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ABSTRACT 

Saula, Oluwasijibomi, M.S., Department of Electrical and Computer Engineering, 
College of Engineering and Architecture, North Dakota State University, April 2010. 
Phasor Measurement Unit Placements for Complete Observability using Linear-Time, 
Quadratic-Time, and Subquadratic-Time Heuristics. Major Professor: Dr. Samee 
Ullah Khan. 

A phasor measurement unit (PMU) is considered to have the potential to 

improve the efficiency of electric power systems by monitoring, control, and protection. 

Through measurements of all bus voltages, incoming and outgoing currents, and by 

subsequent calculation of all phase angles, employing PMUs on every substation in a 

power system will allow complete observation of a power system. However, having a 

PMU on every substation may not be economically feasible. Therefore, methodologies 

must be devised that can monitor a system with the minimum possible number of 

PMUs. In this paper, we propose six graph theoretical PMU placement heuristics. 

The proposed heuristics overcome the previous approaches in terms of scalability and 

execution time. The proposed heuristics are thoroughly compared and benchmarked 

using standard IEEE bus networks ranging from 14 to 300 buses, and a 2,383 bus 

system. 
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CHAPTER 1. INTRODUCTION 

A Phasor Measurement Unit (PMU) is a measurement device which utilizes a 

global positioning system (GPS) and allows for the acquisition of synchronized phasor 

measurements, specifically voltage and current phasor measurements. In addition to 

measuring voltage and current magnitudes, the phase angle can also be calculated 

directly, and phasor measurements can be presented in a continuous format. As PMUs 

are dynamic state estimators, these non-static estimators allow monitoring of a power 

system by calculating state estimates using continuous streams of voltage and current 

phasor measurements. By virtue of these continuous streams of phasor measurements, 

the synchronization of PMUs has become an advantage over traditional analog meters. 

In addition, PMUs are attractive for their ability to improve bad data detection [22], 

provide better accuracy for iterative state estimation algorithms [4], stability control 

[23], and disturbance monitoring [24]. PMUs are also favored in system protection 

schemes while also playing an important role in post-mortem analysis of a power 

system. With installed PMUs providing synchronized phasor measurements, the 

standards of power system monitoring, control, and protection of a power system 

is enhanced [25]. 

Synchronization in a power system is vital and can be accomplished by using 

state estimators that reside at a comptroller. The comptroller monitors all measure­

ments and other information received from substations and meters. By continual 

monitoring, state estimators are able to provide approximate voltage, current, and 

power measurements of a power system. Estimators may also detect errors in data 

and make corrections where necessary. One disadvantage of using traditional analog 

meters is the inherent time dependency [4]. This demerit is visible when disturbances, 

such as power fluctuations, occur. Traditional analog meters are not guaranteed to 

trigger at the time of disturbance and could result in defective monitoring of power 
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systems. Thankfully, the proper application of PMUs prevents such measurement 

omissions from taking place. 

By utilizing the current state of a power system with sufficient but necessary 

knowledge on the measurement set and their distribution, the power system becomes 

observable (measurable) [4]. PMUs installed on all of the nodes can provide complete 

observability but PMUs on every substation may not be economically feasible [3]. 

When a PMU is deployed on a substation, that substation is termed a directly 

observable substation. The substation is termed a calculated substation when such 

substation does not have a PMU installed but is observable by other PMUs installed 

on neighboring substations. A system is said to be completely observable when all of 

the substations are either directly observed or calculated. If any of the substations are 

not observed, then that system is defined as unobservable. [4]. For instance, consider 

a power system that is composed of seven substations as described in Fig. 1. 

Figure 1: An example power system. 

Assume that PMUs are installed on substations v1 , v4 , and v7 . We can differ­

entiate directly observable substations from calculated substations: 

1. The PMU on v1 makes the substations v2 and v3 visible. 

2. The PMU on v4 make the substations v2 , v3 , v5 , and v6 visible. 

3. The PMU on v7 makes the substation v5 visible. 
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Therefore, v1 , v4 , and v7 are designated as directly observable substations and the 

remaining substations (v2 , v3 , v5 , and v6 ) as calculated substations. 

A system is termed as completely observable if and only if all of the substations 

are visible. Therefore, by choosing an optimum position to install PMUs, we can 

achieve complete observability along with the reduced deployment cost. The main 

contributions of this paper are as follows: 

1. We formulate a graph theoretical PMU placement problem. This formulation 

is considerably different and comprehensible than the previous formulations. 

2. We design and analyze a wide range of PMU placement heuristics, such as 

edge selection, greedy, and A-star. These heuristics are proven to be linear and 

sub-quadratic in scalability. 

3. Because of the wide range of selection, the heuristics proposed in this paper are 

easily comprehensible and extend able to the well-known set covering problem 

[9], vertex covering problem [9], and quadratic assignment problem [12]. 

4. The execution time of the proposed heuristics also is computationally accept­

able. 

5. To standardize our results, we benchmark our proposed heuristics on the pub­

licly available IEEE bus networks (14 bus system, 30 bus system, 57 bus system, 

118 bus system, and 300 bus system) [14]. Additionally, the proposed heuristics 

are benchmarked on a 2383 bus network that was generated at North Dakota 

State University by concatenation of the aforementioned bus systems. 

The remainder of this paper is organized as follows. In Section 2, we review 

previous work. The problem formulation will be described in Section 3. Then in 

Section 4 and Section 5, we present our proposed heuristics and their simulation 

results, respectively. Finally, we conclude the paper in Section 6. 
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CHAPTER 2. RELATED WORK 

For maximal benefits of PMUs in a power system, site selection of PMUs to be in­

stalled in a power system must be properly addressed. With proper PMU placements, 

the observability of a power system is improved. Power system observability allows 

a state estimator to determine the unique state solution of a power system given 

the network's measurements and topology. For optimal state estimation of a power 

system, full network observability is usually preferred. An existent constraint on PMU 

placement algorithms is the ensuing costs of placed PMUs. Since the cost of placed 

PMUs is directly proportional to the number of PMUs placed, PMU locations chosen 

judiciously will aptly minimize the number of PMUs placed and the resulting cost. 

Given a set of measurements, we are assured of full network observability (coverage) 

when at least one measurement spanning tree of full rank can be formed [15]. With 

the aim of full network observability and minimal number of employed PMUs, optimal 

placements of PMUs is necessary. 

It should be noted that the problem of minimizing the monetary cost of PMUs 

employed in a power system is distinct to the problem of minimizing the number of 

PMUs assigned for full network coverage. The problem of minimizing the monetary 

cost of PMUs is attempted by the authors in [1]. In [1], the authors attempt to solve 

the basic problem statement considering the presence of conventional measuring units 

in power system; the proposed solution method is named Augmented Bus Merging 

(ABM). A solution is also proposed to the problem of minimizing the cost of PMUs 

where loss of single or multiple PMUs is expected; the proposed solution method is 

named Local Redundancy (LR). 

In this paper, we focus on the problem of minimizing the number of PMU s 

required for full network coverage (full observability) of a power system; we also refer 

to this problem as the Optimal PMU Placement problem (OPP). The OPP problem 

4 



descends from classical graph theoretical optimization problems such as set covering, 

vertex covering, and quadratic assignment, and has been attempted by various works. 

An approach presented in [5] applies simulated annealing (SA) to the OPP 

problem, however, SA is a non optimal technique and suffers from heavy calculation 

burden in reaching near optimal solutions. In [15], a modification was made to SA 

in an attempt to reduce SA's computational burden. Another method, Tahu Search 

(TS) was presented to reduce search space drastically. Unfortunately, TS produced 

results that were non-optimal even in small studies [16]. In [17], the OPP problem 

is approached using sorting genetic algorithm (NSGA). Complex as NSGA is, its 

applicability is restricted by the size of the problem. The authors of [1] remark on the 

time consumed by various approaches discussed above. The authors of [1] therefore 

present a time efficient technique. The strategy presented is called Immunity Genetic 

Algorithm (IGA). IGA is an amalgamation of the genetic algorithm (GA) and immune 

algorithm (IA). The GA and IA are algorithms developed in the fashion of natural 

biological processes and implemented using statistical methods. The added advantage 

of IGA is its utilization of local information and avoidance of repetitive or fruitless 

tasks in crossovers and mutations. 

