
PHASOR MEASUREMENT UNIT PLACEMENTS FOR

COMPLETE OBSERVABILITY USING LINEAR-TIME,

QUADRATIC-TIME, AND SUBQUADRATIC-TIME

HEURISTICS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Oluwasijibomi Saula

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

April 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

PHASOR MEASUREMENT UNIT PLACEMENTS FOR COMPLETE OBSERVABILITY

USING LINEAR-TIME, QUADRATIC-TIME AND SUBQUADRATIC-TIME HEURISTICS

By

Oluwasijibomi Saula

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the docmnent, signatmes have been
removed from the digital version of this document.

ABSTRACT

Saula, Oluwasijibomi, M.S., Department of Electrical and Computer Engineering,
College of Engineering and Architecture, North Dakota State University, April 2010.
Phasor Measurement Unit Placements for Complete Observability using Linear-Time,
Quadratic-Time, and Subquadratic-Time Heuristics. Major Professor: Dr. Samee
Ullah Khan.

A phasor measurement unit (PMU) is considered to have the potential to

improve the efficiency of electric power systems by monitoring, control, and protection.

Through measurements of all bus voltages, incoming and outgoing currents, and by

subsequent calculation of all phase angles, employing PMUs on every substation in a

power system will allow complete observation of a power system. However, having a

PMU on every substation may not be economically feasible. Therefore, methodologies

must be devised that can monitor a system with the minimum possible number of

PMUs. In this paper, we propose six graph theoretical PMU placement heuristics.

The proposed heuristics overcome the previous approaches in terms of scalability and

execution time. The proposed heuristics are thoroughly compared and benchmarked

using standard IEEE bus networks ranging from 14 to 300 buses, and a 2,383 bus

system.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Samee Ullah Khan for his assistance, advice and help

in writing this thesis. I also thank Dr. Rajendra Katti, Dr. Rajesh Kavaserri, and

Dr. Warren Shreve for their contributions to this thesis and my graduate education.

Greatly appreciated are the precursory efforts of Garrett Kropp, Brady Brodsho,

Joshua Adamek on the thesis subject; I am sincerely thankful to Garrett Kropp for

his persistent timely assistance.

To my family, the Saulas, please accept my gratitude for all the support, encouragement,

advice, and prayers all through the years leading to this thesis submission. I am

especially appreciative of Apostle Mr. Shields and Pastor Mrs. Shields, for their kind

and gentle directions, and the encouraging words of advice and wisdom.

I am most grateful to my Counselor and Teacher, my Lord and Savior Jesus

Christ, who since my birth has led me thus far. Now and forever, I am thankful to

You.

IV

TABLE OF CONTENTS

ABSTRACT . lll

ACKNOWLEDGMENTS . 1v

LIST OF TABLES . vii

LIST OF FIGURES . 1x

CHAPTER 1. INTRODUCTION..................................... 1

CHAPTER 2. RELATED WORK . 4

CHAPTER 3. PROBLEM FORMULATION . 9

CHAPTER 4. HEURISTICS . 12

4.1. Greedy..... 14

4.2. Single vertex selection. 16

4.3. Double vertex selection . 18

4.4. A-Star Algorithm . 21

4.5. Parallel A-Star Algorithm . 25

4.6. A* Pruning Methods. 26

4.7. Distance-Level Algorithms (DLA) 27

4.8. Distance-Level Heuristics (DLHs) 30

4.9. Sequential Distance-level Algorithm. 33

4.10. Parallel Distance-level Algorithm . 34

CHAPTER 5. EXPERIMENTAL RESULTS 38

5.1. 14 Bus Power System 38

5.2. 30 Bus Power System 43

V

5.3. 57 Bus Power System 45

5.4. 118 Bus Power System . 4 7

5.5. 300 Bus Power System . 50

5.6. 2,383 Bus Power System. 52

CHAPTER 6. CONCLUSION .. 57

REFERENCES . 58

Vl

LIST OF TABLES

Table Page

1 Search order ratio and solution ratio. 21

2 DLA symbols and definitions 32

3 A* Placement Results . 38

4 A* Run-Time Results In Seconds . 39

5 Non-Deterministic Heuristics Run-Time Results Per Trial In Seconds . . 39

6 Parallel A* Placement Results. 40

7 Parallel A* Run-Time Results In Seconds . 41

8 Sequential DLA IEEE standard 14 bus results 42

9 Parallel DLA IEEE standard 14 bus results 42

10 DLA Run-Time Results In Seconds 43

11 Sequential DLA IEEE standard 30 bus results . 44

12 Parallel DLA IEEE standard 30 bus results 45

13 Sequential DLA IEEE standard 57 bus results 47

14 Parallel DLA IEEE standard 57 bus results 48

15 Sequential DLA IEEE standard 118 bus results . 49

16 Parallel DLA IEEE standard 118 bus results . 50

17 Sequential DLA IEEE standard 300 bus results . 52

18 Parallel DLA IEEE standard 300 bus results 53

19 Sequential DLA 2383 bus results 53

20 Parallel DLA 2383 bus results . 55

Vll

21 Comparison with other PMU placement methods 55

viii

LIST OF FIGURES

Figure

1 An example power system. 2

2 Worst-case scenarios. 13

3 An example 5 bus power system. 23

4 A* algorithm example. 24

5 Parallel A* algorithm example. 27

6 An arbitrary graph G. 29

7 A Distance-leveled Graph. 30

8 An illustration of parent, children, and peer-vertices. 31

9 Distance-Level Construction of graph G: a horizontal view 35

10 An illustration of distance-levels mapped to sine-wave function. 36

11 A Parallel Distance Level Construction of graph G 37

12 IEEE standard 14 bus results 40

13 Parallel A* communication-computation ratios. 41

14 IEEE standard 30 bus results 44

15 IEEE standard 57 bus results 46

16 IEEE standard 118 bus results 49

17 IEEE standard 300 bus results. 51

18 2383 bus results.. 54

ix

CHAPTER 1. INTRODUCTION

A Phasor Measurement Unit (PMU) is a measurement device which utilizes a

global positioning system (GPS) and allows for the acquisition of synchronized phasor

measurements, specifically voltage and current phasor measurements. In addition to

measuring voltage and current magnitudes, the phase angle can also be calculated

directly, and phasor measurements can be presented in a continuous format. As PMUs

are dynamic state estimators, these non-static estimators allow monitoring of a power

system by calculating state estimates using continuous streams of voltage and current

phasor measurements. By virtue of these continuous streams of phasor measurements,

the synchronization of PMUs has become an advantage over traditional analog meters.

In addition, PMUs are attractive for their ability to improve bad data detection [22],

provide better accuracy for iterative state estimation algorithms [4], stability control

[23], and disturbance monitoring [24]. PMUs are also favored in system protection

schemes while also playing an important role in post-mortem analysis of a power

system. With installed PMUs providing synchronized phasor measurements, the

standards of power system monitoring, control, and protection of a power system

is enhanced [25].

Synchronization in a power system is vital and can be accomplished by using

state estimators that reside at a comptroller. The comptroller monitors all measure­

ments and other information received from substations and meters. By continual

monitoring, state estimators are able to provide approximate voltage, current, and

power measurements of a power system. Estimators may also detect errors in data

and make corrections where necessary. One disadvantage of using traditional analog

meters is the inherent time dependency [4]. This demerit is visible when disturbances,

such as power fluctuations, occur. Traditional analog meters are not guaranteed to

trigger at the time of disturbance and could result in defective monitoring of power

1

systems. Thankfully, the proper application of PMUs prevents such measurement

omissions from taking place.

By utilizing the current state of a power system with sufficient but necessary

knowledge on the measurement set and their distribution, the power system becomes

observable (measurable) [4]. PMUs installed on all of the nodes can provide complete

observability but PMUs on every substation may not be economically feasible [3].

When a PMU is deployed on a substation, that substation is termed a directly

observable substation. The substation is termed a calculated substation when such

substation does not have a PMU installed but is observable by other PMUs installed

on neighboring substations. A system is said to be completely observable when all of

the substations are either directly observed or calculated. If any of the substations are

not observed, then that system is defined as unobservable. [4]. For instance, consider

a power system that is composed of seven substations as described in Fig. 1.

Figure 1: An example power system.

