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ABSTRACT 

Memory devices such as Static Random-Access Memory (SRAM) and Dynamic 

Random-Access Memory (DRAM) are dominating members of today’s semiconductor industry. 

Most of the silicon area in a digital system is occupied by memory devices. The video decoder 

and deep learning are especially constrained by memory devices to process a large amount of 

data. For example, memory devices are consuming lots of power for video processing. 

Nowadays, all mobile electronics, such as mobile phones and laptops, are using video data a lot. 

Due to that, the battery life of mobile devices is highly dependent on power consumption of 

memory devices. To enhance the battery life of mobile devices, supply voltage can be scaled 

down. However, memory devices are error prone at low supply voltages. To obtain high quality 

video, a functionally stable memory design is needed, which means we must provide a higher 

𝑉𝐷𝐷 or use a larger memory cell. As a result, there will be a tradeoff between quality, and silicon 

area or power consumption. For mobile devices, memory needs to be designed to operate in the 

sub-threshold region to maximize battery life; however, reducing the supply voltage slows down 

memory devices, resulting in poor video quality. Hence, memory design is very complicated and 

time consuming. So, a smart way to design memory devices for a specific application is needed. 

Mathematical models can be developed to design memory devices based on specific 

requirements such as silicon area, while optimizing video quality for a target supply voltage. 

Similarly, optimized memory is needed to better support differentially private deep learning 

algorithms in local devices. This dissertation first develops a mathematical model for designing 

optimal memory devices for videos, then develops an optimized memory for differentially 

private deep learning systems in edge computing devices, and finally develops a run-time 
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adaptable Error Correction Code (ECC) video storage scheme, with minimal area overhead and 

negligible video quality degradation, in order to significantly reduce power.  
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1. INTRODUCTION 

1.1. Motivation 

Memory devices are very instrumental components of modern electronics: such as, 

mobile phones, laptops, cameras, servers, smart watches, and so on. There are several video 

streaming sites such as YouTube, Netflix, and Hulu. These video streaming sites generate a huge 

amount of video data every single day. These immense amounts of data create pressure on 

storage memory systems. To store and process video data, a memory system is required that is 

functionally stable, energy efficient, and economical in fabrication. There are lots of issues in 

memory devices such as aging and process variation. Due to these two reasons, memory shows 

functional instability, which is known as failure rate in a memory system. To minimize memory 

failure rates, researchers utilize different techniques, which add cost to these systems. 

Researchers strive to optimize power consumption of mobile multimedia applications, because 

the embedded memory is frequently accessed for motion estimation and buffering for video 

processing. These two issues are the main reasons for high power consumption in mobile devices 

[1]. Scaling supply voltage is one of the main attempts in VLSI design to reduce power 

consumption [2], since power is proportional to the square of the supply voltage; however, this 

also has some drawbacks. If the supply voltage is over-scaled, the memory system will be 

functionally weak. Nowadays, video is one of the biggest of Big Data [3-4]. According to Cisco, 

video data is predicted to comprise around 78% of all data by 2021 [3].  

1.2. Memory Design for Various Purposes  

Embedded memory plays a vital role in processing video data. About 65% of the silicon 

area of a video decoder is occupied by embedded memory [5], and memory accounts for 

approximately 50% of total power consumption [6]. Traditional or homogeneous memory design 
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shows higher failure rates compared to heterogeneous sizing of memory [7]. SRAM is one of the 

most mature and highly preferable memories in the industry. Because of its high speed and 

reliability, SRAM’s demand is always high. Hybrid memory design such as 6T + 8T SRAM or 

8T + 10T SRAM show better performance as a trade-off to quality and power [8-9]. Recently, 

DRAM has become more popular than SRAM in some specific fields, due to its smaller area and 

lower power consumption for reading and writing. DRAM is also being integrated with SRAM 

to achieve better performance in hybrid memory schemes. Higher order bits are stored in SRAM 

and lower order bits are stored in error prone DRAM [10].  

Another hot topic is privacy of deep learning in Internet of Things (IoT) devices.  By the 

blessing of high-speed internet, IoT devices, such as smart watches, are gaining popularity day 

by day. Smart watches can collect cardiac activities, blood pressure, and sugar level by sensors 

[25-26]. This data can be used for deep learning to monitor health conditions of a user. However, 

it is not guaranteed that the data would be fully private during analysis and sharing with 

healthcare industries. Usually, users need to upload their private health data to the providers, and 

thus have no control over its storage or usage [27-29]. There are several ways to provide 

protection to private data for edge computing, including differential privacy. Differential privacy 

is achieved by adding noise during computations in deep learning algorithms [31]. Due to the 

added noise, the output cannot be correlated with any particular training item. During the 

introduction of noise to the computation, the privacy budget (ε) is cost. Here, ε stands for the 

privacy loss in a system. If ε is smaller, then privacy is higher, but accuracy of the model is 

lower. Moreover, memory consumes a lot of power in edge computing devices. In AlexNet, 

approximately 3000M memory accesses are required for the whole learning system [32]. 

Moreover, in DianNao, 56% of the chip area is occupied by memory, which consumes 60% of 
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the total power [33].  Due to the huge demand of memory devices in IoT systems, developing 

power efficient memory to support differentially private deep learning systems is much needed.    

Memory devices are error prone. Due to aging and process variation, faulty bits are 

introduced during reading and writing operations. To solve this error in memory devices, Error 

Correction Code (ECC) is very popular [34]. From the software side, ECC is a mature and old 

technique, thus there is no real novelty potential. However, hardware implementation of ECC is 

both economical and has great potential for novelty. ECC can be used for runtime adaptation for 

different scenarios. There are different types of ECC, such as ECC74, ECC1511, and so on. 

According to the requirement of a system, if the memory can adapt the ECC, then the system can 

save power and improve the quality of processed data due to optimistic voltage scaling that 

introduces some errors, but ones that can be easily corrected by ECC.   

Bit truncation is one of the most popular methods to achieve energy efficient memory 

design, especially for video memory where the least significant bits (LSBs) have much less 

effect on video quality compared to the most significant bits (MSBs). Depending on the specific 

video data and the viewing surroundings (e.g., sunny/dark/overcast), one or more bits can be 

truncated without degrading video quality as perceived by the viewer. A luminosity sensor can 

provide information about the surroundings, such that the memory could adapt the number of 

truncated bits accordingly. Bit truncation can be applied frame by frame, such that more bits can 

be truncated due to the variation of frame data and still achieve acceptable video quality [35]. 

The truncation information could be stored on the server, such that the server could perform bit 

truncation in the transmitted data. Bit truncation has an enormous potential to provide better a 

power quality tradeoff for mobile video applications.  
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The rest of this dissertation is organized as follows. Chapter 2 presents a mathematical 

model for memory design that optimizes video quality given a specific are requirement. Chapter 

3 develops a method to design hybrid memory for differentially private deep learning in IoT 

devices in order to guarantee user data privacy while maintaining classification accuracy and 

reducing power via supply voltage scaling. Chapter 4 develops a memory that automatically 

adapts its ECC scheme based on supply voltage in order to significantly reduce power while 

maintaining good video quality. And Chapter 5 provides conclusions and directions for future 

work. 
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2. ON MATHEMATICAL MODELS OF OPTIMAL VIDEO MEMORY DESIGN1 

2.1. Introduction 

Big video data today imposes huge pressures on storage. The variation and aging induced 

memory failures significantly influence the video output quality. Recently, researchers have 

developed different memory designs for videos, deep learning, and other data-intensive 

applications, which enable better energy-quality tradeoffs with design constraints (e.g. silicon 

area of die). Unfortunately, designing memory has been proven to be a very challenging problem 

due to (i) various design constraints; (ii) multiple memory bit-cell design options; and (iii) 

challenging layout integration and cost analysis using different memory technologies. This 

chapter develops novel mathematical models for optimizing embedded video memory design 

without utilizing a time-consuming and laborious ASIC design process. The problems are 

formulated as nonlinear programs and integer linear programs. Different SRAM designs and 

hybrid SRAM and DRAM designs are considered in the models. The results of the numerical 

studies show that by applying the proposed methods, the average mean-square-error (MSE) of 

the video storage can be greatly reduced, by more than 90% in many cases. 

The main contributions of this work are: three mathematical models and memory system 

development for 6T SRAM, 8T SRAM, and 3T DRAM, to optimize design cost, such as silicon 

area. In addition, video quality is improved significantly with lower MSE.                                                     

 

 

1Hritom Das was in charge of all memory (SRAM, DRAM) system design and 

simulation in Cadence, failure rate calculation, MSE calculation for different videos, layout 

design, area overhead calculation, and video quality verification. Drs. Na Gong, Yiwen Xu, and 

Yifu Gong provided the modeling and simulation support. 
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2.2. The Expected Mean-Square Error 

For video hardware designers, the mean square error (MSE) is a widely-adopted quantity 

to measure the quality of a video [7-10]. Consider a video including 𝑚-by-𝑛 pixels where each 

pixel is composed of 8 cells. Let 𝑦𝑖𝑗𝑘
(𝑂)

 and 𝑦𝑖𝑗𝑘
(𝐷)

 denote the binary data of the 𝑘th cell in the 𝑖th 

row 𝑗th column (𝑘 = 0, ⋯ ,7; 𝑖 = 1, ⋯ , 𝑚; 𝑗 = 1, ⋯ , 𝑛) of the pixel of the original and degraded 

video, respectively. The MSE is defined by 

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (𝑦𝑖𝑗

(𝐷)
− 𝑦𝑖𝑗

(𝑂)
)

2
𝑛
𝑗=1

𝑚
𝑖=1    

where the degradations are caused by hardware memory failures, and 

𝑦𝑖𝑗
(𝑂)

= ∑ 𝑦𝑖𝑗
(𝑂)8

𝑖=1  and 𝑦𝑖𝑗
(𝐷)

= ∑ 𝑦𝑖𝑗
(𝐷)8

𝑖=1 . 

However, if we consider videos in general, rather than a specific video, the MSE should 

be considered as a random variable. This is because, first, memory failures caused by process 

variations are random in nature; and second, the MSE depends on the original video signal which 

is also random (or, video-wised). We replace 𝑦𝑖𝑗𝑘
(𝑂)

 and 𝑦𝑖𝑗𝑘
(𝐷)

 by two random variables:  𝑌𝑖𝑗𝑘
(𝑂)

 and 

𝑌𝑖𝑗𝑘
(𝐷)

. Denote the probability that the 𝑖𝑗𝑘th bitcell is failed as 𝑞𝑖𝑗𝑘, and we assume that the status 

of cells are mutually independent. Let 

 𝑋𝑖𝑗𝑘 ≔ 𝑌𝑖𝑗𝑘
(𝐷)

− 𝑌𝑖𝑗𝑘
(𝑂)

.   

Clearly, the distribution of 𝑋𝑖𝑗𝑘 is 

 𝑃{𝑋𝑖𝑗𝑘 = 0} = 1 − 𝑞𝑖𝑗𝑘 ≔ 𝑝𝑖𝑗𝑘,   

 
  𝑃{|𝑋𝑖𝑗𝑘| = 1} = 𝑞𝑖𝑗𝑘 .  
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Property 1. The expectation of the mean square error (MSE) of the video is  

 

 𝐸(𝑀𝑆𝐸) =
1

𝑚𝑛
∑ ∑ ∑ 4𝑘𝑞𝑖𝑗𝑘

7
𝑘=0

𝑛
𝑗=1

𝑚
𝑖=1    

Proof.  

 𝐸(𝑀𝑆𝐸) = 𝐸 [
1

𝑚𝑛
∑ ∑ (𝑌𝑖𝑗

(𝐷)
− 𝑌𝑖𝑗

(𝑂)
)

2
𝑛
𝑗=1

𝑚
𝑖=1 ]   

 = 𝐸 {
1

𝑚𝑛
∑ ∑ [∑ 2𝑘(𝑌𝑖𝑗𝑘

(𝐷)
− 𝑌𝑖𝑗𝑘

(𝑂)
)7

𝑘=0 ]
2

𝑛
𝑗=1

𝑚
𝑖=1 }   

 =
1

𝑚𝑛
∑ ∑ 𝐸[∑ 2𝑘𝑋𝑖𝑗𝑘

7
𝑘=0 ]

2𝑛
𝑗=1

𝑚
𝑖=1    

 

Note that  

𝐸[∑ 2𝑘𝑋𝑖𝑗𝑘 7
𝑘=0 ]

2
   

= 𝐸[∑ 4𝑘𝑋𝑖𝑗𝑘
2  7

𝑘=0 ] + 𝐸(∑ ∑ 2𝑘1+𝑘2𝑋𝑖𝑗𝑘1
𝑋𝑖𝑗𝑘2

7
𝑘2=0,𝑘2≠𝑘1

7
𝑘1=0 )  

= ∑ 4𝑘𝐸(𝑋𝑖𝑗𝑘
2 )7

𝑘=0 + ∑ ∑ 2𝑘1+𝑘27
𝑘2=0,𝑘2≠𝑘1

𝐸(𝑋𝑖𝑗𝑘1
𝑋𝑖𝑗𝑘2

)7
𝑘1=0   

= ∑ 4𝑘𝑞𝑖𝑗𝑘
7
𝑘=0 + ∑ ∑ 2𝑘1+𝑘27

𝑘2=0,𝑘2≠𝑘1
𝐸(𝑋𝑖𝑗𝑘1

)𝐸(𝑋𝑖𝑗𝑘2
)7

𝑘1=0   (1) 

= ∑ 4𝑘𝑞𝑖𝑗𝑘
7
𝑘=0   (2) 

(1) holds since, 𝑋𝑖𝑗𝑘’s are mutually independent, and (2) holds because, without losing 

generality, we assume that 

 𝑃{𝑋𝑖𝑗𝑘 = 1} = 𝑃{𝑋𝑖𝑗𝑘 = −1} =
𝑞𝑖𝑗𝑘

2
, ∀𝑘 = 0, ⋯ ,7  ∎ 

The proposed expected MSE will be used as the objective function in this paper to optimize 

hardware-design, as discussed in the following sections. It is worth mentioning that in the 
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above discussion we assume that the number of bitcells in a pixel is 8. In real applications, it 

can also be considered as a parameter 𝑙 by simply modifying 𝑘 = 0, ⋯ ,7 to 𝑘 = 0, ⋯ , 𝑙 − 1, 

and the above conclusion still holds. 

2.3. Model 1: Optimal Design for Single SRAM 

SRAM has been the workhorse for embedded memory design, including video 

applications, for several decades. In many SRAM design problems, the target supply voltage 

(𝑉𝐷𝐷) is an engineering specification and hence can be considered as a known parameter. 

Reducing 𝑉𝐷𝐷 enables an enhanced power efficiency, but meanwhile SRAM failure rate gets 

significantly increased. Specifically, memory failures are very sensitive to   process variations at 

a low 𝑉𝐷𝐷. In our analysis, to obtain the failure rates of different memory bitcells, 100,000 

HSPICE Monte-Carlo simulations are performed in the worst process corners: read failures of 6T 

bitcells in “fast NMOS and slow PMOS” (FS) corner and write failures of 8T bitcells in “slow 

NMOS and fast PMOS” (FS) corner” [8], [11].  

Under the target 𝑉𝐷𝐷, in some cases one can fit the function of the failure rate of the 𝑖𝑗𝑘𝑡ℎ 

bitcell, 𝑞𝑖𝑗𝑘 and its silicon area 𝑠𝑖𝑗𝑘. In many real applications, the function 𝑞𝑖𝑗(𝑠𝑖𝑗) can be fitted 

by 

 𝑞𝑖𝑗𝑘 = exp(−𝛼𝑠𝑖𝑗𝑘 + 𝛽) (3) 

2.3.1. The Mathematical Model 

Suppose the function 𝑞𝑖𝑗(𝑠𝑖𝑗) is known. We formulate the optimal design problem for 

single SRAM as the follows. 

[M1] min
𝒔

∑ ∑ ∑ 4𝑘𝑞𝑖𝑗𝑘(𝑠𝑖𝑗𝑘)7
𝑘=0

𝑛
𝑗=1

𝑚
𝑖=1   (4) 

s.t. ∑ ∑ ∑ 𝑠𝑖𝑗𝑘
7
𝑘=0

𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝑠𝑡𝑜𝑡𝑎𝑙  (5) 
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 𝑠𝑖𝑗𝑘 ≥ 𝑠𝑚𝑖𝑛, ∀𝑖, 𝑗, 𝑘 (6) 

The objective function (4) is to minimize the expected MSE of the whole SRAM, without 

considering the constant coefficient 
1

𝑚𝑛
. Constraint (5) assures that the total silicon area should 

be no more than a given constant, 𝑠𝑡𝑜𝑡𝑎𝑙. In real applications this constraint can represent the 

resource limit in terms of silicon area, budget, or performance, etc., although in [M1] only the 

silicon area is included.  Constraint (6) gives the minimum area of making a bitcell, 𝑠𝑖𝑗𝑘, which 

in this chapter is derived from a 45-nm CMOS technology [12]. 

