant to it. 

Simply, when a person has a good reputation, others can trust him/her, while a person who has a 

bad reputation, others cannot trust him/her. Authors in [23] define reputation as “an expectation 
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about an agent’s behavior based on information about or observations of its past behavior.” 

Therefore, reputation can be employed in establishing trust. 

2.2. Trust and Agent 

Traditional software is designed in advance to deliver some functionalities or to achieve a 

specific goal, and this software follows a number of predefined steps and instructions to perform 

these functionalities and to fulfill the assigned goal. In contrast to traditional software, agents are 

considered smart software applications that might require a minimum human involvement. Agents 

should be designed to find its way to achieve the assigned goal without telling them how exactly 

to achieve this goal [24]. Agents can interact with each other in multiagent systems (MAS). In 

Open MAS, agents are usually deemed distributed autonomous or semi-autonomous entities that 

might behave and make decisions by themselves. These agents can interact and cooperate together 

to complete an assigned task, but they are regularly unrelated and unknown to each other [25]. 

Autonomous or semiautonomous agents have the ability to interact, move, adapt, and evolve due 

to changes in their environments or due to some circumstances. However, this kind of system 

brings some risks since the malicious behavior could appear at any time from untrusted agents that 

their goals might be to fail or change the desired goal for the victim agent. Since agents have the 

ability of mobility, the threat level could highly be grown. 

Moreover, in multiagent systems, a number of protocols and mechanisms organizes the 

interaction among these agents such as resource allocation, stopping agents from altering each 

other, etc., and these protocols might impose some rules to control the environment [26, 27]. 

Therefore, agents need to have a decision-maker component to decide with which they need to 

interact to execute their plan and receive the required service. Enough information about the 

corresponding agent, the environment, and other factors is required for an agent to be able to make 
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a proper decision in order to trust the corresponding agent or not. However, some restrictions could 

lead to a situation when one agent cannot receive a suitable amount of information about the 

targeted agent, so the agent will be in a status of uncertainty to make a proper decision [27]. 

To solve the issue of uncertainty, agents need to trust each other. Trust models’ objective 

is to guide agents in making appropriate decisions to establish trust relationships and then interact. 

Nevertheless, trust models presuppose agents to collect some information about the corresponding 

agents which could be gained through direct interactions or indirect interactions. With direct 

interactions, agents can learn, evolve, and collect some information about the corresponding agent 

that dealt with and then to be able to shape a trust relationship with it. The agent must be able to 

handle some risks such as dealing with dishonest or malicious agents for the first time. In indirect 

interactions, agents need to develop methods to gain information from other agents that are usually 

trusted because of previous transactions and interactions. A variety of issues could appear (i.e., 

lack of information and contradicted information).  

Jansen & Karygiannis in [28] divide the security threats in mobile agents into three 

taxonomies: agent-to-platform, agent-to-agent, and platform-to-agent. The Agent-to-agent 

category, for instance, lists a collection of threats including masquerading, unauthorized access, 

denial of service attack, and repudiation. A masquerading agent might conceal its identity or use 

fake identity in order to deceive other agents that are involved with it in an interaction. In an e-

commerce community, a masquerading agent may exploit the identity of another agent who has a 

good reputation in delivering services or products. For the sake of persuading a victim agent, the 

masquerading agent may use this identity to obtain the victim’s private data and some important 

information such as credit card numbers. In this way, two entities will be harmed and negatively 

affected: the agent with a good reputation and the victim agent. Denial of service attack is another 
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threat in which a malicious or untrusted agent might attack the targeted agent or host agent by 

requesting the same provided service voluminously at a certain time which causes preventing the 

other agents from receiving this service when they need it. An additional possible threat is a 

repudiation that could occur in this kind of system. This threat happens when two agents involved 

in the same transaction or communication, and then one agent controverts that this process 

occurred. This could cause some problems, but a host agent can prohibit agents from conducting 

repudiation without such as preserving the records of the process that has been done to help to 

resolve this issue. These records could be helpful in developing trust models to rate agents based 

on their histories and reputations. Unauthorized access is also a problem with which malicious 

agents can exploit some defects in the platform of a host agent. The host agent might have no 

efficient mechanism to secure the agents uses its platform. Thus, a malicious agent may be capable 

of intruding on another agent through accessing its data and/or code by using its public methods 

(e.g., attempt buffer overflow, reset to the initial state, etc.). Altering the agent code, for instance, 

will absolutely change the agent behavior, and as a result, a benign agent may become a malicious 

agent, and the damage could be disastrous. 

Building a solid trust instrument requires to reveal and understand more issues and 

mechanisms that are used in agent systems. Such a mechanism is how agents delegate tasks to 

each other which is one mechanism that should be known to establish an appropriate trust 

relationship. The common types of the delegation are weak and strong delegations. An agent x 

could assign a weak delegation to an agent y without informing agent y. A simple example of weak 

delegation is stated in [29], a hunter is ready to shoot at a flying bird, and the hunter assumed that 

the bird would continue flying in the same path and direction. He is targeting the likelihood 

position that the bird will move to it in a few moments. By following his plan, the hunter is 
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delegating action to the bird. Due to the lack of knowledge of this interaction, the bird will 

collaborate with the hunter’s plan, and the bird will perform the required action. and this issue is 

primarily relevant to how the agent is secure. A similar scenario to the hunter and the bird could 

happen but maliciously, when an attacker agent is anticipating that some vulnerabilities could exist 

with a victim agent such as some weakness in the authentication process such as the targeted 

system or agent uses a very basic mechanism for passwords. In this type of delegation, to build 

trust relationships, a will-do belief is supposed to be present which is supported by willingness 

belief and persistence belief. Willingness belief means that the designed trust model takes into 

account that the delegated agent has the intention of performing the assigned task. In other words, 

the trust model designed to include modeling the other gent minds or behaviors. Persistence belief 

means that the delegated agent is steady in its behavior. If the delegated agent changes its behavior, 

it means that the assigned task could fail or deliver incorrect benefits. Since trust is essential to 

delegate agents, there are some situations in which trust is absent. This could occur when an agent 

has no choice or no information about the targeted agent, and the agent needs the offered service 

to finish its tasks (blind delegation), or the agent is not free to choose to delegate or not (coercive 

delegation) [29]. This kind of delegation is obviously a big challenge to handle when building trust 

models since agents may be delegated without their knowledge, However, in the strong delegation, 

the two agents that are involved are aware of the delegation. Since agent x wants to delegate agent 

y for performing one or more tasks, there might be some negotiation process including request, 

offer, and others to land up with an agreement between the two agents. Creating this agreement 

requires having a minimum level of trust to be established among agents because agents prefer to 

securely deal with trustworthy and reliable agents that are capable of delivering the requested 

service/benefits. 
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Autonomous agents should be granted with goals and beliefs to be able to execute and 

achieve their plan [29], and these agents could be cognitive. An author in [30] proposes a metaphor 

and refers to it as SDC metaphor: “view a human-computer pair (or any other pair) involved in a 

shared problem solved as a single cognitive system.” This metaphor indicates that human society 

and machine society establish an agent society whey they interact and participate in achieving a 

shared fulfillment of a task. A sophisticated cognitive agent might be equipped with machine 

learning models, including some data mining techniques, natural language processing, pattern 

recognition component, and other intelligent components that allow an agent to gain knowledge 

continuously from different sources by mining the acquired data and as a result, the agent evolves. 

The agent may look for some patterns, and after a while, the agent evolves and develops its 

behavior and responses based on the newly acquired knowledge. Hence, agents can learn and 

anticipate new problems and offering some solutions. For example, a cognitive agent could be 

designed for businesses such as banks to detect credit card frauds. By using machine learning 

models, the cognitive agent can recognize the regular and the preceding patterns of a customer’s 

behavior and outlays and then can identify uncommon activities that could occur. Feeding these 

agents, cognitive agents, with some factual scenarios and situations of embezzlement transactions 

and legal transactions, agents can shape and grow its knowledgebase and then develop its strategies 

to distinguish new patterns of fraudulent behaviors. However, without trust relationships, no one 

as human or agent can delegate tasks to autonomous agents because there is no enough information 

about how the cognitive agent will behave and evolve in long term agreements, or whether this 

agent is capable to protect itself from malicious attacks. For instance, what are the guarantees that 

after a while, an agent software does not behave maliciously and providing illogical and unfair 

sentences for court cases? In addition, in an e-commerce community, how can prevent an agent 
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from being a thief after being evolved over time. In military operations, when an agent is 

responsible for guiding a missile to bomb its target, what are the guarantees that this agent will not 

change the assigned target due to changes in some environment variables. This change could occur 

by the agent itself or by malicious intruders. 

Due to the aforementioned issues, trust clearly becomes a vital element that should be 

present in such an environment where the occurrence of risks and malicious attacks is highly 

possible. Setting up a trust relationship between a human and an agent or between two agents is 

very important to allow that trusted agent to act on behalf of the trustor in doing tasks. Because 

the trusted agent may be provided by sensitive and private data, trust models in such systems 

should offer some mechanisms to convince users that they are dealing with highly trustworthy 

agents, and their data is protected and secure. 

2.3. Related Work 

Feedback plays a significant role in measuring the trustworthiness of a user in most existing 

reputation systems. Using feedback alone, however, as a metric to measure the trustworthiness of 

users is not an effective approach [7]. The feedback parameter was recognized as a fair 

measurement with no prejudice in a series of trust models and reputation systems [31, 5]. There is 

a large list of reputation systems and mechanisms are presented for agent systems and online 

communities. 

The most dominant reputation systems are those in Amazon [32] and eBay [33]. These 

models are created to be supervised and controlled by a central authority. They propose a seamless 

way to identify the reputation of users, and the user themselves can provide their own ratings 

against others. In eBay, the system uses five start system that counts the top two values (4 & 5) as 

+1 (positive feedback) and count the bottom two values (1 & 2) as -1 (negative feedback), and the 
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middle value is counted as 0 (neutral). The models give a global single reputation value by 

aggregating the ratings over six or twelve months and calculating the average. These systems are 

trivial and highly vulnerable to malicious attacks. However, Amazon, in 2015, announced, with 

no much detail, that they replaced the old rating system by a new machine learning model that 

takes into account several factors.  

An adaptive reputation-based trust model for P2P electronic communities called PeerTrust 

was proposed by Li Xiong [7]. Their model showed good results in terms of feasibility and 

effectiveness of measuring trust. The model utilizes a bunch of factors to calculate trust. These 

factors start from user satisfaction which represents the user rating value, the credibility of the 

user’s feedback, the number of the transactions, the transaction context factor, and end with the 

community context factor. Even though the authors suggest a function of trust value or a 

personalized similarity as credibility measurements, the creditability factor is still a challenge that 

needs to be addressed clearly. The first suggested method is vulnerable to malicious users who can 

deceive the function and receive the high value of credibility by behaving honestly for a period of 

time and then behave maliciously. With the second choice, the similarity function may deliver an 

inaccurate value as some systems use the principle of a single rating between two users. 

Nevertheless, PeerTrust is deemed as one of the effective metrics in evaluating users’ 

trustworthiness. 

Sabater and Sierra introduced a decentralized trust model called Regret that utilizes the 

direct experience to represent subjective reputation [34]. This model is mainly designed for multi-

agent systems and incorporates direct trust, witness reputation, and neighborhood reputation 

components. Regret exploits three information sources to be injected into the model: individual 

dimension representing direct experience between two peers, ontological dimension called 
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Sociogram, and social dimension representing third parties. Regret also applied the recency 

function that gives high weight to the recent ratings. The advantage of using a Sociogram allows 

the model to represent different social relationships suchlike competition and cooperation. 

Notwithstanding, this model does not mention the process of identifying and locating witnesses in 

the network.   

Huynh et al. proposed a trust model called FIRE, which is inspired by the Regret model 

[8]. FIRE consists of an interaction trust that represents the direct interactions between two parties, 

role-based trust, witness reputation. Witness reputation represents the opinion of other agents 

(witnesses) about one agent’s through monitoring its behavior and certified reputation components 

that represent previous ratings received from the agent’s partner after performing some interactions 

in the past. These components coalesce together to produce trust scores for agents. The direct trust 

component of Regret is employed in FIRE, taking into account the temporal information by using 

a special recency function that differs from the function used in Regret. The duty of this function 

is to calculate the age of interaction. However, trust models that mount direct interaction in the 

formula are usually vulnerable to con-man attacks known as a confidence trick in which an attacker 

pretends to be honest in several interactions to fabricate a high trust score. Thereafter, when an 

opportunity of a high-risk interaction appears, the attack swindles the victim. Con-man attacks 

could occur in a cyclic form as the attacker maintains a good reputation [9]. Malicious agents can 

attack FIRE and Regret models through using a con-man attack because the two models do not 

take into consideration the malicious behavior of witnesses as well as a conspiracy among 

malicious agents. Salehi-Abari and White in [10] conducted simulation experiments against FIRE, 

Regret, and other reputation models to evaluate if they are con-man resistance or not. The study 

proves that when the malicious agent is cognizant of the settings of the model parameters/variables, 
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the FIRE model can become susceptible to cyclic attacks. Additionally, even though the malicious 

agent has no comprehension about the parameters of the Regret model, it can be susceptible as 

well.       

Carboni [35] proposed a decentralized and distributed feedback management system that 

can be built on top of the Bitcoin blockchain. Yet, the proposed system has no evidence to support 

collusion resistance. Collusion resistance is the ability to prevent malicious users from providing 

misleading feedback or using fake identities to build a good reputation for their stakeholders [18].  

The mechanisms of these models extract the rating values based on computing the trust 

itself and neglect the possibility that the ratings can be either positive or negative, with the 

assumption that both categories have different properties and impact. This possibility is handled 

in the Trust-Me model. Moreover, only a single rating exists between two users, which means one 

user can receive one rating from each user, and this value can be updated without recording the 

previous rates. Trust-Me, in general, attempts to lessen the impact of malicious users and 

cyberattacks that target the reputation-based trust model. This work is a step toward building a 

comprehensive, reliable trust model that consists of multiple sub-models that can handle several 

malicious attacks and deliver precise trust scores. 

2.4. The New Model “TrustMe” 

By virtue of the claimed motivations, the TrustMe model is a reputation-based trust model 

developed to evaluate the trustworthiness of an individual/entity. This model is equipped with a 

list of vital factors that exploit the users’ ratings that are received after carrying out an interaction 

as a reputation measure. However, we believe that there is no single trust model that can handle 

all possible situations and solve all related problems such as the cold-start problem. Figure 1 shows 
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the general architecture of a trust center that consists of multiple sub-models. Every sub-model is 

dedicated to addressing a set of issues that are relevant to trust and reputation. 

 

Figure 2. Trust Center Architecture. 

In this section, trust factors are introduced and followed by a discussion of the trust metric 

describing how these factors integrate to address some trust issues. A trust modeling and 

computational framework that can be distributed, implemented, and kept current at scale is a 

massive task. Most trust models target P2P networks that can be seen as social networks where 

edges map out the relationships between peers. The edges may hold weights that are commonly 

employed to represent ratings. By means of performing interactions/transactions, those edges 

become dynamic and evolve over time. They are also relative and respective, as peers may trust or 

distrust one another at fluctuating and networked levels. The outcome of this model is typically a 

global trust score that is linked to a peer/user. This score mirrors the experiences of all peers that 

interacted with the holder of the trust score. The described trust model is called “TrustMe”; this 
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model is reputation-based and consists of several factors. TrustMe model can be adapted to 

accommodate many varying contexts in cyberspace. In systematic and formal terms, this model 

copes with peers/entities and interactions denoted as follows: 𝑒 ∈ 𝐸 ≡ {𝑒1, 𝑒2, … , 𝑒𝑛}, and 𝑖 ∈

𝐼 ≡ {𝑖1, 𝑖2, … , 𝑖𝑚}. Entity e can be viewed as a composition of subsets of popularity, and neighbor, 

whereas interaction i is a composition of rating, timestamp, and context subsets. 

𝑒 ≡ {𝑃 ∪ 𝐷} ≡ {{𝑝1, 𝑝2, … , 𝑝𝑛} ∪ {𝑑1, 𝑑2, … , 𝑑𝑛}} 

𝑖 ≡ {𝑅 ∪ 𝐻 ∪ 𝐶} ≡ {{𝑟1, 𝑟2, … , 𝑟𝑚} ∪ {ℎ1, ℎ2, … , ℎ𝑚} ∪ {𝑐1, 𝑐2, … , 𝑐𝑚}} 

𝑟 ≡ {𝑟𝑒𝑖
}   for one-way rating 

𝑟 ≡ {𝑟𝑒𝑖
, 𝑟𝑒𝑗

}                for two-way rating 

These factors can be measured with a value that falls between a minimum and maximum 

boundary. For example, the minimum value may represent the ultimate dissatisfaction, and the 

maximum value represents the ultimate satisfaction. The Popularity set represents the level of the 

sociality of an actor in a given community. Its values range between [0, 1] ≡

[𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑢𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑟, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑟]: 0 ≤ 𝑝𝑖 ≤ 1 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ {1, … , 𝑛}. So, trust (T) 

can be computed using the driving forces: e and i.        

𝑇 ≡ {𝑡1, 𝑡2, … , 𝑡𝑛} 

𝑇𝑒(𝐸 ∪ 𝐼) 

The trust attributes/factors collaborate together to build the metric of trust model and 

eventually generate a trust score. 

2.4.1. Trust Factors (Independent Variables) 

Trust factors are described as independent variables that shape the trust model. The 

developed model consists of eight factors. These factors aimed to enhance the mechanism of 

evaluating trustworthiness: 
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• Number of edges for each node {# of ratings} (d) 

• Positive received ratings (PRR) 

• Positive given ratings (PGR) 

• Negative received ratings (NRR) 

• Negative given ratings (NGR) 

• Transaction Volume (tv) 

• History influence (h) 

• Popularity factor (p) 

In the rest of this section, we describe and illustrate the importance of these parameters. 

We formalize the factors and show how they incorporate in evaluating the trustworthiness of a 

peer/an individual. 

2.4.1.1. Factor 1: Number of Edges for Each Node {# of Ratings} 

Some users may have a higher number of ratings than others, so the user’s trust score 

cannot be captured in a fair way when only applying a simple aggregation of the total number of 

ratings. Also, with the lack of identification, users can increase their rating by creating multiple 

accounts, performing transactions using their own accounts, and then rating transactions. The total 

number of received ratings for each user can be calculated by counting the degree of the node 

which is the total number of its neighbors. The formula of this factor is given as follows: 

𝑑𝑖 =  ∑   𝐴(𝑖, 𝑗)

𝑛

𝑗=0

 

where A is the adjacency matrix; di denotes the degree of node i (number of ratings); n denotes the 

number of nodes in the network.  
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2.4.1.2. Factor 2: Positive Received Ratings (PRR) 

PRR is a metric that measures the centralization of the positive received ratings used to 

minimize the influence of malicious behaviors. For instance, the bitcoin-OTC and bitcoin- Alpha 

rating systems allow only one rating per user-pair. This means that if user A gives a rating to user 

B for a transaction and wanted to rate him/her for a different transaction, the rating system would 

remove the previous rating and update it by the new rating. With this enforcement of rating, users 

are affected by malicious campaigns to attack users by replacing positive reviews with negative 

ones or vice versa. To account for this, the median positive received rating is an important factor 

that must be taken into consideration. By taking the median of positive ratings, it assists in avoiding 

the impact of outlier values, such as bots or malicious users. The formula for this factor is given 

as follows: 

𝑃𝑅𝑅(𝑢𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑛  𝑖𝑛. 𝑟+(𝑢𝑖, 𝑣𝑗)} 

2.4.1.3. Factor 3: Positive Given Ratings (PGR)  

The median of positive given ratings is a metric that measures the centralization of the 

positive given ratings and is currently not used in this model but listed to be used in future work 

such as analyzing the user’s behavior. This factor is highly useful for this purpose, and it also 

reduces the impact of outlier values that may exploit by malicious users. The formula for 

calculating the PGR factor is given as follow: 

𝑃𝐺𝑅(𝑢𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑛  𝑜𝑢𝑡. 𝑟+(𝑢𝑖, 𝑣𝑗)} 

2.4.1.4. Factor 4:  Negative Received Ratings (NRR)  

The median of negative ratings is a metric that scales the centralization of the negative 

received ratings. This factor is employed in the model and represents the negative feedback 
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received for an interaction usually ascribable to inappropriate behavior. The formula for 

calculating the NRR factor is given as follows: 

𝑁𝑅𝑅(𝑢𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑛  𝑖𝑛. 𝑟−(𝑢𝑖, 𝑣𝑗)}  

2.4.1.5. Factor 5: Negative Given Ratings (NGR)  

The median of negative given ratings is a measure for finding out the central value of the 

negative given ratings and depicts the level of bad behavior received in an interaction. NGR is 

neglected in this model to be employed in future work since it complements PGR in observing the 

user’s behavior. The formula for calculating the NGR factor is given as follows: 

𝑁𝐺𝑅(𝑢𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑛  𝑜𝑢𝑡. 𝑟−(𝑢𝑖, 𝑣𝑗)}  

2.4.1.6. Factor 6: Transaction Volume (tv) 

Transaction volume tv represents the size of a transaction, usually in the form of currency. 

In the context of business savvy, the transaction volume is an important element that cannot be 

ignored and should be involved in computing trust. This factor will be employed as an extra 

defense line that collaborates with other factors in minimizing the impact of malicious attacks. tv 

is a weight that maximizes or minimizes the influence of the provided feedback/rating. In case of 

having a transaction with a small amount, the power of the provided feedback will be small as 

well, and in case of having a transaction with a large amount, the power of the provided feedback 

will be large. If this factor is not required, it can be ignored by assigning one to tv so that all 

feedback will be treated equally. 

2.4.1.7. Factor 7: The History Influence 

The history factor is portrayed by decency function which computes the age of the rating. 

In many cases, to assess the user based on the persistent pattern of his or her behavior, it is logical 

to give very old rates a lower weight, while the most recent rates should receive a higher weight. 
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If the history factor is not necessary, it can be ignored by assigning the value “1.0” to a weighting 

factor h. For instance, if ratings are distributed in a period of one year, then weights can be sliced 

as follows {the range is between [0, 1] and the total = 1}:  

if (t ≥ 0m and t ≤ 3m) then H = 0.45  

if (t > 3m and t ≤ 6m) then H = 0.30  

if (t > 6m and t ≤ 9m) then H = 0.20  

if (t > 9m and t ≤ 12m) then H = 0.05  

where t indicates timespan and m indicates months. This factor can be used as follows: 

𝑃𝑅𝑅(𝑢𝑖) =  𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑛  ℎ ∗ 𝑖𝑛. 𝑟+(𝑢𝑖, 𝑣𝑗)} 

Dividing the history of all ratings into several periods is challenging. Moreover, generating 

multiple thresholds is required and can be obtained by the user when he or she wants to identify 

their own preferences. Some users may prefer to increase the power or the weight of the most 

recent rates and reduce or ignore the oldest ones, usually based on some criteria. The slicing 

process can be done with the help of a Gaussian distribution function, with a threshold assigned to 

each slice. The following is the Gaussian distribution formula: 

𝑓𝑔(𝑥) =  
1

√2𝜋𝜎2
𝑒

−(𝑥−𝑎)2

2𝜎2  

For example, the bitcoin-Alpha and bitcoin-OTC datasets are used in our experiments and 

have the following distribution after standardizing the time and then applying the Gaussian 

distribution. Bitcoin-Alpha is with mean = (1347115565.43) and standard deviation = 

(33949905.54), and Bitcoin-OTC is with mean = (1355711027.46) and standard deviation = 

(33447387.80). By finding the mean (μ) and the standard deviation (σ) of a single user, it is easy 

to generate several periods. Figure 3.a and 3.b show the time distribution of the two given datasets. 

 The number of slices can be increased or decreased based upon the preferences or based 

upon the rules of the model’s operator. Also, the threshold values are logically dependent upon the 
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users’ preferences or agreed-upon rules. History weights were divided into five categories, and 

this is used in evaluating our model. These categories are listed in Table 1. 

  
a: bitcoin-OTC dataset b: bitcoin-Alpha dataset. 

Figure 3. Time Distribution of the Two Datasets. 

Table  1. Distribution Rules. 

Rule Weight 
if (t > µ + 2 σ) w1 

if (t > µ + σ and t <= µ + 2 σ) w2 

if (t > µ - σ and t <= µ + σ) w3 

if (t > µ - 2 σ and t <= µ - σ) w4 

if (t <= µ - 2 σ) w5 

 

2.4.1.8.  Factor 8: Popularity 

Popularity is a metric that refers to how social a user is within a community. Popularity is 

evaluated by counting the number and quality of links to a user to measure how important he/she 

is in the community. The assumption is that most important user, who receives more links from 

other users, will be more influential than less active users, and the weight of their ratings will be 

raised in proportion to their popularity. The well-known Page-Rank algorithm is employed to 

compute the popularity factor. The formula is given as follows: 

𝑃𝑟(𝑢𝑖) =  
1 − 𝑑

𝑁
+ 𝑑 ∗ ∑

𝑃𝑅(𝑢𝑗)

𝐿(𝑢𝑗)
𝑢𝑗 ∈𝑀(𝑢𝑖)

 

Table 2 summarizes the variables that are incorporated to shape the dimensions of the 

proposed model. The values of these variables are regularly obtained by performing 
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interactions/transactions between parties/users. Therefore, the generated trust scores are dynamic 

due to more interactions performed with different values assigned to the employed factors, and 

this may raise or lower the trust depending upon the interaction satisfaction. 

Table 2. Summary of the Factors of the Proposed Model. 

