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ABSTRACT 

In the U.S., airport use agreements are developed based on three common rate-setting 

approaches: the residual, compensatory, and hybrid methods. Under a residual agreement, the 

financial risk of the host airport is borne by the signatory airlines, and in return, the signatory 

airlines pay reduced user fees. Under a compensatory agreement, however, the airport bears its 

own financial risks and offers no reduced user fees to airlines. A hybrid agreement combines the 

features of residual and compensatory agreements. Under a hybrid agreement, the airport usually 

bears its own financial risks in terminal operations while the signatory airlines take over the 

financial risks in airfield operations. This dissertation aims to contribute to air transportation 

literature concerning the implication of use agreements on airport economic performance and 

rate differentials.  Using the data of 59 U.S. hub airports from years 2009 to 2016, I studied the 

effects of use agreements on airport operational efficiency (in Chapter 2) and on cost efficiency 

(in Chapter 3),  as well as the sources of aeronautical charge differentials between use 

agreements (in Chapter 4). The major findings of this dissertation are (1) airports with residual-

type agreements tend to have lower operational efficiency compared to their peers adopting 

either the compensatory or hybrid agreement; (2) airports adopting the residual rate-setting 

method is less cost-efficient than the airports adopting either the hybrid or compensatory 

method; (3) compensatory airports have the highest average aeronautical and non-aeronautical 

charges; (4) non-aeronautical charges are a significant determinant of compensatory airports’ 

aeronautical charges; (5) airports adopting the hybrid method have lower aeronautical charges 

than the airports adopting the other two methods due to differences in the average cost level.  

The first two results imply that under a residual agreement, increased airport inefficiency may 

undercut any potential benefits of signatory airlines, and this result may indicate the presence of 
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a moral hazard problem in the contractual relationship between the airlines and airports as a 

result of unequal risk-sharing and information symmetry.   
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CHAPTER 1: INTRODUCTION 

1.1. Vertical Relationships 

U.S. airports are owned and operated by governments. The five financial sources of U.S. 

airports include airport user charges (aeronautical and non-aeronautical revenues)1, state/local 

grants, the Airport Improvement Program (AIP) grants2, revenue bonds and passenger facility 

charges (PFC) (Folkes, Koletsky, & Graham, 1987)3.  Airport user charges are usually used to 

recover operating expenditures and debt services cost less passenger facility charges (FAA, 

1999). Grants are allocated by the Federal Aviation Association (FAA) based on passenger 

volume and project basis (Fuhr & Beckers, 2009). PFC and AIP are complementary, AIP funds 

are adjusted based on the amount of PFC. However, government funding resources are not 

sufficient to finance airport capital projects and to sustain airport operations. Airports are 

increasingly pressured to reduce reliance on government resources (Fu, Homsombat, & Oum, 

2011). Accordingly, airports need additional funding opportunities to sustain their capital 

projects and reduce financial uncertainty. Hence,  having a close business relationship with 

airlines is essential for airports to sustain operations and to maintain a steady stream of income 

(Barbot, 2011).  

Meanwhile, many airlines are seeking increased values or returns from their relationships 

with airports. Besides user fees’ discounts, airlines also want to increase their connections and 

                                                 

 

1 Aeronautical user charges include landing fees, apron, gate-use or parking fees, fuel-flowage fees, and terminal 

charges for rent or use of passenger hold rooms, ticket counters, baggage claims, administrative support, hangar 

space, and cargo buildings. Non-aeronautical user charges include rentals and fees to terminal concessionaires, 

automobile parking, rental car fees, rents and utilities for facilities, non-aviation development fees and 

communication fees (FAA, 1999). 
2 The AIP was established to support a nationally integrated airport system (Graham, 2004). 
3 Passenger facility charges are the fees collected via airline tickets and are used to recover debt service cost which 

is the principal and interest payments of revenue bonds. The remaining amount of debt service cost is recovered by 

user charges. Revenue bonds are used for new capital investments.   
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abilities to offer a wider range of services to passengers at their hubs. Their increased willingness 

to shop around also reflects the contestability of the airline industry (Carney & Mew, 2003). For 

airlines, in addition to securing airport facilities for operations, a vertical contractual relationship 

with an airport could enable airlines to expand market power by controlling and even potentially 

foreclosing upstream airport facilities from downstream rivals in the long run. Competition in the 

downstream air travel market also means that airlines must be strategic about their decisions on 

routes, connections, service levels and their dealings with airports. Moreover, airlines could 

avoid higher airport fees through long-term contractual agreements with airports (Barbot, 2011).   

1.2. Use Agreements 

The use of contracts in air transportation is fundamental and integral to the daily 

operations of airports and airlines in the U.S. An effective coordination has great potential not 

only to increase air transportation efficiency but also to result in lower prices and improved 

quality of air travel services. 

U.S. airports use three rate-setting approaches to formulate airport use agreements with 

airlines. The three types of use agreements based on the rate-setting approaches are the residual, 

compensatory and hybrid methods. In a residual agreement, the host airport obtains financial 

mitigation by turning over its day-to-day financial risk to the signatory airlines. In turn, the 

signatory airlines may have reduced airport fees. Unlike the compensatory method, the airport 

bears all financial risk alone, and the tenant airlines pay the fees according to their use level. The 

hybrid approach is relatively new; it is a combination of the features of residual and 

compensatory methods. For example, under a hybrid method, the airport adopts the residual 

method for aeronautical operations and uses the compensatory method for non-aeronautical 

operations.  
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The vertical contractual relationships of airports and airlines can be evaluated in two 

dimensions: risk and reward.  Table 1 below, by Wu (2015), helps us visualize the contract types 

and their associated tradeoffs between risk and reward.  The compensatory method provides 

more rewards such as airport managerial freedom, non-aeronautical revenues, while it brings 

more risk to the airport. If an airport chose a residual method, it would bear less financial risk but 

the reward would be lower as well. The hybrid method is a balance between the first two 

methods, and therefore the risk and reward of this method are moderate.                                                               

Table 1. Risk and Reward Evaluation  

 Reward 

R
is

k 

 Low High 

Low Residual Hybrid 

High Hybrid Compensatory 

Source: Wu (2015). 

1.3. Objectives 

Since vertical business agreements between airlines and airports are the bread and butter 

of the U.S. air transportation system, and the relationship between airlines and airports could be 

advantageous and risky,  the implications of the use agreements warrant a thorough examination. 

Although use agreements are the most common and important formal business arrangements 

between airports and airlines, the effects of use-agreements on airport economic performance 

have not been well studied yet. In this dissertation, I seek to answer three empirical research 

questions examined separately in 3 essays. Specifically, the three research objectives of this 

dissertation are: 
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1. To examine the three types of airport use agreements and their impacts on airport operational 

performance (Essay 1); 

2. To examine the impacts of the three types of use agreements on cost efficiency (Essay 2); 

3. To determine the sources of aeronautical charge differentials between use agreements (Essay 

3) 

Essay 1 is motivated by the stark contrast between residual and compensatory airport use 

agreements, namely the unequal risk-bearing of the two agreements. As mentioned earlier, under 

the residual method, the airport’s financial risk is covered by signatory airlines, and in return, the 

signatory airlines obtain a discount on their user fees. Thus should there be any deficits in its 

financial standing as a result of its projects and operations, an airport could rest assured that the 

signatory airlines would help to cover the financial losses. This feature of the residual method 

could potentially result in a moral hazard problem of the airports. On the contrary, the 

compensatory method requires airports to bear all financial responsibilities for their operations, 

and all airlines pay only the cost of the facilities they use or lease at the host airport. Thus, 

airport operators are more susceptible to economic downturns. Since the airport operators must 

bear the financial risk of operations, which means they also receive financial rewards if they 

perform well, they must strive to be efficient and diligent in operations.  Therefore, under this 

method, moral hazard might be less of a concern since each party is responsible for its own 

financial risk, and neither party can shift its own risk to the other.   

In Essay 2, I examine whether the moral hazard problem extends beyond operational 

inefficiency. Because airports adopting the residual agreement are financially secured due to the 

financial guarantee of signatory airlines, the airports may also have a diminished focus on 

operating expenditures (Faulhaber, Schulthess, Eastmond, Lewis & Block, 2010). This could 
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result in non-optimal use of inputs which in turn leads to cost inefficiency, thereby forcing the 

signatory airlines to bear more financial risk for their airports, and this may, in turn, result in 

higher user fees paid by the signatory airlines. Thus, the expected benefits of signatory airlines 

from the residual agreement may not be as high as what they might expect to get.  While Essay 1 

examines the implications of airport use agreements on airport operational efficiency, it does not 

address how the use agreement types affect operations in monetary terms. In Essay 2, I focus on 

airport operating costs, which not only reflect airport managerial performance but also cost 

performance. This allows me to measure the impact of non-optimization due to the use 

agreements from a cost perspective and in monetary terms.  

Airport operational and cost efficiency are without questions integral to the airport-airline 

relationship and coordination. However, Essays 1 and 2 do not answer the question how use 

agreements may affect the aeronautical charges that airlines pay. In Essay 3, I examine how 

aeronautical charges differ by use agreement and the sources of aeronautical charge differential. 

The determinants of aeronautical charges have been scarcely analyzed since U.S. airports are 

public infrastructure. Although the use agreements are developed based on three different rate-

setting methods, the impact of these methods on aeronautical charges and charge differential are 

not well understood. How much of the aeronautical charge differential, if any, is explained by the 

use agreements? Do residual airports charge lower fees relative to their counterparts using the 

compensatory or hybrid method?  Do lower aeronautical charges mean higher non-aeronautical 

charges?  The findings from Essay 3 will shed light on the airport’s pricing strategy.   

1.4. Methodology and Data 

For Objective 1, I employ a two-stage semi-parametric method developed by Simar and 

Wilson (2007, or SW) to determine if use agreements affect the operational efficiency of 59 U.S. 
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hub airports from 2009 through 2016. The two-stage method is a double-bootstrap procedure 

involving the use of data envelopment analysis in Stage 1 and a truncated regression in Stage 2. 

The SW method is an improvement over the traditional DEA-regression two-stage method 

because the latter disregards the fact that DEA efficiency scores are serially correlated and not 

censored. Therefore, when applying the scores as the dependent variable in a regression model in 

stage 2, the results are biased, and inferences are invalid (Simar & Wilson, 2007). 

For Objective 2, I employed three stochastic cost frontier models: a pooled Aigner, 

Lovell and Schmidt (1977) model, a Battese and Coelli (1995) model, and a “true” random-

effects (TRE) model. In each model, use agreements were used as explanatory variables to 

measure the impact of use agreements on variable cost efficiency. The TRE model isolates time-

invariant airport heterogeneity from inefficiency and enables us to remove bias from inefficiency 

resulting from time-invariant unobservable factors. 

For Objective 3, I examined the determinants of aeronautical charges as well as the 

sources of the aeronautical charge differentials between use agreements using a two-fold Oaxaca 

decomposition. Airports are first clustered into three groups in accordance with the use 

agreement types. My model also accounts for potential endogeneity problems. 

I used the data of 30 large hubs and 29 medium hub airports in the years between 2009 

and 2016. The information on airport use agreement types was obtained from LeighFisher 

(2016). The main source of our airport data is the Certification Activity Tracking System 

(CATS) Database which holds the financial reports of all U.S. commercial airports obtained 

from the Airport Financial Reporting Program. The information on aeronautical revenues, non-

aeronautical revenues, operating expenditures, debt service costs after passenger facility charges, 



 

7 

as well as all input and output data were obtained from this database. The financial data were 

adjusted for inflation using the U.S. gross domestic product deflator.  

1.5. Summary of Key Findings 

I find that during the study period (2009-2016), airports that chose either the 

compensatory or hybrid contracts outperformed their peers that adopted the residual contract. In 

other words, airports choosing compensatory or hybrid contracts were more efficient than the 

airports choosing residual contracts.  

On airport cost performance, I find the mean cost efficiency was 0.935, suggesting that 

U.S. airports could lower the operating costs by an average of 6.5%. To put things in perspective 

this value can be translated into $17.93 million in annual cost savings for an average U.S. airport.  

Moreover, cost inefficiencies differ across use agreement types. The mean cost efficiency of 

residual airports is 0.925 while it is 0.931 for compensatory airports and 0.948 for hybrid 

airports. Thus, airports adopting the compensatory and hybrid methods are more cost-efficient 

than the ones adopting the residual method. This implies that airports under compensatory or 

hybrid agreements manage their input use more efficiently compared to the airports under the 

residual method. Hence, lower airport operational and cost efficiency may undercut any benefits 

that the signatory airlines expect to receive through residual-typed contracts.  

In addition, I find that average aeronautical charges are lowest at hybrid airports, and 

compensatory airports have the highest average aeronautical and non-aeronautical charges. The 

relationship between aeronautical and non-aeronautical charges is negative under compensatory 

agreement while it is insignificant for residual and hybrid airports.. The difference in the 

responsiveness of aeronautical charges to non-aeronautical charges can be explained by the 
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difference in the business practices of use agreements. The main characteristic leading to the 

aeronautical charge differential between use agreements is average costs.  

1.6. Contributions 

To the best of my knowledge, the implications of the use agreements on airport 

economics performance with respect to airport cost and operational efficiency and airport pricing 

have not been previously studied.  This study seeks to fill the void in the literature by looking 

into the outcomes of the use agreements. The results will shed light on the vertical relationships 

between airports and airlines and enhance our understanding of the effect of the use agreements 

on air transport economics. Therefore, this study enables airport and airline management to make 

informed decisions on balancing risk and rewards. 

Specifically, the results point out that the hybrid method may be more preferable to the 

other two. Although there appears to be no statistical difference in cost and operational 

efficiency between airports that use the compensatory and hybrid methods, the airports adopt a 

compensatory agreement have higher aeronautical and non-aeronautical charges, while the 

airports that adopt a hybrid agreement have the lowest aeronautical charges compared to their 

counterparts that adopt either of the other two methods. This differential is driven predominantly 

by their lower average costs. The lower aeronautical charges coupled with a more balanced risk-

sharing arrangement between the airports and the signatory airlines under the hybrid method may 

produce greater benefits to the air transportation sector as well as the society at large in terms of 

social welfare.  

1.7. Dissertation Outline 

This dissertation is organized as follows. Chapter 2 is the first essay that examines the 

effects of use agreements on airport operational efficiency (Objective 1). The second essay, 
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which is focused on the use agreement effects on cost efficiency (Objective 2), is presented in 

Chapter 3. The third essay, which analyzes aeronautical charge differential (Objective 3), is in 

Chapter 4.  In Chapter 5, I conclude the dissertation with a summary of the research findings, 

implications, and suggestions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 

CHAPTER 2: THE EFFECTS OF USE AGREEMENTS ON  

                                         AIRPORT EFFICIENCY 

2.1. Abstract 

Bilateral contracting is integral to the working relationship between airports and airlines. 

In the U.S., the three common types of airport use agreements are the residual method, the 

compensatory method, and the hybrid method. Under a residual agreement, the financial risk of 

the host airport is borne by the signatory airlines, and in return, the signatory airlines pay reduced 

user fees. Under a compensatory agreement, however, airports bear their own financial risks in 

the absence of a signatory airline. A hybrid agreement combines the features of residual and 

compensatory agreements. For example, under a hybrid agreement, airports usually bear their 

own financial risks in terminal operations while the signatory airlines take over the financial 

risks in airfield operations. This paper aims to determine whether these three types of business 

agreements affect airport operational efficiency. Using 2009 to 2016 yearly data of 59 U.S. hub 

airports, I find that airports with residual-type agreements tend to have lower operational 

efficiency. This implies that, although under a residual agreement, the signatory airlines pay 

favorable airport fees, increased airport inefficiency may undercut any potential benefits of the 

agreement.   

2.2. Introduction 

In the U.S., while airlines and airports are separate entities, they form an absolutely 

inseparable vertical relationship in air transportation. The close coordination of the two entities, 

through their roles and activities in the air transportation network, is indispensable and highly 

critical for the greater interests of efficiency and welfare beyond the entities themselves.  In light 
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of the vast importance of their coordination and mutual reliance, bilateral contracting is integral 

to the business relationship between airports and airlines.4   

While airlines in the U.S. are privately owned and managed, airports in the U.S. are 

owned and operated by local governments or port authorities and financed by local governments. 

The main financial sources of U.S. airports are user charges, state/local government programs, 

Airport Improvement Program (AIP) grants, and passenger facility charges (Graham, 2004). 

Airport user charges are basically aeronautical revenues and non-aeronautical revenues. User 

charges are used to recover operating expenditures and debt service costs (FAA, 1999). The AIP 

was established for the purpose of supporting a national integrated airport system. Grants are 

allocated by the Federal Aviation Association (FAA) based on passenger volume and project 

basis (Fuhr & Beckers, 2009). Passenger facility charges are enplanement fees charged directly 

to passengers. Passenger facility charges are usually used for capital projects and 

maintenance/repair expenditures (FAA, 1999). Yet these sources are not sufficient to fund capital 

projects and sustain airport operations. For example, airports in the U.S. needed approximately 

$14.3 billion per year between 2005 and 2009, but the AIP supported just over $3.5 billion in 

2006, leaving a gap of $10.8 billion to be funded with other sources (National Academy of 

Sciences, Engineering, 2007).  Thus, airports must seek additional funding opportunities to 

sustain their capital projects and reduce financial uncertainty.  

Having a stable stream of revenues from passenger and cargo services as well as non-

aeronautical businesses helps airports maintain a sound financial footing. Although non-

                                                 

 

4 In support of competition in air transportation services, current U.S. federal laws require airports to provide access 

to qualified airlines without unjust discrimination and on reasonable terms, and airports are prohibited from granting 

exclusive access to any airline  (FAA, 1999). In addition, collusion among airlines is illegal under U.S. antitrust 

laws, and collusive behaviors are prosecuted  (Shepherd and Brock, 2013).  
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aeronautical revenues have been vital for break-even budgets in recent years, airports need to 

establish various contractual agreements with airlines to cover potential financial risks. 

Especially in recent decades following the deregulation in 1978, financial volatility within the 

airline industry could easily spill over to airports as a result of increased airline bankruptcies and 

cessations of unprofitable service routes. Meanwhile, many airlines are seeking increased values 

or returns from their relationships with airports. Besides user fees’ discounts, airlines also want 

to increase their connections and abilities to offer a wider range of services to passengers at their 

hubs. Their increased willingness to shop around also reflects the contestability of the airline 

industry (Carney & Mew, 2003). Thus, forging a strong and mutually beneficial business 

relationship with airlines is paramount to airports. When entering a contractual agreement with a 

tenant airline, an airport must balance between risk and reward, and it must ensure that the 

outcomes of the agreement are beneficial not only to itself but also to the airline.  

For airlines, in addition to securing airport facilities for operations, a vertical contractual 

relationship with an airport could enable airlines to expand market power by controlling and 

even potentially foreclosing upstream airport facilities from downstream rivals in the long run. 

Moreover, airlines could avoid higher airport fees through long-term contractual agreements with 

airports (Barbot, 2011).  However, increased air traffic volumes in recent years have put a 

substantial constraint on airport capacity. According to the FAA Aerospace Forecast (2017), 

passenger volume in the U.S. is expected to rise by an average of 1.9% per year over the next 20 

years. Airport capacity is important to airlines, and airports need reliable partners in the airline 

industry to ascertain sufficient passengers or customers that are fundamental to the long-term 

growth and financial stability of the airport. Competition in the downstream air travel market 
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also means that airlines must be strategic about their decisions on routes, connections, service 

levels and their dealings with airports. 

Therefore, vertical contractual agreements between airlines and airports are the bread and 

butter of the U.S. air transportation system. Besides serving as a legally binding document, 

contracts enable and motivate the parties involved to work together and take actions that benefit 

each other. Nevertheless, if either party cannot fully observe or control the other party’s action or 

behavior, the problem of moral hazard may arise (Holmstrom, 1979). Moral hazard in this 

context refers to the lack of effort on the part of the agent (Eisenhardt, 1989). In other words, the 

agent may “shirk” or may not put forth sufficient effort.  This could have implications for air 

transportation efficiency since the signatory airlines, as the principal, is not able to control the 

host airport’s performance in operations.  

  In the U.S., residual, compensatory and hybrid are three common types of airport use 

agreements. Airports adopting residual agreements obtain a financial guarantee from signatory 

airlines, and in return, signatory airlines pay reduced airport fees depending on the airport’s 

operating expenditures and non-aeronautical revenues. Unlike the residual method, the 

compensatory method requires that airports bear their own financial risks in the absence of 

signatory airlines. The hybrid method is a combination of residual and compensatory methods. 

Under a hybrid agreement setting, the residual method is usually applied to airfield operations 

while the compensatory method is utilized in terminal operations.  

 In this study, I examine these three common types of airport-airline agreements and their 

impacts on airport operational performance. To the best of our knowledge, the implications of 

the three common use agreement methods on airport operational efficiency have not been 

previously studied.  This study seeks to fill the void in the literature by looking into the outcomes 
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of the use agreements. The results will shed light on the vertical relationships between airports 

and airlines and enhance our understanding of the effect of their use agreements on the 

operational performance of airports. Additionally, the outcomes of this research will enable 

airport management to make informed decisions on balancing risks and rewards and to sustain 

and improve airports’ coordination with their tenants for the greater benefits of society. 

This paper is organized as follows. In Section 2.3, I discuss the three use agreement 

methods. In Section 2.4, I give a brief review of the studies on the airport-airlines vertical 

relationship and airport efficiency. Section 2.5 presents the model, and the empirical data are 

discussed in Section 2.6. I discuss the analysis and empirical results in Section 2.7.  Section 2.8 

concludes with additional discussions on the effects of use agreements between airports and 

airlines on airport efficiency. 

2.3. Airport Use Agreements 

The use of contracts in air transportation is fundamental and integral to the daily 

operations of airports and airlines in the U.S. An effective coordination has great potential not 

only to increase air transportation efficiency but also to result in lower prices and improved 

quality of air travel services. Through various forms of business arrangements, airlines and 

airports in the U.S. form a close, inseparable partnership in air transportation.  

Airport use agreements are one of the most important and common vertical contractual 

arrangements in the U.S. air transportation industry. The agreement between an airport and its 

airlines provides both parties privileges, obligations and rights. Through airport use agreement, 

business arrangement and rate-setting between airports and airlines are established. In addition, 

the agreements may also stipulate both parties’ control spans on airport investment management, 

responsibilities for financial risks, and conditions for revenue sharing. 
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An important element of the vertical agreements between airports and airlines is the 

extent of risk-sharing between the two parties. Economists first explored the risk-sharing 

problems among collaborating parties (Eisenhardt, 1989). In a principal-agent relationship, 

problems arise when, according to Eisenhardt (1989, page 58): 

“(a) the desires and goals of the principal and agent conflict, and (b) it is difficult or expensive 

for the principal to verify what the agent is actually doing. The problem here is that the principal 

cannot verify that the agent has behaved appropriately. The second is the problem of risk 

sharing that arises when the principal and agent have different attitudes toward risk.” 

 

If the agent’s behavior is not observable, then the principal can (i) discover the agent’s 

behavior through investing in information systems, and (ii) co-align the agent’s preferences with 

those of the principal’s (Eisenhardt, 1989). For example, solution (i) may require the agents to 

fulfill certain reporting obligations, and solution (ii) aims to motivate the agent through an 

outcome-based contract. That is, the principal rewards the agent based on the outcome, which 

may be the agent’s output or performance, and this solution inherently shifts some risk to the 

agent, so the principal does not bear all the risk in the vertical relationship.  

In the U.S., the three primary airport use agreement approaches are the residual method, 

the compensatory method and the hybrid method (FAA, 2009). Under the residual method, the 

airport’s financial risk5 is covered by signatory airlines, and in return, the signatory airlines 

obtain a discount on their operation fees. Thus should there be any deficits in its financial 

standing as a result of its projects and operations, an airport could rest assured that the signatory 

airlines would help to cover the financial losses. Hence, airports always achieve a break-even 

point. Under this agreement setting, airports tend to have a large debt to equity ratio and limited 

                                                 

 

5 Here the financial risk refers to the risk associated with the airport operator’s day-to-day operations (Faulhaber et 

al, 2018), rather than the risks of catastrophic events, risks that may arise outside a normal business environment, or 

any risks that result from the signatory airlines' bankruptcy or merger that leads to de-hubbing.  
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cash availability. In addition, most of the residual agreement includes a majority in interest (MII) 

clause in which airports’ decisions and levels of control are restricted and capital projects may 

need to be reviewed and approved by the signatory airlines that bear the airport’s financial risk 

(Faulhaber et al., 2010; Van Dender, 2007). 

Although the signatory airlines obtain benefits from a residual-typed agreement by 

avoiding high user fees, and by fortifying their competitive advantage in the downstream market, 

taking on extra-financial risks might substantially raise the financial burden of airlines that are 

already facing operating and other financial risks of their own. Airport’s moral hazard problem 

might further exacerbate the problem. Therefore, if the airports do not have enough incentive to 

strive for better operational and cost efficiency, the signatory airlines might experience 

additional problems in operations in addition to the financial and economic risks they already 

bear. Besides these, because of the nature of long-term contracts, both sides may encounter hold-

up problems down the road. Since transaction costs are high in this type of agreement, contracts 

will be binding during the contract term. In the past, especially prior to the Airline Deregulation 

Act of 1978, most agreements followed the residual method. These residual contractual 

agreements are still common at airline hub airports, allowing them to pass on operating costs to 

the signatory airlines that demand most of the facility (Faulhaber et al., 2010). 

Contrary to the residual method, the compensatory method requires airports to bear all 

financial responsibilities for their operations, and they do not prioritize any airlines, and all 

airlines pay only the cost of the facilities they use or lease at the host airport. Without the 

revenue assurance of signatory airlines, a compensatory airport must consider the break-even 

constraint, that is the total revenues from the airline and non-airline sources must be enough to 
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offset all airport expenditures.6  Considering that they have more control over their own projects 

and operations, airports need to constantly evaluate their operations as well as long-term projects 

and plans. Thus, airport operators are more susceptible to economic downturns. Since the airport 

operators must bear the financial risk of operations, which means they also receive financial 

rewards if they perform well, they must strive to be efficient and diligent in operations.  

Therefore, under this method, the moral hazard that may potentially arise from the principal-

agent relationship is less of a concern since each party is responsible for its own financial risk, 

and neither party can shift its own risk to the other.        

As inferred by the name, the hybrid method is a combination of residual and 

compensatory methods. An airport may choose to adopt the residual method in airfield 

operations and a compensatory method in terminal operations. Depending on the level of risk 

each party is willing to bear, according to Faulhaber et al. (2010), the options for a hybrid 

contractual scenario is “endless.” Under the hybrid agreement, the financial risk burden is shared 

between the airports and their signatory airlines. Besides this, the contract may include revenue 

sharing contingent upon excess non-aeronautical revenue at the airport (Faulhaber et al. 2010). 7 

Therefore, airport operators have more freedom over the use of their resources and surplus funds, 

but they usually give up some control over capital plans besides sharing revenues with airlines.  