It is worth mentioning that in typical hardware designs, to avoid significant 

implementation cost, all pixels are identical; that is, the memory design for storing one pixel is 

the same as that storing another pixel. Thus, we can cancel the ij indices in [M1] and simplify the 

model. 
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2.3.2. Numerical Study of Model 1 

Consider Table 1, where the data of a 6T SRAM design under V_DD=0.75V. Assume 

that all pixels are identical. For convenience, we use the area ratio shown in the 5th column 

(based on the smallest design, C61), instead of the original area, to define s_k. For example, the 

area ratio of C62=1.05255= 0.72113/0.68513. Thus, we can set s_min=1 in (6).  

Table 1. Data of Numerical Example 1 (𝑉𝐷𝐷 = 0.75V) 

6T only Height (𝝁𝒎) Width (𝝁𝒎) Area (𝝁𝒎𝟐) Area Ratio 
𝒔𝒌 

Failure rate 
𝒒𝒌 

C61 0.45 1.52250 0.68513 1.00000 0.172400 

C62 0.45 1.60250 0.72113 1.05255 0.110000 

C63 0.45 1.69750 0.76388 1.11494 0.066500 

C64 0.45 1.75757 0.79091 1.15440 0.052200 

C65 0.45 1.84750 0.83138 1.21346 0.034230 

C66 0.45 1.93753 0.87189 1.27260 0.022225 

C67 0.45 2.00750 0.90338 1.31856 0.015450 

C68 0.45 2.08750 0.93937 1.37110 0.009545 

C69 0.45 2.14750 0.96638 1.41051 0.006740 

C610 0.45 2.21750 0.99788 1.45649 0.004415 

C611 0.45 2.28750 1.02938 1.50246 0.002640 

C612 0.45 2.35750 1.06088 1.54844 0.001470 

C613 0.45 2.43750 1.09688 1.60099 0.000790 

C614 0.45 2.51750 1.13288 1.65353 0.000466 

C615 0.45 2.58750 1.16438 1.69951 0.000300 

C616 0.45 2.66750 1.20038 1.75205 0.000146 

C617 0.45 2.73750 1.23188 1.79803 0.000060 

C618 0.45 2.82750 1.27238 1.85714 0.000020 

C619 0.45 2.89750 1.30388 1.90312 0.000010 

C620 0.45 2.97750 1.33988 1.95567 0.000003 

C621 0.45 3.05750 1.37588 2.00821 0.000002 
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 It should be noted that the slowest memory bitcell (with the smallest silicon area) in our design 

still meets the multi-megahertz performance requirement of video applications [5]. 

We fit 𝑞𝑘(𝑠𝑘) according to (3) by MATLAB curve fitting toolbox (based on nonlinear least 

square method), and get 

 𝑞𝑘 = exp(−7.834𝑠𝑘 + 6.065).  

Table 2 shows the statistics of the fitting, and Figure 1 shows the graphical comparison 

between the failure rate (using HSPICE Monte Carlo simulations) and the predicted data.  

The [M1] of this numerical study is formulated as 

 min
𝒔

∑ 4𝑘 exp(−7.834𝑠𝑘 + 6.065)7
𝑘=0    

s.t. ∑ 𝑠𝑘
7
𝑘=0 ≤ 𝑠𝑡𝑜𝑡𝑎𝑙   

 𝑠𝑘 ≥ 1, ∀𝑘  

We solve the problem for 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, 8.2, ⋯ ,9.4 using MOSEK solver. The optimal 

objective values and solutions under these 𝑠𝑡𝑜𝑡𝑎𝑙’s are shown in Table 3, from column 2 to 

column 10. The computation time of the optimal solution for each 𝑠𝑡𝑜𝑡𝑎𝑙 case is less than 0.1 

(%
)

 

Figure 1. Monte Carlo-Based Failure Rate vs. Predicted Failure Rate, Numerical Example 1. 
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second. First, one can see that with the increase of 𝑠𝑡𝑜𝑡𝑎𝑙 the optimal values (i.e., the minimum 

expected MSE) of the problem decrease exponentially, as shown in Figure 2. Second, we always 

have 𝑠7 ≥ 𝑠6 ≥ ⋯ ≥ 𝑠0, no matter what the 𝑠𝑡𝑜𝑡𝑎𝑙 is. This makes sense, since the highest-order 

bit (𝑠7) is the most significant in a pixel while the lowest-order is the least significant. We also 

compare our optimal design with the traditional design (where 𝑠𝑘 = 𝑠𝑡𝑜𝑡𝑎𝑙/8, ∀𝑘, i.e., all bitcells 

have the same area, according to [13]) at each 𝑠𝑡𝑜𝑡𝑎𝑙 value. One can see that for 𝑠𝑡𝑜𝑡𝑎𝑙 ≥ 8.8 the 

proposed optimal design can reduce the expected MSE by more than 80% compared with the 

traditional design. 

Table 3. Results and Comparisons of Numerical Example 1 (𝑉𝐷𝐷 = 0.75V)  

𝑠𝑡𝑜𝑡𝑎𝑙  

Optimal design 
Traditional 

design 

Improve

ment 

Obj. 

value 
𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2 𝑠1 𝑠0 

Obj. 

value 
𝑠𝑘  

8.0 3724.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3724.65 1.0 0.00% 

8.2 1509.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3062.17 1.0 50.72% 

8.4 815.8 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1.0 2517.51 1.1 67.60% 

8.6 495.4 1.4 1.2 1.0 1.0 1.0 1.0 1.0 1.0 2069.74 1.1 76.06% 

8.8 317.5 1.4 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1701.61 1.1 81.34% 

9.0 212.0 1.5 1.3 1.2 1.0 1.0 1.0 1.0 1.0 1398.95 1.1 84.85% 

9.2 147.7 1.6 1.4 1.2 1.0 1.0 1.0 1.0 1.0 1150.13 1.2 87.16% 

9.4 104.5 1.6 1.4 1.3 1.1 1.0 1.0 1.0 1.0 945.56 1.2 88.95% 

9.6 75.34 1.7 1.5 1.3 1.1 1.0 1.0 1.0 1.0 777.38 1.2 90.31% 

9.8 55.60 1.7 1.5 1.4 1.2 1.0 1.0 1.0 1.0 639.11 1.2 91.30% 

Table 2. Statistics of the 𝑞𝑘(𝑠𝑘) Fitting in Numerical Example 1 

Paramete

r 

95% confidence 

interval 
Mean 

𝑅-

square 

Adjusted 𝑅-

square 
SSE RMSE 

𝛼 (7.632, 8.036) 7.834 
99.91% 99.90% 

3.571
× 10−5 

0.0014 
𝛽 (5.854, 6.275) 6.065 
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Figure 2. Comparison of the Optimal Design and the Traditional Design, Numerical Example 1 
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Figure 3. Layout of the Optimal and Traditional Design, Numerical Example 1 
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(a) (b) (c)  

Figure 4. Video Output Example for 𝑠𝑡𝑜𝑡𝑎𝑙 = 9.6 from Table 3., Numerical Example 1(𝑉𝐷𝐷 =
0.75V): (A) Original Video; (B) Video Stored by the Optimal Memory Design; (C) Video Stored 

by the Traditional Memory Design. 

 

Figure. 3 shows the layout of the optimal design and the traditional design of this 

example, where both 𝑆𝑡𝑜𝑡𝑎𝑙 s are 9.6 and all bitcells are 6T SRAM. In the traditional design, all 

the memory bitcell areas are equally sized as 1.2. By comparison, in the optimal design larger 

memory bitcells are selected to store MSBs (𝑆7, 𝑆6 … . 𝑆0) to improve the video output quality 

and the smallest bitcells (C61) are adopted for the LSBs to meet the silicon area constraint. The 

comparisons of the original video, video stored by the optimal memory design, and by the 

traditional design are shown in Figure. 4. It can be seen that the optimal memory design delivers 

much higher video quality as compared to the traditional design. Specifically, one can see from 

Table 3 that as 𝑆𝑡𝑜𝑡𝑎𝑙  is 9.6, the MSE under the optimal and traditional designs are 75.34 and 

777.38, thereby enabling a 90.31% improvement using the optimal design. 

2.4. Model 2: Optimal Design for Hybrid SRAM without Overhead 

Recently, many alternative more-than-6T SRAM bitcells (e.g., 8T, 10T) have been 

developed to enhance the reliability as compared to traditional 6T, thereby enabling low-voltage 

operation. Sizing up transistors in 6T bitcells can also effectively reduce the failure rate [7]. 

However, both the more-than-6T bitcells and the sizing technique induce large silicon area 

overhead. To achieve a tradeoff between the cost (e.g., area, weight, or money cost) and the 
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video quality (e.g., the MSE), hybrid SRAM memory designs, such as 6T/8T [8], 8T/10T [9], 

and bitcells with different sizing techniques [7], have been developed by researchers. In those 

designs, integration bitcells with different design options typically does not bring additional 

silicon area cost. 

2.4.1. The Mathematical Model  

Suppose we have 𝑟𝑤 options of SRAM bitcell 𝑤, 𝑤 = 1, ⋯ , 𝑡 (for example, type 1: 6T 

with 𝑟1 = 4 options, type 2: 8T with 𝑟2 = 3 options). Let 𝑟 ≔ ∑ 𝑟𝑤
𝑡
𝑤=1  be the total number of 

design options. Our goal is to make a decision on selecting one option for each bitcell to 

minimize the expected MSE of the whole memory chip. To this end, we define decision variable 

𝑥𝑖𝑗𝑘𝑙 = {
1, if option 𝑙 is chosen for the 𝑖𝑗𝑘𝑡ℎ cell
0, otherwise

 ,  (7) 

 (𝑖 = 1, ⋯ , 𝑚; 𝑗 = 1, ⋯ , 𝑛; 𝑘 = 0, ⋯ ,7; 𝑙 = 1, ⋯ , 𝑟)   

where the first 𝑟1 options (i.e., 𝑙 = 1, ⋯ , 𝑟1) represent the options of the first type of SRAM, the 

next 𝑟2 options (i.e., 𝑙 = 𝑟1 + 1, ⋯ , 𝑟1 + 𝑟2) represents the second type, ⋯, and the last r_t 

options (i.e., l=r_1+⋯+r_(t-1)+1,⋯,r) represent the options of the 𝑡𝑡ℎ type. Assuming that the 

failure rate of the 𝑙𝑡ℎ option of cell 𝑖𝑗𝑘 is a known constant 𝑞𝑖𝑗𝑘𝑙, the problem can be formulated 

as the following problem.  

[M2] min
𝒙

∑ ∑ ∑ ∑ 4𝑘𝑞𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙
𝑟
𝑙=1

7
𝑘=0

𝑛
𝑗=1

𝑚
𝑖=1   (8) 

s.t.   ∑ 𝑥𝑖𝑗𝑘𝑙
𝑟
𝑙=1 ≥ 1, 𝑖 = 1, ⋯ , 𝑚; 𝑗 = 1, ⋯ , 𝑛; 𝑘 = 0, ⋯ ,7 (9) 

∑ ∑ ∑ ∑ 𝑠𝑖𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙
𝑟
𝑙=1

7
𝑘=0

𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝑠𝑡𝑜𝑡𝑎𝑙  (10) 

𝑥𝑖𝑗𝑘𝑙 ∈ {0,1},   𝑖 = 1, ⋯ , 𝑚; 𝑗 = 1, ⋯ , 𝑛; 𝑘 = 0, ⋯ ,7 (11) 

The objective function (8) is to minimize the expected MSE of the whole video. 

Constraint (9) guarantees that for each cell one can choose exactly one design option (among the 
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total 𝑟 options). It is worth mentioning that (9) is equivalent to ∑ 𝑥𝑖𝑗𝑘𝑙
𝑟
𝑙=1 = 1, since this is a 

minimization problem. The total-area constraint, (10), assures that the total area of the design 

cannot exceed the limit 𝑠𝑡𝑜𝑡𝑎𝑙, where 𝑠𝑖𝑗𝑘𝑙 is a known parameter indicating the area cost of the 

𝑖𝑗𝑘𝑡ℎ bitcell if it is selected to apply the 𝑙𝑡ℎ design option. We calculate the total area cost by 

directly summing up the area cost of each cell, since different SRAM bitcells typically can be 

laid out in a mirrored fashion and usually there is no area overhead for bitcell integration in 

hybrid SRAM design [8-9].  Finally, constraint (11) states that 𝑥𝑖𝑗𝑘𝑙’s are binary variables. 

Different from [M1] which is an Non-Linear Programming (NLP) problem, [M2] is an Integer 

Linear Programming (ILP) problem. 

2.4.2. Numerical Study of Model 2 

Using Model 2, we study the optimal hybrid SRAM design for 6T (type 1) and 8T (type 

2) structures. The data used in this numerical study is shown in Table 4, where we have totally 

r=r_1+r_2=4+3=7 options. We assume that all pixels are using the same memory design. 

Compared with the 6T options, one can find that the 8T SRAM requires a larger area but has a 

much lower failure rate.  

It should be noted that the layout of the smallest 8T bitcell design (C81) has been 

optimized to minimize the failure rate, which enables approximately 10-time failure rate 

reduction in the 45-nm technology as compared to the conventional transistor sizing approach 

[14].  

We solve [M2] of this problem for s_total=8.0, 8.2, ⋯, 9.4 using Gurobi solver (version 

7.0.2), and the computation time of the optimal design for each s_total case is less than 0.2 

second. The optimal values and solutions are shown in Table 5. The result of the proposed 

optimal design is also compared with the traditional design. In the traditional design, all bitcells 



 

17 

 

select the same option as reported in [13], i.e., the option with the largest area such that the total 

area does not exceed the given s_total. For example, if s_total=8.4, then all s_k’s will be C62, 

since 1.02627⋅8=8.210<8.4<1.05255⋅8=8.418 (C63). One can find that the optimal design 

reduces more than 90% of the expected MSE compared with the traditional design at 

s_total=8.2,⋯,8.9. In addition, with a uniform (0.1 unit) increase to the s_total’s, the variance of 

improvement of the expected MSE in the traditional design is much larger than that in the 

optimal design. Specifically, there exists a sharp change in the expected MSE between 

s_total=8.7 and 8.8 in the traditional design (see Figure. 5), which is due to the great difference 

between C81 and C64 in terms of their failure rates. When s_total=8.8, we are able to select C81 

for all cells in the traditional design, whereas at s_total=8.7 only C64. By contrast, due to the 

flexible selective options, the improvements on the expected MSE (under the same s_total’s) 

from the proposed optimal design is much more stable and hence easier for quality control. 

Figure 6 shows the layout of the optimal and traditional design reported in Table 5 at 

s_total=8.7, where 6T SRAM and 8T SRAM bitcells are used to store the pixel data. Traditional 

Table 4. Data of The Numerical Example 2 (𝑉𝐷𝐷 = 0.5V) 

Memory 

Type 

Height 

(𝝁𝒎) 

Width 

(𝝁𝒎) 

Area 

(𝝁𝒎𝟐) 

Area 

Ratio 𝒔𝒌 

Failure 

rate 𝒒𝒌𝒍 

6T: C61 0.45 1.523 0.685 1 0.3436 

6T: C62 0.45 1.563 0.703 1.026 0.3074 

6T: C63 0.45 1.603 0.721 1.053 0.2771 

6T: C64 0.45 1.643 0.739 1.079 0.2521 

8T: C81 0.45 1.663 0.751 1.096 0.00082 

8T: C82 0.45 1.700 0.765 1.117 0.00009 

8T: C83 0.45 1.740 0.783 1.143 0.00002 
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design adopts the same bitcell (C64) to meet the silicon area constraint. In the optimal design, 

larger 8T SRAMs (C82 and C83) are utilized for MSBs; smaller 8T (C81)) and smallest 6T 

(C61) bitcells are used to store LSBs. The comparison of the original video, video stored by the 

optimal memory design and by the traditional design is shown in Figure. 7. One can clearly see 

the improvement of the optimal design (in which the MSE is 2.5) compared with the traditional 

design (in which the MSE is 5507.13). It is worth mentioning that in this numerical study the 

V_DD is set to be only 0.5V for near-threshold operation, but the video stored by the proposed 

optimal design still has a very high quality. 