In [6], the authors propose a solution to the OPP problem by utilizing a binary 

search algorithm. The authors of [6] also provide a means of retaining full observabil­

ity in the event of a single PMU outage in a power system. Benchmarking the PMU 

placement method in [6] was accomplished by running the binary search algorithm 

on the IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, and the New England 39-bus test 

systems. In most of these case studies, the binary search algorithm in [6] provided 

optimal solutions, some of which were improvements over solutions presented by the 

authors in [2]. In regards to execution time, the binary search algorithm in [1] was 

applied to a 298-bus test system. An optimal solution is produced. Nevertheless, an 
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execution time of 91 min is incurred on a single Intel Pentium 4 3.6-GHz CPU with 

1 GB RAM. 

For a power system to be observable, authors in [5] reported that PMUs need 

to be installed at 1/5 to 1/3 of the number of system buses. In [19], the authors 

define incomplete observability as a PMU placement situation in which a specified 

number of PMUs and corresponding locations are insufficient in obtaining full network 

observability. A novel concept called "depth-of-unobservability" is also introduced to 

limit the distance between observed and unobserved buses. As such, for a depth­

of-one unobservability, there is one unobserved bus linked to calculated buses; for a 

depth-of-two unobservability, there are two unobserved buses connected to calculated 

buses. A tree search placement technique is employed to execute PMU placement in 

accordance to desired depth-of-unobservability. It is noted that a decreasing number 

of PMUs is needed to maintain higher depths-of-unobservability. 

In [2], integer programming is applied to the OPP problem, with consideration 

of convention measurement units already existent in the power system. According 

to authors of [21], some draw backs of the solution proposed in [2] exist: computed 

results are error prone due to numerical roundoff errors. In [18], the author presents a 

generalized integer linear programming algorithm. There is a consideration for power 

systems with conventional measurements and for power systems without conventional 

measurements. The author of [1] also formulates the problem to accommodate the 

novel concept of dcpth-of-unobservability introduced in [19]. Specifically, the authors 

of [18] solve the OPP problem for depth-of-one-unobservability and depth-of-two­

unobservability. The integer linear programming approach developed in [18] was 

based on Matlab's binary integer programming. 

An integer programming strategy is developed by authors in [2] for the OPP 

problem. In [20], it is discovered that the strategy in [2] becomes non-linear when 
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power injection measurements or conventional power flow exist. In [17], genetic 

algorithm (GA), a PMU placement algorithm utilizing the Pareto-optimal paradigm 

is presented. GA solves the OPP problem by searching the solution space for a 

set of Pareto-optimal solutions. The solutions in the Pareto-optimal set are equally 

optimal when all PMU placement objectives are considered. The advantage of GA is 

the provision of the complete Pareto-optimal front instead of a single point solution. 

However, the computational complexity of GA limits its application to OPP problems 

of large system buses. This complexity in computation is attributed to correction of 

infeasible solutions by GA. 

The authors of [21] present a method of optimal PMU placement that factors 

the outage of single branches and single PMU losses ( contingency conditions). As ex­

pected, the placement strategy resulted in greater PMU placement numbers than that 

required for full network observability. In comparison with [2], the required number 

of placement sites computed by the proposed method is less. Other improvements 

over [2] are better conditional numbers, more accurate state estimations, complete 

network observability in contingency conditions. 

Authors of Ref [4] propose a matrix reduction technique that transforms a real 

power system into arrays of buses, branches, and injections. The transformation is 

applicable to the conception of simple placement heuristics; however, the transforma­

tion technique is quite computationally intensive. In [27], an OPP solution technique 

based on linear integer programming is presented and contingency conditions such as 

line outages and measurement losses are considered. Execution times were minimal 

and optimal solutions were found in [27], yet parallel solution techniques for the OPP 

were not taken into account. 

Clearly, differing solutions have been developed for the OPP problem. Yet, 

while our proposed problem formulations and heuristics do not rely on conventional 
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instrumentations (such as injection nodes), we approach the OPP problem with 

coherent computationally efficient heuristics which effectively obtain optimal PMU 

placements. 
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CHAPTER 3. PROBLEM FORMULATION 

Consider a power system represented as a graph G(V, E). Let V represent the 

set of vertices (substations of a power system) of a graph. The set of vertices can be 

denoted as {v1 ,v2,V3,v4 ,·· · ,vn}, where vi EV. 

Let E represent a set of edges (transmission lines in a power system) of a graph. 

For n substations, there may be m transmission lines (edges) connecting all of the 

substations. These edges can be represented by ejk E E, where j and k represent the 

vertices of the edge. 

A vertex vi is termed visible, if there exists a PMU on vi or on one of vi's 

neighboring vertices. Therefore, we can write an n x n matrix that represents the 

visibility of a given graph when certain number of PMUs are placed on the vertices. 

This matrix is termed as a visibility matrix, denoted by £. 

To illustrate the concept of the visibility matrix, consider the power system 

represented in the Fig. 1. Assume that the power system has a PMU placed on 

vertex v4 . The visibility matrix of the power system is given as follows: 

V1 V2 V3 V4 V5 V5 V7 

V1 0 0 0 0 0 0 0 

V2 0 0 0 1 0 0 0 

V3 0 0 0 1 0 0 0 

V4 0 1 1 1 1 1 0 ,£=0 

V5 0 0 0 1 0 0 0 

V5 0 0 0 1 0 0 0 

V7 0 0 0 0 0 0 0 

Because the example matrix £ depicts the visibility of the underlying graph, 

the elements of £ are boolean. From the example power system we can interpret 
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that substations v2 , v3 , v5 , and v6 must be visible when the power system has PMU 

installed on substation v4 . For that reason the example matrix & has those elements 

that are being made visible by the PMU installed on v4 equal to one. For instance: 

(a) if we consider v2 , then the elements ( v2 , v4 ) and ( v4 , v2 ) are equal to one; (b) If 

we consider v7 , then the elements (v7 , v4 ) and (v4 , v7 ) are equal to zero. Moreover, we 

say that the whole graph is visible if and only if each column (or each row) has at 

least a single element equal to one. Because the visibility matrix is always a square 

bijectional matrix the condition must either be observed on the rows or the columns 

and not both. 

Based on the above condition, we can formally state the PMU placement prob­

lem as: "Find the minimum number of PMUs that can provide full observability for 

the entire power system. " 

Let X be defined as an n x 1 matrix that represents the PMU placement of a 

graph (power system). An entry xi E X is equal to one when there is a PMU on 

a substation and zero otherwise. The PMU placement problem for an n-substation 

power system can be stated as: 

where 

such that & = 1. 

n 

min Lxi, 
i=l 

1 if PMU is installed 

0 otherwise 

It is our belief that the PMU placement problem is closely related to the set 

covering problem [9]. The set covering problem is proven to be NP complete even for 

the simplest case of identifying a cover for three sets. Because of this similarity we 

also suspect that PMU is in the class NP. An optimal solution for a large-scale power 
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system would be inconceivable. Therefore, we must design efficient and effective 

heuristics. 
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CHAPTER 4. HEURISTICS 

Before we detail our heuristics, we must note that in the generalized case there 

can be no polynomial time algorithm to tackle the PMU placement problem [9]. 

Therefore, we must determine theoretical bounds on the performance of each of the 

proposed heuristic with a hypothetically conceived optimal solution. 

The oracle to derive the performance bounds for each of the heuristics are 

standard techniques utilized in the analysis of approximation algorithms [13]. Let 

0 ( ·) be the traversal order that defines the number of traversals that a particular 

heuristic or an optimal solution must perform to attain complete visibility. Let K 

represent the solution ratio of a heuristic approach to the optimal solution. Let Q 

define the traversal order ratio of a heuristic approach to the optimal solution. 

We begin the derivation of performance bounds of a heuristic compared to an 

optimal solution by first describing the worst-case scenarios (see Fig. 2). Let us 

consider a power system having only one substation (see Fig. 2(a)). In the optimal 

case, the solution would be obtained by a single traversal and there would be only 

one PMU. Because of singularity, the heuristic approach also would achieve both the 

traversal order and the solution (number of PMUs) as one. The values of K and Q 

are determined subsequently: 

K = search order of a heuristic approach = 0(1) = 1 
search order of the optimal approach 0(1) ' 

Q = solution quality of a heuristic approach = ~ = 1. 
solution quality of the optimal approach 1 

When a bi-vertex graph (see Fig. 2(b)) is considered, the optimal solution would 

be obtained with a single traversal and the PMU could be placed on either one of the 

vertices. Therefore, both the traversal order and the solution is again equal to one. 