Under a hybrid agreement, airports do not have to bear the financial risk on airfield operations 

since that risk may be covered by signatory airlines, which in turn obtain a deduction on the 

                                                 

 

6 U.S. hub airports are government owned or operated. The business goal is to break even rather than aiming for the 

maximum profits. In fact, the FAA strictly prohibits airports from making any revenue surpluses (FAA, 2008).  
7 Fu and Zhang (2010) found that airport’s revenue sharing has potential implications on welfare and airline 

competition. Since airports rely on airlines to bring in travelers to consume airports’ commercial services, sharing 

concession revenues with airlines may help improve the financial returns to both airports and airlines. However, Fu 

and Zhang (2010) found that revenue sharing may also harm downstream competition.   
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operation fees paid to their host airports. But since non-aeronautical operations are separated 

from aeronautical operations under the hybrid method, the airport must bear the financial risk in 

non-aeronautical operations. This creates a balanced risk-sharing mechanism between the airport 

and the signatory airlines, unlike the residual approach that has the signatory airlines be the 

financial risk bearer of their host airport, and unlike the compensatory approach that has the host 

airport as the sole financial risk bearer for its aeronautical and non-aeronautical operations. 

Therefore, the hybrid method creates a more balanced risk sharing and can help overcome the 

under-effort problem and restore losses in the utility of both airports and airlines (Hihara, 2012). 

Table 2 below highlights and summarizes the differences in the three agreement methods, and I 

discuss three airport examples below. 

 Table 2. Differences in the Three Agreement Methods 
         Residual Compensatory Hybrid 

Prioritized signatory 

airlines8 

Yes No Yes - Airfield 

operations 

No - Terminal 

Operations 

Airfield Signatory airlines pay 

the residual amount 

after non-aeronautical 

revenues and revenues 

from non-signatory 

airlines. Non-signatory 

airlines pay higher 

landing fee, usually 

125% the calculated 

landing fee of signatory 

airlines.* 

All airlines pay the 

same rate according to 

the levels of use 

Signatory airlines pay 

the residual amount 

after non-aeronautical 

revenues and revenues 

from non-signatory 

airlines. Non-signatory 

airlines pay higher 

landing fee, usually 

125% the calculated 

landing fee of signatory 

airlines.* 

 

 

 

                                                 

 

8 All airlines signing  contracts with the airport are signatory airlines under all three rate setting methods. However, 

prioritized signatory airlines obtain reduced fees and have control over airport capital investments.   
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Table 2. Differences in the Three Agreement Methods (continued) 
         Residual Compensatory Hybrid 

Terminal Signatory airlines pay 

the residual amount 

after non-aeronautical 

revenues and revenues 

from non-signatory 

airlines. 

All airlines pay the 

same rate according to 

the levels of use 

All airlines pay the 

same rate according to 

the levels of use 

Airlines provide a 

financial guarantee to 

airports 

Yes No Yes - Airfield 

operations 

No - Terminal 

operations 

Airport shares non-

aeronautical revenue 

with signatory airlines 

Yes Yes & No Yes 

Airport financial risk 

bearer 

Signatory airlines Airport Signatory airlines -

Airfield operations 

Airport - Terminal 

operations 

Majority-in-interest 

clause 

Yes No Yes - Airfield 

operations 

No - Terminal 

operations 

*Generally, there are two primary types of residual rate-setting mechanisms.  The first is the “airport residual” 

method or the “single cash register” method by which the landing fee is calculated to cover all the residual airport 

costs that are not covered by revenues from all (airline and non-airline) sources. Thus, the landing fee is a balancing 

mechanism to ensure that the airport will not incur a deficit.  The second residual rate-setting mechanism is the “cost 

center residual” method by which airport costs and revenues are allocated to airline cost centers (e.g. airfield, 

terminal, and other areas) from which airline rates (in the airfield, terminal buildings, and apron areas) are derived. 

Details on the two methods and rate calculations are discussed in Faulhaber et al. (2010). 

 

On the west coast of the U.S., San Francisco International Airport (SFO) has adopted the 

residual method since 1981. Under the airport’s 2011 Lease and Use Agreement guideline9, the 

signatory airlines offer a financial guarantee by covering SFO’s expenditures. For example,  

“Under the Lease and Use Agreement, the airlines are required to pay terminal rents and landing 

fees in amounts that, when aggregated with certain other Airport revenues, will be equal to the 

                                                 

 

9 The 2011 Lease and Use Agreement went into effect on July 1, 2011 and will expire on June 30, 2021. 
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Airport’s expenditures for: operating expenses other than depreciation and amortization; 

principal and interest on outstanding debt; annual service payments to the City; and certain 

acquisitions of capital assets. Airline payments are also required to cover expenses treated as 

“Operations and Maintenance Expenses” under the Master Bond Resolutions. Other capital asset 

additions are funded with proceeds of revenue bonds for which the airlines are required to fund 

debt service (San Francisco International Airport, 2018, page 47).”10 

Additionally, in return for the financial guarantee they offer to SFO, the signatory airlines 

receive 85% of the airport’s concession revenues (San Francisco International Airport, 2011). 

Meanwhile, non-signatory airlines operate under short-term month-to-month operating permits 

and are required to pay a 25% premium over the landing fees paid by the signatory airlines. For 

example, in 2019, the landing fee for signatory airlines at SFO was $5.80 per 1000 pounds of 

landed weight, compared to $7.25 per 1000 pounds for non-signatory airlines (San Francisco 

International Airport, 2019). In addition, in return for the financial guarantee provided by the 

signatory airlines, under the majority-in-interest (MII) 11clause in the use agreement, all proposed 

airport projects at SFO exceeding the Charge Trigger Amount of $672,500 (in the 2014/15 fiscal 

year) are subject to review by the signatory airlines.  SFO gives the signatory airlines 45 days to 

review or object to the airport’s proposed capital project.  The signatory airlines may ask SFO to 

defer a proposed project no longer than 6 months to allow more time for discussion. The lease 

                                                 

 

10 If in a fiscal year there exists a difference in the actual airport revenues and expenditures and estimates of airline 

fees and charges, the landing fees and terminal rental rates in the subsequent year will be adjusted. 
11 The MII is defined as more than 50% of the number of airlines on schedule; these airlines must account for more 

than 50% of the aggregate revenue aircraft landed weight by the signatory airlines in the previous fiscal year (San 

Francisco International Airport, 2014).  
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and use agreement does allow SFO to move forward with the project after a six-month waiting 

period (San Francisco International Airport, 2014).  

 Unlike SFO, Boston’s Logan International Airport (BOS) uses the compensatory method 

on which the landing fees and terminal rentals are determined every year (in October) by the 

Massachusetts Port Authority (MASSPORT) to cover the direct and allocated costs of capital, 

administration, maintenance, and operations. In 2018, the landing fee for all airlines was $4.6 per 

1000 pounds of landed weight.  The landing fees and terminal rental rates are calculated based 

on the airport’s historical capital costs and projected landed weights as well as the budgeted 

direct and allocable indirect operating costs of the fiscal year. If deemed necessary, MASSPORT 

may adjust the landing fees and terminal rental rates during the year to recover its actual capital 

and budget operating costs. MASSPORT also has significant control over terminal facilities 

(Massachusetts Airport Authority, 2018). BOS does not share its non-aeronautical revenues with 

airlines (LeighFisher, 2016). 12 

 In the Midwest, Minneapolis-St. Paul International Airport (MSP) has used the hybrid 

method for over 20 years. It adopts a blend of the compensatory method for its terminal building 

cost center and the residual method for the airfield cost center. In airfield operations, the landing 

fees13 are residual, so the signatory airlines pay or guarantee 100% of the cost of the airfield. 

Non-signatory airlines are required to pay a 25% premium over the landing fee paid by the 

signatory airlines.  In terminal operations, the terminal building costs are calculated on a 

compensatory basis by which the airlines pay for their own share of rentable space in the 

                                                 

 

12 Some compensatory airports share their non-aeronautical revenues with airlines. Examples: the international 

airports in Los Angeles, Orlando, Houston, Salt Lake City, Columbus, etc.  
13 Landing fees consist of direct operations, maintenance and debt services expenses, plus allocated police, fire, 

labor and administration costs. 
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terminal at MSP (e-mail communication with MSP’s Metropolitan Airport Commission, August 

29, 2019). MSP also shares with airlines 25% or 50% of its annual gross revenues for selected 

concessions, if the gross revenues reach certain predetermined thresholds. The portions are 

reduced if the minimum revenue requirement is not met.  Supplemental revenue sharing is also 

given to airlines if the volume of enplaned passengers exceeds a predetermined level in a given 

fiscal year. 

Before airline deregulation, airport-airline agreements were based on mostly the residual 

method, and the contract duration could be as long as 30 years. The length of the agreement has 

shortened after deregulation due to increased variability in the air transportation sector for both 

airlines and airports. In recent years, contract durations for medium and large airports may be as 

long as 10-25 years, shorter durations are negotiable or available at some airports.  The 

coordination and working relationship between airports and airlines also come in many varieties 

in addition to airport use agreements. Since the relationship between airlines and airports could 

be advantageous to both parties strategically, operationally and financially, other forms of 

airline-airport relationships, ranging from various joint ventures to risk sharing, have existed. Fu, 

Homsombat and Oum (2011) discussed the different arrangements in detail.  

 In summary, in a normal day-to-day business environment, residual agreements offer 

more financial insulation to airport operators compared to the other two types of agreements.  

For example, residual agreements reduce the host airport’s risk of having a budget shortfall 

because of the financial guarantee provided by the signatory airlines. It is noteworthy, however, 

that none of the three agreement methods mitigates catastrophic event risks or any risks 

associated with circumstances outside a normal day-to-day business environment. Regardless of 

the types of agreements, airline mergers and bankruptcies, for example, could disrupt the day-to-
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day operations of the host airports and could potentially result in hub abandonment by the tenant 

airlines. Nevertheless, compared to compensatory and hybrid agreements, residual agreements 

provide airports with more financial security during the normal course of business.  

2.4. Literature Review 

As part of a broader network industry, airport operational efficiency is essential for air 

transportation and the overall system efficiency. For airport efficiency analyses, data 

envelopment analysis (DEA) has been a popular method. Using DEA models, Sarkis (2000) 

studied the efficiency of 44 US airports with data between 1990 and 1994; the study found that 

the overall mean efficiency of US airports was increasing due to increased competition and better 

resource utilization. Also using DEA, Bazargan and Vasigh (2003) analyzed the efficiency of 45 

U.S. hub airports of large, medium and small sizes as classified by the FAA. Under the constant 

returns to scale assumption, they found that smaller airports were more efficient. 

Another popular method for evaluating airport efficiency is stochastic frontier analysis 

(SFA). Pels, Nijkamp and Rietveld (2003), for example, conducted an efficiency analysis of 33 

European airports between 1995 and 1997 using both DEA and SFA models. In their parametric 

SFA model, Pels at al. (2003) tried to explain inefficiency using dummy variables for slot-

coordinated airports and time restriction.  After that, a second production frontier was estimated 

with air passenger movements (APM) being the output variable and the predicted ATM from the 

first production frontier estimation was used as one of the explanatory variables. In this second 

frontier model, the inputs are the number of check-in desks and the number of baggage claim 

units.  The variables explaining inefficiency were a time dummy and airlines’ load factor. For the 

non-parametric (DEA) model, the ATM and APM outputs were analyzed separately as in the 

parametric model but all inputs were used simultaneously for the production of the two outputs. 
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Results from the first parametric model indicate that slot-coordinated airports and airports with 

limited hours of operation were less inefficient.  The latter result, as explained by Pels et al. 

(2003), may be due to the reason that airports with no time restriction (open for 24 hours) 

experience too little traffic during night time. In the second parametric model, Pels at al. (2003) 

found that efficiency increases with carriers’ load factors. Pels et al. (2003) did not report the 

estimated inefficiency scores from the parametric models, but results from the DEA model show 

that, on average, airports operated under constant returns to scale, but the smallest airports 

operated under increasing returns to scale and had low scale efficiency. They found that airports 

were inefficient in general but some privately owned or corporatized ones seemed to perform 

better on average (Pels et al., 2003).   

Many airport efficiency studies in the past 2 decades focused on airport governance, 

namely the effect of privatization on airport efficiency. For example, using an unbalanced panel 

dataset of 109 airports around the world and considering six categories and types of airport 

ownership and institutional forms, Oum, Yan and Yu (2008) analyzed the cost efficiency of 

airports via a Bayesian SFA model. As an extension to Oum et al. (2008), Assaf and Gillen 

(2012) analyzed the effect of economic regulation on airport efficiency using DEA and a 

Bayesian distance stochastic frontier model.  

While the non-parametric DEA is a more common method for estimating the technical 

efficiency of multi-output firms, SFA can also be modeled with multiple outputs by means of a 

parametric distance function approach (Coelli & Perelman, 2010). For example, Abrate and 

Erbetta (2010); Martini, Scotti, and Volta (2013), and Scotti, Malighetti, Martini, and Volta 

(2012) analyzed Italian airports’ technical efficiency with a stochastic distance function 

approach.   
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In addition to the above parametric and nonparametric approaches, some semiparametric 

methods are used for analyzing airport efficiency. Semiparametric methods relax certain 

constraints of both parametric and nonparametric methods. In the semiparametric method, multi-

output can also be used whereas the effects of environmental variables can be analyzed in the 

second stage. For example, D’Alfonso, Daraio and Nastasi (2015) analyzed the effects of 

competition on the technical efficiency of 34 Italian airports in 2010 using a two-stage analysis 

method following the study of Badin, Daraio and Simar (2012). They concluded that competition 

among airports negatively affects efficiency.   

 Another semi-parametric analysis of airport efficiency was conducted by Barros and 

Dieke (2008). They evaluated 31 Italian airports' technical efficiency for 2001-2003 using a 

semi-parametric method proposed by Simar and Wilson (2007, SW henceforth). The SW method 

involves a bootstrap procedure with the use of DEA and a truncated regression model. In the 

regression model, the potential efficiency determinants they considered, besides a time trend, 

were hubs (regional hub = 1, 0 otherwise), workload unit (WLU)14, management type (private vs. 

public)15 and a regional dummy (Northern Italian = 1, 0 otherwise). They found that private 

ownership and hub airports are more efficient than others. However, Barros and Dieke (2008) 

did Not further break down the types and extent of private ownership and governance. The 

above-mentioned studies are summarized in Table 3.   

 

 

 

                                                 

 

14 1 WLU = 1 passenger or 100 kg of freight (Doganis, 1978). Since WLU is composed of passenger and cargo 

volumes, rather than being considered a determinant of airport efficiency, it is traditionally used as an aggregated 

output with a ratio of 10:1 passenger-cargo relationship for airports (Doganis, 2005). See Humphreys and Francis 

(2002), Martini et al. (2013), Scotti et al. (2014), among others.   
15 Barros and Dieke (2008) considered two categories of ownership using a dummy variable which is equal to 1 for 

airports fully managed by private organizations and zero otherwise.  
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Table 3. Summary of Airport Efficiency Studies 

Authors Sample Model Inputs Outputs 

Gillen and Lall 

(1997) 

21 Major US 

airports for 1989-

1993 

DEA (VRS-CRS)/ 

Output 

 Runways 

 Terminal 

space(m2), 

 Gates, 

 Employees 

 Baggage 

collection belts 

 Car parking spots 

 Airport area 

 Runway area 

 Passengers, 

 Cargo (tons) 

 Air Traffic 

Movements 

(ATM) 

 Commuter ATM 

Parker (1999) 22 UK airports for 

1979-1995, 1988-

1996 

DEA (VRS-CRS)/ 

Input 

 Employees 

 Capital input 

 Operation costs 

 Passengers 

 Cargo 

Sarkis (2000) 44 major Airports DEA (VRS-CRS)/ 

Input 

 Operation costs 

 Employees 

 Gates 

 Runways 

 

 Operational 

revenue 

 Passengers 

 ATM 

 Cargo 

 General aviation 

movements 

Martin & 

Roman (2001) 

37 airports in 

Spain for 1997 

DEA 

(VRS)/Output 

 Labor 

 Capital 

 Material 

 Passengers 

 Cargo (tons), 

 ATM 

Pels et al. (2003) 33 European 

airports for 1995-

1997 

DEA (VRS) & 

SFA / Input 

 Surface area 

 Runways 

 Check-in desks 

 Baggage claim 

units 

 Parking position 

terminal 

 Remote parking 

position 

 Passengers 

 ATM 

Bazargan and 

Vasigh (2003) 

45 US airports for 

1996-2000 

DEA (CRS)/Input  Operation cost 

 Non-operating 

cost 

 Runways 

 Gates 

 Passengers 

 ATM 

 Commuters  

 Aeronautical 

revenues 

 Non-aeronautical 

revenue 

 %ontime 

operation 
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Table 3. Summary of Airport Efficiency Studies (continued) 

Authors Sample Model Inputs Outputs 

Oum, Yan and 

Yu (2008) 

109 international 

airports for 2001-

2004 

Bayesian SFA 

Model 

 Runways 

 Terminal size 

 Number of 

employees 

 Non-labor variable 

cost 

 Passengers 

 Aircraft 

movements 

 Non-aeronautical 

revenues 

Barros and 

Dieke (2008) 

31 Italian airports 

for 2001-2003 

Simar and Wilson 

Model 

 Labor cost 

 Capital invested 

 Operational costs 

less labor costs 

Environmental 

variables: 

 Time trend 

 Hubs 

 WLU 

 Management 

type 

 Regional 

factors 

 Number of 

aircrafts 

 General cargo 

 Aeronautical 

sales 

 Commercial 

Sales 

 Number of 

Passengers 

 Handling 

receipts 

 Abrate and 

Erbetta (2010) 

26 Italian airports 

for 2001-2005 

Translog 

stochastic input 

distance function 

 Labor cost 

 Material and 

services 

expenditures 

 Quaxi-fixed 

capitial inputs:  

 Apron area 

for aircraft 

parking 

 Surface area 

 Number of 

passengers 

 Ground handling 

revenues 

(revenues from 

services  related 

to aeronautical 

operations) 

 Commercial 

(non-

aeronautical) 

revenues 

 

Scotti, 

Malighetti, 

Martini and 

Volta (2012) 

38 Italian airports 

for 2005-2008 

Translog 

stochastic output 

distance function 

 Max number of 

authorized flights 

per hour 

 Number of aircraft 

parking positions 

 Terminal surface 

area 

 Number of check-

in desk 

 Number of 

baggage claims 

 Number of full-

time- 

 ATM 

 APM 

 Tons of freight 
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Table 3. Summary of Airport Efficiency Studies (continued) 

Authors Sample Model Inputs Outputs 

Assaf and 

Gillen (2012) 

73 International 

Airports for 2003-

2008 

Bayesian distance 

SFA 

 Number of 

employees 

 Operational costs 

 Number of 

Runways 

 Terminal size 

 

 Passengers 

 Aircraft 

movements 

 Non-aeronautical 

revenues 

 Martini, Scotti 

and Volta 

(2013) 

33 Italian Airports 

for 2005-2008 

Classical distance 

function and 

Hyperbolic 

distance function. 

 Max. number of 

authorized flights 

per hour 

 The number of 

aircraft parking 

position 

 The terminal 

surface area 

 The number of 

check-in desks 

 The number of 

baggage claims 

 The number of 

employees 

 Aircraft 

movements 

 WLU 

 Weighted Local 

Pollution 

D’Alfonso, 

Daraio and 

Nastasi (2015) 

34 Italian Airports 

for 2010 

Conditional 

nonparametric 

frontier analysis 

 Airport area(m2) 

 Number of 

runways 

 Number of 

passenger 

terminals 

 Number of gates 

 Number of check-

in counters 

 Number of 

employees 

 Number of 

passengers 

 Number of 

aircraft 

movements 

 Amount of cargo 

Gallego, San 

Roman and 

Sanchez (2017) 

Spanish Airports 

for 2009-2014 

Input oriented 

distance model: 

Parametric and 

error component 

 Labor 

 Capital 

 Intermediate 

consumptions 

 WLU 

 Operation 

revenues 

 

 

The effects of the vertical relationship between airports and airlines on airport efficiency 

have been scarcely analyzed in the literature. The earliest study I found was conducted by Gillen 

and Lall (1997) who analyzed the technical efficiency of 21 US airports between 1989 and 1993 

using a two-stage DEA-regression approach. In their DEA model (stage 1), they used two 

outputs (number of passengers and pounds of cargo) and six inputs (number of runways, number 

of gates, terminal area, number of employees, number of baggage collection belts and number of 
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public parking spots) to measure terminal and airside efficiency. After they obtained the relative 

efficiency scores of airports in stage 1, at the second stage, they regressed the logged efficiency 

scores on environmental (annual service volume), structural (number of runways, land area and 

number of gates) and managerial (use of gates, financing regime, noise strategies, proportion of 

general aviation traffic, existence of hubs at airport) variables in a Tobit regression. One of the 

managerial variables they considered was the type of airport use agreements. They argued that 

residual financing was more efficient for airside operations whereas compensatory was more 

efficient for terminal operations. This result could imply that airports with a hybrid agreement 

might be more efficient. However, Gillen and Lall (1997) did not examine any form of vertical 

business agreement in their model. While very commonly used, the two-stage DEA-regression 

method in Gillen and Lall (1997) was later deemed inappropriate by Simar and Wilson (2007) -- 

a point I will discuss later.  

Vasigh and Hamzaee (1998) developed a model to understand which agreement method 

is most desirable for airports in terms of their financial performance. They compared the 

airport’s financial performances under the compensatory method, the residual method, the hybrid 

method, and privatization.  The results of this study show that the marginal contribution of the 

residual method to airport profitability is about $0.63 per enplaned passenger, while the marginal 

contribution of the compensatory method is $2.11 per enplaned passenger. Based on these 

results, they argued that a compensatory arrangement contributes more to the profit of an airport. 

In addition, they argued that airports prefer to recoup their own expenses via non-aeronautical 

revenues rather than aviation revenues.   

Focusing on productivity, Oum, Zhang and Zhang (2004) examined the effects of use 

agreements on total factor productivity and capital input productivity of airports when they 
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analyzed the effects of single till  16 and dual till. They matched compensatory agreement with 

the dual till, and residual agreement with the single till. In the empirical part of the paper, they 

examined the effects of airport productivity indicators on capital input productivity and total 

factor productivity for 60 airports in 1999; the sampled airports include 11 airports in Asia, 18 

airports in Europe, and 31 airports in North America.  They also assessed the effect of single-till 

and dual-till variables on airport productivity. They found that airport capital input productivity 

is higher under single-till pricing (or a residual agreement). On the contrary, total factor 

productivity is higher under dual-till pricing (or compensatory).17  

Much of the literature on airport performance has thus far focused mostly on the effects 

of governance and privatization on airport efficiency, and airport productivity. A few studies 

noted above had attempted to examine the airport-airline vertical relationship and airport pricing, 

but none has examined the three agreement methods in-depth and their effects of airports. Our 

study aims to fill this gap in the literature. The results will shed light on the efficiency 

implications of the current standard practice in U.S. airport-airline relationships. 

2.5. Method 

DEA is a non-parametric mathematical programming technique for frontier estimation 

and analysis. The measurement of productive efficiency was first proposed by Farrell (1957) 

                                                 

 

16 Single-till refers to an airport’s decision about aeronautical charges based on both aeronautical and non-

aeronautical revenues. Dual-till price cap refers to an airport’s current aeronautical charges that are based only on its 

aeronautical revenues. Bilotkach, Clougherty, Mueller and Zhang (2012) examined the effects of single-till and dual 

till on aeronautical charges, and found that single till decreases aeronautical charges. 
17 It is important to note that, albeit related, productivity and (operational) efficiency are two different economic 

measures. Productivity can be broadly defined as the ratio of outputs to inputs, whereas operational or technical 

efficiency measures the ability of a firm to achieve a maximum output with a set of inputs, or the ability to obtain a 

given level of output with the least inputs (Coelli, Rao, O’Donnell and Battese, 2005). Oum, Zhang and Zhang 

(2004) referred specifically to airport productivity.  
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using a piece-wise linear convex hull approach. Charnes, Cooper and Rhodes (1978) then 

developed a mathematical programming efficiency measurement.  DEA is used to determine an 

envelopment surface which is the efficient frontier through these DMUs. DMUs located on the 

frontier are considered efficient, whereas DMUs that are located away from the frontier are 

considered inefficient. After that, the distances between the inefficient DMUs to the efficient 

frontier are measured. There are in general two types of DEA models. The first of which was 

proposed by Charnes et al. (1978), and it assumes a constant return to scale (CRS). The other 

type was proposed by Banker, Charnes and Cooper (1984); it is an extension of the first to 

account for variable returns to scale (VRS) in production processes. As their names indicate, 

VRS exists when there are increasing or decreasing returns to scale.  

As discussed in the previous section, DEA has been widely used in airport efficiency 

studies because of its capability of incorporating multiple outputs and inputs of decision-making 

units (DMUs). In our DEA model, each DMU uses a set of inputs to produce outputs. I assume 

the goal of airports is to maximize their output levels given the available inputs and prevailing 

production technology. Thus an output-oriented DEA model is developed.   

There are 𝑖 = 1, … , 𝑛 DMU’s (or airports), and each DMU uses k inputs to produce m 

outputs. The output-oriented measure of technical efficiency for the ith DMU can be obtained by 

solving the following linear programming problem: 

max
𝜔,𝜆

𝜔;                                                                             (2.1) 

𝑠. 𝑡. −𝜔𝑦𝑖 + 𝑌𝜆 ≥ 0, 

𝑥𝑖 − 𝑋𝜆 ≥ 0, 

𝜆 ≥ 0, 
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where  

𝑦𝑖 is an m × 1 vector of output quantities for the ith DMU, 

𝑥𝑖 is a k × 1 vector of input quantities for the ith DMU, 

𝑌 is an n × m matrix of output quantities for all n DMUs, 

𝑋 is an n × k matrix of output quantities for all n DMUs, and 

𝜆 is an n × 1 vector of weights, and 𝜔 is a scalar. 

Model (1) assumes CRS technology, which means that airports are assumed to be 

operating at an optimal scale.  One can invoke the VRS technology assumption by incorporating 

a convexity constraint, ∑ 𝜆 = 1𝑛
𝑖=1 , in the linear programming model (1).  The mathematical 

programming problem (1) is solved n times, once for each of the n DMUs. The solution to (1) is 

greater than 1, that is, 1 ≤ 𝜔 < +∞. This is a Farrell (1957) output-oriented measure of 

inefficiency. If 𝜔 = 1, the DMU is considered technically or operationally efficient. If 𝜔 > 1, the 

DMU is operationally inefficient, and 1 – 𝜔 measures the proportional expansion of output that 

could be achieved by the ith airport without changing its level of input use. It is common to invert 

the Farrell (1957) measure to get the Shephard (1970) measure of operational efficiency, 𝜃 =
1

𝜔
  

so  0 < 𝜃 ≤ 1, where 𝜃 = 1 implies operational efficiency, and 𝜃 < 1 implies operational 

inefficiency. Since I would like to assess the variation in efficiency and to interpret the effect of 

airport characteristics on airport efficiency in percentage terms, the Farrell inefficiency scores 𝜔 

are inverted to create a Shephard’s measure of operational efficiency, 𝜃,  in the second-stage 

regression. 