Table 5. Results and Comparisons of the Numerical Example 2 (𝑉𝐷𝐷 = 0.5V) 

𝑠𝑡𝑜𝑡𝑎𝑙  

Optimal design Traditional design 
Improve

ment Obj. 

value 
𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2 𝑠1 𝑠0 

Obj. 

value 
𝑠𝑘 

8.0 7505.94 C61 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 0.00% 

8.1 1889.83 C81 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 74.82% 

8.2 485.81 C81 C81 C61 C61 C61 C61 C61 C61 7506.94 C61 93.53% 

8.3 134.80 C81 C81 C81 C61 C61 C61 C61 C61 6715.15 C62 97.99% 

8.4 47.05 C81 C81 C81 C81 C61 C61 C61 C61 6715.15 C62 99.30% 

8.5 25.11 C81 C81 C81 C81 C81 C61 C61 C61 6053.25 C63 99.59% 

8.6 7.67 C82 C81 C81 C81 C81 C81 C61 C61 6053.25 C63 99.87% 

8.7 2.50 C83 C83 C82 C81 C81 C81 C61 C61 5507.13 C64 99.95% 

8.8 1.12 C83 C83 C82 C81 C81 C81 C81 C61 17.91 C81 93.73% 

Stotal

 

Figure 5. Comparison of the Optimal Design and the Traditional Design, Numerical Example 2 
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𝑠𝑡𝑜𝑡𝑎𝑙 = 8.7, optimal design of numerical example 2 
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Figure 6. Layout of the Optimal and Traditional Design, Numerical Example 2 

 

(a) (b) (c)  

Figure 7. Video Output Quality Example for 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.7 from Table 5, Numerical Example 2 

(𝑉𝐷𝐷 = 0.5V): (A) Original Video; (B) Video Stored by the Optimal Design; (C) Video Stored 

by the Traditional Design. 

 

2.5. Model 3: Optimal Design for Hybrid Memory with Various Technologies  

Very recently, industry and researchers have made lots of efforts to find feasible low-cost 

and energy-efficient alternatives beyond SRAM to meet the huge storage requirements, for 

example, embedded DRAM and emerging non-volatile memory (NVM) technologies. 

Integrating different memory technologies for hybrid memory design, such as hybrid 

SRAM+DRAM memory, enables emerging opportunities in developing more advanced 
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memories. However, it also becomes more challenging and complex to find an optimal design. 

This is because, first, the bitcell structures using different memory and different technologies 

vary significantly, thereby usually causing integration silicon area overhead in such hybrid 

memory designs. By contrast, the hybrid memory design investigated in Section 2.5 is assumed 

to have the same memory technology and has no area overhead. Second, different technologies 

(e.g., SRAM, DRAM, NVM) have their own specific energy-failure-cost characteristics, and 

each technology has its design options (e.g., bitcells and sizing for SRAM). 

Without the loss of generality, we consider three types of memory structures in this 

section: 3T DRAM, 6T SRAM and 8T SRAM. The area integration between the DRAM and the 

SRAMs will be discussed. 

2.5.1. Integration Cost of SRAM and DRAM  

Compared to SRAM, DRAM allows more compact storage but requires frequent refresh 

operations to avoid memory failures, which takes more energy consumption. Traditional DRAM 

design schemes, including commercial memories, are implemented based on the worst-case 

refresh-cycle, which is determined by the leakiest cell in the DRAM array. However, when the 

voltage supply is fixed, the additional needs of the refresh operations will lead to a significant 

energy consumption due to the expensive and periodic activation of individual rows during the 

refresh process [15]. Researchers have developed different DRAM bitcells (e.g., 1T1C, 2T). 

Among them, 3T demonstrates enhanced efficiency, since it does not need boosted power supply 

to write the data into the store node (SN), significantly reducing the power consumption during 

writing operations [10]. The refresh period (i.e., data retention time (DRT)) enabled energy-

quality tradeoff for the 3T DRAM bitcells is shown in Figure 8.  As the refresh period of the 

DRAM increases, the refresh power consumption is reduced, but the memory failure rate grows 
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due to the failed data retention process. Such energy-quality tradeoff property of the DRAM 

provides design opportunities for using mathematical models to explore the “balance” (i.e., the 

optimal design). For hybrid memory using different technologies such as SRAM and DRAM, the 

hybrid bitcell integration usually causes additional silicon area overhead due to the significant 

difference among the bitcell structures. Figure 9 shows an example of the hybrid 3T DRAM, 6T 

(C61) SRAM and 8T (C81) SRAM, where the 6T (C61) and 8T (C81) SRAMs are from Table 4. 

Since the transmission gate consists of both NMOS and PMOS transistors, the 3T DRAM 

requires an additional wordline signal (WWLp) compared to the SRAM bitcells. To transmit this 

additional wordline through the hybrid memory bitcells, the layout of the 6T and 8T SRAM 

bitcells needs to be increased to meet the design rules, thereby causing the silicon area overhead. 

(%
)

 

Figure 8. Refresh Period Enabled Energy-Quality Adaptation for DRAM 
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Figure 9. Schematic and Layout of 3T DRAM, 6T and 8T SRAM Bitcells Compatible with 

DRAM. 

 

In addition, the height of 3T DRAM bitcell layout is usually greater than that of SRAM 

bitcells, which also leads to additional area costs. In Figure 9, due to the hybrid structure with the 

3T DRAM, one can see that the height of the new C61 and the new C81 SRAMs are both 

increased from the original 0.45μm (based on the 45-nm predictive technology, as shown in 

Table 4) to 0.56μm. 

2.5.2. The Mathematical Model 

To tackle the issues of integration silicon area overhead and deal with various design 

options using different memory technologies, a new analytical model is needed. Suppose we 

have r_6, r_8 and r_3 options for selection of 6T SRAM, 8T SRAM and 3T DRAM, 

respectively. Let r≔r_6+r_8+r_3 indicate the total number of design options for each bitcell. We 

assume that all pixels have the same design for notation convenience. 

Our goal is again to make a decision for each bitcell to minimize the expected MSE of 

the whole memory chip. Similar to Model 2, the main decision variable, x_kl, is defined by (7), 
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where options 1 to r_6, r_6+1 to r_6+r_8, and r_6+r_8+1 to r represent the specific options of 6T 

SRAM, 8T SRAM and 3T DRAM, respectively. However, the total-area constraint 

(corresponding to (10) in [M2]) needs to be modified, since the dimensions of 6T and 8T 

SRAMs will be changed if a 3T DRAM is included in a pixel. To this end, we define a new 

binary decision variable δ to indicate whether a pixel includes any 3T DRAM structure (where 

δ=1 means “yes”) by the following constraints:  

 

{

1

8𝑟3
∑ ∑ 𝑥𝑘𝑙

𝑟
𝑙=𝑟6+𝑟8+1

7
𝑘=0 ≤ 𝛿 ≤ ∑ ∑ 𝑥𝑘𝑙

𝑟
𝑙=𝑟6+𝑟8+1

7
𝑘=0 ,

𝛿 ∈ {0,1}
  (12) 

Clearly, if any 3T DRAMs exist in a memory array, the left part of the first constraint in 

(12) assures 𝛿 = 1; otherwise, the right part of the first constraint in (12) guarantees that 𝛿 = 0. 

Following (12), the new total-area constraint can be formulated as follows: 

∑ [∑ (𝑠𝑘𝑙(1 − 𝛿) + 𝑠𝑘𝑙
(3𝑇)

𝛿)𝑥𝑘𝑙
𝑟6+𝑟8
𝑙=1

7
𝑘=0  +∑ 𝑠𝑘𝑙𝑥𝑘𝑙

𝑟
𝑙=𝑟6+𝑟8+1 ] ≤ 𝑠𝑡𝑜𝑡𝑎𝑙  (13) 

where 𝑠𝑘𝑙(for 𝑙 = 𝑟6 + 𝑟8 + 1, ⋯ , 𝑟)  represents the area cost of the 𝑘𝑡ℎ bitcell applying option 𝑙 

as a 3T DRAM; 𝑠𝑘𝑙(for 𝑙 = 1, ⋯ , 𝑟6 + 𝑟8)  and 𝑠𝑖𝑗𝑘𝑙
(3𝑇)

(𝑙 = 1, ⋯ , 𝑟6 + 𝑟8) represent the area cost 

of the 𝑘𝑡ℎ bitcell applying option 𝑙 as a 6T or 8T SRAM, with and without a 3T DRAM included 

in the pixel. To linearize the item 𝛿𝑥𝑘𝑙 in (13), we create the following constraints: 

 
{

𝑦𝑘𝑙 ≤ 𝛿
𝑦𝑘𝑙 ≤ 𝑥𝑘𝑙

𝑦𝑘𝑙 ≥ 𝛿 + 𝑥𝑘𝑙 − 1
𝑦𝑘𝑙 ∈ {0,1}

, ∀𝑘, ∀𝑙 = 𝑟6 + 𝑟8 +

1, ⋯ , 𝑟,  
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(so that we have 𝑦𝑘𝑙 = 𝛿𝑥𝑘𝑙). After simplification, the whole problem can be formulated as the 

following ILP. 

[M3] min
𝒙,𝛿,𝒚

∑ ∑ 4𝑘𝑞𝑘𝑙𝑥𝑘𝑙
𝑟
𝑙=1

7
𝑘=0   

s.t. ∑ 𝑥𝑘𝑙
𝑟
𝑙=1 ≥ 1,   𝑘 = 0, ⋯ ,7  

∑ [∑ (𝑠𝑘𝑙(1 − 𝛿) + 𝑠𝑘𝑙
(3𝑇)

𝛿)𝑥𝑘𝑙
𝑟6+𝑟8
𝑙=1

7
𝑘=0   

+∑ 𝑠𝑘𝑙𝑥𝑘𝑙
𝑟
𝑙=𝑟6+𝑟8+1 ] ≤ 𝑠𝑡𝑜𝑡𝑎𝑙 

1

8𝑟3
∑ ∑ 𝑥𝑘𝑙

𝑟
𝑙=𝑟6+𝑟8+1

7
𝑘=0 ≤ 𝛿 ≤

∑ ∑ 𝑥𝑘𝑙
𝑟
𝑙=𝑟6+𝑟8+1

7
𝑘=0   

𝑦𝑘𝑙 ≤ 𝛿, ∀𝑘, ∀𝑙 = 1, ⋯ , 𝑟 

𝛿 + 𝑥𝑘𝑙 − 1 ≤ 𝑦𝑘𝑙 ≤ 𝑥𝑘𝑙 , ∀𝑘, 𝑙 

𝑥𝑘𝑙 , 𝛿, 𝑦𝑘𝑙 ∈ {0,1},   ∀𝑘, 𝑙 
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2.5.3. Numerical Study of Model 3 

We have 𝑟 = 𝑟6 + 𝑟8 + 𝑟3 = 4 + 3 + 2 = 9 design options in the data used for this 

numerical study. If no 3T DRAM is selected in a pixel, we continue using the data in Table 4 for 

6T and 8T SRAMs. Otherwise, the data of these SRAMs is shown in Table 6. The data of 3T 

DRAM is shown in Table 7, where two 3T options with the same area cost but different DRTs 

are included. We solve the problem for 𝑠𝑡𝑜𝑡𝑎𝑙 = 7.0, 7.2, ⋯ ,8.4 using Gurobi solver (version 

7.0.2), and the computation time of the optimal design for each 𝑠𝑡𝑜𝑡𝑎𝑙 case is less than 0.2 

second. The optimal values and solutions are shown in Table 8. When the allowed 𝑠𝑡𝑜𝑡𝑎𝑙 is very 

small, most bitcells apply C31 as it has the smallest area cost among all nine options. One can 

see that with the increase of 𝑠𝑡𝑜𝑡𝑎𝑙, the trend of update in the optimal design is from 3T to 6T, 

and then to 8T. As 𝑠𝑡𝑜𝑡𝑎𝑙 ≥ 8.2, the results of the optimal design of this example are the same as 

those of numerical example 2 (see Table 4). This is because no options select 3T (which has the  

 

Table 6. 6T and 8T SRAM Data of Numerical Example 3 (𝑉𝐷𝐷 = 0.5v), with Area-Overhead 

Caused by 3T DRAM 

Memory 

Type (with 

area-

overhead) 

Height 

(𝝁𝒎) 

Width 

(𝝁𝒎) 
Area (𝝁𝒎𝟐) Area Ratio 𝒔𝒌 

Failure 

rate 𝒒𝒌𝒍 

6T: C61 0.56 1.5225 0.8526 𝑠𝑘1
(3𝑇)

= 1.24 0.3436 

6T: C62 0.56 1.5625 0.875 𝑠𝑘2
(3𝑇)

= 1.28 0.3074 

6T: C63 0.56 1.6025 0.8974 𝑠𝑘3
(3𝑇)

= 1.31 0.2771 

6T: C64 0.56 1.6425 0.9198 𝑠𝑘4
(3𝑇)

= 1.34 0.2521 

8T: C81 0.56 1.6688 0.9345 𝑠𝑘5
(3𝑇)

= 1.36 0.00082 

8T: C82 0.56 1.7000 0.9520 𝑠𝑘6
(3𝑇)

= 1.39 0.00009 

8T: C83 0.56 1.7400 0.9744 𝑠𝑘7
(3𝑇)

= 1.42 0.00002 
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Table 7. 3T DRAM Data for Numerical Example 3 (𝑉𝐷𝐷 = 0.5v) 

Memory 

Type 

Height 

(𝝁𝒎) 

Width 

(𝝁𝒎) 

Area 

(𝝁𝒎𝟐) 

Area 

Ratio 

𝒔𝒌 

DRTs 

Failure 

rate 

𝒒𝒌𝒍 

3T: C31  0.583 0.987 0.5752 
𝑠𝑘8

= 0.84 

1.13
× 10−6 

0.392 

3T: C32  0.583 0.987 0.5752 
𝑠𝑘9

= 0.84 

1.41
× 10−6 

0.480 

 

Table 8. Results and Comparisons of Numerical Example 3 (𝑉𝐷𝐷 = 0.5V) 

𝑠𝑡𝑜𝑡𝑎𝑙  

Optimal design 
Traditional 

design Improv

ement Obj. 

value 
𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2 𝑠1 𝑠0 

Obj. 

value 
𝑠𝑘 

7.0 8563.24 C31 C31 C31 C31 C31 C31 C31 C31 8563.24 C31 0.00% 

7.2 6680.72 C63 C31 C31 C31 C31 C31 C31 C31 8563.24 C31 21.98% 

7.4 2141.04 C83 C31 C31 C31 C31 C31 C31 C31 8563.24 C31 75.00% 

7.6 2141.04 C83 C31 C31 C31 C31 C31 C31 C31 8563.24 C31 75.00% 

7.8 551.87 C81 C81 C31 C31 C31 C31 C31 C31 8563.24 C31 93.56% 

8.0 535.49 C83 C83 C31 C31 C31 C31 C31 C31 7505.94 C61 92.87% 

8.2 485.81 C81 C81 C61 C61 C61 C61 C61 C61 7505.94 C61 93.53% 

8.4 47.05 C81 C81 C81 C81 C61 C61 C61 C61 6715.15 C62 99.30% 

 

Stotal

 

Figure 10. Comparison of the Optimal and Traditional Design of Numerical Example 3, and 

Part of the Optimal Design of Numerical Example 2 (For Both 𝑉𝐷𝐷 = 0.5V) 
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highest failure rate), as the allowed total area is big enough to include cells composed of only 6T 

and 8T SRAM. 

In addition to the comparison between the optimal and traditional design of this 

numerical example, we also compares the results with part of those from the optimal solution of 

numerical example 2 in Figure 10.  

A notable point is at 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0 where the optimal solution of this numerical example 

provides a solution with much higher video quality than that of numerical example 2 at the same 

𝑠𝑡𝑜𝑡𝑎𝑙. The main reason of such a great improvement is because of the options of 3T DRAM 

which can be added to low-level bitcells to save space for adding reliable 8T SRAMs to high-

level bitcells of the pixel. 

0.
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𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, optimal design of numerical example 3 
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𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, traditional design of numerical example 3. 

Figure 11. Layout of the Optimal and Traditional Design, 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, Numerical Example 3 
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(a) (b) (c)

(d) (e)
 

Figure 12. Video Output Quality Example For 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0 and 8.4 From Table 8, Numerical 

Example 3 (𝑉𝐷𝐷 = 0.5V): (A) Original Video; (B) Video Stored by the Optimal Design, 𝑠𝑡𝑜𝑡𝑎𝑙 =
8.0; (C) Video Stored by the Traditional Design, 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0; (D) Video Stored By the Optimal 

Design, 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.4; (E) Video Stored by the Traditional Design, 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.4 

  

The layout and video output quality comparison at 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0 are shown in Figure 11. 

and Figure 12 ((a)—(c)). Although the video output quality of the optimal design is not good 

enough Figure 12 (b), it is much better than that of the traditional design under the same 𝑠𝑡𝑜𝑡𝑎𝑙 

(Figure 12 (c)). In addition, note that 8.0 is an extremely small area cost. If we increase it a little 

to 8.4, then the quality of the proposed optimal design will be significantly improved while that 

of the traditional design does not change too much (see Figure 12 (d) and (e). 