Unlike the optimal solution, a heuristic approach must traverse both of the vertices 
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to ascertain enough knowledge to install a single PMU. For, the case of a bi-vertex 

graph, the values of K and Q are given below: 

K = 0(1) = 1 
0(1) ' 

2 
Q = 1= 2. 

When an n-vertex graph (see Figure 2(c)) is traversed, say by a cognizant 

optimal approach, both the traversal order and the solution will once again be equal 

to one. When a PMU is placed at the vertex Vn the underlying graph becomes 

completely visible. On the other hand, a heuristic approach may not be as cognizant 

as the optimal approach. Therefore, a heuristic approach must traverse all of the 

n vertices to compute an informed solution. In the generalized case, the traversal 

order and the solution (number of PMUs) to attain complete visibility will vary from 

heuristic to heuristic. 
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Below, we detail the six proposed heuristics. Each heuristic is described by 

outlining the pseudo-code, a brief description, and theoretical analysis (traversal order 

and solution). 

Algorithm 4.1: GREEDY ( ) 

[h!]Input :G(V, E) 

Output :V' 

Initialization : V' = 0 

while£= 0 

4.1. Greedy 

P = argmaxi(deg(vi)), V vi E V 

do update(£) 

V' .-V'UP 

print(V'); 

The greedy PMU placement heuristic (Algorithm 4.1) takes as an input a graph 

G(V, E) (the power system). The output of this greedy algorithm would be the set 

of vertices V' that must have a PMU installed such that the underlining graph is 

completely observable. The algorithm iteratively places a PMU on the vertex that 

has the highest degree (incoming or out going edges) until the visibility condition 

is satisfied (£ =/- 0). Because the underlying graph is bidirectional, we only must 

consider either the incoming or outgoing edges, and not both. This visibility condition 

is verified by updating the visibility matrix £. To illustrate the updating process, 

consider the visibility matrix of the example power system as depicted in Figure 1. 

Because of the greedy approach always chooses the vertex with the maximum degree, 

the first PMU will always be installed on vertex v4 that has a degree equal to four. 
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The visibility matrix will become: 

Vi V2 V3 V4 V5 Va V7 

Vi 0 0 0 0 0 0 0 

V2 0 0 0 1 0 0 0 

V3 0 0 0 1 0 0 0 

V4 0 1 1 1 1 1 0 ,t:=0 

V5 0 0 0 1 0 0 0 

Va 0 0 0 1 0 0 0 

V7 0 0 0 0 0 0 0 

Because t: · 0, the greedy heuristic (Algorithm 4.1) iterates and must place another 

PMU. There are many possibilities that can be circumvented by narrowing down the 

potential locations of the PMUs that would result in maximum visibility. Note that 

Vi, v2 , v 3, and v5 all have a degree equal to two. However, v2 , v3 , and v 5 are already 

covered by the PMU placed on v4 . Therefore, installing a PMU on any one of the 

already covered substations will not increase visibility. The next vertex for selection 

will be Vi. After placing the PMU on Vi the visibility matrix would be as follows: 

Vi V2 V3 V4 V5 Va V7 

V1 1 1 1 0 0 0 0 

V2 1 0 0 1 0 0 0 

V3 1 0 0 1 0 0 0 

V4 0 1 1 1 1 1 0 ,t:=0 

V5 0 0 0 1 0 0 0 

Va 0 0 0 1 0 0 0 

V7 0 0 0 0 0 0 0 
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Finally, the PMU must be placed on v7 , and the visibility matrix would become: 

V1 V2 V3 V4 V5 VG V7 

V1 1 1 1 0 0 0 0 

V2 1 0 0 1 0 0 0 

V3 1 0 0 1 0 0 0 

V4 0 1 1 1 1 1 0 ,£=1 

V5 0 0 0 1 1 0 0 

v6 0 0 0 1 0 0 0 

V7 0 0 0 0 0 0 1 

4.2. Single vertex selection 

Because the execution time of the greedy heuristic is dictated by the vertex sorting 

module, the greedy heuristic may become computationally expensive over large-scale 

power systems. To speed up the PMU placement process, we propose a very simple 

vertex selection heuristic (Algorithm 4.2). 

Algorithm 4.2: SINGLE VERTEX( ) 

[h!]Input :G(V, E) 

Output :V' 

Initialization : V' = 0 

while£= 0 

ei1 +-- RAND( E) 

do V'=V'URAND(vi,vi) 

update(£) 

print(V'); 
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Similar to the greedy heuristic (Algorithm 4.1), the single vertex selection 

heuristic (Algorithm 4.2) iteratively builds the solution until the visibility constraint 

is satisfied (£ = 1). The solution is built by taking an input graph G(V, E) and 

randomly selecting an edge ejk E E. A PMU will be placed on one of the vertices ( vi 

and Vj) of the selected edge. The visibility matrix is updated similar to the approach 

undertaken in the greedy heuristic ( Algorithm 4.1). Moreover, we also maintain the 

set of edges E so that we can select a unique edge in each iteration. This edge 

selection process continues until the entire power system is observable. 

To illustrate the process of a single vertex selection, consider the visibility matrix 

of the example power system depicted in Figure 1. The edges ejk will be chosen at 

random and a PMU will be placed on vertices vi or Vj. Assume the first PMU is 

randomly chosen to be placed on v5 from selecting the edge e4_ 5 . The visibility 

matrix will become: 

V1 V2 V3 V4 V5 v6 V7 

V1 0 0 0 0 0 0 0 

V2 0 0 0 0 0 0 0 

V3 0 0 0 0 0 0 0 

V4 0 0 0 0 1 0 0 ,£=0 

V5 0 0 0 1 1 0 1 

v6 0 0 0 0 0 0 0 

V7 0 0 0 0 1 0 0 

With £ being equal to zero, the single vertex heuristic iterates and must place 

another PMU. Because the edge e4_ 5 was chosen, e4_ 5 can be eliminated from the 

selection process. Because v5 and v7 are observable, the edge e5 _ 7 also can be 

eliminated. The next PMU may be randomly chosen to be placed on v 1 from the 
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edge selection e1_ 2 . The visibility matrix will become: 

V1 V2 V3 V4 V5 Va V7 

V1 1 1 1 0 0 0 0 

V2 1 0 0 0 0 0 0 

V3 1 0 0 0 0 0 0 

V4 0 0 0 0 1 0 0 ,t'=O 

V5 0 0 0 1 1 0 1 

Va 0 0 0 0 0 0 0 

V7 0 0 0 0 1 0 0 

Again, £ = 0 so the heuristic must iterate and place another PMU. Because of 

the only choice left, the PMU must be placed on Va, and the visibility matrix would 

become: 

V1 V2 V3 V4 V5 Va V7 

V1 1 1 1 0 0 0 0 

V2 1 0 0 0 0 0 0 

V3 1 0 0 0 0 0 0 

V4 0 0 0 0 1 1 0 , E = 1 

V5 0 0 0 1 1 0 1 

Va 0 0 0 1 0 1 0 

V7 0 0 0 0 1 0 0 

4.3. Double vertex selection 

Although the execution time of the single vertex algorithm is superior to the greedy 

algorithm, the single vertex algorithm may perform poorly in a worst-case scenario, 

such as the n-vertex graph (see Fig. 2(c)). If any vertex other than Vn is selected, 
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then we need to repeatedly select vertices to attain complete observability. The se­

lection process may result in worse case performance. To prevent such unsatisfactory 

performance, a natural extension to Algorithm 4.2 is presented in Algorithm 4.3. 

Algorithm 4.3: BOTH NODES( ) 

[h!]Input :G(V, E) 

Output :V' 

Initialization : V' = 0 

while£= 0 

eii +-- RAND ( E) 

do V' = V' U vi U vi 

update(£) 

print(V'); 

The Algorithm 4.3 selects an edge from the edge matrix and places the PMUs 

on both of the selected vertices. Although the traversal order in the Algorithm 4.3 

also is given by the output matrix V', yet the heuristic may provide an optimum 

solution for then-vertex graph (see Figure 2(c)). After placing PMUs, the output 

matrix and the visibility matrix will be updated along with the edge matrix E so that 

no edge can be selected twice. This process is repeated until £ = 1. To corroborate 

the selection process we can consider then-vertex graph (see Figure 2(c)). The entire 

system will be visible when we install PMUs on both vertices of an edge. 