The input variables in Model (1) are the number of employees, the effective number of 

standard runways, airport land area, number of gates, and total operating expenditures minus 

personnel expenditures. The output variables are WLU and non-aeronautical revenues. Although 
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Model (1) provides the efficiency scores of airports, the variation of the scores is yet to be 

explained. For this purpose, traditionally, the efficiency scores obtained from DEA are regressed 

on potential environmental factors in a second- stage which commonly involves estimating a 

Tobit model (a censored regression), an OLS model, or a logit fractional regression model. This 

two-stage approach is ubiquitous in the literature, however, the problem of it is that the DEA 

efficiency scores in stage 1 are serially correlated in an unknown way. Moreover, the fact that 

environmental variables are not independent respect to output and input leads to a correlation 

between error terms and environmental variables at the second stage. Therefore, when applying 

the scores as the left-hand-side variable in a regression model in stage 2, the results are biased, 

and inferences are invalid (Simar & Wilson, 2007). Moreover, the use of a Tobit regression 

model is inappropriate because the efficiency scores are not censored.   

Since the objective of this study is to determine the effects of use agreement types on 

efficiency, I estimate a regression model to explain the variation in the efficiency scores. I use a 

two-stage semi-parametric method developed by Simar and Wilson (2007) to address the 

weakness associated with the regression model of the traditional two-stage approach. The 

truncated regression is given by: 

𝜃𝑖 = 𝐳𝐢𝛽 + 휀𝑖                                                                  (2.2) 

where 𝜃𝑖 are the Shephard efficiency estimates from Model (1), and  휀𝑖 are drawn from a two-

sided truncated normal distribution at −𝑧𝑖�̂� on the left and at (1 − 𝑧𝑖�̂�) on the right.  This 

ensures that the Shephard output-oriented measures are bounded between 0 and 1. Moreover,  휀𝑖 

is independent of 𝐳𝐢, which is a vector of explanatory variables. I follow Algorithm 2 proposed in 

SW, which is a bootstrap procedure that uses bias-corrected efficiency scores as the dependent 
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variable in (2).18 I take into account the two-sided truncation in the SW Algorithm 2 bootstrap 

procedure and estimate our model using the Stata command developed by Badunenko and 

Tauchmann (2018).  

Because I would like to evaluate the effects of use agreement types on technical 

efficiency, the explanatory variables in the second-stage regression model include binary 

variables for the contract types.  Since there are three contract types, only two binary contract 

variables were incorporated into the model.  The first binary variable is Compensatory, which is 

equal to 1 for airports adopting the compensatory method, and 0 otherwise. The second method 

is Hybrid, which is equal to 1 for airports adopting the hybrid method, and 0 otherwise. The 

control group is airports that adopt the Residual method. Besides the contract types, the 

regression model also accounts for airport governance that may potentially affect operational 

efficiency. Following Kutlu and McCarthy (2016), airport governance is classified into these 

four categories: Port/Airport Authority, City, State and County.  Port/Airport Authority was 

selected as the control group while City, State, and County are used as binary variables in the 

model. In addition, airport size was included as an explanatory variable in the regression model. 

Specifically, to control for airport operating size, the regression model also incorporates large-

size hubs as a binary variable, so medium hubs are in the base group. 19Thus, 

𝐳𝐢𝛽 = 𝛽0 + 𝛽1𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟𝑦𝑖 + 𝛽2𝐻𝑦𝑏𝑟𝑖𝑑𝑖 + 𝛽3𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝛽4𝐶𝑖𝑡𝑦𝑖 + 𝛽5𝑆𝑡𝑎𝑡𝑒𝑖 +

𝛽6𝐿𝑎𝑟𝑔𝑒𝐻𝑢𝑏𝑖                                                                                                                            (2.3) 

                                                 

 

18 Details on the bootstrap procedures are discussed in Simar and Wilson (2007). A two-sided truncation adjustment 

was made in the estimation procedure to account for the unit interval of the efficiency scores (Badunenko and 

Tauchmann, 2018). 
19 The regression model does not account for airport capacity since it is inherently controlled for by the number of 

standard runways, airport land area and gates along with other input and output variables in the DEA model, and the 

DEA scores reflect airport efficiency given these input levels.  
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where the parameters 𝛽1 through 𝛽6 provide measures of the effects of use agreement types, 

governance and hub-size on airport operational efficiency, 𝜃𝑖. In particular, positive estimates of 

𝛽1 or 𝛽2 would imply that, relative to the residual method, the compensatory method or the 

hybrid method contributes positively to airport operational efficiency. The variables 

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟𝑦 and 𝐻𝑦𝑏𝑟𝑖𝑑 are intrinsically exogenous since the methods were determined or 

“grandfathered in” from years or decades ago, and current airport operators just develop their 

budgets and calculate their charges, fees, and rentals based on the method already set in place.20 

On governance, 𝛽3 through 𝛽5 are expected to have negative signs, meaning county-, city- and 

state-operated airports are expected to have lower efficiency relative to port- or  airport 

authority-operated airports, since  Craig, Airola and Tipu (2012, page 726) found that airport 

authorities tended to be more efficient because these entities “allows an institutional structure to 

evolve that is considerably streamlined compared to that from general-purpose governments.”21  

Zhao, Choo and Oum (2014) also found that airport authorities tend to be more cost-efficient 

compared to airports operated by a government branch.  

2.6. Data 

The main source of the data is the Certification Activity Tracking System (CATS) 

Database. Under the FAA Authorization Act of 1994, all commercial service airports are 

required to report their annual financial data to the FAA. The information submitted by airports 

                                                 

 

20 For examples, SFO has used its current (residual) agreement method since 1981 and MSP has used the hybrid 

method for over 20 years. In 2013, Chicago-Midway (MDW) decided to retain the residual method for another 15 

years, and Denver International Airport (DEN) is currently using a hybrid method until 2025 for a total of 30 years 

(LeighFisher, 2016). Additionally, some contract durations can be as long as 25 years at some airports; while 

switching is possible, it is difficult for airports to unilaterally switch from one method to another in any given year 

without violating the terms and conditions that they had previously agreed on with the signatory airlines. 
21 Craig et al. (2012) compared efficiency of airports managed by airport authorities and city governments.  
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under the Airport Financial Reporting Program is then available to the public through the CATS. 

I examined the data of 59 large and medium hub airports classified by the FAA. The data covers 

the years between 2009 and 2016. From the CATS, I obtained the number of employees, 

operating expenses, personnel expenditures, number of passengers, landed weights in pounds, 

and total non-aeronautical revenues. In addition to these variables, the number of gates was 

obtained from airports’ websites while the runway data were obtained from FAA Aeronautical 

Information Services22. Besides, I obtained airport land area data from the Airport GIS data 

portal of FAA23. The input variables in Model (1) include the number of airport employees, the 

effective number of standard runways24, airport land area, the number of gates, and total 

operating expenditures minus personnel expenditures.  

There are two output variables in Model (1). Following Martini et al. (2013), Scotti et al. 

(2014), McCarthy (2016), Gallego, San Román and Sánchez (2017), I include WLU as one of 

the output variables for airport’s aeronautical operations. The second output variable in Model 

(1) captures the commercial or non-aeronautical output of airports and is measured by non-

aeronautical revenues.  The descriptive statistics of the variables are shown in Table 4. I used 

use-agreement types, hub size and governance forms as determinants of airport operational 

efficiency in the regression model.   The information on use-agreement types and hub sizes for 

each airport was obtained from LeighFisher (2016). The information on governance forms was 

                                                 

 

22 https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/Airport_Data 
23 https://airports-gis.faa.gov 
24 Since there is no standard measurement for runways, using the number of runways as an input measure can be 

biased. The effective number of standard runways introduced by McCarthy (2014) sought to address this issue. It is 

measured by  ∑ (𝐿𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑡)(𝑊𝑖𝑑𝑡ℎ𝑟𝑖𝑡)/1,500,000𝑟  for the rth runway of ith airport in tth year. Since a runway 

having dimensions 10,000 by 150 feet can be used for aircrafts of most sizes except for some extreme aircraft sizes, 

the runway measure can be standardized. 
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obtained from the National Academies of Sciences, Engineering, and Medicine (2009). 

Appendix A presents the classifications of the airports by governance form, hub size and 

agreement type. 

Table 4. Descriptive Statistics for Outputs and Inputs 

  OUTPUTS                    INPUTS 

YEARS  WLU 

(x106) 

NON-

AERO. 

REV. 

(x106) 

OP. EXP. less 

LABOR 

COST(x106) 

Gates Employees ENSR Land 

Area 

(x103) 

2009 MEAN 17.8 95.4 154.8 72.8 557.9 3.4 4.8 

 SD 16.0 72.9 132.4 46.3 508.5 2.04 5.3 

2010 MEAN 18.5 97.7 159.2 72.8 547.4 3.4 4.8 

 SD 17.6 75.2           133.9 46.3 495.4 2.04 5.3 

2011 MEAN 18.7 104.9 168.7 72.8 552.0 3.4 4.8 

 SD 17.2 83.1 146.2 46.3 493.8 2.04 5.3 

2012 MEAN 18.7 109.1 175.2 72.8 554.8 3.4 4.8 

 SD 17.1 86.9 151.7 46.3 510.8 2.04 5.3 

2013 MEAN 19.1 115.3 181.9 72.8 553.2 3.4 4.8 

 SD 17.5 92.7 158.6 46.3 504.5 2.04 5.3 

2014 MEAN 19.5 121.8 190.2 72.8 564.6 3.4 4.8 

 SD 17.8 99.6 165.8 46.3 516.7 2.04 5.3 

2015 MEAN 20.7 127.4 191.0 72.8 569.7 3.4 4.8 

 SD 19.6 104.6 162.3 46.3 509.4 2.04 5.3 

2016 MEAN 21.6 136.0 202.3 72.8 579.5 3.4 4.8 

 SD 20.1 111.7 172.6 46.3 520.6 2.04 5.3 

 

2.7. Analysis 

Following Simar and Wilson (2007), we performed a year-by-year analysis. A DEA was 

conducted for each year. Thus, airports are benchmarked against their peers in the same year 

only. The summary statistics of the efficiency scores are reported in Table 5.  The CRS and VRS 

DEA scores are reported respectively in Appendices B and C. The results in Table 5 show that 

the average efficiency of 59 airports under VRS technology is higher than the average efficiency 

score derived with CRS technology. 
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Table 5. Summary Statistics of DEA Scores for Each Year 
Years Mean SD Min. Max. 

 
CRS 

2009 0.7646 0.1890 0.4147 1 

2010 0.7879 0.1839 0.4056 1 

2011 0.7684 0.1833 0.3803 1 

2012 0.8082 0.1738 0.4370 1 

2013 0.8296 0.1574 0.4651 1 

2014 0.8306 0.1605 0.4822 1 

2015 0.8304 0.1577 0.4676 1 

2016 0.8086 0.1535 0.4685 1 
 

VRS 

2009 0.8502 0.1801 0.4158 1 

2010 0.8589 0.1750 0.4546 1 

2011 0.8404 0.1844 0.3857 1 

2012 0.8627 0.1674 0.4591 1 

2013 0.8792 0.1548 0.4792 1 

2014 0.8864 0.1551 0.4737 1 

2015 0.8880 0.1559 0.5108 1 

2016 0.8789 0.1532 0.4711 1 

 

Following the DEA in Stage 1, the second-stage SW bootstrap procedure with bias-

corrected efficiency scores in a two-sided truncated regression was conducted with 1,000 

bootstrap replications. The estimates of the year-by-year bootstrapped truncated regression are 

displayed in Table 6.  

  Table 6. SW Truncated Regression Results by Year† 

  CRS VRS 

2009 Parameter BSE Parameter BSE 

Constant 0.521*** 0.049 0.436*** 0.040 

Compensatory 0.179*** 0.049 0.248*** 0.040 

Hybrid 0.191*** 0.051 0.216** 0.040 

City -0.021 0.041 -0.007 0.035 

County 0.062 0.063 0.122** 0.048 
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Table 6. SW Truncated Regression Results by Year (continued) 

  CRS VRS 

2009 Parameter BSE Parameter BSE 

State -0.195** 0.086 -0.223** 0.084 

Large Hub 0.025 0.037 0.141*** 0.031 

2010 Parameter BSE Parameter BSE 

Constant 0.573*** 0.049 0.499*** 0.043 

Compensatory 0.142*** 0.047 0.201*** 0.043 

Hybrid 0.177*** 0.048 0.215*** 0.043 

City -0.044 0.041 -0.089** 0.035 

County 0.065 0.065 0.095* 0.052 

State -0.159* 0.085 -0.316*** 0.088 

Large Hub 0.022 0.036 0.132*** 0.033 

2011 Parameter BSE Parameter BSE 

Constant 0.516*** 0.043 0.425*** 0.037 

Compensatory 0.152*** 0.041 0.206*** 0.37 

Hybrid 0.213*** 0.044 0.178*** 0.036 

City -0.045 0.036 -0.017 0.032 

County 0.089 0.055 0.119*** 0.046 

State -0.116 0.072 -0.266*** 0.082 

Large Hub 0.023 0.030 0.191*** 0.030 

2012 Parameter BSE Parameter BSE 

Constant 0.548*** 0.038 0.469*** 0.039 

Compensatory 0.141*** 0.037 0.170*** 0.041 

Hybrid 0.207*** 0.039 0.198*** 0.039 

City -0.057* 0.032 0.013 0.035 

County 0.059 0.050 0.079 0.051 
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Table 6. SW Truncated Regression Results by Year (continued) 

  CRS VRS 

2009 Parameter BSE Parameter BSE 

State -0.087 0.067 -0.315*** 0.071 

Large Hub 0.024 0.030 0.167*** 0.031 

2013 Parameter BSE Parameter BSE 

Constant 0.563*** 0.035 0.517*** 0.037 

Compensatory 0.146*** 0.037 0.183*** 0.038 

Hybrid 0.195*** 0.035 0.218*** 0.037 

City -0.050 0.031 0.002 0.034 

County 0.017 0.043 0.075 0.048 

State -0.127** 0.054 -0.225*** 0.062 

Large Hub 0.053** 0.027 0.120*** 0.030 

2014 Parameter BSE Parameter BSE 

Constant 0.607*** 0.034 0.626*** 0.030 

Compensatory 0.141*** 0.034 0.151*** 0.030 

Hybrid 0.186*** 0.033 0.181*** 0.030 

City -0.070** 0.029 -0.062 0.026 

County 0.028 0.042 0.034 0.038 

State -0.153** 0.059 -0.269*** 0.053 

Large Hub 0.033 0.025 0.025*** 0.022 

2015 Parameter BSE Parameter BSE 

Constant 0.643*** 0.041 0.573*** 0.039 

Compensatory 0.148*** 0.042 0.237*** 0.041 

Hybrid 0.181*** 0.044 0.243*** 0.041 

City -0.062* 0.037 -0.045 0.036 

County 0.015 0.054 0.075 0.05 
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Table 6. SW Truncated Regression Results by Year (continued) 

  CRS VRS 

2009 Parameter BSE Parameter BSE 

State -0.221*** 0.074 -0.492*** 0.068 

Large Hub 0.038 0.033 0.121*** 0.033 

2016 Parameter BSE Parameter BSE 

Constant 0.570*** 0.040 0.564*** 0.036 

Compensatory 0.190*** 0.041 0.201*** 0.037 

Hybrid 0.231*** 0.041 0.202*** 0.036 

City -0.021 0.036 -0.036 0.031 

County 0.089 0.054 0.151*** 0.049 

State -0.240*** 0.063 -0.477*** 0.065 

Large Hub 0.002 0.029 0.095*** 0.028 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

† BSE is the bootstrap standard error 

The effects of compensatory and hybrid agreements on efficiency are positive and 

significant every year. This suggests that during these years, airports that chose either the 

compensatory or hybrid contracts outperformed their peers that adopted the residual contract. In 

other words, airports choosing compensatory or hybrid contracts were more efficient than the 

airports choosing residual contracts. However, based on the Wald test results in Table 7, there is 

no significant difference in the effects of compensatory and hybrid contract types on airport 

efficiency between 2009 and 2016.  

On airport governance, airports operated by a state government is less efficient than their 

counterparts operated by a port or airport authority.  This result is consistent with earlier findings 

by Craig et al. (2012) and Zhao et al. (2014). That is port or airport authorities tended to be more 

efficient because the structure of these special-purpose entities is considerably streamlined 
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compared to that of general-purpose governments and therefore allowing them to a better 

transportation service.   

 Table 7. Comparison of Hybrid and Compensatory Effects on Efficiency 
Years Chi2 Pr> Chi2 

 VRS 

2009 0.99 0.3204 

2010 0.43 0.5137 

2011 0.84 0.3584 

2012 0.39 0.5327 

2013 0.30 0.5815 

2014 1.40 0.2372 

2015 0.01 0.9112 

2016 0.19 0.6612 

 CRS 

2009 
0.10 0.7465 

2010 
0.62 0.4316 

2011 
3.00* 0.0834 

2012 
3.29* 0.0698 

2013 
2.20 0.1379 

2014 
1.90 0.1678 

2015 
0.51 0.4750 

2016 
1.10 0.2945 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

 

The effect of large hub airports on efficiency is positive and significant every year under 

VRS technology, implying large hub airports are more efficient than medium hub airports. On 

the other hand, the effect of large hub airport is significant and positive in only 2013 under CRS 

technology. The insignificant results in the CRS model is expected because of the lack of 

convexity constraints under CRS technology.  The CRS DEA model assumes all airports are 

operating at the optimal scale, and this may not be the case for U.S. airports, so the CRS DEA 
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scores are confounded by scale inefficiency. Under the VRS assumption, the DEA frontier is the 

convex combination of DMU’s and allows for inefficient airports to be benchmarked against 

other airports like them in terms of size.   

The mechanism by which use agreements affect airport operational efficiency is of 

interest.  Airports alone are not capable of producing WLU since they must work with airlines in 

order to jointly provide aeronautical services, but airports are responsible for the production of 

non-aeronautical outputs over which the signatory airlines of a residual contract may not have 

direct control.  This lack of direct control and observation raises the issue of a potential moral 

hazard problem that may arise from the residual contract.25 Based on the regression results, I 

infer that airports with residual agreements may have less incentive to increase non-aeronautical 

revenues since they are in a financial comfort zone. Coupled with the lack of direct control over 

the agent’s behavior, the lopsidedly unequal risk sharing relationship -- when the principal bears 

all risks – inevitably leads to underperformance by the agent.  Because of the financial safety net 

provided by signatory airlines, airports that adopt the residual method are less motivated to 

increase non-aeronautical output and service levels. This, in turn, may result in them being less 

operationally efficient than their peers. Consequently, the benefits that airlines gain from signing 

a residual-type contract with an airport may be undermined by the moral hazard problem. Our 

results suggest that airports choosing either compensatory or hybrid methods are more efficient; 

                                                 

 

25 While the signatory airlines at residual airports may in theory exploit the MII clause by using it as an anti-

competitive tactic to limit airport’s ability to serve other non-signatory airlines and cause inefficiency, such 

exploitations may not be practical for two reasons: (1) airports have been able to move forward with their capital 

projects after the project review period and with additional discussions with the airlines (San Francisco International 

Airport, 2014); (2) if signatory airlines’ anti-competitive actions, if any, adversely affect non-signatory airlines, the 

latter can change their status to signatory, since the signatory status is available to all airlines that want to sign a use 

agreement with the airport, and especially since being signatory yields additional economic benefits that are 

otherwise not available to non-signatory airlines. Such status change would thwart any anti-competitive actions of 

the existing signatory airlines.  
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this finding is consistent with those of  Oum et al. (2004). Gillen and Lall (1997), and Vasigh 

and Hamzaee (1998).   

During the study period, two of the airports following the residual method experienced 

airline exits, and getting de-hubbed caused significant shrinkage in airport operations. This may 

potentially lead to bias estimates in our results because the operational inefficiency of residual-

typed airports may be due to dehubbing instead of the features of the residual agreement. In 

2009, following the merger of America West and US Airways, the merged carrier abandoned Las 

Vegas McCarran International Airport (LAS) as its hub. Cleveland Hopkins International Airport 

(CLE) was de-hubbed in 2014 by United Airlines following the latter’s acquisition of 

Continental Airlines (Rupp and Tan, 2019). Both de-hubbings occurred within our study period 

(2009 – 2016).  Prior to 2009, St. Louis (STL), a residual airport, was de-hubbed by American 

Airlines in 2004 following the latter’s acquisition of TWA, and Pittsburgh (PIT) was de-hubbed 

by US Airways in 2008 (Rupp and Tan, 2019). Both incidents occurred outside our study period. 

As a robustness check, I first conducted the analysis without LAS and CLE to explicitly account 

for the airline exits at these two residual airports. After that, I conducted another analysis without 

all 4 residual airports (LAS, CLE, STL and PIT), as an additional robustness check. The 

descriptive statistics of the new sets of DEA scores and the truncated regression results are 

presented in Tables 8 and 9. As seen in Table 8, despite dropping the de-hubbed airports, the 

efficiency scores are largely similar to those reported in Table 5. In addition, the truncated 

regression results in Table 9 are by and large consistent with those displayed in Table 6. 

Specifically, the positive effects of compensatory and hybrid on airport efficiency remain 

significant even among airports that did not experience de-hubbing.  
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  Table 8. Descriptive Statistics of DEA Scores of Airports without Hub Abandonment 
 Without 2 De-hubbed Residual Airports Without 4 De-hubbed Residual Airports 

Years Mean SD Min. Max.       Mean SD Min. Max. 
 

CRS  CRS   

2009 0.7642 0.1906 0.4147 1 0.7823 0.1770 0.4315 1 

2010 0.7887 0.1854 0.4056 1 0.8073 0.1715 0.4057 1 

2011 0.7686 0.1849 0.3803 1 0.7882 0.1690 0.4272 1 

2012 0.8084 0.1753 0.4370 1 0.8279 0.1580 0.4880 1 

2013 0.8316 0.1580 0.4651 1 0.8498 0.1405 0.5296 1 

2014 0.8384 0.1524 0.4676 1 0.8510 0.1396 0.5388 1 

2015 0.8381 0.1566 0.4822 1 0.8505 0.1448 0.5061 1 

2016 0.8167 0.1483 0.5070 1 0.8278 0.1390 0.5100 1 
 

VRS  VRS   

2009 0.8510 0.1810 0.4158 1 0.8731 0.1551 0.5143 1 

2010 0.8598 0.1762 0.4546 1 0.8813 0.1532 0.4665 1 

2011 0.8414 0.1855 0.3857 1 0.8641 0.1611 0.4276 1 

2012 0.8639 0.1685 0.4591 1 0.8854 0.1444 0.4887 1 

2013 0.8817 0.1549 0.4792 1 0.9016 0.1320 0.5377 1 

2014 0.8956 0.1468 0.4806 1 0.9095 0.1294 0.5713 1 

2015 0.8966 0.1495 0.5152 1 0.9099 0.1343 0.5150 1 

2016 0.8878 0.1452 0.5127 1 0.9012 0.1292 0.5270 1 

 

    Table 9. Truncated Regression Results After Dropping 2 and 4 Dehubbed Airports†  
Without 2 De-hubbed Residual Airports†† Without 4 De-hubbed Residual Airports††† 

  CRS VRS CRS VRS 

2009 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.519*** 0.05 0.430*** 0.041 .5703*** 0.056 .5110*** 0.040 

Compensatory 0.179*** 0.052 0.255*** 0.043 .1337* 0.054 .2019*** 0.040 

Hybrid 0.198*** 0.049 0.224*** 0.043 .1450** 0.054 .1528*** 0.042 

City -0.022 0.044 -0.011 0.034 -0.009 0.042 -0.019 0.032 

County 0.029 0.065 0.088 0.054 0.001 0.065 0.0398 0.047 

State -0.196** 0.09 -0.230** 0.089 -.1804* 0.085 -.2960*** 0.065 

Large Hub 0.019 0.039 0.146*** 0.032 -0.012 0.039 .0969*** 0.028 

 

2010 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.577*** 0.052 0.515*** 0.039 .5956*** 0.059 .6087*** 0.044 

Compensatory 0.140*** 0.051 0.173*** 0.041 .1276* 0.056 .1154** 0.042 

Hybrid 0.177*** 0.052 0.179*** 0.04 .1691** 0.055 .1202** 0.043 

City -0.043 0.045 -0.069** 0.032 -0.036 0.046 -.080* 0.033 

County 0.069 0.065 0.074 0.051 0.0509 0.072 0.025 0.052 

State -0.158* 0.086 -0.432*** 0.07 -.2521** 0.086 -.386*** 0.064 

Large Hub 0.024 0.039 0.139*** 0.031 0.0121 0.040 .0880** 0.030 
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Table 9. Truncated Regression Results After Dropping 2 and 4 Dehubbed Airports (continued)  
Without 2 De-hubbed Residual Airports†† Without 4 De-hubbed Residual Airports††† 

  CRS VRS CRS VRS 

2011 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.514*** 0.041 0.469*** 0.037 .5581*** 0.047 .513*** 0.040 

Compensatory 0.154*** 0.042 0.173*** 0.037 .1152** 0.044 .1466*** 0.036 

Hybrid 0.210*** 0.043 0.148*** 0.036 .1721*** 0.044 .1151** 0.037 

City -0.046 0.034 -0.035 0.029 -0.037 0.035 -0.0215 0.031 

County 0.082 0.056 0.093** 0.046 0.0584 0.056 .09504* 0.045 

State -0.117 0.075 -0.266*** 0.075 -0.106 0.070 -.2447** 0.076 

Large Hub 0.027 0.032 0.180*** 0.027 -0.0045 0.033 .1463*** 0.028 

2012 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.550*** 0.038 0.479*** 0.039 .5585*** 0.048 .5732*** 0.041 

Compensatory 0.140*** 0.04 0.170*** 0.038 .1322** 0.045 .1018** 0.039 

Hybrid 0.207*** 0.04 0.196*** 0.04 .2140*** 0.046 .1294*** 0.039 

City -0.059* 0.032 0.014 0.033 -0.048 0.038 0.0112 0.032 

County 0.046 0.051 0.079 0.049 0.044 0.057 0.0245 0.046 

State -0.086 0.07 -0.240*** 0.081 -.1965** 0.065 -.2676*** 0.062 

Large Hub 0.018 0.03 0.146*** 0.031 0.0072 0.034 .0996*** 0.028 

2013 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.566*** 0.036 0.557*** 0.035 .6309*** 0.036 .6094*** 0.038 

Compensatory 0.144*** 0.037 0.146*** 0.034 .0885* 0.035 .1059** 0.037 

Hybrid 0.195*** 0.036 0.171*** 0.035 .1341*** 0.035 .1424*** 0.037 

City -0.053* 0.031 -0.007 0.03 -0.0426 0.029 0.0151 0.031 

County 0.012 0.049 0.068 0.047 -0.0122 0.042 0.0616 0.044 

State -0.143* 0.058 -0.135** 0.061 -0.0756 0.051 -.1498** 0.051 

Large Hub 0.062* 0.028 0.107*** 0.027 0.0234 0.027 .0692** 0.027 

2014 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.615*** 0.037 0.616*** 0.031 .6609*** 0.037 .7449*** 0.031 

Compensatory 0.135*** 0.035 0.159*** 0.033 .0975** 0.036 .0658* 0.029 

Hybrid 0.179*** 0.035 0.200*** 0.032 .1413*** 0.035 .1068*** 0.030 

City -0.065** 0.029 -0.052** 0.026 -.0638* 0.028 -.0694** 0.024 

County 0.03 0.046 0.039 0.043 0.0117 0.043 -0.03 0.036 

State -0.150** 0.059 -0.308*** 0.048 -.1441** 0.055 -.2095*** 0.044 

Large Hub 0.027 0.026 0.015 0.025 0.0066 0.026 -.0617** 0.023 

2015 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.653*** 0.044 0.587*** 0.034 .70716*** 0.048 .67023*** 0.038 

Compensatory 0.144*** 0.044 0.218*** 0.036 .09525* 0.045 .1657*** 0.038 

Hybrid 0.175*** 0.046 0.231*** 0.035 .1234** 0.045 .1677*** 0.037 

City -0.056 0.039 -0.032 0.03 -0.057 0.036 0.059 0.031 

County 0.022 0.06 0.086** 0.044 -0.013 0.052 0.0341 0.045 

State -0.220*** 0.076 -0.339*** 0.071 -.2130** 0.070 .4288*** 0.058 

Large Hub 0.034 0.034 0.082*** 0.028 0.0138 0.032 .06303* 0.027 
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Table 9. Truncated Regression Results After Dropping 2 and 4 Dehubbed Airports (continued)  
Without 2 De-hubbed Residual Airports†† Without 4 De-hubbed Residual Airports††† 

  CRS VRS CRS VRS 

2016 Parameter BSE Parameter BSE Parameter BSE Parameter BSE 

Constant 0.577*** 0.04 0.579*** 0.033 .62568*** 0.042 .6955*** 0.033 

Compensatory 0.181*** 0.04 0.175*** 0.033 .1376*** 0.039 .1077*** 0.032 

Hybrid 0.221*** 0.04 0.178*** 0.035 .1783*** 0.041 .1045*** 0.031 

City -0.015 0.036 -0.024 0.028 -0.0176 0.033 -.0558* 0.025 

County 0.103* 0.056 0.164*** 0.049 0.07 0.051 .0894* 0.040 

State -0.241*** 0.061 -0.440*** 0.058 -.1976*** 0.058 -.4059*** 0.049 

Large Hub 0.001 0.031 0.088*** 0.025 -0.0203 0.029 0.0399 0.023 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

† BSE is the bootstrap standard error 

†† Excluding LAS and CLE   

††† Excluding LAS, CLE, STL and PIT 

 As a final robustness check, following Barros and Dieke (2008), I pooled the data of the 

59 US hub airports from years 2009 through 2016 and conducted the efficiency analysis with a 

total of 472 observations (or DMUs). The descriptive statistics of efficiency scores under CRS 

and VRS technology are reported in  Appendix D.26 Following the first-stage DEA, I conducted 

a second-stage analysis using the SW procedures with 1,000 bootstrap replications. The results 

of the regression model are reported in Appendix E. Both use-agreement variables remain 

positive and significant at 1% level.  