Factor Description Range 
h indicates the prevalence of the rating historically (the age of the rating/timestamp). [0, 1] 

p indicates the level of sociality (how the user is popular in a community). [0, 1] 

𝒅+ denotes the total number of the positive received ratings. [0, 1] 

𝒅− denotes the total number of the negative received ratings. [0, 1] 

tv denotes the transaction volume (context); to ignore its influence, let tv=1. [$Min, $Max] 

d 

denotes the total number of ratings that one user receives. the total number of 

incoming ratings for a user representing the number of positive ratings and the 

number of negative ratings. 

[0, Max] 

𝜽 
a weight for the second part of the equation; determining the influence level of this 

part. 
[0, 1] 

𝛄 
a weight for the second part of the equation; determining the influence level of this 

part. 
[0, 1] 

2.4.2. Trust Score (Dependent Variable) 

The outcome of the proposed model is a trust score, calculated by the provided factors that 

form the trust metric. To measure the trust score of an individual, the model needs to extract the 

required data for each factor form the working environment. The factor PRR depends on the 

positive given rating values; NRR depends on the negative given rating values, and so forth. A 

high number of interactions improves the accuracy of the produced trust score. The variations in 

the trust factors might increase or decrease the trust score.  

2.4.3. TrustMe Model 

In this section, the overall model is presented. This model is inspired by the PeerTrust 

model with some differences. A user's trustworthiness is established by evaluating the user 

employing all factors presented above. The formula of the model is given as follows: 

𝑇(𝑒𝑖) = (𝜃 ∗ 𝑑+ ∗  (𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑑+

 𝑡𝑣𝑗 ∗  𝑝𝑗  ∗ ℎ𝑗  ∗ 𝑟+(𝑒𝑖, 𝑒𝑗)}) + (γ ∗ 𝑑−

∗ (𝑚𝑒𝑑𝑖𝑎𝑛 {𝑗=0
𝑑−

 𝑡𝑣𝑗 ∗  𝑝𝑗  ∗ ℎ𝑗 ∗ 𝑟−(𝑒𝑖, 𝑒𝑗)}))) 
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where tvj indicates the weight of the transaction volume of a transaction between i and j; pj denotes 

popularity value for user j; d+: the number of users who gave positive ratings to ej; d-: the number 

of the users who gave negative ratings to ej. In order to use the simple form of the model, the 

history factor can be ignored by assigning 1.0 to h and assigning 1.0 to the popularity factor p 

 

Figure 4. A State Transition Diagram of the TrustMe Model. 

In order to guarantee the efficiency of a trust model, a fraud/deception model needs to be 

plugged into the equation. The fraud model is a complementary model that aims to filter out 

dishonest feedback based on predefined criteria. Figure 4 shows a general state transition diagram 

of the trust model. The figure depicts how the fraud component interacts with the trust component 
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to filter out dishonest ratings/feedback. The diagram also explains the dynamism of trust and 

popularity when an interaction takes place. A new trust score will be generated and updated after 

the ratings are filtered out by the fraud analyzer, whereas the popularity value will be updated if a 

new relationship is established. Additionally, the decision of categorizing a peer as trusted or 

distrusted is based upon the value of a threshold so that 𝑖𝑓 (𝑇 ≥ 𝑇𝑟𝑢𝑠𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 𝑡ℎ𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 =

𝑡𝑟𝑢𝑠𝑡𝑒𝑑. The diagram is divided into three sections (popularity, trust, and fraud analyzer). Each 

section portrays the change of states from one to another according to specified rules. 

The TrustMe model provides an indication of the computational modeling and work 

involved in invoking and maintaining a near real-time trust model that can be fully decentralized. 

Additionally, the TrustMe model separates the positive evaluations and the negative evaluations 

to help to reduce the impact of dishonestly upgrading or degrading the trust score. When some 

actors attempt to increase the trust score, they will provide positive ratings to lower the influence 

of negative ratings, but with such separation, their plan hardly succeed. Add to that, other factors 

such as popularity and history that make the goal of such dishonest behavior challenging to 

accomplish. The weights 𝜃 & γ can be employed as rewards and punishments.  
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3. BIAS ISSUE IN TRUST-BASED SYSTEMS: MALICIOUS AND SPONTANEOUS 

ATTACKS 

3.1. Introduction 

Online communities involve an abundant number of people who interact with each other. 

e-commerce web sites, for instance, is one kind of these communities where users interact as sellers 

and buyers. Thus, trust has manifested on the horizon as a crucial element in these communities. 

Trust refers to a relationship when One party (trustor) is willing to reckon upon the behavior of 

another party (trustee) [7]. In another manner, the trustor’s dependence is upon the trustee’s 

behavior. Trust has a big impact on the success of a business. Trust is a factor determining the 

success of a business through evoking the customer’s trust. 

Feedback provided by reviewers is usually used to build the reputation and trust of an 

individual or an entity. A reputation system has become critical to reinforce trust and lessen risks. 

These systems monitor the history of users through gathering and aggregating review values and 

finally propagate the reputation [36]. Therefore, many researchers introduce trust models that are 

based on reputation (reputation-based trust models).  The major intention of this kind of model is 

to assist in estimating the trustworthiness of an entity/individual employing users’ feedback. 

Accordingly, the quality of future activities of a trustee can be expected [7, 37]. Another evident 

intention for trust models is mapping users to one of their cues/traits to be classified as honest or 

dishonest. Such models help to guide people making a proper decision when they decide to sell or 

buy goods using online platforms such as eBay and Amazon. This practice implicitly drives users 

to behave and tie with veracity, honesty, and probity which eventually establish a trusted 

environment, and also it can impede malicious behaviors [36]. 
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Frivolous small biases in users’ feedback could negatively affect the computation process 

of trust values. If the trust model does not have a mechanism addressing such an issue, this bias 

may substantially weaken the accuracy of the trust model which makes its presence and absence 

more alike. Users may misconduct when they provide feedback on others and generate false 

information, and this behavior may distort the trust level of an individual or an entity. The 

pervasiveness of bogus reviewers who gives misleading feedback is apparent, but it is difficult to 

disclose because some reviews are provided in a professional, malevolent way that shows them 

factual and logical. These practices create what is called bias. Behind this bias can perhaps be a 

malicious attack or perhaps spontaneous misbehavior. Designing a trust model, hence, that can 

abolish or macerate the impact of bias, is a major challenge. For the sake of simplicity, studying 

and dealing with the process of detecting biased reviews should be conducted separately because 

it requires a canny mechanism and considerable ingenuity. Ultimately, this mechanism can be 

injected into the trust model to handle bias problem. 

3.2. Bias 

Cambridge dictionary defines bias as “the action of supporting or opposing a particular 

person or thing in an unfair way, because of allowing personal opinions to influence your judgment 

(2018).” Whilst Sackett defined bias as “any process at any stage of inference which tends to 

produce results or conclusions that differ systematically from the truth”  [38]. The trust model 

becomes a paramount player that helps in sieving the inundate of information and supplying people 

with metrics that facilitate and ease the process of decision-making. The information source such 

as online reviews that are used in reputation-based trust models might be biased/attacked and 

consequently twist a user’s opinion into a specific direction. It is essential to avoid dealing with 

detrimental reviews or information in order to hinder misleading users. Remedying and 
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determining the causes and the occurrences of bias, therefore, is indispensable to collect unbiased 

information and calculate trust correctly and more precisely. Generally, bias can be divided into 

two main categories: spontaneous bias and malicious bias. Both categories can delude users 

through feeding the trust model by contaminated reviews. 

3.3. Dual-Process Theory  

Basically, bias can be divided into two major categories: spontaneous bias and malicious 

bias/attacks. Understanding the behavior of users whether they provide explicit or implicit biased 

reviews magnetizes the attention toward Dual-Process Theory. In this theory, psychologists have 

figured out that humans have two different ways of thinking [39, 40, 41]. Dual-process theory 

sheds light on the process of how people behave as a reaction to the received information. The 

goal behind applying dual-process theory in the context of bias is to crystallize how reviewers 

became biased when giving their ratings. Since many psychologists have developed this theory 

across different cognitive domains, nearly all of them asserts that the characteristics of each way 

of thinking are very similar [39, 40]. On the first hand, the premier way of thinking is called system 

1, heuristic system, implicit system, etc. Some of the characteristics of system 1 are unconscious 

reasoning (intuition, subconscious), mostly linked to emotions, implicit, automatic, low effort, and 

fast. On the other hand, the other way of thinking is called system 2, systematic, explicit system, 

etc. The characteristics of this way are conscious reasoning, mostly disconnected from emotions, 

explicit, controlled, high effort, and slow [42, 39, 40, 41]. 

The following example provides a simple illustration of the difference between the two 

ways of thinking: the first system corresponds to when people think of calculating a very simple 

addition or subtraction such as 1+1 = 2 or 1-1 = 0. Whereas the second system corresponds to when 

people think of calculating a more complicated equation that stimulates conscious thinking such 
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as   √7889
3

976⁄ + 645. The first equation requires low effort and will automatically be solved, while 

the second equation requires high effort and solving it will be slower than solving the first equation. 

The following section briefly discusses two renowned dual-process theories: Elaboration 

likelihood model, and the heuristic-systematic model will be discussed briefly as they are 

renowned dual-process theories. 

 

Figure 5. Dual-Process Theory. 

3.3.1. Elaboration Likelihood Model (ELM) 

ELM is a dual-process theory of information processing developed by Richard Petty and 

John Cacioppo in 1980 [43]. ELM introduces two prominent paths for information processing 

which are the central route and the peripheral route aiming to portray the attitude changes [44, 43]. 

Choosing either route reckons on the individual’s elaboration likelihood. If the elaboration 

likelihood is high, the central route will be utilized, and if the elaboration likelihood is low, the 

peripheral route will be utilized [44, 43, 45]. Further, authors in [43]state that the capability of an 

individual to appraise information, his personal relevance, and his motivation affect the elaboration 

likelihood. For instance, people who have a desire, ability, and intrinsic motivation to elaborate 

are supposedly excess their use of cognitive resources in order to assess the information quality, 

and this connects to the central route. 



 

37 

3.3.2. Heuristic-Systematic Model (HSM) 

HSM is a communication model developed by Shelly Chaiken in 1980, and it argues that 

humans can handle messages in two different ways via employing heuristic mode or systematic 

mode [42]. Heuristic processing relies on retrieving judgmental rules stored in memory, and this 

process leads to making a speedy decision disregarding some portion of the information. On the 

other hand, systematic processing relies on analyzing the message content and identifies its 

veracity by looking at relevant information and making a decision based on the analysis results 

[42, 46]. 

3.4. Types of Bias 

Simply, bias can be divided into unintentional bias and intentional bias where unintentional 

bias is considered spontaneous and intentional bias is considered malicious. The two categories of 

bias can be named as normal and abnormal bias, spontaneous and malicious bias, spontaneous and 

malicious bias, implicit and explicit bias, etc. Offering a precise trust preferably requires 

determining whether the detected bias is intentional or unintentional. Reasonably, reviewers who 

have been caught giving intentionally biased ratings should be penalized by reducing their trust 

value severely than reviewers who gave unintentionally biased ratings. 

3.4.1. Spontaneous Bias/Attack 

It is a bias with no intention to cause sabotage or harm. Spontaneous bias can be called as 

an innocent bias and categorized as implicit bias. Since humans are impressionable, reviewers 

confer their ratings unconsciously without deliberate control, and this can be defined as common 

thinking errors that affect people’s decision-making. The spontaneous attack clearly belongs to 

system 1 or heuristic processing in HSM model and belongs to peripheral route in ELM model 

because in such scenario, a reviewer tends to depend on general impression, moods, loyalties, etc., 
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with no much effort, so his/her likelihood elaboration level will below. The following list shows 

some types of spontaneous attacks that are placed in users’ ratings and affect the trust computation 

process. 

3.4.1.1. Systematic Bias 

It is the penchant of supporting a specific opinion repetitively and contrary to the real 

experience. Some research calls systematic bias a simple bias as in [47]. For example, systematic 

bias occurs if a buyer submits low or high ratings in a continuous manner and does not represent 

the genuine experience [47]. Such ratings possess traits that represent the reviewer’s behavior, 

such as being unconscious, fast, low effort, and implicit, and this links to heuristic approach 

processing in HSM and likewise connects to the peripheral route in ELM since the elaboration 

likelihood is low [42, 39, 40]. 

3.4.1.2. Confirmation Bias 

It is the tendency of confirming preceding opinions or beliefs through construing and 

reminiscing information that supports them and ignores the counteractive information. It is also 

called myside bias or confirmatory bias. Reviewers translate the information in a way that supports 

their positions, and this can be linked to overconfidence issue. For instance, when a buyer has 

chosen and bought a specific product based on some beliefs or his/her own interpretations, the 

buyer tends to supply a high rating in order to justify his/her purchase and to support his/her 

opinion. Further, they ignore any opposite information that weakens his/her opinion fleeing from 

confessing that he/she made an improper decision. In other cases, even though before the 

occurrence of the purchase, the majority of available ratings stands against the buyer’s opinion, 

he/she ignores the opposite ratings and only looks at ratings that confirms his/her opinion. 
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3.4.1.3. Groupthink and Bandwagon Bias 

It is the tendency of choosing the same direction as others or following others’ actions 

regardless of the available proof. Authors in [47, 48, 49, 50] mention this phenomenon as 

sequential bias. This bias could happen when a reviewer gets influenced by others and acts 

according to their ratings by giving the same rating (get on the bandwagon) deviating from the 

proper decision. 

3.4.1.4. Endowment Bias 

It is also known as divestiture aversion or loss aversion. It is the penchant of averting losing 

a certain value in order to attain a similar value. Some people think that finding a way to gain ten 

dollars is preferable than losing them. In the rating advisory paradigm, buyers and sellers may 

mutually  evaluate each other such as eBay, and everyone can provide his rating against the other. 

A buyer may give a high rating because he/she likewise wants the seller to give him/her high 

rating, and vice versa, which will decisively produce bias in the community. Reviewers likely 

become more loss averse when they experience obtaining more and more low ratings. 

3.4.1.5. Focalism Bias 

It is also known as the anchoring effect or the anchoring bias. It is the tendency of placing 

reliance intensively on an inceptive piece of information as a guide. The inceptive piece of 

information plays the role of anchor. Consequently, the process of decision-making is driven by 

this anchor, and it may skew the ensuing judgment. For example, due to the inability to handle 

things properly and handily, careless, clumsy users may excessively focus on some factors such as 

the period of the product warranty, which affects the subsequent rating while paying less attention 

to the other factors. Therefore, the anchor of this situation is the product warranty. The price of the 
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product could be an anchor of a thrifty user. This bias is relatively different from one reviewer to 

another, and everyone establishes the rating on his own anchor. 

3.4.1.6. Selective Reporting Bias 

It is sometimes called under-reporting bias or reporting bias. It is the tendency of reporting 

part of the available information and hiding the big picture. Thus, the presented information does 

not reflect the actual reality due to the absence of a large fraction of the information. Such behavior 

increases the rate of uncertainty, and the buyer gets confused and makes decisions that are 

unsuitable for the buyer’s situation. In various instances, buyers tend to refrain from providing 

ratings, which leads to swaying the process of decision making. 

3.4.1.7. Cold-Start Bias 

This type of bias occurs when a new user joins the community, and the system of the 

community has to establish an initial new trust value to the newcomer. Some systems provide a 

newcomer a zero-trust score, which some researchers consider this as unfair bias since people 

generally have some trust even without dealing with others. Other systems place the trust value of 

the new user in the middle (50%). If the system trust values fall between 0 and 1, the newcomer 

will get 0.5 trust value. Critics state that even this type is unfair bias because malicious users may 

open new accounts and easily obtain new trust value at this level, and their old ones might be 

below this value. Thus, this type of bias is largely controversial. 

3.4.2. Malicious Attack/Bias 

It is a bias with obvious premeditation to cause sabotage or harm to the victim. Malicious 

bias is categorized as an explicit bias. Malicious reviewers deliberately and consciously fabricate 

their given ratings to destroy the reputation of an individual or an entity, and the ratings are injected 

in a way to appear as authentic. This type of bias is difficult to detect since it is designed and 
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preplanned with sober-minded thinking in order to appear genuine. Therefore, malicious bias 

belongs to system 2 or systematic processing in the HSM model and belongs to the central route 

in the ELM model. Here, the reviewers’ likelihood elaboration is high because they usually study 

the crime scene and design an attack based on some readings that demonstrated the victim’s 

situation. Malicious bias apparently entails motivation, desire, and ability to fulfill the goal of 

misleading other users. Those malicious reviewers are usually characterized by being conscious 

reasoning, mostly isolated from emotions, explicit, controlled, high effort, and slow in their 

thinking. Accordingly, malicious bias is indeed a malicious attack and threatens the trust 

computation. The following list shows some types of malicious biases that can be injected as 

feedback into the review system and skew the trust computation process. 

3.4.2.1. Singular Malicious Attack/Bias 

It can be called a basic malicious attack/bias. This type of attack is very trivial and simple. 

Its impact is not severely harmful if it is done in a solitary style. Notwithstanding, it can be harmful 

if it joins other types of attacks such as spontaneous or malicious attacks. It happens when a single 

dishonest buyer tries to inject a falsely rating against an honest seller by providing a negative 

rating. Another possible attack is when a dishonest buyer wants to support a seller for whatever 

reason by falsely providing a positive rating. 

3.4.2.2. Sybil Attack 

It is an attack that targets reputation systems and any system that is based on reputations 

with the intention of ruining them [51]. The name is inspired by a book titled Sybil, which 

discusses a case study of a woman named Sybil Dorsett with multiple personality disorders. Brian 

Zill introduced the name of this attack (Sybil attack) in 2002 at Microsoft research [52]. However, 

before 2002, Lawrence Detweiler introduced a threat called pseudospoofing in 1993, which is 
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similar to Sybil attack [53], but it received no considerable attention. Sybil attack depends upon 

the basis of creating multiple pseudonymous identities (Sybils) aiming to tamper a reputation score 

[54, 52]. Consequently, a bunch of fake identities is controlled by a single entity. The power of the 

single entity is enlarged by the number of additional fake identities, so the extra the fake identities, 

the extra the impact will be. This power clearly affects the reputation of an individual/entity 

throughout performing multiple transactions and providing multiple ratings. Sybil attack may 

affect the victim identity and the functioning of the system as well. Undoubtedly, the Sybil attack 

increases the rate of bias in the given ratings and influencing the trust score as a consequence. 

 

Figure 6. Sybil Attack Network. 

3.4.2.3. Self-Promoting Attack 

It is an attack wherein the trust of an attacker can deceptively be maximized by itself. The 

ability to achieve a successful self-promoting attack typically demands to comprehend the 

formulation of the operated model in order to affect the process of its algorithm [55]. Since some 

systems do not require interaction proof to allow reviewers to provide their ratings, in this case, 

the attacker gets a fertile environment to carry out his/her attack. Amazon and other e-commerce 

platforms have started providing a sign “verified purchase” to denote that the given evaluation is 

based on an actual transaction. However, no clear indication shows that the calculation of the 
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reputation ignores unverified evaluations. A self-promoting attack can be carried out in a singular 

fashion (individual collusion) or a group fashion (collaboration collusion). Attackers can shape 

groups to improve their trustworthiness by conferring positive ratings to each other. The 

conspirators may perform some transactions with small amounts to make their given ratings 

verified. Sybil attack, additionally, can partake in a self-promoting attack in which the attacker 

creates multiple fake identities, then interact with and evaluates himself positively using these 

identities [52, 55]. 

3.4.2.4. Masquerade Attack 

It is also called the impersonation attack. It is an attack where one entity successfully 

conceals behind the identity of another entity that ordinarily has a good reputation [28]. A 

masquerading entity can steal the credentials of a legitimate account or use a keylogger. The 

attacker may take advantage of a victim’s over-trust in which trust surpasses the system 

capabilities, so the attacker can easily receive the victim’s credentials, such as leaving the victim’s 

device and account open for a while. The victims of impersonation attacks are probably users with 

high trust or a good reputation. This attack aims to get benefits from the good reputation of the 

victim for whatever purposes. 

3.4.2.5. Malicious Programmed Behavior Attack (MPB Attack) 

It is a prior prepared programmed attack consists of a miscellaneous assortment of 

independent and/or dependent cross-cutting malicious scenarios/scripts that regularly become 

woven together at the attack execution. The term is inspired by programmed behavior in 

psychology, which means that some human characteristics are programmed in advance like feeling 

hungry leads to eating, so people can eat without learning how to eat [56], and psychologists 

sometimes mention to programmed behavior as a response. MPB can be introduced as a collection 
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of malicious scenarios, and each scenario represents a sequence of activities that the attack should 

carry out under certain conditions. Therefore, it is considered a highly effective attack due to its 

ability to cleverly bypass existing defense mechanisms. Forming a more advanced and complex 

attack could lead pernicious forces to build a machine learning model to generate a collection of 

witty malicious scenarios. Commonly, data represents the environment encircling a victim or 

target is injected into the model. This data can be obtained from multiple sources to generate a 

large set of possible scenarios to destroy the reputation of a victim. Although the malicious model 

is programmed before producing harmful courses of action, the model can learn from the proposed 

data and develop new more complex scenarios to be severely harmful. Let’s assume that a group 

of people decided to launch a malicious campaign attack to harm the reputation or reducing the 

trust level of one seller. They can decide to apply the concept programmed behavior attack, and 

everyone in the group will be treated as an independent/dependent path that is responsible for 

generating and executing one or more specific scenarios. The tactics of each path/attacker can be 

executed separately with no need to interact with other paths unless there is a direct dependency.      

• Discriminatory Behavior Attack: it is an attack that is based on discriminating 

between peers when it comes to choosing with whom the bargain will be [57]. For 

instance, a single user chooses only to deal with people who have high trust scores, 

so the rating weights of those people will be high. The weights affect the calculation 

of trust and improve the attacker’s reputation. This kind of attack is commonly 

targeting some vulnerabilities in the reputation systems, and this happens when the 

attacker acquaints the formulation of the trust model. 

• Victims of a Victim Attack (VoV Attack): it is a special version of indirect attacks. 

The indirect target is called a major victim, and the direct targets (minor victims) 
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are other users who interact with the major victim (victims of victim attack). This 

attack occurs when malicious users start harming the reputation of minor victims 

in order to severely harm the reputation of the main victim. When the minor 

victims’ reputations get harmed and reduced, the influence of their feedback will 

diminish due to its low weight, and eventually, the reputation of the major victim 

gets harmed. VoV attack, in some positions, requires knowing the formulation of 

the model to create a craftier attack. 

 

3.5. Norman’s Theory 

Since any attacker needs a plan or a design to perform a malicious attack specifically the 

craftiest ones. This leads the attention toward Norman's theory of action in order to understand 

how humans perform their actions, either maliciously or unmaliciously. Norman’s introduced his 

theory about an individual’s behavior and dissect the human action into seven stages as a structure 

of action: one for goals, three for execution, and three for evaluation [58]. The theory divides the 

stages into two main formulated sections: the gulf of execution and the gulf of evaluation, as shown 

in figure 7. The following is the Seven Stages of Action [58]. 

• Identifying the Goal 

• Forming the intention 

• Specifying an action 

• Executing the action 

• Perceiving the state of the world 

• Interpreting the state of the world 

• Evaluating the outcome. 
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3.5.1. The Gulf of Execution  

This gulf focuses on the process of performing an action. After identifying the goal, the 

first step is initializing the intention and then transformed into a sequence of actions. The following 

three elements of this gulf. 

• Forming the intention to Act. 

• Translating the intention into a Sequence of Actions (specification). 

• Applying and executing actions in the real world. 

3.5.2. The Gulf of Evaluation  

This gulf focuses on the process of evaluation. After finishing the last step in the gulf of 

execution, the process moves to the gulf of evaluation, and the next step is perceiving, followed 

by an interpretation, and eventually, evaluation. The following three elements of this gulf.  

• Perceiving the world after the execution of the actions. 

• Interpreting the perception of the world. 

• Evaluating the interpretation. 

3.5.3. Case Study of Applying Norman’s Theory 

The scenario is for malicious attacks to harm the reputation of a user in one online 

community, so the attacker needs to build a plan for this attack. Based on Norman’s theory, the 

behavior could be as a series of actions as follow (shown in figure 8): 

1. Identifying the goal: the goal is harming the reputation of a seller (victim). 

2. Forming the intention: creating a malicious attack consists of a group of attackers to 

achieve the goal. 

3. Specifying the intention, generating a sequence of actions: 



 

47 

 

Figure 7. Normans’ Theory of Action – Seven Stages. 

a. Study and analyze the current status of the victim. For instance, what is the trust 

score? How many transactions does the victim perform?  

b. Understand how the trust model is working: Let’s take the eBay review system as 

an example since its metric is visible for all users.  

c. eBay uses a raw mean metric, so the attackers can do some calculation to see how 

to attack the victim.  

d. The attackers may decide to: 

i. launch a malicious campaign attack by buying cheap items and providing 

low ratings. 

ii. The attack should be carried out in seven days. 

4. Executing the specified plan in the real world, which in our case is eBay and specifically 

the victim.  
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5. After bridging the gulf of execution, the process moves to the gulf of evaluation: perceiving 

the world and seeing what happened after executing the attack by reading the state of the 

victim after each attack, for example.  

6. Interpreting the perception such as drawing some charts that show how the trust scores of 

the victim got affected over time. 

7. Evaluating the interpretation by comparing the outcome to the intention and the identified 

goal. 

 

Figure 8. Case Study of Applying Norman’s Theory. 