To illustrate the process of a double vertex selection, consider the visibility 

matrix of the power system depicted in Figure 1. The edges eik may be chosen at 

random and a PMU is placed on both vertices vi and vi. The first two PMUs must 

be chosen to be placed on v3 and v4 from selecting the edge e3 _ 4 . As a result, the 
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visibility matrix will become: 

Vi V2 V3 V4 V5 VB V7 

Vi 0 0 1 0 0 0 0 

V2 0 0 0 1 0 0 0 

V3 1 0 1 1 0 0 0 

V4 0 1 1 1 1 1 0 ,£=0 

V5 0 0 0 1 0 0 0 

VB 0 0 0 1 0 0 0 

V7 0 0 0 0 0 0 0 

Because £ = 0, the double vertex heuristic iterates and must place at least two 

more PMUs. Because the edge e3_ 4 was chosen, e3_ 4 can be eliminated from the 

selection process. Because vi, v2 , v3, v4, v5 , and VB are observable, the edges e1_ 2 , 

e1_ 3 , e2_ 4 , e4_ 5 , and e4_B also can be eliminated. The next two PMUs are then chosen 

to be placed on v5 and v7 from the edge selection e5_ 7 . That being the only choice, 

the visibility matrix will become: 

V1 V2 V3 V4 V5 VB V7 

V1 0 0 1 0 0 0 (J 

V2 0 0 0 1 0 0 0 

V3 1 0 1 1 0 0 0 

V4 0 1 1 1 1 1 0 ,£=1 

V5 0 0 0 1 1 0 1 

VB 0 0 0 1 0 0 0 

V7 0 0 0 0 1 0 1 

Table 1 summarizes the search and solution ratio of all the proposed heuristics 
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compared to the optimal approach for the generalized n-vertex graph. Because of our 

simple oracle, the reader will find it a trivial exercise to derive the aforementioned 

search and solution ratios. Moreover, because the Greedy, Single Vertex, and Double 

Vertex heuristics, all have their corresponding search ratios less than or equal to n, 

the heuristics belong to the class linear-time. 

Table 1: Search order ratio and solution ratio. 
Heuristics Q K 
Greedy n 1 
Single Vertex V' depends on V' 
Double Vertex V' depends on V' 

4.4. A-Star Algorithm 

The A-star heuristic (hereafter referred as A*) is a quadratic-time, best-fit first graph 

search that finds the least cost path from the initial vertex to the goal vertex [8]. A 

cost function f computes each vertex's associated cost. The value f for a vertex vi 

that is the estimated cost of the cheapest solution through vi, is computed as: 

(1) 

where g( vi) is the search-path cost from the initial vertex to the current vertex vi and 

h( vi) termed the heuristic is a lower-bound estimate of the path cost from vi to the 

goal vertex. 

For the PMU problem studied in this paper, the A* algorithm uses the vertex 

coverage as heuristic and PMUs placed as the cost. Applying Eq. (1) for the PMU 

problem will bias the result towards g( vi) and may not properly represent the system. 

To maintain a weight balance, the ratio of the heuristic to cost may be an appropriate 

measure. Such a ratio represents the cost per coverage at any point in the power 

system. 
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(2) 

The vertex corresponding to the maximum ratio value of the entire tree is 

selected. When a vertex is chosen, the paths from that vertex will be searched. 

This process continues until full coverage is achieved. The A* algorithm will always 

find the optimal solution but may not work for large-scale problems due to time and 

memory issues [8]. 

Algorithm 4.4: AsTAR( ) 

[h!]Input :G(V, E) 

Output :V' 

Initialization : V' = 0 

for each vertex vi E V 

f (V ) +- h(v;) 
i g( v,) 

repeat 

Assign vertex with maximum f value to x 

update(E) 

for each child of x with vertices v; 
f( ') h(v:) 

V• +- ( ') i g vi 

until£= 1 

print(V'); 

The Algorithm 4.4 takes an input graph (the power system). The output of 

the A* algorithm V' is the set of vertices where a PMU has been installed such that 

the system is completely observable. A* starts at a "zero step" where no vertices 

have been searched. The first step searches the set of vertices vi and computes f. 

Each vertex has an associated heuristic cost (coverage of the system, h(vi)) and for 

every PMU placed, there is a distance cost, g(vi)- The ratio of the heuristic to the 
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distance cost is computed and the maximum value is selected and assigned a variable 

x. The visibility matrix E is updated for that path explored and the children of x 

are searched. The process continues until E=l. The path explored that completely 

observes the system is the optimal solution. 

To illustrate how the A* works, consider the 5 bus system depicted in Figure 3. 

A tree graph is shown to display the process of A* on the power system in Figure 4. 

'1'2 

Figure 3: An example 5 bus power system. 

The search-tree nodes include partial assignment of PMUs to nodes and the 

value of f (the cost of the partial assignment). The assignment of PMUs to m 

vertices is indicated by an m-digit string, a0 , a1 , ... , am - 1, where: 

ai = { 1 if PMU is installed, 

0 otherwise. 

The root node includes the set of all uncovered vertices [00000]. Next we expand 

all five possibilities of placing the first PMU and calculate the corresponding f values 
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[11000) 
(4/5) 

[00100) 
(4/5) 

1 

0 
[00110) 

(5/5) 

(Goal) 

[01010) 
(5/5) 

Figure 4: A* algorithm example. 

as in Figure 4. A visibility matrix is calculated for each expansion. Placing a PMU 

on v3 (node [00100]) results in f(v4 ) being equal to 4/5. The g(vi) value for any 

node is equal to five, which is the number of vertices in a given power system. The 

h( v3 ) value is equal to four, which is the number of vertices that are visible as a 

result of placing a PMU at v2 • Because 4/5th is the highest ratio of the entire list 

of candidates, nodes [10000], [01000], [00100], [00010] and [00001], the A* algorithm 

expands node [00100]. This expansion is achieved by calculating the f( vi) ratios of 

the remaining unobserved vertices, in this case v4 . 

Since £ = 0, the A* algorithm must expand the first node with the next highest 

ratio. The algorithm searches on a depth basis, starting at the depth of zero (node 

[00000]) and increasing until the entire tree is searched. The first node found with 

the next highest ratio v of 3/5 is v1 (node [10000]). The A* algorithm expands v1 to 

create node [11000] and node [10001], and then calculates the f value for the nodes. 

Again £ = 0, so the A* algorithm expands another node with the next highest ratio 
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value, in this case node [00010]. The A* algorithm expands v4 to create node [01010]. 

Because node [00110] was previously calculated when node [00100] was expanded on, 

the node is not recalculated. 

Attached to some of the nodes are numbers in circles. These represent the 

sequence in which the nodes are chosen for expansion. The bold lines represent 

the path that leads to the optimal solution. The process continues until £ = 1 

that is achieved when node [00110] is expanded. Therefore the system is completely 

observable. The node [00110] represents full coverage at the minimum cost, and 

therefore referred to as the goal node. 

4.5. Parallel A-Star Algorithm 

To further the speed of execution, a parallel version of the A* was developed. The 

parallel A*, described in algorithm 4.6, allows multiple concurrent expansions of 

nodes with the best cost per coverage ratios. With parallel expansion of nodes, 

a quicker arrival at the goal node is expected. The parallel A*, given n number of 

processors, assigns a processor as the root processor and n -1 processors as expansion 

processors. The root processor selects and distributes to expansion processors the 

node for expansion. Expansion processors receive a node Nv, as given by the root 

processor, and expand such node to output the child nodes of the inputted node 

Nv. The root processor gathers the child nodes from expansion processors examining 

for goal nodes. Once one of the child nodes is ascertained to be a goal node, such 

goal node is outputted as the PMU placement solution. In the case that no goal 

node is found amongst the received child nodes, the child nodes are added to the 

OpenSet from which the root processor will make the next n - l node selections 

for expansion. Figure 5 illustrates how the parallel A* works, with 4 processors. 
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Algorithm 4.5: PARALLEL AsTAR( ) 

Input: G(V, E)·, P = {p p p } o, 1, · · · , n-1 

Output : Goal node 

Initialization : V = 0 

while£-/- 1 

for each vertex vi E V 

f(v ) f- h(v;) 
i g(v;) 

for each processor Pi E P ( i ~ 1) 

{ 
processor p0 sends the ith 

do 
best open node to Pi 

for each processor Pi E P ( i ~ 1) 

{ 
Pi expands ith best open node 

do 
Pi sends the child nodes to p0 

processor Pi receives child nodes from p1 , · · · ,Pn-1 

if goal node found: output goal node and quit 

In Figure 5, the parallel A* begins at a" zero step" where no vertices have been 

searched, and generates [10000], [01000], [00100], [00010], and [00001] as expansion 

results. The root processor (p0 ) selects the nodes with the first and second best cost 

per coverage ratio; [00100] is given to processor 2, [00010] is given to processor 2, and 

[10000] is sent to processor 3. After concurrent expansion by processors p1 , p2 , and 

p3 , [00110] is found by processor p1 , and is the resulting goal node. 