2.6. Discussion  

2.6.1. Relationship of the Three Developed Models 

In this chapter, three mathematical models have been developed for optimizing video 

memory design using nonlinear programs and integer linear programs.  

 

 



 

29 

 

 

Specifically, the developed three models include (i) Model 1: single SRAM design; (ii) 

Model 2: hybrid SRAM without bitcell integration cost; and (iii) Model 3: hybrid memory using 

different technologies such as SRAM and DRAM. The relationship of the three models are 

illustrated in Figure 13. Clearly, Model 3 is a generalization of Model 2, since various memory 

technologies and area overhead are considered. Although Model 1 is only for single SRAM 

design and Model 2 is for hybrid SRAM design, one cannot simply think that Model 2 is a 

generalization of Model 1. This is because Model 2 is a discrete model while Model 1 is 

continuous.  In Figure 13 we use the part that belongs to Model 1 but not Model 2 or Model 3 to 

indicate this point.  

2.6.2. Comparison with Prior Work 

To the best of our knowledge, none of the literature comprehensively considers the 

general optimal memory design under a cost/area constraint for hybrid SRAMs and for designs 

with various memory technologies. For example, [7] presents a heterogeneous sizing scheme, but 

it is only for 6T SRAM under several (discrete) options, which is a special case of our Model 2. 

We further provide a continuous model for 6T SRAM optimization (i.e., Model 1). [8] develops 

Model 1 -

single SRAM design; 

continuous model

Model 2 -

hybrid SRAM without 

overhead; discrete model

Model 3 -

hybrid memory with different 

technologies; discrete model
 

Figure 13. Relationship of the Three Models, Which Covers Different Mathematical 

Approach for Different Memory Technology. 
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a hybrid 6T/8T SRAM, but it simply suggests storing high-order bits in 8T bitcells and low-order 

bits in 6T bitcells, without giving any detailed mathematical models (except for the formulation 

of MSE in the Appendix) or algorithms to obtain an optimal design when there are various 

choices of 6T/8T. Other existing studies on memory design, such as [9] and [16] are only for 

SRAMs and do not include any optimization models or algorithms. 
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3.  MEMORY OPTIMIZATION FOR ENERGY-EFFICIENT DIFFERENTIALLY 

PRIVATE DEEP LEARNING2 

3.1. Introduction 

With the advent of Internet of Things (IoT) technologies and availability of a large 

amount of data, deep learning has been applied in a variety of artificial intelligence (AI) 

applications. However, sharing personal data using IoT edge devices carries inherent risks to 

individual privacy. Meanwhile, the energy and memory resources needed during the inference 

process become a constraint to the resource-limited IoT edge devices. This paper brings memory 

hardware optimization to meet the tight power budget in IoT edge devices by considering the 

privacy, accuracy, and power efficiency tradeoff in differentially private deep learning systems. 

Based on a detailed analysis of these characteristics, an Integer Linear Programing (ILP) model 

is developed to minimize mean square error (MSE), thereby enabling optimal dataset memory 

design. The simulation results in 45-nm CMOS technology show that the proposed technique can 

enable near-threshold energy-efficient memory operation for different privacy requirements, with 

less than 1% degradation in classification accuracy. 

The main contributions of this work are as follows: the power efficiency, accuracy, and 

privacy characteristics of differentially private deep learning systems were analyzed. An input 

data memory design with upsized and 8T+6T hybrid bit-cells for optimization was presented. 

The design shows less than 1% degradation in classification accuracy for different privacy levels, 

with reduced power consumption.   

 

2 Hritom Das was in charge of all memory (SRAM) system design and simulation in 

Cadence, failure rate calculation, layout design, and calculation of power consumption for different 

supply voltages. Drs. Na Gong, Yiwen Xu, and Jonathon Edstrom provided the simulation and 

modeling for deep learning.  
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3.2. Learning with Differential Privacy 

3.2.1. Privacy Preservation in Deep Learning  

Privacy research has drawn attention in both industry and research communities. Large 

industry leaders, including: Apple, Facebook, and Google, have concluded that these types of 

threats can be accomplished by invasive analysts even when data has been anonymized [17-19]. 

For example, in 2006 AOL released a list of 20 million web search queries which was found to 

have leaked the identity of a woman [20]. Similarly, Netflix introduced an open competition in 

2006 that released a dataset that also leaked private data [21-22]. One other area with potential 

privacy issues is biomedical research. For example, in genome wide association studies, the 

identity and any diseases a person has could be revealed based on results included in research 

papers [23]. Due to privacy risks such as these, a conscious effort to reduce data leaks has 

become of great interest, especially for companies using machine learning algorithms on 

collected big data. 

The privacy of deep learning models, such as neural networks, have recently come into 

question due to weaknesses and attack models that have been previously exploited [24]. Due to 

high requirements of computation and storage resources, today’s deep learning systems are 

typically built upon large, centralized data repositories. Many cloud providers also give access to 

computing platforms and learning frameworks for model training, such as Amazon Sagemaker 

and Google Cloud ML Engine. Based on this centralized-training paradigm, data owners need to 

upload their private data to the cloud provider and they do not have control over how their 

private data is being used. For instance, if a deep learning model was trained on the records of 

patients with a certain disease, learning that an individual’s record was part of the training data 

directly affects their privacy, and it opens a door to potential misuse (e.g., exploitation for the 
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purpose of recruitment, insurance pricing, or granting loans) due to the following three potential 

privacy threats: (i) it is very easy for a malicious provider to steal the data if the provider has full 

access to the data [28]; (ii) even without full access to the data, the malicious provider can 

extract sensitive data from the trained models [29]; and (iii) A malicious remote user can also 

retrieve information of the training data by carefully querying the trained models [30].  

3.2.2. Differentially Private Deep Learning and State of the Art 

To preserve data privacy, differential privacy [31] is becoming the gold standard to offer 

both utility to the applications and rigorous privacy guarantees.  The formal definition is as 

follows: a randomized mechanism M is considered to be (ε, δ)-differentially private if, for two 

adjacent inputs d and d', it holds that Pr[M(d) ϵ S] ≤ e^ε ∙ Pr[M(d') ϵ S] + δ, where S is any subset 

of the outputs. The privacy cost parameter ε is used to control the tradeoff between the privacy 

and the accuracy where smaller values of ε provide more privacy. The guarantee of differential 

privacy is: if an individual’s data is used in a differentially private calculation, the probability of 

any result of the calculation changes by at most a factor of e^ε in comparison to if that 

individual’s data is not used in the calculation [36]. The parameter δ is the probability of failure 

where the given differentially private mechanism may violate an individual’s privacy. This δ 

value explains the possibility of “bad events” that may result in a large loss in privacy. 

Specifically, when training an (ε,δ)- differentially private neural network, the probability of 

violating the privacy, δ, is calculated after each step for a given privacy cost, ε. 

Recent works have adopted the use of (ε,δ)-differential privacy in order to protect the 

data of individuals. In [37], the authors presented a technique involving an ensemble of teachers 

that could train on subsets of a sensitive data. After training, the teachers would further train a 

student model based on public data that was labeled using the ensemble. The student model is 
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trained based on the noisy voting of the various teachers that were trained using the model so 

that a stronger privacy guarantee can be enabled by the system. In [38], a method creating 

generative adversarial networks (GANs) that include differentially private mechanisms to 

provide privacy guarantees was presented. This technique for training a differentially private 

GAN only allows the analyst to inspect a model that already guarantees some level of differential 

privacy. Both the teacher ensemble and differentially private GAN training techniques employ 

the use of a privacy accountant (i.e. the moments accountant), described in [39], in order to 

compute a tighter bound on the differential privacy.  

In order to ensure differential privacy, perturbation can be introduced at various parts of 

the workflow, including: input, output, and objective perturbation [40]. Also, different types of 

noise can be added to the training and test datasets. The moments accountant shows that for the 

Gaussian (i.e. ~N(0,σ^2)) noise mechanism, if the value of standard deviation for this noise 

mechanism is chosen to be: 

   σ =
1

ε
(2 log

1.25

δ
)1/2   (14) 

then the noise mechanism will satisfy (ε, δ)-differentially privacy for a given sensitivity, Sf. 

Using this moments accountant technique to compute a tight bound on the privacy allows for 

each step in the training algorithm to result in (ε, δ)-differential privacy with respect to the lot. 

 The system we propose uses the moments accountant to train a differentially private 

ConvNet model on the server (cloud) where sensitive data is used for training. By enabling the 

moments accountant for training we can guarantee privacy, but at the cost of some accuracy loss. 
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 This trained, differentially private model will then be downloaded to the edge computing 

devices for inference tasks. A diagram of the proposed system design can be seen in Figure 14. 

Since inference is taken care of on the local devices, the privacy of the testing data being 

presented to the devices is not a big concern.  

The energy and resources needed during the inference process has become another 

constraint to the resource-limited IoT devices. Deep learning models can take up a large portion 

of an embedded device’s memory space and inference tasks. In particular, data movement on 

these devices can consume the majority of the total power [41]. Software compression 

techniques for reducing the size of each weight in deep learning models have been introduced, 

such as the Tensor Flow Lite API [42], which allows for 4× reduction in total model size.  For 

hardware improvements, one of the most important issues that has been focused on is the 

intensive memory access of the embedded IoT devices. Very recently, [43] presented a memory-

based noise addition technique for differentially private deep learning systems, illustrating the 

significance of the embedded memory to edge inference tasks. However, this technique adopted 
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Figure 14. Input Data Memory Optimization for Deep Learning System with Energy-Efficiency, 

Privacy, and Inference Accuracy 
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the traditional memory design, which misses out on many optimization opportunities to trade off 

among privacy, accuracy, and efficiency. 

This chapter aims to optimize memory design to better support differentially private deep 

learning algorithms in local devices. To enhance the power efficiency of memories, memory 

failures are usually introduced due to process variations during the device manufacturing 

process. We first analyze the impact of memory failures on accuracy and privacy and then 

conclude the guidelines to optimize the memory for privacy, efficiency, and accuracy in AI 

applications with different requirements. 

3.3. Impact of Memory Failures in Differentially Private Deep Learning Systems 

In our analysis, we define a convolutional neural network model using the TensorFlow 

framework [44] in order to gain insight on how different types and levels of noise may influence 

the privacy-accuracy tradeoff. The model involves using an objective perturbation through 

additive Gaussian noise, and uses the moment’s accountant [39] to compute the privacy cost 

after each step in the training process. The ConvNet model we tested was based on the 

architecture described in [43] with a single convolutional layer, as can be seen in Figure 15. The 

widely used MNIST dataset [45] was used for our initial simulations. MNIST consists of 60,000 

training samples and 10,000 test samples, where each sample is a handwritten digit ranging from 

“0” to “9”; each sample is an image that contains 784 features representing 28×28 pixels. 

Convolutional Layer 1 Max Pool 1
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6
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Dense (Logits) Layer Softmax
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9×9 Filters (×10)

2×2 Max 

Pooling

 

Figure 15. Differentially Private Convolutional Neural Network Used in Our Analysis. 
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3.3.1. Impact of Image Quality on Classification Accuracy 

In order to investigate the relationship between the quality of the test dataset and its 

impact on the test classification accuracy, we inject bit level errors at varying memory failure 

rates (probabilities) to each image in the test dataset. Since the MNIST dataset consists of 

images, the well-known peak signal-to-noise ratio (PSNR) metric is used to evaluate quality, 

which is defined in [46] as  

    PSNR = 10 log10 (
2552

MSE
)    (15) 

where MSE is the mean square error between the original images (Org) and the degraded images 

(Deg). 

Accordingly, by evaluating the PSNR values for a wide range of error injected test 

datasets using MNIST and comparing the test classification accuracy, we identify that the higher 

the image quality in the test dataset, the higher the output accuracy of the system will be overall. 

This relationship between PSNR and test classification accuracy is illustrated in Figure 16.  

Based on this monotonically increasing behavior, if the PSNR value of the dataset is improved, 

the accuracy will be enhanced. Accordingly, during the memory design process, if the memory 

hardware can enable the optimal quality of the dataset, the accuracy will be improved 

accordingly. As shown in Figure 16, as the PSNR values of the MNIST dataset are increased 

from 5dB to 15dB, the accuracy is increased from 10% to 90% while meeting the privacy 

guarantee for the differentially private deep learning systems. It should be noted that PSNR is 

used in our analysis to evaluate the image quality of MNIST dataset, but considering different 

types of IoT data, MSE will be a general quality evaluation metric, which will be discussed in 

Section 3.3.4. 
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3.3.2. Protecting Most Significant Bits (MSBs) of Data 

The amount of Gaussian noise that is used during training influences how accurate the 

inference of the finalized model performs. Therefore, different models with varying amounts of 

noise (i.e. sigma values) and epsilon values with a set delta value of 10−5 have been studied. For 

sigma, we tested 4 different noise levels, 𝜎 ∈ 𝐙 ∶ 1 ≤ σ ≤ 4, and for each sigma value we tested 

6 separate epsilon values, 휀 ∈ 𝐙 ∶ 5 ≤ 휀 ≤ 10. 

The relevant results for the (𝜎, 휀) pairs we tested are shown in Figure 18. Our study 

shows that the best (𝜎, 휀) pairs (i.e. the values of sigma and epsilon that provide the best test 

classification accuracy) for the MNIST dataset are: 𝜎 = 1, 휀 = 9 and 𝜎 = 2, 휀 = 8 as memory 

failure rates of the dataset are increased. When training using these values for the parameters, the 

probability of violating the privacy is recalculated after each step in the training process until the 

end delta value 𝛿 = 10−5 to stay within a modest privacy budget [39]. 
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                                          PSNR (dB) 

Figure 16. Influence of Dataset Quality on Test Accuracy (Using MNIST Dataset). 
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One effective technique for increasing the PSNR of the test dataset when errors are 

present is to protect the most significant bits (MSBs) of the data from memory failures [51], [11]. 

To study the impact of the memory failures, we further investigate the individual cases of 

protecting 1, 2, or 3 MSBs and compare against the case without protecting any bits to see the 
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Figure 18. Impact of Memory Failure Rate on Privacy/Accuracy Tradeoff: (A) Without MSB 

Protected And (B) With 2 MSBs Protected. 
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Figure 17. Impact of Memory Failure Rate on the Accuracy of the Learning System. 
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influence of the MSBs on the test classification accuracy. Figure 17 displays the test 

classification accuracy of σ=2, ε=8 differentially private ConvNet with the varying amount of 

MSBs protected. The protection of 2 or 3 bits has a significant influence on boosting the 

accuracy of the system to acceptable levels. 

3.3.3. Impact of Memory Failure on Privacy/Accuracy Trade-off 

Additionally, the impact of the memory failure on the privacy/accuracy trade-off is 

studied in differentially private deep learning systems. It can be seen from Figure 18 (a) that, the 

parameter ε represents the general trade-off between privacy level and accuracy of the 

differentially private deep learning system. A larger value can potentially enable higher 

accuracy. Additionally, for this specific Gaussian (i.e. ~N(0,σ^2)) noise addition mechanism, the 

value of σ also directly indicates the trade-off between privacy and accuracy. As shown in Figure 

18 (a), in general, as σ (i.e. the amount of noise) increases, the accuracy decreases.  

When comparing Figure 18 (a) and (b), it can be observed that for an optimal input data 

memory with MSBs protected, the accuracy/privacy tradeoff can be significantly improved. For 

example, in the case where σ=2 and ε=8, if the memory failure rate is 0.23, without protection, 

the accuracy will be much less than any acceptable amount (i.e. within 1% of the error free 

system). By introducing the protection to 2 MSBs, at the same failure rate, the accuracy will be 

increased to >96%, which is within 1% of the fault free differentially private model. In the 

following section, based on the design guidelines, a low power memory will be designed to 

minimize power consumption while keeping an acceptable accuracy for the differentially private 

deep learning systems. 
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3.3.4. Integer Linear Programs (ILP) Model based Memory Design  

Based on the above analysis, we propose an input data memory design technique to 

improve the prediction accuracy of differentially private deep learning systems. To optimize the 

dataset quality, the design problem becomes an energy-accuracy-cost tradeoff design problem. 

We apply the model for hybrid SRAM without bitcell integration cost (i.e., Model 2) in [47] to 

handle this problem. In the following we provide an independent brief introduction to the 

mathematical model. 