From this scenario, it can be concluded that Dual-system theory and Norman’s theory 

somehow converge in depicting how humans behave. Considering this malicious attack that firmly 

causes bias and negatively influence the trust model, this behavior is clearly connected to System 

2 in dual-system theory which means that the attack is systematic, explicit, and takes much effort. 
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Norman’s theory is a general theory that can occur even in spontaneous actions but with different 

goals. 
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4. BLOCKCHAIN TECHNOLOGY 

4.1. Introduction 

A blockchain is a cryptographically immutable, transparent, distributed, append-only 

ledger with a decentralized consensus mechanism [59]. Blockchain-based systems can append data 

to the ledger but prohibit modifying the prior data. Data is injected as records that are grouped 

chronologically in blocks, and each block is linked linearly with the previous block using 

cryptographic hashes [60, 59]. Bitcoin is the first and one of the renowned applications of 

blockchain introduced by Satoshi Nakamoto in 2008, and the software was released in 2009 [60]. 

Bitcoin is a payment network presented as a cryptocurrency that has expeditiously attracted the 

attention of many interested. The mechanism of blockchain helps Bitcoin to apply the concept of 

pseudonymous payment through generating private and public keys [61, 59]. The sellers and 

buyers can directly exchange over the internet in a peer-to-peer (P2P) fashion without any kind of 

supervision using their digital addresses. Blockchain consists of a set of protocols that allow users 

to transact with one another in a secure environment. Thus, transferring values from one address 

(account) to another on the blockchain implies that the underlying blockchain system is highly 

trusted. The scattered accounts do not require trust to be present between parties, but they place 

their trust on the mechanism of blockchain itself through consensuses that ensure the resemblance 

of all the copies of the distributed ledger. 

The mechanism emphasizes that the processing power will be distributed equally, and the 

miners can precisely verify the identity of the sender, recipient, and specified amount. Due to the 

distributed nature of blockchain, the authority is withdrawn from a single entity and distributed to 

all entities in the network. In this way, Blockchain formulates a new way of interaction through 

enforcing rules and using some algorithms and consensus, which eliminates the necessity of 
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checking the credentials and certifying who is trusted. Therefore, the concept of trust is established 

by securing the chain using specific protocols, validating the transaction, and the blocks for 

tamper-proofing, verifying the availability of the resources to guarantee the transaction execution 

[62]. All these operations and others create what is called a trust trail in the blockchain. The term 

“trustless” becomes one of the characteristics of blockchain-based systems that connotes trust is 

not needed for parties to interact with one another but only trust the blockchain. Table 3 

summarizes some blockchain features.  

 

Figure 9. Simple Structure of the Blockchain System. 

Table 3. A Summary of Blockchain Features. 

Property Description 

Immutability 
All recorded transactions on the blockchain cannot be adjusted 

(tamper-proof).  

Decentralization 

Copies of blockchain can be accessed, made, distributed over a P2P 

network by any node. This means any two nodes can transact with 

each other without intervention from a third party. 

Auditability & Transparency 

As public blockchains are open and accessible by any node, they can 

look up and verify transactions. Anyone can trace the transaction 

history (transparency).  

Fault tolerance 

the prevalence of blockchain replicas, any faults or inconsistency 

have occurred, it can be determined using decentralized consensus 

and can be cured using blockchain replicas.  
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More technically, the blocks are chained with timestamps and validated by miners. Elliptic 

curve cryptography (ECC) and SHA-256 hashing are employed to guarantee data integrity and 

authentication [63, 64]. As miners are in charge of verifying and validating transactions, in the 

bitcoin system [65, 64], the validation process computes a hash with leading zeros to meet the 

difficulty level. Figure 9 portraits a simple structure of the blockchain system. Every block made 

up of the block body that consists of a collection of transactions and the block header that holds 

the block own hash, a version number to track protocol upgrades, and a hash points to the previous 

block. The header further consists of a timestamp, the number of transactions, block size, nonce, 

and Merkle tree fields. The nonce is an abbreviation for number only used once. This value is 

added to a hashed block, and when it rehashed meets the difficulty target. The nonce number is 

used by the proof-of-work algorithm, and miners compete to reach this number to solve the puzzle. 

A difficulty level is a number to govern the time needed to create a new block. In bitcoin, every 

10 minutes, a new block is added, whereas, in Ethereum, every 17.5 seconds, a new block is added 

[66, 67]. This value is updated periodically to make sure that the specified time is met. Merkle 

root is also called a hash tree. It is a hashed based data structure represented in a tree form shown 

in figure 10 where every leaf node is a cryptographic hash of data block, and every non-leaf node 

is a cryptographic hash of its sub-nodes. This mechanism is widely used in distributed systems as 

an efficient method for data verification [64]. 
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Figure 10. Merkle Tree. 

4.2. Types of Blockchain 

There are three major types of blockchains which are public, private, and consortium 

blockchains. Each type of blockchain will be succinctly elucidated in the following sections, and 

table 4 recaps the comparison of blockchain types. 

4.2.1. Public Blockchain 

It is also called a permissionless blockchain in which users can join and transact with no 

access restrictions. This type allows users to view and submit transactions to the public ledger. It 

is not necessary to join the network to submit transactions since some users can join as validators. 

Besides submitting and reading transactions, users can develop and submit smart contracts to the 

blockchain without given permission. No single transaction can be added to the blockchain before 

being valid. The Public blockchain is fully decentralized, which technically implies that no central 

authority exists to control the network [68, 69]. Additionally, the level of privacy of this kind is 

very high as users are not required to disclose their identity. Transparency is another attribute of 

the permissionless blockchain as all transactions are open and perceptible to all actors. Bitcoin, 

Ethereum, and Litecoin are well-known examples of public blockchains. 
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4.2.2. Private Blockchain 

It is also called a permissioned blockchain connoting that this network is not open to the 

public. It is only open for a specific group to join the network and usually through an invitation 

from the network administrators [68, 69]. An access control mechanism is mandatory for such a 

network to manage users and their permissions. Another explanation is that this blockchain comes 

with centralized writing permissions and viewable to the public, or it can be completely restricted. 

Typically, every participant in the network can recognize other participants’ identities. 

Nevertheless, transaction details are only available to participants who have the proper permission. 

An example of private blockchains is the Hyperledger project from the Linux Foundation. With 

this type, the consensus process will be more productive as all actors are not required to participate 

in the process as a single node owns and controls block creation. 

4.2.3. Consortium Blockchain 

It is also called a federated blockchain. It is a semi-public/ semi-private permissioned 

network in which the consensus process is controlled by predetermined nodes across multiple 

organizations using a collection of rules all participants agreed upon [69]. The role of the privileged 

nodes is to sign and validate the block before added it to the blockchain. This network falls between 

public and private blockchains (a combination of centralization and decentralization).  The 

blockchain copies are exclusively distributed among eligible actors (partially decentralized). It can 

be said that consortium blockchain is controlled by multiple central authority (a group of approved 

users) contrary to the private blockchain, which is controlled by a single authority. This sort of 

network employs some of the cryptographic characteristics of the public blockchain with more 

control from the central part. This type helps to leverage information across organizations (cross-

discipline) in order to enhance transparency, responsibility, and more other values. 
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Table 4. A Brief Comparison of Blockchain Types. 

Property Public  Private  Consortium  

Consensus Mechanism  All miners Central entity Set of preselected actors 

Immutability Practically impossible Can be manipulated Can be manipulated 

Centralization Decentralized Centralized Semi-centralized 

Consensus Process Permissionless Permissioned Permissioned 

Protocol Efficiency Low High High 

Power Consumption High Low Low 

Actor Identity Pseudonymous/untrusted Designated actors/trusted Designated actors/trusted 
 

4.3. Byzantine Generals Problem (BGP) 

The Byzantine Generals Problem is also known as interactive consistency and Byzantine 

fault. It is a state when one component or more of a computer system fails to function properly. 

This failure may lead to delivering defective information to other components in the system, 

revealing a problematic behavior. The term introduced in [70] synopsizing the problem of the 

reliability of distributed computing systems and their solutions. The proposed strategies are 

employed in the development of the blockchain system to be more reliable [71].  Byzantine fault 

tolerance (BFT) is a term derived from BGP, and it indicates how a computer system becomes a 

fault-tolerant to this kind of failure [72]. One popular example of BFT is a proof-of-work 

consensus used in the Bitcoin system to allow the system to cope with Byzantine failure. 

4.4. Smart Contract 

It is also called a crypto contract, which is simply a computer program that runs on 

blockchain. A Smart contract manages, verifies, and regulates an agreement between parties and 

automatically enforces the specified obligations. The term engraved by Nick Szabo when he 

proposed this mechanism in the 1990s as a computerized transaction protocol that carries out the 

contractual terms of an agreement [107, 108]. The smart contract can be utilized not only in a form 

of classical contract but also in terms of a general-purpose computation. The smart contract further 

works as an instrument that establishes trust between untrusted parties, which eliminated the 

necessity of trusted third parties. Smart contracts consist of contract storage, balance, and code. 
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These contracts are implemented on the top of blockchains and converted into executable code. 

After deploying the smart contract, a 160-bit address will be allocated to this contract. This address 

is considered a handle of the contract that will be executed when it is used in any transaction. The 

smart contract can read and change the state of its storage [109]. The execution of each statement 

of the contract is stored in the blockchain as an immutable transaction. One major challenge is that 

once a smart contract placed on the blockchain, it cannot be changed or fixed in case of finding 

bugs. Therefore, the design of smart contracts should be done with caution to avoid such situations. 

From a programming perspective, smart contracts can be viewed as forms of objects as in object-

oriented programming (OOP) languages (C#, Java, etc.), which means developers can use all OOP 

concepts when developing smart contracts with a slight difference. For instance, developers can 

leverage from SOLID principles (single responsibility principle, open/closed principle, Liskov 

substitution principle, interface segregation principle, and dependency inversion principle), design 

patterns, etc. All these principles help and ease the process of design DApps and reduce the need 

for change. 

4.5. Ethereum Background 

Ethereum is an open-source distributed public blockchain platform launched in July 2015 

[73]. It is also featured by a state transition system in which assets can be transferred directly 

between accounts. The cryptocurrency of Ethereum is named Ether, which produced by the 

platform as a reward for the winning miner that solved the puzzle. Ether units are represented in 

wei, and one ether equals 1E18 wei. Ethereum is represented by two types of accounts: externally-

owned accounts (EOAs) and smart contract accounts (SCAs). EOAs are governed by private keys, 

while SCAs are governed by their code, and these accounts have ether balance. As a programable 

framework, Ethereum allows developers to write their own codes through smart contracts. Smart 



 

57 

contracts, as illustrated above, are simply pieces of code that represent units of code. These 

contracts can be compiled by Ethereum Virtual Machine (EVM) using the public network nodes 

[74, 107]. One of the popular programming languages that is used to write decentralized apps 

(DApps) for Ethereum is Solidity. It follows the paradigm of object-oriented programming (OOP). 

A “contract” in solidity represents an object that will be placed on the blockchain. Instantiating a 

contract into a smart contract account (SCA) can be done by performing a transaction, or a contract 

calls a method located in another contract. Every contract is connected to an account (SCA). The 

instantiated contract will be tied to a reference, which is a unique address to be used when using 

the contract. Additionally, multiple inheritance and polymorphism are supported in Solidity, and 

abstract contracts are supported as well with which the developer can apply several design 

principles that are compatible with OOP principles. To measure the computational work of 

executing transactions or smart contracts, Ethereum uses Gas as an internal pricing mechanism. 

Thus, transaction fees (Gas) are determined by the computational complexity, bandwidth, and 

storage required for the operation. EVM is hence Turing-complete as such mechanism aids in 

alleviating spam and resource allocation. 

4.6. Trust Concept in Blockchain 

Despite the powerful mechanisms of blockchain that promote the circumvention of trust, 

people still necessitate trust with each other, which means it cannot be removed from the equation. 

Trust is crucial to society and is not obsolete. It is apparent that trust in the blockchain is replaced 

by the aforementioned processes, which are called algorithmic trust [74], yet in fact, algorithmic 

trust does not represent trust between users. For example, when using bitcoin to purchase some 

products, there is no guarantee that the goods or services delivered by the provider will gain the 

desired satisfaction. Bitcoin is just a currency, and its system only ensures that the transaction is 
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executed correctly in a safe environment. The two-way transaction is when transferring bitcoins 

in return for fiat/services/goods, but the Bitcoin system merely tracks one-path of the transaction 

(tracking bitcoins transferring) and leaves the other one without scrutiny. The system does not 

cover many situations and circumstances that occur outside the system such as dealing with 

dishonest parties. This motives to take one further step to handle such a situation where it promotes 

parties to behave properly within the ecosystem. Another challenge is when a face-to-face 

interaction takes place between two individuals who communicate online and then decide to meet 

each other to exchange the product in return for transferring bitcoins. The question is how the two 

trust each other with the absence of a system that shows the trust score for each person. Sas and 

Khairuddin [75] interviewed a group of bitcoin users regarding their expertise and trust challenges. 

They emphasize that the main concern is the risk and trust problem of dealing with dishonest users. 

The findings show that one-fourth of the participants were victims of fraud and misplaced their 

trust. Also, other participants explained the concern of dealing with anonymous people. Based on 

their study, the authors found that the participants prefer not to use bitcoin to buy goods but use it 

as a store of value due to the lack of institutional trust. 

Another point connected to the trust issue is in Ethereum where developers can build their 

smart contract that is a piece of code portraying a collection of rules that can be injected into the 

Ethereum system. The contract depicts an agreement between two parties to interact with each 

other, and the contract is automatically executed when the predetermined rules are met in order to 

govern the transaction [62]. Authors in [76] argue that around 40 percent of smart contracts 

deployed in Ethereum is not trustless infringing the rule of non-manipulability, which means the 

participants cannot verify such smart contracts. Additionally, they state that trust in individuals is 

desired even in the case of trustless smart contracts [76]. This, in turn, again steers us to the point 
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that monitoring the behavior of an individual is quite substantial. People who have high trust scores 

usually behave honestly. In other words, in the case of something wrong by others Intentionally or 

unintentionally, the honest people will often endeavor to solve the problem since it is linked to 

them. Since blockchain-based systems are P2P exchanges, trust can be established through 

building trust networks that can be viewed as social networks where edges represent relationships 

between users that may hold positive or negative weights. These edges are dynamic and evolve by 

carrying out interactions over time. They are also relative, as peers may trust or distrust one another 

at fluctuating and networked levels. For instance, user X may fundamentally distrust user Y but 

highly trusts user Z. There may be myriad possible levels of trust. The proposed model is built on 

the concept of social network, and all users are treated as nodes. 

4.7. Blockchain-Based Trust Model 

The growth of reporting security breaches incidents steers the attention toward an 

important question concerning users’ privacy and ownership. Third-party authorities are 

responsible for collecting, storing, securing, and controlling such private information. Due to some 

seen/unseen vulnerabilities, these central authorities are deemed as easy targets to cybercriminals, 

and users may lose control of their assets/data. One of the important assets that individuals/entities 

may lose is their trust and reputations. The study proposes a blockchain-based model that ensures 

that actors can maintain their assets. This model ensures delivering some crucial values such as 

interoperability between different online platforms, transparency, and ownership, plus reducing 

the risk of cyberattacks that targets the reputation of actors. Furthermore, the proposed model 

introduces a solution of replacing multiple reputations on multiple different platforms by streaming 

these assets from centralized platforms to a decentralized platform. 
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Due to the increased rate of threats that ordinarily aim to purloin private and sensitive 

information, the importance of managing identities becomes more prominent in the virtual world. 

Even in the real world, one person may have a bunch of identity documents such as driver license, 

passport, school Id, library Id, and others. In cyberspace, online identity is globalized, and it does 

not recognize national boundaries. Identity management (IdM) is a framework that concerns the 

management of identities that are commonly connected to individuals, their authentications, 

authorizations, and privileges. IdM models are confined to specific domains with a commitment 

to be tied to these domains’ boundaries [77, 78]. The aim of these models is to find an environment 

that is secure and effective in reducing cost, time, and repetitive tasks. 

However, most of these models are centralized and monolithic. Being centralized means 

that these models are controlled and managed by a third-party authority and vulnerable to security 

breaches. The data breach has become a critical problem since it happens on a regular basis. In 

2017, Yahoo suffered a significant data leakage of its users’ data, which around 3 billion accounts 

were breached. Another incident occurred with Uber when 57 million users’ private data got 

breached [16]. Once the leakage occurred, it is possible that the dark web gets advantages of 

masquerading identity, damaging reputation, and invading privacy. These incidents emphasize that 

users have no control and no ownership of their identities [77, 78, 79, 80]. 

The developed model focuses on managing identity from the angle of trust and reputation 

inasmuch as there is no enough work highlighting the importance of cross-community trust 

management using blockchain. Some identity management principles have a strong connection 

with managing multiple trust and reputations. Therefore, reputation management can get benefits 

from applying some identity management strategies and principles. In some cases, it is unfair to 

have multiple identities and multiple reputations for the same actor, particularly in e-commerce 
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communities. For instance, one seller is already running a business on Amazon; this seller may 

decide to expand his/her business and open a new account on eBay selling goods and/or delivering 

services. In this case, the same seller owns multiple unconnected accounts and multiple 

unconnected reputations placed on different platforms. The new business on eBay will suffer the 

cold-start problem when the business has no previous history or reputation. Buyers may be afraid 

of dealing with sellers who have no reputation. The business owner will struggle at the beginning 

until building a good reputation. Nevertheless, the business may be collapsed before building its 

reputation. This seller may desire to migrate his/her good previous Amazon reputation to be used 

on eBay, yet it is inapplicable. All of the existed online platforms lack a mechanism to share 

reputation information. On top of that, actors have no control over their reputations, and they may 

anytime lose their ownership. Assuming that one entity has built its good reputation for years, and 

suddenly, the third-party platform that hosts this entity decided for whatever reasons to shut down 

its business/servers forever, this entity, as a result, will lose the ownership of its reputation and 

interaction history. 

Blockchain technology can play a significant role in solving the problem of losing control 

and ownership, plus alleviating the impact of malicious attacks. Additionally, it can improve 

interoperability for managing identity/reputation because the reputation is currently managed 

separately at each online platform, and there is no connection between these platforms that have 

similar information that can improve the accuracy of trust and reputation. Also, the administrative 

efficiency can be ameliorated as well as enhancing accessibility. Building a blockchain-based trust 

model that can map all necessary information from different platforms in order to generate an 

accurate trust score for each individual/entity. The notion of employing blockchain establishes 

decentralization, which means all reputation data can be stored in a ledger where no single 
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authority, tamper-resistant, and transparent. Moreover, sharing information among multiple online 

platforms helps to lessen the influence of malicious attacks that aim to manipulate actors’ 

reputations dishonestly. The foundation of this blockchain-based trust model is the TrustMe model 

as an internal trust engine. 

4.8. Identity Management  

Identity management (IdM) falls under the umbrella of IT security. As identity is a 

paramount element of society, the major purpose of IdM is how to connect the rightful actor to the 

appropriate computerized resources. IdM indeed pertains to policies, standards, and capabilities 

that concerns authentication, authorization, and accountability [77, 78, 79, 80, 81, 82, 83]. These 

concerns are bonded to human, software, or hardware for assuring the validity of the identity 

attributes. IdM models are classified into three major categories: siloed, federated, and sovereign. 

4.8.1. Siloed Identity Model (SI) 

The most commonly used IdM models are isolated and centralized where all credentials 

are stored and managed by a single authority (identity provider “IdP”). It is a straightforward model 

where a centralized entity issues credentials to subscribers or allows them to generate their 

credentials to access services provided by that centralized entity. In this setup, credentials became 

shared secrets between the centralized enterprise and the subscriber, which is supposed to create a 

channel of trust between them. These credentials are ordinarily pair of username and password. In 

some instances, it is aggrandized to involve security questions or supplemental factors such as 

biometrics or physical token (multifactor authentication). Identity holders do not have control over 

their credentials, which makes them susceptible to attacks and misuse. Any centralized system 

forms a central point of attack and highly vulnerable to be compromised. Thus, it is dangerous to 

maintain sensitive data on such systems. 
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4.8.2. Federated Identity Model (FI) 

The impulse behind FI is to allow several enterprises to formulate an agreement with an 

exclusive trusted identity provider. This model fastens multiple users’ identities and attributes 

(federation) situated on multiple independent identity management systems  [81, 82, 83, 84]. All 

authentication and permission functionalities are managed and controlled by a trusted identifier. 

Users can thereby utilize the same identity to access many online services rendered by distinct 

providers. The mechanism of FI supports the portability of identity information athwart the 

federated systems since credentials can travel on demand. This establishes what is called “Circle 

of Trust” among these systems. A Single-sign-on system (SSO) is an essential unit of federated 

IdM Model, which is responsible for access control management. SSO orchestrates the 

authentication process between the identity holder and the services provider by passing an 

authentication token [83, 84]. In the case of having one user attempts to access a permissioned 

service, first, the service provider checks whether the user has already been authenticated by the 

SSO. If the authentication is not available, the service provider will inquire about the IdP for 

authentication. Once the service provider receives the verification, the login will proceed. 

Facebook, Twitter, LinkedIn, and Google dispense SSO services that grant users the right to 

employ their social media credentials to log into third-party applications/services. Although this 

model minimizes the risk level by disseminating credentials on-demand and omitting their replicas, 

it requires establishing a degree of trust relationship along with a suitable agreement among 

participated parties. In this setting, substantial matters such as consent, ownership, privacy, and 

transparency remain problematic as the identity provider is still centralized and owns the data. 
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4.8.3. Self-Sovereign Identity Model (SSI)  

The term sovereignty means individuals/entities (subscribers) have the full prerogative and 

ownership of their assets without any intervention from external sources. SSI model enables 

subscribers to manage and control their identities and personal data by themselves without relying 

on any intermediary. Subscribers can safeguard their privacy since they can decide which portion 

of their data can be disclosed and shared in any interaction. They can also hoard their identities on 

their own devices, where no need to entrust a third-party authority. In this setup, blockchain 

technology can be employed to design and build such a system. 

4.9. Review of Blockchain-Based Trust Models 

Distributed trust and reputation management systems are widely used in different domains. 

In this section, a set of proposed distributed trust and reputation models that uses blockchain will 

be discussed in a nutshell. These models aim to enhance some principles such as trustworthiness 

and privacy.   

In [85] a reputation system based on the blockchain technology was proposed. Their work 

intends to address the issue of quantifying reputations by getting rid of personal opinion from the 

transaction. The model records solely a single score either one if the transaction performed 

satisfactorily and zero if the transaction performed unsatisfactorily. The transaction is classified 

positive if and only if the user received the requested file otherwise is classified unsatisfied. The 

transaction is carried out between the sender and requester, and the requested service is a piece of 

data (file) signed by the private key of the sender. In case of getting the right file, the user can send 

a transaction holding a reputation score, timestamp, and a hash of the received file. The miners 

then receive these data encrypted using the private key of the requester. To reduce malicious 
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transactions, they suggest a proof-of-stake system (PoS) to address the problem of cold-start or 

users with low reputations by putting an amount of currency (bitcoins) as a security deposit.    

An additional blockchain-based reputation was developed called privacy-preserving 

reputation system [86]. The model aims to reduce the overhead of transaction processing. A user 

can decide to deal with a service provider (SP) or not is based on the provider's reputation score. 

After performing the transaction, the user will acquire a token from SP. Thereafter, the user can 

evaluate the SP by passing a message made up of the gotten token, SP address, the rating score, a 

signature on the information, a pointer to the last review for the same SP, and optionally textual 

review. They employ a publish-review protocol to carry out this process. The notion behind the 

pointer is to rapidly to calculate the reputation as it is unnecessary reading all reputation records.  

Calvaresi et al. [87] introduced a permissioned blockchain-based reputation system in 

multi-agent systems. The model enables agents to trace the change of their reputations after an 

interaction taking place. Smart contracts are used to transparently calculate the reputations of the 

interacted agents. The reputation scores are then stored on the blockchain along with services and 

their evaluations and this to secure interactions between agents. The architecture of the model 

provides an overall reputation score representing the average of all rating values and a specific 

task value of a given service and role (demander/executor). The agent first needs to be registered 

in the system to be able to provide and/or require services. The agent will initially get a default 

reputation score. Upon interaction completion, agents can evaluate one another based on the 

interaction outcome. The smart contract is evoked when the evaluations of both interactors 

received and notifying the executor with the evaluation submitted by the demander.  

Authors in [88] proposed a scalable and secure blockchain-based trust management system. 

They try mimicking a trusted third party (TTP) through a distributed mechanism to be able to 
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enforce policies, rules, penalties, etc. The design of the model is hybrid consists of 3-layer 

architecture (layer2: global, layer1: shards, & layer0: local) to minimize overhead operations and 

ensure scalability where access delegations and trust appraisals cab be interchanged using 

blockchain. The global layer concerns the security of operations among members of different 

clusters of layer1, which is ensured by using a public blockchain such as Ethereum and encoding 

access control logic in it. For every transaction executed on the blockchain, miners get paid for 

their computation power. The model incorporates ratings by the interacting actors, which is a 

component of the access delegation process fulfilled by blockchain. According to the experience-

derived reputation, the decision can be made to request or delegate access to the resources or not. 

The trust evidence is in the figure of ratings, which can later be employed by mathematical models 

known as computational trust models. 
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5. BLOCKCHAIN-BASED TRUST MODEL “DACCT” 

5.1. Introduction 

The fundamental objective of trust models is to measures and supply trust information of 

actors of a community predicated on their behavior. There are a variety of trust models that cover 

several domains whether employing blockchain or not. Most of them do not target the notion of 

cross-community trust through sharing information. Attempts toward sharing trust information 

have been presented as in [89], authors propose a mechanism of common ontology to transfer 

reputation information between agents. Authors in [90] also propose a model for sharing reputation 

knowledge across online communities called CCR but using a trusted third party to manage trust 

information. In this setup, each online community acquires knowledge about its members, and 

reputation scores are calculated, maintained, and supplied to those members. Communities and 

their members meanwhile lose the benefit of sharing reputation information. Sharing such valuable 

information aids in detecting and alleviating malicious behavior. One actor has, besides, earned a 

reputation over time in one community, and when joining a new different community, this actor 

can take advantage of the portability feature of reputation. 