4.6. A* Pruning Methods 

Various pruning techniques may to be used to increase efficiency of the A* 

algorithm to find (sub)optimal solutions. These pruning techniques belong to the 

class subquadratic-time heuristics [10]. 
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(11000) 
(2/5) 

(Goal) 

(01010) 
(1/2) 

Figure 5: Parallel A* algorithm example. 

(00001) 
(3/5) 

The first method is a depth optimization. This optimization searches the A* 

tree until a certain depth dis reached (number of PMUs placed). Only the path with 

the maximum ratio from a search is considered in future expansions. The selection of 

a depth of the tree will decrease the execution time and return (sub )optimal solutions. 

The second method is a restricted list optimization. This optimization maintains 

an m length list. Only the ratios of highest value ratios are stored in this list. This 

technique may decrease time spent searching for the best ratio because there is a 

finite number of possibilities to sort through. 

4.7. Distance-Level Algorithms (DLA) 

A family of PMU placement algorithms, called Distance-Level Algorithms (DLA), 

has been developed with the aim of obtaining PMU placement solutions in a graceful 

manner. The goal of distance-level algorithms is the minimal assignment of PMUs 

in a power system, thereby providing full measurability of the network. A host of 
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concepts have been derived from graph theory and will be presented firstly. 

In Figure 6 we see an arbitrary graph G. From graph theory, a graph G is 

connected if there exists a u - v path between every two vertices of G [26]. By 

inspection, it is clear that for every two substations in a power system (substation u, 

and substation v), there exists a u - v path, symbolized by the power line connection. 

Consequently, we can abstract a power system as a connected graph. Also in graph 

theory, there exists the subjects of domination sets, and domination number of a 

graph G. The dominating set S of G is a set of vertices in V(G) that dominate every 

vertex in V ( G) - S. The domination number of a graph G , is the minimal cardinality 

of the dominating sets of G, and is symbolized as ,(G). Another utilized concept, 

from graph Theory, is the distance d(u, v) between two vertices u and v. d(u, v) is 

defined as the minimum of the lengths of the u - v paths of G [26]. 

Algorithm 4.6: DISTANCE-LEVEL CONSTRUCTION (DLC)() 

Input : G, Vr (root vertices) 

Output: DLC(G) 

for each v E V(G) 

do { DL[v] = -1 

for each v E ½ 

do { DL[v] = 0 

for each v E V(G) 

{
if DL[v] == -1: 

do 
DL[v] = DL[Pt(v)] + 1 

Based on the preceding graph theory concepts, we define the Distance-Level 

Construction (DLC) as the assignment of distance levels to all the vertices of a 

connected graph G. Algorithm 4.6 outlines the pseudocode of the DLC. A distance 

level graph, the product of the DLC, is shown in Figure 7. 
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Figure 6: An arbitrary graph G. 

We see G', in Figure 7, a DLC of G (DLC(G)), showing the distance levels 

from vertex v1 . We define the root vertex (vertices) as such vertex that belongs to 

distance-level O (dl0 ). In Figure 7 v1 is the root vertex. Vertices v3 , v4 , v5 belong to 

dli, while v6 and v9 belong to dl2 , and so on. Given the SDLC(G) of a graph G, 

and a distance-level dli, we label dli+l as the child-level to dli. In the same manner, 

given the DLC(G) of a graph G, and a distance-level dli(i ~ 1), we label dli-l as the 

parent-level to dli. 

Assume that a vertex v ~ V(G) is assigned to dli, vertices v1 , v2 ~ V(G) are 

assigned to dli+ 1 , and v is adjacent to v1 , v2 . Vertex vis named the parent-vertex of 

v1 , v2 ; similarly, v1 , v2 are labeled as children-vertices of vertex v. Now, assume that 

a vertices vi, VJ and vk ~ V(G) belong to dli. Also, assume that vi are adjacent VJ, 
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Figure 7: A Distance-leveled Graph. 

and that neither vi nor VJ are adjacent to vk. Based on the preceding assumptions, we 

say { vi, Vj, vk} are peer-vertices on dli, while { vi, VJ} are adjacent peer-vertices on dli. 

Figure 8 provides an illustration of parent, children, and peer-vertices as presented. 

4.8. Distance-Level Heuristics (DLHs) 

We presented the DLC as a fundamental construction for the distance level 

algorithms. A foundational tool for the Distance Level Algorithms are the distance­

level heuristics (DLH). The DLHs are heuristics designed to peruse a given set of 

vertices and provide, as an output, a single vertex best desired for PMU assignment. 

Listed in Table 2 are symbols and the corresponding definitions, as utilized in 

the descriptions of the various distance-level heuristics. 
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Figure 8: An illustration of parent, children, and peer-vertices. 

Described below are four distance-level heuristics, MAX-C, MAXSEQ-CPR, 

MAX-RlL, MAX-R2L: 

• MAX-C 

Input: DLC(G); dli. 

Output: Vpmu· 

This heuristic randomly selects a vertex from Vmax(IN[v]I), dl; as the Vpmu· 

• MAXSEQ-CPR 

Input: DLC(G); dli. 

Output: Vpmu· 

In the case that I Vmax(nch), dl; I = 1, this heuristic selects the only vertex of 

Vmax(nch), dli as the Vpmu· In the event that I Vmax(nch), di; I > 1, from Vmax(nch), dli 
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Table 2: DLA symbols and definitions 
N[v] Set of vertices dominated by vertex v. 

I Npt[v] I Number of dominated parent-vertices of vertex v. 

I Npr[v] I Number of dominated peer-vertices of vertex v. 

I Nch[v] I Number of dominated child-vertices of vertex v. 

Vmax(IN[ch,dli]I) Vertex on dli with maximal number of dominated child-vertices. 

½t Set of parent-vertices. 

½t(dl;) Set of parent-vertices, on dli 

Vdli Set of vertices, on dli 

Vmax(nch), dl; Set of vertices, on dli, with maximal number of dominated child-
vertices. 

Vmax(nch, npr), dl; Set of vertices, on dli, with maximal number of dominated child-
vertices and peer-vertices. 

Vmax(INrvll), dli Set of vertices, on dli, with maximal number of dominated vertices. 

Vdl; {npt,npr,nch} Set of vertices, on dli, with npt parent-vertices, npr peer-vertices, 
and nch child-vertices. 

Pt[V] The set of parent-vertices of vertices in set V 

Vpmu Vertex to be assigned a PMU 

it selects Vmax(nch, npr), dl;· In the case that I Vmax(nch, npr), dl; I = 1 the lone 

vertex of Vmax(nch, npr), dl; is set as Vpmu· In the case that I Vmax(nch, npr), dl; I > 1, 

from Vmax(nch, npr), di; it selects Vmax(IN[v]I), dl;. From Vmax(IN[v]I), dl; it randomly 

selects a vertex as the Vpmu· 

• MAX-RlL 

Input: DLC(G); dli 

Output: Vpmu 

This heuristic randomly selects a vertex from Vmax(IN[dl;]I) as the Vpmu 

• MAX-R2L 

Input: DLC(G); dli; dli+1 (0 ::Si ::S I V(G') I - 1) 

Output: Vpmu 

This heuristic randomly selects from Pt[Vit;{I, o, o}] a parent-vertex having a 

single child-vertex that is adjacent to non other but the parent vertex. In the 
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case that Pt[½1;{1, o, o}] = 0, it constructs from ½t(dl;) the set Vmax(nch), dl; 

and selects the lone vertex as Vpmu if I Vmax(nch), dl; I = 1. In the event 

that I Vmax(nch), dl; I > 1, from Vmax(nch), dl; it constructs Vmax(IN[.]I), dl;, dl;+1. 