Assume the data points 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 are stored in a memory, and each data point needs s 

memory bitcells to store. Then, the mean square error (MSE) of these data points is defined by 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖

(𝐷)
− 𝑦𝑖

(𝑂)
)

2
𝑛
𝑖=1  ,   

where 𝑦𝑖
(𝐷)

and 𝑦𝑖
(𝑂)

 are the degradated and original data values, respectively. The degradations 

are caused by hardware memory failures. The expected MSE can be calculated by  

𝐸(𝑀𝑆𝐸) =
1

𝑛𝑠
∑ ∑ 4𝑘𝑞𝑖𝑘

𝑠
𝑘=1

𝑛
𝑖=1 , 

where 𝑞𝑖𝑘 is the given failure probability of the 𝑘𝑡ℎ bitcell of the 𝑖𝑡ℎ data [47]. Note that the 

general concept of MSE is widely used in data analytics and statistics, not only in image or video 

pixels. 

Suppose we have 𝑟1 and 𝑟2 design options for 6T and 8T SRAM, respectively. Let 𝑟 =

𝑟1 + 𝑟2 be the total design options. In addition, define binary decision variable 

𝑥𝑖𝑘𝑙 = {
1, if option 𝑙 is chosen for the 𝑖𝑘𝑡ℎ bitcell
0, otherwise

 

(𝑖 = 1, ⋯ , 𝑛; 𝑘 = 1, ⋯ , 𝑠; 𝑙 = 1, ⋯ , 𝑟) 

Then the following ILP model can be formulized to enable an optimal input data memory 

using 6T sizing techniques and 8T+6T hybrid design: 
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 min
𝒙

∑ ∑ ∑ 4𝑘𝑞𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑟
𝑙=1

𝑠
𝑘=1

𝑛
𝑖=1   (16) 

s.t.   ∑ 𝑥𝑖𝑘𝑙
𝑟
𝑙=1 ≥ 1, 𝑖 = 1, ⋯ , 𝑛; 𝑘 = 0, ⋯ , 𝑠 (17) 

 ∑ ∑ ∑ 𝑠𝑖𝑘𝑙𝑥𝑖𝑘𝑙
𝑟
𝑙=1

𝑠
𝑘=0

𝑛
𝑖=1 ≤ 𝑠𝑡𝑜𝑡𝑎𝑙  (18) 

 𝑥𝑖𝑘𝑙 ∈ {0,1},   𝑖 = 1, ⋯ , 𝑛; 𝑘 = 1, ⋯ , 𝑠; 𝑙 = 1, ⋯ , 𝑟 (19) 

The objective function (16) is to minimize the expected MSE of the whole data set. 

Constraint (17) is to guarantee that one can choose exactly one design option for each bit cell. 

Note that since this is a minimization problem, (17) is equivalent to ∑ 𝑥𝑖𝑘𝑙
𝑟
𝑙=1 = 1. The total area 

constraint (18) assures that the total area of the design cannot exceed the given limit 𝑠𝑡𝑜𝑡𝑎𝑙, 

where 𝑠𝑖𝑘𝑙 is a known parameter indicating the area cost of the 𝑖𝑘𝑡ℎ bitcell if it is selected to 

adopt the 𝑙𝑡ℎ design option. Finally, constraint (19) indicates that 𝑥𝑖𝑘𝑙 is a binary decision 

variable. The following section will present the memory design and evaluate results in a 45nm 

CMOS technology based on this optimization model. It should be noted that the developed ILP 

model can be used for optimal memory design in different technologies. 

3.4. Embedded Memory Design for Deep Learning   

To evaluate the effectiveness of the proposed memory design technique, 0.4V and 0.5V 

are used in our analysis based on a 45nm CMOS technology to enable the maximum energy 

efficiency at near-threshold voltage [48-49]. The deep learning system was set up using a single 

convolutional layer, a learning rate of 0.05, a batch size of 600, and an L2-norm gradient bound 

of 4.0 for norm clipping. The total epochs for any given privacy level are calculated during 

training and are based on the privacy parameters ε and δ, and the noise parameter σ. For 
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example, with large target ε (i.e. less privacy) and/or large σ (i.e. more noise), the network model 

can be trained for more epochs without violating the chosen privacy level. 

3.4.1. Optimized Memory Design  

Traditional low-power memories often utilize bitcell sizing or more than 6T bitcells to 

reduce memory failures induced by process variations, thereby achieving power savings at low 

voltages. This is because, at low voltages, memory failures are mainly caused by the intra-die 

variations in process parameters (e.g., variations in channel length, channel width, oxide 

thickness, threshold voltage, line-edge roughness, and random dopant fluctuations [RDF]) and 

the inter-die variations (i.e. different process corners including “typical NMOS and typical 

PMOS”, “fast NMOS and slow PMOS”, “slow NMOS and fast PMOS”, “slow NMOS and slow 

PMOS”, and “fast NMOS and fast PMOS”) [50-51],[11]. Among the different sources of intra-

die variations, RDF-induced threshold voltage (V_th) variations are the most significant in 

causing memory failures [38], which can be expressed by 

𝜎𝑉𝑡ℎ =  𝜎𝑉𝑡ℎ0√
𝑊𝑚𝑖𝑛  𝐿𝑚𝑖𝑛

𝑊 𝐿
   (20) 

 

where σV_th0 is the standard deviation of V_th, and W and L represent the width and length of 

the transistor, respectively. σV_th for an NMOS and PMOS transistor with W equal to the 

minimum LEFF in the 45nm predictive technology is 46.9mV and 41.8mV, respectively. 

According to (20), σV_th is inversely proportional to √WL, indicating that the deviation of V_th 

is reduced as W and L increase. Therefore, upsizing bitcells can reduce memory failures at low 

voltages due to the reduced intra-die threshold voltage (V_th) variations. 
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In addition to upsizing bitcells, more than 6T bitcells can also mitigate process variation 

caused memory failures. Figure 19 shows the 6T bitcell and 8T bitcell width using 45 nm CMOS 

technology. As shown, 6T bitcells can achieve better area-cost performance while 8T can 

effectively reduce memory failures due to its decoupled read and write paths using two extra 

transistors. However, an 8T bitcell causes about 9.6% area overhead compared to 6T.  

Table 9. Memory Failure Rate  

Memory 

bitcells 

Height 

(μm) 

Width 

(μm) 

Area 

(μm2) 

Area 

ratio sk 

Failure rate  

@0.4V @0.5V 

6T: C61 0.45 1.523 0.685 1 0.5897 0.3436 

6T: C62 0.45 1.563 0.703 1.026 0.5341 0.3074 

6T: C63 0.45 1.603 0.721 1.053 0.4803 0.2771 

6T: C64 0.45 1.643 0.739 1.079 0.4342 0.2521 

8T: C81 0.45 1.669 0.751 1.096 0.0121 0.00082 

8T: C82  0.45  1.700  0.765  1.117  0.0043 0.00009 

8T: C83  0.45  1.740  0.783  1.143  0.002 0.00002 
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Figure 19. Different Memory Designs: (A) 6T SRAM Schematic and Minimum-Sized Layout 

Design in 45 nm Technology (C61) and (B) 8T SRAM Schematic and Minimum-Sized Layout 

Design (C81) in the Same 45 nm Technology. 
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Memory failure rates are also strongly dependent on inter-die variations. Under inter-die 

variations, the dominant failures of 6T and 8T occur in read operations at “fs” (fast NMOS and 

slow PMOS) and in write operations at “sf” (slow NMOS and fast PMOS) process corners, 

respectively [11]. In our analysis, 10,000 Monte-Carlo simulations are performed with local 

intra-die threshold voltage variations (RDF effects) at the worst process corners for 6T and 8T 

bitcells. The failure rates are listed in Table 9. As shown, there are r=r_1+r_2=4+3=7 total 

options (including 4 upsized 6T options and 3 upsized 8T options). As expected, upsizing bitcells 

and 8T options can both result in a lower failure rate with a larger bitcell area. Also, as the 

supply voltage decreases from 0.5V to 0.4V, the memory failure rate of the same bitcell 

increases accordingly. 

Results of solving (16)-(19) for a variety of 𝑠𝑡𝑜𝑡𝑎𝑙 values in the range [8.0, 9.1] using 

Gurobi solver (version 7.0.2) at both 0.4V and 0.5V are listed in Table 10. In the traditional 

design, all bitcells select the same option as discussed in [47]. It can be seen that in most design 

cases significant MSE improvement can be enabled with the optimal design, including over 99% 

MSE improvement for both 0.4V and 0.5V if the total area constraint is 8.5 or 8.7. Another 

interesting observation is that for two different voltages, the optimization solutions under the 

same total area constraint have the same tendency: when 𝑠𝑡𝑜𝑡𝑎𝑙 is small (e.g., < 8.3), the most 

cost-efficient bitcell (C61) is usually selected to meet the area constraint. In the extreme case, 

with 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.0, all bitcells are C61, which is the only possible solution under such a strict area 

constraint. As 𝑠𝑡𝑜𝑡𝑎𝑙 increases beyond 8.5, a larger number of different 8T bitcells are selected to 

optimize the quality.  
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It should be noted that as 𝑠𝑡𝑜𝑡𝑎𝑙 = 8.5 or 8.9, the optimal solutions for 0.4V are different 

from the ones for 0.5V. This is because, for different memory bitcells, the relationship between 

memory failure and voltage may not be linear [11].   

3.4.2. Power Efficiency 

We have also evaluated the power efficiency of the optimized memory design, as 

displayed in Table 11. All possible memory operations were considered for the total power 

estimation, including: read (i.e. read zero and read one), write (i.e. write zero to zero, zero to one, 

one to zero, and one to one), and hold (i.e. leakage power while holding zero and leakage power 

while holding one). As shown in Table 11, operating at 0.4V enables significant power savings 

Table 10. Results and Comparisons of Proposed Memory for Deep Learning 

𝑆𝑡𝑜𝑡𝑎𝑙  Optimal Design @ 0.5V Traditional Scenario MSE 

Improvement 
𝑀𝑆𝐸𝑜𝑝𝑡. 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 𝑀𝑆𝐸𝑇𝑟𝑑. 𝐷𝑒𝑠.𝑜𝑝𝑡𝑛. 

8.0 12034.27 C61 C61 C61 C61 C61 C61 C61 C61 12034.27 C61 0.00% 

8.1 3003.22 C81 C61 C61 C61 C61 C61 C61 C61 12034.27 C61 75.04% 

8.3 200.77 C81 C81 C81 C61 C61 C61 C61 C61 10337.20 C62 98.06% 

8.5 28.56 C81 C81 C81 C81 C81 C61 C61 C61 8997.34 C63 99.68% 

8.7 2.91 C83 C83 C82 C81 C81 C81 C61 C61 7944.11 C64 99.96% 

8.9 0.80 C83 C83 C82 C81 C81 C81 C81 C81 18.01 C81 95.56% 

9.1 0.43 C83 C83 C83 C83 C83 C83 C82 C82 1.94 C82 77.84% 

𝑆𝑡𝑜𝑡𝑎𝑙  Optimal Design @ 0.4V Traditional Scenario MSE 

Improvement 
𝑀𝑆𝐸𝑜𝑝𝑡. 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 𝑀𝑆𝐸𝑇𝑟𝑑. 𝐷𝑒𝑠.𝑜𝑝𝑡𝑛. 

8 26207.11 C61 C61 C61 C61 C61 C61 C61 C61 26207.11 C61 0.00% 

8.1 6883.95 C81 C61 C61 C61 C61 C61 C61 C61 26207.11 C61 73.73% 

8.3 735.63 C81 C81 C81 C61 C61 C61 C61 C61 22596.87 C62 96.74% 

8.5 150.27 C83 C83 C82 C81 C61 C61 C61 C61 19329.43 C63 99.22% 

8.7 56.60 C83 C83 C82 C81 C81 C81 C61 C61 16710.36 C64 99.66% 

8.9 45.46 C83 C83 C83 C83 C82 C81 C81 C61 270.28 C81 83.18% 

9.1 43.80 C83 C83 C83 C83 C83 C83 C82 C82 94.57 C82 53.69% 
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as compared to the traditional supply voltage (1V). As the total area constraint, Stotal, increases, 

the power consumption increases due to more 8T bitcells being included in the optimized design 

solution. If 8.7 is the target area constraint, then 74.82% and 86.11% power savings can be 

enabled at 0.5V and 0.4V compared to 1V, respectively.         

3.4.3. Input Data Quality and Accuracy  

We further evaluate the input data quality and prediction accuracy using the optimized 

memory. The results are listed in Table 12. The MNIST dataset [45], which was used as the 

original dataset for training the CNN model, displays almost no accuracy loss (0.01%) as 

compared to the fault free test samples. Additionally, the Fashion [52] and Kuzushiji-MNIST 

(KMNIST) [53] datasets are introduced to evaluate the efficiency of the proposed technique. The 

Fashion and KMNIST datasets are comprised of 28×28 grayscale images of 70,000 fashion 

product and Japanese characters, respectively, with each dataset containing samples from 10 

categories. In both datasets the training set has 60,000 images and the test set has 10,000 images. 

Table 11. Power Consumption of Optimized Memory at 45nm CMOS Technology @ 0.5V 

𝑆𝑡𝑜𝑡𝑎𝑙  Proposed optimal 

design 
Traditional design 

Preduction @ 

0.4v (opt.) 

vs. 1v (Trd.) 

Preduction @ 

0.5v (opt.) 

vs. 1v 

(Trd.) 
Popt. (W) 

@ 0.4V 

Popt. (W) 

@ 0.5V 

PTrd. (W) @  

0.4V 

PTrd. (W) 

@ 0.5V 

 PTrd. (W) @ 

1.0V 

8 1.30E-06 2.07E-06 1.30E-06 2.07E-06 9.28E-06 86.03% 77.69% 

8.1 1.41E-06 2.53E-06 1.30E-06 2.07E-06 9.28E-06 84.85% 72.74% 

8.3 1.63E-06 3.01E-06 1.34E-06 2.15E-06 1.00E-05 83.74% 69.90% 

8.5 1.74E-06 3.50E-06 1.38E-06 2.29E-06 1.16E-05 85.02% 69.83% 

8.7 1.96E-06 3.55E-06 1.42E-06 2.42E-06 1.41E-05 86.11% 74.82% 

8.9 2.07E-06 4.09E-06 2.18E-06 4.22E-06 1.02E-04 97.97% 95.99% 

9.1 2.18E-06 3.85E-06 2.18E-06 3.87E-06 1.02E-04 97.86% 96.23% 

Popt.: power consumption of the proposed memory; PTrd.: power consumption of traditional memory design; 

Preduction: power reduction 
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Both Fashion and KMNIST datasets serve as drop-in replacements for the MNIST dataset, as 

they share the same image sizes and number of classes. The complexity of the Fashion dataset is 

considered to be moderately more complex to classify than the MNIST dataset while KMNIST is 

significantly more complex. This level of dataset complexity is reflected in the classification 

accuracy results. When training a CNN model with the same architecture on the Fashion dataset, 

the proposed memory yields a negligible accuracy loss when voltage scaling to 0.5V (0.03%) or 

0.4V (0.33%). When training a CNN model with the same architecture using the KMNIST 

dataset, a dataset that is significantly more difficult to classify, the proposed memory still yields 

negligible loss in classification accuracy when voltage scaling to 0.5V (0.15%) or 0.4V (0.59%). 

The results in Table 12 are based on the specific privacy level where the maximum 

accuracy is enabled for the MNIST dataset (i.e. σ=2, ε=8). With the same privacy level, using the 

proposed memory design, the accuracy almost remains the same for the Fashion and KMNIST 

datasets while the supply voltage is reduced from 1V to 0.4V.  
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The Fashion and KMNIST datasets display higher accuracies for lower levels of ε, but 

still maintain high accuracy for varying levels of noise 

Table 12. Input Data Quality and Accuracy 

 No Error 1V Trd. 0.5V Trd. 

This 

Work @ 

0.5V 

0.4V 

Trd. 