5.2. DApp Cross-Community Trust Framework (DACCT) 

We propose a blockchain-based trust model that aims to collect data from several sources 

to then compute and share trust information. The generated trust scores will be decentralized and 

stored on a blockchain platform such as Ethereum using a distributed application called DApp 

Cross-Community Trust framework (DACCT). We assume that communities are willing to share 

evaluation data and some other meta-features to produce precise and reliable trust information, 

and we further assume that there an identity management system has already established. The 

framework consists of a set of sub-ledgers and a central public ledger. Every actor owns two 
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immutable private sub-ledgers: a ledger for given ratings and a ledger for received ratings. Also, 

each community owns one immutable private sub-ledger for its actors and their evaluations. The 

public ledger is open to all and contains trust information for all actors. DACCT provides real-

time visibility of trust information for all actors. 

5.3. Design of DACCT 

This section presents the architecture and functionality of the DACCT that we are 

developing to explore the efficacy of applying blockchain technology to the trust domain. It then 

describes our recommendations for designing blockchain-based trust apps using familiar software 

patterns to address the interoperability challenges. Figure 11 shows an abstract view of the 

proposed framework. 

 

Figure 11. An Abstract View of the DACCT Framework. 
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The developed DACCT framework consists of a bunch of sub-ledgers. These sub-ledgers 

are created when an actor is registered in the system and receiving and/or giving the first 

evaluation. The idea behind using sub-ledger is to store only the evaluation data of a single actor 

which helps to rapidly retrieve the evaluation data of this actor instead of storing all actors' 

evaluations in one large ledger. These sub-ledgers are permissioned to the community where the 

transaction carried out and the assigned actor as there is a sub-ledger assigned to every actor as 

shown in figure 12. These ledgers are automatically permissioned to the underlying trust model to 

update the trust information of the involved actors. The public ledger is open and accessible to 

everyone and used to store trust information. This public ledger can be built using the Ethereum 

platform. Moreover, the ownership feature is guaranteed in two ways: first, by storing the trust 

information on a public ledger and secondly by allowing actors to export their ledgers and store 

them on their local devices. These locally stored ledgers can be verified by using its data, and if 

someone tried to tamper these ledgers, they will be broken and become invalid. In this scheme, a 

supervisor node is also needed to manage the community membership processes. This node is one 

of the community nodes, and it is dynamic changing periodically which means there is no 

persistent monitor node. The architecture of DACCT shown in figure 13 and is simply made up of 

three layers as follows:   

• Presentation layer: this layer concerns the user interface of the underlying system. 

It allows users (actors/communities) to interact with the system. The interface could 

be graphical for actors and non-graphical for communities in a form of APIs.          

• Business logic layer: it includes the core functionalities of DACCT. The intention 

of this layer is to process, manage, and transform data received from the data layer 

and applies specified rules and policies to assure consistency and validity. In our 
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case, it works as an intermediary that connects the presentation layer with the data 

layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. An Actor i and its Sub-Ledger of Evaluations. 

• Data layer: it contains functionality for managing the data such as retrieving data 

from the blockchain and creating new trust transactions. This layer is shared by the 

business layer, and it works as a connection between the business logic and the 

blockchain. 

5.4. DACCT Models 

This section describes the purpose and functionality of each sub model in DACCT. These 

models collaborate together to make DACCT more reliable and deliver the required service. 

5.4.1. Community Model 

This model concerns managing community operations such as a new community joining 

DACCT. The new community should register with its blockchain address. In this case, we create 

a public ledger using Ethereum to record all communities with their nonconfidential information 

such as the community size attribute. This is to retain such information to be available to the public 

and all actors just in case one community decided for whatever reason to shut down, so the 
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community public ledger still available and the address used on other records still available as 

well. 

 

Figure 13. DACCT Layered Architecture. 

5.4.2. Monitor Model  

This model concerns observing the behavior of all joined communities. This model 

measures the confidence level of each community. When one community confidence level goes 

below the prescribed threshold, this model alarms all other communities informing them that this 

community is suspicious. The equipped measure in this model is very simple, and it can be a target 

of future work. If one community provides submits evaluations to DACCT with a noticeable 

deviation, this community should be subject to more investigation. This gives a sign of low 

confidence level. The variance is calculated using abnormal deviation from the mean (RDMA) 

computed as follows:  
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𝑑𝑖𝑗 =  |𝑒𝑖𝑗 −  𝐴𝑣𝑔⏟  𝑒𝑘𝑗

𝑘

| 

5.4.3. Actor Model 

This model manages actors’ operations as communities store actors’ information including 

the actors’ blockchain addresses on each actor’s private ledger. This helps to map out actors to 

their evaluation and the communities that submitted these evaluations. So, when we need to store 

the actor data on the public ledger, we can easily get the related data from the sub-ledgers. 

5.4.4. Crawling Model  

The function of this model is to compute factors that are used in our trust model (TrustMe) 

and need to be updated frequently. When a new evaluation is given, we need to recompute positive 

and negative medians. The popularity factor is an additional element that requires to be updated 

after providing a new evaluation. The computed values will be temporarily saved until a new 

evaluation injected to be replaced by newly generated ones.    

5.4.5. Evaluation Model 

This model serves as a manager of the evaluation process such as the rating system.  Every 

community can use this model to store the evaluations provided by its users, and these evaluations 

are exclusively permissioned to the community where the evaluation provided and the participated 

actors.  

5.4.6. Trust Model  

The duty of this model is computing, generating, and updating trust scores based on a set 

of factors. The trust model that is employed in DACCT is TrustMe. The trust score will be recorded 

on public ledger using Ethereum to be available to the public and owned by its actors. When a new 

evaluation provided a new transaction will be carried out on the public ledger to post the new trust 
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score and to end up with a new block added to the blockchain, and this is done by the dissemination 

model. 

5.4.7. Privacy Model  

This model enforces privacy policies on specified fields as a protection mechanism for 

sensitive data. The volume of a transaction, for example, is usually deemed private. The privacy 

model uses sub-models to hash or encrypt some specified values. The encrypted values are 

revealed and decrypted to only the permissioned participants. Additionally, the privacy model 

ensures unlinkability if an actor refuses to link its accounts/identities across communities even 

using its pseudonymous. Thus, the scans the last actor record to check whether the actor allows 

linkability or not.  

5.4.8. Calibrating Model  

It can also be called a standardization model. It operates as an intermediary instrument to 

make sure that all provided data are standardized and consistent. This is because communities may 

use different evaluation mechanisms such as the 5-star system and [-10, +10] ratings. Thus, we 

crave to map out all data to its equivalence to be consistent and reliable when computing trust. 

Another point is that the popularity factor is generated based on the population of each community 

which is considered not fair if these communities vary in their sizes. For example, the following 

naive equation standardizes the popularity value for an actor in a community (Cv).  

𝑝𝑎𝑖
=

𝑝𝑎𝑖

(∑ 𝔖𝑐𝑘
) − 𝔖𝑐𝑣

𝑛
𝑘=1

 

where 𝑝𝑎𝑖
denotes the popularity value of actor i; 𝔖𝑐𝑘

denotes the size of community k, while 

𝔖𝑐𝑣
denotes the size of community v. 
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5.4.9. Dissemination Model  

This model concerns propagating trust information. After computing trust scores by the 

trust model, these scores are passed to the dissemination model to record the new update on the 

public ledger as well as informing all community partners about the new update. Since trust 

information is public, anyone can submit a query to retrieve the trust information of an actor which 

is done by the messaging model. This process can also be done without using DACCT but by 

directly retrieving information from the public ledger using their code/DApp.       

5.4.10. Messaging Model 

The function of the messaging model is to exchange information between the application 

and external entities. It encapsulates messages with its necessary data to be sent to the target. Also, 

unwrapping the received message and the encrypted parts will be passed to the encryption model 

to decrypt it. 

5.5. Software Engineering Considerations in Designing DACCT 

Designing an application that is based on blockchain platforms requires paying more 

attention to some blockchain restrictions such as in Ethereum. The goal of this section is to design 

our proposed trust model to be established on a blockchain, and it aims to focus on applying some 

software design perspectives such as SOLD principles and some design patterns to build an 

effective blockchain-based application and tackle some blockchain restrictions. Software design 

usually is driven by quality attributes that enforce the design to go into a specific direction/solution. 

Since a blockchain-based system offers some values and quality attributes such as transparency, 

interoperability, the design should take these elements into account.  
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5.5.1. Maintaining Extensibility 

Developers are familiar with writing code for an application that interacts with mutable 

data storage. With public blockchains, the situation is completely different as its data is immutable 

once recorded. Therefore, the design of the application shall take into account the issue of 

evolvability as smart contracts cannot be changed once written on Ethereum. This can be fulfilled 

by applying a design pattern that guarantees loose coupling and minimizes integration complexity 

for the client that interacts with the blockchain. Figure 14 shows the Abstract Factor pattern 

handling actors’ accounts.    

This design helps to create accounts for different types of actors such as individual actors 

and institutional actors. The abstract factory design also allows adding a new factory for a new 

type of actor that is not presented at the time of designing and building the application. The new 

code at least adheres to some SOLID principles such as “open to add/close to change” which 

means the existed code will not be changed which also adheres to blockchain restrictions, and the 

design allows the new code to be injected without impacting the existed contracts. The process of 

managing actors’ accounts is transferred to the abstract factory. Concrete smart contracts (actor 

factories: IndividualActorFactory & EntityActorFactory) inherits from the abstract factory and 

customize its methods based on its criteria. We designed two distinct factories to apply the 

principle of separation of concerns (SoC) as the two actors may differ in the behavior of their 

functionalities. Thus, EntityActorFactory targets actors who represent business organizations, 

whilst IndividualActorFactory targets individuals. They are   

5.5.2. Maintaining Privacy 

Blockchain technology applies the notion of pseudonymous by employing private and 

public keys, so this somehow advocates privacy. Pseudonymity makes users use their address 
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instead of their real names. However, this can be seen as data protection but not real privacy. 

However, in the case of using hybrid blockchain, actors’ identities are known in advance from all 

joined communities. In this case, we need a mechanism or design that assures preserving privacy, 

and only permissioned participants can view the private data and reduce transparency level. 

Another point is that maintaining transparency is high when using the Ethereum platform. 

Thus, we need to encrypt some fields using the public key and to be decrypted to actors who own 

the corresponding private key. Other public actors can only read the data stored in the plain format. 

In DACCT, the transaction volume and other values will be encrypted, and thus will not be 

revealed to the public. As DACCT is interoperable, we need to protect actors’ privacy in addition 

to encryption. In this context, the Proxy design pattern as shown in figure 15 can be utilized to 

ensure preserving private data. A Proxy design pattern provides a contract interface (ITrustData) 

to other contract objects by creating a proxifier as a wrapper contract (TrustProxy). This proxifier 

may contain additional functionalities to the contract of interest (TrustData) without changing the 

code of the contract. 

The considerations mentioned above are some of the design challenges that need to be 

addressed when building blockchain-oriented applications. The environment of the application is 

characterized by being immutable, decentralized, tamper-proof, and transparent. Thus, the aid of 

the proposed design is to improve maintainability, reduce complexity, ensure extensibility, 

improve integration, and in some cases, ensure privacy in such environment. 

5.6. Data Structure and Message Types 

In this section, we introduce some major data structures for DACCT along with some 

implementations in order to clarify the process and establish the foundation of developing 

DACCT.  
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Figure 14. Abstract Factor Design Pattern for Actor Account. 

5.6.1. Evaluation Record (Eval) 

The Eval record represents the structure of a given evaluation in the form of ratings shown 

in figure 16. This record will be stored as a transaction on a block and then linked to the blockchain 

after validation and verification processes. RaterPubKey a byte array records the public key of the 

rater, whilst RateePubKey records the public key of the ratee. RaterAdd and RateeAdd are also 

byte arrays that store the addresses of the rater and ratee consecutively. Timestamp, a string filed, 
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holds the time when the evaluation is given. AssoCommunityAdd is a byte array to represent the 

address of the associated community where the transaction performed. RatingScore, an integer 

value, represents the given rating, whereas Review is a string filed to store the comments given by 

the rater. TransactionAdd denotes the transaction that is carried out on AssoCommunityAdd, and 

the evaluation was given for this transaction. 

 

Figure 15. Proxy Design Pattern for Preserving Privacy. 
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type Eval struct { 

    RaterPubKey []byte 

    RateePubKey []byte 

    RaterAdd address 

    RateeAdd address 

    Timestamp string 

    AssoCommunityAdd address 

    RatingScore int 

    Review string 

    TransactionAdd address 

} 
W 

Figure 16. The Structure of the Eval Record. 

5.6.2. TrustInfo Record (Trust) 

The TrustInfo record indicates the structure of a computed trust along with its attributes 

shown in figure 17. TrustInfo record will be stored as a new transaction on a block and then linked 

to the trail of trust on the blockchain. This record consists of thirteen fields. ActorPubKey, a byte 

array to hold the public key of the actor that this record is connected to it. ActorAdd, an address 

field, denotes the address of the actor, and it can be used as an index to reach the trust score quickly. 

Timestamp, a string, holds the time when the trust score computed, and it is usually similar to the 

time of the evaluation that causes recomputing the trust. TrustScore, a double field, represents the 

computed trust score. Popularity is a double field that holds the PageRank value of the actor. 

TimeWeight is a ratio that represents the weight of the time that is used in the trust calculation. 

PosEvalCounter is an unsigned integer to hold the total number of positive given evaluations. 

NegEvalCounter is an unsigned integer to hold the total number of negative given evaluations. 

PosMed denotes the positive median, whereas NegMed denotes the negative median of the actor.  
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type TrustInfo struct { 

    ActorPubKey []byte 

    ActorAdd address 

    Timestamp string 

    TrustScore double 

    Popularity double 

    TimeWeight double 

    PosEvalCounter uint 

    NegEvalCounter uint 

    PosMed double 

    NegMed double 

} 

 

Figure 17. The Structure of the TrustInfo Record. 

 

5.6.3. Message Types 

This section describes the messages and their contents that can be passed and received by 

the DACCT components and also for external calls.  

5.6.3.1. Request Trust Information “req.trustInfo” 

The simple request form consists of the address of the actor under inquiry, the message 

timestamp, the message request header (“req.trustInfo”), details field to retrieve only trust score 

or the whole trust record, and the requester address. This type of message seeks the trust score of 

an actor using DACCT.  The message will be received by Message Model and after unwrapping 

the message, the Trust Model will read the recent trust score using the actor address.    

message = {msg:”req.trustInfo”, msgTimestamp, actorAdd, requesterAdd, details} 

5.6.3.2. Respond Trust Information “res.trustInfo” 

This message provides a reply to a prior trust information request. This message consists 

of the message header, the time when respond submitted, the actor address under questioning, the 

requester address, and the trust information. In case of receiving an undetailed request, the 

response message will only hold the trust score. While in the case of receiving a detailed request, 

the response message will hold all allowed fields in the form of an array.      
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message = {msg:”res.dtrustInfo”, msgTimestamp, actorAdd, requesterAdd, trustScore} 

message = {msg:”res.udtrustInfo”, msgTimestamp, actorAdd, requesterAdd, trustInfo[]} 

5.6.3.3. Update Public Trust Information “update.trustInfo” 

This message concerns updating the trust score on the public ledger on the Ethereum platform. 

This is made by invoking a updaePublicTrust() method hosted by the dissemination model which 

allows DACCT to create a new transaction. The message consists of evaluation and trust 

information because this record is a property owned by the actor. If one community does not exist 

anymore, the trust information along with all necessary information is still preserved on the public 

ledger. The message includes the message header, the message timestamp, the rater address, the 

ratee address, the computed trust score, and timestamp when the trust generated, the weight of the 

time of the evaluation/trust, the community address where the evaluation is given, the evaluation 

value, the popularity of the rater to be used as a weight for its rating value, the positive median the 

negative median, the total number of positive ratings, the total number of negative ratings, the 

transaction volume for which the rating is given, the transaction weight, and the review.              

message = {msg:”update.trustInfo”, msgTimestamp, raterAdd, rateeAdd, trustScore, 

trustTimestamp, timeWeight, communityAdd, evalScore, raterPopularity, posMed, negMed, 

posEvalCounter, negEvalCounter, trasnsVol, transWeight, review} 

The design of DACCT is more complicated, and it is still under development. The 

discussed design considerations with messages and data structures just to provide a simple idea 

about the application design without complexity. Trust management can be implemented in 

different ways endeavoring to maintain particular values. For instance, ignoring the privacy issue 

may easy the design and implementation process. Also, if we only consider building the complete 

application using Ethereum blockchain, there is a crucial desire to establish a new consensus 

undetailed 

response 

detailed 

response 
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mechanism to be completely decentralized community management. This consensus concerns 

monitoring the behavior of communities in the case of providing misleading information and 

concerns the membership processes. This work will be done in the future to introduce an effective 

mechanism that can be helpful for cross-community-oriented applications. 
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6. EXPERIMENTS AND RESULTS: DENSITY-BASED CLUSTERING AND GRAPH 

ANALYSIS 

6.1. Tools and Languages 

This section summarizes the tools and languages used in the following experiments. Weka 

was used to apply density-based clustering. R was used for Elbow analysis, generating data 

distributions, Silhouette analysis. R was further employed for the analysis of Spearman’s 

correlations and some graph operations. Gephi was also used for computing graph metrics and 

plotting the network. 

6.2. Dataset Information 

Table 5 shows the statistics of the bitcoin-OTC and bitcoin-Alpha datasets [91, 92] used in 

this paper. The datasets are represented as a directed graph where users are associated with nodes 

and the relationship between users is represented by weighted edges. Each edge holds a weight 

that shows the judgment between two users (u, v). The weights are scaled between (-10) and (+10). 

According to OTC’s guidelines, a rating of +10 represents a well-trusted user, while -10 represents 

impostors. The other rating values have relative intermediate interpretations. The structure of the 

dataset consists of Source (node id of source, i.e., rater); Target (node id of a target, i.e., ratee.); 

Rating (the source's rating for the target, ranging from -10 to +10 in steps of 1); and Time (the time 

of the rating, measured as seconds). 

Table 5. Summary Statistic of Datasets. 

Dataset Description Number of Range 

Bitcoin-OTC 
Nodes/Users 5,881 [1, 5881] 

Edges/ Evaluation 35,592 [-10, 10] 

    

Bitcoin-Alpha 
Nodes/Users 3,783 [1, 3783] 

Edges/Evaluation 24,186 [-10, 10] 
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6.3. Pre-Processing/Data Preparation 

In order to test the models, some unavailable data is needed to be used by its corresponding 

factors. Transaction volume is not unavailable in the original datasets. Therefore, the values for 

this attribute are generated using random function. Since the two given datasets are collected from 

two different bitcoin platforms, the transaction volume represents the number of bitcoins 

transacted.  In the experiment, bitcoins are converted into the corresponding values in dollars. To 

form the boundaries of the transaction volume, the maximum number of bitcoins is demanded to 

be identified. By surveying several cryptocurrency platforms (SpectroCoin, Bitso, itBit, and 

Coinbase), the findings show that the maximum number of bitcoins is unbounded, but the majority 

of these platforms supplies around 500 BTC in average as the maximum number of bitcoins. 

However, following the policies of SpectroCoin, transactions less than or equal to 5 BTC are 

performed immediately without more inspection, whereas, for security purposes, values bigger 

than 5 BTC are processed manually. Thus, 5 BTC is chosen as the highest peak of the transaction 

volume. Then, to convert bitcoins into dollars, the price of bitcoin on December 17th, 2018, was 

$3, 255.37. Thus, the maximum amount is 16,276.85 dollars. The generation process used one as 

the lowest peak and 16, 276.85 as the highest peak, and started generating random values using 

this boundary. The next operation was translating these volumes into weights by considering the 

weight of the maximum amount as 1.0. The following equation is used to generate the weights.  

𝑡𝑣𝑤(𝑢𝑖) =   
𝑡𝑣(𝑢𝑖)

𝑚𝑎𝑥 (𝑇𝑉)
 

where: tvw(ui) denotes the transaction volume weight of user ui; tv(ui) denotes the transaction 

volume of user ui; TV represents all transactions. 
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6.4. Descriptive Statistics and Analysis 

TrustMe model measures the reputation of users by filtering outlier values, and possibly 

reducing the effect of a malicious user. Out of eight introduced factors, six factors were injected 

into our model and primarily tested by an unsupervised approach. The main six parameters 

(number of ratings, positive received ratings (PRR), negative received ratings (NRR), rating age, 

and popularity) constitute the factors (independent variables). In the context of binary evaluation, 

trustworthy and untrustworthy are the outcomes (dependent variables). The dependent variables 

could be represented in levels using the fuzzy logic concept. The bitcoin-Alpha dataset consists of 

3,783 complete users and 24,186 interactions, and bitcoin-OTC consists of 5,881 users and 35,593 

interactions. The observations were assumed to be complete with no missing values. 

The brief descriptive statistics for the dataset are reported in table 5. The modeling phase 

was started after building the model with its stimulating factors and preparing the dataset. In the 

experiment, a density-based clustering method with k-means as a wrapped algorithm was applied. 

A suite of machine learning software in the WEKA were used for the experiments. The 

experiments used the bitcoin-Alpha and bitcoin-OTC datasets and were validated using several k 

values. Initially, the trust score was computed by employing three separate metrics: one by using 

the raw mean, second by using PeerTrust, and thirdly, by using Trust-ME. The generated trust 

scores from the three metrics were clustered separately using density-based clustering approaches 

with several k values. The purpose of using three metrics was to make a comparison between the 

simple metrics (raw mean), PeerTrust (parameterized metric), and our metrics.  

After finding the trust score for each user, the final step was to normalize the produced 

values to be clustered in the next phase. The elbow method was used before clustering to determine 

the appropriate number of clusters. The elbow method suggested that k = 3, 4, or 5 were the 



 

86 

optimal number of clusters for raw mean model and both datasets, k = 4, 5 or 6 for the PeerTrust 

model, and k = 4, 5, or 6 for TrustMe model. However, during the experiment, the number of 

clusters used was k = 2 and k = 5 to show how the distribution of the data would look like and to 

further illustrate several levels of trust. Number five has been chosen because the Elbow function 

shows that all models include k = 5 as a possible optimal number of clusters. The models can be 

used to represent the trust scores in a binary form as trusted or untrusted, or by using a fuzzy logic 

concept to represent trust in several levels such as highly trusted, trusted, semi-trusted, barely 

trusted, untrusted, and highly untrusted. Figures 18-23 show the charts that the Elbow method has 

drawn using the trust scores produced for all trust models and the two datasets. 

 

Figure 18. Elbow Method - Optimal Number of Clusters for RawMean of Bitcoin-OTC. 

 

Figure 19. Elbow Method - Optimal Number of Clusters for PeerTrust of Bitcoin-OTC. 
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Figure 20. Elbow Method - Optimal Number of Clusters for TrustMe of Bitcoin-OTC. 

 

Figure 21. Elbow Method - Optimal Number of Clusters for RawMean of Bitcoin-Alpha. 

 

Figure 22. Elbow Method - Optimal Number of Clusters for PeerTrust of Bitcoin-Alpha. 
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Figure 23. Elbow Method - Optimal Number of Clusters for TrustMe of Bitcoin-Alpha. 

Commonly, classifying users into different categories of trust requires establishing 

thresholds. The threshold is a dispositional property that is hardly understood and depends on the 

personality and the identity of an individual. Uncharitable people/users may enforce a higher 

threshold, while a lower threshold could be used by lenient users [93]. 

Based on the observation of existing works, clustering is an unsupervised approach is rarely 

used in evaluating trust models due to the difficulties of its validation process. Nevertheless, 

clustering could be quite useful in evaluating trust models by treating cluster centroids as 

thresholds and placing users based upon their trust scores to the closest threshold. For instance, 

the applied clustering method uses the k-means algorithm in the background where data points 

(trust scores) are divided into k number of groups/clusters. This process should guarantee that 

intra-cluster similarity is high and inter-cluster similarity is low. Figure 24 shows the computed 

centroid to the generated clusters for all the two datasets. 
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Figure 24. Clusters Centroids for All Models using Bitcoin-Alpha and Bitcoin-OTC. 

6.4.1. Euclidean Distance  

Mainly, the mean value of data points in a cluster is used to measure the similarity. In our 

experiment, the Euclidean distance function was exercised to measure the similarity between the 

trust scores and the cluster centroids, and this process continues until arriving at the convergence 

criteria. Minimizing the value of the square-error function is demandable, and it is calculated by 

aggregating the Euclidean distances between each data point and its cluster centroid. 

With minimum square-error, it is possible to obtain clusters in the shape of compact hyper-

ellipsoids where the clusters are well-divided from one another. As a result, the separation of trust 

scores would be more accurate and acceptable since each value is placed in a suitable 

category/cluster. However, in the real world, trust scores are irregularly distributed. Therefore, 

employing a density-based approach is more appropriate for this type of data instead of utilizing a 

  

OTC-Bitcoin Centroids - Five Clusters  Bitcoin-Alpha Centroids – Five Clusters 

  
OTC-Bitcoin Centroids - Two Clusters  Bitcoin-Alpha Centroids – Two Clusters 
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simple k-means approach. Figure 25 shows the distribution of the computed data (trust scores) for 

the three models using Bitcoin-OTC and Bitcoin-Alpha datasets. 

 

Figure 25. Data Distribution – Histograms and Density Curve for Trust Scores. 