If I Vmax(IN[.]I), dl;, dl;+i I = 1, it selects the lone vertex of Vmax(IN[.]I), dl;, dl;+i as 

the Vpmu; otherwise if I Vmax(IN[.JI), dl;, dl;+i I 2: 1 it randomly selects a parent­

vertex from Pt[Vmax(IN[.]I), dl;, dl;+il• 

The Distance-level algorithms create the dominating set of G, ½mu, using any of 

the distance-level heuristics (DLH) presented above. Given the DLC(G), a distance­

level algorithm, directed by the employed DLH, peruses each level(in a bottom­

up fashion), selecting favorably adjudged vertices and adding such vertices to the 

dominating Set ½mu under formulation. In other words, a distance-level algorithm 

scans the DLC(G), beginning at the highest numbered distance level(dln-i) and 

ending at the lowest numbered distance level(dl0). During these scans, PMUs are 

assigned to vertices based on the recommendations of the employed DLH. 

4.9. Sequential Distance-level Algorithm 

Implicit in the function of the DLC is the organization of the vertices of an 

arbitrary graph. With the introduction of the DLC and the DLH, we now introduce 

two Distance Level Algorithms. The first distance-level algorithm is the sequential 

distance-level algorithm, also known as Seqla. The Seqla is a distance-level algorithm 

that is specifically designed for single processor execution. Given a graph G, the 

Seqla, as detailed in Algorithm 4. 7, initially creates the distance-level construction 

of G. Subsequently, Seqla scans the set of vertices belonging to dln-l, selecting 

favorably adjudged vertices and adding such vertices to the dominating Set ½mu 

under formulation, until all vertices on dln-l are ascertained covered (either by 

assigned PMUs or by previously installed conventional measurement units). 
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Algorithm 4. 7: SEQUENTIAL DISTANCE-LEVEL ALGORITHM( ) 

Input :G' = DLC(G) 

Output :½imu 

while V ( G') is not dominated by ½mu 

while V ( G', dli) are not dominated 

do 

G' =update(G', ½mu) 

dli = dli-1 

4.10. Parallel Distance-level Algorithm 

Algorithm 4.8: PARALLEL DISTANCE-LEVEL CONSTRUCTION. (PDLC)() 

Input: DLC(G) 

Output: PDLC(G) 

for each dli E V ( G) 

do { map dli to discrete sine-wave. 

output PDLC(G) 

In a bid to reduce execution times (particularly for large systems), we devel­

oped the parallel distance-level algorithm, also denoted as Parla. Parla, detailed in 

algorithm 4.9, assigns PMUs in similar fashion to Seqla; however, special provision 

is made for concurrent assignment of PMUs by multiple processors. In Figure 9, an 
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horizontal view of DLC(G) is depicted, while Figure 11 depicts the parallel distance­

level construction of G for two executing processors. The parallel distance-level 

construction (PDLC) is a special distance-level construction for the Parla. Given 

the number of processors for parallel execution, the PDLC, as detailed in Algorithm 

4.8, constructs a distance-level graph that allows the specified number of processors 

to execute the Parla seamlessly. The PDLC maps the distance-levels of DLC(G) 

to a discrete sine wave function parameterized to the specified number of processors 

(Figure 10). As a result of this mapping, the PDLC of a distance-level graph suitable 

for parallel processing by the specified number of processors is formed. 

dlo dl2 dis dis 

Figure 9: Distance-Level Construction of grnph G: a horizontal view 
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Figure 10: An illustration of distance-levels mapped to sine-wave function. 

Algorithm 4.9: PARALLEL DISTANCE-LEVEL ALGORITHM. (POLA)() 

Input: PDLC(G), P = {Po,P1, · · · ,Pn-d 

Output : ½mu (vertices assigned PMUs) 

Initialization : ½mu = 0 

processor p0 applies D LH () to bottom apexes 

processor Po updates ½mu 

for each processor Pi E P ( i ~ 1) 

{
Pi runs DLH() on Gi 

do 
Pi updates ½mu 

processor p0 applies D LH () to top apexes 

processor Po updates ½mu 

processor Po outputs ½mu 
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Figure 11: A Parallel Distance Level Cor1struction of graph G 
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CHAPTER 5. EXPERIMENTAL RESULTS 

We demonstrate the effectiveness of our proposed heuristics by comparing the 

performance results of each of the algorithms programmed in Matlab on the IEEE 

standard bus systems (14 bus, 30 bus, 57 bus, 118 bus, and 300 bus [14]) and a 2,383 

bus system. The performance matrix was the minimum number of PMUs that a 

heuristic can place to ensure full obse~vability. The results are classified by the bus 

size of the system in the subsequent sections. 

Table 3 shows the placement results of the A* and the A* pruning methods. 

The A* heuristic finds the optimal solution, therefore we use the algorithm's results 

as a benchmark. Due to the quadratic run-time of the A* algorithm, some results for 

power systems larger than 30 buses were unobtainable; they are denoted by x. 

Table 3: A* Placement Results 

Bus Systems A* Depth Method Restricted List Method 
d=l d=2 

14 bus 3 3 3 3 
30 bus 7 7 7 7 
57 bus 18 12 12 12 
118 bus 29 34 X 34 

300 bus 112 110 X 109 

2,383 bus X 1040 X 1032 

5.1. 14 Bus Power System 

The depth method for the A* heuristic performed the best on the 14 bus power 

system, finding the optimal solution of four PMU s in 0.0028 seconds as seen in Table 

4. The 14 bus power system is a small test case that exemplifies the strength of the A* 

heuristic. Because of this property, the depth method for optimizing the A* heuristic 

further improves the heuristic's effectiveness. Table 5 shows that the Double Vertex 

heuristic executes faster than the Greedy heuristic. Figure 12 shows that the Greedy 
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heuristics found a solution of five PMUs. The Double Vertex heuristic performed 

worst with a solution of seven PMUs while the Single Vertex heuristic found the 

optimal solution of three PMUs. Due to the fact that the Greedy, Single and Double 

Vertex heuristics are random and non-deterministic, we ran 100,000 trials to instill 

confidence in the solutions of the heuristics. 

Table 4: A* Run-Time Results In Seconds 
Bus Systems A* Depth Method Restricted List Method 

d=l d=2 
14 bus 0.49 0.0028 0.0047 0.0043 
30 bus 160.82 0.052 0.095 0.1198 
57 bus 675.01 0.3673 0.4351 0.5417 
118 bus 3051.88 2.0369 X 4.18 
300 bus 1722.43 4. 7814 X 105.36 

2,383 bus 62244.52 1702.74 X 5033.52 

Table 5: Non-Deterministic Heuristics Run-Time Results Per Trial In Seconds 

Bus Systems Heuristics 
Greedy Single Vertex Double Vertex 

14 bus 0.000372 0.000365 0.000287 

30 bus 0.00082 0.00101 0.00072 

57 bus 0.00163 0.00281 0.00189 

118 bus 0.00656 0.01231 0.00779 

300 bus 0.07086 0.15544 0.08839 

2,383 bus 17.2198 99.7091 60.8226 

The parallel A* heuristic, using one to ten processors, also found the optimal 

results of three PMUs as seen in Table 6. The run-time for two processors was 0.48 

seconds, and 1.31 seconds for ten processors as seen in Table 7. The parallel A* 

communication-computation ratios, as shown in Figure 13, describe the ratio of com­

munication intensity to computational intensity for different number of processors. It 

is observed from Figure 13 that the communication-computation ratio decreases as 

the number of processors increases. 
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Figure 12: IEEE standard 14 bus results. 

Table 6: Parallel A* Placement Results 

Bus Systems Number of Processors 
Two Five Ten 

14 bus 3 3 3 

30 bus 7 7 7 

57 bus 12 11 14 

118 bus 29 32 36 

300 bus 112 113 121 

2383 bus 1920 1940 1955 

Table 8 shows that Seqla also obtains the optimal PMU solutions using the 

various distance-level heuristics. The results of Parla executions which utilizes all the 
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Table 7: Parallel A* Run-Time Results In Seconds 

0 

i 
0:: 

Bus Systems Number of Processors 
Two Five Ten 

14 bus 0.48 1.31 3.36 
30 bus 168.33 191.01 43.3 
57 bus 755.40 115.62 222.41 
118 bus 3611.16 330.54 1292.82 
300 bus 2017.71 5612.88 20541.12 
2383 bus 11492.52 73250.50 451565.11 
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Figure 13: Parallel A* communication-computation ratios. 

vertices as single root-vertices, presented in Table 9, shows the Parla was as effective 

as Seqla in finding the optimal PMU solutions. For Seqla, DLA heuristics MAX-C, 
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MAXSEQ-CPR, MAX-RlL, and MAX-R2L compared fairly well, as minimal variance 

is noted between the results of the different distance-level heuristics. The Seqla found 

PMU solutions in 0.1 seconds, as seen in Table 10. 