This Work 

@ 0.4V 

MNIST Dataset [45]   

      

      

      

      

Test Accuracy (𝜎 = 2, 휀 = 8) 96.7% 96.67% 42.3% 96.69% 12.22% 96.6% 

Fashion Dataset [52] 

      

      

      

      

Test Accuracy(𝜎 = 2, 휀 = 8) 87.1% 87.06% 31.75% 87.07

% 

11.59

% 

86.77% 

KMNIST Dataset [53] 

      

      

      

      

Test Accuracy (𝜎 = 2, 휀 = 8) 80.16% 79.87% 36.84% 
80.01

% 

14.99

% 
79.57% 
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3.4.4. Accuracy at Different Privacy Levels 

To evaluate the impact of privacy levels on the effectiveness of the proposed memory 

technique, varying σ and ε values are included in CNN model simulations. It shows that the 

privacy level has a noticeable impact on the inference accuracy of the differentially private deep 

learning systems. The MNIST, Fashion, and KMNIST datasets were used to determine the 

impact of the privacy level on the inference accuracy. In general, the higher the privacy level is, 

the lower the test accuracy becomes. This relationship can be seen in Table 13, which includes 

both high and low levels of privacy for comparison of test accuracy calculations. As displayed in 

Table 13, the proposed memory design at both 0.4V and 0.5V performs similarly to the 1V 

traditional design, and is capable of achieving inference accuracy within 1% of the fault free 

model at both low and high privacy levels. Therefore, the proposed memory can be a preferable 

solution for implementing power-efficient differently private deep learning systems. 

 

 

Table 13. At Particular Privacy Parameters, the Impact of Privacy Level on Test Accuracy 

Dataset 
Privacy 

Parameters  

Privacy/Noise 

Level 

1V  

Trd. 
0.5V Trd. 

This Work 

@ 0.5V 
0.4V Trd. 

This Work 

@ 0.4V 

MNIST 
𝜎 = 4, 휀 = 5 High 95.89% 35.36% 95.91% 13.66% 95.74% 

𝜎 = 2, 휀 = 10 Low 96.52% 48.49% 96.39% 14.15% 96.34% 

Fashion 
𝜎 = 4, 휀 = 5 High 86.33% 27.53% 86.4% 11.25% 86.1% 

𝜎 = 2, 휀 = 10 Low 87.54% 20.14% 87.64% 10.33% 87.16% 

KMNIST 
𝜎 = 4, 휀 = 5 High 81.38% 25.14% 81.46% 11.11% 81.29% 

𝜎 = 2, 휀 = 10 Low 83.01% 36.13% 82.98% 13.89% 82.69% 
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4. FLEXIBLE LOW-COST POWER-EFFICIENT VIDEO MEMORY WITH  

ECC-ADAPTATION 

4.1. Introduction 

In this chapter, a flexible power-efficient video memory is presented that can 

dynamically adjust the strength of error-correction-code (ECC), thereby enabling power-quality 

trade-off based on application requirements. Specifically, we utilize the bit significance 

characteristics of video data to develop a low-cost parity storage scheme that supports both 

hamming code-74 (ECC74) and hamming code-1511 (ECC1511). Based on this, we design a 

flexible memory with three dynamic power-quality adaptation schemes (i.e., ECC74, ECC1511, 

and no ECC) to meet different video application requirements, which includes an integrated ECC 

encoder/decoder that handles both ECC74 and ECC1511 while reducing area overhead. The 

proposed memory results in significant power reduction without noticeable video quality 

degradation. 

The main contributions of this work are as follows: a) runtime adaptation of ECC to 

improve video quality and b) ECC memory design with encoder and decoder integration to 

minimize area overhead. 

4.2. State-of-the-Art 

Existing as critical hardware-building blocks for today’s approximate computing 

platforms, video memories show application resilience to approximations with a trade-off 

between a “good enough” output and additional power savings. State-of-the-art, power-efficient 

video-specific memory can be broadly classified into two categories: design-time fixed quality or 

run-time adjustable quality. 
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4.2.1. Video-Specific Memory with Design-Time Fixed Quality 

During the past decade, low-voltage video memories were widely investigated in the 

literature, and most existing solutions are designs with design-time fixed quality. For example, 

Chang et al. [8] presented a hybrid 6T+8T SRAM to achieve quality-power optimization. In [7], 

a heterogeneous sizing scheme was presented to reduce the failure probability of conventional 

6T bitcells. In [9], the correlation between MSBs was utilized to design a hybrid 8T+10T 

memory for power savings. In [11], advanced data-mining techniques were used to identify 

useful video data characteristics (e.g., data association) for hardware design. At the same time, 

several recent works for analyzing the quality of videos, such as viewer experience, have 

recently been shown to outperform the traditional mean squared error (MSE) and PSNR [54]. 

Those video-specific memory designs enhanced power efficiency with a reduced implementation 

cost when compared to general-purpose memories [47]; however, the quality of those designs is 

fixed during design-time, so they lack run-time adaptation.   

4.2.2. Adaptive Memory with Dynamic Power-Quality Management 

There are several recent attempts to enable adaptive video memory with dynamic power-

quality management. For example, the video memory presented in [55] used the least significant 

bits (LSBs) of video data to store the MSBs’ error-correction-code (ECC). In [56], a video 

content-aware memory technique for power-quality trade-off was developed from viewers’ 

perspectives, based on the influence of video macroblock characteristics on viewer experience. 

Additionally, in [57], a data-dependent reconfigurable conditional pre-charge (CP) SRAM was 

designed to utilize statistical dependencies present in the binary values. This paper presents a 

new low-cost adaptive-ECC video memory with dynamic power-quality trade-off. Our proposed 

adaptive-ECC video memory is orthogonal to existing viewer-aware or data-dependent adaptive 
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memories [56, 57], and therefore can be simultaneously utilized to further optimize power 

efficiency. 

4.3. Proposed Low-Cost ECC Storage Scheme  

4.3.1. Traditional ECC 

According ECC is a very popular technique to enhance the reliability of memory systems 

[58]. There are various types of ECCs that provide various levels of trade-offs between error 

correction capability and implementation cost. This paper utilizes the cost-effective hamming 

code-74 (ECC74) and hamming code-1511 (ECC1511) [55], detailed in Table 14, due to area 

constraints of the main use-case, video memory. Traditional ECC74 provides protection for 4 

message bits, by requiring 3 parity bits to identify a faulty bit location, where each parity bit is 

generated using 3 message bits. Alternatively, ECC1511 protects 11 message bits with 4 parity 

bits, where each parity bit is generated using 7 message bits. For ECC74 and ECC1511, only 1 

faulty message bit can be detected and corrected. If there are multiple faulty message bits, these 

two ECC algorithms cannot determine that, and may incorrectly “correct” a message bit. 

To provide more context for the ECC74 and ECC1511 algorithms, using Table 14 as a 

visual aid, M0-M14 are message bits and P1-P4 are parity bits. Parity bits are placed on the 2n 

(n=0,1..) positions [58]. The calculation of parity bits and error correction bits are based on a 

specific Hamming code sequence, as expressed below:  

P1_74 = 3, 5, 7 = M2  M4  M6  (21) 

P2_74 = 3, 6, 7 = M2  M5  M6 (22) 

P3_74 = 5, 6, 7 = M4  M5  M6 (23) 
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The three parity bits for ECC74 are generated by performing XOR () operations 

according to Equations (1)-(3), and utilizing even parity. To determine a faulty bit after memory 

storage for ECC74, the calculation of error correction bits are expressed in Equations (4)-(6), 

where 𝑃𝑁 is the previously calculated parity stored and then read back, and 𝑃𝑁_74 is the 

recalculated parity from the read back message data bits: 

E1_74 = P1   P1_74 (24) 

E2_74 = P2  P2_74 (25) 

E3_74 = P3  P3_74 (26) 

If the binary to decimal conversion of (𝐸3_74, 𝐸2_74, 𝐸1_74) is evaluated as zero, then there 

is no error; otherwise, the bit-flip error position shall be determined by the evaluated decimal 

number. For example, suppose E3_74 = ‘1’, E2_74 = ‘1’, and E1_74 = ‘0’, then the faulty bit position 

is 1102 which corresponds to the 6th bit, M5, having a bit-flip error; hence, M5 is toggled to 

correct the error.  

A major disadvantage with traditional ECCs is their significant cost overhead, caused 

mainly by additional bitcells required for storing parity bits. For ECC74, protecting 4 message 

bits requires 3 parity bits: a 75% silicon area overhead. For ECC1511, protecting 11 message bits 

requires 4 parity bits: a 36% silicon area overhead.  
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Therefore, this excessive overhead eliminates traditional ECCs for data integrity 

solutions in embedded memory designs, as the use-case requires optimized resource allocation. 

Instead of additional parity bits for message protection, if we can identify a use-case where the 

parity bits can be embedded within the message bits, then the area overhead requirements of 

ECCs can be eliminated. One such use-case is videos, where we can replace legitimate message 

bits with parity bits, and by doing so trade-off video quality. 

For example, suppose we directly apply the traditional ECC scheme in Table 14 to the 

memory system in Table 15. As shown in Table 15, S0 to S15 are the bit positions for bytes 1 

and 2. S0 (Least Significant Bit [LSB]) to S7 (Most Significant Bit [MSB]) are the bit positions 

of the 1st byte and S8 (LSB) to S15 (MSB) are the bit positions of the 2nd byte of the memory 

array, respectively. The three parity bits for ECC74 are stored in S3, S1, and S0. The four parity 

bits for ECC1511 are stored in S7, S3, S1, and S0. Figure 20 (a), (b), and (c) present the original 

video frame, encoded video frame with traditional ECC74, and encoded video frame with 

traditional ECC1511, respectively. Peak Signal-to-Noise Ratio (PSNR) is a widely adopted video 

quality evaluation metric, where a higher PSNR value translates to better video frame quality. 

Table 14. ECC Sequence and Message Bit Placement for Traditional ECC74 and ECC1511 

Traditional ECC74 

23 7 6 5 22 3 21 20 

N/A M6 M5 M4 P3 M2 P2 P1 

Traditional ECC1511 

23 7 6 5 22 3 21 20 

P4 M6 M5 M4 P3 M2 P2 P1 

24 15 14 13 12 11 10 9 

N/A M14 M13 M12 M11 M10 M9 M8 
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Storing the parity bits using the traditional ECC schemes results in significant video quality 

degradation, due in part to video data carrying more quality weight in the MSBs. The PSNR of 

the encoded frames with traditional ECC74 and ECC1511 are 27.75dB and 8.27dB, respectively. 

One observes from Figure 20 (c), ECC1511 encoding results in larger video quality loss as 

opposed to ECC74 due to its 4th parity bit being stored in the MSB of the first byte. 

Consequently, to ensure the least amount of video quality degradation, video data bit 

significance characteristics should be considered, such that LSBs are favored for parity storage.  

 

                             (a) Original Frame             (b) Encoded ECC74           (c) Encoded ECC1511 

Figure 20. Video Output Quality with Traditional ECC. (A) Original Frame, (B) ECC74 Parity Bits 

Stored with PSNR = 27.75 dB, and (C) ECC1511 Parity Bits Stored with PSNR = 8.27 dB. 

 

 
Table 15. Impact of Traditional ECC (Parity Bit Position) on Video Storage 

Traditional ECC74: Byte 1 

Memory 

bits  
S7 S6 S5 S4 S3 S2 S1 S0 

Data M7 M6 M5 M4 P3 M2 P2 P1 

Traditional ECC1511: Byte 1 

Memory 

bits 
S7 S6 S5 S4 S3 S2 S1 S0 

Data P4 M6 M5 M4 P3 M3 P2 P1  

Traditional ECC1511: Byte 2 

Memory 

bits 
S15 S14 S13 S12 S11 S10 S9 S8 

Data M15 M14 M13 M12 M11 M10 M9 M8 
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4.3.2. Bit Significance Characteristics of Video Data and Proposed Storage Scheme for 

Parity Bits  

As opposed to typical fault-tolerant applications, video data has bit significance 

characteristics where MSBs have a greater contribution to output quality than LSBs. According 

to recent literature, the video memory presented in [55] uses the LSBs to store the MSBs’ parity 

bits, thereby effectively reducing video quality degradation overhead; this is what we use as a 

basis for comparison. As a caveat however, only ECC1511 was considered in [55].  In this paper, 

we propose a flexible memory with three dynamic power-quality adaptation schemes to meet the 

various requirements of video applications, i.e., ECC74, ECC1511, and no ECC. We also design 

an integrated ECC encoder/decoder that handles both ECC74 and ECC1511, which further 

reduces area overhead. 
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Our proposed storage scheme is applied for two-byte memory, as illustrated in Table 16. 

If ECC1511 is selected, then there would be four parity bits stored in the LSBs (i.e., P1, P2, P3, 

P4) and eleven protected MSB message bits (i.e., M7 to M2, M15 to M11). Alternatively, if 

ECC74 is selected, then there would be three parity bits stored in the LSBs (i.e., P1, P2, P3) and 

four protected MSB message bits (i.e., M6, M7, M14, M15). 

 

 

 

Table 16. Proposed ECC (Message Bit and Parity Bit Placement) 

Proposed ECC74: Byte 1 

memory 

bits/sequence 

S7 S6 S5 S4 S3 S2 S1 S0 

3 6 9 11 13 15 21 20 

Data M7 M6 M5 M4 M3 M2 P2 P1 

Proposed ECC74: Byte 2 

memory 

bits/sequence 

S15 S14 S13 S12 S11 S10 S9 S8 

5 7 10 12 14 16 8 22 

Data M15 M14 M13 M12 M11 M10 M9 P3 

Proposed ECC 1511: Byte 1 

memory 

bits/sequence 

S7 S6 S5 S4 S3 S2 S1 S0 

3 6 9 11 13 15 21 20 

Data M7 M6 M5 M4 M3 M2 P2 P1  

Proposed ECC 1511: Byte 2 

memory 

bits/sequence 

S15 S14 S13 S12 S11 S10 S9 S8 

5 7 10 12 14 16 23 22 

Data M15 M14 M13 M12 M11 M10 P4  P3 
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                              P1 = 3, 5, 7, 9, 11, 13, 15 

=  𝐌𝟕  𝐌𝟏𝟓 𝐌𝟏𝟒 M5 M4 M3 M2 

(27) 

                              P2 =  3, 6, 7, 10, 11, 14, 15 

= 𝐌𝟕 𝐌𝟔 𝐌𝟏𝟒 M13 M4 M11 M2  

(28) 

                              P3 =  5, 6, 7, 12, 13,14, 15 

   = 𝐌𝟏𝟓 𝐌𝟔 𝐌𝟏𝟒 M12 M3 M11 M2 

(29) 

                               P4 =  9, 10, 11, 12, 13, 14, 15 

= M5 M13 M4 M12 M3 M11 M2 

(30) 

Equations (7) to (10) calculate the parity bits for the proposed scheme. The symbols in 

Equations (7) to (10), (3, 5, 7..), M, and P, indicate the ECC sequence, message bit, and parity 

bit, respectively. 

Since ECC74 doesn’t require the 4th parity bit, P4, this is disabled when using ECC74. 

Furthermore, to reduce circuit area overhead, the encoders and decoders were developed for 

ECC1511 then reused for ECC74 by only using the green colored bits in Equations (7) to (9) to 

calculate P1-P3 when ECC 74 is selected. The encoder/decoder design is detailed in Section 4.5.    

 
(a)                                                      (b) 

Figure 21. Encoded Video Frame (Akiyo) with (a) ECC74 Where Parity was Stored in the LSBs 

with PSNR = 41.2582 and (b) ECC1511 Where Parity Bits were Stored in LSBs with PSNR = 

39.8426 dB. 
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Figure 21 (a) and (b) present the video output quality using the proposed ECC storage 

scheme from Table 15. Figure 21 (a) shows the video quality PSNR metric for ECC74 as 

41.26dB with 2 parity bits stored in the 2 LSBs of the 1st byte and 1 parity bit stored in the LSB 

of the 2nd byte. Figure 21 (b) shows the video quality PSNR metric for ECC1511 as 39.84dB 

with 2 parity bits stored in the 2 LSBs of both the 1st and 2nd bytes. Since ECC1511 needs to 

sacrifice one extra LSB to store its parity bits, it results in a lower PSNR value than ECC74. 

Hence, the proposed ECC parity storage scheme from Table 16, as shown in Figure 21, which 

supports both ECC74 and ECC1511, has much better potential to significantly improve video 

quality compared to the traditional ECC scheme from Table 15, as shown in  

Figure 20. Based on this parity storage scheme, an adaptive ECC mechanism is proposed 

to meet various requirements of video applications, as discussed in the next section. 

4.4. ECC Adaptation Based on Requirements and Failure Rate Based on Voltage Scaling  

 In this section, an adaptive ECC mechanism is presented, which supports three ECC 

conditions, no ECC, ECC74, and ECC1511. First, SRAM failure characteristics were studied 

using a 45 nm CMOS technology. Then, the impact of memory failures on video quality was 

analyzed, including failures in parity bits. Finally, a memory failure based adaptive ECC 

mechanism was developed. 

4.4.1. Failure Characteristics of 6T SRAM 

Figure 22 graphs the failure rate of a 45 nm 6T SRAM bitcell at an increasing voltage 

range between 500mV and the technology’s 1.0V nominal supply voltage, with 5mV increments. 