6.4.2. Clustering and Sum-Squared-Errors Analysis 

Table 6 and Figure 26 show the clustering results by generating two clusters for RawMean, 

PeerTrust, and TrustMe models using the two datasets. The first cluster is labeled as trusted for 

the highest mean, whereas the second cluster is labeled as distrusted for the lowest mean. The table 

shows the population assigned to each cluster based on the final centroid. In this binary evaluation, 

Table 6 shows that the number of iterations for RawMean model is 18 within each cluster sum of 

squared errors around 41.74 using bitcoin-Alpha, and 10 iterations within a sum of squared errors 

= 101.82 when using bitcoin-OTC, which is considered very high due to the farness among trust 

scores.  The number of iterations for PeerTrust is 12 within SSE = 1.61 for bitcoin-Alpha, and 15 

iterations within SSE = 1.06 when using bitcoin-OTC. Finally, the number of iterations for 

TrustMe is 11 within SSE = 2.27 for bitcoin-Alpha, and 14 within SSE = 0.93 when using bitcoin-
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OTC. By observing these results including the results of multiple evaluations (five clusters), it is 

noticeable that PeerTrust and TrustMe compete against each other based upon the clustering 

validation. The number of iterations and the sum of squared errors are small for both models and 

close to each other, and this due to the closeness among the generated trust scores when using 

PeerTrust and TrustMe models. Table 7 and figure 27 show the results of generating five clusters 

for all models. 

Table 6. Statistics for Two Clusters of the Three Trust Models. 

Data Model Cluster 
Initial 

Centroids 
Final Centroids 

Prior 
Probability 

Normal Dist. # of 
Instances 

Percentage Cluster Label 
Mean Std. Dev. 

B
it

co
in

-

A
lp

h
a 

Raw Mean 
0 0.159949 0.4616 0.1456 0.4616 0.1972 514 14% Trusted 

1 0.140666 0.0867 0.8544 0.0867 0.0793 3269 86% Distrusted 

PeerTrust 
0 0.38983 0.5637 0.0143 0.5637 0.1081 77 2% Trusted 
1 0.385604 0.389 0.9857 0.389 0.0163 3706 98% Distrusted 

TrustMe 
0 0.649086 0.7885 0.0143 0.7885 0.0725 48 2% Trusted 

1 0.639352 0.6425 0.9857 0.6425 0.0231 3735 98% Distrusted 

B
it

co
in

-O
T

C
 

Raw Mean 
0 0.159678 0.1805 0.5691 0.1805 0.1246 3374 57% Distrusted 
1 0.805003 0.5928 0.4309 0.5928 0.1403 2507 43% Trusted 

PeerTrust 
0 0.248189 0.4146 0.0049 0.4146 0.1273 69 2% Trusted 

1 0.245212 0.2467 0.9951 0.2467 0.0102 5812 98% Distrusted 

TrustMe 
0 0.507781 0.6205 0.0039 0.6205 0.0962 51 1% Trusted 

1 0.496734 0.4975 0.9961 0.4975 0.0111 5830 99% Distrusted 

 

6.4.3. Silhouette Coefficient 

Since external clustering validation methods are not applicable in our situation due to the 

absence of ground truth, the Silhouette coefficient as an internal validation method can be applied 

to measure the high similarity of an object to its cluster (cohesion) and the low similarity to other 

clusters (separation). The silhouette coefficient falls between -1 and +1. The maximum coefficient 

signifies that the object highly belongs to its cluster and weakly belongs to its contiguous clusters, 

whereas the minimum coefficient signifies that the object poorly belongs to its cluster [94]. The 

first following equation computes the silhouette coefficient si for each object xi, and the second 

equation computes the Silhouette coefficient (SC) as the mean values of si across all objects. 
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Table 7. Statistics for Five Clusters of the Three Trust Models. 

Data Model Cluster 
Initial 

Centroids 
Final Centroids 

Prior 

Probability 

Normal Dist. # of 

Instances 
Percentage Cluster Label 

Mean Std. Dev. 

B
it

co
in

-A
lp

h
a 

R
aw

 

M
ea

n
 

0 0.159949 0.9458 0.0161 0.9458 0.0616 59 2% Highly Trusted 

1 0.140666 0.4908 0.0641 0.4908 0.0768 249 7% Trusted 

2 0.078926 0.2665 0.1679 0.2665 0.0463 628 17% Barley Trusted 
3 0.021417 0.138 0.273 0.138 0.0344 1067 28% Highly Distrusted 

4 0.001454 0.0258 0.4789 0.0258 0.0239 1780 47% Distrusted  

P
ee

rT
ru

st
 0 0.38983 0.44 0.033 0.44 0.0213 127 3% Barely Trusted 

1 0.385604 0.1753 0.0029 0.1753 0.0705 30 1% Highly Distrusted 
2 0.391762 0.8129 0.0018 0.8129 0.1268 6 0.002% Highly Trusted 

3 0.387078 0.3882 0.953 0.3882 0.0078 3585 95% Distrusted 

4 0.390971 0.5508 0.0092 0.5508 0.0412 35 1% Trusted 

T
ru

st
M

e 

0 0.649086 0.7157 0.0195 0.7157 0.0259 83 2% Trusted 

1 0.639352 0.2199 0.0021 0.2199 0.1561 30 1% Highly Distrusted 

2 0.653882 0.8609 0.0058 0.8609 0.064 21 1% Highly Trusted 
3 0.639882 0.6398 0.8028 0.6398 0.0093 3415 90% Distrusted 

4 0.645654 0.6562 0.1697 0.6562 0.0083 234 6% Barely Trusted 

B
it

co
in

-O
T

C
 

R
aw

 

M
ea

n
 

0 0.159678 0.2212 0.2117 0.2212 0.0511 1226 21% Distrusted 

1 0.805003 0.8091 0.0875 0.8091 0.0808 486 8% Highly Trusted 
2 0.001872 0.0512 0.2305 0.0512 0.0454 1337 23% Highly Distrusted 

3 0.480177 0.3947 0.2559 0.3947 0.0537 1543 26% Barely Trusted 

4 0.622767 0.5961 0.2144 0.5961 0.058 1289 22% Trusted 

P
ee

rT
ru

st
 0 0.248189 0.2872 0.0265 0.2872 0.0202 202 3% Barely Trusted 

1 0.245212 0.1706 0.0059 0.1706 0.0454 84 1% Highly Distrusted  

2 0.254436 0.4234 0.0031 0.4234 0.0571 18 0% Trusted 
3 0.26546 1 0.0003 1 0.0177 1 0% Highly Trusted 

4 0.245422 0.2462 0.9642 0.2462 0.0044 5576 95% Distrusted 

T
ru

st
M

e 

0 0.507781 0.5708 0.0058 0.5708 0.0279 43 1% Trusted 
1 0.496734 0.0572 0.0005 0.0572 0.0572 2 0% Highly Distrusted 

2 0.499748 0.5113 0.0644 0.5113 0.0072 142 2% Barely Trusted 

3 0.510235 0.8242 0.0007 0.8242 0.126 26 0% Highly Trusted 
4 0.496743 0.4966 0.9286 0.4966 0.006 5668 96% Distrusted 

Table 8. Clustering Summary of All Models Using the Two Datasets. 

Data # of Clusters Model Log-Likelihood Sum-Squared-Errors 
# of  

Iterations 

B
it

co
in

-

A
lp

h
a 

Bi-Level of Trust 

Raw Mean 0.62508 41.7422 18 

PeerTrust 2.84695 1.6117 12 
TrustME 2.55354 2.2665 11 

Multi-Level of Trust 

Raw Mean 0.84549 5.2760 34 

PeerTrust 3.29707 0.4784 45 

TrustME 3.06977 0.6106 24 

B
it

co
in

-O
T

C
 

Bi-Level of Trust 

Raw Mean 0.02252 101.8208 10 

PeerTrust 3.3507 1.0583 15 

TrustME 3.38126 0.9262 14 

Multi-Level of Trust 
Raw Mean 0.0643 17.9733 14 
PeerTrust 3.8891 0.2974 32 

TrustME 3.74961 0.2980 22 
 

𝑠𝑖 =
𝜇𝑜𝑢𝑡

𝑚𝑖𝑛(𝑥𝑖) − 𝜇𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥{𝜇𝑜𝑢𝑡
𝑚𝑖𝑛(𝑥𝑖), 𝜇𝑖𝑛(𝑥𝑖)}

 

𝑆𝐶 =
1

𝑛
∑ 𝑠𝑖

𝑛

𝑖=1

 

where 𝜇𝑖𝑛(𝑥𝑖) is the mean distance from xi to points in its cluster; 𝜇𝑜𝑢𝑡
𝑖𝑛 (𝑥𝑖) is the mean distance 

from xi to pints in its closest cluster. 
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Figure 26. Density-Base Clustering: Clusters of Trust Scores (Two Clusters) 

 

By computing silhouette coefficients for the thee model using the OTC-bitcoin dataset 

generating two clusters and then five clusters as shown in figure 28, we found that when k=2, the 

silhouette coefficient of RawMean was the worst at 0.60. While silhouette coefficients of PeerTrust 

and TrustMe were almost the same at 0.96. This means trust scores of TrustMe and PeerTrust are 

well-clustered as the overall silhouette close to 1. In the instance of k=5, the silhouette coefficient 

is decreased to be 0.56 which means the trust scores are poorly clustered. This also could imply 

that some trust scores are misplaced and assigned to closest clusters, or there is an overlapping 

clustering due to miscalculations. However, the overall silhouette of TrustMe outperforms other 

models with a value of 0.93 which is still close to 1. The silhouette coefficient of PeerTrust is also 

still high at 0.89. The large value indicates that there is a high-quality structure of the clusters as 

  
a: RawMean Model using Bitcoin-OTC Dataset b: PeerTrust Model using Bitcoin-OTC Dataset 

 

 
c: TrustMe model using Bitcoin-OTC dataset 
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most trust scores sound to be assigned properly to its clusters. The quality of the generated clusters. 

Table 9 summarizes the Silhouette coefficient of all models using two different clustering settings 

(k=2 & 5). 

 

Figure 27. Density-Base Clustering: Clusters of Trust Scores (Five Clusters). 

  
RawMean Model using Bitcoin-OTC Dataset 

 
PeerTrust Model using Bitcoin-OTC Dataset 

 
TrustMe Model using Bitcoin-OTC Dataset 
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Figure 28. Cluster Silhouette of all Models using Two and Five Clusters. 

 

 

  
a. Cluster Silhouette of RawMean (2-clusters) b. Cluster Silhouette of RawMean (5-clusters) 

  

  
c. Cluster Silhouette of PeerTrust (2-clusters) d. Cluster Silhouette of PeerTrust (5-clusters) 

  

  
e. Cluster Silhouette of TrustMe (2-clusters) f. Cluster Silhouette of TrustMe (5-clusters) 
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Table 9. The Silhouette Coefficient of all Models using 2 Settings. 

Models 
Silhouette Coefficient 

2-Clusters 5-Clusters 

RawMean 0.5963307 ≡ 0.60 0.5567277 ≡ 0.56 

PeerTrust 0.9599236 ≡ 0.96 0.8902622 ≡ 0.89 

TrustMe 0.9584302 ≡ 0.96 0.9261229 ≡ 0.93 
 

6.4.4. Correlation Analysis 

We check for significant correlations between the trust factor as independent variables and 

trust score as a dependent variable, using the Spearman 𝜌 coefficient. Spearman’s correlation is a 

rank-based correlation measure that does not rest upon an assumption of normality, and it is robust 

concerning outliers. This analysis was conducted using bitcoin-Alpha dataset.  

Table 10. Summary of Trust Factors against One Another. 

First Side vs. Second Side 

Positive received median Negative received median 

Positive received median Total number of positive received ratings 

Positive received median Total number of negative received ratings 

Positive received median Popularity factor 

Negative received median Total number of positive received ratings 

Negative received median Total number of negative received ratings 

Negative received median Popularity factor 

Total number of positive received ratings Total number of negative received ratings 

Total number of positive received ratings Popularity factor 

Total number of negative received ratings Popularity factor 
 

6.4.4.1. Spearman’s Correlations 

In our trust model, we have the following independent factors (independent variables) that 

impact the trust score: positive rates median, negative rates median, number of positive ratings, 

number of negative ratings, and popularity. By using Spearman’s correlation, we can see how each 

factor is correlated to each other, and how they are correlated to the generated trust scores.  
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• The Correlation of Independent Factors (Independent Variables) 

The purpose of this section is to study the correlation between the factors themselves as 

independent variables and how much each one correlated to the others. Table 10 summarizes the 

investigated factors against each other.    

Table 11 and figures 29-38 demonstrate the correlations among the trust factors. Positive 

received median and negative received median are negatively correlated at -0.49 (𝜌 = −0.49)  

which means that when the positive received median increases, the negative received median 

decrease at 𝜌 = −0.49 and vice versa. Another significant correlation exists between popularity 

and positive received median that are positively correlated at 0.83 (𝜌 = 0.83), so when the positive 

received median grows, the value of popularity factor increases as well. In contrast to the positive 

received median, the negative received median is negatively correlated to the popularity factor at 

-0.58 (𝜌 = −0.58). It is also evident that the popularity factor is positively correlated to the number 

of negative received ratings but at a very marginal value of 0.098 (𝜌 = 0.098).    

Table 11. The Correlation among Independent Variables. 

 Pos. Median Neg. Median # of PR # of NR Popularity 

Pos. Median -     

Neg. Median -0.49 -    

# of PR 0.66 -0.62 -   

# of NR 0.09 -0.24 0.20 -  

Popularity 0.83 -0.58 0.89 0.098 - 
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Figure 29. Correlation between Pos. Received Median vs. Neg. Received Median. 
 

 

Figure 30. Correlation between Pos. Received Media vs. No. of Pos. Ratings. 
 

 

Figure 31. Correlation between Pos. Received Media vs. No. of Neg. Ratings. 
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Figure 32. Correlation between Pos. Received Median vs. Popularity. 
 

 

Figure 33. Correlation between Neg. Received Median vs. No. of Pos. Ratings. 
 

 

Figure 34. Correlation between Neg. Received Median vs. No. of Neg. Ratings. 
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Figure 35. Correlation between Negative Received Median vs. Popularity. 
 

 

Figure 36. Correlation between No. of Neg vs. No. of Pos. Ratings. 
 

 

Figure 37. Correlation between No. of Pos. Ratings vs. Popularity. 
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Figure 38. Correlation between No. of Neg. Ratings vs. Popularity. 

• The Correlation of the Dependent variable and the Independent variables 

The outcome of the trust model is a trust score which is computed based on several 

independent factors. Here, we measure the spearman correlation between the trust score and all 

independent factors to observe the impact of each factor on the produced trust score.  

Table 12. The Correlation between Independent Variables and Dependent Variable. 

 Pos. Median Neg. Median # of PR # of NR Popularity 

Trust Score 0.84 -0.27 0.64 -0.22 0.75 
 

Table 12 and figures 39-43 illustrate the correlations between the trust score as a dependent 

variable and trust factors as independent variables. It is clear that the trust score is positively 

correlated with the positive received median at 0.84 (𝜌 = 0.84) which implies a strong correlation. 

Another strong correlation can be observed between the popularity factor and the dependent 

variable which is positively correlated at 0.75 (𝜌 = 0.75). However, there is a negative correlation 

between the dependent variable (trust score) and the negative received median at -0.27 (𝜌 = 0.75). 
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Figure 39. Correlation between Trust Score vs. Pos. Received Median. 
 

 

Figure 40. Correlation between Trust Score vs. Neg. Received Median. 
 

 

Figure 41. Correlation between Trust Score vs. No. of Pos. Ratings. 
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Figure 42. Correlation between Trust Score vs. No. of Neg. Ratings. 

 

 

Figure 43. Correlation between Trust Score vs. Popularity. 

This analytic-driven experiment operates as a pilot study to preliminary evaluate the trust 

models under study using unsupervised methodologies such as density-based clustering. The 

preliminary results exhibit that the RawMean model seems to be vulnerable by generating 

overlapped scores that are assigned mistakenly to unrelated groups, and there is a sign that our 

model (TrustMe) could be promising. 
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6.5. Graph Analysis - Community and Trust Analysis 

In this study, the OTC-bitcoin dataset from [95, 96] was used as an example of an online 

community formed in a social network graphical model.  The purpose is to disclose how actors 

interact with each other and how trust evolves through appending new interactions as edges over 

time. The interactions between actors can be represented in a directed graph 𝐺 = (𝑉, 𝐸, 𝑊) where 

𝑉  denotes a finite nonempty set of vertices as actors, 𝐸 ⊆ 𝑉 × 𝑉  indicates a set of direct 

associations (interactions) of ordered pairs of nodes/actors, and W denotes judgments in a form of 

weights. Some studies use a network edge to represent a direct trust, while in our work the edge 

only represents a direct judgment based on direct interaction between two parties. The 

phenomenon of trust evolvement remains vague and need to be comprehended, this draws the 

motivation of this section by providing some analysis as an attempt to understand the phenomenon. 

We, first need to investigate the topology of the given network as a large community G that may 

consist of many sub-communities/sub-graphs 𝐺′ = (𝑉′, 𝐸′, 𝑊′). 

The generated trust score of the TrustMe model is mainly calculated based on the 

reputation score of an actor and some topological information about actors in a given social 

network. A topological perspective states that direct trust is occurred by a direct link between two 

actors, while indirect trust is occurred by indirect links. Direct trust is simple since it relies on one 

direct tie between two actors to generate a local trust score. The indirect trust is rather complex as 

it walks through many indirect ties between many actors to generate a global trust score as 

proposed in the TrustMe model. 
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Table 13. Network Topological Information. 

Graph Metrics Value 

Graph Type Directed 

Vertices/Nodes/Actors/Users/Entities 5,881 

Edges/Interactions 35,592 

Diameter 11 

Radius 1 

Avg. Path length 3.79 

Avg. Degree 6.052 

Graph Density 0.001 

Modularity  0.484 

Avg. Number of Neighbors 7.309 

Communities  22 

Weakly Connected Components 4 

Clustering Coefficient 0.149 

Isolated Nodes 0 

Self-loops 0 

Multi-edge Node Pairs 4.005 

Reciprocated Edge Ratio 0.56 

 

 

Figure 44. Network Graph. 
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6.5.1. Community Structure and Characteristics 

Graph-theoretic concepts pave the road toward understanding and analyzing social 

phenomena such as trust and reputation [97, 98, 99]. The network in figure 44 is laid out using the 

“Force-Atlas” layout to cluster the nodes and then “Fruchterman-Reingold” to refine the layout to 

be circular. Betweenness centrality was employed to scale out the nodes’ sizes. Table 10 shows 

that the network consists of 5,881 vertices, 35,592 edges, four weakly connected components. The 

diameter of the network is 11, and the average path length is 3.79. The relationships in this network 

are non-reflexive implies that no actor can evaluate oneself №(𝑣𝑖, 𝑣𝑖), asymmetry alludes that 

𝑒(𝑣𝑖, 𝑣𝑗) ≠ 𝑒(𝑣𝑗 , 𝑣𝑖), and non-transitive implies that ∃ 𝑤(𝑣𝑖, 𝑣𝑗) ^ ∃ 𝑤(𝑣𝑗 , 𝑣𝑘) ⟶ ∃ 𝑤(𝑣𝑖 , 𝑣𝑘) is 

not necessarily true all the time. 

6.5.2. Dynamics of Community Development 

The term community at first glance indicates a geographical entity where there are precise 

boundaries such as a town, village, city, etc. However, a community can be a group of species that 

share some interests. Community dynamics is the process of transformation and evolvement by 

moving in or moving out a community. The term development sometimes postulates growth and 

expansion in a community. This is not always true since some people or entities may join or leave 

the community. The given network in this study shapes a community with actors/nodes that have 

shared interests such as exchanging bitcoins. New actors may join the community if they found 

that community conditions are appropriate for exchanging bitcoins or existing actors may leave 

the community if they found that the conditions are inappropriate. This can be connected to the 

rule of succession introduced by Pierre-Simon Laplace [100] that states if an action is repeated n 

times independently in succession, and get s successes and n-s failures, then the probability that it 

will occur again is (𝑠 + 1) (𝑛 + 2)⁄ . This fundamental rule aids in driving the decision-making 
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process which could be done intuitively or through reasoning and observation. For example, in a 

situation when an endless wave of fraud occurred in a community, it may be followed by a 

succession of actors leaving the community since it became unsafe and risky. To explore the 

structure of the given community and how it evolves and how actors affected by changes in the 

built environment, the network is divided into years from 2010 to 2016. Table 14 summarizes the 

statistics of the community dynamics, and figures 40 and 41 depict how the community metrics 

change. 

Table 14. Summary of Community Statistics over Time. 

G. Metrics 2010 2011 2012 2013 2014 2015 2016 

Nodes/Actors 55 1637 3162 5161 5753 5879 5881 

Edges/Interactions 142 7900 17332 30314 34539 35550 35592 

Avg. Degree 2.582 4.826 5.481 5.874 6.004 6.047 6.052 

Avg. Weighted Degree 7.109 8.396 7.925 6.028 6.006 6.113 6.125 

Diameter 8 10 11 11 11 11 11 

Avg. Path Len 3.24 3.87 3.798 3.75 3.73 3.719 3.718 

Graph Density 0.048 0.003 0.002 0.001 0.001 0.001 0.001 

Modularity  0.437 0.451 0.457 0.494 0.494 0.491 0.480 

Possible Communities 6 11 13 15 15 17 22 

Connected Components   2 2 2 3 3 4 4 

Clustering Coefficient 0.066 0.099 0.120 0.136 0.144 0.149 0.149 
 

6.5.2.1. Network Level Analysis 

This section illustrates the information above focusing on the community growth as can be 

noticeable by comparing the community as a whole in figure 44 and the community in the first 

year (2010) shown in figure 47. It can be seen in figure 46 that from 2010 to 2011, the number of 

newly joined actors was 1,582 which represents around 2976% growth rate. The growth in 2012 

was about twice the population of 2011 at 48%. The number of new actors joined the community 

in 2013 was 1999 which accounts for about 39% of the population. However, the numbers became 

progressively smaller from 2014 with 592 new members and 126 new members in 2015 

representing 2% of the population, while in 2016, only two actors joined the community 
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representing 0.034%of the population of 2016. Likewise actors, the number of interactions 

increases from 2010 through 2016 at the highest rate in 2013 with 12,982 new interactions, and 

at the lowest rate in 2016 with solely 42 new interactions.  

 

Figure 45. Evolvement of Network Topology. 

 

Figure 46. Evolvement of the Number of Actors and their Relationships. 
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This is an evident indication that the community becomes less attractive in the last two 

years as the rate of interaction is significantly dropped. Additionally, the value of the average 

degree changes slightly from 2014 to 2016. It is noticeable that the graph diameter as a 

macroscopic measure of the network width, which is the maximal distance between the pair of 

nodes, is apparently fixed at 11 from 2012 until 2016. This is another sign of low change in the 

network topology even after carrying out a large number of interactions in 2013 but merely 

representing an average of  0.019 of interactions for one actor throughout the year. 

Figure 45 also depicts the degree centrality (interactions) that is quite small. Hence, the 

average of the weighted degree was declined in 2012 and thereafter became stable with a minor 

change. From table 14, it can be seen that the rate of relationship is at a low level in 2010 according 

to the average degree, and it had started to increase in the subsequent years. However, network 

metrics indicate that the relationship rate and the density score appear to be steady from 2013 until 

2016 at 6 and 0.001 respectively. This demonstrates that solely a small proportion of possible 

interactions present in the network. This is perhaps actors tend to interact with other actors who 

they trust which usually takes time to develop particularly when the community increasingly 

becomes larger and complex. 

  

Figure 47. The Network/Community in 2010. 
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Table 15. The Network Characteristics of 2010. 

Graph Metrics Value 

Graph Type Directed 

Vertices/Nodes/Actors/Users/Entities 55 

Edges/Interactions 142 

Diameter 8 

Radius 1 

Avg. Path length 3.24 

Avg. Degree 2.582 

Graph Density 0.048 

Modularity  0.437 

Avg. Number of Neighbors 3.309 

Communities  6 

Weakly Connected Components 2 

Clustering Coefficient 0.066 

Isolated Nodes 0 

Self-loops 0 

Multi-edge Node Pairs 51 
 

6.5.2.2. Node Level Analysis 

In this study, three types of degree centrality, and computed trust scores are employed to 

monitor and analyze the data of some actors. Thus, the top 10 actors were extracted for each metric 

involving actors receive a high score of positive in-degree, negative in-degree, betweenness 

centrality, eigenvector centrality, TrustMe score which is computed based upon the metric, and 

raw mean trust score which is a simple average. Degree centrality denotes the number of edges a 

node has to other nodes. The general concept of centrality is to grade nodes of a graph concerning 

how important each node is. Positive in-degree is the number of incoming edges that hold a 

positive weight (judgment scores), and negative in-degree is the number of incoming edges that 

hold a negative weight.  Betweenness centrality is a general measure of the importance of a node 

in a network by quantifying how many times this node serves as a bridge between the shortest 

paths of many other nodes [101, 102, 103]. Eigenvector centrality is another approach that 

measures the importance of a node in a network by calibrating the importance of the neighboring 

nodes that linked to it. If the eigenvector-centrality value is high, it means that the node is 
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connected to many other nodes that have high eigenvalues and so forth. The calculation of the 

eigenvector of a node is proportional to the sum of the eigen-centrality of the nodes that are linked 

to it [104].   

 

Figure 48. Positive In-Degree Distribution. 

 

Figure 49. Negative In-Degree Distribution. 

As shown in Figure 49, the main distribution of negative in-degree is right-skewed 

(positive skewness) concentrated around zero which is an indication of good behavior among most 
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actors. In spite of that, there are several actors received negative evaluations. A population of 1,254 

actors acquired negative feedback forming approximately more than 20% of the entire community. 