2.8. Conclusion 

Following the deregulation of the U.S. airline industry in 1978, both airlines and airports 

in the U.S. encountered increased competition. Changes like the adoption of the hub-and-spoke 

system, the rise of low-cost carriers, and increased airline competition compelled both airports 

and airlines to be strategic about their operations. Although airports and airlines are vertically 

separated in the U.S., their operations are inseparable; thus forging a strong vertical relationship 

is important to both. The most common form of vertical business arrangements between airports 

                                                 

 

26 The full set of efficiency scores from the pooled data is available from upon request. 
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and airlines in the U.S. is airport use agreements that generally follow a residual, compensatory 

or hybrid method.  

Under the residual method, airports may obtain financial support from signatory airlines 

with which they can forge long-term business relationships to help alleviate financial stress and 

uncertainty. In turn, the signatory airlines may benefit from low user fees as compared to other 

airlines, with access to airport facilities secured and prioritized over rivals. However, host 

airports may have less incentive to increase non-aeronautical revenues and have a diminished 

focus on operating expenditures. These two factors may lead to a moral hazard problem in the 

context of asymmetric information.  

In light of this, I conducted a two-stage semiparametric efficiency analysis to examine the 

effects of contractual agreement type on airport efficiency using U.S. airport data from 2009 to 

2016. The results show that the efficiency contribution of both compensatory and hybrid 

methods was evident in U.S. airports. Specifically, airports that follow either of these two 

methods outperformed those that followed the residual method. This might be that, compared to 

the compensatory and hybrid counterparts, residual-typed airports do not bear the financial risk 

of operations, but their signatory airlines do. This financial guarantee offered by the signatory 

airlines (the principal) creates unequal risk-sharing which in turn disincentivizes the airport (the 

agent) from striving for greater operational efficiency especially in areas where the signatory 

airlines cannot fully observe.  Hence, a lower airport efficiency may undercut any benefits that 

the signatory airlines expect to receive through the residual-typed contracts. While I reached this 

conclusion, the model postulated the agreement methods as exogenous variables since airport 

operators develop their operating budgets and calculate the user fees based on the agreement 

method already in place. Nevertheless, since the distribution of use agreements may not be 
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completely random, there may be potential estimation issues associated with possible 

endogeneity of the agreement method variables.   

Besides use agreements, I analyzed the effects of governance forms and hub size on 

airport efficiency. According to the regression results, airports governed by the state are less 

efficient than the airports governed by port/airport authorities. In addition, large hub airports 

exhibit higher efficiency than medium hub airports. Since U.S. airports are public infrastructure 

managed and operated by governments, they are prohibited to seek revenue surpluses (FAA, 

2008). Thus my study focused on airport technical efficiency as opposed to profitability which 

may be of interest to private airports in other parts of the world.  

Lastly, although the results suggest no statistically significant difference between hybrid- 

and compensatory-typed agreements, both airports and airlines may benefit most from hybrid-

typed agreements. This is because hybrid contracts are flexible and require both parties to invest 

in equal efforts. The reduction in risk through a more balanced risk-sharing mechanism increases 

the utility of airports and airlines (Hihara, 2012). On one hand, under a hybrid agreement, the 

airport is motivated to optimize non-aeronautical operations since they bear the risk and receive 

the benefits of terminal operations. On the other hand, the airport obtains financial support from 

the signatory airlines in airfield operations. Furthermore, an airport’s freedom to make project 

decisions is not restricted by the hybrid contract. Potentially, the signatory airlines could obtain a 

share from non-aeronautical revenues if they agreed on revenue-sharing in the hybrid agreement. 

Under a compensatory contract, the under-effort problem of the airport is less of a concern, but 

since all financial risk falls on the airport, it becomes more susceptible to economic downturns. 

Thus, among the three types of agreements analyzed for this paper, the hybrid agreement seems 
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to be the fairest for both airlines and airports, and it guards against the moral hazard problem 

which we observe in residual agreements.  
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CHAPTER 3: AIRPORT USE AGREEMENTS AND COST EFFICIENCY  

                                               OF U.S.AIRPORTS 

3.1. Abstract 

In this study, I examined the impact of airport use agreements on the cost efficiency of 59 

U.S. hub airports in the years between 2009 and 2016 by estimating three stochastic cost frontier 

models. The major finding in this research is that airports adopting the residual rate-setting 

method is less cost-efficient than the airports adopting either the hybrid or compensatory method. 

This cost inefficiency of residual airports may be an indicator of a lack of vigilance over airport 

operating costs, which in turn may translate into higher user fees for the signatory airlines.  This 

result lends credence to the finding in Chapter 2 that residual agreements may exert a moral 

hazard problem of airport management due to the risk-shifting feature of the agreements that 

shield the airports from fiscal uncertainty. 

3.2. Introduction 

In the years following the Airline Deregulation Act in 1978, the U.S. air transportation 

industry experienced higher air traffic, a higher number of passengers and lower airfares 

(Peterson, 2018). Besides, airlines had to deal with more intense competition (D’Alfonso, 2011). 

Between 1979 and 2018, 180 airlines had filed for Chapter 11 bankruptcy, and 24 airlines filed 

for Chapter 7  bankruptcy27. In this unsettled environment, airlines need a reliable airport partner 

for their operations and for maintaining and enhancing their positions in the downstream market. 

The airport use agreement is one of the most important and common vertical contractual 

arrangements in the U.S. air transportation industry. The agreement between an airport and the 

                                                 

 

27 http://airlines.org/dataset/u-s-bankruptcies-and-services-cessations/ 
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signatory airlines provides both parties privileges, obligations and rights. Through airport use 

agreements, business arrangement and rate-setting between airports and airlines are established. 

In addition, the agreements may also define both parties’ control spans on airport management, 

responsibilities for airport’s financial risks, and conditions for airport revenue sharing. In the 

U.S., airport use agreements are commonly categorized into three types in accordance with the 

three rate-setting methods adopted by airports; they are the residual method, the compensatory 

method, and the hybrid method (FAA, 2009).  

Under the residual method, the signatory airlines agree to bear the financial risks of 

normal business operations of the host airport. If there is a budget deficit, the signatory airline 

pays the “residual” amount of operating costs and the debt-service costs for bonds after the 

revenues generated from other airlines and non-aeronautical activities (FAA, 1999). In the case 

of a budget surplus, the excess revenue will be credited to the signatory airlines. Therefore, the 

host airport can break even under the residual method. Because of their commitment to bear the 

airport’s financial risk, the signatory airlines pay lower airport fees. For example, the landing fee 

of non-signatory airlines is usually 1.25 times the fee paid by the signatory airlines. Thus, the 

residual method may have implications on downstream airline competition and new air carrier 

entry (FAA, 1999). Although the residual agreements provide financial assurance for the host 

airport,  airports face a trade-off between risk and autonomy on capital expenditures. Due to the 

majority in interest (MII) clause in residual agreements, airports’ control span on capital projects 

is narrowed. Since the cost of the capital projects could lead to an increase in the rates of 

signatory airlines, the airport must seek the approval of the signatory airlines on new capital 

projects under the MII clause.   
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The compensatory method is the opposite version of the residual method.  Airlines’ fees 

are determined according to their usage; there are no reduced user fees for airlines under this 

method, and the airport bears the entire financial risks of its operations. However, the airport also 

reaps the rewards of all revenue surplus from non-aeronautical operations, and a compensatory 

airport has full control over its investment decisions. The compensatory method has become 

more popular in recent years because of the lucrativeness of non-aeronautical airport business. 

Non-aeronautical revenues have becomes a vital income source of airports that enable them to 

strengthen their financial position in recent years (Barbot & D’Alfonso, 2014; D’Alfonso, Jiang 

& Wan, 2013; Zhang, Fu & Gavin, 2010).  

The hybrid method is a combination of residual and compensatory methods. Under this 

method, a common arrangement is for an airport to adopt the residual method in airfield 

operations and a compensatory rate-setting method in terminal operations. The financial risk of 

airfield operations is borne by the signatory airline while the airport bears the financial risk of 

terminal operations. Besides, the hybrid contract may include revenue sharing contingent upon 

excess non-aeronautical revenue at the airport (Faulhaber et al. 2010). The signatory airlines may 

benefit from the extra revenues of the host airport’s non-aeronautical operations. Meanwhile, the 

host airport has more freedom over the use of its resources and surplus funds. However, airports 

usually share non-aeronautical revenues with the signatory airlines to increase demand for the 

non-airline services at the airport. 

According to Faulhaber et al. (2010), the airports adopting the residual agreement are less 

incentivized to increase non-aeronautical revenues leading to more operational inefficiency 

(Karanki & Lim, 2020). On the other hand, because of the financial guarantee of signatory 

airlines, the airports adopting the residual method also have a diminished focus on operating 
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expenditures (Faulhaber et al., 2010), especially since the signatory airlines have no control over 

airport operating costs. This results in non-optimal use of resources or inputs which leads to cost 

inefficiency. The airport’s lack of vigilance over operating expenditures may be a result of a 

moral hazard problem of residual airports forcing the signatory airlines to bear more financial 

risk for their airports, and this may, in turn, result in higher user fees paid by the signatory 

airlines. Thus, the expected benefits of signatory airlines from the residual agreement may not be 

as high as what they might expect to get.  

Chapter 2 of this dissertation examines the implications of airport use agreements on 

airport operational efficiency, but the chapter does not address how the use agreement types 

affect operations in monetary terms. In this chapter, I focus on airport operating costs, which not 

only reflect airport managerial performance but also cost performance. This allows me to 

measure the impact of non-optimization due to the use agreements from a cost perspective. The 

results and information from this study will be useful for airports as they seek to improve their 

performances through efficient resource allocation, and for airlines as when they execute long-

term agreements with airports. To this end, I employ three stochastic frontier analyses to 

examine the implications of residual agreements on airport cost efficiency. To the best of my 

knowledge, the effects of use agreements on airport cost efficiency have not been previously 

analyzed. This study aims to identify differential in cost efficiency between use agreements. The 

analysis and results in this chapter lend support to the finding in Chapter 2 that the financial 

protection provided by airlines to residual airports may lead to airport underperformance as 

evidenced by higher inefficiency in operations and higher airport operating (variable) cost.  The 

higher variable cost could then lead to higher charges for airlines.  
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The chapter is organized as follows: In Section 3.3, I review the studies on airport cost-

efficiency. In Section 3.4, I present the method to analyze cost efficiency. After that, I describe 

the empirical data used in this research in Section 3.5. In Section 3.6, I discuss the results. In the 

last section, I conclude with the findings and implications.  

3.3. Literature Review 

Airport cost efficiency is scarcely seen in the literature. Barros (2008), Oum, Yan and Yu 

(2008) and Martin, Roman and Voltes-Dorta (2009) are among the first to conduct airport cost-

efficiency studies.  Barros (2008) analyzed the efficiency changes of Portuguese airports 

between 1990 and 2000 with a stochastic frontier model. He employed a translog total cost 

frontier to measure airport cost efficiency. Oum, Yan and Yu (2008) analyzed the relationship 

between airport cost efficiency and ownership forms by employing a Bayesian method on a 

stochastic cost frontier model. They developed a system of a translog variable cost function and 

the associated cost-share equations. Using a method similar to Oum et al. (2008), Martin, Roman 

and Voltes-Dorta (2009) analyzed Spanish airports’ cost-efficiency using a Markov Chain Monte 

Carlo process to estimate a stochastic frontier model of an equation system that includes a 

translog total cost function and cost-share equations.  

Assaf (2010) analyzed the cost efficiency of Australian airports using a Bayesian panel 

stochastic frontier. For the panel stochastic frontier analysis, he employed the Battese and Coelli 

(1992) time-decay model of a Cobb-Douglas cost function. Martín, Rodríguez-Déniz and Voltes-

Dorta (2013) analyzed the drivers of cost efficiency of  194 airports worldwide between 2007 

and 2009. For this analysis, they employed a Bayesian approach on a stochastic frontier model 

by estimating a seemingly unrelated regression to estimate a cost frontier along with cost-share 

equations. After they obtained the efficiency scores from a stochastic frontier analysis, they 
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regressed these scores on environmental factors: ownership, the Herfindahl-Hirschman Index, 

the share of charter traffic, the share of low-cost carrier flights, annual passenger traffic in 

millions, maximum takeoff weight, share of material costs, the share of commercial over total 

revenues. They concluded that airline dominance increased cost efficiency in the US, whereas it 

has a negative effect in Europe; low-cost carriers (LCCs) increased cost efficiency because of 

their less demanding nature for airport services compared to full service airlines;  outsourcing 

has a negative effect on costs in a recession.  

Kutlu and McCarthy (2016) analyzed the effects of various management forms in the 

U.S. on cost efficiency. They used a translog variable cost function with cost-share equations by 

estimating a true fixed effects model proposed by Greene (2005a). Through this method, the 

authors analyzed the governance effects on cost efficiency. The authors reported that medium-

sized airports are more cost-efficient than large-sized airports, and local ownership, multi-

airports in the metropolitan area, multi-airport joint ownership in the metropolitan area reduce 

cost-efficiency. The above studies are summarized in Table 10. 

Table 10. Summary of Airport Cost Efficiency Studies 

Authors 
Functional 

Form 
Model 

Explanatory 

Variables 

Quasi Fixed 

Capital 

Inputs 

Input Prices Outputs 

Oum, Yan, 

and Yu 

(2008) 

Translog 

Variable 

Cost 

Function 

with Share 

Equations 

Bayesian 

SFA 

Model, 

SUR 

Ownership 

Forms 
 Number of 

Runways

,  

 Terminal 

Size 

 Labor,  

 Non-Labor 

 Number of 

Passengers,  

 Number of 

Aircraft 

Movements 

(ATM) 

 Non-

Aeronautic

al Revenue 

Barros (2008) Translog 

Total Cost 

Function 

SFA 

Model 

NA NA  Labor 

 Capital 

 Sales to 

Passenger, 

  Sales to 

Planes 
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Table 10. Summary of Airport Cost Efficiency Studies (continued) 

Authors 
Functional 

Form 
Model 

Explanatory 

Variables 

Quasi Fixed 

Capital 

Inputs 

Input Prices Outputs 

Martin, 

Roman, and 

Voltes-Dorta 

(2009) 

Translog 

Total Cost 

Function 

with Share 

Equations 

Bayesian 

SFA 

Model, 

SUR 

NA NA  Labor 

 Material 

  Capital 

 Aircraft 

Movements 

 Work Load 

Units 

Assaf (2010) Cobb-

Douglas 

Total Cost 

Function 

Bayesian 

Panel 

SFA, 

Battese 

and 

Coelli 

(1992) 

NA NA  Labor 

 Capital 

 Total 

Passengers,  

 ATM,  

 Total Cargo 

Martín, 

Rodríguez-

déniz, and 

Voltes-Dorta 

(2013) 

Translog 

Variable 

Cost 

Function 

with Share 

Equations 

and 

Hedonic 

Function 

Bayesian 

SFA 

Model, 

SUR 

 Ownership 

  HHI, 

  Share of 

Charter 

Traffic,  

 Share of 

LCC 

Flights,  

 Passenger,  

 Max. 

Takeoff 

Weight,  

 Share of 

Material 

Costs, 

  Share of 

Commer

cial Rev.  

 Pre-crisis 

Level 

Efficienc

y 

 Terminal 

floor area 

 Total 

runway 

length 

 Labor 

 Material 

 ATM, 

  Domestic 

Passengers,  

 International 

Passengers,  

 Cargo,  

 Commercial 

Revenues 

Kutlu and 

McCarthy 

(2016) 

Translog 

Variable 

Cost 

Function 

with Share 

Equations 

Bayesian 

Panel 

SFA, 

Greene 

(2005a) 

 Ownership 

Forms in the 

US.(Multi-

airport, 

Multi-airport 

Joint 

Ownership, 

Local 

Ownership) 

 Hub Status 

Effective 

Number of 

Standard 

Runways 

   

 Labor,  

 Repair/ 

Maintenan

ce,  

 General 

Operation

s 

 Departures 
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None of the above studies have examined the use agreement effects on airport cost 

efficiency. However, a few studies have focused on airport technical efficiency and use 

agreements. The earliest study I found was conducted by Gillen and Lall (1997)  who analyzed 

the technical efficiency of 21 US airports between 1989 and 1993. They argued that the residual 

method led to more efficient airside operations whereas the compensatory method led to more 

efficient terminal operations. This result could imply that airports with a hybrid agreement might 

be more efficient. However, Gillen and Lall (1997) did not examine any specific form of vertical 

agreements. Vasigh and Hamzaee (1998)  developed a model to understand which agreement 

method is most desirable for U.S. airports in terms of their financial performance. They found 

that a compensatory arrangement contributes more to the profit of an airport.  

Apart from the effect of vertical agreements on airport efficiency, Richardson, Budd and 

Pitfield (2014) analyzed the effects of use agreements on the financial performances of 23 US 

large hub airports for the year 2011/2012. In their study, they determined the key financial 

performance indicators through an interview series with 12 large hub airports’ managers. The 

five financial performance indicators are revenue generation, capital investment, commercial 

performance, cost-effectiveness, and financial profitability. The main findings in this study are 

compensatory airports generate higher revenues than residuals, residual airports are the most 

cost-effective airports, residual airports have higher commercial revenues than other two 

methods, and the compensatory airports are the most financially profitable. Oum, Zhang and 

Zhang (2004) examined the effects of use agreements on total factor productivity and capital 
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input productivity of airports when they analyzed the effects of single till price cap28 and dual till 

price cap on airport efficiency. They regarded the compensatory method as the U.S. version of 

the dual till price-cap approach and the residual method as a U.S. equivalent of the single till 

price cap approach. In the empirical part of the paper, they examined the effects of airport 

productivity indicators on capital input productivity and total factor productivity of 60 airports in 

1999; the sampled airports include 11 airports in Asia, 18 airports in Europe and 31 airports in 

North America.  They found that airport capital input productivity is higher under single-till 

pricing (or a residual agreement). On the contrary, total factor productivity is higher under dual-

till pricing (or a compensatory agreement) since the under-investment problem in capacity under 

single-till is higher than the one under dual till.   

3.4. Theoretical Framework and Model 

3.4.1. Stochastic Frontier Analysis 

The stochastic frontier analysis (SFA) was originally developed by Aigner, Lovell, and 

Schmidt (1977) (ALS) and Meeusen and Van Den Broeck (1977) for cross-sectional data.  Pitt 

and Lee (1981) (PL) extended the ALS model for panel data. The PL stochastic production 

frontier is given by 

𝑦𝑖𝑡 = 𝛼 + 𝑥𝑖𝑡
′ 𝛽 + 𝜈𝑖𝑡 − 𝑢𝑖,                                                        (3.1) 

where 𝑦𝑖𝑡 is the output for  i = 1,…, n cross-sectional units at t = 1,…, T periods, and 𝑥𝑖𝑡 is a 

vector of input variables. The term 𝜈𝑖𝑡  is the error term distributed  𝑁(0, 𝜎𝑣
2),  and 𝑢𝑖 is the one-

sided time-invariant inefficiency term distributed 𝑁+(0, 𝜎𝑢
2). Similar to ALS,  the PL model can 

                                                 

 

28 Single-till price cap refers to an airport’s decision to base their current period aeronautical charges on both 

aeronautical and non-aeronautical revenues in the preceding period. Dual-till price cap refers to an airport’s current 

aeronautical charges that are based only on its aeronautical revenues in the preceding period. 
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be estimated by the maximum likelihood method. However, PL has still two limitations. Firstly, 

the model assumes uncorrelatedness between inefficiency and the explanatory variables. 

Secondly, the model assumes time-invariant inefficiency (Greene, 2004). The first limitation 

implies that although inefficiency includes the heterogeneity, it is uncorrelated with explanatory 

variables. Although firm-specific heterogeneity is neither input prices nor output quantity, it has 

explanatory power on the inefficiency term (Greene, 2005). Therefore, firm-specific 

heterogeneity in inefficiency may be correlated with the explanatory variables. Thus, the 

parameter estimates in the PL model are biased. PL also does not allow the inefficiency to vary 

over time, and this may not be a realistic assumption with long periods. 

The heterogeneity limitation can be relaxed first by a fixed-effects model offered by 

Schmidt and Sickles (SS, 1984). In the SS production model (2).  which is estimated by OLS, all 

heterogeneity is stacked into 𝛼𝑖 = 𝛼 − 𝑢𝑖:   

                                       𝑦𝑖𝑡 = 𝛼𝑖 + 𝑥𝑖𝑡
′ 𝛽 + 𝜈𝑖𝑡, and 

 �̂�𝑖 = 𝑚𝑎𝑥𝑖(�̂�𝑖) − �̂�𝑖 ≥ 0                                                         (3.2) 

where the estimates of 𝑢𝑖, �̂�𝑖, capture all heterogeneity, 𝑣𝑖𝑡~(0, 𝜎𝑣
2), and the SS model allows for 

individual effects. However, there is still a time-invariant inefficiency problem in SS (Battese 

and Coelli, 1992; Battese and Coelli, 1995). According to Greene (2004),  one major limitation 

of the model is that any time-invariant heterogeneity will appear in 𝛼𝑖 and �̂�𝑖. Thus, Battese and 

Coelli (BC, 1992) proposed a model in which inefficiency may vary over time. Accordingly, 

inefficiency is defined as 

𝑢𝑖𝑡 = 𝜂𝑡|𝑈𝑖|,                                                                     (3.3) 

where 𝜂𝑡 = exp [−𝜂(𝑡 − 𝑇)], and 𝜂 is an unknown scalar parameter. Through this setting, BC 

allows inefficiency to decrease, stay constant or increase over time when 𝜂 < 0, 𝜂 = 0, 𝜂 > 0, 
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respectively. Battese and Coelli (1995) (BC95) also proposed a model addressing the 

heterogeneity problem.  The technical inefficiency term 𝑢𝑖𝑡 is specified as  

𝑢𝑖𝑡 = 𝑧𝑖𝑡𝛿 + 𝑤𝑖𝑡,                                                                  (3.4) 

where 𝑧𝑖𝑡 is a vector of explanatory variables for 𝑢𝑖𝑡,  𝛿 is unknown coefficients to be estimated, 

and 𝑤𝑖𝑡 is a random variable distributed truncated normal. However, BC95 does not separate 

cross-unit heterogeneity and inefficiency.  Greene (2004) argued that the conventional panel data 

stochastic frontier models stack heterogeneity and inefficiency in one disturbance term. Greene 

(2005a) addressed these issues by reformulating conventionally fixed and random effects models 

with  “true” fixed and random-effects models. In “true” random-effects model (TRE), he isolated 

time-invariant cross-unit heterogeneity (𝑤𝑖) from inefficiency (𝑢𝑖𝑡). Hence, the basic difference 

between BC95 and TRE is the location of random firm-specific heterogeneity in the stochastic 

frontier model. In TRE, 𝑤𝑖 is a time-invariant cross-sectional unit-specific term, and it is 

assumed to be uncorrelated with the with all the other terms in the model (3.5): 

𝑦𝑖𝑡 = (𝛼 + 𝑤𝑖) + 𝛽′𝑥𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡,                                             (3.5)                                                                                                          

where 𝑤𝑖 follows a normal distribution 𝑁(0, 𝜎𝑤
2 ), 𝑣𝑖𝑡 follow 𝑁(0, 𝜎𝑣

2), and 𝑢𝑖𝑡 follows 

𝑁+(0, 𝜎𝑢
2). Thus, TRE offers three disturbance terms (𝑣𝑖𝑡, 𝑢𝑖𝑡, 𝑤𝑖). In this way, TRE aims to 

remove bias from inefficiency resulting from time-invariant unobservable factors. 