Assume that PMUs are installed on substations v1 , v4 , and v7 . We can differ­

entiate directly observable substations from calculated substations:

1. The PMU on v1 makes the substations v2 and v3 visible.

2. The PMU on v4 make the substations v2 , v3 , v5 , and v6 visible.

3. The PMU on v7 makes the substation v5 visible.

2

Therefore, v1 , v4 , and v7 are designated as directly observable substations and the

remaining substations (v2 , v3 , v5 , and v6) as calculated substations.

A system is termed as completely observable if and only if all of the substations

are visible. Therefore, by choosing an optimum position to install PMUs, we can

achieve complete observability along with the reduced deployment cost. The main

contributions of this paper are as follows:

1. We formulate a graph theoretical PMU placement problem. This formulation

is considerably different and comprehensible than the previous formulations.

2. We design and analyze a wide range of PMU placement heuristics, such as

edge selection, greedy, and A-star. These heuristics are proven to be linear and

sub-quadratic in scalability.

3. Because of the wide range of selection, the heuristics proposed in this paper are

easily comprehensible and extend able to the well-known set covering problem

[9], vertex covering problem [9], and quadratic assignment problem [12].

4. The execution time of the proposed heuristics also is computationally accept­

able.

5. To standardize our results, we benchmark our proposed heuristics on the pub­

licly available IEEE bus networks (14 bus system, 30 bus system, 57 bus system,

118 bus system, and 300 bus system) [14]. Additionally, the proposed heuristics

are benchmarked on a 2383 bus network that was generated at North Dakota

State University by concatenation of the aforementioned bus systems.

The remainder of this paper is organized as follows. In Section 2, we review

previous work. The problem formulation will be described in Section 3. Then in

Section 4 and Section 5, we present our proposed heuristics and their simulation

results, respectively. Finally, we conclude the paper in Section 6.

3

CHAPTER 2. RELATED WORK

For maximal benefits of PMUs in a power system, site selection of PMUs to be in­

stalled in a power system must be properly addressed. With proper PMU placements,

the observability of a power system is improved. Power system observability allows

a state estimator to determine the unique state solution of a power system given

the network's measurements and topology. For optimal state estimation of a power

system, full network observability is usually preferred. An existent constraint on PMU

placement algorithms is the ensuing costs of placed PMUs. Since the cost of placed

PMUs is directly proportional to the number of PMUs placed, PMU locations chosen

judiciously will aptly minimize the number of PMUs placed and the resulting cost.

Given a set of measurements, we are assured of full network observability (coverage)

when at least one measurement spanning tree of full rank can be formed [15]. With

the aim of full network observability and minimal number of employed PMUs, optimal

placements of PMUs is necessary.

It should be noted that the problem of minimizing the monetary cost of PMUs

employed in a power system is distinct to the problem of minimizing the number of

PMUs assigned for full network coverage. The problem of minimizing the monetary

cost of PMUs is attempted by the authors in [1]. In [1], the authors attempt to solve

the basic problem statement considering the presence of conventional measuring units

in power system; the proposed solution method is named Augmented Bus Merging

(ABM). A solution is also proposed to the problem of minimizing the cost of PMUs

where loss of single or multiple PMUs is expected; the proposed solution method is

named Local Redundancy (LR).

In this paper, we focus on the problem of minimizing the number of PMU s

required for full network coverage (full observability) of a power system; we also refer

to this problem as the Optimal PMU Placement problem (OPP). The OPP problem

4

descends from classical graph theoretical optimization problems such as set covering,

vertex covering, and quadratic assignment, and has been attempted by various works.

An approach presented in [5] applies simulated annealing (SA) to the OPP

problem, however, SA is a non optimal technique and suffers from heavy calculation

burden in reaching near optimal solutions. In [15], a modification was made to SA

in an attempt to reduce SA's computational burden. Another method, Tahu Search

(TS) was presented to reduce search space drastically. Unfortunately, TS produced

results that were non-optimal even in small studies [16]. In [17], the OPP problem

is approached using sorting genetic algorithm (NSGA). Complex as NSGA is, its

applicability is restricted by the size of the problem. The authors of [1] remark on the

time consumed by various approaches discussed above. The authors of [1] therefore

present a time efficient technique. The strategy presented is called Immunity Genetic

Algorithm (IGA). IGA is an amalgamation of the genetic algorithm (GA) and immune

algorithm (IA). The GA and IA are algorithms developed in the fashion of natural

biological processes and implemented using statistical methods. The added advantage

of IGA is its utilization of local information and avoidance of repetitive or fruitless

tasks in crossovers and mutations.

In [6], the authors propose a solution to the OPP problem by utilizing a binary

search algorithm. The authors of [6] also provide a means of retaining full observabil­

ity in the event of a single PMU outage in a power system. Benchmarking the PMU

placement method in [6] was accomplished by running the binary search algorithm

on the IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, and the New England 39-bus test

systems. In most of these case studies, the binary search algorithm in [6] provided

optimal solutions, some of which were improvements over solutions presented by the

authors in [2]. In regards to execution time, the binary search algorithm in [1] was

applied to a 298-bus test system. An optimal solution is produced. Nevertheless, an

5

execution time of 91 min is incurred on a single Intel Pentium 4 3.6-GHz CPU with

1 GB RAM.

For a power system to be observable, authors in [5] reported that PMUs need

to be installed at 1/5 to 1/3 of the number of system buses. In [19], the authors

define incomplete observability as a PMU placement situation in which a specified

number of PMUs and corresponding locations are insufficient in obtaining full network

observability. A novel concept called "depth-of-unobservability" is also introduced to

limit the distance between observed and unobserved buses. As such, for a depth­

of-one unobservability, there is one unobserved bus linked to calculated buses; for a

depth-of-two unobservability, there are two unobserved buses connected to calculated

buses. A tree search placement technique is employed to execute PMU placement in

accordance to desired depth-of-unobservability. It is noted that a decreasing number

of PMUs is needed to maintain higher depths-of-unobservability.

In [2], integer programming is applied to the OPP problem, with consideration

of convention measurement units already existent in the power system. According

to authors of [21], some draw backs of the solution proposed in [2] exist: computed

results are error prone due to numerical roundoff errors. In [18], the author presents a

generalized integer linear programming algorithm. There is a consideration for power

systems with conventional measurements and for power systems without conventional

measurements. The author of [1] also formulates the problem to accommodate the

novel concept of dcpth-of-unobservability introduced in [19]. Specifically, the authors

of [18] solve the OPP problem for depth-of-one-unobservability and depth-of-two­

unobservability. The integer linear programming approach developed in [18] was

based on Matlab's binary integer programming.

An integer programming strategy is developed by authors in [2] for the OPP

problem. In [20], it is discovered that the strategy in [2] becomes non-linear when

6

power injection measurements or conventional power flow exist. In [17], genetic

algorithm (GA), a PMU placement algorithm utilizing the Pareto-optimal paradigm

is presented. GA solves the OPP problem by searching the solution space for a

set of Pareto-optimal solutions. The solutions in the Pareto-optimal set are equally

optimal when all PMU placement objectives are considered. The advantage of GA is

the provision of the complete Pareto-optimal front instead of a single point solution.

However, the computational complexity of GA limits its application to OPP problems

of large system buses. This complexity in computation is attributed to correction of

infeasible solutions by GA.

The authors of [21] present a method of optimal PMU placement that factors

the outage of single branches and single PMU losses (contingency conditions). As ex­

pected, the placement strategy resulted in greater PMU placement numbers than that

required for full network observability. In comparison with [2], the required number

of placement sites computed by the proposed method is less. Other improvements

over [2] are better conditional numbers, more accurate state estimations, complete

network observability in contingency conditions.

Authors of Ref [4] propose a matrix reduction technique that transforms a real

power system into arrays of buses, branches, and injections. The transformation is

applicable to the conception of simple placement heuristics; however, the transforma­

tion technique is quite computationally intensive. In [27], an OPP solution technique

based on linear integer programming is presented and contingency conditions such as

line outages and measurement losses are considered. Execution times were minimal

and optimal solutions were found in [27], yet parallel solution techniques for the OPP

were not taken into account.