The failure rate was measured with 10,000 Monte Carlo simulations at the worst process corner 

for 6T bitcells, fast NMOS and slow PMOS (FS). As expected, the failure rate increased rapidly 

as the supply voltage was reduced. The failure rate was about 7.87% at 500mV; and when the 
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supply voltage was scaled-up to 685mV, the failure rate was about 0.48%. There were no errors 

in the memory system when the supply voltage was 795mV or above. Next, we studied the 

impact of memory failures on video output quality. 

4.4.2. Errors Injected, Including in Parity Bits 

We first analyzed the impact of memory failures on video quality with failures injected in 

all bits, including parity bits, at a uniform random distribution of 0.1%, on the well-known video 

sequence – Akiyo. 

Figure 23 illustrates the error mapping and quality of a video that was stored in a 65536 

word × 16bit SRAM array, with supply voltage at 665mV, using our proposed ECC74 scheme.  

Figure 23 (a) and (b) demonstrate the error distribution of the SRAM memory with 0.1% 

failures injected in the original image. In Figure 23 (a), the dots, two of which are circled in blue 

as an example, represent the error positions in the SRAM memory array.  

 

 

10,000 Monte Carlo simulation 

WW L

BL
BLB

Q
QB

RW L

VD D

GND

Access
Access 

Pull-Down

Pull-Up

6T SRA M

170nm/50nm

300nm/50nm

600nm/50nm

7.87

6.66

6.18

5.25

4.82

4.33

3.56

3.23

2.37

1.71

1.38

0.85
0.64

0.480.37
0.110.050.01 0 0 0 0 0 0 0 0 0 0 0 0 0

 

Figure 22. Relation Between Supply Voltage (VDD) and SRAM bitcell Failure Rate in a 

45nm CMOS Technology.  
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As can be seen, the memory failures were distributed uniformly in the MSBs and LSBs, 

and the PSNR was 31.4524dB, as shown in Figure 23 (b). In Figure 23 (c), the parity bits of 

ECC74 were stored in the LSBs of the SRAM array, based on the proposed parity storage 

scheme. Specifically, the two LSBs of the 1st byte and one LSB of the 2nd byte were utilized to 

store the parity bits. The video output quality with ECC encoding is illustrated in Figure 23 (d), 

having a PSNR of 41.2582dB. After storing the parity bits in the memory, the exact same 

number and position of errors from Figure 23 (a) were injected into the memory in Figure 23 (e), 

resulting in a PSNR of 30.0148dB. Finally, after decoding, ECC74 could correct one error in 

either of the 2 MSBs of every two sequential bytes of the SRAM memory array, as shown in 

Figure 23 (g), resulting in a 7.57dB PSNR improvement compared to the original image without 

ECC74 (i.e., Figure 23 (b) vs. (h)). Note that the error map in Figure 23 (g) shows some new 

errors, circled in purple, due to injected memory failures in the parity bits, which result in an 

incorrect ECC correction. 

Figure 24 illustrates the error map and the video output quality for ECC1511. It can be 

seen from Figure 24 (a) that the additional LSB parity bit caused a slight image quality 

degradation compared to ECC74 (i.e., Fig, 24 (b) with a PSNR of 39.8426dB vs. Figure 24 (d) 

with a PSNR of 41.2582dB). Figure 24 (c) and (d) used the same 0.1% error map used for the 

previous ECC74 analysis, resulting in the PSNR being slightly degraded to 30.8653dB, due to 

the extra parity bit. Figure 24 (e) shows that the decoder circuit corrected most of the injected 

errors in the 11 protected MSBs, resulting in a PSNR of 39.2536dB in Figure 24 (f), which is 

slightly higher than when using ECC74 (i.e., Figure 23 (h)). Hence, even though ECC1511 

sacrifices one extra LSB for parity, its stronger error-correction ability improves video quality by 

correcting more MSB errors.  
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So far, we analyzed the proposed ECC scheme at a low 0.1% failure rate; in the next sub-

section we continue analysis of its performance at different failure rates. 

4.4.3. ECC Under Various Failure Rates 

To further analyze the performance of our proposed ECC schemes at various failure rates 

with different videos, 100 videos were randomly selected from YouTube-8M [59] for evaluation. 

(a) Original Image+ Error
(b) original image + error; 

PSNR = 31.4524 dB
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    (c) ECC74 Encoded
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(e) ECC74 Encoded + Error
(f) ECC74 Encoded +Error; 

PSNR = 31.0148 dB

Column (Bit)
S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15

R
o
w

 (
W

o
rd

)

8192

4096

12288

16384

20480

24576

28672

32768

36864

40960

45056

49152

53248

57344

61440

65536

0

      (g) ECC74 Decoded
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Figure 23. Error Map and Stored Video Frame with Proposed ECC74 Under 0.1% Faulty 

Memory Bitcells. 

 

(a) ECC1511 Encoded
(b) ECC1511 Encoded; 

PSNR = 39.8426 dB
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(c) ECC1511 Encoded + Error
(d) ECC1511 Encoded + Error; 

PSNR = 30.8653 dB
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(e) ECC1511 Decoded
(f) ECC1511 Decoded; 

PSNR = 39.2536 dB
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Figure 24. Error Map and Stored Video Frame with Proposed ECC1511 Under 0.1% Faulty 

Memory Bitcells.  
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The output quality of the same randomly selected frame from each video was tested for a range 

of failure rates between 0.01% to 1%, as shown in Figure 25. It can be seen that both ECC 

schemes significantly increase video quality compared to without ECC, except for when the 

failure rate is less than or equal to 0.01%, since for very low failure rates, the message bits 

replaced by parity bits cause more PSNR loss than PSNR gain due to faulty bit corrections. 

When the memory failure rate is between 0.01% and 0.05%, ECC74 performs best, since the 

additional message bit replaced by ECC1511’s 4th parity bit causes more PSNR loss than PSNR 

gain due to additional faulty bit corrections. When the memory failure rate is greater than 0.05% 

and less than 0.6%, ECC1511 performs best, since the PSNR gained by its increased faulty bit 

correction outweighs the PSNR loss due to its extra parity bit. However, for failure rates over 

0.6% ECC74 is best due to its reduced possibility of multi-bit errors compared to ECC1511. As 

expected, video quality degrades as memory failure rate increases, even for the ECC schemes, 

since they can only correct a single error bit for every 2-bytes of memory. As the failure rate 

increases, the likelihood of multiple bit errors per 2-bytes also increases, which cannot be 

corrected with either ECC74 or ECC1511. Hence, the proposed ECC scheme performs best 

when the error rate is within an acceptable range, where the likelihood of multi-bit errors is 

small.  

Next, a memory failure based ECC scheme is proposed to enable runtime adaptation. 

4.4.4. Proposed Runtime ECC Adaptation Scheme 

According to [35], video quality is deemed acceptable when PSNR is 30dB or higher. 

Since ECC74 has a PSNR of 29.88755dB at ~1%, this was within the acceptable range. Hence, if 

the memory works at its nominal supply voltage or the error rate is lower than 0.01%, no ECC is 

needed. For failure rates between 0.01% and 0.05% ECC74 should be selected. 
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 As the failure rate continues to increase (between 0.05% and 0.6%), ECC1511 should be 

utilized due to its stronger error correction ability. And, when the failure rate is above 0.6%, both 

ECC74 and ECC1511 cannot correct multiple bit errors, but ECC74 should be selected since it 

has fewer parity bits that can have errors that cause incorrect ECC correction, and therefore 

performs better. The next section describes the hardware implementation of this proposed 

runtime ECC adaptation scheme. 

4.5. Proposed Memory   

Figure 26 presents the architecture of the proposed adaptive ECC memory with its 

bitcells organized in four 1024×16 bit sub-blocks. Based on the traditional memory structure, 

ECC Encoder/Decoder, Correction Unit, and Output MUX were needed to enable ECC adaption. 

For each read/write operation, a 4-to-1 multiplexer with two control signals (S1 and S0) is used 

 

Figure 25. ECC Adaptation Based on Failure Rate and Corresponding PSNR. 
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to select the correct operation as follows: (i) when S1 and S0 are “00”, ECC1511 is activated; (ii) 

when S1 and S0 are “10”, ECC74 is selected; and (iii) when S1 and S0 are “11”, no ECC is 

selected and a normal read/write operation is executed. An S1 and S0 of “01” is invalid and will 

not occur in a properly operating system; however, if this does occur for some reason, a normal 

read/write operation without ECC will be executed. As shown in Figure 26, the input data [15:0], 

excluding M10, is provided to the encoder to generate the parity bits or pass the original LSB 

message data, depending on the control signals, S0 and S1. Then, the data is sent to the memory 

for storing. During this process, the first two LSBs of both pixels/bytes may be replaced with 

parity bits after encoding, depending on which of the 3 ECC schemes is selected (i.e., if ECC74 

is selected, M0, M1, and M8 are replaced with P1, P2, and P3, respectively; if ECC1511 is 

selected, in addition to the M0, M1, and M8 replacements, M9 is also replaced with P4; and if no 

ECC is selected, then no message bits are replaced). When reading from the memory, the data is 

sent to the decoder and correction unit circuitry to check for, and correct a faulty bit if needed, 

respectively. If either ECC scheme was selected, then the Output MUX selects the final output 

from the Correction Unit; otherwise, it selects the memory output as the final output. To 
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minimize implementation cost, the ECC encoder/decoder were designed to reuse circuitry for 

both ECC1511 and ECC74, which is discussed next.   

4.5.1. Reusable ECC Encoder for ECC1511 and ECC74 

Figure 27 shows the integrated ECC Encoder for ECC1511 and ECC74. There is a 15-bit 

message input (M[15:0], excluding M10) and two control signals (S0 and S1) for ECC selection; 

and the encoder generates four parity bits (P[4:1]) for calculation of error bit detection and 

correction, only if ECC is selected. If ECC is selected (i.e., S0 = 0), then Vdd1! is enabled to 

supply the ECC74 encoding circuitry (i.e., the first 2 XOR gates in the first 3 XOR chains); if 

S[1:0] = “00”, then Vdd2! is also enabled to supply the additional circuitry needed for ECC1511 

encoding (i.e., the 4th XOR chain and the rest of the XOR gates in the first 3 XOR chains); 

otherwise (i.e., S[1:0] = “01” or “11”) both Vdd1! and Vdd2! are kept at ground so that the 

encoder circuitry is inactive, therefore conserving power, since ECC is not being utilized. The 4 

output MUXes then select which parity bit or original message bit to store in the  
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Figure 26. Proposed Adaptive ECC Memory. 
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2 LSBs of both bytes of memory. As an example, if ECC74 was activated, then P11, P12, P13, 

and M9 would be stored in P1, P2, P3, and P4, respectively. 

4.5.2. Reusable ECC Decoder for ECC1511 and ECC74 

Figure 28 shows the integrated ECC Decoder design. Its input signals include data signals 

(M2…M7) and (M11…M15), parity bits (P1…P4), and one control signal, S1. It generates seven 

internal signals (E13, E12, E11 for ECC74 and E24, E23, E22, E21 for ECC1511), which are 

then grouped into a 4-bit number, E[4:1], which represents the error bit position, if any, in the 2 

memory bytes. For example, if E[4:1] =  “0111”, then message bit 14 is faulty according to Table 

16 (i.e., 7 corresponds to M14), and would be toggled in the subsequent Correction Unit. Similar 

to the Encoder, Vdd1! is used to supply the XOR gates that generate E13, E12, E11 and the 

output MUXes that generate E[4:1], and Vdd2! is used to supply the additional XOR gates 

needed to generate E24, E23, E22, E21, in order to conserve power.  
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Figure 27. ECC Encoder. 
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4.5.3. Correction Unit 

Figure 29 presents the error bit correction unit, which flips a message bit identified as 

faulty by E[4:1]. An active high 4-to-16 decoder is used to select a specific faulty bit location by 

asserting In, which is input to an XOR gate along with its corresponding message bit, such that 

the message bit is flipped when In is asserted. For example, the top most In in Figure 29 is 

asserted when E[4:1] = “1111”, which according to Table 16 corresponds to M2; hence, its 

corresponding XOR gate input is Out(2), and that XOR gate’s output is D_out(2). Note that 

message bits M10, P1, P2, P3, and P4 can never be corrected; hence, out[10:8] and out[1:0] are 

passed directly to D_out[10:8] and D_out[1:0], respectively. 
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Figure 28. ECC Decoder. 
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4.5.4. Output MUX 

Figure 30 shows the output MUX, which selects between the potentially ECC corrected 

bits and the original SRAM bits for bit positions 15-11 and 7-2, depending on whether ECC was 

selected or not. Bit positions 10-8 and 1-0 are always the original SRAM bits, as mentioned 

above, so no MUX is required for these. 
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Figure 29. Correction Unit. 
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Figure 30. Output MUX. 
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4.6. Results 

4.6.1. Timing Diagram 

Figure 31 presents the timing diagram for the proposed memory, showing three segments 

of simulation waveforms, No ECC (i.e., normal memory operation), ECC74, and ECC1511. 

Specifically, Figure 31 shows (a) the input data, (b) the data after encoding, (c) the error 

correction bit information, and (d) the data after decoding.  
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Figure 31 Timing Diagram. 
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At first, the input data was applied to the memory and after the ECC encoder, the 

generated parity bits were sent to the memory block to be stored as the LSBs. As shown in 

Figure 31 (b), the purple marked bits were the combination that generated parity bits (orange 

marked) for that specific operation. To calculate parity for ECC1511 and ECC74, seven and 

three input bits were needed, respectively. Finally, the memory checked the error correction bit 

positions in Figure 31 (c), and if all zeros, then no error was detected. Otherwise, the correction 

unit toggled the faulty bit. Since Figure 31 (c) is always all zeros, there were no faulty bits, such 

that Figure 31 (b) and (d) are the same.  Figure 31 (e) illustrates the case when one faulty bit was 

stored in place of the original message bit, M5. Since neither No ECC nor ECC74 protects M5, 

their error correction E[4:1] is all zeros, and their M5 output after ECC is the same as the 

inserted faulty M5 bit. However, for ECC 1511, E[4:1] = 10012 = 910, which corresponds to M5 

according to Table 16. Hence, the faulty M5 is flipped resulting in M5 after ECC being the same 

as the original M5.  

4.6.2. Power Efficiency 

For power analysis, we utilized the same 45nm CMOS process discussed in Section 

4.4.2. For each testcase shown in Figure 32, the average power consumption was measured for 

writing FF0016 to a random word in a 128 word × 16 bit memory bank, which was initialized to 

A5A516, followed immediately by reading FF0016 from the same word, such that all read/write 

memory operations were equally included (i.e., reading ‘0’ and ‘1’, and writing ‘0’ to ‘0’, ‘0’ to 

‘1’, 1’ to ‘0’, and ‘1’ to ‘1’). Our baseline design is the traditional SRAM without any of the 

additional ECC circuitry, operating at 795mV, the lowest voltage that did not induce errors, 

which required an average power of 2.94E-1mW.  
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Our first testcase is the proposed ECC memory operating at 795mV, where No ECC is 

selected, which shows that the added ECC circuitry only requires an additional 7.28% power 

when not being utilized. Our next testcase is the proposed ECC memory operating at 685mV, the 

lowest voltage where ECC1511 would be invoked, which consumed 2.04% less power than the 

baseline design. Our final testcase is the proposed ECC memory operating at 665mV, the lowest 

voltage where the failure rate would still be less than 1%. In this case, ECC74 was invoked, 

which resulted in a 35.37% power reduction compared to the baseline design. The tradeoff for 

this reduction in power is slightly decreased video quality (i.e., PSNR of 34.32dB for the 

ECC1511 case and 32.28dB for the ECC74 case, both of which are well above the minimally 

acceptable 30dB). 
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Figure 32. Power Comparison of Proposed ECC Memory with Traditional Memory. 
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4.6.3. Video Quality 

To evaluate the quality of videos with our proposed method, 100 different videos were 

simulated with various modes of ECC under 0.1% failure rates. Those videos were downloaded 

from YouTube-8M [59].  

As shown in Figure 33, if no ECC was applied with 0.1% error, PSNR ranged between 

32dB to 33dB. With ECC1511 enabled, PSNR improved by approximately 24.90%. If no ECC 

was utilized with 0.9% error, PSNR ranged between 22dB to 23dB, and improved by 

approximately 33.04% with ECC1511 enabled. Furthermore, applying ECC74 to the 0.9% error 

case even further increased PSNR improvement, as Section 4.4.3 determined that ECC74 was 

better than ECC1511 for higher failure rates. 