3.4.2. Short-Run Cost Frontier 

To examine the effects of use-agreements on cost efficiency, I employed  BC95 and TRE 

methods which consider time-invariant cross-unit heterogeneity and time-varying inefficiency. In 

addition, I compared the BC95 and TRE results with those derived from a pooled ALS model 

which considers heterogeneity in inefficiency. In this study, an airport chooses an optimal level 

of input use to minimize the cost of production given the prevailing technology and input prices. 
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Airport costs can be analyzed in a short or long-run context. In economics, a long-run production 

refers to a time in which firms can adjust all inputs to their optimal levels, whereas in short-run 

production, one or more inputs are invariable. Since airport capital inputs are invariable, in this 

study I conduct a short-run analysis.  In the short run, the total cost is composed of  fixed and 

variable costs as in equation (3.6) where 𝑅𝑖𝑡𝐾𝑖𝑡 represents the total fixed costs, while 

𝐶𝑣(𝑊𝑖𝑡, 𝑌𝑖𝑡, 𝐾𝑖𝑡, 𝛿) represents the total variable costs for airport i at time t: 

𝐶𝑖𝑡
𝑠 = 𝐶𝑣(𝑊𝑖𝑡, 𝑌𝑖𝑡|𝐾𝑖𝑡, 𝛿) + 𝑅𝑖𝑡𝐾𝑖𝑡,                                              (3.6) 

where the variables cost is a function of the input prices (𝑊𝑖𝑡 = (𝑤1𝑡, 𝑤2𝑡 … 𝑤𝑗𝑡)),   outputs 

(𝑌𝑖𝑡 = (𝑦1𝑡, 𝑦2𝑡 … 𝑦𝑚𝑡)), given the level of  fixed capital input (𝐾𝑖𝑡) and the state of technology 

(𝛿). The fixed cost component is the sum of the products of capital input price and capital input 

quantity, and 𝑅𝑖𝑡 is the vector of capital prices (𝑅𝑖𝑡 = (𝑟1𝑡, 𝑟2𝑡, … 𝑟3𝑡)), and 𝐾𝑖𝑡 is the vector of 

fixed capital quantity (𝐾𝑖𝑡 = (𝑘1𝑡, 𝑘2𝑡 … 𝑘𝑛𝑡)). In the short run, the airport cannot change its 

capital inputs, and they focus on minimizing variable costs. 

 Input prices in this study are wage, maintenance/repair price, and operating price other 

than wage and maintenance/repair; outputs are airport’s workload units (WLU)29 and non-

aeronautical revenues; the fixed inputs are the effective number of runways30 and airport surface 

area. Since U.S. airports are heterogenous, hub-size was added to the model as an explanatory 

variable. A time trend (t) was also included in the model to control the technical change in the 

variable cost over the years. Following Farsi, Filippini and Kuenzle (2006) and Filippini and 

Maggi (1992), the effects of the input price variables on operating costs are assumed to be 

                                                 

 

29 1 WLU = 1 passenger or 100 kg of freight (Doganis, 2005). 
30 The effective number of standard runway is defined as ∑ (𝐿𝑒𝑛𝑔𝑡ℎ𝑓𝑖𝑡)(𝑊𝑖𝑑𝑡ℎ𝑓𝑖𝑡)/1,500,000𝑓  (McCarthy, 2014). 
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constant over time. Since the use agreement types do not vary for the overwhelming majority of 

airports, these variables are not interacted with the time trend as well. The variable cost function 

was specified as a translog form (Christensen, Jorgenson and Lau, 1973) and all variables 

(excluding time trend and hub-size) were normalized by dividing them by their sample means, 

ln(𝐶𝑖𝑡
𝑣 ) = β0 + β1Si + β2t + ∑ βj ln (

wjt
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) + ∑ βn ln (
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The difference between a  variable cost function in (3.7) and a variable cost frontier is the 

inefficiency term 𝑢𝑖𝑡 as demonstrated below: 

                                          ln(𝐶𝑖𝑡
𝑣 ) = ln(𝐶𝑖𝑡

𝑣∗) + 𝑣𝑖𝑡 + 𝑢𝑖𝑡,                                             (3.8) 

where ln(𝐶𝑖𝑡
𝑣 ) is the observed log variable cost, and  ln(𝐶𝑖𝑡

𝑣∗) + 𝑣𝑖𝑡 constitutes the variable cost 

frontier attainable. If an airport is a variable cost-inefficient, 𝑢𝑖𝑡 > 0, then the observed variable 

cost is higher than the variable cost frontier. If an airport is a variable cost-efficient, 𝑢𝑖𝑡 = 0, the 

observed variable cost is equal to the minimum variable cost. In the pooled ALS model, 𝑣𝑖 

follows a normal distribution 𝑁(0, 𝜎𝑣
2), and  𝑢𝑖 follows a one-sided 𝑁+(0, 𝜎𝑢𝑖

2 ) distribution 

where 𝜎𝑢𝑖
2 = exp (𝑧𝑖

′𝜓) where 𝑧𝑖 is a vector of binary variables for the agreement types, and 𝜓 

are the unknown parameters to be estimated (Caudill, Ford & Gropper, 1995; Hadri, 1999).  In 

the BC95 model,  𝑢𝑖 is distributed 𝑁+(𝑧𝑖𝑡𝛿, 𝜎2) and 𝑣𝑖 follows a normal distribution. In TRE, 𝑣𝑖 

is assumed to distribute normal, while 𝑢𝑖 follows an exponential distribution with 𝜎𝑢𝑖𝑡
2  mean. 

Christensen and Greene (1976) imposed two restrictions on the translog functional forms 

by considering a well-behaved cost function assumptions: (i) homogeneity of degree 1 in input 
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prices which provides the condition that total cost increases in response to a proportional 

increase in factor prices, and (ii) symmetry of the cross-partials for the continuity assumption. To 

satisfy these assumptions, total operating cost and input prices are normalized by an arbitrarily 

chosen input price which is operating price. Accordingly, the following restrictions are imposed: 

𝛽𝑗𝑝 = 𝛽𝑝𝑗, ∑ 𝛽𝑗𝑗 = 1, ∑ 𝛽𝑗𝑝𝑗 = 0 ∀ 𝑝,   ∑ 𝛽𝑗𝑚𝑗 = 0 ∀ 𝑚 ,   𝑎𝑛𝑑  ∑ 𝛽𝑗𝑛𝑗 = 0 ∀ 𝑛      (3.9) 

3.5. Data 

I used an unbalanced panel dataset of 30 large hub airports and 29 medium hub U.S. 

airports for the years between 2009 and 2016. The data were mainly obtained from the 

Certification Activity Tracking System (CATS) Database. From the CATS, I obtained the data 

on the number of employees, labor expenditures, operating expenses, maintenance/repairs 

expenditures, number of enplanements, landed weights in pounds, and total non-aeronautical 

revenues. Seventeen31 out of 472 observations were eliminated from the analysis because the 

data on maintenance/repairs were not reported to CATS.  

Since airports are multiproduct firms, the non-aeronautical operations should be 

represented as well as aeronautical operations in the cost function. The vast majority of current 

studies employ non-aeronautical revenue as the output of non-aeronautical operations (Bottasso 

& Conti, 2012; McCarthy, 2016; Oum et al., 2008; Voltes-Dorta & Lei, 2013). Thus, I used non-

aeronautical revenues as the output of non-aeronautical operations along with WLU as the output 

of aeronautical operations.  The fixed inputs are the effective number of standard runways and 

                                                 

 

31 The maintenance/repair data of the following airports are not available in the CATS: Albuquerque International 

Sunport (ABQ) in 2011, Hartsfield-Jackson Atlanta International Airport (ATL) in 2009, Austin-Bergstrom 

International Airport (AUS) in 2009, Bradley International Airport (BDL) in 2012, Nashville International Airport 

(BNA) in 2009, Buffalo Niagara International Airport (BUF) in 2009 and 2010, Louis Armstrong New Orleans 

International Airport (MSY) in 2009 and 2013, Palm Beach International Airport (PBI) in 2009 and 2010, Seattle-

Tacoma International Airport (SEA) in 2009, John Wayne Airport (SNA) in 2010,  and St. Louis Lambert 

International Airport (STL)  in 2009, 2011, 2012 and 2013. 
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airport surface area. Based on the capital intensive structure of airports, a change in capital inputs 

would require a higher level of investment in the long run. Therefore, runways and airport 

surface area are considered as fixed capital inputs in the short run. The runway data were 

obtained from the FAA Aeronautical Information Service,32 while the airport surface area was 

obtained from the Airport GIS data portal of FAA33. The effective number of standard runways 

was calculated by following McCarthy (2014). A common practice in the literature is that labor 

price can be obtained by dividing total expenditures for employees by the number of employees 

(Bottasso & Conti, 2012; Martin et al., 2009). The employee total expenditures include wages, 

health insurance and other benefits paid to the airport’s employees. The other input price apart 

from wages and maintenance/repair prices were calculated by dividing the remaining operating 

expenditures by the number of aircraft movements (Bottasso & Conti, 2017; Martin et al., 2009). 

In the same fashion, maintenance/repair prices were obtained by dividing maintenance/repairs 

expenditures by the number of aircraft movements (Bottasso & Conti, 2017). The number of 

aircraft movements was obtained from the Operations Network Web Data System34. I controlled 

for heterogeneity among airports with hub size. The hub size classifications were determined by 

the FAA according to the number of passenger boardings annually. Public commercial service 

airports that have more than 10,000 passenger boardings each year are considered primary 

airports, and of which, those that  account for 1% or more of the annual passenger boardings in 

the U.S. are classified as large hubs airports, while primary airports that account for at least 

0.25% but less than 1% of the boardings are considered medium hub airports35. Hub-sizes were 

                                                 

 

32 https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/Airport_Data/ 
33 https://airports-gis.faa.gov 
34 https://aspm.faa.gov/opsnet/sys/main.asp 
35 https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/categories/ 
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obtained from LeighFisher (2016). Medium hub size was chosen as a control variable so a large 

hub size binary variable was added to the model. Hub takes on the value of 1 for large hubs, and 

0 otherwise. In addition, use-agreement types were used as determinants of airport cost 

inefficiency in the stochastic frontier model. The information on use-agreement types for each 

airport is obtained from LeighFisher (2016). According to the data, eleven of the large hub 

airports adopted the compensatory method while eight of them used the hybrid method, and 

eleven of them followed the residual method. Eleven of the medium-hub airports preferred the 

hybrid method, ten of them used the residual method, and eight of them adopted the 

compensatory method. I assigned residual airports as the control group; this means that airports 

adopting the residual method are chosen to be the base group. Table 11 shows a summary of the 

variables used in the model. Appendix A contains information on airport hub size and the use 

agreement types.  

The descriptive statistics of the variables are presented in Table 12. As Table 12 depicts, 

total operating cost increased by about 30% between the years 2009 and 2016 while operating 

prices other than wages and maintenance prices went up by 25.8%, maintenance prices increased 

by 38.9% and wages increased by 19.5%. The largest annual mean operating expenditure was 

observed in 2016. The annual averages of the two fixed inputs remained constant throughout the 

study period. 
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Table 11. Variable Descriptions 
Variable Description/Unit of Measurement Source 

Outputs   

WLU (y1) Workload Unit (1 WLU = 1 passenger or 100 

kg of freight) 

CATS 

Non-aeronautical revenues (y2) Annual revenues from non-aeronautical 

operations ($) 

CATS 

Input prices   

Wage (w1) Total labor expenditure /#employees ($) CATS 

Price of Maintenance (w2) Total maintenance-repair expenditures 

/aircraft movements ($) 

CATS/ Operations 

Network Web Data 

System 

Operating price (w3) 

Operating expenditures other than 

maintenance-repair and labor 

expenditures/aircraft movements ($)  

CATS/ Operations 

Network Web Data 

System 

Fixed Inputs   

Area (k1) Airport surface area (acres) Airport GIS data 

portal of FAA 

ENSR (k2) The Effective Number of Standard Runways FAA Aeronautical 

Information Service 

Other variables   

Large Hub   A dummy variable (Hub = 1 for large hubs, 0 

otherwise) 

Leigh Fisher 

Use agreements A dummy variable (1 for Compensatory 

airports, 0 otherwise; 1 for  Hybrid airports, 0 

otherwise, Residual is the control group.) 

Leigh Fisher 
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Table 12. Descriptive Statistics of Cost Efficiency Data 
   OUTPUTS INPUT PRICES FIXED 

INPUTS 

YEAR  Total 

Operating 

Cost (x106) 

WLU 

(x106) 

Non-Aero. 

Rev (x106) 

Other 

inputs 

 

Wages 

(x103) 

Maintenance ENSR Area 

(x103) 

2009 MEAN 211.84 17.8 95.4 421.67 107.8 93.04 3.4 4.8 

 SD 178.47 16.0 72.9 191.52 84.3 112.88 2.04 5.3 

2010 MEAN 216.43 18.5 97.7 432.68 109.9 102.91 3.4 4.8 

 SD 180.56 17.6 75.2 199.81 88.2 119.17 2.04 5.3 

2011 MEAN 226.55 

 

18.7 104.9 452.78 110.9 109.01 3.4 4.8 

 SD 193.05 17.2 83.1 211.07 91.0 122.99 2.04 5.3 

2012 MEAN 234.36 

 

18.7 109.1 478.78 112.7 114.31 3.4 4.8 

 SD 201.46 17.1 86.9 218.15 94.7 110.64 2.04 5.3 

2013 MEAN 241.76 

 

19.1 115.3 485.92 117.1 126.10 3.4 4.8 

 SD 208.45 17.5 92.7 229.69 100.6 117.07 2.04 5.3 

2014 MEAN 253.71 

 

19.5 121.8 498.12 116.2 144.66 3.4 4.8 

 SD 220.23 17.8 99.6 227.87 82.1 124.28 2.04 5.3 

2015 MEAN 260.62 

 

20.7 127.4 516.50 120.6 132.04 3.4 4.8 

 SD 227.09 19.6 104.6 231.50 92.9 115.01 2.04 5.3 

2016 MEAN 275.79 

 

21.6 136.0 530.51 128.8 129.20 3.4 4.8 

 SD 242.40 20.1 111.7 224.21 94.5 112.91 2.04  5.3 

 

In addition to Table 12, I also reported the descriptive statistics of the data by use 

agreement type in Table 13. Looking at Table 13 in more detail, we observe that the mean total 

operating cost of compensatory airports is the highest among the three groups of airports. The 

residual airports follow the compensatory airport in terms of operating costs. While the average 

non-aeronautical revenues of compensatory airports are higher than the other two airport 
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groups’, the average WLU of residual airports is the highest compared to the other two. Besides, 

compensatory airports appeared to have the highest average input prices. 

Table 13. Descriptive Statistics  by Use Agreement 
  𝑪𝒊𝒕

𝒗
 OUTPUTS INPUT PRICES 

 

FIXED 

INPUTS 

Use 

Agreements 

 Total 

Opt. 

Cost 

(x106) 

WLU 

(x106) 

Non-

Aero. 

Rev 

($). 

(x106) 

Other 

Input 

 

Wages 

(x103) 

Maintenance ENSR Area 

(x103

) 

Compensatory MEAN 302 19.2 136 509.68 152.80 172.29 3.5 4.64 

 SD 255 15.2 107 225.71 140.72 166.88 2.7 4.07 

Hybrid  MEAN 188 17.4 103 427.24 89.84 98.57 3.3 5.74 

 SD 141 16.6 78.8 201.26 23.67 63.19 1.7 7.46 

Residual MEAN 250 22.8 107 507.04 108.06 98.01 3.6 4.06 

 SD 204 21.5 87.3 230.00 54.81 74.37 1.4 2.72 

 

3.6. Results 

To examine the cost efficiency of the sampled airports, I estimated three models: pooled 

ALS, BC95 and TRE. As discussed in section 3, ALS was originally developed for cross-

sectional data. Thus, in a pooled ALS model, an airport appears multiple times in the data, but 

each appearance is assumed to be independent of the other appearances of the same airport. In 

other words, the pooled ALS model assumes each observation to be independently and 

identically distributed across time. Thus, this is a limitation of the pooled frontier model. 

Besides, ALS does not allow analyzing the effects of environmental factors on inefficiency. This 

limit is relaxed by scaling inefficiency distribution (𝑢𝑖~𝑁+(0, 𝜎𝑢𝑖
2 ), 𝜎𝑢𝑖

2 = exp(𝑧𝑖
′𝜓)). In this 

way, the effects of use agreements on cost inefficiency can be examined.  

 By employing BC95, we are able to account for the panel structure of the data. 

Furthermore, BC95 allows inefficiency to vary over the years and considers the heterogeneity in 
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the context of random-effects analysis. However, we need to separate heterogeneity from 

inefficiency to generate consistent results on the effects of use-agreement. Accordingly, we 

employed TRE to separate the unobserved cross-sectional airport heterogeneity from airport 

inefficiency. The descriptive statistics of efficiency scores obtained from these models are 

reported in Table 14.   

Table 14. The Descriptive Statistics of Efficiency Scores 
Model Mean SD Min Max 

BC95 0.904 0.058 0.629 0.968 

TRE 0.935 0.106 0.596 0.999 

Pooled 0.911 0.055 0.633 0.969 

As seen in Table 14, the mean efficiency estimate from the TRE model is 0.935, implying 

that the cost-saving potential was approximately 6.5%, while the mean efficiency estimates from 

the pooled and BC95 models are 0.911 and 0.904, respectively. The mean differences were 

compared with the paired t-test. Accordingly, the mean efficiency scores of TRE is greater than 

those derived from the other two models36.  Moreover, as seen in Figure 1, the mean and 

standard deviations of distribution in TRE are higher than the ones from BC95 and Pooled ALS. 

The mean TRE cost efficiency score suggests that U.S. airports could reduce their operating cost 

by an average of 6.5%. To put this in perspective, considering the average annual operating cost 

in 2016 ($275.79 million), a 6.5% potential cost reduction implies that a U.S. airport could 

reduce its operating cost by $17.93 million in 2016.  

                                                 

 

36The mean TRE cost efficiency is statistically greater than the mean cost efficiency of BC95 (t =-4.3174; p-

value=0.000). The mean TRE cost efficiency is greater than the mean cost efficiency of pooled ALS. t =-3.2602, p-

value=0.000). Additionally, the mean cost efficiency of pooled ALS is greater than the mean efficiency score of 

BC95 t- = 36.3620:p-value=0.000). 
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Figure 1. Kernel Density Distributions of Three Models 

The estimates of the three models are reported in Table 15. According to the Wald 

statistics, all three models are significant. Outputs (WLU and non-aeronautical revenue), input 

prices (wages and price of maintenance/repairs), and fixed inputs (area and ENSR) are 

significant and positive. A positive fixed input parameter estimate is common in airport cost 

analysis37, and it can be explained by over-capitalization (Cowing & Holtmann, 1983; Oum & 

Zhang, 1991).  In other words, if a firm holds an excessive amount of capital stock, an increase 

in fixed inputs leads to an increase in variable cost. Since U.S. airports face the lumpy capacity38 

problem (Gillen & Lall, 1997; Pels, Van Vuuren, Ng & Rietveld, 2016), the variable cost of 

airports increases when fixed inputs increases. Although the coefficient estimates in pooled ALS 

                                                 

 

37 See Oum et al. (2008), Martín et al. (2013), Kutlu & McCarthy (2016) and Zhao et al. (2014). 
38 Airports face lumpy capacity problem when they hold excess capacity in the short-run by considering their  long 

run capacity needs in advance (Doganis, 1992, page 47). 



 

72 

and BC95 are very close, the ones in TRE show some departures from the estimates of the other 

two, plausibly due to unobserved airport heterogeneity that was not captured by ALS and BC95.  

Therefore, we should expect inefficiency derived from BC95 and pooled ALS to be biased 

(Farsi, Filippini & Greene, 2005). Besides, the time trend is significant and negative, implying 

that cost reduced over the years. Large-hub size has a significant and positive effect on cost; that 

is a large hub has approximately 34% higher variable cost in the TRE model. However, the 

estimated effect is approximately 18.50% in both pooled ALS and BC95. 

The contributions of ENSR (approximately 18%) and maintenance/repairs price (14%) in 

TRE are higher than the ones in the other two models. In addition to these, I did not detect a 

significant time-variant parameter (𝜂) in BC95, implying airport inefficiency does not vary over 

time. Besides, in TRE, the unobserved heterogeneity (𝜎𝑤) is significant, confirming the 

importance of the separation of heterogeneity from cost inefficiency in our model.     

Table 15. BC95, TRE, and Pooled ALS Analysis Results 
Parameter TRE BC95 Pooled ALS 

 Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. 

Constant -0.1165*** 0.022 0.0613 0.052 -0.0520 0.051 

Time (t) -0.0156*** 0.001 0.01862*** 0.004 -0.01865*** 0.004 

Large-Hub (s1) 0.3358*** 0.027 0.1842*** 0.039 0.1850*** 0.039 

Area (k1) 0.1048*** 0.016 0.1037*** 0.024 0.1046*** 0.024 

Ensr (k2) 0.1793*** 0.036 0.1348*** 0.049 0.1321** 0.049 

Wages (w1) 0.2802*** 0.013 0.3937*** 0.025 0.3948*** 0.025 

Maintenance/Repairs (w2) 0.1411*** 0.006 0.1172*** 0.017 0.1176*** 0.017 
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Table 15. BC95, TRE, and Pooled ALS Analysis Results (continued) 
Parameter TRE BC95 Pooled ALS 

 Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. 

WLU (y1) 0.3456*** 0.016 0.3588*** 0.029 0.3603*** 0.029 

Non-Aeronautical Rev.(y2) 0.1282*** 0.021 0.2357*** 0.033 0.2346*** 0.033 

k1*k1 -0.0268 0.018 -0.0287 0.028 -0.0294 0.028 

k1*k2 0.0153 0.024 0.0002 0.035 -0.0022 0.035 

k1*y1 0.0655*** 0.017 0.1145*** 0.030 0.1158*** 0.030 

k1*y2 -0.0861*** 0.018 0.0133 0.034 0.0154 0.034 

k1*x1 0.0190 0.015 0.1171*** 0.033 0.11808*** 0.033 

k1*x2 -0.0033 0.004 0.0308** 0.014 -0.0306** 0.013 

k2*k2 0.1430** 0.055 0.1804* 0.104 0.1766* 0.104 

k2*y1 -0.1085** 0.036 0.0519 0.056 0.0488 0.056 

k2*y2 -0.0245 0.039 0.2654*** 0.068 -0.2614*** 0.068 

k2*x1 0.0030 0.029 0.2768*** 0.063 -0.2793*** 0.063 

k2*x2 0.0006 0.011 0.0646** 0.031 0.06537* 0.031 

x1*x1 0.0703*** 0.005 0.0832*** 0.012 0.08356*** 0.011 

x1*x2 0.0187** 0.008 0.1032*** 0.023 -0.1031*** 0.022 

x1*y1 -0.0921*** 0.015 0.1359** 0.046 0.13702** 0.046 

x1*y2 -0.0050 0.015 0.1078** 0.050 -0.1081** 0.050 

x2*x2 0.0517*** 0.005 0.1249*** 0.017 0.12505*** 0.017 

x2*y1 -0.0043 0.006 0.0434** 0.018 -0.0436** 0.018 

x2*y2 -0.0025 0.006 -0.0478** 0.019 -0.0483** 0.019 

y1*y1 -0.0506** 0.023 0.0675* 0.040 0.0688* 0.040 

y1*y2 0.1291*** 0.016 0.1299*** 0.033 0.1307*** 0.033 

y2*y2 -0.003 0.028 0.2628*** 0.058 -.02670*** 0.058 
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Table 15. BC95, TRE, and Pooled ALS Analysis Results (continued) 
Parameter                 TRE               BC95      Pooled ALS 

 Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. 

𝝈𝑼       

Compensatory   -0.5701** 0.288 -0.4740* 0.272 -0.9111** 0.451 

Hybrid -0.8238** 0.368 -0.4912* 0.268 -1.0428** 0.524 

Constant -5.4526*** 0.214 1.2636 3.084 -4.0262*** 0.442 

𝝈𝑽 -8.8634*** 1.020 3.9296*** 0.210 -3.894*** 0.200 

𝝈𝒘 0.1822*** 0.004     

𝜼   1.7451 6.410   

Wald Test  41384.20***  6792.93***  6784.26***  

   ***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

The agreement variables (compensatory and hybrid) in all three models are significant 

and negative. These results imply that compensatory and hybrid airports are more cost-efficient 

than their peers that adopt the residual method. On the other hand, there is statistical difference in 

the cost efficiency scores between compensatory and hybrid airports according to the Wald test 

result (𝜒2=0.62 and p-value=0.4322). The impacts of use agreements on cost inefficiency in the 

pooled ALS model are quite high because the model disregards the panel data structure. 

Moreover, the use agreements are significant at a 10% level in BC95. When the airport 

heterogeneity effect is accounted for in the inefficiency term in TRE, use agreements are 

significant at the 5% level. Cost inefficiency results in higher operating cost which could both 

increase the likelihood of airport budget deficit and increase in the airport fees paid the signatory 

airlines at residual airports. For the signatory airlines at residual airports, they are responsible for 

the budget deficit of the airports.  Therefore, cost inefficiency could severely impact the benefits 

of the airlines.  
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3.7. Conclusion 

Employing three stochastic variable cost frontier models (pooled ALS, BC95, and TRE), 

I examined the effects of rate-setting methods (or airport use agreement types) on airport cost 

efficiency. The analysis was conducted using an unbalanced panel data of 59 large and medium 

U.S. airports covering the years 2009-2016. According to TRE,  the mean cost efficiency was 

0.935, suggesting that U.S. airports could lower the operating costs by an average of 6.5%, 

which can be translated into $17.93 million in annual cost savings for an average U.S. airport.  

Moreover, cost inefficiencies differ across use agreement types.  Airports adopting either the 

compensatory or hybrid method are more cost-efficient than the ones adopting the residual 

method. This implies that airports under compensatory or hybrid agreements manage their input 

use more efficiently compared to the airports under the residual method. This conclusion lends 

further support to the findings in Chapter 2 that, due to the financial assurance provided by 

signatory airlines, airports adopting the residual method may have a diminished focus on 

operating expenditures. The cost inefficiency of residual airports may lead to higher airport fees 

for the signatory airlines and could undercut any benefits that the latter expect to gain from 

executing a residual contract. This situation is a classic moral hazard problem that arises from 

unequal risk sharing in the agreement and from information symmetry in the airport-airline 

relationship. 
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CHAPTER 4: THE SOURCES OF U.S. AIRPORT AERONAUTICAL                  

          CHARGE DIFFERENTIAL: AN OAXACA DECOMPOSITION 

4.1. Abstract  

The decisions on aeronautical charges are crucial not only for the entire air 

transportationindustry but also for society. In the U.S., as public entities, airports must balance 

between achieving break-even with less government financial support and offering attractive 

charges to retain or increase their clienteles. U.S. airports adopt 3 rate-setting methods to 

formulate their charges. Under the residual method, the airports always achieve a break-even 

condition because any budget deficits (or surplus) would be covered by (credited to) the 

signatory airlines. In return, the signatory airlines pay reduced fees for bearing the airports’ 

financial risk. Under the compensatory approach, the airports alone bear their own financial risk. 

All airlines pay charges according to their levels of facility usage. The hybrid method is a 

combination of these two methods. In this study, I examined the determinants of aeronautical 

charges as well as the sources of the aeronautical charge differential using an Oaxaca 

decomposition. I find that airports adopting the hybrid method have lower aeronautical charges 

than the airports adopting either the compensatory or residual method due primarily to the 

difference in airport average cost. The difference in aeronautical charges between residual and 

compensatory airports is not statistically significant. The results also show that non-aeronautical 

charges are an important determinant of aeronautical charges for airports using the compensatory 

method. This can be explained by the differences in the use agreements.  
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4.2. Introduction 

After the Airline Deregulation Act in 1978, airline competition and harsh market and 

economic conditions had resulted in 204 airlines bankruptcies between 1979 and 201839 in the 

U.S. Airline bankruptcies directly affect airports in a profoundly negative way as they could lead 

to hub abandonment (Rupp and Tan, 2019; Karanki and Lim, 2020). Airlines and airports have 

developed strategies to mitigate the risks of operating in a market full of uncertainty and 

situations beyond their control. Some of the common forms of formal business arrangements 

between them are use agreements, revenue sharing, risk sharing, revenue bonds for airlines, etc. 