Clearly, differing solutions have been developed for the OPP problem. Yet,

while our proposed problem formulations and heuristics do not rely on conventional

7

instrumentations (such as injection nodes), we approach the OPP problem with

coherent computationally efficient heuristics which effectively obtain optimal PMU

placements.

8

CHAPTER 3. PROBLEM FORMULATION

Consider a power system represented as a graph G(V, E). Let V represent the

set of vertices (substations of a power system) of a graph. The set of vertices can be

denoted as {v1 ,v2,V3,v4 ,·· · ,vn}, where vi EV.

Let E represent a set of edges (transmission lines in a power system) of a graph.

For n substations, there may be m transmission lines (edges) connecting all of the

substations. These edges can be represented by ejk E E, where j and k represent the

vertices of the edge.

A vertex vi is termed visible, if there exists a PMU on vi or on one of vi's

neighboring vertices. Therefore, we can write an n x n matrix that represents the

visibility of a given graph when certain number of PMUs are placed on the vertices.

This matrix is termed as a visibility matrix, denoted by £.

To illustrate the concept of the visibility matrix, consider the power system

represented in the Fig. 1. Assume that the power system has a PMU placed on

vertex v4 . The visibility matrix of the power system is given as follows:

V1 V2 V3 V4 V5 V5 V7

V1 0 0 0 0 0 0 0

V2 0 0 0 1 0 0 0

V3 0 0 0 1 0 0 0

V4 0 1 1 1 1 1 0 ,£=0

V5 0 0 0 1 0 0 0

V5 0 0 0 1 0 0 0

V7 0 0 0 0 0 0 0

Because the example matrix £ depicts the visibility of the underlying graph,

the elements of £ are boolean. From the example power system we can interpret

9

that substations v2 , v3 , v5 , and v6 must be visible when the power system has PMU

installed on substation v4 . For that reason the example matrix & has those elements

that are being made visible by the PMU installed on v4 equal to one. For instance:

(a) if we consider v2 , then the elements (v2 , v4) and (v4 , v2) are equal to one; (b) If

we consider v7 , then the elements (v7 , v4) and (v4 , v7) are equal to zero. Moreover, we

say that the whole graph is visible if and only if each column (or each row) has at

least a single element equal to one. Because the visibility matrix is always a square

bijectional matrix the condition must either be observed on the rows or the columns

and not both.

Based on the above condition, we can formally state the PMU placement prob­

lem as: "Find the minimum number of PMUs that can provide full observability for

the entire power system. "

Let X be defined as an n x 1 matrix that represents the PMU placement of a

graph (power system). An entry xi E X is equal to one when there is a PMU on

a substation and zero otherwise. The PMU placement problem for an n-substation

power system can be stated as:

where

such that & = 1.

n

min Lxi,
i=l

1 if PMU is installed

0 otherwise

It is our belief that the PMU placement problem is closely related to the set

covering problem [9]. The set covering problem is proven to be NP complete even for

the simplest case of identifying a cover for three sets. Because of this similarity we

also suspect that PMU is in the class NP. An optimal solution for a large-scale power

10

system would be inconceivable. Therefore, we must design efficient and effective

heuristics.

11

CHAPTER 4. HEURISTICS

Before we detail our heuristics, we must note that in the generalized case there

can be no polynomial time algorithm to tackle the PMU placement problem [9].

Therefore, we must determine theoretical bounds on the performance of each of the

proposed heuristic with a hypothetically conceived optimal solution.

The oracle to derive the performance bounds for each of the heuristics are

standard techniques utilized in the analysis of approximation algorithms [13]. Let

0 (·) be the traversal order that defines the number of traversals that a particular

heuristic or an optimal solution must perform to attain complete visibility. Let K

represent the solution ratio of a heuristic approach to the optimal solution. Let Q

define the traversal order ratio of a heuristic approach to the optimal solution.

We begin the derivation of performance bounds of a heuristic compared to an

optimal solution by first describing the worst-case scenarios (see Fig. 2). Let us

consider a power system having only one substation (see Fig. 2(a)). In the optimal

case, the solution would be obtained by a single traversal and there would be only

one PMU. Because of singularity, the heuristic approach also would achieve both the

traversal order and the solution (number of PMUs) as one. The values of K and Q

are determined subsequently:

K = search order of a heuristic approach = 0(1) = 1
search order of the optimal approach 0(1) '

Q = solution quality of a heuristic approach = ~ = 1.
solution quality of the optimal approach 1

When a bi-vertex graph (see Fig. 2(b)) is considered, the optimal solution would

be obtained with a single traversal and the PMU could be placed on either one of the

vertices. Therefore, both the traversal order and the solution is again equal to one.

Unlike the optimal solution, a heuristic approach must traverse both of the vertices

12

,,,

I Vn-1

'/Jn I

/ ,,,
/

I
I

(a) A single (b) A bi-vertex
vertex graph. graph.

(c) Ann-vertex graph

Figure 2: Worst-case scenarios.

Va

'lh

I

to ascertain enough knowledge to install a single PMU. For, the case of a bi-vertex

graph, the values of K and Q are given below:

K = 0(1) = 1
0(1) '

2
Q = 1= 2.

When an n-vertex graph (see Figure 2(c)) is traversed, say by a cognizant

optimal approach, both the traversal order and the solution will once again be equal

to one. When a PMU is placed at the vertex Vn the underlying graph becomes

completely visible. On the other hand, a heuristic approach may not be as cognizant

as the optimal approach. Therefore, a heuristic approach must traverse all of the

n vertices to compute an informed solution. In the generalized case, the traversal

order and the solution (number of PMUs) to attain complete visibility will vary from

heuristic to heuristic.

13

Below, we detail the six proposed heuristics. Each heuristic is described by

outlining the pseudo-code, a brief description, and theoretical analysis (traversal order

and solution).

Algorithm 4.1: GREEDY ()

[h!]Input :G(V, E)

Output :V'

Initialization : V' = 0

while£= 0

4.1. Greedy

P = argmaxi(deg(vi)), V vi E V

do update(£)

V' .-V'UP

print(V');

The greedy PMU placement heuristic (Algorithm 4.1) takes as an input a graph

G(V, E) (the power system). The output of this greedy algorithm would be the set

of vertices V' that must have a PMU installed such that the underlining graph is

completely observable. The algorithm iteratively places a PMU on the vertex that

has the highest degree (incoming or out going edges) until the visibility condition

is satisfied (£ =/- 0). Because the underlying graph is bidirectional, we only must

consider either the incoming or outgoing edges, and not both. This visibility condition

is verified by updating the visibility matrix £. To illustrate the updating process,

consider the visibility matrix of the example power system as depicted in Figure 1.

Because of the greedy approach always chooses the vertex with the maximum degree,

the first PMU will always be installed on vertex v4 that has a degree equal to four.

14

The visibility matrix will become:

Vi V2 V3 V4 V5 Va V7

Vi 0 0 0 0 0 0 0

V2 0 0 0 1 0 0 0

V3 0 0 0 1 0 0 0

V4 0 1 1 1 1 1 0 ,t:=0

V5 0 0 0 1 0 0 0

Va 0 0 0 1 0 0 0

V7 0 0 0 0 0 0 0

Because t: · 0, the greedy heuristic (Algorithm 4.1) iterates and must place another

PMU. There are many possibilities that can be circumvented by narrowing down the

potential locations of the PMUs that would result in maximum visibility. Note that

Vi, v2 , v 3, and v5 all have a degree equal to two. However, v2 , v3 , and v 5 are already

covered by the PMU placed on v4 . Therefore, installing a PMU on any one of the

already covered substations will not increase visibility. The next vertex for selection

will be Vi. After placing the PMU on Vi the visibility matrix would be as follows:

Vi V2 V3 V4 V5 Va V7

V1 1 1 1 0 0 0 0

V2 1 0 0 1 0 0 0

V3 1 0 0 1 0 0 0

V4 0 1 1 1 1 1 0 ,t:=0

V5 0 0 0 1 0 0 0

Va 0 0 0 1 0 0 0

V7 0 0 0 0 0 0 0

15

Finally, the PMU must be placed on v7 , and the visibility matrix would become:

V1 V2 V3 V4 V5 VG V7

V1 1 1 1 0 0 0 0

V2 1 0 0 1 0 0 0

V3 1 0 0 1 0 0 0

V4 0 1 1 1 1 1 0 ,£=1

V5 0 0 0 1 1 0 0

v6 0 0 0 1 0 0 0

V7 0 0 0 0 0 0 1

4.2. Single vertex selection

Because the execution time of the greedy heuristic is dictated by the vertex sorting

module, the greedy heuristic may become computationally expensive over large-scale

power systems. To speed up the PMU placement process, we propose a very simple

vertex selection heuristic (Algorithm 4.2).