 

 

Avg. 33.04% 

PSNR improved 

with Ref. [9]

Avg. 36.40% 

PSNR improved 

with Proposed 

ECC74

Avg. 24.90% 

PSNR improved 

with Proposed 

ECC1511

Video Number  

Figure 33. PSNR Values of 100 Videos at 0.1% and 0.9% Failure Rates.  
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5.  CONCLUSIONS AND FUTURE WORK 

I have conducted research on multiple projects related to memory (SRAM, DRAM) 

design for video processing and deep learning systems. All the projects include designing novel 

circuitry, implementing in Cadence, and verifying with HSPICE and python.  

In Chapter 2, novel mathematical models for optimizing memory design using nonlinear 

programs and integer linear programs have been developed. Different memory designs, such as 

(a) alternative bitcells and transistor sizing technique and (b) hybrid SRAM and DRAM designs, 

were considered. The results of the numerical studies show that the developed method can 

significantly reduce the expected mean square error of video storage.  It is worthy to emphasize 

that although the models are developed for video applications, they can be easily adapted to a 

variety of data-intensive applications, such deep learning systems [11, 51]. Based on the 

developed modeling framework, future investigations will include adding other constraints, such 

as performance and power, into the models. 

Chapter 3 focused on analyzing the power efficiency, accuracy, and privacy 

characteristics of differentially private deep learning systems, and presented a memory design for 

the input data consisting of upsized devices and 8T+6T hybrid bitcells, to achieve power 

efficiency and accuracy optimization for different privacy levels. It concluded that the memory 

design that achieves the optimal quality of the input data, can provide the highest prediction 

accuracy with different privacy levels. To enable the presented design technique, a mean squared 

error (MSE) based Integer Linear Programs (ILP) model was developed for optimal memory 

design with different silicon area constraints in differentially private deep learning systems, 

which significantly saved design time as compared with traditional time-consuming and 

laborious ASIC design processes. Simulation results demonstrate significant reduction in power 
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consumption under different silicon area design constraints, with less than 1% degradation in 

classification accuracy for different privacy levels. Future investigations would include extension 

of the proposed optimal memory design to deal with activation private data storage in partitioned 

deep learning systems (e.g., [60]).   

In Chapter 4, a flexible power-efficient video memory was presented that can 

dynamically adjust the strength of error-correction-code (ECC), thereby enabling power-quality 

trade-off to achieve considerable power savings (up to 35.5%) without a noticeable degradation 

in video quality.  To minimize the implementation overhead, the following two techniques have 

been developed: (i) a new parity storage scheme that utilizes the bit significance characteristics 

of video data for both ECC74 and ECC1511, and (ii) an integrated ECC encoder/decoder 

hardware design to support both ECC74 and ECC1511 that automatically shuts down part or all 

of the ECC circuitry when ECC74 or No ECC is selected, respectively.   

Since parity bit errors caused by memory failures resulted in the ECC decoder incorrectly 

flipping bits, which caused an increase in video quality degradation, future work will consider 

hardening specific bits, such as parity bits, to provide better video quality, with the trade-off 

being increased area overhead. Additionally, other multi-bit error correcting codes, besides 

ECC74 and ECC1511 used in this work, could also be considered. 

 

 

 

 

 

 



 

77 

 

REFERENCES 

[1]    Chia-Ping Lin et al., "A 5mW MPEG4 SP encoder with 2D bandwidth-sharing motion 

estimation for mobile applications," 2006 IEEE International Solid State Circuits 

Conference - Digest of Technical Papers, San Francisco, CA, 2006, pp. 1626-1635, doi: 

10.1109/ISSCC.2006.1696217. 

[2]    A. P. Chandrakasan, S. Sheng and R. W. Brodersen, "Low-power CMOS digital design," in 

IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473-484, April 1992, doi: 

10.1109/4.126534.  

[3]    (2017, Sep.) Cisco Systems, Inc. [Online]. Available: 

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/white-paper-c11-741490.html 

[4]    (2012) The Digital Universe in 2020: Big Data, bigger Digital Shadows, and Biggest 

Growth in the Far East. December 2012. [Online]. Available: 

https://www.emc.com/collateral/analystreports/ idc-digital-universe-united-states.pdf 

[5]    J. Wang, P. Chang, T. Tang, J. Chen and J. Guo, "Design of Subthreshold SRAMs for 

Energy-Efficient Quality-Scalable Video Applications," in IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 183-192, June 2011, doi: 

10.1109/JETCAS.2011.2158345. 

[6]    T Liu et al., “A 125 uW, fully scalable MPEG-2 and H.264/AVC video decoder for mobile 

applications,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 161-169, Jan. 2007. 

[7]    J. Kwon, I Lee, and J Park, “Heterogeneous SRAM Cell Sizing for Low Power H.264 

Applications,” IEEE Trans. on Circuits and Systems I, vol. 99, no. 2, pp. 1-10, Feb. 2012. 

[8]    I Chang, D Mohapatra, and K Roy, “A priority-based 6T/8T hybrid SRAM architecture for 

aggressive voltage scaling in video applications,” IEEE Trans. Circuits Syst. Video 

Technol., vol. 21, no. 2, pp. 101-112, Feb. 2011. 

[9]    N Gong, S Jiang, A Challapalli, S Fernandes, and R Sridhar, “Ultra-Low Voltage Split-

data-aware Embedded SRAM for Mobile Video Applications,” IEEE Trans. on Circuits 

and Systems II, vol. 59, no. 12, pp. 883-887, 2012. 

[10]  A Kazimirsky, A Teman, N Edri, and A Fish, “A 0.65-V, 500-MHz Integrated Dynamic 

and Static RAM for   Error Tolerant Applications,” IEEE Trans. on Very Large Scale 

Integration (VLSI) Systems, vol. 25, no. 9, pp. 2411-2418, Sep. 2017. 

[11]  J Edstrom, Y Gong, D Chen, J Wang, and N Gong, “Data-Driven Intelligent Efficient 

Synaptic Storage for Deep Learning,” IEEE Trans. on Circuits and Systems II, vol. 64, no. 

12, pp. 1412-1416, 2017. 

[12]  FreePDK45. [Online]. Available:   http://www.eda.ncsu.edu/wiki/FreePDK45:Contents. 

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.emc.com/collateral/analystreports/


 

78 

 

[13]  A. T. Do, Z. C. Lee, B. Wang, I. Chang, X. Liu and T. T. Kim, "0.2 V 8T SRAM With 

PVT-Aware Bitline Sensing and Column-Based Data Randomization," in IEEE Journal of 

Solid-State Circuits, vol. 51, no. 6, pp. 1487-1498, June 2016, doi: 

10.1109/JSSC.2016.2540799. 

[14]  N. Gong et al., “Hybrid-Cell Register Files Design for Improving NBTI Reliability,” 

Microelectronics Reliability, vol. 52, no. 9, pp. 1865-1869, 2012. 

[15]  J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware Intelligent DRAM 

Refresh,” in Proc. 39th Annual International Symposium on Computer Architecture, 2012, 

pp. 1–12 

 [16]  ME Sinangil and AP Chandrakasan, “Application-specific SRAM design using output 

prediction to reduce bit-line switching activity and statistically gated sense amplifiers for 

up to 1.9× lower energy/access,” IEEE J. Solid-State Circuits, vol. 49, no. 1, 2014. 

[17]  A. Chin and A. Klinefelter, "Differential Privacy as a Response to the Reidentification 

Threat: The Facebook Advertiser Case Study," North Carolina Law Review, vol. 90, no. 5, 

2012.  

[18]  J. Tang, A. Korolova, X. Bai, X. Wang and X. Wang, "Privacy Loss in Apple’s 

Implementation of Differential Privacy on MacOS 10.12," ArXiv, 2017.  

[19]  Ú. Erlingsson, V. Pihur and A. Korolova, "RAPPOR: Randomized Aggregatable Privacy-

Preserving Ordinal Response," in Proceedings of the 2014 ACM SIGSAC Conference on 

Computer and Communications Security, Scottsdale, 2014. 

[20]  M. Barbaro and T. Zeller, "A Face Is Exposed for AOL Searcher No. 4417749," The New 

York Times, New York, 2006. 

[21]  D. Jackson, "The Netflix Prize: How a $1 Million Contest Changed Binge-Watching 

Forever," Thrillist.com, 2017. 

[22]  A. Narayanan and V. Shmatikov, "Robust De-anonymization of Large Sparse Datasets," in 

IEEE Symposium on Security and Privacy, Oakland, 2008.  

[23]  R. Wang, Y. F. Li, X. Wang, H. Tang and X. Zhou, "Learning Your Identity and Disease 

from Research Papers: Information Leaks in Genome Wide Association Study," in 

Proceedings of the 16th ACM Conference on Computer and Communications Security, 

Chicago, 2009.  

[24]  W. M. Holt, "Security and Privacy Weaknesses of Neural Networks," Provo, 2017. 

[25]  (2019). Apple Watch Series. Accessed: May 22, 2019. [Online]. Available: 

https://www.apple.com/apple-watch-series-4/health/ 

https://www.apple.com/apple-watch-series-4/health/


 

79 

 

[26]  A. C. Valdez and M. Ziefle, “The users’ perspective on the privacy-utility trade-offs in 

health recommender systems,” Int. J. Human-Comput. Sutides, vol. 121, pp. 108–121, Jan. 

2019. 

[27]  (Jan. 2019). CarePredict Launches AI-Powered Platform for Seniors Aging at Home, at 

CES 2019, CarePredict. Accessed: May 22, 2019. [Online]. Available: 

https://www.carepredict.com/news/carepredictlaunches- ai-powered-platform-for-seniors-

aging-at-home-at-ces-2019/ 

[28]  C. Song, T. Ristenpart and V. Shmatikov, "Machine Learning Models that Remember Too 

Much," in Proceedings of the 2017 ACM SIGSAC Conference on Computer and 

Communications Security, Dallas, 2017.  

[29]  G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali and G. Felici, "Hacking 

Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine 

Learning Classifiers," International Journal of Security and Networks, vol. 10, no. 3, pp. 

137-150, 2015.  

[30]  R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership Inference Attacks Against 

Machine Learning Models," in IEEE Symposium on Security and Privacy, San Jose, 2017.  

[31]  C. Dwork and A. Roth, "The Algorithmic Foundations of Differential Privacy," 

Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211-407, 

2014. 

[32]  V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural 

networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.  

[33]  T. Chen et al., “DianNao: A small-footprint high-throughput accelerator for ubiquitous 

machine-learning,” in Proc. ASPLOS, Mar. 2014, pp. 269–284. 

[34]  Fabio Frustaci, Mahmood Khayatzadeh, David Blaauw, Dennis Sylvester, and Massimo 

Alioto, ‘SRAM for ErrorTolerant Applications With Dynamic Energy-Quality 

Management in 28nm CMOS’, IEEE Journal of Solidstate circuits,vol.50,no.5, pp 1310-

1312, MAY 2015 

[35]  F. Frustaci, D. Blaauw, D. Sylvester and M. Alioto, "Better-than-voltage scaling energy 

reduction in approximate SRAMs via bit dropping and bit reuse," 2015 25th International 

Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), 

Salvador, 2015, pp. 132-139, doi: 10.1109/PATMOS.2015.7347598 

[36]  J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce and A. Roth, 

"Differential Privacy: An Economic Method for Choosing Epsilon," in IEEE 27th 

Computer Security Foundations Symposium, Vienna, 2014.  

https://www.carepredict.com/news/carepredictlaunches-%20ai-powered-platform-for-seniors-aging-at-home-at-ces-2019/
https://www.carepredict.com/news/carepredictlaunches-%20ai-powered-platform-for-seniors-aging-at-home-at-ces-2019/


 

80 

 

[37]  N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow and K. Talwar, "Semi-Supervised 

Knowledge Transfer for Deep Learning from Private Training Data," in 5th International 

Conference on Learning Representations, Toulon, 2017.  

[38]  X. Zhang, S. Ji and T. Wang, "Differentially Private Releasing via Deep Generative 

Model," ArXiv, 2018.  

[39]  M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and L. Zhang, 

"Deep Learning with Differential Privacy," in Proceedings of the 2016 ACM SIGSAC 

Conference on Computer and, Vienna, 2016.  

[40]  A. D. Sarwate and K. Chaudhuri, "Signal Processing and Machine Learning with 

Differential Privacy," IEEE Signal Processing Magazine, pp. 86-94, September 2013.  

[41]  V. Sze, Y.-H. Chen, J. Emer, A. Suleiman and Z. Zhang, "Hardware for Machine Learning 

Challenges and Opportunities," in IEEE Custom Integrated Circuits Conference, Austin, 

2017.  

[42]  Google, "TensorFlow Lite," Google, 2018. [Online]. Available: 

https://www.tensorflow.org/lite/. [Accessed 3 December 2018]. 

[43]  L. Yang and B. Murmann, "Approximate SRAM for Energy-Efficient, Privacy-Preserving 

Convolutional Neural Networks," in IEEE Computer Society Annual Symposium on VLSI, 

Bochum, 2017.  

[44]  Google, "TensorFlow ™," Google, [Online]. Available: https://www.tensorflow.org/. 

[Accessed 11 11 2018]. 

[45]  Y. LeCun, C. Cortes and C. J. Burges, "THE MNIST DATABASE of handwritten digits," 

1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 20 March 2019]. 

[46]  "Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in 

billions)," [Online]. Available: https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/. [Accessed August 2019]. 

[47]  Y. Xu, H. Das, Y. Gong and N. Gong, "On Mathematical Models of Optimal Video 

Memory Design," IEEE Trans. on Circuits and Systems for Video Technology, vol. 30, no. 

1, pp. 256-266, Jan. 

[48]  N. Gong, J. Edstrom, D. Chen and J. Wang, "Data-Pattern Enabled Self-Recovery 

Multimedia Storage System for Near-Threshold Computing," in IEEE International 

Conference on Computer Design (ICCD'16), Scottsdale, 2016.  

[49]  A. Ferrerón, D. Suárez-Gracia, J. Alastruey-Benedé, T. Monreal-Arnal and P. Ibáñez, 

"Concertina: Squeezing in Cache Content to Operate at Near-Threshold Voltage," IEEE 

Trans. On Computers, vol. 65, no. 3, pp. 755-769, 2016. 



 

81 

 

[50]  S. Mukhopadhyay, H. Mahmoodi and K. Roy, "Modeling of Failure Probability and 

Statistical Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS," IEEE 

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 12, p. 1859–1880, 2005. 

[51]  S. Gopalakrishnan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal and K. Roy, "Significance 

driven hybrid 8T-6T SRAM for energy-efficient synaptic storage in artificial neural 

networks," in 2016 Design, Automation & Test in Europe Conference & Exhibition 

(DATE), Dresden, 2016. 

[52]  H. Xiao, K. Rasul and R. Vollgraf, "Fashion-MNIST: a Novel Image Dataset for 

Benchmarking Machine Learning Algorithms," 28 August 2017. [Online]. Available: 

https://arxiv.org/abs/1708.07747. [Accessed 3 April 2019]. 

[53]  T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto and D. Ha, "Deep 

Learning for Classical Japanese Literature," 3 December 2018. [Online]. Available: 

http://www.arxiv.org/pdf/1812.0118.pdf. [Accessed 10 August 2019]. 

[54]  D. Chen, J. Edstrom, Y. Gong, P. Gao, L. Yang, M. McCourt, J. Wang and N. Gong, 

"Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory," IEEE Trans. on 

Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 684-696, 2018.   

[55]  F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for Error- 

Tolerant Applications With Dynamic Energy-Quality Management in 28nm CMOS," IEEE 

J. Of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, 2015.  

[56]  J. Edstrom, Y. Gong, A. Haidous, B. Humphrey, M. McCourt, Y. Xu, J. Wang and N. 

Gong, "Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile 

Video Systems," IEEE Access, vol. 7, pp. 47479-47493, 2019. 

[57]  C. Duan, A. J. Gotterba, M. E. Sinangil and A. P. Chandrakasan, "Energy-Efficient 

Reconfigurable SRAM: Reducing Read Power Through Data Statistics," IEEE Journal Of 

Solid-State Circutis, vol. 52, no. 10, pp. 2703-2711, 2017.  

[58]  R. W. Hamming, "Error detecting and error correcting codes," Bell Syst. Tech. J., vol. 29, 

no. 2, pp. 147–160, Apr. 1950.    

[59]  " YouTube-8M Dataset.," 2017. [Online]. Available: https://research. 

google.com/youtube8m/. 

[60]  J. Wang, J. Zhang, W. Bao, X. Zhu, C. B and P. Yu, "Not Just Privacy: Improving 

Performance of Private Deep Learning in Mobile Cloud," in KDD, 2018. 

  