Table 8: Sequential DLA IEEE standard 14 bus results 

DLA Heuristic Number of PMUs 
Minimum Maximum 

MAX-C 3 3 
MAXSEQ-CPR 3 4 

MAX-RlL 3 4 
MAX-R2L 3 3 

Table 9: Parallel DLA IEEE standard 14 bus results 

DLA Heuristic Number of Processors Number of PMUs 
Minimum Maximum 

MAX-C 2 3 4 
4 3 5 
6 3 4 
8 3 5 

10 3 3 
MAXSEQ-CPR 2 3 4 

4 3 5 
6 3 4 
8 3 5 

10 3 4 

MAX-RlL 2 3 4 
4 3 5 
6 3 4 
8 3 5 
10 3 3 

MAX-R2L 2 3 4 
4 3 5 
6 3 4 

8 3 5 
10 3 4 

The parallel DLA found the optimal solution of three PMUs (Table 9) for the 
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Table 10: DLA Run-Time Results In Seconds 
Bus Systems DLA 

Sequential Parallel 
14 bus 0.1 0.01 
30 bus 0.68 0.51 
57 bus 3.04 2.64 
118 bus 18.23 13.46 
300 bus 219.05 127.58 

2383 bus 105.56 66.13 

IEEE 14 bus system in 0.01 seconds as shown in Table 10. However, compared 

to Seqla's execution results of the IEEE bus 14 system, a wider margin of error 

is observed for the Parla 's executions, as shown in Table 9. Also, for the Parla 

executions, the error margin was roughly equivalent for all DLA heuristics. 

5.2. 30 Bus Power System 

The depth method for the A* heuristic performed the best on the 30 bus power 

system as well, finding the optimal solution of seven PMUs in 0.052 seconds as seen 

in Table 4. The A* heuristic found the optimal solution in 4,922 seconds. The 30 

bus system exposes the disadvantage of the A* heuristic and the advantage of the 

two pruning methods for the A* heuristic. The two pruning methods for the A* 

heuristic reduced the execution time by a factor of 10,000 or greater, and still found 

the optimal solution. The results of the non-deterministic heuristics on the 30 bus 

case are shown in Figure 14. The only heuristic unable to reach the optimal solution 

was the Greedy heuristic. Hence, the Greedy heuristic performed the worst. 

The parallel A* heuristic also found the optimal results of seven PMUs as seen 

in Table 6. The run-time for two processors was 168.33 seconds, and 43.3 seconds for 

ten processors as seen in Table 7. 

The sequential DLA found the optimal solution of seven PMUs for the 30 bus 

system while maintaining a low margin of error, as seen in Table 11. DLA heuristic 
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Figure 14: IEEE standard 30 bus results. 

MAX-RlL had the highest margin of error, assigning nine PMUs. As seen in Table 

10, Seqla reported a run-time of 0.68 seconds. 

Table 11: Sequential DLA IEEE standard 30 bus results 
DLA Heuristic Number of PMUs 

Minimum Maximum 
MAX-C 7 8 

MAXSEQ-CPR 7 8 
MAX-RlL 7 9 
MAX-R2L 7 8 

The parallel DLA also found the optimal solution of seven PMUs for the 30 bus 
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system. However, compared to Parla's execution results of the IEEE bus 14 system, a 

wider margin of error is observed, as shown in Table 12. The error margin was greatest 

for executions utilizing four, six, eight processors and least for executions utilizing two 

and ten processors. DLA heuristic MAX-RlL performed best in assigning the optimal 

number of PMUs, irrespective of the number of processors. Table 10 shows that Parla 

found the PMU solutions 0.17 seconds faster than Seqla. 

Table 12: Parallel DLA IEEE standard 30 bus results 
DLA Heuristic Number of Processors Number of PMUs 

Minimum Maximum 
MAX-C 2 7 9 

4 7 11 
6 10 13 
8 8 10 
10 7 9 

MAXSEQ-CPR 2 7 8 
4 8 11 
6 7 10 
8 8 10 

10 7 9 
MAX-RlL 2 7 9 

4 8 11 
6 7 10 
8 8 10 
10 7 9 

MAX-R2L 2 7 8 
4 7 11 
6 7 10 
8 8 10 
10 7 9 

5.3. 57 Bus Power System 

The best solution found by A* heuristics for the 57 bus system was 12 PMUs, as 

seen in Table 3. The depth method ( d = 1) for the A* heuristic performed the best, 

reaching the optimal solution in 0.3673 seconds as seen in Table 4. The A* heuristic, 

45 



in 675.01 seconds, also found a near-optimal number of 12 PMUs. Note that as the 

bus system sizes increase, the Double Vertex heuristic starts to perform worse than 

most of the other heuristics presented in this paper. Figure 15 reports the results of 

Greedy, Single and Double Vertex algorithm executions on the 57 Bus Power System. 
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Figure 15: IEEE standard 57 bus results. 

The parallel A* heuristic found an optimal solution of 12 PMUs as seen in 

Table 6. The run-time for two processors was 755.40 seconds, and 222.21 seconds 

for ten processors as seen in Table 7. It is observed from Figure 13 that, as com­

pared to results from parallel A* executions of IEEE 14, 30 bus system, the parallel 

A* communication-computation ratios for the IEEE 57 bus system was better on 
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executions using two or three processors. 

The sequential DLA found an optimal solution of eleven PMUs for the 57 bus 

system while maintaining a low margin of error, as seen in Table 13. Seqla recorded a 

run-time of 3.04 seconds and DLA heuristic MAX-C had the lowest margin of error, 

assigning a maximum of 13 PMUs during Seqla 's execution. 

Table 13: Sequential DLA IEEE standard 57 bus results 
DLA Heuristic Number of PMUs 

Minimum Maximum 
MAX-C 11 13 

MAXSEQ-CPR 11 14 
MAX-RlL 11 16 
MAX-R2L 11 14 

The Parla found an optimal solution of ten PMUs for the 57 bus system, as 

shown in Table 14. The error margin was roughly equivalent for executions utilizing 

two, four, six, eight or ten processors. DLA heuristic MAX-R1L performed best in 

assigning the minimal optimal number of PMUs, on four processors during Parla's 

execution. Of all algorithms presented in this paper, only Parla found the absolute 

minimum number of PMUs for the IEEE 57 bus system. 

5.4. 118 Bus Power System 

The best solution reported by A* heuristics for the 118 bus system was 29 

PMUs, as seen in Table 3. The depth method performed fastest, finding a solution 

in 2.0369 seconds as seen in Table 4. The 118 Bus case starts to demonstrate the 

effects of the heuristics on a larger-scaled system. The A* depth method d = 2 is 

not able to find the best solution but with d = 1. The A* heuristic was unable to 

return a solution as seen in Table 3. As compared to the other heuristics presented in 

this paper, the Double Vertex heuristic showed the largest differential from the best 
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Table 14: Parallel DLA IEEE standard 57 bus results 
DLA Heuristic Number of Processors Number of PMUs 

Minimum Maximum 
MAX-C 2 11 13 

4 11 15 
6 11 15 
8 12 17 
10 15 19 

MAXSEQ-CPR 2 11 15 
4 12 16 
6 12 16 
8 11 17 
10 15 20 

MAX-RlL 2 11 15 
4 10 20 
6 13 16 
8 13 17 
10 15 20 

MAX-R2L 2 11 13 
4 12 16 
6 11 15 
8 12 17 
10 15 20 

solution found in the previous bus systems. Figure 16 reports the results of Greedy, 

Single and Double Vertex algorithm executions on the 118 Bus Power System. 

The parallel A* heuristic found a near-optimal solution of 29 PMUs as seen in 

Table 6. The run-time for five processors was 330.54 seconds, and 1292.82 seconds 

for ten processors as seen in Table 7. It is observed from Figure 13 that, as compared 

to results from parallel A* executions of IEEE 14, 30, 57 bus system, the parallel 

A* communication-computation ratios for the IEEE 118 bus system were better for 

executions utilizing more processors. 

The sequential DLA found an optimal solution of 29 PMUs for the 118 bus 

system while maintaining a low margin of error, as seen in Table 15. DLA heuristics 

MAX-C and MAX-R2L had the lowest margins of error, assigning a minimal of 29 
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Figure 16: IEEE standard 118 bus results. 