A number of 1,197 members received between 1 and 10 negative feedback, whereas 57 actors 

received negative feedback ranging from 10 to 100. This could be a sign of the prevalence of 

malicious behaviors in the community/network. Figure 48 exhibits the distribution of positive in-

degree which is right-skewed (positive skewness) showing that 4915 members acquired a small 

number of positive evaluations ranging from 1 to10, which constitutes the majority. Additionally, 

175 actors received a number of positive scores between 30-250, whilst merely three actors 

acquired a large number of positive evaluations falls between 250 and 550. By scrutinizing these 

statistics, relatively a small fraction of actors do not receive positive feedback. The large fraction, 

however,  gained positive feedback but meager in quantity. Equally crucial, judgment score in 

terms of ratings ranging from -10 to 10 for each evaluation is not employed yet. The judgment 

score has a significant impact on the evaluation process. Namely, there is a necessity to monitor 

different elements and metrics to precisely appraise the community and discern well-behaved and 

malicious actors. 

Table 16 summarizes the top 10 actors who obtain the highest score of the metrics 

mentioned above. To simplify reading betweenness centrality, it is normalized using a unity-based 

normalization function. The function rescales the original betweenness score into values ranging 

between [0,1] by considering the maximum value as the highest score of betweenness in the 

network 100% ≡ 1. Trust scores produced by the two metrics (TrustMe and RawMean) drive the 

analysis process. Table 13 (f) shows all the top 33 actors of the RawMean metric obtained 1.00 

trust score which represents the ultimate trust. Through Conducting a quick examination, we found 

that all of those actors indeed receive solely one positive rating with an exception for actor# 4733 



 

113 

who receives two positive ratings. It is totally illogical when an actor can get an ultimate trust ≡ 1 

through performing an orphaned interaction and receiving an orphaned positive rating. This 

analysis proves that the number of interactions does not affect the generated score of the RawMean 

metric. It is explicit that the RawMean metric, which remains used in many online communities, 

is highly vulnerable, and it can be exploited by dishonest actors to provide misleading information. 

Another indication is that no actor in the top 10 of the RawMean metric appears in the other top 

10 tables such as betweenness and eigenvector centralities that evince the actors' importance in a 

given community. It demonstrates that no one in the top 10 of RawMean is important in the 

network depending on the rank of the top 10. 

    Due to the initial examination, the RawMean metric is eliminated from the analysis 

process. It is evident that this approach is not effective, and even without malicious acts, it may 

provide delusive information. However, TrustMe scores seem to be more akin and highly 

correlated to the scores of several network metrics. Actors who hold numbers (27, 2588, 1, 1765, 

1982, and 4093) appears in TrustMe, in-degree+, betweenness, and eigenvector measures. 

Whereas, actor# 7 appears in TrustMe, in-degree+, betweenness tables and does not appear in 

eigenvector centrality. Actor# 4116 also, appears in TrustMe, in-degree+, and eigenvector but not 

in betweenness centrality. Actor# 2078 presents in TrustMe and betweenness tables, while actor# 

978 exhibits only in TrustMe table. 

Actors who hold questionable scores such as actor# 1982 who appears in all tables need to 

be placed under investigation. The actor obtained 234 positive ratings that representing 84% of all 

received ratings, while acquired 45 negative ratings representing 16% of the entire received 

ratings. By adding the weights of these ratings, we found that actor# 1982 earned 544 positive 

weighted ratings and -342 negative weighted ratings. This discloses that the negative ratings, in 
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fact, represent 39% of the entire received ratings and the positive ratings represent 61% of the 

entire received ratings. Although the TrustMe model has its own punishment mechanism, it might 

be overly tolerant. Therefore, there is an imperative call to inject a proper punishment engine into 

the trust model to reduce the trust score when the negative feedback forms a substantial portion of 

the gained evaluations yet after removing dishonest feedback. It is important to keep in mind that 

the TrustMe model employs a popularity factor that stands for PageRank. Popularity factor works 

as a weight that raises or downs the rating score. The interpretation of this situation may be due to 

that the positive ratings were weighed by actors with high popularity whereas the negative ratings 

were weighed by actors with a low popularity score.  

Table 16. The Top 10 Trust Scores with Network Metrics. 

a: Top 10 In-Degrees+ b: Top 10 In-Degrees- c: Top 10 Betweenness 
 

Actor in.degree+ TrustMe 

27 535 0.89 

2588 411 0.74 

1765 270 0.65 

1982 234 0.63 

1 226 0.68 

865 226 0.62 

7 216 0.67 

4093 211 0.63 

4116 203 0.66 

11 190 0.62 
 

Actor in.degree- TrustMe 

3669 75 0.00 

1982 45 0.63 

1342 45 0.47 

1765 41 0.65 

865 38 0.62 

2447 36 0.24 

1971 33 0.33 

3820 26 0.55 

792 26 0.52 

1999 25 0.55 
 

Actor Betweenness  TrustMe 

27 1.000 0.89 

2588 0.438 0.74 

1765 0.349 0.65 

865 0.349 0.62 

1 0.317 0.68 

4093 0.295 0.63 

2078 0.293 0.64 

7 0.280 0.67 

1982 0.272 0.63 

1908 0.227 0.59 
 

d: Top 10 Eigenvector 
 

 

e: Top 10 TrustMe Scores 
 

 

f: Top 10 RawMean Scores 
 

Actor eigenvector TrustMe 

2588 1.000 0.74 

865 0.927 0.62 

27 0.885 0.89 

1765 0.830 0.65 

1982 0.738 0.63 

4093 0.706 0.63 

1 0.692 0.68 

4207 0.643 0.60 

1294 0.635 0.60 

4116 0.612 0.66 
 

Actor TrustMe TrustMe 

27 0.89 0.89 

2588 0.74 0.74 

1 0.68 0.68 

7 0.67 0.67 

4116 0.66 0.66 

1765 0.65 0.65 

2078 0.64 0.64 

978 0.64 0.64 

1982 0.63 0.63 

4093 0.63 0.63 
 

Actor RawMean TrustMe 

490 1.00 0.51 

774 1.00 0.51 

1082 1.00 0.51 

1221 1.00 0.51 

1286 1.00 0.51 

1299 1.00 0.51 

1459 1.00 0.51 

1503 1.00 0.51 

1618 1.00 0.51 

24 more 1.00 0.51 
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Actors who have high betweenness scores are deemed vital nodes in the network that 

functions as bridges controlling the evaluation flow between communities. Since TrustMe metric 

supplies global trust score (indirect trust) relying on local evaluations (direct interaction), the 

indirect evaluation significantly flows through nodes with high betweenness. Through exploring 

the top 10 betweenness and TrustMe scores, it is found that approximately 28% of the population 

has betweenness centrality above the average, and eight of the actors who are ranked in the top 10 

of TrustMe are also among the ranked top 10 of betweenness centralities. An exception is for actors 

865 and 1908 who are ranked in the top 20 of TrustMe and do not appear in the top 10 list. In 

figure 3, the node size represents betweenness centrality which is noticeable because the 

community was small in 2010. It can conspicuously be seen that there is an isolated sub-

community consists of only two actors 46 and 49 with a sole transaction/interaction. The two actors 

have zero betweenness score which implies that they are not highly important in the network, but 

further investigation is required to ensure that both actors are not malicious. Thus, actors with high 

betweenness are responsible for managing the evaluation information flow between the actor itself 

and other actors in the community. If those actors are malicious, they may pass misleading 

information between communities. Nevertheless, the TrustMe model shows that those actors earn 

the highest trust score. Hence, it can be concluded that this is an indicator of a healthy community.  

Another crucial measure is eigenvector centrality. By scanning the top 10 eigenvector and 

TrustMe scores, it is discovered that approximately 24% of the population has eigenvector 

centrality above the average, and seven of the actors who are ranked in the top 10 of TrustMe are 

also ranked in the top 10 of eigenvector centralities. Actor 978 is ranked eleventh in eigenvector 

and not shown in the top 10. Another point is that a correlation between in-degree+ and eigenvector 

can be caught as eigenvector depends on its neighbors and how well-connected a node is. Eight 



 

116 

actors appeared in the two lists of in-degree+ and eigenvector but the other missed two: actor 11 is 

ranked twelfth in eigenvector and actor 7 is ranked 22nd. The number of edges/ neighbors can help 

in revealing malicious behavior in a given community and precisely evaluate actors’ 

trustworthiness. Sometimes eigenvector centrality is considered a trust measure as it relies on the 

quality of the relationships. Eigenvector alone, However, can be circumvented by misbehaved 

actors through establishing a large fraction of fake interactions. 

6.5.2.3. Observing Trust Evolvement: 

For trust evolvement traceability, the dataset is divided into years which generates seven 

sub-datasets from 2010 through 2016. The selection process for tracking specific nodes/actors was 

carried out by first picking an actor with the maximum value of each measure based on the 

information of the last year (2016) with ignoring RawMean. Likewise, an actor with the maximum 

number of negative evaluations plus two more actors from the negative in-degree table with the 

lowest and highest TrustMe score is chosen. Thus, the actors that are subject to more investigation 

are 27, 2588, 3669, 2447, and 1765. Table 17 summarizes all the chosen actors. 

Table 17. Summary of the Chosen Actors. 

Actor Table Description 

actor# 27 {a, c, & e} Maximum score 

actor# 2588 {d} Maximum score 

actor# 3669 {b} Maximum score 

actor# 1765 {b} Highest TrustMe score with high number of negative evaluations  

actor# 2447 {b} Second lowest TrustMe score with high number of negative evaluations 
 

The following tables (table 18) track the change of the chosen actors over time represented 

in years (2010-2016). Each table recaps the calculated scores of in-degree+, in-degree-, 

betweenness, eigenvector, PageRank, RawMean, and TrustMe metrics in seven tables. For 

simplicity, PageRank scores were normalized using unity-based normalization function as it was 
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done with betweenness centrality, so the maximum PageRank score is normalized as 1.00 and the 

minimum score is normalized as 0.00. 

Table 18. Actors’ Scores over Years. 

2010 a: The chosen actors’ scores in 2010 
 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 4 0 0.20 0.02 0.13 0.60 0.55 

1765 

Not Yet Exist 
2447 

2588 

3669 

 

2011 
b: The chosen actors’ scores in 2011 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 150 0 0.56 0.39 0.59 0.57 0.72 

1765 

Not Yet Exist 
2447 

2588 

3669 

 

2012 
15.c: The chosen actors’ scores in 2012 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 448 0 1.00 0.82 1.00 0.58 0.84 

1765 277 -30 0.37 0.51 0.50 0.58 0.64 

2447 0 -118 0.00 0.07 0.04 0.11 0.00 

2588 133 0 0.15 0.23 0.25 0.59 0.59 

 3669 Not Yet Exist 

 

2013 
d: The chosen actors’ scores in 2013 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 830 0 1.00 0.84 1.00 0.59 0.88 

1765 502 -371 0.35 0.70 0.47 0.53 0.63 

2447 39 -191 0.00 0.16 0.04 0.26 0.31 

2588 1011 -2 0.53 1.00 0.81 0.63 0.75 

3669 50 -665 0.03 0.29 0.10 0.09 0.00 

 

2014 
e: The chosen actors’ scores in 2014 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 966 0 1.00 0.84 1.00 0.60 0.89 

1765 539 -383 0.35 0.71 0.45 0.53 0.65 

2447 39 -277 0.00 0.20 0.05 0.22 0.23 

2588 1043 -2 0.48 1.00 0.75 0.63 0.75 

3669 50 -725 0.03 0.32 0.10 0.08 0.00 
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Table 18. Actors’ Scores over Years (continued). 

2015 
f: The chosen actors’ scores in 2015 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 1016 0 1.00 0.89 1.00 0.60 0.89 

1765 604 -385 0.35 0.82 0.46 0.54 0.65 

2447 40 -296 0.00 0.25 0.05 0.22 0.24 

2588 1043 -2 0.44 1.00 0.72 0.63 0.74 

3669 50 -725 0.02 0.33 0.09 0.08 0.00 

 

2016 
g: The chosen actors’ scores in 2016 

 

Actor# W.in-Degree+ W.in-Degree- Betweenness Eigenvector PageRank Raw.Mean TrustMe 

27 1016 0 1.00 0.89 1.00 0.60 0.89 

1765 615 -385 0.35 0.83 0.46 0.54 0.65 

2447 40 -296 0.00 0.25 0.05 0.22 0.24 

2588 1043 -2 0.44 1.00 0.72 0.63 0.74 

3669 50 -725 0.02 0.33 0.09 0.08 0.00 

 

 

Figure 50. Evolvement of Actor’s Scores over Years: Actor# 27. 
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Figure 51. Evolvement of Actor’s Scores over Years: Actor# 1765. 

 

Figure 52. Evolvement of Actor’s Scores over Years: Actor# 2447. 

 

Figure 53. Evolvement of Actor’s Scores over Years: Actor# 2588. 
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Figure 54. Evolvement of Actors’ Scores over Years: Actor# 3669. 

Figures 50-54 show the evolvement of trust along with topological information for every 

chosen actor. Actor 27 has the highest TrustMe, betweenness, and PageRank scores from 2012 

until 2016. Actor 27 received a high eigenvector score, but it is not the largest score. The TrustMe 

score of this actor developed from 2010 until 2016 received scores of 0.55, 0.72, 0.84, 088, and 

0.89 respectively and Ascendingly, while RawMean scores go up and down starting with 0.60 and 

ending with 0.60 with values around the fifties in between. It is noticeable in figures 1 and 3 that 

actor 27 is the most important one with the greatest betweenness score. Actor 2588, however, 

received the highest eigenvector score and the second highest TrustMe score. Even though the 

weighted positive in-degrees is the largest value owned by actor 2588, this actor received a single 

negative evaluation that reduces its trust score and ranked second. Compared with the RawMean 

metric, actors who generally obtained the highest score of TrustMe, eigenvector, PageRank, and 

betweenness such as actors 27 and 2588, received RawMean scores around the sixties. For 

instance, actor 27 received 535 positive evaluations with zero negative evaluation during the seven 

years, RawMean gave this actor 0.60, while it gave actors with only one interaction a full trust 

score (1.00). TrustMe, in contrast, seems to be fairer and correlated with other metrics since they 
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move toward the same direction particularly when an enormous amount of interactions take place. 

It sounds like actors 27 and 2588 the most trusted ones, while actors 3669 and 2447 are the most 

distrusted ones according to the given data. Actor 3669 received a low trust score either with 

TrustMe (0.00) or RawMean (0.08) due to acquiring a large portion of negative feedback.    

This analysis overall provides clear evidence that RawMean is an unfair metric that 

possibly produces misleading information. RawMean also ignores the change in the community 

topology over time because it solely calculates the simple average of the gotten evaluation scores. 

on the contrary, TrustMe sounds to be more logical in producing trust scores that are in harmony 

with the scores produced by other measures. The evolvement of trust is subject to positive or 

negative events that occur when actors involved in an interaction/transaction. The trust model 

should take into consideration that actors are different in terms of being tolerant or intolerant, and 

this affects the provided judgment score and the trust evolvement as well. Additionally, other 

factors have an influence on trust evolvement such as the number of relationships, interaction time, 

the reputation of the interacted parties/actors. All these elements move the trust index up or down 

based upon the situation. Another critical factor is malicious attacks that exploit some 

vulnerabilities in the trust model in order to change the trust score. This factor is not taken into 

account in this case but will be done in future work. To sum up, the TrustMe metric as in traduced 

above employs several factors to mitigate the risk of bad actors in modifying trust scores. Studying 

trust evolvement aids in understanding how trust develops and if the applied trust model is 

effective or not. TrustMe model is promising yet it requires some sub models to be injected or 

improved to increase its efficacy such as enhancing the punishment mechanism. Trust is a 

complicated topic that needs more work until innovating and building an effective model that can 

deal with several situations. 
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7. SIMULATION EXPERIMENTS AND RESULTS 

 

7.1. Tools and Languages 

In these experiments, R was used to compute some factors before proceeding the 

experiments such as the popularity factor. Whereas C#.NET was used to develop and build the 

simulation systems, and n user interface was designed to receive the simulations settings.  

7.2. Experimental Evaluation of Unshared-Reputation Context 

To evaluate the efficiency of the proposed model (TrustMe), four sets of experiments were 

conducted. Two metrics were used to measure trust evaluation accuracy and the transaction 

success rate. Additionally, two other approaches (PeerTrust & RawMean) were modeled along 

with our model for comparison purposes. Each set of experiments made of several variables to 

evaluate the three models using different settings.   

7.2.1. Simulation Setup  

Due to the lack of real datasets that represent real trust scores associated with other 

variables, we implemented, a simulation system that is based upon probability theory using C#.Net 

and R to generate our datasets. This simulation involves five sub-models: community model, threat 

model, transaction model, evaluation model, and trust model. Figure 55 shows the abstract design 

of the simulation system. Additionally, the simulation system consists of a set of variables that 

form the simulation settings and control the generation process. The values of these variables 

mostly came from a real dataset. An OTC-bitcoin dataset was used as a reference in the process of 

generating our datasets. The generated datasets were then used to evaluate the trust models. Table 

19 summarizes the simulation settings. 
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Table 19. The Summary of the Simulation Variables. 

Variable Value Description 

NOA ref. The number of actors in the community model based on the reference (OTC-bitcoin). 

NOT ref. The total number of transactions that will be performed is based on the reference. 

NOT. Range 
min  1 The number of transactions that every actor may perform which could be only one 

transaction or many. max ref. 

Generation 

Mode 
Random 

The number of transactions that the actor should perform is generated randomly (skewness 

≠ 0). 

Crr ref. 
Cooperative reciprocal rating: the rating process could be reciprocal between the two 

parties based on this value. 

Uar Vary 
Untrustworthy actors’ ratio: this represents the number of untrustworthy actors {0.10, 

0.25, 0.50}.  

Mrr Fixed 
Malicious reciprocal rating: the rating process could be reciprocal based on this value 

when a malicious action occurs.  

Mbr Vary 
Malicious behavior rate: the malicious behavior could occur based on this value {0.25, 

0.50}. 
 

7.2.1.1. Community Model 

Before establishing relationships between parties, a community 𝑐𝑘 primarily needs to be 

formed. A community model is an approach to establish an existence around a common purpose 

where actors are motivated to join and engage in interactions. Therefore, the first step in the 

simulation process is building a community 𝑐𝑘 that consists of a number of actors (NOA). Those 

actors (A) can be human beings, entities, devices, software, and so forth.  We obtained the number 

of actors from a real dataset that represents an old bitcoin community called “OTC-bitcoin.” The 

first simulation design starts with a small number of actors based on the given dataset reference 

(OTC-bitcoin), and then the number grows. The community 𝑐𝑘  is divided into two parts 

trustworthy and untrustworthy actors. The number of untrustworthy actors is captured by applying 

the variable Uar.     

𝐶𝑘 ≡ {𝐴𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 ∪ 𝐴𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦} 

𝐶𝑘 ≡ {{𝑎1, 𝑎2, ⋯ , 𝑎𝑛} ∪ {𝑎1, 𝑎2, ⋯ , 𝑎𝑚}} 

where C denotes to k community; 𝐴𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 denotes trustworthy actors whereas 𝐴𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 

denotes untrustworthy actors.  
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7.2.1.2. Threat Model 

A threat is a term that indicates anything that may cause harm or take advantage of a 

vulnerability. The purpose of the threat model is to reveal the weakness of the proposed model and 

also to show how effective this model is in dealing with such threats. In our experiment, the 

untrustworthy actors are mainly the source of threats when they behave maliciously. When a 

transaction takes a place, an untrustworthy actor may intentionally behave maliciously and not 

providing the requested service. Besides that, the untrustworthy actor gives a misleading rating or 

evaluation to the second party in order to conceal the malicious behavior. The untrustworthy actor 

not always acts malicious to not be recognized as a source of threats. The rate of recurrence of the 

malicious behavior for an untrustworthy actor is modeled by Mbr. Also, the overall average of the 

malicious behavior (MBavg) in the community is acquired by the following equation. 

𝑀𝐵𝑎𝑣𝑔 = (𝑈𝑎𝑟 ∗ 𝑁𝑂𝐴) ∗ 𝑀𝑏𝑟 

7.2.1.3. Transaction Model 

This model allows actors to communicate and interact with each other. This interaction 

usually causes a change in relationships between those actors. The transactions in our experiments 

are randomized-based. Actors are chosen randomly to carry out transactions between one another. 

The number of transactions that one actor can perform is randomly generated and fall between 

[min, max], and it is attributed to the simulation settings. When a transaction takes a place, a 

trustworthy actor constantly behaves honestly (cooperative). However, an untrustworthy actor 

behaves in a dishonest way (malicious) based on the simulation settings (Mbr). Transactions will 

be performed over time (t), and each transaction will have a timestamp. To be more realistic, a 

collection of transactions will be carried out simultaneously at time t. This is called transaction 

waves as a cross-validation mechanism.  
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Figure 55. The Abstract Design of the Simulation System. 

7.2.1.4. Evaluation Model 

An evaluation model simply concerns about specifying the assessment criteria to evaluate 

actors in a given community. After performing transactions, actors may want to evaluate one 

another through a mechanism of evaluation. In this experiment, a rating model was implemented 

to allow actors to evaluate each other depending on their experience. The rating model employs 

rating values range between [-10, +10] as -10 indicates an ultimate negative experience and +10 

indicates an ultimate positive experience. If a trustworthy actor involves in a transaction with an 

untrustworthy actor resulting in not receiving the requested service, the trustworthy actor may 

provide a negative rating against the untrustworthy actor.  

𝑅𝑎𝑖
≡ {𝑟1, 𝑟2, … , 𝑟𝑣} 

∀𝑟𝑖 ∈ 𝑅𝑎𝑖
≡ [−10, +10] 
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7.2.1.5. Trust Model 

A trust model comprises of three different trust models (TrustMe, PeerTrust, & RawMean). 

This component generates trust scores based on each model’s design. Each actor will have three 

different trust scores calculated by employing these trust models. Therefore, one actor may end up 

with three different judgments. Classifying actors using crisp evaluation (trustworthy or 

untrustworthy) is based on three different trust models and three different thresholds. Whereas 

fuzzy evaluation is another evaluation mechanism to cluster actors into five categories as highly 

trustworthy, trustworthy, suspicious, untrustworthy, and highly untrustworthy. These five clusters 

generated using thresholds acquired from a real dataset after applying density-based clustering.  

To compute trust scores, we need to calculate some factors such as the popularity factor 

which is acquired from the PageRank algorithm using R. The trust scores generated using three 

different trust models along with three different thresholds to monitor the efficiency of the three 

models. Thus, each actor has a set of trust records representing different settings. To transform 

trust scores into the scope of [0, 1], a unity-based normalization (min-max scaling) is employed. 

However, unity-based normalization is vulnerable to outlier values. Therefore, we first applied z-

score normalization (standardization) to avoid such outliers and to generate a distribution with a 

mean of 0 and a standard deviation of 1. 

7.2.2. Dataset Structure 

In this experiment, we create three main entities to mimic the real environment of 

calculating trust. Actor entity consists of four attributes: actor ID, actor role (trustworthy or 

untrustworthy), Mbr, and NOT along with actor record as a sub-entity that made of seventeen 

attributes: actor ID, trust model (TrustMe, PeerTrust, and RawMean), trust score ([0,1]), threshold 

(0.60, 0.70, & 0.80), judgment (trustworthy or untrustworthy), popularity, number of done 
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transactions, number of rejected transactions, number of malicious transactions, number of non-

malicious transactions, PRR, NRR, tolerance rate, punishment rate, reward rate, bias rate, 

dishonesty rate. Whereas a transaction entity is inclusive of nine attributes: transaction ID, 

timestamp, transaction activity, transaction status, first party, second party, transaction wave 

number, trust model, threshold. Rating entity formed from nine attributes: rating ID, source (actor), 

target (actor), rating score ([-10, 10]), timestamp, time weight, rating weight, source actor 

popularity, transaction ID. These entities were used to compute trust scores and to store the 

generated data.    

7.2.3. Dataset Generation 

During the process of generating our datasets, normal and uniform distribution was applied 

to procure random data. For instance, the number of transactions that one actor can perform falls 

between a minimum and maximum, so actors do not have the same number of transactions to 

perform. It is possible that one actor performs only one transaction, while another actor performs 

many transactions. These numbers are generated randomly based on a given range. To assign a 

timestamp to each transaction, a bootstrap resampling was used to pick timestamps from a list of 

timestamps extracted from the OTC-bitcoin. Each transaction wave takes a list of timestamps as a 

sample from the original list and then distributed randomly on the transactions of that wave. We 

identified how many transaction waves for each set of experiments by applying the equation of 

NOW, whereas the maximum number of transactions that one actor can perform is obtained by the 

equation of MNOT. Another important variable is the cooperative reciprocal rating (Crr), and its 

value came from the referenced dataset. We first sliced the dataset into years from 2010 until 2016, 

and we further compute the reciprocity values for each year using R. The number of actors for 

each year is considered the number of actors for each simulation design as shown in table 20. The 
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number of transactions for each simulation design is extracted from the number of ratings and the 

reciprocity value as in the equation of NOT. Tables 21, 22, and 23 show samples of the generated 

and computed data.       

𝑁𝑂𝑊 = 𝑁𝑂𝑇2 𝑁𝑂𝐴2⁄  

𝑀𝑁𝑂𝑇 = (𝑁𝑂𝑇
𝑁𝑂𝐴⁄ ) ∗ 𝑁𝑂𝑊 

𝑁𝑂𝑇 =
𝑁𝑂𝑅 ∗ 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦

2
+ 𝑁𝑂𝑅 − (𝑁𝑂𝑅 ∗ 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦) 

where: NOW denotes the number of transaction waves; MNOT denotes the maximum number of 

transactions; NOR indicates the number of ratings. 

Table 20. Simulation Settings. 