Algorithm 4.2: SINGLE VERTEX()

[h!]Input :G(V, E)

Output :V'

Initialization : V' = 0

while£= 0

ei1 +-- RAND(E)

do V'=V'URAND(vi,vi)

update(£)

print(V');

16

Similar to the greedy heuristic (Algorithm 4.1), the single vertex selection

heuristic (Algorithm 4.2) iteratively builds the solution until the visibility constraint

is satisfied (£ = 1). The solution is built by taking an input graph G(V, E) and

randomly selecting an edge ejk E E. A PMU will be placed on one of the vertices (vi

and Vj) of the selected edge. The visibility matrix is updated similar to the approach

undertaken in the greedy heuristic (Algorithm 4.1). Moreover, we also maintain the

set of edges E so that we can select a unique edge in each iteration. This edge

selection process continues until the entire power system is observable.

To illustrate the process of a single vertex selection, consider the visibility matrix

of the example power system depicted in Figure 1. The edges ejk will be chosen at

random and a PMU will be placed on vertices vi or Vj. Assume the first PMU is

randomly chosen to be placed on v5 from selecting the edge e4_ 5 . The visibility

matrix will become:

V1 V2 V3 V4 V5 v6 V7

V1 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 0

V4 0 0 0 0 1 0 0 ,£=0

V5 0 0 0 1 1 0 1

v6 0 0 0 0 0 0 0

V7 0 0 0 0 1 0 0

With £ being equal to zero, the single vertex heuristic iterates and must place

another PMU. Because the edge e4_ 5 was chosen, e4_ 5 can be eliminated from the

selection process. Because v5 and v7 are observable, the edge e5 _ 7 also can be

eliminated. The next PMU may be randomly chosen to be placed on v 1 from the

17

edge selection e1_ 2 . The visibility matrix will become:

V1 V2 V3 V4 V5 Va V7

V1 1 1 1 0 0 0 0

V2 1 0 0 0 0 0 0

V3 1 0 0 0 0 0 0

V4 0 0 0 0 1 0 0 ,t'=O

V5 0 0 0 1 1 0 1

Va 0 0 0 0 0 0 0

V7 0 0 0 0 1 0 0

Again, £ = 0 so the heuristic must iterate and place another PMU. Because of

the only choice left, the PMU must be placed on Va, and the visibility matrix would

become:

V1 V2 V3 V4 V5 Va V7

V1 1 1 1 0 0 0 0

V2 1 0 0 0 0 0 0

V3 1 0 0 0 0 0 0

V4 0 0 0 0 1 1 0 , E = 1

V5 0 0 0 1 1 0 1

Va 0 0 0 1 0 1 0

V7 0 0 0 0 1 0 0

4.3. Double vertex selection

Although the execution time of the single vertex algorithm is superior to the greedy

algorithm, the single vertex algorithm may perform poorly in a worst-case scenario,

such as the n-vertex graph (see Fig. 2(c)). If any vertex other than Vn is selected,

18

then we need to repeatedly select vertices to attain complete observability. The se­

lection process may result in worse case performance. To prevent such unsatisfactory

performance, a natural extension to Algorithm 4.2 is presented in Algorithm 4.3.

Algorithm 4.3: BOTH NODES()

[h!]Input :G(V, E)

Output :V'

Initialization : V' = 0

while£= 0

eii +-- RAND (E)

do V' = V' U vi U vi

update(£)

print(V');

The Algorithm 4.3 selects an edge from the edge matrix and places the PMUs

on both of the selected vertices. Although the traversal order in the Algorithm 4.3

also is given by the output matrix V', yet the heuristic may provide an optimum

solution for then-vertex graph (see Figure 2(c)). After placing PMUs, the output

matrix and the visibility matrix will be updated along with the edge matrix E so that

no edge can be selected twice. This process is repeated until £ = 1. To corroborate

the selection process we can consider then-vertex graph (see Figure 2(c)). The entire

system will be visible when we install PMUs on both vertices of an edge.

To illustrate the process of a double vertex selection, consider the visibility

matrix of the power system depicted in Figure 1. The edges eik may be chosen at

random and a PMU is placed on both vertices vi and vi. The first two PMUs must

be chosen to be placed on v3 and v4 from selecting the edge e3 _ 4 . As a result, the

19

visibility matrix will become:

Vi V2 V3 V4 V5 VB V7

Vi 0 0 1 0 0 0 0

V2 0 0 0 1 0 0 0

V3 1 0 1 1 0 0 0

V4 0 1 1 1 1 1 0 ,£=0

V5 0 0 0 1 0 0 0

VB 0 0 0 1 0 0 0

V7 0 0 0 0 0 0 0

Because £ = 0, the double vertex heuristic iterates and must place at least two

more PMUs. Because the edge e3_ 4 was chosen, e3_ 4 can be eliminated from the

selection process. Because vi, v2 , v3, v4, v5 , and VB are observable, the edges e1_ 2 ,

e1_ 3 , e2_ 4 , e4_ 5 , and e4_B also can be eliminated. The next two PMUs are then chosen

to be placed on v5 and v7 from the edge selection e5_ 7 . That being the only choice,

the visibility matrix will become:

V1 V2 V3 V4 V5 VB V7

V1 0 0 1 0 0 0 (J

V2 0 0 0 1 0 0 0

V3 1 0 1 1 0 0 0

V4 0 1 1 1 1 1 0 ,£=1

V5 0 0 0 1 1 0 1

VB 0 0 0 1 0 0 0

V7 0 0 0 0 1 0 1

Table 1 summarizes the search and solution ratio of all the proposed heuristics

20

compared to the optimal approach for the generalized n-vertex graph. Because of our

simple oracle, the reader will find it a trivial exercise to derive the aforementioned

search and solution ratios. Moreover, because the Greedy, Single Vertex, and Double

Vertex heuristics, all have their corresponding search ratios less than or equal to n,

the heuristics belong to the class linear-time.

Table 1: Search order ratio and solution ratio.
Heuristics Q K
Greedy n 1
Single Vertex V' depends on V'
Double Vertex V' depends on V'

4.4. A-Star Algorithm

The A-star heuristic (hereafter referred as A*) is a quadratic-time, best-fit first graph

search that finds the least cost path from the initial vertex to the goal vertex [8]. A

cost function f computes each vertex's associated cost. The value f for a vertex vi

that is the estimated cost of the cheapest solution through vi, is computed as:

(1)

where g(vi) is the search-path cost from the initial vertex to the current vertex vi and

h(vi) termed the heuristic is a lower-bound estimate of the path cost from vi to the

goal vertex.

For the PMU problem studied in this paper, the A* algorithm uses the vertex

coverage as heuristic and PMUs placed as the cost. Applying Eq. (1) for the PMU

problem will bias the result towards g(vi) and may not properly represent the system.

To maintain a weight balance, the ratio of the heuristic to cost may be an appropriate

measure. Such a ratio represents the cost per coverage at any point in the power

system.

21

(2)

The vertex corresponding to the maximum ratio value of the entire tree is

selected. When a vertex is chosen, the paths from that vertex will be searched.

This process continues until full coverage is achieved. The A* algorithm will always

find the optimal solution but may not work for large-scale problems due to time and

memory issues [8].

Algorithm 4.4: AsTAR()

[h!]Input :G(V, E)

Output :V'

Initialization : V' = 0

for each vertex vi E V

f (V) +- h(v;)
i g(v,)

repeat

Assign vertex with maximum f value to x

update(E)

for each child of x with vertices v;
f(') h(v:)

V• +- (') i g vi

until£= 1

print(V');

The Algorithm 4.4 takes an input graph (the power system). The output of

the A* algorithm V' is the set of vertices where a PMU has been installed such that

the system is completely observable. A* starts at a "zero step" where no vertices

have been searched. The first step searches the set of vertices vi and computes f.