With a business arrangement with the airports, airlines could solidify their network, obtain lower 

aeronautical fees, and have a competitive advantage in the downstream market. It would be very 

difficult for airlines to carry out these strategies without a working and stable relationship with 

airports (Fu et al., 2011).   

U.S. airports are public infrastructure owned and controlled by governments (Kutlu and 

McCarthy, 2016).  They are not allowed to create revenue surpluses that exceed the airport 

operating costs (FAA, 2009). While air traffic volume has risen in recent years, and airports are 

operating at limited capacity, government funding resources are not sufficient to meet airports’ 

needs for capacity expansion.  For instance, the U.S. airport industry estimates almost $100 

billion for infrastructure development for the years between 2017 and 2021, but only $61 billion 

are not met by the federal government's airport improvement program40 (Dillingham, 2017). 

Moreover, lately, airports are expected to reduce their reliance on government resources (Fu et 

                                                 

 

39 http://airlines.org/dataset/u-s-bankruptcies-and-services-cessations/ 
40 Airport improvement program is a grant program provided by Federal government to public airports for their 

capital project. (https://www.faa.gov/airports/aip/overview/). 
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al., 2011). Thus, airports must ascertain stable and sufficient revenues from their operations to 

maintain a solid financial footing. Airlines are important business partners to airports, and their 

relationship is symbiotic (Faulhaber et al., 2010).  They need each other to survive and thrive. 

It is very common for airports and airlines in the U.S. to formalize their business 

relationship by executing an airport use agreement. The use agreements can be categorized into 

three types based on the three rate-setting methods in the U.S. (FAA, 1999):  residual, 

compensatory and hybrid. The three methods dictate how fees are to be calculated and how 

airport financial risks may be shared in each agreement type.  

In this study, I examined the determinants of aeronautical charges and the source of 

differences in aeronautical charges between the use agreement types using an Oaxaca 

decomposition. In performing the Oaxaca decomposition, the gap was decomposed into two 

parts: the explained part resulting from the difference in characteristics of determinants of 

aeronautical charges the use agreements, and the unexplained part resulting from the difference 

in the way the determinants’ characteristics impact aeronautical charges.  

To the best of my knowledge, this is the first study to shed light on the sources of the 

differences in aeronautical charges between airport use agreement types. Although the 

differences in aeronautical charges between use agreements are lucid, the sources of these 

differences are scarcely studied or understood. Consequently, it is difficult for both airline and 

airport management to identify the implicit and explicit factors of aeronautical charge 

differential.  This study aims to identify these implicit or explicit sources. The major findings of 

this study are (1) airports adopting the hybrid method charges lower aeronautical fees than those 

that adopt either the compensatory or residual method; (2) the charge gap can be explained by 

differences in airport average cost; (3) the aeronautical charges between residual and 
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compensatory based airports are not statistically significantly different; (4) non-aeronautical 

charges are an important determinant of aeronautical charges under the compensatory agreement; 

(5) the impact of non-aeronautical charges on aeronautical charges differs across the use 

agreement methods because of the difference in the use agreements.  

I describe the three rate-setting methods in the following section.  Section 4.3 belows 

gives an overview of the rate setting methods used by U.S. airports. In Section 4.4, I give a 

summary of previous studies regarding the determinants of aeronautical charges. The 

relationship between aeronautical and non-aeronautical charges is discussed in Section 4.5. 

Following the presentation of the model in Section 4.6, the data are described in Section 4.7. I 

discuss the results in Section 4.8. In Section 4.9, I conclude the chapter with the results’ 

implications. 

4.3.  Rate Setting Methods and Airport Use Agreements 

Use agreements are an important vertical business arrangement between airports and 

airlines in the U.S. They can be categorized into three types based on the three rate-setting 

methods (FAA, 1999):  residual, compensatory and hybrid.  

Under a residual method, the signatory airlines pay reduced user fees as they provide 

financial guarantees to the host airport. The financial risk of the airport is borne by the signatory 

airlines, allowing the host airport to always achieve break-even. However, the host airport’s 

control span on capital investment is limited by a majority-in-interest (MII) clause under the 

residual agreement. Under the MII, the host airport has to have the approval of the signatory 

airlines to begin a new capital project since the bond debt service costs are covered by the 

signatory airlines. Under the residual method, the aeronautical fees paid by the signatory airlines 

is determined by the residual amount after deducting non-airline revenues and non-signatory 
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airlines’ payments from the total cost.  At the end of the year, if there is a surplus in non-

aeronautical operations, it is credited to the signatory airlines. However, any airport budget 

deficit would be covered by the signatory airlines. The residual method resembles the single-till 

approach which considers all airport activities, both aeronautical and non-aeronautical when 

calculating the airport charges  (Oum et al., 2004). Based on the information from Landrum & 

Brown41, non-signatory airlines usually pay 25% more than the landing fee paid by the signatory 

airlines. This implies that there is a positive correlation between the charges between signatory 

and non-signatory airlines. Therefore, non-aeronautical revenues indirectly impact the 

aeronautical charges for non-signatory airlines, i.e., a surplus leads to a decrease in aeronautical 

charges for non-signatory airlines.  

Unlike the residual method, the host airport bears its own financial risk under the 

compensatory method. This implies that the break-even condition for the airport is not 

guaranteed. With this rate-setting method, airlines pay the fees according to their levels of airport 

use. Besides, airport management has full control over capital projects and investment decisions.  

The third method is a hybrid approach, which is a combination of the residual and 

compensatory methods. A common arrangement under the hybrid approach can be that the 

compensatory method is applied for terminal operations while the residual method is used for 

airfield operations. Hence, the overall airport financial risk is shared, i.e. the risk of terminal 

operations may be borne by the airport while the risk of airfield operations may be covered by 

the airlines. This risk-sharing brings  a financial  assurance toairports since the financial risk of 

airfield operations is covered by the airlines against uncertainty in the airline industry and the 

                                                 

 

41 My e-mail discussion with Landrum & Brown on August 8 ,2019. 
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economy, while the airport is incentivized to increase non-aeronautical revenues (FAA, 1999). In 

this system, a hybrid airport may share its non-aeronautical revenues with signatory airlines 

(Faulhaber et al, 2010). In this way, airport management incentivizes signatory airlines to 

increase their operations at the airport (Fu et al., 2011). 

4.4. Determinants of Aeronautical Charges 

The determinants of aeronautical charges have been scarcely analyzed in literature since 

airports are seen as infrastructure rather than a business entity (Bilotkach, Clougherty, Mueller & 

Zhang, 2012). Four empirical studies on aeronautical charges published in the last decade 

focused on the airports in Europe and the U.S. Van Dender (2007) is the first to study the 

determinants of aeronautical charges. He analyzed the market structure effects on airfares, 

aeronautical charges, and non-aeronautical charges by using the data of 55 U.S. airports in the 

years 1998 through 2002. Van Dender (2007) found that aeronautical charges decrease with the 

number of flights. Additionally, his findings related to aeronautical charges were that airports 

facing competition charge lower fees, the hub effect is not significant while aeronautical charges 

increase with Herfindahl–Hirschman Index (HHI), flight distance and the share of international 

flight.  

A second related study was conducted by Bel and Fageda (2010) who focused on the 

effects of market power and regulation/ownership on aeronautical charges using the data of 100 

European airports in 2007.  They found that private owned-regulated airports tend to charge 

higher fees, and aeronautical charges decrease with the percentage of domestic traffic while they 

increase with total traffic. The study also found that there is no difference between the single-till 

and dual till approaches when it comes to aeronautical charges; airports having higher traffic 

charge more; the existence of neighbor airports in 100 km reduces aeronautical charges; 
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aeronautical charges decrease with HHI; lastly, the aeronautical charges for domestic flights are 

lower than those for international flights. 

The study by Bilotkach et al. (2012) also focused on the aeronautical charges of 

European airports using the data of 61 airports in the years between 1990 and 2007. Bilotkach et 

al. (2012) found that the single-till approach leads to lower aeronautical charges while non-

aeronautical revenues per passenger have no significant effect on aeronautical charges. They 

found that privatized airports tend to charge lower fees, airports adopting ex-post regulation42 

apply lower fees, and aeronautical charges are higher at airports with a hub status. Unlike Van 

Dender (2007) and Bel and Fageda (2010), Bilotkach et al (2012) did not detect any significant 

effect of the presence of nearby airport on aeronautical charges.   

The latest study on aeronautical charges was conducted by Choo (2014) who analyzed 

the aeronautical charges of 59 U.S. airports in the years 2002 through 2010. The effects of hub 

status, governance types, percentage of international and connecting flights, and competition 

among airports on aeronautical charges were examined in this study. Choo (2014) found that 

U.S. airports use cross-subsidization, and airport operating cost is reflected on aeronautical 

charges. Similar to Bilotkach et al. (2012), Choo (2014) found hub airports charge higher fees. 

Furthermore,  the author did not find any evidence of the effects of neighbor airports,  which is 

measured by the number of airports in a 100 km radius, on aeronautical charges. Lastly, airport 

governance types, connecting traffic, and the share of dominant airlines have no significant 

effect on aeronautical charges as well.  

                                                 

 

42 In an ex-post regulation regime, the regulator does not regulate the airports unless the latter violates the price, 

profit, and service quality thresholds. 
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4.5. Non-Aeronautical and Aeronautical Charges 

Non-aeronautical and aeronautical operations are interdependent. Zhang and Zhang 

(1997) found that social welfare gains in aeronautical operations are higher than the loss in non-

aeronautical operations when airports cross-subsidizing the two operations. In recent years, non-

aeronautical revenues have become more important for airports (D’Alfonso et al., 2013; 

Kidokoro, Lin & Zhang, 2016; Zhang & Czerny, 2012; Zhang et al., 2010), and non-aeronautical 

revenues are seen by most airports as a major revenue source (D’Alfonso et al., 2013). Van 

Dender (2007) found that non-aeronautical revenue share is more than half of the total revenues 

of the 55 U.S. airports during the period1998-2002. Zhang and Zhang (2010) found that 

aeronautical charges are lower due to non-aeronautical operations. This implies that cross-

subsidizing aeronautical operations with lucrative non-aeronautical operations may be feasible 

and practical for airports. Czerny (2006) and Lu and Pagliari (2004) contributed to the literature 

by finding that the single-till43 approach improves social welfare. In the European airport 

industry, single-till is considered a way of cross-subsidization (Bilotkach et al., 2012). Ivaldi et 

al. (2015) analyzed 31 U.S. airports by accounting for the two-sided structure of the airport 

operations. They concluded that U.S. airports apply profit-maximizing prices for non-

aeronautical operations while they set Ramsey prices for aeronautical operations44, implying that 

cross-subsidization is not used by U.S. airports. Additionally, according to the simulation results, 

Ivaldi et al. (2015) found the single-till approach enhances social welfare. On the other hand, 

                                                 

 

43 The single-till approach refers to an airport’s decision to base their aeronautical charges on both aeronautical and 

non-aeronautical revenues in the preceding period. The dual-till approach refers to an airport’s method of calculating 

aeronautical charges based only on its aeronautical activities (Smyth & Pearce, 2007). 
44 Ramsey pricing is a strategy to set prices inversely to the price elasticity of demand.  Ramsey pricing is seen as 

the second best solution for the social welfare if marginal cost pricing cannot be applied due to  high fixed costs. It is 

the second best solution since it allows the maximum possible social welfare which is lower than the ones at 

marginal cost pricing while firm is achieving break-even (Bitzan, 2000).  
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contrary to previous studies, Kidokoro et al. (2016) argued that the dual-till approach yields 

higher welfare, and cross-subsidizing does not lead to welfare maximization. 

4.6. Conceptual Framework and Model 

 In this study, aeronautical charges (𝑎) are modeled as a function of average cost (AC), 

non-aeronautical revenues per passenger (NR), delays (D), the Herfindahl-Hirschman Index for 

the market concentration of airlines (HHI), governance types (G), horizontal tie (Htie) and a time 

trend (T): 

𝑎 = 𝑓(𝐴𝐶, 𝐷, 𝐻𝐻𝐼, 𝐻𝑡𝑖𝑒, 𝐺, 𝑁𝑅, 𝑇)                                            (4.1)  

Following the literature, aeronautical charges are defined as aeronautical revenues per 

aircraft movement (Bilotkach et al., 2012; Choo, 2014; Dender, 2007). Since U.S. airports are 

not allowed to earn excess revenue more than their costs, aeronautical charges may reflect the 

cost level of airports (Choo, 2014). If the averge cost is high, the aeronautical charge must rise; if 

the average cost is low, and the airport must reduce the aeronautical charge since any revenue 

surplus is not permitted. Since airport total revenues (aeronautical revenues and non-aeronautical 

revenues) are used to recover both operating expenditures and revenue bond debt-services (FAA, 

1999), I consider the sum of operating costs and debt service costs as the total cost. Therefore, I 

calculated the average cost by dividing airport’stotal cost by the number of aircraft movements. 

To capture the effect of congestion on aeronautical charges, I used the number of delays as a 

proxy for congestion. Delays are considered a social cost affecting the aeronautical charges 

(Zhang & Zhang, 1997). Accordingly, we expect an increase in delays leads to an increase in 

aeronautical charges. However, the optimal aeronautical charges of a congested airport are 

disputable in the literature.  Some researchers suggest that airports should apply higher 

aeronautical charges or congestion pricing to reduce delays (Brueckner, 2001; Daniel, 1995; 



 

85 

Zhang & Zhang, 2006). Nevertheless, D’Alfonso et al. (2013) proposed lower aeronautical fees 

considering the positive correlation between non-aeronautical revenues and dwell time, thus, the 

lower aeronautical charges at a congested airport would lead to an increase non-aeronautical 

revenues.  Van Dender (2007) and Bel and Fageda (2010) used the HHI  to measure airline 

market density at the airport (𝐻𝐻𝐼 = ∑ 𝜏𝑖
2,𝑖  where 𝜏𝑖 is the market share of 𝑖th airline). One may 

expect lower aeronautical fees at airports with higher concentration since the dominant airline 

has a higher bargaining power on aeronautical charges. Governance types may also be a factor 

affecting aeronautical charges (Choo, 2014). Based on the differences in the contributions of the 

local/state grants to airport financial portfolios, the decisions on aeronautical charges may vary 

across airports governed by different entities. Thus, we considered four common airport 

governance types: city, county, state and port/airport authority. Besides, I also examine the 

horizontal (administrative or ownership) tie between airports. Specifically, some airports may 

have a horizontal relationship with each other as they are managed by the same governing entity 

(Van Dender, 2007). The control of an airport cluster increases the negotiation power of the 

airport governing body, thus, one may expect airports that have a horizontal tie with other 

airports in the same geographical cluster to have higher aeronautical charges compared to their 

peers. In our sample, there are three such clusters: O’Hare International Airport and Chicago 

Midway Airport are governed by the Chicago Department of Aviation;  JFK, LaGuardia and 

Newark airports are governed by the Port Authority of New York and New Jersey; Dulles 

International and Reagan Washington National Airports are governed by the Metropolitan 



 

86 

Washington Airport Authority.45 Lastly, following Bilotkach et al. (2012), I used non-

aeronautical revenue per passenger (or non-aeronautical charges) to control for potential  

interdependence between aeronautical and non-aeronautical operations. One may expect a 

negative relationship between non-aeronautical and aeronautical charges due to  the 

complementary relationship between the two. 

This model setting raises some endogeneity concerns due to the reverse or simultaneous 

causality of aeronautical charges with the explanatory variables such as delays, average cost and 

non-aeronautical revenue per passenger. The interdependence between aeronautical and non-

aeronautical operations implies that airports consider both aeronautical and non-aeronautical 

charges simultaneously under an overall budget constraint. Thus, there is a two-way relationship 

between aeronautical and non-aeronautical revenue charges which makes the latter endogenous. 

Secondly, because aeronautical output and charges are directly related, an increase in 

aeronautical output leads to higher charges, and the latter in turn exert downward pressure on the 

aeronautical output demanded and result in even higher unit costs.. Accordingly, I consider the 

average cost variable endogenous as well. As discussed previously, aeronautical charges may 

have an impact on delays, i.e., higher aeronautical charges may alleviate congestion. 

Consequently, this two-sided relationship leads to an endogeneity problem between delays and 

aeronautical charges. Following Bilotkach et al. (2012), I addressed the endogeneity problems of 

non-aeronautical charge and average costs by using the time-lagged values of these two variables 

as instruments. Indeed, as long as the lagged values are not a part of the equation and are 

                                                 

 

45 The Chicago Department of Aviation adopts the residual method; the Port Authority of New York and New Jersey 

uses the compensatory method for all three airports; the Metropolitan Washington Airport Authority uses the hybrid 

method. 
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sufficiently correlated with the endogenous variable, using lagged values of endogenous 

variables provides an effective estimation (Reed, 2015). In addition, delays were instrumented by 

the number of the gates which is one of the explanatory factors of delays. 

To examine the differences in aeronautical charges between rate-setting methods, I 

modified the Oaxaca two-fold decomposition (Oaxaca, 1973): 

𝐸(ln𝑎𝑖) − 𝐸(ln𝑎𝑗) = 𝐸 + 𝑈                                                        (4.2) 

where 𝑎𝑖 is the aeronautical charge of airports adopting method i, and 𝑎𝑗 is the aeronautical 

charge of airports adopting method j; 𝐸 is the part of the aeronautical charge differential that can 

be explained by differences in X which is a set of determinants for aeronautical charges, while 𝑈 

is the unexplained part that captures the portion of the charge differential that cannot be 

explained by the differences in X.46 The unexplained part may be attributed to the differences in 

the rate-setting methods.  The explained and unexplained parts are given by 

𝐸 = [𝐸(𝑋𝑖) − 𝐸(𝑋𝑗)]′𝛽∗                                                              (4.3) 

𝑈 = 𝐸(𝑋𝑖)
′(𝛽𝑖 − 𝛽∗) + 𝐸(𝑋𝑗)

′
(𝛽∗ − 𝛽𝑗)                                    (4.4) 

where  𝐸(𝑋𝑖) is the expected value of the determinants for aeronautical charges of airports 

adopting method i, while 𝐸(𝑋𝑗) is the expected value of the determinants for aeronautical 

charges of airports adopting method j. The mean values, �̅�𝑖 and �̅�𝑗, can be used as estimators of 

𝐸(𝑋𝑖) and 𝐸(𝑋𝑗), respectively. The parameters 𝛽𝑖 and 𝛽𝑗 are the coefficients associated with the 

determinants for methods i and j, respectively. Finally,  𝛽∗ is the arithmetic mean of the 

coefficients in the two groups without weighing the use agreements unequally (Reimers, 1983), 

                                                 

 

46 Oaxaca (1973) originally developed this model to examine the wage differences between male and female 
workers. 
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that is 𝛽∗ = 0.5𝛽𝑖 + 0.5𝛽𝑗. The Oaxaca decomposition is demonstrated in Figure 2 in which an 

explanatory variable, x, is assumed to have a positive effect on aeronautical charges. In our 

study, the parameters 𝛽𝑖 and 𝛽𝑗 are estimated by the two-stage least squares method due to the 

endogeneity concerns in the model.  

 

Figure 2. Graphical Illustration of Oaxaca Decomposition 

In looking at Figure 2, the vertical distance between 𝐸(ln𝑎𝑖) and 𝐸(ln𝑎𝑗) represents the 

charge differential; E is the portion of the mean aeronautical charge differences resulting from 

the differences in between methods i and j that can be explained by x. If both methods had the 

same characteristics, the mean aeronautical charge difference could be eliminated. Another 

portion of the mean aeronautical charge difference, U, is the differential not explained by x; U 

may include any potential differences in the variables that are not observed by the model which 

may be attributed to the differences in the use agreements. In other words, although each use 

agreement had the same characteristics, mean aeronautical charges would still be different due to 

the differences in the ways the unobserved variables affect aeronautical charges. 
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To perform the Oaxaca decomposition, firstly, the following equation was estimated for 

each rate-setting method:  

ln 𝑎𝑘𝑖𝑡 = 𝛽𝑜 + 𝛽1 ln 𝐴𝐶𝑘𝑖𝑡 + 𝛽2 ln 𝑁𝑅𝑘𝑖𝑡 + 𝛽3 ln 𝐻𝐻𝐼𝑘𝑖𝑡 + 𝛽4 ln 𝐷𝑘𝑖𝑡 + 𝛽5𝑔1𝑘𝑖𝑡 + 𝛽6𝑔2𝑘𝑖𝑡 +

𝛽7𝑔3𝑘𝑖𝑡 + 𝛽8𝑇 + 𝛽15𝐻𝑡𝑖𝑒𝑘𝑖𝑡 + 휀𝑘𝑖𝑡,                                                                                          (4.4) 

where 

𝑎𝑘𝑖𝑡 is the aeronautical charge of ith airport adopting method k  at year t, and k: {Compensatory, 

Residual, Hybrid}, 

𝐴𝐶𝑘𝑖𝑡 is the annual average total cost,  

𝑁𝑅𝑘𝑖𝑡 is non-aeronautical revenue per passenger,  

𝐻𝐻𝐼𝑘𝑖𝑡 is the Herfindahl-Hirschman index of airlines,  

𝐷𝑘𝑖𝑡 is the number of delays measured by the number of flights that arrive or depart 15 minutes or 

more than their scheduled times,  

𝑔1𝑘𝑖𝑡 is the dummy variable for city governance,  

𝑔2𝑘𝑖𝑡 is the dummy variable for county governance,  

𝑔3𝑘𝑖𝑡 is the dummy variable for state governance,  

𝐻𝑡𝑖𝑒𝑘𝑖𝑡 is the dummy variable for  airports that have a horizontal administrative relationship with 

another airport, and 

𝑇 is the year trend. 

Because the model contains time-invariant variables, a fixed-effects (FE) model is not feasible.  

Thus,  equation (4.4) is a random effects model, and 휀𝑘𝑖𝑡 is a composite error term that 

encompasses the time-invariant unobserved effects and time-variant disturbance term. 

Additionally,  it is assumed that any unobserved airport-specific effect is not correlated with the 

explanatory variables.   
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4.7. Data 

I used a panel dataset of 30 large hubs and 29 medium hub airports in the years between 

2009 and 2016. The data were clustered according to use agreement types to perform the Oaxaca 

decomposition. Use agreement types were obtained from LeighFisher (2016). The main source 

of our data is the Certification Activity Tracking System (CATS) Database which holds the 

financial reports of all U.S. commercial airports obtained from the Airport Financial Reporting 

Program. Information on aeronautical revenues, non-aeronautical revenues, operating 

expenditures, debt service cost after passenger facility charges, and the number of employees 

was obtained from this database. The financial data were adjusted for inflation using the U.S. 

gross domestic product deflator. To obtain aeronautical charges, we divided total aeronautical 

revenues by the number of aircraft movements. Aircraft movement data were obtained from the 

aircraft activity system of the FAA47.  Aircraft movements cover all takeoffs and landings. The 

data on the number of delays were obtained from the Bureau of Transportation Statistics48. The 

number of gates were obtained from airports’ websites. Flights are considered delayed if the 

aircraft arrive or depart 15 or more minutes than their scheduled time. The governance types 

were obtained from the National Academies of Sciences, Engineering, and Medicine (2009). I 

classified governance types into 4 categories: port/airport authority, county, city and state (Kutlu 

& McCarthy, 2016). Port/airport authority was selected as the control variable while city, county, 

and state were included as binary variables in the model. The airline’s HHI was calculated with 

the information obtained from the Bureau of Transportation Statistics49.  The values of HHI vary 

                                                 

 

47 https://aspm.faa.gov/opsnet/sys/Main.asp?force=atads 
48 https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236 
49 https://www.transtats.bts.gov/airports.asp 

https://aspm.faa.gov/opsnet/sys/Main.asp?force=atads
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://www.transtats.bts.gov/airports.asp


 

91 

between 0 and 10,000. Values closer to 10,000 imply a more concentrated downstream market at 

the airport. The descriptive statistics of the data are reported in Table 16.  

Table 16. Descriptive Statistics of the Data  

  Compensatory Hybrid Residual 

Aeronautical Charges (akit) Mean 512.436 318.177 440.094 

 SD 414.531 166.709 234.066 

Delays (D) Mean 14381.87 13269.38 12122.37 

 SD 10914.03 13207.54 10359.13 

HHI Mean 2404.125 3163.894 2783.366 

 SD 1046.549 1722.554 1756.887 

Non-aeronautical Charge (NR) Mean 11.10 10.56 10.09 

 SD 3.40 2.96 4.11 

Average Cost (AC) Mean 1003.12 821.96 1009.87 

 SD 502.59 406.80 451.07 

Horizontal Tie (Htie) Mean 0.15 0.09 0.11 

 SD 0.35 0.29 0.32 

Port/Airport Authority Mean 0.5 0.48 0.26 

 SD 0.5 0.5 0.44 

City (g1) Mean 0.35 0.37 0.39 

 SD 0.47 0.48 0.49 

County (g2) Mean 0.1 0.04 0.28 

 SD 0.3 0.21 0.45 

State (g3) Mean 0.05 0.09 0.06 

 SD 0.22 0.29 0.23 

Number of Airports  20 21 18 
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As displayed in Table 16, the  aeronautical charge of compensatory airports averaged 

$512.5 per aircraft movement, which is the highest of the three airport rate-setting methods. The 

difference in the average charges between compensatory and hybrid airports is large compared to 

the average charge difference between compensatory and residual airports. Compensatory 

airports too have the highest average non-aeronautical charge at $11.1 per passenger, compared 

to $10.6 for hybrid airports and $10.1 for residual airports. The airline market concentration at 

hybrid airports is the highest, followed by residual airports. Lastly, the average number of delays 

at compensatory airports was the highest of the three airport types.  

4.8. Empirical Analysis 

Firstly, the Durbin-Wu-Hausman was performed to check the endogeneity of AC, NR, 

and Delays following Wooldridge (2015). The null hypothesis of the test is that these variables in 

the regression can be treated as exogenous. Under the null hypothesis, the test statistic follows a 

Chi-squared distribution.  The rejection of the null hypothesis implies that the endogeneity of the 

variable in question is affirmed.  According to the test results (𝜒2 statistic = 42.02, p-value 

=0.000), I rejected the null hypothesis of the Durbin-Wu-Hausman test, implying that the AC, 

NR and Delays are endogenous with this model setting50. Following the Hausman test, I assessed 

the relevance of instrumental variables which are the time-lagged values of endogenous variables 

with a null hypothesis that the instruments are uncorrelated to the endogenous variables. 

According to the test results (the 𝜒2 statistic for the instrument of Delay is 7287.93  (p-

value=0.0000), the 𝜒2statistic of the instrument of NR is 2659.97 (p-value=0.0000), and the 

                                                 

 

50 Since the number of instrumental variables is limited, i.e., the number of endogenous variables equals the number 

of instrumental variables, the over-identification test cannot not be performed to check for the exogeneity of 

instrumental variables. 



 

93 

𝜒2statistic of the instrument of AC is 803.66  (p-value=0.0000)), we can conclude that there is 

sufficient evidence of the relevance of the instruments.   