PMUs. Seqla had a run-time of 18.23 seconds, as shown in Table 10. 

Table 15: Sequential DLA IEEE standard 118 bus results 
DLA Heuristic Number of PMUs 

Minimum Maximum 
MAX-C 29 31 

MAXSEQ-CPR 30 34 
MAX-RlL 30 37 
MAX-R2L 29 32 

Parla found an optimal solution of 28 PMUs for the 118 bus system, as shown in 

Table 16. For executions utilizing the different number of processors the error margin 
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was roughly equivalent while DLA heuristic MAX-C performed best in assigning the 

minimal number of PMUs. A run-time of 13.46 seconds was reported for Parla's 

execution in Table 10. We see that Parla and Seqla emerge as the best of the all the 

algorithms presented, with respect to solution quality. 

Table 16: Parallel DLA IEEE standard 118 bus results 
DLA Heuristic Number of Processors Number of PMUs 

Minimum Maximum 
MAX-C 2 30 32 

4 28 35 
6 30 34 
8 28 34 
10 30 39 

MAXSEQ-CPR 2 31 33 
4 31 36 
6 31 37 
8 28 36 
10 33 39 

MAX-RlL 2 32 34 
4 31 36 
6 31 36 
8 30 37 
10 34 39 

MAX-R2L 2 30 33 
4 28 35 
6 30 34 
8 29 36 
10 34 40 

5.5. 300 Bus Power System 

The best solution found by the A* heuristics for the 300 bus system was 109 

PMUs. The Single Vertex heuristic reached a solution of 107 PMUs. The time spent 

per trial seen in Table 5 for the non-deterministic heuristics may suggest that these 

heuristics out-perform the pruning methods for the A* heuristic. However, when 

multiple trials are taken into account, the A* pruning methods were able to return a 
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result over 150 times faster. The results of the A* depth and restricted list methods 

seen in Table 5 were 110 and 109 PMUs, respectively. Figure 17 shows that the 

Double Vertex heuristic performed the worst among the heuristics that completed 

the trial. The best solution of the Double Vertex Heuristic placed 40 more PMUs 

compared to the best solution identified by the Single Vertex heuristic. 
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Figure 17: IEEE standard 300 bus results. 

The parallel A* heuristic found an optimal solution of 112 PMUs as seen in 

Table 6. The run-time for five processors was 5612.88 seconds (1.588 hours), and 

20541.12 seconds (5.705 hours) for ten processors as seen in Table 7. It is observed 

from Figure 13 that the parallel A* communication-computation ratio for the IEEE 
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300 bus system is greater for executions utilizing fewer processors. 

The sequential DLA found an optimal solution of 88 PMUs for the 300 bus 

system while maintaining a relatively low margin of error, as seen in Table 17. 

DLA heuristics MAX-C and MAX-R2L had the lowest margins of error, assigning a 

minimal of 88 PMUs. Seqla had a run-time of 219.05 seconds, as shown in Table 10. 

Table 17: Sequential DLA IEEE standard 300 bus results 
DLA Heuristic Number of PMUs 

Minimum Maximum 
MAX-C 88 91 

MAXSEQ-CPR 90 94 
MAX-RlL 91 102 
MAX-R2L 88 93 

Parla found an optimal solution of 89 PMUs for the 300 bus system, as shown 

in Table 18. For Parla executions utilizing two, four, six, eight, or ten processors, the 

error margin was roughly equivalent while DLA heuristic MAX-C performed best in 

assigning the minimal number of PMUs. A run-time of 127.58 seconds was reported 

for Parla's execution in Table 10. Again, we see that Parla and Seqla perform better, 

amongst all the algorithms presented, with respect to solution quality. 

5.6. 2,383 Bus Power System 

Figure 18 shows that the Single Vertex heuristic was able to reach a solution of 

1025 PMUs. This solution is 21 PMUs fewer than the best A* optimization of 1046 

PMUs, as observed in Table 3. Because the 2,383 bus power system is a large-scale 

system, we were only able to run 1,000 trials each for the Greedy, Single Vertex, and 

Double Vertex heuristics. The previous trials of the 14, 30, 57, l18, and 300 bus 

systems were all executed 100,000 times. We hypothesize that if more trials were run 

on the 2,383 bus system, better solutions may have been found. 
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Table 18: Parallel DLA IEEE standard 300 bus results 
DLA Heuristic Number of Processors Number of PMUs 

Minimum Maximum 
MAX-C 2 89 89 

4 91 94 
6 91 95 
8 94 95 
10 92 97 

MAXSEQ-CPR 2 91 92 
4 96 99 
6 96 97 
8 95 100 
10 93 98 

MAX-RlL 2 98 102 
4 99 103 
6 96 103 
8 95 101 
10 93 106 

MAX-R2L 2 89 90 
4 94 95 
6 92 97 
8 92 97 
10 92 100 

The sequential DLA found an optimal solution of 756 PMUs for the 2383 bus 

system as seen in Table 19. DLA heuristics MAX-C and MAXSEQ-CPR had the 

lowest margins of error, assigning a minimal of 756 PMUs. Seqla had a run-time of 

105.56 seconds, as shown in Table 10. 

Table 19: Sequential DLA 2383 bus results 
DLA Heuristic Number of PMUs 

Minimum Maximum 
MAX-C 756 767 

MAXSEQ-CPR 786 804 
MAX-RlL 917 1000 
MAX-R2L 775 825 
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Figure 18: 2383 bus results. 

Parla found an optimal solution of 740 PMUs for the 2383 bus system, as shown 

in Table 20. DLA heuristic MAX-C performed best in assigning the minimal number 

of PMUs, when utilizing eight processors. A run-time of 66.13 seconds was reported 

for Parla's execution in Table 10. Again, we see that Parla and Seqla perform better, 

amongst all the algorithms presented, with respect to solution quality. 

Table 21 summarizes our proposed algorithms with other published algorithms. 

As can be clearly seen, the A*, Seqla, Parla algorithms are as optimal as other 

algorithms. Run-times could not be compared since not all published algorithm run­

times were available. Nevertheless, we are convinced - following our simulation 
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Table 20: Parallel DLA 2383 bus results 
DLA Heuristic Number of Processors Number of PMUs 

Minimum Maximum 
MAX-C 2 769 786 

4 781 814 
6 783 804 
8 740 816 
10 756 864 

MAXSEQ-CPR 2 812 856 
4 806 847 
6 820 877 
8 777 877 
10 803 901 

MAX-RlL 2 881 956 
4 846 919 
6 844 971 
8 757 923 
10 819 902 

MAX-R2L 2 791 824 
4 803 828 
6 810 861 
8 766 871 
10 796 875 

results - that our newly proposed distance level algorithms are comparable, if not 

more optimal in execution times. 

Table 21: Comparison with other PMU placement methods 

IEEE Integer Simulated Immunity A Proposed Algorithms 

Test Program- Annealing Genetic Proposed 

System ming [2] [5] Algorithm Model [27] 
[16] 

A* Seqla Parla 

14-Bus 3 3 3 3 3 3 3 

30-Bus - 7 7 7 7 7 7 
57-Bus 12 11 11 11 12 11 10 
118-Bus 29 - 28 28 29 29 28 

To conclude our simulation findings, we suggest that if the given bus system is 
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small, then the A* heuristic with the pruning methods presented would be the ideal 

for solving the problem. On the other hand, for large bus systems of 118 buses or 

greater, we recommend the utilizing sequential distance level algorithm ( Seqla) or 

the parallel distance level algorithm (Parla) with the MAX-C DLA heuristic. For 

Parallel A* executions, the communication-computation ratio should be limited to 

0.6. Communication-computation ratios greater than 0.6 mean the utilized processors 

will process less computational tasks, and more communication tasks than desired. 
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CHAPTER 6. CONCLUSION 

In this paper, we tackled the PMU placement problem. We proposed heuristics 

varying from a Greedy heuristic to an informed search A* heuristic. The DLA, 

a novel family of algorithms was presented. Parallel algorithms, parallel A* and 

parallel DLA were introduced as multi-processor algorithms useful in solving the PMU 

placement problem. Experimental results for all algorithms introduced in this paper 

were presented. Based on the results presented, we concluded that for small-scale 

power systems the A* heuristic with the proposed pruning methods would be the ideal 

choice for solving the PMU placement problem. For large-scale power systems, the 

novel sequential or parallel distance-level algorithms presented were most practical. 
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