Each vertex has an associated heuristic cost (coverage of the system, h(vi)) and for

every PMU placed, there is a distance cost, g(vi)- The ratio of the heuristic to the

22

distance cost is computed and the maximum value is selected and assigned a variable

x. The visibility matrix E is updated for that path explored and the children of x

are searched. The process continues until E=l. The path explored that completely

observes the system is the optimal solution.

To illustrate how the A* works, consider the 5 bus system depicted in Figure 3.

A tree graph is shown to display the process of A* on the power system in Figure 4.

'1'2

Figure 3: An example 5 bus power system.

The search-tree nodes include partial assignment of PMUs to nodes and the

value of f (the cost of the partial assignment). The assignment of PMUs to m

vertices is indicated by an m-digit string, a0 , a1 , ... , am - 1, where:

ai = { 1 if PMU is installed,

0 otherwise.

The root node includes the set of all uncovered vertices [00000]. Next we expand

all five possibilities of placing the first PMU and calculate the corresponding f values

23

[11000)
(4/5)

[00100)
(4/5)

1

0
[00110)

(5/5)

(Goal)

[01010)
(5/5)

Figure 4: A* algorithm example.

as in Figure 4. A visibility matrix is calculated for each expansion. Placing a PMU

on v3 (node [00100]) results in f(v4) being equal to 4/5. The g(vi) value for any

node is equal to five, which is the number of vertices in a given power system. The

h(v3) value is equal to four, which is the number of vertices that are visible as a

result of placing a PMU at v2 • Because 4/5th is the highest ratio of the entire list

of candidates, nodes [10000], [01000], [00100], [00010] and [00001], the A* algorithm

expands node [00100]. This expansion is achieved by calculating the f(vi) ratios of

the remaining unobserved vertices, in this case v4 .

Since £ = 0, the A* algorithm must expand the first node with the next highest

ratio. The algorithm searches on a depth basis, starting at the depth of zero (node

[00000]) and increasing until the entire tree is searched. The first node found with

the next highest ratio v of 3/5 is v1 (node [10000]). The A* algorithm expands v1 to

create node [11000] and node [10001], and then calculates the f value for the nodes.

Again £ = 0, so the A* algorithm expands another node with the next highest ratio

24

value, in this case node [00010]. The A* algorithm expands v4 to create node [01010].

Because node [00110] was previously calculated when node [00100] was expanded on,

the node is not recalculated.

Attached to some of the nodes are numbers in circles. These represent the

sequence in which the nodes are chosen for expansion. The bold lines represent

the path that leads to the optimal solution. The process continues until £ = 1

that is achieved when node [00110] is expanded. Therefore the system is completely

observable. The node [00110] represents full coverage at the minimum cost, and

therefore referred to as the goal node.

4.5. Parallel A-Star Algorithm

To further the speed of execution, a parallel version of the A* was developed. The

parallel A*, described in algorithm 4.6, allows multiple concurrent expansions of

nodes with the best cost per coverage ratios. With parallel expansion of nodes,

a quicker arrival at the goal node is expected. The parallel A*, given n number of

processors, assigns a processor as the root processor and n -1 processors as expansion

processors. The root processor selects and distributes to expansion processors the

node for expansion. Expansion processors receive a node Nv, as given by the root

processor, and expand such node to output the child nodes of the inputted node

Nv. The root processor gathers the child nodes from expansion processors examining

for goal nodes. Once one of the child nodes is ascertained to be a goal node, such

goal node is outputted as the PMU placement solution. In the case that no goal

node is found amongst the received child nodes, the child nodes are added to the

OpenSet from which the root processor will make the next n - l node selections

for expansion. Figure 5 illustrates how the parallel A* works, with 4 processors.

25

Algorithm 4.5: PARALLEL AsTAR()

Input: G(V, E)·, P = {p p p } o, 1, · · · , n-1

Output : Goal node

Initialization : V = 0

while£-/- 1

for each vertex vi E V

f(v) f- h(v;)
i g(v;)

for each processor Pi E P (i ~ 1)

{
processor p0 sends the ith

do
best open node to Pi

for each processor Pi E P (i ~ 1)

{
Pi expands ith best open node

do
Pi sends the child nodes to p0

processor Pi receives child nodes from p1 , · · · ,Pn-1

if goal node found: output goal node and quit

In Figure 5, the parallel A* begins at a" zero step" where no vertices have been

searched, and generates [10000], [01000], [00100], [00010], and [00001] as expansion

results. The root processor (p0) selects the nodes with the first and second best cost

per coverage ratio; [00100] is given to processor 2, [00010] is given to processor 2, and

[10000] is sent to processor 3. After concurrent expansion by processors p1 , p2 , and

p3 , [00110] is found by processor p1 , and is the resulting goal node.

4.6. A* Pruning Methods

Various pruning techniques may to be used to increase efficiency of the A*

algorithm to find (sub)optimal solutions. These pruning techniques belong to the

class subquadratic-time heuristics [10].

26

(11000)
(2/5)

(Goal)

(01010)
(1/2)

Figure 5: Parallel A* algorithm example.

(00001)
(3/5)

The first method is a depth optimization. This optimization searches the A*

tree until a certain depth dis reached (number of PMUs placed). Only the path with

the maximum ratio from a search is considered in future expansions. The selection of

a depth of the tree will decrease the execution time and return (sub)optimal solutions.

The second method is a restricted list optimization. This optimization maintains

an m length list. Only the ratios of highest value ratios are stored in this list. This

technique may decrease time spent searching for the best ratio because there is a

finite number of possibilities to sort through.

4.7. Distance-Level Algorithms (DLA)

A family of PMU placement algorithms, called Distance-Level Algorithms (DLA),

has been developed with the aim of obtaining PMU placement solutions in a graceful

manner. The goal of distance-level algorithms is the minimal assignment of PMUs

in a power system, thereby providing full measurability of the network. A host of

27

concepts have been derived from graph theory and will be presented firstly.

In Figure 6 we see an arbitrary graph G. From graph theory, a graph G is

connected if there exists a u - v path between every two vertices of G [26]. By

inspection, it is clear that for every two substations in a power system (substation u,

and substation v), there exists a u - v path, symbolized by the power line connection.

Consequently, we can abstract a power system as a connected graph. Also in graph

theory, there exists the subjects of domination sets, and domination number of a

graph G. The dominating set S of G is a set of vertices in V(G) that dominate every

vertex in V (G) - S. The domination number of a graph G , is the minimal cardinality

of the dominating sets of G, and is symbolized as ,(G). Another utilized concept,

from graph Theory, is the distance d(u, v) between two vertices u and v. d(u, v) is

defined as the minimum of the lengths of the u - v paths of G [26].

Algorithm 4.6: DISTANCE-LEVEL CONSTRUCTION (DLC)()

Input : G, Vr (root vertices)

Output: DLC(G)

for each v E V(G)

do { DL[v] = -1

for each v E ½

do { DL[v] = 0

for each v E V(G)

{
if DL[v] == -1:

do
DL[v] = DL[Pt(v)] + 1

Based on the preceding graph theory concepts, we define the Distance-Level

Construction (DLC) as the assignment of distance levels to all the vertices of a

connected graph G. Algorithm 4.6 outlines the pseudocode of the DLC. A distance

level graph, the product of the DLC, is shown in Figure 7.

28

Figure 6: An arbitrary graph G.

We see G', in Figure 7, a DLC of G (DLC(G)), showing the distance levels

from vertex v1 . We define the root vertex (vertices) as such vertex that belongs to

distance-level O (dl0). In Figure 7 v1 is the root vertex. Vertices v3 , v4 , v5 belong to

dli, while v6 and v9 belong to dl2 , and so on. Given the SDLC(G) of a graph G,

and a distance-level dli, we label dli+l as the child-level to dli. In the same manner,

given the DLC(G) of a graph G, and a distance-level dli(i ~ 1), we label dli-l as the

parent-level to dli.

Assume that a vertex v ~ V(G) is assigned to dli, vertices v1 , v2 ~ V(G) are

assigned to dli+ 1 , and v is adjacent to v1 , v2 . Vertex vis named the parent-vertex of

v1 , v2 ; similarly, v1 , v2 are labeled as children-vertices of vertex v. Now, assume that

a vertices vi, VJ and vk ~ V(G) belong to dli. Also, assume that vi are adjacent VJ,

29

Distance-
Level (din}

dlo

dl2

dis

Figure 7: A Distance-leveled Graph.

and that neither vi nor VJ are adjacent to vk. Based on the preceding assumptions, we

say { vi, Vj, vk} are peer-vertices on dli, while { vi, VJ} are adjacent peer-vertices on dli.