To perform the Oaxaca (1973) decomposition, I estimated a random-effects regression 

model for the three groups of airports according to the rate-setting method they use. The 

estimation results for the three sets of results are reported in Table 17. In looking at Table 17, the 

parameter estimates differ across the three methods. As expected, the average cost is significant 

and positive. A 1% increase in the average costs of the residual airports is estimated to increase 

aeronautical charges by 1.21%. For compensatory airports, this estimated effect is 1.28%, while 

it is 0.74% for hybrid airports. Unlike Bilotkach et al. (2012), my results showa significant effect 

of non-aeronautical charges on aeronautical charges for compensatory airports, and the effect is 

negative suggesting that the two lines of airport operations are highly dependent on each other 

especially for airports adopting the compensatory method. A 1% increase in non-aeronautical 

charges is estimated to decrease aeronautical charges by 0.59% at compensatory airports.  The 

effect of non-aeronautical charges in not significant for the residual and hybrid airports. Residual 

airports are guaranteed a budget breakeven by the signatory airlines, hence the sensitivity of 

aeronautical charges in response to any changes in non-aeronautical charges is less since any 

budget shortfall (surplus) in the two operations will be covered by (credited to) the signatory 

airlines. Thus, the two charges at residual airports are less responsive to each other. On the 

contrary, compensatory airports must rely on their own to balance their budgets, and they must 

ensure that any non-aeronautical revenue reduction is compensated by increased revenues in 

aeronautical operations or reduced total costs to break even. Thus, compared to residual airports, 

the aeronautical charges of compensatory airports are nearly three times more sensitive to any 

changes in non-aeronautical charges; the two lines of business are more dependent on each other.  
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Due to the financial assurance of the signatory airlines in the airfield operations of airports 

adopting the hybrid method, the responsiveness of non-aeronautical charges on aeronautical 

charges of a hybrid airport is between those of the compensatory and residual airports. 

 Table 17. Second-Stage Estimation Results of Equation (4) for the Three Methods 
 RESIDUAL COMPENSATORY HYBRID 

 ESTIMATES ROBUST 

S.E. 

ESTIMATES ROBUST 

S.E. 

ESTIMATES ROBUST 

S.E. 

ln(AC) 1.208*** 0.235 1.281*** 0.200 0.736*** 0.183 

ln(NR) -0.183 0.360 -0.585*** 0.213 -0.087 0.381 

ln(D) -0.092 0.143 -0.039 0.107 0.026* 0.167 

ln(HHI) -0.003 0.076 -0.192 0.130 -0.108 0.058 

g1 0.352 0.256 0.011 0.135 0.014 0.119 

g2 0.246 0.225 0.294* 0.154 -0.149 0.243 

g3 0.692* 0.319 0.026 0.199 0.378** 0.184 

Htie 0.536*** 0.247 0.739*** 0.120 0.410*** 0.170 

T -0.006 0.009 0.013 0.009 0.000 0.005 

Intercept -1.282 1.496 0.277 0.976 1.541 1.608 

R2 0.8947  0.9351  0.8421  

Wald Stat 

W 

89.75***  328.57***  106.98***  

Number of 

observations 

 142  160  170  

  ***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

Looking at the effect of delays (or congestion) on aeronautical charges, it is not 

significant for compensatory and residual airports but it is significant and positive for the hybrid 

airports at the 10% level. This implies that congestion may force hybrid airports to increase 

aeronautical charges. The variable HHI is not significant for all airports regardless of the rate-

setting methods. Under the hybrid method, state-governed airports charge higher fees than those 

managed by a port/airport authority. Besides, under the compensatory method, county governed 
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airports charge higher fees than the ones governed by a port/airport authority. The horizontal tie 

is an important indicator of regional market dominance. It is significant and positive for all three 

rate-setting methods. Tellingly, residual51 and hybrid52 airports with horizontal ties are predicted 

to charge between 41-54% higher fees, and compensatory airports53 with horizontal ties are 

estimated to charge 74%54 higher fees than their counterparts with no horizontal ties due to their 

bargaining power in their respective regions. Lastly, no significant change in aeronautical 

charges was observed over the years. 

The Oaxaca decomposition results based on the random-effects model estimates are 

reported in Tables 18, 19 and 20.  Table 18 shows the results of the Oaxaca decomposition for 

compensatory (i) and hybrid (j) airports. I observed that the log mean charge differential between 

compensatory (i) and hybrid (j) airports is 0.366. In other words, compensatory airports’ average 

charge is higher than that of hybrid airports, and 73.7% (0.270/0.366) of this gap results from 

differences in the determinants between these two groups of airports, while 27.3% (0.096/0.366) 

is due to the differences in the coefficients on the determinants or the differences in the two 

methods in how the determinants affect aeronautical charges. The log mean aeronautical charge 

of hybrid airports would increase by 0.270 if they had the same characteristics as compensatory 

airports. Furthermore, if the ways the determinants impact aeronautical charges were the same 

for compensatory and hybrid airports, the log mean aeronautical charges hybrid airports would 

be 0.096 higher.   

                                                 

 

51 O’Hare and Midway Airports in Chicago. 
52 Dulles and Reagan Airports in Washington DC. 
53 JFK, LaGuardia and Newark Airports in New York and New Jersey. 
54 The observed airport data show that there is a large gap in the aeronautical charges between the airports with a 

horizontal tie and those without. For example, the mean aeronautical charges of JFK, LaGuardia and Newark was 

$1272.85 per aircraft movement in the years between 2009 and 2016, while the same charges of other compensatory 

airports averaged just $378.24 in the same period. 
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As reported in column (1), the average cost and HHI are the only significant variables in 

the explained differential in aeronautical charges. This means that the explained charge 

differential between compensatory and hybrid airports can be attributed to the mean difference in 

the airports’ average cost and HHI which contribute positively to the charge differential.  

Table 18. Oaxaca Decomposition (Compensatory vs. Hybrid) 
 Estimates S.E.   

Difference  0.366*** 0.088   

Explained 0.270*** 0.070   

Unexplained 0.096** 0.067   

 EXPLAINED (1) UNEXPLAINED (2) 

 Estimates S.E. Estimates S.E. 

Intercept   -1.355 1.921 

ln(AC) 0.226*** 0.065 3.654** 1.822 

ln(NR) -0.015 0.016 -1.134 1.035 

ln(D) -0.001 0.011 -0.571 1.858 

ln(HHI) 0.034* 0.018 -0.607 1.111 

g1 0.000 0.003 -0.004 0.066 

g2 0.004 0.008 0.032 0.022 

g3 -0.009 0.009 -0.026 0.021 

Htie 0.032 0.023 0.039 0.026 

T 0.000 0.002 0.068 0.053 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

Column (2) shows that the difference in the determinants’ coefficients between 

compensatory and hybrid airports or the ways the determinants impact aeronautical charges of 

the two airport groups. If the coefficients between the two groups of airports are the same, then 

the unexplained part collapses to zero, and all charge differentials are due to the explained part.  

In other words, the aeronautical charge differential with respect to a given airport characteristic 

is only observed when the compensatory and hybrid coefficients for the variable in question are 
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not equal. Considering the role of AC in the differential in aeronautical charges, the mean 

difference in AC is significant for the (explained) charge differential. Furthermore, based on the 

result in Column (2), the impact of AC on charges is larger for compensatory airports compared 

to hybrid airports. Table 19 shows the Oaxaca decomposition of the differences in aeronautical 

charges between compensatory (i) and residual airports (j). The log differential in aeronautical 

charges between compensatory and residual airports is 0.026 which is not statistically significant 

because the explained part is offset by the unexplained part.  

Table 19. Oaxaca Decomposition (Compensatory vs. Residual) 
 

 

Estimates S.E.   

Difference 0.026 0.094   

Explained -0.102 0.078   

Unexplained 0.129 0.078   

 EXPLAINED (1) UNEXPLAINED (2) 

 Estimates S.E. Estimates S.E. 

Intercept   1.559 1.786 

ln(AC) -0.018 0.066 0.500 2.108 

ln(NR) -0.044 0.029 -0.927 0.965 

ln(D) -0.011 0.016 0.489 1.637 

ln(HHI) 0.007 0.008 -1.459 1.164 

g1 -0.008 0.013 -0.127 0.108 

g2 -0.049* 0.028 0.009 0.052 

g3 -0.002 0.010 -0.035 0.022 

Htie 0.024 0.027 0.027 0.036 

T 0.000 0.001 0.094 0.066 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

 In Table 20, the Oaxaca decomposition results for residual (i) and hybrid (j) airports are 

reported. The logarithmic mean difference in the aeronautical charges between residual and 

hybrid airports is 0.337. In other words, residual airports charge higher aeronautical fees than do 
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hybrid airports. This gap can be explained by only the differences in the characteristics since the 

unexplained part is statistically insignificant. The decomposition results in column (1) show the 

aeronautical charge differential between residual and hybrid airports are predominantly 

explained by the differences in average costs; the mean log difference of average cost accounts 

for over 91% of the explained charge differential.  

Table 20. Oaxaca Decomposition (Residual vs. Hybrid) 
 Estimates S.E.   

Difference  0.337*** 0.087   

Explained 0.257*** 0.087   

Unexplained 0.080 0.101   

 EXPLAINED (1) UNEXPLAINED (2) 

 Estimates S.E. Estimates S.E. 

Intercept   -2.823 2.196 

ln(AC) 0.233*** 0.065 3.171 1.999 

ln(NR) 0.010 0.020 -0.220 1.199 

ln(D) 0.002 0.007 -1.075 2.008 

ln(HHI) 0.009 0.009 0.822 0.751 

g1 0.004 0.011 0.131 0.109 

g2 0.011 0.039 0.065 0.055 

g3 -0.020 0.018 0.024 0.028 

Htie 0.009 0.018 0.013 0.031 

T 0.000 0.001 -0.026 0.052 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

4.9. Conclusion 

The determination of aeronautical charges is crucial for airport management. In this 

study, I examined the determinants of aeronautical charges by considering the relationship 

between aeronautical and non-aeronautical charges at U.S. airports. Besides, the sources of the 
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differences in aeronautical charges between the rate setting methods adopted by the airports were 

examined by the Oaxaca decomposition method.  

The results show the relationship between aeronautical and non-aeronautical charges is 

negative under the compensatory method while it is insignificant for residual and hybrid airports 

The impact of non-aeronautical charges on aeronautical charges differs across the methods 

plausibly due to the mechanisum by which the rate setting methods affect airport operations. 

Residual airports, for example, are guaranteed a budget breakeven by the signatory airlines, 

hence the sensitivity of aeronautical charges in response to any changes in non-aeronautical 

charges is less since any budget shortfall (surplus) in the two operations will be covered by 

(credited to) the signatory airlines. For hybrid airports, the impact of non-aeronautical charges on 

aeronautical charges is between the ones of the compensatory and residual methods. This is 

expected since the hybrid method incorporates features of the other two methods. In addition to 

the above, I find that if airports have a horizontal administrative tie with other airport in close 

proximity, they tend to charge higher aeronautical fees possibly because of their market power in 

the region in which they operate. In addition, I also found that the aeronautical charges of 

compensatory and residual airports are higher than those of hybrid airports. Moreover, there is no 

significant difference in aeronautical charges between residual and compensatory airports. There 

are, however, charge differentials between hybrid airports and their compensatory and residual 

counterparts. The main characteristic leading to the differentials is the average costs. As a result 

of lower unit cost at hybrid airports, holding all other factors constant, the aeronautical charges 

of hybrid airports are about 23% lower than compensatory and residual airports. 

In conclusion, the three rate-setting methods have significant influence over aeronautical 

charge differentials of U.S. airports. This study shows that airportunit cost is the largest factor 
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that consistently explained the charge differentials between hybrid airports and their residual and 

compensatory counterparts. This suggests that cost saving is essential for aeronautical charge 

reduction, particularly for compensatory and residual airports.  
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CHAPTER 5: CONCLUSION 

This dissertation examined the implications of use agreements on airport economic 

performance and aeronautical charge differentials. Use agreements are the most common vertical 

business arrangements in the U.S. air transportation industry. Within the use agreements, terms 

and conditions are stipulated including the user fees and other responsibilities. In the U.S., the 

use agreements can be categorized into three types according to the three common rate-setting 

methods: residual, compensatory and hybrid.  

Under a residual agreement, airports may obtain financial support from signatory airlines 

with which they can forge long-term business relationships to help alleviate financial stress and 

uncertainty. In turn, the signatory airlines may benefit from low user fees as compared to other 

airlines, with access to airport facilities secured and prioritized over rivals. However, as a result 

of the financial assurance, the host airports may underperform and may pay less attention to cost 

control. These two factors could undercut the benefits of the signatory airlines. In light of this, I 

examined the airports’ cost and operational efficiency in Chapters 2 and 3 to determine the 

impacts of use agreements on airport economic performance.   

In Chapter 2, I performed a two-stage semiparametric efficiency analysis to examine the 

effects of the use agreement types on airport operational efficiency using U.S. airport data from 

2009 to 2016. The results show that the efficiency contribution of both compensatory and hybrid 

methods was evident in U.S. airports. Specifically, airports that follow either of these two 

methods outperformed those that followed the residual method. This might be that, compared to 

the compensatory and hybrid counterparts, residual airports do not bear the financial risk of 

operations, but their signatory airlines do. This financial guarantee offered by the signatory 

airlines (the principal) creates unequal risk-sharing which in turn disincentivizes the airport (the 
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agent) from striving for greater operational efficiency especially in areas where the signatory 

airlines cannot fully observe.  Hence, a lower airport efficiency may undercut any benefits that 

the signatory airlines expect to receive through the residual-typed contracts implying a moral 

hazard problem in the business arrangement. 

In Chapter 3,  three stochastic variable cost frontier models (pooled ALS, BC95 and 

TRE) were employed to examine the effects of the rate-setting methods (or airport use agreement 

types) on airport cost efficiency. The analysis was conducted using an unbalanced panel data of 

59 large and medium U.S. airports covering the years 2009-2016. I find that the mean cost 

efficiency was 0.935, suggesting that U.S. airports could lower the operating costs by an average 

of 6.5%, which can be translated into $17.93 million in annual cost savings for an average U.S. 

airport.  Moreover, the cost inefficiency scores differ across the three use agreement types.  

Airports that adopt either the compensatory or hybrid method are more cost-efficient than the 

ones adopting the residual method. This implies that airports under compensatory or hybrid 

agreements manage their input use more efficiently compared to the airports that adopt the 

residual method. This conclusion lends support to the finding in Chapter 2 that airports adopting 

the residual method have a diminished focus on operating expenditures due to the financial 

mitigation provided by the signatory airlines. The cost inefficiency of residual airports may lead 

to higher airport fees for the signatory airlines and could undercut any benefits that the latter 

expect to gain from executing a residual contract. This situation is a classic moral hazard 

problem that arises from unequal risk sharing in the agreement and from information symmetry 

in the airport-airline relationship. 

In Chapter 4, besides examining the determinants of aeronautical charges by considering 

the relationship between aeronautical and non-aeronautical charges of U.S. airports, I also 
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evaluated the sources of aeronautical charge differentials between airports that adopt the three 

rate-setting methods. The sources of the differencials were examined using the Oaxaca 

decomposition method. The results show the relationship between aeronautical and non-

aeronautical charges is negative under the compensatory method  while it is insignificant for 

residual and hybrid airports. Residual airports are guaranteed a budget breakeven by the 

signatory airlines, hence the sensitivity of aeronautical charges in response to any changes in 

non-aeronautical charges is less since any budget shortfall (surplus) in the two operations will be 

covered by (credited to) the signatory airlines. Based on the structure of a hybrid agreement, the 

impact of non-aeronautical charges on aeronautical charges is between the ones of the 

compensatory and residual agreements. In addition, I found that the aeronautical charges of 

hybrid airports are about 23% lower than the aeronautical charges of compensatory and residual 

airports after controlling for all other factors. The main characteristic leading to the aeronautical 

charge differentials between hybrid airports and their compensatory and residual counterparts is 

the average costs. That is, hybrid airports have lower unit costs that allow them to charge lower 

aeronautical fees. There is no significant difference in the aeronautical charges between 

compensatory and residual airports. 

While the results suggest no statistically significant difference between hybrid- and 

compensatory-typed agreements in terms of cost and operational efficiency, both airports and 

airlines may benefit most from hybrid-typed agreements. This is because hybrid contracts are 

flexible and require both parties to invest with equal efforts. The reduction in risk through a more 

balanced risk-sharing mechanism increases the utility of airports and airlines (Hihara, 2012). On 

one hand, under a hybrid agreement, the airport is motivated to optimize non-aeronautical 

operations since they bear the risk and receive the benefits of terminal operations. On the other 
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hand, the airport obtains financial support from the signatory airlines in airfield operations. 

Furthermore, an airport’s freedom to make project decisions is not restricted by the hybrid 

contract. Potentially, the signatory airlines could obtain a share from non-aeronautical revenues. 

Moreover, lower aeronautical charges also make the hybrid method more attractive. Among the 

three  rate-setting methods analyzed in this dissertation, the hybrid method seems to be the fairer 

and most beneficial for both airlines and airports, and it guards against the moral hazard problem 

which we observe in residual-typed agreements. Airports that adopt the hybrid method alsooffers 

lower aeronautical charges because of lower unit costs  

This study fills the gap in the literature by looking into the implication of the airport use 

agreements (or rate-setting methods) on airport economic performance and aeronautical charge 

differentials. The results shed light on the economic implications of the three commonly use rate-

setting methods on airport operational and cost efficiency ae well as on aeronautical charge 

differentials.The relationship between airports and airlines are symbiotic. Future studies could 

examine how the relationship between airports and airlines helps them mitigate economic tough 

times and uncertainty.  

 

 

 

 

 

 



 

105 

                                                                REFERENCES 

Abrate, G., & Erbetta, F. (2010). Efficiency and patterns of service mix in airport companies : An 

input distance function approach. Transportation Research Part E, 46(5), 693–708. 

https://doi.org/10.1016/j.tre.2009.12.003 

Aigner, D., Lovell, K., & Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier 

Production Function Models. Journal of Econometrics, 6, 21–37. 

https://doi.org/10.1016/0304-4076(77)90052-5 

Assaf, A. (2010). The cost efficiency of Australian airports post privatisation: A Bayesian 

methodology. Tourism Management, 31(2), 267–273. 

https://doi.org/10.1016/j.tourman.2009.03.005 

Assaf, G. A., & Gillen, D. (2012). Measuring the joint impact of governance form and economic 

regulation on airport efficiency. European Journal of Operational Research, 220(1), 187–

198. https://doi.org/10.1016/j.ejor.2012.01.038 

Badin, L., Daraio, C., & Simar, L. (2012). How to measure the impact of environmental factors 

in a nonparametric production model. European Journal of Operational Research, 223(3), 

818–833. https://doi.org/10.1016/j.ejor.2012.06.028 

Badunenko, O., & Tauchmann, H. (2018). Simar and Wilson two-stage efficiency analysis for 

Stata. FAU Discussion Papers in Economics. 

Banker, R.D., Charnes, A., and Cooper, W. W. (1984). Some Models for Estimating Technical 

and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–

1092. 

Barbot, C. (2011). Vertical contracts between airports and airlines: Is there a trade-off between 

welfare and competitiveness? Journal of Transport Economics and Policy, 45(2), 277–302. 

Barbot, C., & D’Alfonso, T. (2014). Why do contracts between airlines and airports fail? 

Research in Transportation Economics, 45, 34–41. 

https://doi.org/10.1016/j.retrec.2014.07.005 

Barros, C. P. (2008). Technical change and productivity growth in airports: A case study. 

Transportation Research Part A: Policy and Practice, 42(5), 818–832. 

https://doi.org/10.1016/j.tra.2008.01.029 

Barros, C. P., & Dieke, P. U. C. (2008). Measuring the economic efficiency of airports: A Simar-

Wilson methodology analysis. Transportation Research Part E: Logistics and 

Transportation Review, 44(6), 1039–1051. https://doi.org/10.1016/j.tre.2008.01.001 

Battese, G E, & Coelli, T. J. (1995). A Model for Technical Inefficiency Effects in a Stochastic 

Frontier Production Function for Panel Data. Emprical Economics, 325–332. 



 

106 

Battese, George E., & Coelli, T. J. (1992). Frontier Production Functions, Technical Efficiency 

and Panel Data: With Application to Paddy Farmers in India. The Journal of Productivity 

Analysis, 3, 153–169. 

Bazargan, M., & Vasigh, B. (2003). Size versus efficiency: A case study of US commercial 

airports. Journal of Air Transport Management, 9(3), 187–193. 

https://doi.org/10.1016/S0969-6997(02)00084-4 

Bel, G., & Fageda, X. (2010). Factors Explaining Charges in European Airports : Competition , 

Market Size , Private Ownership and Regulation by Germà Bel Factors Explaining Charges 

in European Airports : Competition , Market Size , Private Ownership and Regulation. 

Journal of Regulatory Economics, (37), 142–161. 

Bilotkach, V., Clougherty, J. A., Mueller, J., & Zhang, A. (2012). Regulation , privatization , and 

airport charges : panel data evidence from European airports. Journal of Regulatory 

Economics, 42(1), 73–94. https://doi.org/10.1007/s11149-011-9172-1 

Bitzan, J. (2000). Railroad Cost Conditions - Implications for Policy. 

Bottasso, A., & Conti, M. (2012). The Cost Structure of the UK Airport Industry. Journal of 

Transport Economics and Policy, 46(3), 313–332. 

Bottasso, A., & Conti, M. (2017). The Cost Structure of the Airport Industry : Methodological 

Issues and Emprical Evidence. In The Economic Regulation of Airports (pp. 181–212). 

https://doi.org/10.1108/S2212-160920170000006008 

Brueckner, J. K. (2001). Internalization of Airport Congestion. Journal of Air Transport 

Management, 8, 141–147. 

Carney, M., & Mew, K. (2003). Airport governance reform: A strategic management 

perspective. Journal of Air Transport Management, 9(4), 221–232. 

https://doi.org/10.1016/S0969-6997(03)00003-6 

Caudill, S. B., Ford, J. M., & Gropper, D. M. (1995). Frontier estimation and firm-specific 

inefficiency measures in the presence of heteroscedasticity. Journal of Business and 

Economic Statistics, 13(1), 105–111. https://doi.org/10.1080/07350015.1995.10524583 

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making 

units. European Journal of Operational Research, 2(6), 429–444. 

https://doi.org/10.1016/0377-2217(78)90138-8 

Choo, Y. Y. (2014). Factors affecting aeronautical charges at major US airports. Transportation 

Research Part A: Policy and Practice, 62, 54–62. https://doi.org/10.1016/j.tra.2014.02.006 

Christensen, L.R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental Logarithmic 

Production Frontiers. The Review of Economics and Statistics, 55(1), 28–45. 



 

107 

Christensen, Laurits R, & Greene, W. H. (1976). Economies of Scale in U . S . Electric Power 

Generation. Journal of Political Economy, 84(4), 655–676. 

Coelli, T., & Perelman, S. (2010). Technical efficiency of European railways : a distance 

function approach. Applied Economics, 32(15), 1967–1976. 

https://doi.org/10.1080/00036840050155896 

Cowing, T. G., & Holtmann, A. G. (1983). Multiproduct Short-Run Hospital Cost Functions: 

Empirical Evidence and Policy Implications from Cross-Section Data. Southern Economic 

Journal, 49(3), 637. https://doi.org/10.2307/1058706 

Craig, S. G., Airola, J., & Tipu, M. (2012). General purpose or special district governance? 

Technical efficiency versus rent dissipation in airport finances. Public Finance Review, 

40(6), 712–735. https://doi.org/10.1177/1091142112448415 

Czerny, A. I. (2006). Price-cap regulation of airports : single-till versus dual-till. Journal of 

Regulatory Economics, 85–97. https://doi.org/10.1007/s11149-006-0010-9 

D’Alfonso, T. (2011). Vertical Relations Between Airports and Airlines: Theory and 

Implications. University of Bergamo. 

D’Alfonso, T., Daraio, C., & Nastasi, A. (2015). Competition and efficiency in the Italian airport 

system: New insights from a conditional nonparametric frontier analysis. Transportation 

Research Part E: Logistics and Transportation Review, 80, 20–38. 

https://doi.org/10.1016/j.tre.2015.05.003 

D’Alfonso, T., Jiang, C., & Wan, Y. (2013). Airport Pricing , Concession Revenues and 

Passenger Types. Journal of Tranport Economics and Policy, 47(January), 71–89. 

Daniel, J. I. (1995). Congestion Pricing and Capacity of Large Hub Airports : A Bottleneck 

Model with Stochastic Queues. Econometrica, 63(2), 327–370. 

Dillingham, G. L. (2017). FAA’s and Industry’s Cost Estimates for Airport Development. 

Doganis, R. (1992). The Airport Business. Routledge/Taylor& Francis Group. 

Doganis, R. (2005). The Airline Business in the Twenty-first Century. London & New York: 

Routledge/Taylor& Francis Group. 

FAA. (1999). Airport Business Practices and Their Impact on Airline Competition. Retrieved 

from https://www.faa.gov/airports/aip/media/airport-business-practices-and-their-impact-

on-airline-competition.pdf 

FAA. (2009). Policy Regarding the Establishment of Airport Rates and Charges. Retrieved from 

https://www.faa.gov/airports/airport_compliance/media/airports-rates-charges-policy-with-

amendments.pdf 



 

108 

FAA. (2017). FAA Aerospace Forecast. Retrieved from 

https://www.faa.gov/data_research/aviation/ 

Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical 

Society, 120(3), 253–290. Retrieved from http://www.aae.wisc.edu/aae741/Ref/Farrell 

1957.pdf 

Farsi, M., Filippini, M., & Kuenzle, M. (2006). Cost efficiency in regional bus companies: An 

application of alternative stochastic frontier models. Journal of Transport Economics and 

Policy, 40(1), 95–118. 

Faulhaber, J. M., Schulthess, J. J., Eastmond, A. C., Lewis, S. P., & Block, R. W. (2010). 

Airport/Airline Agreements Practices and Characteristics. https://doi.org/10.17226/22912 

Filippini, M., & Maggi, R. (1992). The Cost Structure of the Swiss Private Railways. 

International Journal of Transport Economics, 19(3), 307–327. 

Folkes, V. S., Koletsky, S., & Graham, J. L. (1987). A Field Study of Causal Inferences and 

Consumer Reaction : The View from the Airport. Oxford University Press, 13(4), 534–539. 

Fu, X., Homsombat, W., & Oum, T. H. (2011). Airport-airline vertical relationships, their effects 

and regulatory policy implications. Journal of Air Transport Management, 17(6), 347–353. 

https://doi.org/10.1016/j.jairtraman.2011.02.004 

Fu, X., & Zhang, A. (2010). Effects of airport concession revenue sharing on airline competition 

and social welfare. Journal of Transport Economics and Policy, 44(2), 119–138. 

Fuhr, J., & Beckers, T. (2009). Contract design, financing arrangements and public ownership-an 

assessment of the US airport governance model. Transport Reviews, 29(4), 459–478. 

https://doi.org/10.1080/01441640802465656 

Gallego-Hidalgo, S., Martínez-San Román, V., & Núñez-Sánchez, R. (2017). Estimation of 

Allocative Efficiency in Airports for a Pre-Privatization Period. In The Economics of 

Airport Operations (pp. 69–95). https://doi.org/10.1108/S2212-160920170000006004 

Gillen, D., & Lall, A. (1997). Developing measures of airport productivity and performance: an 

application of data envelopment analysis. Transportation Research Part E: Logistics and 

Transportation Review, 33(4), 261–273. https://doi.org/10.1016/S1366-5545(97)00028-8 

Graham, A. (2004). The Regulation of US Airports. In The Economic Regulation of Airports (pp. 