Simulation Design 

Variables  

NOA NOT NOW 
NOT 

Range 

Generation 

Mode 
Crr Uar Mrr Mbr 

Simulation 01 55 91 3 [1-12] Random 0.72 0.10 0.98 0.25 

Simulation 02 1,637 4,424 10 [1-65] Random 0.88 0.25 0.98 0.25 

Simulation 03 3,162 10,139 19 [1-114] Random 0.83 0.25 0.98 0.25 

Simulation 04 5,881 21,532 32 [1-288] Random 0.79 0.50 0.98 0.50 
 

7.2.4. Trust Evaluation Accuracy (TEA) 

Since our experiments ended up with classifying actors into trustworthy and untrustworthy, 

accuracy evaluation metric is utilized to measure the efficiency of the trust models. Accuracy is a 

popular evaluation metric for classification problems. It is simply the ratio of the correct 

predictions divided on all predictions (correct and incorrect). This metric reveals the performance 

of the trust models with the involvement of the number of transactions, the number of trustworthy 

actors, the number of untrustworthy actors, malicious behavior, timestamps, credibility, and 

popularity. If a judgment of one actor is equivalent to its assigned role, it is deemed as correct trust 

evaluation. Otherwise, it is considered an incorrect trust evaluation. This metric manifests at what 

level we can rely on trust models to make our trust decisions. As we employ the transaction waves 
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principle, it is considered as a cross-validation technique as transactions are divided into groups 

(folds) to be carried out separately and to generate trust scores for each fold. This also helps to 

check for overfitting and how our model will be generalized. 

𝑇𝐸𝐴 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠⁄  

Table 21. Sample of Actor Data. 

ID Role Trust.Score Trust.Model Thr. Judgment Popularity Mrb  NOT  MT  

1 Untrustworthy 0.47 PeerTrust 0.80 Untrustworthy 0.011427591 0.5 99 37 

2 Untrustworthy 0.66 PeerTrust 0.80 Untrustworthy 0.006705053 0.5 105 46 

3 Trustworthy 0.72 PeerTrust 0.80 Untrustworthy 0.015202776 0 74 0 

4 Trustworthy 0.99 PeerTrust 0.80 Trustworthy 0.014024468 0 106 0 

5 Trustworthy 0.82 PeerTrust 0.80 Trustworthy 0.009913554 0 25 0 

6 Untrustworthy 0.80 PeerTrust 0.80 Trustworthy 0.014038401 0.5 56 11 

7 Trustworthy 0.50 PeerTrust 0.80 Untrustworthy 0.010072222 0 62 0 

8 Trustworthy 0.98 PeerTrust 0.80 Trustworthy 0.009019818 0 134 0 

9 Trustworthy 0.72 PeerTrust 0.80 Untrustworthy 0.011581169 0 160 0 

10 Trustworthy 0.82 PeerTrust 0.80 Trustworthy 0.010502233 0 31 0 

11 Untrustworthy 0.49 PeerTrust 0.80 Untrustworthy 0.018285707 0.5 22 5 

12 Untrustworthy 0.48 PeerTrust 0.80 Untrustworthy 0.009495046 0.5 76 20 

13 Trustworthy 0.95 PeerTrust 0.80 Trustworthy 0.010642627 0 88 0 

14 Trustworthy 0.37 PeerTrust 0.80 Untrustworthy 0.00636896 0 124 0 

15 Untrustworthy 0.61 PeerTrust 0.80 Untrustworthy 0.006572858 0.5 70 12 

16 Trustworthy 0.54 PeerTrust 0.80 Untrustworthy 0.008949003 0 7 0 

17 Trustworthy 0.78 PeerTrust 0.80 Untrustworthy 0.012955984 0 52 0 

18 Untrustworthy 0.51 PeerTrust 0.80 Untrustworthy 0.006823997 0.5 73 19 

19 Untrustworthy 0.72 PeerTrust 0.80 Untrustworthy 0.008636498 0.5 70 25 
 

7.2.5. Transaction Success Rate (TSR) 

TSR is calculated by fractioning the number of successful transactions over the total 

number of all transactions over a given time. A transaction is deemed successful if both parties 

decided to be cooperative, while a transaction is deemed unsuccessful if one or both parties decided 

to act malicious. The presence of maliciousness means the security level of the community will 

drop down and means the higher the number of malicious transactions is, the lower the security 

level is, and vice versa. This metric additionally gives an elucidation of the productivity level of a 
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community. It implies that when the number of cooperative transactions is higher, the productivity 

level will be higher. We compare TSR of our model with TSRs of PeerTrust and RawMean models. 

The assumption is that the absence of an efficient trust instrument steers us toward a community 

with low TSR as actors cannot make proper trust decisions, and consequently, they will be victims 

of the risk of untrustworthy actors.  

𝑇𝑆𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑎𝑛𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠⁄  

Table  22. Sample of Transaction Data. 

Trans.ID Timestamp First.Party Second.Party Trust.Model Thr. Status Activity 

1 1291591212 4682 2474 TrustMe 0.70 Deal Cooperative 

2 1291591212 67 217 TrustMe 0.70 Deal Cooperative 

3 1291591212 2080 5251 TrustMe 0.70 Deal Cooperative 

4 1291591212 5100 1923 TrustMe 0.70 Deal Cooperative 

5 1291578872 3656 5315 TrustMe 0.70 Deal Cooperative 

6 1291578872 5866 5881 TrustMe 0.70 Deal Cooperative 

7 1291578872 3883 1634 TrustMe 0.70 Deal Cooperative 

8 1291578872 2432 434 TrustMe 0.70 Deal Malicious 

9 1291578872 5816 4947 TrustMe 0.70 Deal Cooperative 

10 1291684580 1825 2768 TrustMe 0.70 Deal Cooperative 

11 1291684580 4976 3573 TrustMe 0.70 Deal Cooperative 

12 1291684580 165 400 TrustMe 0.70 Deal Cooperative 

13 1291684580 1613 5292 TrustMe 0.70 Deal Cooperative 

14 1291684580 3207 5554 TrustMe 0.70 Deal Cooperative 

15 1291684580 4999 4092 TrustMe 0.70 Deal Cooperative 

Table 23. Sample of Rating Data. 

ID Source Source.Role Target Target.Role Rating.Score Activity Model Thr. 

32403 5312 Trustworthy 5365 Trustworthy 3 Cooperative RawMea

n 

0.70 

32404 5365 Trustworthy 5312 Trustworthy 9 Cooperative RawMea

n 

0.70 

32405 1432 Untrustwort

hy 

2922 Untrustworthy 2 Cooperative RawMea

n 

0.70 

32406 2922 Untrustwort

hy 

1432 Untrustworthy 1 Cooperative RawMea

n 

0.70 

32407 4152 Untrustwort

hy 

2336 Untrustworthy - 4 Malicious RawMea

n 

0.70 

32408 2615 Untrustwort

hy 

261 Trustworthy -2 Malicious RawMea

n 

0.70 

32409 261 Trustworthy 2615 Untrustworthy -7 Malicious RawMea

n 

0.70 

32410 4954 Trustworthy 3336 Untrustworthy 6 Cooperative RawMea

n 

0.70 

32411 3171 Untrustwort

hy 

3763 Trustworthy 8 Cooperative RawMea

n 

0.70 

32412 2340 Trustworthy 4758 Untrustworthy -5 Malicious RawMea

n 

0.70 
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7.2.6. Simulation Analysis  

In this section, a set of four simulation designs are described and characterized. Each 

simulation design has different settings to imitate various scenarios. The first design starts with a 

small number of actors, a small number of relationships, and a low rate of malicious attacks. 

Subsequent simulation designs increase these numbers to monitor the performance and efficiency 

of the models under study various settings.      

7.2.6.1. Simulation Design 01 

In this design, the number of actors sets to be 55 (NOA = 55). The number of transactions 

that to carry out is 91 (NOT = 91). The number of transaction waves set to be 4 (NOW = 4), so the 

total number of transactions is divided into 4 groups. The number of transactions that one actor 

can perform is vary based on the specified range (NOTrange = [1, 12]). Hence, the number of 

transactions for every actor to perform falls between 1 and 12 and randomly assigned. According 

to the analysis of the referenced dataset, the cooperative reciprocity rate set to be 0.72 (Crr = 0.72). 

Actors are not required to deliver ratings for each other. This implies that the evaluation could be 

in a two-way form (both evaluate each other) or in a one-way form (only one actor evaluates the 

other). The percentage of untrustworthy actors in the community sets to be 0.10 (Uar = 0.10). 

Thereby the number of untrustworthy actors is only 6 actors with this setting. The malicious 

behavior factor in this experiment is determined by the malicious behavior rate which sets to be 

0.25 (Mbr = 0.25). Thus, a quarter of the transactions of the untrustworthy actors will be malicious.   

After running the simulation system, the candidate actors are picked randomly to carry out 

transactions with each other. The transactions are performed over 4 waves, and before the start of 

a wave, trust scores of actors are computed. These trust scores are employed to classify actors 

whether they are trustworthy or untrustworthy. The decision is made based on the score of trust 
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and a crisp evaluation using three different thresholds (0.60, 0.70, & 0.80). An actor is judged as 

trustworthy if its trust score is equal or greater than the threshold ( 𝑇𝑆 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 →

𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦) whereas an actor is judged as untrustworthy if its trust score is less than the 

threshold ( 𝑇𝑆 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 → 𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 ). We then measure the accuracy of each 

transactions’ wave and we compute how much maliciousness in that wave to eventually curve 

these values to see how trust models perform with the movement of malicious behavior. We further 

compute the transaction success rate to evaluate the security and productivity of the given 

community. 

• Simulation Results 

Figures 56-61 depict the performance of the three trust models using different settings. The 

Three graphs illustrate trust evaluation accuracy concerning malicious behaviors, and the other 

three graphs illustrate transaction success rates of all models. It is discernible that all models 

(TrustMe, PeerTrust, and RawMean) seem to be effective specifically when the malicious behavior 

rate is at low levels. Even after increasing the rate of malicious behavior, the performance of all 

models remains at high levels. When using a lower threshold (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.60), the accuracy 

values are steadier and are around the nineties. This implies that all models are considered highly 

accurate in evaluating actors. Despite RawMean achieves good performance at higher thresholds 

(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.70 𝑜𝑟 0.80), its accuracy is the lowest compared to TrustMe and PeerTrust. It 

sounds that TrustMe and PeerTrust are competing with each other, and it can be said that their 

performance and accuracy are equivalent. Succinctly, the number of actors in this community is 

very small, and even the number of malicious actors is only 10%( 𝑈𝑎𝑟 ∶  0.10 ≡

6 𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑦 𝑎𝑐𝑡𝑜𝑟𝑠) of the entire community. Therefore, a solid conclusion cannot be built 
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from this experiment. However, it can be observed that RawMean underperforms TrustMe and 

PeerTrust as its accuracy declines when the malicious behavior rate increases.  

Table 24. Means of Trust Evaluation Accuracy and Transaction Success Rate (SD01). 

Threshold 
TrustMe PeerTrust RawMean 

Mean of TEA Mean of TSR Mean of TEA Mean of TSR Mean of TEA Mean of TSR 

0.60 0.97 0.94 0.97 0.94 0.94 0.86 

0.70 0.97 0.97 0.97 0.97 0.92 0.92 

0.80 0.96 0.97 0.95 0.96 0.90 0.88 

 

 

Figure 56. Trust Accuracy Evaluations for all Models with Tthreshold = 0.60 (SD01). 

 

Figure 57. Transaction Success Rates for all Models with Tthreshold = 0.60 (SD01). 
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Figure 58. Trust Accuracy Evaluations for all Models with Tthreshold = 0.70 (SD01). 

 

Figure 59. Transaction Success Rates for all Models with Tthreshold = 0.70 (SD01). 

 

Figure 60. Trust Accuracy Evaluations for all Models with Tthreshold = 0.80 (SD01). 
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Figure 61. Transaction Success Rates for all Models with Tthreshold = 0.80 (SD01). 

Transaction success rate charts concerning the number of transactions at a certain time 

show that all communities earn high success rates, but RawMean is less effective than other 

models. Another observation is that the TSRs of all models are quite stable. This indicates all 

communities are remarkably secure and productive since actors tend to cooperate and be honest 

rather behaving malicious. This could be ascribed to the small number of untrustworthy actors, 

and consequently, the number of malicious transactions will likewise be small. Table 24 

summarizes the averages of TEAs and TSRs for all models using three thresholds to ease the 

comparison process. 

7.2.6.2. Simulation Design 02 

In this design, the number of actors sets to be 1637 (𝑁𝑂𝐴 = 1637). The number of 

transactions to carry out is 4424 (𝑁𝑂𝑇 = 4424). The number of transaction waves set to be 13 

(𝑁𝑂𝑊 = 13), so the total number of transactions is divided into 13 groups. The number of 

transactions that one actor can perform is vary based on the specified range (𝑁𝑂𝑇𝑟𝑎𝑛𝑔𝑒 = [1, 65]). 

Hence, the number of transactions for every actor to perform falls between 1 and 65 and randomly 

assigned. According to the analysis of the reference dataset, the cooperative reciprocity rate set to 
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be 0.88 (𝐶𝑟𝑟 = 0.88). The percentage of untrustworthy actors in the community sets to be 0.25 

(𝑈𝑎𝑟 = 0.25). Thereby the number of untrustworthy actors is 410 actors with this setting. The 

malicious behavior factor in this experiment is determined by the malicious behavior rate which 

sets to be 0.25 (𝑀𝑏𝑟 = 0.25). Thus, a quarter of the transactions of the untrustworthy actors will 

be malicious.   

• Simulation Results 

Figures 62-67, as in the previous experiment, depict the performance of the three trust 

models using different settings. The graph consists of two types of charts representing trust 

evaluation accuracy and transaction success rate. One interesting observation is that all models 

perform equivalently when the malicious behavior rate is marginal (𝑀𝑏𝑟 < 0.05). Accordingly, 

the number of malicious transactions will be too small. It can be discovered that the RawMean 

method works ideally when the number of trustworthy actors is significantly larger than the 

number of untrustworthy actors. This implies that the number of honest evaluations is capable to 

nullify the influence of dishonest evaluations. When the malicious behavior rate grows, the TEA 

scores start to decline at the beginning of all approaches. Subsequently, TEAs of TrustMe and 

PeerTrust commence to recover and increase and to be more stable in all settings, while the TEA 

of RawMean continues to decrease dramatically. Table 25 summaries the averages of TEAs of the 

three models using the three thresholds (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.60, 0.70, 𝑜𝑟 0.80). It can be seen that in all 

settings TrustMe outperforms other models (PeerTrust and RawMean), and it seems that RawMean 

is out of the competition due to its low performance. This is because RawMean is merely relying 

on the number of transactions and the evaluation score as it aggregates the evaluation scores and 

eventually finds the average. Whereas TrustMe and PeerTrust are factored models which means 

that each model has factors aiding in lessening the deception and dishonesty levels. 
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Figures 63, 65, and 67 also show the transaction success rate for all models in three settings 

over time. It clear that the RawMean approach is underachieving comparing to TrustMe and 

PeerTrust approaches. This seems to be aligned with the conclusion of the experiment above of 

TEAs. Another exploration is that TSRs of TrustMe and PeerTrust became stable and steady after 

a slight change at the beginning and their TSR scores grow slightly over time. On the first hand, 

this refers to communities that employ such models to be more secure and productive. It further 

signifies that actors successfully transact with trustworthy actors and able to acquire reliable 

information to avoid dealing with untrustworthy actors. On the second hand, TSR of the RawMean 

approach seems to be wavy before became stable at the end but at low levels. This signifies that 

actors tend to transact with untrustworthy actors and be vulnerable to malicious attacks since they 

use unreliable information given by a substandard approach. Table 25 epitomizes the averages of 

TSRs of all models for all settings which proves that the TrustMe model is more efficient than 

other models. 

Table 25. Means of Trust Evaluation Accuracy and Transaction Success Rate (SD02). 

Threshold 
TrustMe PeerTrust RawMean 

Mean of TEA Mean of TSR Mean of TEA Mean of TSR Mean of TEA Mean of TSR 

0.60 0.93 0.88 0.90 0.86 0.77 0.68 

0.70 0.91 0.89 0.89 0.87 0.78 0.72 

0.80 0.88 0.86 0.85 0.83 0.74 0.73 
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Figure 62. Trust Accuracy Evaluations for all Models with Tthreshold = 0.60 (SD02). 

 

Figure 63. Transaction Success Rates for all Models with Tthreshold = 0.60 (SD02). 

 

Figure 64. Trust Accuracy Evaluations for all Models with Tthreshold = 0.70 (SD02). 
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Figure 65. Transaction Success Rates for all Models with Tthreshold = 0.70 (SD02). 

 

Figure 66. Trust Accuracy Evaluations for all Models with Tthreshold = 0.80 (SD02). 

 

Figure 67. Transaction Success Rates for all Models with Tthreshold = 0.80 (SD02). 
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7.2.6.3. Simulation Design 03 

In this design, the number of actors sets to be 3162 (𝑁𝑂𝐴 = 3162). The number of 

transactions that to carry out is 10139 (𝑁𝑂𝑇 = 10139). The number of transaction waves set to 

be 19 (𝑁𝑂𝑊 = 19), so the total number of transactions is divided into 19 groups. The number of 

transactions that one actor can perform is vary based on the specified range (𝑁𝑂𝑇𝑟𝑎𝑛𝑔𝑒 = [1,114]). 

Hence, the number of transactions for every actor to perform falls between 1 and 114 and randomly 

assigned. According to the analysis of the reference dataset, the cooperative reciprocity rate set to 

be 0.83 (𝐶𝑟𝑟 = 0.83). The percentage of untrustworthy actors in the community sets to be 0.25 

(𝑈𝑎𝑟 = 0.25). Thereby the number of untrustworthy actors is 791 actors with this setting. The 

malicious behavior factor in this experiment is determined by the malicious behavior rate which 

sets to be 0.25 (𝑀𝑏𝑟 = 0.25). Thus, a quarter of the transactions of the untrustworthy actors will 

be malicious.  

• Simulation Results 

The result of this experiment works as the first affirmation of the previous experiment 

(Design 2).  Figures 68, 70, and 72 represent trust evaluation accuracy and transaction success rate 

for all models. An interesting exploration is that the TEAs of all models still perform equally at the 

beginning when the Mbr is small, and the TEA of RawMean is a bit lower than other TEAs. Besides, 

the scores of RawMean starts to continuously drop down when the Mbr increases. This is another 

evidence that RawMean operates exemplarily when the Mbr is low. It can also be seen that TEAs 

of TrustMe and PeerTrust go up and down until they became stable eventually at good levels with 

a preference given to TrustMe. Table 26 shows that TrustMe significantly outperforms RawMean 

and slightly outperforms PeerTrust.  
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Table 26. Means of Trust Evaluation Accuracy and Transaction Success Rate (SD03). 

Threshold 
TrustMe PeerTrust RawMean 

Mean of TEA Mean of TSR Mean of TEA Mean of TSR Mean of TEA Mean of TSR 

0.60 0.93 0.86 0.90 0.83 0.79 0.69 

0.70 0.92 0.83 0.89 0.81 0.79 0.69 

0.80 0.92 0.82 0.89 0.80 0.76 0.68 

 

 

Figure 68. Trust Accuracy Evaluations for all Models with Tthreshold = 0.60 (SD03). 

 

Figure 69. Transaction Success Rates for all Models with Tthreshold = 0.60 (SD03). 
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Figure 70. Trust Accuracy Evaluations for all Models with Tthreshold = 0.70 (SD03). 

 

Figure 71. Transaction Success Rates for all Models with Tthreshold = 0.70 (SD03). 

 

Figure 72. Trust Accuracy Evaluations for all Models with Tthreshold = 0.80 (SD03). 
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Figure 73. Transaction Success Rates for all Models with Tthreshold = 0.80 (SD03).  

Moreover, the transaction success rate for all models in figures 69, 71, and 73 show that 

the RawMean approach is again less secure and less productive compared to TrustMe and 

PeerTrust approaches. TSRs of TrustMe and PeerTrust increase over time when the number of 

transactions increases which implies that with more knowledge, these models perform better. This 

also signifies that with more knowledge, the quality of the given information will be high which 

increases security and productivity levels. Table 26 furthermore summarizes the average of TSRs 

of all models which indicates that TrustMe outperforms other models.  

To sum up, this experiment emphasizes the results procured from the previous experiment. 

They both prove that RawMean is not effective than the other two models as it performs poorly 

when malicious behavior increases in the community. Whereas TrustMe outperforms all other 

models in the context of trust evaluation accuracy and transaction success rate. PeerTrust is still 

considered effective but below the TrustMe model. The last design (Design 4) is built with a larger 

community and higher Mbr and Uar as a second confirmation of this conclusion. 

7.2.6.4. Simulation Design 04 

In this design, the number of actors sets to be 5881 (𝑁𝑂𝐴 = 5881). The number of 

transactions that to carry out is 21532 (𝑁𝑂𝑇 = 21532). The number of transaction waves set to 
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be 32 (𝑁𝑂𝑊 = 32). So, the total number of transactions is divided into 32 groups. The number of 

transactions that one actor can perform is vary based on the specified range (𝑁𝑂𝑇𝑟𝑎𝑛𝑔𝑒 = [1,288]). 

Hence, the number of transactions for every actor to perform falls between 1 and 288 and randomly 

assigned. According to the analysis of the reference dataset, the cooperative reciprocity rate set to 

be 0.79 (𝐶𝑟𝑟 = 0.79). The percentage of untrustworthy actors in the community sets to be 0.50 

(𝑈𝑎𝑟 = 0.50). Thereby the number of untrustworthy actors is 2941 actors with this setting. The 

malicious behavior factor in this experiment is determined by the malicious behavior rate which 

sets to be 0.50 (𝑀𝑏𝑟 = 0.50). Thus, half of the transactions of the untrustworthy actors will be 

malicious.   

• Simulation Results 

The result of this experiment serves as the second affirmation of the experiment of design 

2 and the first affirmation of the experiment of design 3. Figures 74-79 consist of two types of 

charts representing trust evaluation accuracy and transaction success rate for all models. The 

number of untrustworthy actors in this experiment represents half of the community with 𝑀𝑏𝑟 =

0.50 which forms a large fraction of malicious transactions that will be carried out. One repeated 

and evident observation is that TrustMe and PeerTrust achieve good performance with a moderate 

decrease compared with previous experiments even with this number of untrustworthy actors. This 

is because the proportion of malicious attack is high which assists in identifying such 

untrustworthy actors, and as a result, trustworthy actors can avoid dealing with them. Another 

apparent observation is that the RawMean model still performs deficiently with a dramatic 

deterioration specifically when Mbr increases. Table 27 recapitulates the averages of TEAs of all 

models using three different thresholds. Based on these averages, RawMean is the worst, and 

TrustMe is the best from a performance perspective.  
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Figures 75, 77, and 79 also show that TSRs of all models are descended and afterward became 

quite stable when the number of transactions increases. However, TSR of RawMean receives a 

significant drop than others, and it seems not stable. This confirms the previous interpretations as 

TrustMe and PeerTrust are more secure and productive. RawMean is still vulnerable to such severe 

attacks and not secure.  

Table 27. Means of Trust Evaluation Accuracy and Transaction Success Rate (SD04). 

Threshold 
TrustMe PeerTrust RawMean 

Mean of TEA Mean of TSR Mean of TEA Mean of TSR Mean of TEA Mean of TSR 

0.60 0.84 0.82 0.82 0.75 0.72 0.56 

0.70 0.86 0.82 0.83 0.80 0.72 0.59 

0.80 0.87 0.80 0.84 0.78 0.71 0.62 
 

To conclude this section, there is a direct positive relationship between TEA and TSR that 

can be observed through all experiments. When TEA is high which implies the model is more 

accurate in its evaluation, TSR will be high as well. This means actors will receive accurate 

information, and they will likely select trustworthy actors to transact with averting transacting with 

untrustworthy actors. In all experiments, we conduct non-collusive attacks that show that TrustMe 

achieves the highest values followed by PeerTrust and RawMean is the worst. 

 

Figure 74. Trust Accuracy Evaluations for all Models with Tthreshold = 0.60 (SD04). 
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Figure 75. Transaction Success Rates for all Models with Tthreshold = 0.60 (SD04). 

 

 Figure 76. Trust Accuracy Evaluations for all Models with Tthreshold = 0.70 (SD04). 

 

Figure 77. Transaction Success Rates for all Models with Tthreshold = 0.70 (SD04). 
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Figure 78. Trust Accuracy Evaluations for all Models with Tthreshold = 0.80 (SD04). 

 

Figure 79. Transaction Success Rates for all Models with Tthreshold = 0.80 (SD04). 

7.3. Simulation Experiment of Blockchain-Based Trust Model 

In this context, we aim to see the efficiency of applying cross-community trust using 

blockchain technology. The design of this experiment involves an adversarial model and a 

collection of separate communities with their members (actors). Each community has its 

evaluation mechanism which eventually needs to be standardized. All models (community model, 

threat model, transaction model, evaluation model, and trust model) that employed in the previous 

simulations are used. In this experiment, we conduct a collusive attack to see how the trust models 

perform in cases of this kind. This form of attack differs from the attacks in the previous 
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experiments which are considered as non-collusive. Figure 80 simplifies the design of blockchain 

Simulation for Cross-Community Trust. 

7.3.1. Blockchain Model 

This model in the experiment is simple and not as complicated as in our design. This model 

aims to manage received information from several communities and store them in blocks via Trust-

DApp. When one community deliver new data, Trust-DApp will pass these data into the 

management component to find an actor whose an address that matches the address sent with the 

new data. In our experiment, we used actor Ids as addresses for the sake of simplicity. When the 

system finds the actor, the data will be placed on a block and connected to this actor. Trust-DApp 

is supposed to standardize the received data before storing it. For instance, the popularity factor is 

different from one community to another. Thus, we receive the size of the community as a factor 

to minimize or maximize the value of popularity. Another issue that the model handles is the issue 

of timing. How can we weigh the time after a long time of transacting? The model builds kind of 

indexing for weighing time. When a new time comes, this indexing is updated. Then, the model 

starts calculating the trust score of the actor who receives new data and adds a new record for the 

new trust score. 