Figure 8 provides an illustration of parent, children, and peer-vertices as presented.

4.8. Distance-Level Heuristics (DLHs)

We presented the DLC as a fundamental construction for the distance level

algorithms. A foundational tool for the Distance Level Algorithms are the distance­

level heuristics (DLH). The DLHs are heuristics designed to peruse a given set of

vertices and provide, as an output, a single vertex best desired for PMU assignment.

Listed in Table 2 are symbols and the corresponding definitions, as utilized in

the descriptions of the various distance-level heuristics.

30

Distance-Level
(din)

dlo

Adjacent
peer-vertices

I

Parent­
/vertex of .,

/ V3, V4, Vs

/

\

\
\

\ \
Non-adjacent
peer-vertices

Child-vertex
of V4

Figure 8: An illustration of parent, children, and peer-vertices.

Described below are four distance-level heuristics, MAX-C, MAXSEQ-CPR,

MAX-RlL, MAX-R2L:

• MAX-C

Input: DLC(G); dli.

Output: Vpmu·

This heuristic randomly selects a vertex from Vmax(IN[v]I), dl; as the Vpmu·

• MAXSEQ-CPR

Input: DLC(G); dli.

Output: Vpmu·

In the case that I Vmax(nch), dl; I = 1, this heuristic selects the only vertex of

Vmax(nch), dli as the Vpmu· In the event that I Vmax(nch), di; I > 1, from Vmax(nch), dli

31

Table 2: DLA symbols and definitions
N[v] Set of vertices dominated by vertex v.

I Npt[v] I Number of dominated parent-vertices of vertex v.

I Npr[v] I Number of dominated peer-vertices of vertex v.

I Nch[v] I Number of dominated child-vertices of vertex v.

Vmax(IN[ch,dli]I) Vertex on dli with maximal number of dominated child-vertices.

½t Set of parent-vertices.

½t(dl;) Set of parent-vertices, on dli

Vdli Set of vertices, on dli

Vmax(nch), dl; Set of vertices, on dli, with maximal number of dominated child-
vertices.

Vmax(nch, npr), dl; Set of vertices, on dli, with maximal number of dominated child-
vertices and peer-vertices.

Vmax(INrvll), dli Set of vertices, on dli, with maximal number of dominated vertices.

Vdl; {npt,npr,nch} Set of vertices, on dli, with npt parent-vertices, npr peer-vertices,
and nch child-vertices.

Pt[V] The set of parent-vertices of vertices in set V

Vpmu Vertex to be assigned a PMU

it selects Vmax(nch, npr), dl;· In the case that I Vmax(nch, npr), dl; I = 1 the lone

vertex of Vmax(nch, npr), dl; is set as Vpmu· In the case that I Vmax(nch, npr), dl; I > 1,

from Vmax(nch, npr), di; it selects Vmax(IN[v]I), dl;. From Vmax(IN[v]I), dl; it randomly

selects a vertex as the Vpmu·

• MAX-RlL

Input: DLC(G); dli

Output: Vpmu

This heuristic randomly selects a vertex from Vmax(IN[dl;]I) as the Vpmu

• MAX-R2L

Input: DLC(G); dli; dli+1 (0 ::Si ::S I V(G') I - 1)

Output: Vpmu

This heuristic randomly selects from Pt[Vit;{I, o, o}] a parent-vertex having a

single child-vertex that is adjacent to non other but the parent vertex. In the

32

case that Pt[½1;{1, o, o}] = 0, it constructs from ½t(dl;) the set Vmax(nch), dl;

and selects the lone vertex as Vpmu if I Vmax(nch), dl; I = 1. In the event

that I Vmax(nch), dl; I > 1, from Vmax(nch), dl; it constructs Vmax(IN[.]I), dl;, dl;+1.

If I Vmax(IN[.]I), dl;, dl;+i I = 1, it selects the lone vertex of Vmax(IN[.]I), dl;, dl;+i as

the Vpmu; otherwise if I Vmax(IN[.JI), dl;, dl;+i I 2: 1 it randomly selects a parent­

vertex from Pt[Vmax(IN[.]I), dl;, dl;+il•

The Distance-level algorithms create the dominating set of G, ½mu, using any of

the distance-level heuristics (DLH) presented above. Given the DLC(G), a distance­

level algorithm, directed by the employed DLH, peruses each level(in a bottom­

up fashion), selecting favorably adjudged vertices and adding such vertices to the

dominating Set ½mu under formulation. In other words, a distance-level algorithm

scans the DLC(G), beginning at the highest numbered distance level(dln-i) and

ending at the lowest numbered distance level(dl0). During these scans, PMUs are

assigned to vertices based on the recommendations of the employed DLH.

4.9. Sequential Distance-level Algorithm

Implicit in the function of the DLC is the organization of the vertices of an

arbitrary graph. With the introduction of the DLC and the DLH, we now introduce

two Distance Level Algorithms. The first distance-level algorithm is the sequential

distance-level algorithm, also known as Seqla. The Seqla is a distance-level algorithm

that is specifically designed for single processor execution. Given a graph G, the

Seqla, as detailed in Algorithm 4. 7, initially creates the distance-level construction

of G. Subsequently, Seqla scans the set of vertices belonging to dln-l, selecting

favorably adjudged vertices and adding such vertices to the dominating Set ½mu

under formulation, until all vertices on dln-l are ascertained covered (either by

assigned PMUs or by previously installed conventional measurement units).

33

Algorithm 4. 7: SEQUENTIAL DISTANCE-LEVEL ALGORITHM()

Input :G' = DLC(G)

Output :½imu

while V (G') is not dominated by ½mu

while V (G', dli) are not dominated

do

G' =update(G', ½mu)

dli = dli-1

4.10. Parallel Distance-level Algorithm

Algorithm 4.8: PARALLEL DISTANCE-LEVEL CONSTRUCTION. (PDLC)()

Input: DLC(G)

Output: PDLC(G)

for each dli E V (G)

do { map dli to discrete sine-wave.

output PDLC(G)

In a bid to reduce execution times (particularly for large systems), we devel­

oped the parallel distance-level algorithm, also denoted as Parla. Parla, detailed in

algorithm 4.9, assigns PMUs in similar fashion to Seqla; however, special provision

is made for concurrent assignment of PMUs by multiple processors. In Figure 9, an

34

horizontal view of DLC(G) is depicted, while Figure 11 depicts the parallel distance­

level construction of G for two executing processors. The parallel distance-level

construction (PDLC) is a special distance-level construction for the Parla. Given

the number of processors for parallel execution, the PDLC, as detailed in Algorithm

4.8, constructs a distance-level graph that allows the specified number of processors

to execute the Parla seamlessly. The PDLC maps the distance-levels of DLC(G)

to a discrete sine wave function parameterized to the specified number of processors

(Figure 10). As a result of this mapping, the PDLC of a distance-level graph suitable

for parallel processing by the specified number of processors is formed.

dlo dl2 dis dis

Figure 9: Distance-Level Construction of grnph G: a horizontal view

35

dlo

!PDLC()
dlo

Figure 10: An illustration of distance-levels mapped to sine-wave function.

Algorithm 4.9: PARALLEL DISTANCE-LEVEL ALGORITHM. (POLA)()

Input: PDLC(G), P = {Po,P1, · · · ,Pn-d

Output : ½mu (vertices assigned PMUs)

Initialization : ½mu = 0

processor p0 applies D LH () to bottom apexes

processor Po updates ½mu

for each processor Pi E P (i ~ 1)

{
Pi runs DLH() on Gi

do
Pi updates ½mu

processor p0 applies D LH () to top apexes

processor Po updates ½mu

processor Po outputs ½mu

36

-

d/1 / d/2

Figure 11: A Parallel Distance Level Cor1struction of graph G

37

CHAPTER 5. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our proposed heuristics by comparing the

performance results of each of the algorithms programmed in Matlab on the IEEE

standard bus systems (14 bus, 30 bus, 57 bus, 118 bus, and 300 bus [14]) and a 2,383

bus system. The performance matrix was the minimum number of PMUs that a

heuristic can place to ensure full obse~vability. The results are classified by the bus

size of the system in the subsequent sections.