63–74). London: Routledge/Taylor& Francis Group. 

Greene, W. (2004). Distinguishing between heterogeneity and inefficiency: Stochastic frontier 

analysis of the World Health Organization’s panel data on national health care systems. 

Health Economics, 13(10), 959–980. https://doi.org/10.1002/hec.938 



 

109 

Greene, W. (2005). Reconsidering heterogeneity in panel data estimators of the stochastic 

frontier model. Journal of Econometrics, 126, 269–303. 

https://doi.org/10.1016/j.jeconom.2004.05.003 

Hadri, K. (1999). Estimation of a doubly heteroscedastic stochastic frontier cost function. 

Journal of Business and Economic Statistics, 17(3), 359–363. 

https://doi.org/10.1080/07350015.1999.10524824 

Hihara, K. (2012). An analysis of an airport – airline relationship under a risk sharing contract. 

Transportation Research Part E, 48(5), 978–992. https://doi.org/10.1016/j.tre.2012.03.002 

Holmstrom, B. (1979). Moral Hazard and Observability. The Bell Journal of Economics, 10(1), 

74–91. https://doi.org/10.2307/3003320 

Ivaldi, M., Sokullu, S., & Toru, T. (2015). Airport Prices in a Two-sided Market Setting : Major 

US Airports. CEPR Discussion Paper No.DP10658. Retrieved from 

https://ssrn.com/abstract=2619233 

Karanki, F., & Lim, S. H. (2020). The effects of use agreements on airport efficiency. Journal of 

Air Transport Management, 84, 101767. https://doi.org/10.1016/j.jairtraman.2020.101767 

Kidokoro, Y., Lin, M. H., & Zhang, A. (2016). A general-equilibrium analysis of airport pricing, 

capacity, and regulation. Journal of Urban Economics, 96, 142–155. 

https://doi.org/10.1016/j.jue.2016.10.001 

Kutlu, L., & McCarthy, P. (2016). US airport ownership , efficiency , and heterogeneity. 

Transportation Research Part E, 89, 117–132. https://doi.org/10.1016/j.tre.2016.03.003 

LeighFisher. (2016). Emerging Trends in Airport-Airline Agreements AAAE / LeighFisher Rates 

and Charges Workshop. 

Lu, C. C., & Pagliari, R. I. (2004). Evaluating the potential impact of alternative airport pricing 

approaches on social welfare. Transportation Research Part E: Logistics and 

Transportation Review, 40(1), 1–17. https://doi.org/10.1016/S1366-5545(03)00031-0 

Martín, J. C., Rodríguez-Déniz, H., & Voltes-Dorta, A. (2013). Determinants of airport cost 

flexibility in a context of economic recession. Transportation Research Part E: Logistics 

and Transportation Review, 57, 70–84. https://doi.org/10.1016/j.tre.2013.01.007 

Martin, J. C., Roman, C., & Voltes-Dorta, A. (2009). A stochastic frontier analysis to estimate 

the relative efficiency of Spanish airports. Journal of Productivity Analysis, 163–176. 

https://doi.org/10.1007/s11123-008-0126-2 

Martini, G., Scotti, D., & Volta, N. (2013). Including local air pollution in airport efficiency 

assessment : A hyperbolic-stochastic approach. Transportation Research Part D, 24, 27–36. 

https://doi.org/10.1016/j.trd.2013.05.002 



 

110 

McCarthy, P. (2014). US Airport Costs and Production Technology A Translog Cost Function 

Analysis. Journal of Transport Economics and Policy, 48(3), 427–447. 

McCarthy, P. (2016a). Multi-Product Cost Analysis of US Airports. In Airline Efficiency (pp. 

243–281). https://doi.org/10.1108/S2212-160920160000005010 

McCarthy, P. (2016b). Multi-Product Cost Analysis of US Airports. In Airline Efficiency (Vol. 5, 

pp. 243–281). Emerald Group Publishing Limited. https://doi.org/10.1108/S2212-

160920160000005010 

Meeusen, W., & Van Den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas 

Production Functions with Composed Error. Institute of Social and Economic Research, 

18(2), 435–444. 

National Academies of Sciences, Engineering,  and M. (2009). Airport Governance and 

Ownership. Washington, DC: The National Academies Press. 

https://doi.org/10.17226/23010 

National Academy of Sciences, Engineering,  and M. (2007). Innovative Finance and Alternative 

Sources of Revenue for Airports. https://doi.org/10.17226/14041 

Oaxaca, R. (1973). Male-Female Wage Differentials in Urban Labor Markets Author. 

International Economic Review, 14(3), 693–709. 

Oum, T. H., Yan, J., & Yu, C. (2008). Ownership forms matter for airport efficiency: A 

stochastic frontier investigation of worldwide airports. Journal of Urban Economics, 64(2), 

422–435. https://doi.org/10.1016/j.jue.2008.03.001 

Oum, T, & Zhang, Y. (1991). Utilisation of Quasi-Fixed Inputs and Estimation of Cost 

Functions : an Application To Airline Costs. Journal of Transport Economics and Policy, 

25(2). 

Oum, Tae, Zhang, A., & Zhang, Y. (2004). Alternative Forms of Economic Regulation and their 

Efficiency Implications for Airports. The Journal of Transport Economics and Policy, 

38(2), 217. 

Pels, E., Nijkamp, P., & Rietveld, P. (2003). Access to and competition between airports: A case 

study for the San Francisco Bay area. Transportation Research Part A: Policy and Practice, 

37(1), 71–83. https://doi.org/10.1016/S0965-8564(02)00007-1 

Pels, E., Van Vuuren, D., Ng, C., & Rietveld, P. (2016). An Emprical Analysis of Airport 

Operational Costs. In Airport Competition: The European Experience (pp. 103–118). 

Routledge/Taylor& Francis Group. 

Peterson, R. (2018). Impacts of Airline Deregulation. TR News, 8. Retrieved from 

http://onlinepubs.trb.org/onlinepubs/trnews/trnews315airlinedereg.pdf 



 

111 

Pitt, M. M., & Lee, L. F. (1981). The measurement and sources of technical inefficiency in the 

Indonesian weaving industry. Journal of Development Economics, 9(1), 43–64. 

https://doi.org/10.1016/0304-3878(81)90004-3 

Reed, W. R. (2015). On the Practice of Lagging Variables to Avoid Simultaneity. Oxford 

Bulletin of Economics and Statistics, 77(6), 897–905. https://doi.org/10.1111/obes.12088 

Reimers, C. W. (1983). Labor Market Discrimination Against Hispanic and Black Men. The 

Review of Economics and Statistics, 65(4), 570–579. 

Richardson, C., Budd, L., & Pitfield, D. (2014). The impact of airline lease agreements on the fi 

nancial performance of US hub airports. Journal of Air Transport Management, 40. 

https://doi.org/10.1016/j.jairtraman.2014.04.004 

Sarkis, J. (2000). Analysis of the operational efficiency of major airports in the United States. 

Journal of Operations Management, 18(3), 335–351. https://doi.org/10.1016/S0272-

6963(99)00032-7 

Schmidt, P., & Sickles, R. C. (1984). Production Frontiers and Panel Data. Journal of Business 

& Economic Statistics, 2(4), 367–374. 

Scotti, D., Malighetti, P., Martini, G., & Volta, N. (2012). The impact of airport competition on 

technical efficiency : A stochastic frontier analysis applied to Italian airport. Journal of Air 

Transport Management, 22, 9–15. https://doi.org/10.1016/j.jairtraman.2012.01.003 

Shephard, R. W. (1970). The Theory of Cost and Production Functions. The Economic Journal 

(Vol. 82). https://doi.org/10.2307/2230285 

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric 

models of production processes. Journal of Econometrics, 136(1), 31–64. 

https://doi.org/10.1016/j.jeconom.2005.07.009 

Smyth, M., & Pearce, B. (2007). IATA Economics Briefing No 6: Economic Regulation. Iata. 

Van Dender, K. (2007). Determinants of fares and operating revenues at. Journal of Urban 

Economics, 62(February 2006), 317–336. https://doi.org/10.1016/j.jue.2006.09.001 

Vasigh, B., & Hamzaee, R. G. (1998). A comparative analysis of economic performance of US 

commercial airports. Journal of Air Transport Management, 4(4), 209–216. 

https://doi.org/10.1016/S0969-6997(98)00028-3 

Voltes-Dorta, A., & Lei, Z. (2013). The Impact of Airline Differentiation on Marginal Cost 

Pricing at UK Airports. Transportation Research Part A: Policy and Practice, 55, 72–88. 

https://doi.org/10.1016/j.tra.2013.08.002 

Wooldridge, J. M. (2015). Introductory econometrics : A Modern Approach (6th Editio). 

Cengage Learning. 



 

112 

Wu, D. (2015). Classifying Airline Rates and Charges Methodologies. DWU Consulting LLC. 

Zhang, A., & Czerny, A. I. (2012). Economics of Transportation Airports and airlines economics 

and policy : An interpretive review of recent research. Economics of Transportation, 1(1–2), 

15–34. https://doi.org/10.1016/j.ecotra.2012.08.001 

Zhang, A., Fu, X., & Gavin, H. (2010). Revenue sharing with multiple airlines and airports. 

Transportation Research Part B, 44(8–9), 944–959. 

https://doi.org/10.1016/j.trb.2010.02.001 

Zhang, A., & Zhang, Y. (1997). Concession revenue and optimal airport pricing. Transportation 

Research Part E: Logistics and Transportation Review, 33(4), 287–296. 

Zhang, A., & Zhang, Y. (2006). Airport capacity and congestion when carriers have market 

power. Journal of Urban Economics, 60(2), 229–247. 

https://doi.org/10.1016/j.jue.2006.02.003 

Zhang, A., & Zhang, Y. (2010). Airport capacity and congestion pricing with both aeronautical 

and commercial operations. Transportation Research Part B: Methodological, 44(3), 404–

413. https://doi.org/10.1016/j.trb.2009.09.001 

Zhao, Q., Choo, Y. Y., & Oum, T. H. (2014). The effect of governance forms on North 

American airport efficiency: A comparative analysis of airport authority vs. government 

branch. Journal of the Transportation Research Forum, 53(2), 93–110. 

https://doi.org/10.5399/osu/jtrf.53.2.4237 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 

APPENDIX A. AIRPORT CLASSIFICATIONS 

ID AIRPORTS CITY GOVERNANCE 

FORMS 

HUB SIZE AGREEMENT 

TYPES 

ABQ Albuquerque International 

Sunport 

Albuquerque, 

New Mexico 

City Medium Hybrid 

ANC Ted Stevens Anchorage 

International Airport 

Anchorage, 

Alaska 

State Medium Residual 

ATL Hartsfield–Jackson Atlanta 

International Airport 

Atlanta, Georgia City Large Hybrid 

AUS Austin-Bergstrom 

International Airport 

Austin, Texas City Medium Compensatory 

BDL Bradley International Airport Hartford, 

Connecticut 

Port/Airport 

Authority 

Medium Compensatory 

BNA Nashville International 

Airport  

Nashville, 

Tennessee 

Port/Airport 

Authority 

Medium Hybridǂ 

BOS Gen. Edward Lawrence 

Logan International Airport 

Boston, 

Massachusetts 

Port/Airport 

Authority 

Large Compensatory 

BUF Buffalo Niagara International 

Airport 

Buffalo, New 

York 

Port/Airport 

Authority 

Medium Compensatory 

BWI Baltimore/Washington 

International Thurgood 

Marshall Airport 

Baltimore, 

Maryland  

State Large Compensatory 

CLE Cleveland-Hopkins 

International Airport 

Cleveland, Ohio City Medium Residual 

CLT Charlotte/Douglas 

International Airport 

Charlotte, North 

Carolina 

City Large Hybrid 

CMH John Glenn Columbus 

International Airport 

Columbus, Ohio Port/Airport 

Authority 

Medium Hybrid 

CVG Cincinnati/Northern 

Kentucky International 

Airport 

Hebron, Kentucky Port/Airport 

Authority 

Medium Hybrid 

DCA Ronald Reagan Washington 

National Airport 

Arlington, 

Virginia 

Port/Airport 

Authority 

Large Hybrid 

DEN Denver International Airport Denver, Colorado City Large Hybrid 

DFW Dallas/Fort Worth 

International Airport 

Dallas-Fort 

Worth, Texas 

City Large Compensatory 

DTW Detroit Metropolitan Wayne 

County Airport 

Detroit, Michigan County Large Residual 

EWR Newark Liberty International 

Airport 

Newark, New 

Jersey 

Port/Airport 

Authority 

Large Compensatory 

FLL Fort Lauderdale–Hollywood 

International Airport 

Fort Lauderdale, 

Florida 

County Large Residual 

HNL Daniel K. Inouye 

International Airport 

Honolulu, Hawaii State Large Hybrid 

HOU William P. Hobby Airport Houston, Texas City Medium Hybrid 

IAD Washington Dulles 

International Airport 

Dulles, Virginia Port/Airport 

Authority 

Large Hybrid 

IAH George Bush Intercontinental 

Airport 

Houston, Texas City Large Compensatory 



 

114 

ID AIRPORTS CITY GOVERNANCE 

FORMS 

HUB SIZE AGREEMENT 

TYPES 

IND Indianapolis International 

Airport 

Indianapolis, 

Indiana  

Port/Airport 

Authority 

Medium Residual 

JAX Jacksonville International 

Airport 

Jacksonville, 

Florida 

Port/Airport 

Authority 

Medium Residual 

JFK John F. Kennedy 

International Airport  

New York, New 

York 

Port/Airport 

Authority 

Large Compensatory 

LAS McCarran International 

Airport 

Las Vegas, 

Nevada 

County Large Residual 

LAX Los Angeles International 

Airport 

Los Angeles, 

California 

City Large Compensatory 

LGA LaGuardia 

Airport (and Marine Air 

Terminal) 

Queens, New 

York 

Port/Airport 

Authority 

Large Compensatory 

MCI Kansas City International 

Airport  

Kansas City, 

Missouri 

City Medium Compensatory 

MCO Orlando International Airport Orlando, Florida Port/Airport 

Authority 

Large Hybrid 

MDW Chicago Midway 

International Airport 

Chicago, Illinois City Large Residual 

MIA Miami International Airport Miami, Florida County Large Residual 

MKE General Mitchell 

International Airport 

Milwaukee, 

Wisconsin 

County Medium Residual 

MSP Minneapolis–St. Paul 

International Airport  

Minneapolis, 

Minnesota 

Port/Airport 

Authority 

Large Hybrid 

MSY Louis Armstrong New 

Orleans International Airport 

New Orleans, 

Louisiana  

City Medium Residual 

OAK Oakland International 

Airport 

Oakland, 

California 

Port/Airport 

Authority 

Medium Hybrid 

OGG Kahului Airport Kahului, Hawaii State Medium Hybrid 

OKC Will Rogers World Airport Oklahoma City, 

Oklahoma 

City Medium Compensatory 

OMA Eppley Airfield Omaha, Nebraska Port/Airport 

Authority 

Medium Compensatory 

ONT Ontario International Airport Ontario, 

California 

Port/Airport 

Authority 

Medium Residual 

ORD Chicago O'Hare International 

Airport 

Chicago, Illinois City Large Residual 

PBI Palm Beach International 

Airport 

West Palm Beach, 

Florida 

County Medium Hybrid 

PDX Portland International 

Airport 

Portland, Oregon Port/Airport 

Authority 

Large Hybrid 

PHL Philadelphia International 

Airport 

Philadelphia, 

Pennsylvania 

City Large Residual 

PHX Phoenix Sky Harbor 

International Airport 

Phoenix, Arizona City Large Compensatory 

PIT Pittsburgh International 

Airport 

Pittsburgh, 

Pennsylvania 

Port/Airport 

Authority 

Medium Residual 
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ID AIRPORTS CITY GOVERNANCE 

FORMS 

HUB SIZE AGREEMENT 

TYPES 

RDU Raleigh-Durham 

International Airport 

Raleigh, North 

Carolina 

Port/Airport 

Authority 

Medium Compensatory 

RSW Southwest Florida 

International Airport 

Fort Myers, 

Florida 

Port/Airport 

Authority 

Medium Hybrid 

SAN San Diego International 

Airport  

San Diego, 

California 

Port/Airport 

Authority 

Large Compensatory 

SAT San Antonio International 

Airport 

San Antonio, 

Texas 

City Medium Hybrid 

SEA Seattle–Tacoma International 

Airport 

Seattle / Tacoma  

(SeaTac), 

Washington 

Port/Airport 

Authority 

Large Compensatory 

SFO San Francisco International 

Airport 

San Francisco, 

California 

City Large Residual 

SJC Norman Y. Mineta San José 

International Airport 

San Jose, 

California 

City Medium Hybrid 

SLC Salt Lake City International 

Airport 

Salt Lake City, 

Utah 

City Large Hybrid 

SMF Sacramento International 

Airport 

Sacramento, 

California 

County Medium Compensatory 

SNA John Wayne Airport  Santa Ana, 

California 

County Medium Compensatory 

STL St. Louis Lambert 

International Airport 

St. Louis. 

Missouri 

City Medium Residual 

TPA Tampa International Airport Tampa, Florida Port/Airport 

Authority 

Large Hybrid 
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APPENDIX B. CRS DEA SCORES 

ID 2009 2010 2011 2012 2013 2014 2015 2016 

ABQ 0.800 0.778 0.711 0.720 0.745 0.711 0.753 0.758 

ANC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ATL 1.000 1.000 1.000 0.968 1.000 0.976 0.940 0.904 

AUS 0.851 0.885 0.864 0.856 0.899 0.909 1.000 0.985 

BDL 0.520 0.577 0.597 0.681 0.669 0.722 0.574 0.707 

BNA 0.912 0.951 0.821 0.890 0.900 0.899 0.939 1.000 

BOS 0.756 0.812 0.810 0.907 0.936 0.900 0.926 0.923 

BUF 0.652 0.744 0.721 0.785 0.820 0.754 0.715 0.711 

BWI 0.549 0.406 0.484 0.586 0.674 0.539 0.506 0.510 

CLE 0.420 0.451 0.408 0.437 0.513 0.472 0.502 0.469 

CLT 0.953 1.000 0.838 0.936 0.952 0.962 0.884 0.886 

CMH 0.903 0.892 0.813 0.814 0.808 0.816 0.860 0.840 

CVG 0.504 0.841 0.869 0.861 0.872 0.889 0.864 0.844 

DCA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DEN 0.598 0.656 0.689 0.716 0.776 0.821 0.865 0.846 

DFW 0.721 0.782 0.666 0.709 0.771 0.820 0.773 0.756 

DTW 0.534 0.554 0.577 0.638 0.620 0.627 0.587 0.649 

EWR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

FLL 0.800 0.963 0.941 1.000 1.000 1.000 0.993 0.949 

HNL 0.661 0.713 0.689 0.717 0.871 0.710 0.682 0.618 

HOU 0.726 0.641 0.549 0.653 0.772 0.802 0.759 0.693 

IAD 0.650 0.576 0.602 0.536 0.596 0.639 0.683 0.698 

IAH 0.514 0.481 0.472 0.492 0.558 0.579 0.605 0.543 

IND 0.626 0.699 0.663 0.784 0.810 0.820 0.849 0.789 

JAX 0.898 0.893 0.803 0.817 0.869 0.895 0.967 0.799 

JFK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

LAS 0.788 0.743 0.754 0.798 0.712 0.733 0.733 0.682 

LAX 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

LGA 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.859 

MCI 0.604 0.636 0.669 0.718 0.725 0.754 0.715 0.766 

MCO 0.868 0.910 0.994 1.000 1.000 1.000 1.000 1.000 

MDW 0.663 0.779 0.686 0.700 0.927 0.759 0.758 0.753 

MIA 0.583 0.588 0.601 0.720 0.715 0.759 0.654 0.699 

MKE 1.000 1.000 1.000 1.000 1.000 1.000 0.835 0.904 

MSP 0.813 0.910 0.895 0.923 0.891 0.915 0.910 0.876 

MSY 0.431 0.465 0.427 0.488 0.530 0.573 0.553 0.571 

OAK 0.580 0.701 0.703 0.696 0.733 0.721 0.726 0.742 

OGG 0.633 0.867 0.895 1.000 1.000 1.000 1.000 0.947 

OKC 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.849 

OMA 0.827 0.885 0.724 1.000 0.831 0.861 0.904 1.000 

ONT 0.680 0.598 0.545 0.606 0.607 0.687 0.686 0.651 

ORD 0.480 0.633 0.526 0.546 0.628 0.587 0.824 0.533 

PBI 0.693 0.727 0.718 0.811 0.787 0.835 0.853 0.821 

PDX 0.695 0.736 0.685 0.774 0.797 0.819 0.852 0.833 

PHL 0.524 0.579 0.577 0.636 0.649 0.617 0.567 0.622 

PHX 0.942 0.885 0.850 1.000 0.906 0.901 0.918 0.808 

PIT 0.413 0.447 0.445 0.474 0.503 0.518 0.512 0.507 
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ID 2009 2010 2011 2012 2013 2014 2015 2016 

RDU 0.935 0.826 0.783 0.820 0.881 0.876 0.896 0.853 

RSW 0.951 1.000 0.991 0.957 0.953 0.929 0.932 0.781 

SAN 0.936 0.909 0.932 0.923 1.000 1.000 1.000 1.000 

SAT 0.957 1.000 0.941 1.000 1.000 1.000 1.000 0.953 

SEA 0.791 0.762 0.729 0.737 0.790 0.872 0.901 0.859 

SFO 0.977 1.000 1.000 1.000 1.000 1.000 1.000 0.869 

SJC 0.774 0.583 0.824 0.993 1.000 1.000 1.000 1.000 

SLC 0.699 0.715 0.683 0.744 0.721 0.730 0.746 0.775 

SMF 1.000 0.968 0.904 0.760 0.808 0.840 0.896 0.836 

SNA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

STL 0.415 0.441 0.380 0.443 0.465 0.468 0.482 0.524 

TPA 0.890 0.899 0.888 0.917 0.945 0.983 0.958 0.958 
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APPENDIX C. VRS DEA SCORES 

ID 2009 2010 2011 2012 2013 2014 2015 2016 

ABQ 0.848 0.812 0.788 0.782 0.823 0.875 0.946 0.825 

ANC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ATL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

AUS 0.869 0.896 0.892 0.910 0.924 0.919 1.000 0.986 

BDL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BNA 0.917 0.965 0.839 0.890 0.901 0.899 0.947 1.000 

BOS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BUF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BWI 0.654 0.467 0.543 0.603 0.688 0.571 0.515 0.527 

CLE 0.425 0.455 0.410 0.460 0.520 0.474 0.511 0.471 

CLT 0.960 1.000 0.864 0.980 0.997 1.000 0.975 0.897 

CMH 1.000 0.992 0.866 0.924 0.898 0.892 0.913 0.876 

CVG 0.514 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DCA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DEN 0.857 0.902 0.894 0.880 0.913 0.933 0.987 1.000 

DFW 1.000 1.000 0.982 0.996 1.000 1.000 0.978 1.000 

DTW 0.605 0.592 0.629 0.666 0.642 0.664 0.650 0.746 

EWR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

FLL 0.833 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

HNL 0.692 0.735 0.722 0.723 0.872 0.724 0.688 0.631 

HOU 0.972 0.697 0.575 0.755 0.880 0.931 0.825 0.709 

IAD 0.715 0.674 0.661 0.598 0.610 0.649 0.688 0.749 

IAH 0.535 0.512 0.521 0.536 0.571 0.607 0.636 0.588 

IND 0.653 0.707 0.709 0.808 0.839 0.856 0.852 0.794 

JAX 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

JFK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

LAS 0.881 0.832 0.806 0.806 0.746 0.771 0.775 0.782 

LAX 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

LGA 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.864 

MCI 0.612 0.644 0.670 0.718 0.769 0.778 0.788 0.768 

MCO 0.983 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MDW 0.766 0.794 0.883 0.904 0.934 0.759 0.758 0.761 

MIA 0.842 0.877 0.987 1.000 0.994 1.000 0.950 0.964 

MKE 1.000 1.000 1.000 1.000 1.000 1.000 0.838 0.911 

MSP 0.837 0.935 0.953 0.926 0.895 0.936 0.966 0.950 

MSY 1.000 1.000 0.428 0.489 0.538 0.603 0.554 0.612 

OAK 0.605 0.734 0.713 0.716 0.754 0.740 0.739 0.742 

OGG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

OKC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

OMA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

ONT 0.680 0.615 0.548 0.612 0.658 0.985 1.000 1.000 

ORD 0.853 0.930 0.900 0.941 1.000 1.000 1.000 1.000 

PBI 0.746 0.740 0.725 0.835 0.804 0.859 0.864 0.964 

PDX 0.702 0.752 0.708 0.775 0.797 0.823 0.862 0.850 

PHL 0.534 0.639 0.665 0.691 0.661 0.624 0.593 0.688 

PHX 1.000 1.000 1.000 1.000 0.986 1.000 1.000 0.924 

PIT 0.421 0.463 0.457 0.484 0.540 0.548 0.544 0.513 
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ID 2009 2010 2011 2012 2013 2014 2015 2016 

RDU 0.975 0.826 0.784 0.829 0.883 0.880 0.896 0.864 

RSW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.877 

SAN 0.945 0.910 0.940 0.926 1.000 1.000 1.000 1.000 

SAT 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.960 

SEA 0.933 0.879 0.830 0.824 0.826 0.900 0.946 0.951 

SFO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SJC 0.777 0.632 0.827 0.996 1.000 1.000 1.000 1.000 

SLC 0.703 0.729 0.683 0.759 0.758 0.770 0.800 0.778 

SMF 1.000 0.973 0.910 0.787 0.827 0.844 0.898 0.845 

SNA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

STL 0.416 0.455 0.386 0.459 0.479 0.481 0.519 0.527 

TPA 0.902 0.911 0.889 0.917 0.951 1.000 1.000 0.965 
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APPENDIX D. DESCRIPTIVE STATISTICS OF EFFICIENCY SCORES           

(POOLED DATA) 

 
CRS VRS 

Mean 0.7278 0.7859 

SD 0.1680 0.1714 

Min 0.3518 0.3668 

Max 1 1 
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APPENDIX E. STAGE-2 TRUNCATED REGRESSION RESULTS (POOLED DATA) † 

 
CRS VRS 

 
Parameter BSE Parameter BSE 

Constant 0.5603*** 0.0166 0.6067*** 0.0161 

Compensatory 0.1643*** 0.0168 0.1640*** 0.0169 

Hybrid 0.1614*** 0.0171 0.1315*** 0.0170 

City -0.0549*** 0.0143 -0.0661*** 0.0148 

County 0.0741*** 0.0218   0.0452** 0.0214 

State  -0.1065*** 0.0253 -0.1909*** 0.0257 

Large Hub 0.0418*** 0.0132 0.0768*** 0.0131 

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

† BSE is the bootstrap standard error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