7.3.2. Adversarial Model 

The adversarial model is mainly a sub-model of the threat model. The purpose of this model 

is to mimic a malicious attack targeting an actor in a specific community and to manifest how trust 

models perform with such an attack. Adversarial patterns will be in a form of values injected into 

trust models. Attackers deliberately designed such inputs to make trust models providing 

misleading information. In this experiment, a malicious adversarial model involving conspiracy is 

designed to deceive the community. This implies that any actor or a group of actors may collude 
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secretly to execute a pernicious plan. Further, the attack may take the form of a Sybil attack where 

the reputation of the community members is dishonestly diverted by creating multiple identities. 

 

Figure 80. Blockchain Simulation Design for Cross-Community Trust. 

7.3.3. General Simulation Design 

The number of communities in this experiment sets to be 2 (|𝐶| = 2). The number of actors 

in the first community 𝑐1 sets to be 5881 (𝑁𝑂𝐴𝑐1
= 5881). The number of transactions to perform 

sets to be 21532 (𝑁𝑂𝑇𝑐1
= 21532). The number of actors in the second community 𝑐2 sets to be 

3162 (𝑁𝑂𝐴𝑐2
= 3162 ). The number of transactions to perform sets to be 10139 (𝑁𝑂𝑇𝑐2

=

10139). The cooperative reciprocal rating for 𝑐1 sets to be 0.79 and for 𝑐2 set to be 0.83 (𝐶𝑟𝑟𝑐1
=

0.79 & 𝐶𝑟𝑟𝑐2
= 0.83). Also, the rate of untrustworthy actors in 𝑐1 is 0.50 whereas in 𝑐2 is 0.25 

(𝑈𝑎𝑟𝑐1
= 0.50 & 𝑈𝑎𝑟𝑐2

= 0.25). The malicious behavior rate for 𝑐1 set to be 0.50 and for 𝑐2 set to 

be 0.25 (𝑀𝑏𝑟𝑐1
= 0.50 & 𝑀𝑏𝑟𝑐2

= 0.25). 𝑐1 is chosen to have Sybil attack targeting a single actor, 

while 𝑐2 is chosen to be with no Sybil attack.  

7.3.4. Sybil Attack Design 

A single untrustworthy actor that owns a single identity usually acts malicious at a certain 

time t targeting another actor. This type of attack is simple and straightforward with limited 

influence. Therefore, we designed a sophisticated attack consisting of a collection of identities 

aiming to mislead the community. If we look at the community as a graph with vertices and edges, 
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the Sybil attack creates a bunch of edges with dishonest weights (deceitful evaluations). Sybil 

actors (Sya) provide fake feedback (𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}) in a given time frame (𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}) 

in order to improve (Support) or ruin the reputation of a target actor. The time frame for all 

transactions and evaluations falls between the range [1289380982, 1292361186] in an epoch time 

format. Sybil actors are uniformly picked random from untrustworthy actors. The Sybil actors rate 

sets to be 0.01 (1%) of the total number of untrustworthy actors (𝑆𝑦𝑟 = 0.01). Since 𝑁𝑂𝐴𝑐1
=

5881 actors with 𝑈𝑎𝑟𝑐1
= 0.50, the number of Sybil actors is 30 (𝑁𝑆𝐴𝑐1

= 30). We additionally 

assume that the target actor (Ta) exists in the two communities (𝑇𝑎 ∃ 𝑐1 & 𝑇𝑎 ∃ 𝑐2 ) and as 

designed all Ta’s evaluations are ended up at the trust DApp (∀𝑟𝑖(𝑇𝑎) ∈ 𝑅𝑇𝑎).  

7.3.5. Sybil Evaluation 

We randomly have chosen three actors as targets of the Sybil attack. The actors’ IDs were 

150, 2871, and 2944. The number of attempts to carry out transactions with every target actor was 

30 as every Sya tried to perform only one transaction at time t with the target actor. Based on the 

trust score of each Sya, the target accepts or rejects dealing with the corresponding party. The total 

number of performed transactions with the actor holding ID# 150 was13 transactions. The total 

number of performed transactions with the actor holding ID# 2871 was 17 transactions whereas 

the total number of carried out transactions with the actor holding ID# 2944 was 14. We assume 

that the same Sybil actors will target the three actors. The ratings given by Sybil actors to target 

actors for all transactions were negative and randomly generated from the range [-1, -10]. Sybil 

actors usually want to conceal their maliciousness to the community, so we generate negative 

ratings randomly to not create an easily detected malicious pattern. Table 28 shows a list of the 

chosen Sybil actors and table 29 shows the plan of the three Sybil attacks and the evaluations given 

by Sybil actors. Figures 81, 82, and 83 graphically show the chronological order of the Sybil 
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attacks against actors Ids: 150, 2871, and 2944. Attack power (AP) indicates the damage attribute 

derived from the attack strength which increases over time until reaching 100%. 

Table 28. Sybil Actors. 

Sybil 

Actor 
Sya1 Sya2 Sya3 Sya4 Sya5 Sya6 Sya7 Sya8 Sya9 Sya10 Sya11 Sya12 

Id 4 11 33 94 144 210 457 603 689 758 970 991 

Sybil 

Actor 
Sya13 Sya14 Sya15 Sya16 Sya17 Sya18 Sya19 Sya20 Sya21 Sya22 Sya23 Sya24 

Id 1215 1628 1748 1921 2198 2322 2637 3149 3680 3707 4002 4075 

Sybil 

Actor 
Sya25 Sya26 Sya27 Sya28 Sya29 Sya30       

Id 4177 4520 4647 5018 5685 5799       
 

Table 29. Details of the Three Principal Malicious Attacks (Sybil Attacks). 

Ta.Id: 150 

Sya Sya.Id r t 

Sya1 4 -8 1289555746 

Sya3 33 -10 1289556989 

Sya4 94 -1 1289660347 

Sya5 144 -6 1289770757 

Sya6 210 -2 1289873368 

Sya9 689 -9 1290197554 

Sya10 758 -8 1290644458 

Sya12 991 -3 1290666953 

Sya20 3149 -7 1290758643 

Sya21 3680 -6 1290826591 

Sya25 4177 -2 1291055973 

Sya28 5018 -4 1291578872 

Sya29 5685 -6 1292099161 

- - - - 

- - - - 

- - - - 

- - - - 
 

Ta.Id: 2871 

Sya Sya.Id R t 

Sya1 4 -5 1289441451 

Sya2 11 -1 1289489668 

Sya3 33 -7 1289555746 

Sya5 144 -8 1289556989 

Sya6 210 -3 1289641704 

Sya7 457 -7 1289770757 

Sya9 689 -7 1290090118 

Sya10 758 -4 1290197554 

Sya12 991 -2 1290644458 

Sya18 1628 -8 1290758643 

Sya20 3149 -10 1291578872 

Sya21 3680 -5 1291591212 

Sya23 4002 -1 1291757016 

Sya25 4177 -9 1292071379 

Sya26 4520 -6 1292193828 

Sya28 5018 -10 1292206272 

Sya29 5685 -4 1292361186 
 

Ta.Id: 2944 

Sya Sya.Id r t 

Sya3 33 -1 1289441451 

Sya5 144 -5 1289555871 

Sya6 210 -4 1289641704 

Sya7 457 -9 1289660347 

Sya9 689 -9 1289873368 

Sya13 1215 -7 1290666953 

Sya14 1628 -5 1291157823 

Sya15 1748 -2 1291217882 

Sya16 1921 -4 1291578872 

Sya19 2637 -6 1291684580 

Sya22 3707 -3 1291757016 

Sya23 4002 -1 1292099161 

Sya25 4177 -4 1292196407 

Sya29 5685 -2 1292206272 

- - - - 

- - - - 

- - - - 
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Figure 81. The Chronological Order of a Sybil Attack Against Actor# 150. 

 

Figure 82. The Chronological Order of a Sybil Attack Against Actor# 2871. 
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Figure 83. The Chronological Order of a Sybil Attack Against Actor# 2944. 

• Simulation Results 

Figures 84-89 show the trust evolvement of actors holding numbers 150, 2871, and 2944. 

Those actors are targets of Sybil Attacks. This experiment varies from previous experiments. 

Previous experiments conduct non-collusive scenarios, whereas this experiment conducts 

collusive scenarios. We consider a Sybil attack as a type of collusive attacks. We present the trust 

evolvement in the case of using blockchain technology forming cross-community trust and in the 

case of a single-community trust without blockchain. The goal of this experiment is to show the 

effectiveness of using blockchain in alleviating the impact of malicious attacks compared to a 

model that does not employ such technology.  

When launching the Sybil attack targeting actor holding Id 150, the results shown in figures 

84 and 85 demonstrate that the trust score decreased gradually in the instance of single-community 

more than in the instance of cross-community using blockchain. This can be seen in table 30 as 
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trust score averages of TrustMe are 0.82 when using the cross-community form and 0.65 when 

using the single community form. Trust score averages of PeerTrust are 0.72 for cross-community 

and 0.61 for single-community. Also, trust score averages of RawMean are 0.28 for cross-

community and 0.23 for single-community. This indicates that the cross-community design is 

better than the single-community design. Another important observation is that the RawMean 

model is heavily affected in both cases with an advantage given to the cross-community design. 

This is another proof that RawMean is not effective in all cases, and it is highly vulnerable in 

collusive and non-collusive scenarios. PeerTrust and TrustMe models achieve superior 

performance when using cross-community.  

There is an additional allusion that factors ascribed to a trust model help to lessen the 

impact of unusual behaviors. This conclusion can likewise be observed when monitoring the trust 

score averages of actors holding Ids 2871 and 2944. Further, the advantage of the cross-community 

design supplements is that it increases the size of knowledge which helps to detect malicious 

behaviors and to produce more precise trust scores. Indeed, the blockchain model abates the 

influence of Sybil attack and makes the attack ineffective and unsuccessful. The blockchain model 

strengthens the internal immune system of trust models. 

Table 30. Averages of Trust Scores in Cross-Community and Single-Community Trust. 

Actor Id 

TrustMe PeerTrust RawMean 

Cross-

Community 

Single-

Community 

Cross-

Community 

Single-

Community 

Cross-

Community 

Single-

Community 

150 0.82 0.65 0.72 0.61 0.28 0.23 

2871 0.80 0.73 0.64 0.55 0.24 0.20 

2944 0.88 0.76 0.80 0.64 0.39 0.34 
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Figure 84. Trust of Actor# 150 - Exposure to Sybil Attack in Blockchain-Based Design. 

 

Figure 85. Trust of Actor# 150 - Exposure to Sybil Attack in Unshared-Reputation Design. 

 

 

Figure 86. Trust of Actor# 2871 - Exposure to Sybil Attack in Blockchain-Based Design. 
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Figure 87. Trust of Actor# 2871 - Exposure to Sybil Attack in Unshared-Reputation Design. 

 

 

Figure 88. Trust of Actor# 2944 - Exposure to Sybil Attack in Blockchain-Based Design. 

 

 

Figure 89. Trust of Actor# 2944 - Exposure to Sybil Attack in Unshared-Reputation Design. 
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8. CONCLUSIONS, FUTURE WORK, AND RECOMMENDATIONS 

8.1. Conclusions 

Virtual communities provide a unique climate where interactions performed among its 

members/actors who usually have similar interests. Actors can be clustered as trustworthy and 

untrustworthy. Because of the presence of untrustworthy actors, the community will likely be 

subjected to malicious attacks.  The growth of malicious attacks increases uncertainty and risk in 

these communities. Trust and reputation are substantial elements that need to exist to reduce such 

uncertainty and risk. To ensure safe operation, it is extremely important to select a trustworthy 

actor to deal with. Ascertaining the trust of an actor is quite crucial in preventing counterfeit 

transactions, minimizing risk, and avoiding illicit actors. A Trust mechanism can serve as an 

observer to track the trust dynamism based on actors’ behavior supplying precise trust information.  

Also, trust as a private asset should be obsessed and managed by its legitimate actor. Due 

to the centralization of the most online communities, the ownership feature is not guaranteed, and 

the community manage and control these assets. This may lead to losing trust assets or be used 

improperly without permission. Sharing information is another issue that needs to be taken into 

account to take advantage of its availability. Communities can partner and share trust information 

to rapidly and facilely detect perilous behavior. Shared trust information further increases the 

preciseness of the generated trust scores. The issues of trust, ownership, and sharing trust 

information should be addressed to construct more secure, integrable, and reliable communities. 

The contribution of this study is to design and test new promising models that aim to mitigate these 

problems and to make virtual communities safer.  
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8.1.1. Study Contributions 

• TrustMe Model: Reducing Impact of Malicious Attacks  

Trust is a significant factor in establishing and building a healthy reputation among actors. 

This thesis provided a reputation-based trust model that contributed to reducing the uncertainty 

levels among actors in a peer-to-peer environment. Malicious actors may tend to deceive to change 

the reputation of one peer. Without such a trust model, malicious actors can achieve their goals 

easily.  This model mainly aims to generate trust scores for actors through scanning the history of 

the actors' transactions/interactions over time. The model can be applied by the actors themselves 

and online platforms as well. Before performing a transaction, participants can explore the trust 

score of each other by using this model as a tool, and this is to ease the process of decision-making. 

Actors, in this context, can lessen the likelihood of being victims of fraud.  

Furthermore, online communities are vulnerable to scams and frauds which lead to the 

necessity of trust models. Actors are highly subjected to malicious attacks or dealing with 

dishonest untrustworthy actors. Thus, this thesis developed a model that was designed with several 

factors focusing on reducing such malicious attacks. To do that, the impact of outlier ratings was 

minimized in the model. We found that these outliers are quite often a product of launching a 

malicious campaign in conjunction with temporal information to upgrade or degrade the reputation 

of the target actor.  

In this regard, a collection of experimental analytic was conducted starting from density-

based clustering, graph analysis, to building a set of simulations. Density-based clustering as a 

pilot study shows that most of the trust scores were correctly clustered measured by the Silhouette 

coefficient and the sum of squared errors. Another study was conducted using graph theory to 

analyze the produce trust scores by TrustMe with the values of the network metrics. The results 
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show that TrustMe sounds to be more logical in producing trust scores that are consistent and 

correlated with the values of network measures. For instance, if the score of betweenness is high, 

the trust score is high. The same case is applied to the eigenvector. A set of four simulation 

experiments was also conducted to measure the evaluation accuracy and the transaction success 

rate of the trust models where three models were used for comparison purposes. The simulation 

was controlled by some variables such as the population of the community, the number of 

transactions, the malicious behavior rate, and the number of the untrustworthy actor, and this to 

emulate different scenarios. The results find that TrustMe outperforms RawMean and PeerTrust 

model in all settings by acquiring the highest values of trust evaluation accuracy (TEA) and 

transaction success rate (TSR). The hypothesis regarding the problem of biased/malicious reviews 

stated that the TrustMe model mitigates the problem of biased/malicious reviews. The results 

illustrate that there was a statistically significant difference between the hypothetical TEA and TSR 

and the observed TEA and TSR. Therefore, we reject the null hypothesis and accept the alternative 

hypothesis that confirms that TrustMe helps in lessening biased/malicious reviews.  

• Blockchain-Based Trust Model: Cross-Community Trust 

Another important contribution is leveraging information sharing across communities to 

allow actors to make their trust assets mobile and to be used in multiple virtual communities.  

Sharing information further increases the size of knowledge which in turn enlarges the accuracy 

of the produced trust scores. This assists in minifying malicious behavior and discloses 

untrustworthy actors. This also accelerates securing multiple communities once as the information 

of detected untrustworthy actors will be passed to all partnered communities. Here, blockchain 

becomes prominent as a possible solution to such issues by connecting multiple separate online 

platforms to a decentralized platform that preserves all trust information. This station can provide 
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trust information to anyone who inquiries about a certain actor. Indeed, blockchain technology 

offers some important values: traceability, transparency, and immutability. Traceability means all 

trust information can be traced back to see the history of an actor’s trust (trust evolvement). 

Whereas, transparency implies that trust scores are available, reachable, and visible to everyone. 

Immutability indicates that the stored trust information became tamper-proof. One possible 

scenario to show the benefit of trust information sharing is that there is an actor who already has 

an account on the first platform while no account on the second one. When the actor decided to 

open a new account on the second platform that partnered with the first platform, the second 

platform can learn about the trust information of this actor without previous local transactions. 

This can be done by querying the blockchain-based trust model about the trust information of that 

actor. Hence, such a decentralization mechanism helps actors to move their trust information from 

one community to another without much effort. Participants and the operators of the platforms, in 

this context, can track actors’ behavior which allows them quickly disclosing untrustworthy actors 

who aim to provide destructive information to mislead the community.  

In this regard, an experimental analysis was conducted to discover the effectiveness of 

using the blockchain-based trust model in terms of a cross-community trust. A simulation system 

was built consisting of a set of stochastic models including an adversarial model mimicking three 

Sybil attacks and cross-community trust information. This simulation produced trust scores for 

actors using three trust models including the TrustMe model. Three actors were chosen randomly 

to be targets of the designed Sybil attack. The results show that TrustMe outperformed other 

models because the impact of the malicious attack was marginal.  

The hypothesis regarding the problem of the efficiency of managing multiple trusts and the 

impact of malicious cyber-attack stated that the blockchain-based trust model efficiently manages 
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multiple trusts and alleviates the impact of malicious attacks. The results demonstrate that there 

was a statistically significant difference between the hypothetical TEA and TSR and the observed 

TEA and TSR. Therefore, we reject the null hypothesis and accept the alternative hypothesis that 

confirms that the blockchain-based trust model aids in managing multiple trusts and alleviating 

the impact of malicious attacks. 

• Blockchain-Based Trust Model: Ownership 

This study further provides a model that focuses on managing identity from the angle of 

trust and reputation since there is no enough work highlighting the importance of cross-community 

trust management using blockchain. Some identity management principles have a strong 

connection with managing multiple trust and reputations. Therefore, reputation management can 

get some benefits from applying some identity management strategies and principles. In some 

scenarios, it is unfair to have multiple identities and multiple reputations for the same actor, 

particularly in e-commerce communities. For instance, if one seller wants to control his/her trust 

information by conveying it form a community to another, this actor cannot perform such action 

because of losing control.  This control is given to a central authority where trust information is 

stored and managed. An additional scenario is that actors may lose a long history of performing 

transactions with behaving honestly. They might have built a strong reputation over time, the host 

community decided for whatever reason to stop running their business. In this case, actors do not 

own their trust assets, and they will lose their long reputable record in a short time.  

This study provides a design of a blockchain-based trust model in the form of a distributed 

application called “distributed application of cross-community trust (DACCT)” to store and 

manage trust information in decentralization fashion. This design takes into consideration the 

ownership issue to be returned to the legitimate owner. Here, actors can reach their trust 
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information any time from any location using DACCT. Also, others as individuals or communities 

can access to trust information by providing the address of the actor under questioning. This design 

guarantees that the ownership feature is delivered to its authentic actor. Other principles have been 

taken into account in this design and classified as indispensable elements such as privacy. One of 

the public blockchain characteristics is transparency which implies that all information is visible 

and accessible. Thus, to protect private and sensitive information, a piece of DACCT design 

concerns this issue by using a Proxy design pattern. This design allows only permissioned actors 

to access sensitive information. 

To sum up, this study provides a long run experiment proving that the TrustMe model alone 

is productive and efficient in generating trust scores. All experiments provide strong evidence 

about the effectiveness of TrustMe. If the TrustMe model is integrated with blockchain 

mechanisms, its performance will be more effective in reducing the influence of malicious attacks 

in virtual communities. Also, by using blockchain technology in applying cross-community trust, 

trust information will be more precise and available to anyone, it cannot be lost and managed by a 

decentral mechanism which grants ownership to its possessor through DACCT. These solutions 

make online communities more secure, trusted, and reliable against misleading information and 

malicious behavior.  

8.2. Future Work and Recommendations 

In this study, the TrustMe model was developed as an efficient trust tool to protect virtual 

communities and help actors making a proper decision based on the given trust information. Trust 

is a complicated concept that needs to be investigated further in different forms, such as addressing 

the cold-start problem by proposing models can deal with different situations of cold-start issue. 

Another potential future work that is somehow connected to the cold-start issue is group-based 
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stereotypes to trust unknown members. This kind of work can be conducted using graph analysis 

by extracting sub-communities from the main community to study the newly joined actors, and 

what are the shared characteristic that made this actor to clustered in such community. Here, the 

new actor can get a trust score based on common characteristics. 

 Moreover, if we only consider building a complete distributed application (DApp) using 

Ethereum blockchain, there is a crucial desire to establish a new consensus mechanism to 

decentralize community management completely. This consensus concerns monitoring the 

behavior of communities in the case of providing misleading information and concerns 

communities' membership processes. This work will introduce an effective mechanism that can be 

helpful for cross-community-oriented applications.   
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APPENDIX A. EXTERNAL TRUST MODELS USED IN THE STUDY 

• RawMean Model 

It is mainly supervised and managed by a central authority. This reputation system is based 

on feedbacks that are given via a number of people. In e-commerce communities, there is 

significant use of feedback systems that are used to evaluate the rating of sellers/buyers or peers 

in a general environment such as a peer-to-peer system. Amazon, eBay, Netflix, and other online 

platforms, for example, apply feedback systems to allow people to evaluate each other expressing 

their satisfaction with a transaction in which they were involved. Many virtual communities 

employ a simple metric to compute rating scores over six or twelve months, and this metric can be 

vulnerable to malicious feedback. The following equation is used in eBay to generate a global 

single reputation score [34, 106]: 

𝑆 =  
𝑃

(𝑃 + 𝑁)
∗ 100 

Where S represents the satisfaction value of a seller or a buyer; P denotes the number of 

positive feedback; N denotes the number of negative feedback, and ignore the number of neutral 

feedback. In more detail, eBay uses a star system for the evaluation process in which people can 

rate each other using values from 0 to 5. In the case of giving 4 or 5 stars, eBay translates that to 

one positive score (+1), and in the case of giving three stars, it is converted to zero (0) as a neutral 

value, and it will not be used in the evaluation process. In the case of giving 1 or 2 stars, the system 

will count it as one negative feedback (-1). 

• PeerTrust Model  

Xiong and Liu [7] developed the PeerTrust model and stated that five factors should be 

used to compute a trust value. They have developed a reputation-based trust model that deals with 

the following factors: feedback, feedback scope, credibility transaction context factor, and 
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community context factor. Their model is a general metric that can be adapted in different 

situations. In this model, the first factor is feedback, which is a major one that represents the review 

given by a buyer or seller after each transaction. The second factor is the feedback scope, which 

represents the total number of transactions. This factor has a vital impact on the trust score because 

by raising the volume of transactions, people might be able to conceal some of their malicious 

behaviors. Another factor is credibility, which, when used, can improve the accuracy of the trust 

score since this factor should reveal whether one person provides a false statement about others or 

not. Figuring out the credibility can limit the possibility of being vulnerable to dishonest feedbacks, 

which could cause a trustworthy person/peer to become untrustworthy because of a large number 

of dishonest feedback or reviews. The transaction context factor is another variable that should be 

taken into consideration. Xiong and Liu argue that transactions could have attributes values that 

distinguish one transaction from the other in the same e-commerce community. For instance, a 

seller might be honest with transactions that cost a small amount of money to receive a high rating 

score while being dishonest with transactions that cost a large amount of money. The last factor in 

this model is the community context factor, which makes the trust model adapted to different 

communities and situations. One example of the community context factor is offering incentives 

to raters, which means that when a rater delivers feedback, the rater receives an increase in his/her 

trust score. 

• The general metric of PeerTrust 

𝑇(𝑢) =  𝛼 ∗  
∑  𝑆(𝑢, 𝑖) ∗   𝐶𝑟(𝑝(𝑢, 𝑖)) ∗ 𝑇𝐹(𝑢, 𝑖)𝐼(𝑢)

𝑖=1

𝐼(𝑢)
+  𝛽 ∗ 𝐶𝐹(𝑢) 

where T(u) indicates the trust score of peer u at time t; I(u) denotes the total number of transactions; 

and S(u, i) represents the normalized amount of satisfactions peer u receives from p(u, i) in its ith 

transaction. Cr(u, i) represents the credibility of the feedback submitted by p(u, i), while TF(u, i) 
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denotes the adaptive transaction context factor for peer u’s ith transaction. CF(u) denotes the 

adaptive community context factor of peer u during time t. 𝛼  and  𝛽 indicate the normalized 

weight factors for the two parts. The first part of the metric represents the average amount of 

credible satisfaction a peer receives for each transaction. The second part alters the first part by 

increasing or decreasing the trust score based on community-specific characteristics and situations. 

The basic metric consists of three factors (S(u, i), Cr(u, i), and I(u)) that should not be ignored in 

whatever case. To adapt the metric to be basic metric is by making 𝛼 = 1, 𝛽 = 0, and TF(u, i) = 1: 

𝑇(𝑢) =  
∑  𝑆(𝑢,  𝑖) ∗   𝐶𝑟(𝑝(𝑢,  𝑖))𝐼(𝑢)

𝑖=1

𝐼(𝑢)
 

Those two models (RawMean & PeerTrust) were employed in our study for comparison 

purposes. Our experiments aim to illustrate the performance of the trust models compared to our 

new model (TrustMe model), and the preciseness of the produced trust scores. The comparison 

uses a straightforward metric, which is RawMean, and one more sophisticated model to conduct a 

fair comparison.   
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