Table 3 shows the placement results of the A* and the A* pruning methods.

The A* heuristic finds the optimal solution, therefore we use the algorithm's results

as a benchmark. Due to the quadratic run-time of the A* algorithm, some results for

power systems larger than 30 buses were unobtainable; they are denoted by x.

Table 3: A* Placement Results

Bus Systems A* Depth Method Restricted List Method
d=l d=2

14 bus 3 3 3 3
30 bus 7 7 7 7
57 bus 18 12 12 12
118 bus 29 34 X 34

300 bus 112 110 X 109

2,383 bus X 1040 X 1032

5.1. 14 Bus Power System

The depth method for the A* heuristic performed the best on the 14 bus power

system, finding the optimal solution of four PMU s in 0.0028 seconds as seen in Table

4. The 14 bus power system is a small test case that exemplifies the strength of the A*

heuristic. Because of this property, the depth method for optimizing the A* heuristic

further improves the heuristic's effectiveness. Table 5 shows that the Double Vertex

heuristic executes faster than the Greedy heuristic. Figure 12 shows that the Greedy

38

heuristics found a solution of five PMUs. The Double Vertex heuristic performed

worst with a solution of seven PMUs while the Single Vertex heuristic found the

optimal solution of three PMUs. Due to the fact that the Greedy, Single and Double

Vertex heuristics are random and non-deterministic, we ran 100,000 trials to instill

confidence in the solutions of the heuristics.

Table 4: A* Run-Time Results In Seconds
Bus Systems A* Depth Method Restricted List Method

d=l d=2
14 bus 0.49 0.0028 0.0047 0.0043
30 bus 160.82 0.052 0.095 0.1198
57 bus 675.01 0.3673 0.4351 0.5417
118 bus 3051.88 2.0369 X 4.18
300 bus 1722.43 4. 7814 X 105.36

2,383 bus 62244.52 1702.74 X 5033.52

Table 5: Non-Deterministic Heuristics Run-Time Results Per Trial In Seconds

Bus Systems Heuristics
Greedy Single Vertex Double Vertex

14 bus 0.000372 0.000365 0.000287

30 bus 0.00082 0.00101 0.00072

57 bus 0.00163 0.00281 0.00189

118 bus 0.00656 0.01231 0.00779

300 bus 0.07086 0.15544 0.08839

2,383 bus 17.2198 99.7091 60.8226

The parallel A* heuristic, using one to ten processors, also found the optimal

results of three PMUs as seen in Table 6. The run-time for two processors was 0.48

seconds, and 1.31 seconds for ten processors as seen in Table 7. The parallel A*

communication-computation ratios, as shown in Figure 13, describe the ratio of com­

munication intensity to computational intensity for different number of processors. It

is observed from Figure 13 that the communication-computation ratio decreases as

the number of processors increases.

39

rn

13r=:----:-:-----:--r-----,-------,

I Maximum
Minimum

12 I 75%
25%

■ Median
11 • Outliers

Extremes

10

::::, 9 .
:ii:
0.

0 .. 8
G>

.Q

§ 7
z

6 .

5

4

31------~--..l---'----__J
Double Vertex Greedy Single Vertex

Heuristics

Figure 12: IEEE standard 14 bus results.

Table 6: Parallel A* Placement Results

Bus Systems Number of Processors
Two Five Ten

14 bus 3 3 3

30 bus 7 7 7

57 bus 12 11 14

118 bus 29 32 36

300 bus 112 113 121

2383 bus 1920 1940 1955

Table 8 shows that Seqla also obtains the optimal PMU solutions using the

various distance-level heuristics. The results of Parla executions which utilizes all the

40

Table 7: Parallel A* Run-Time Results In Seconds

0

i
0::

Bus Systems Number of Processors
Two Five Ten

14 bus 0.48 1.31 3.36
30 bus 168.33 191.01 43.3
57 bus 755.40 115.62 222.41
118 bus 3611.16 330.54 1292.82
300 bus 2017.71 5612.88 20541.12
2383 bus 11492.52 73250.50 451565.11

5.5 r-----:------r------..----
~
r' 5 - r,

4.5

4

3

I

I. \
I \
I' ... y

I &
I I

\

2 . . L ... ·-- -

I

IEEE Bus 14
~ IEEE Bus30

--------- OJ IEEE Bus 57
00 IEEE Bus 118
8A IEEE Bus 300

. I

2 3 4 5 6 7 8 9 10
Number of Processors

Figure 13: Parallel A* communication-computation ratios.

vertices as single root-vertices, presented in Table 9, shows the Parla was as effective

as Seqla in finding the optimal PMU solutions. For Seqla, DLA heuristics MAX-C,

41

MAXSEQ-CPR, MAX-RlL, and MAX-R2L compared fairly well, as minimal variance

is noted between the results of the different distance-level heuristics. The Seqla found

PMU solutions in 0.1 seconds, as seen in Table 10.

Table 8: Sequential DLA IEEE standard 14 bus results

DLA Heuristic Number of PMUs
Minimum Maximum

MAX-C 3 3
MAXSEQ-CPR 3 4

MAX-RlL 3 4
MAX-R2L 3 3

Table 9: Parallel DLA IEEE standard 14 bus results

DLA Heuristic Number of Processors Number of PMUs
Minimum Maximum

MAX-C 2 3 4
4 3 5
6 3 4
8 3 5

10 3 3
MAXSEQ-CPR 2 3 4

4 3 5
6 3 4
8 3 5

10 3 4

MAX-RlL 2 3 4
4 3 5
6 3 4
8 3 5
10 3 3

MAX-R2L 2 3 4
4 3 5
6 3 4

8 3 5
10 3 4

The parallel DLA found the optimal solution of three PMUs (Table 9) for the

42

Table 10: DLA Run-Time Results In Seconds
Bus Systems DLA

Sequential Parallel
14 bus 0.1 0.01
30 bus 0.68 0.51
57 bus 3.04 2.64
118 bus 18.23 13.46
300 bus 219.05 127.58

2383 bus 105.56 66.13

IEEE 14 bus system in 0.01 seconds as shown in Table 10. However, compared

to Seqla's execution results of the IEEE bus 14 system, a wider margin of error

is observed for the Parla 's executions, as shown in Table 9. Also, for the Parla

executions, the error margin was roughly equivalent for all DLA heuristics.

5.2. 30 Bus Power System

The depth method for the A* heuristic performed the best on the 30 bus power

system as well, finding the optimal solution of seven PMUs in 0.052 seconds as seen

in Table 4. The A* heuristic found the optimal solution in 4,922 seconds. The 30

bus system exposes the disadvantage of the A* heuristic and the advantage of the

two pruning methods for the A* heuristic. The two pruning methods for the A*

heuristic reduced the execution time by a factor of 10,000 or greater, and still found

the optimal solution. The results of the non-deterministic heuristics on the 30 bus

case are shown in Figure 14. The only heuristic unable to reach the optimal solution

was the Greedy heuristic. Hence, the Greedy heuristic performed the worst.

The parallel A* heuristic also found the optimal results of seven PMUs as seen

in Table 6. The run-time for two processors was 168.33 seconds, and 43.3 seconds for

ten processors as seen in Table 7.

The sequential DLA found the optimal solution of seven PMUs for the 30 bus

system while maintaining a low margin of error, as seen in Table 11. DLA heuristic

43

II)
::,
::&
0.
0 -Cl)
.c
E
::::,
z

24

22

20

18

16

14

12

10

8

6

I
I
■

•

Maximum
Minimum
75%
25%
Median
Outliers
Extremes

Greedy Single Vertex
Heuristics

Double Vertex

Figure 14: IEEE standard 30 bus results.

MAX-RlL had the highest margin of error, assigning nine PMUs. As seen in Table

10, Seqla reported a run-time of 0.68 seconds.

Table 11: Sequential DLA IEEE standard 30 bus results
DLA Heuristic Number of PMUs

Minimum Maximum
MAX-C 7 8

MAXSEQ-CPR 7 8
MAX-RlL 7 9
MAX-R2L 7 8

The parallel DLA also found the optimal solution of seven PMUs for the 30 bus

44

system. However, compared to Parla's execution results of the IEEE bus 14 system, a

wider margin of error is observed, as shown in Table 12. The error margin was greatest

for executions utilizing four, six, eight processors and least for executions utilizing two

and ten processors. DLA heuristic MAX-RlL performed best in assigning the optimal

number of PMUs, irrespective of the number of processors. Table 10 shows that Parla

found the PMU solutions 0.17 seconds faster than Seqla.

Table 12: Parallel DLA IEEE standard 30 bus results
DLA Heuristic Number of Processors Number of PMUs

Minimum Maximum
MAX-C 2 7 9

4 7 11
6 10 13
8 8 10
10 7 9

MAXSEQ-CPR 2 7 8
4 8 11
6 7 10
8 8 10

10 7 9
MAX-RlL 2 7 9

4 8 11
6 7 10
8 8 10
10 7 9

MAX-R2L 2 7 8
4 7 11
6 7 10
8 8 10
10 7 9

5.3. 57 Bus Power System

The best solution found by A* heuristics for the 57 bus system was 12 PMUs, as

seen in Table 3. The depth method (d = 1) for the A* heuristic performed the best,

reaching the optimal solution in 0.3673 seconds as seen in Table 4. The A* heuristic,

45

in 675.01 seconds, also found a near-optimal number of 12 PMUs. Note that as the

bus system sizes increase, the Double Vertex heuristic starts to perform worse than

most of the other heuristics presented in this paper. Figure 15 reports the results of

Greedy, Single and Double Vertex algorithm executions on the 57 Bus Power System.

42

39

36

33

rn ::, 30
:E
Q. -0 27 ..
Cl)
~

E 24 :::,
z

21

18

15

12

I
I
•
•

Maximum
Minimum
75%
25%
Median
Outliers
Extremes

Greedy Single Vertex
Heuristics

Double Vertex

Figure 15: IEEE standard 57 bus results.

The parallel A* heuristic found an optimal solution of 12 PMUs as seen in

Table 6. The run-time for two processors was 755.40 seconds, and 222.21 seconds

for ten processors as seen in Table 7. It is observed from Figure 13 that, as com­

pared to results from parallel A* executions of IEEE 14, 30 bus system, the parallel

A* communication-computation ratios for the IEEE 57 bus system was better on

46

executions using two or three processors.

The sequential DLA found an optimal solution of eleven PMUs for the 57 bus

system while maintaining a low margin of error, as seen in Table 13. Seqla recorded a

run-time of 3.04 seconds and DLA heuristic MAX-C had the lowest margin of error,

assigning a maximum of 13 PMUs during Seqla 's execution.

Table 13: Sequential DLA IEEE standard 57 bus results
DLA Heuristic Number of PMUs

Minimum Maximum
MAX-C 11 13

MAXSEQ-CPR 11 14
MAX-RlL 11 16
MAX-R2L 11 14

The Parla found an optimal solution of ten PMUs for the 57 bus system, as

shown in Table 14. The error margin was roughly equivalent for executions utilizing

two, four, six, eight or ten processors. DLA heuristic MAX-R1L performed best in

assigning the minimal optimal number of PMUs, on four processors during Parla's

execution. Of all algorithms presented in this paper, only Parla found the absolute

minimum number of PMUs for the IEEE 57 bus system.

5.4. 118 Bus Power System

The best solution reported by A* heuristics for the 118 bus system was 29

PMUs, as seen in Table 3. The depth method performed fastest, finding a solution

in 2.0369 seconds as seen in Table 4. The 118 Bus case starts to demonstrate the

effects of the heuristics on a larger-scaled system. The A* depth method d = 2 is

not able to find the best solution but with d = 1. The A* heuristic was unable to

return a solution as seen in Table 3. As compared to the other heuristics presented in

this paper, the Double Vertex heuristic showed the largest differential from the best

47

Table 14: Parallel DLA IEEE standard 57 bus results
DLA Heuristic Number of Processors Number of PMUs

Minimum Maximum
MAX-C 2 11 13

4 11 15
6 11 15
8 12 17
10 15 19

MAXSEQ-CPR 2 11 15
4 12 16
6 12 16
8 11 17
10 15 20

MAX-RlL 2 11 15
4 10 20
6 13 16
8 13 17
10 15 20

MAX-R2L 2 11 13
4 12 16
6 11 15
8 12 17
10 15 20

solution found in the previous bus systems. Figure 16 reports the results of Greedy,

Single and Double Vertex algorithm executions on the 118 Bus Power System.

The parallel A* heuristic found a near-optimal solution of 29 PMUs as seen in

Table 6. The run-time for five processors was 330.54 seconds, and 1292.82 seconds

for ten processors as seen in Table 7. It is observed from Figure 13 that, as compared

to results from parallel A* executions of IEEE 14, 30, 57 bus system, the parallel

A* communication-computation ratios for the IEEE 118 bus system were better for

executions utilizing more processors.

The sequential DLA found an optimal solution of 29 PMUs for the 118 bus

system while maintaining a low margin of error, as seen in Table 15. DLA heuristics

MAX-C and MAX-R2L had the lowest margins of error, assigning a minimal of 29

48

85

I Maximum
Minimum

80 I 75% ···~-----WAMo-•n•-

25%

75 • Median
• Outliers

Extremes
70

Cl> 65
:::::,
~
a. 60
0 ...
CD 55 .0
E
::,
z 50

45

40

35

30
Greedy Single Vertex Double Vertex

Heuristics

Figure 16: IEEE standard 118 bus results.

PMUs. Seqla had a run-time of 18.23 seconds, as shown in Table 10.

Table 15: Sequential DLA IEEE standard 118 bus results
DLA Heuristic Number of PMUs

Minimum Maximum
MAX-C 29 31

MAXSEQ-CPR 30 34
MAX-RlL 30 37
MAX-R2L 29 32

Parla found an optimal solution of 28 PMUs for the 118 bus system, as shown in

Table 16. For executions utilizing the different number of processors the error margin

49

was roughly equivalent while DLA heuristic MAX-C performed best in assigning the

minimal number of PMUs. A run-time of 13.46 seconds was reported for Parla's

execution in Table 10. We see that Parla and Seqla emerge as the best of the all the

algorithms presented, with respect to solution quality.

Table 16: Parallel DLA IEEE standard 118 bus results
DLA Heuristic Number of Processors Number of PMUs

Minimum Maximum
MAX-C 2 30 32

4 28 35
6 30 34
8 28 34
10 30 39

MAXSEQ-CPR 2 31 33
4 31 36
6 31 37
8 28 36
10 33 39

MAX-RlL 2 32 34
4 31 36
6 31 36
8 30 37
10 34 39

MAX-R2L 2 30 33
4 28 35
6 30 34
8 29 36
10 34 40

5.5. 300 Bus Power System

The best solution found by the A* heuristics for the 300 bus system was 109

PMUs. The Single Vertex heuristic reached a solution of 107 PMUs. The time spent

per trial seen in Table 5 for the non-deterministic heuristics may suggest that these

heuristics out-perform the pruning methods for the A* heuristic. However, when

multiple trials are taken into account, the A* pruning methods were able to return a

50

result over 150 times faster. The results of the A* depth and restricted list methods

seen in Table 5 were 110 and 109 PMUs, respectively. Figure 17 shows that the

Double Vertex heuristic performed the worst among the heuristics that completed

the trial. The best solution of the Double Vertex Heuristic placed 40 more PMUs

compared to the best solution identified by the Single Vertex heuristic.

UI
:::,
:E
D. -0 ..
Q)
.c
E
::,
z

210

I
200 I

■ 190 • ...
180

170

160

150

140

130

120

110

100

Mean+ 1 .5*Std Dev
Mean-1.S*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes

Greedy Single Vertex
Heuristics

* * * * • • • •

j
• • • •
* * *
*

Double Vertex

Figure 17: IEEE standard 300 bus results.

The parallel A* heuristic found an optimal solution of 112 PMUs as seen in

Table 6. The run-time for five processors was 5612.88 seconds (1.588 hours), and

20541.12 seconds (5.705 hours) for ten processors as seen in Table 7. It is observed

from Figure 13 that the parallel A* communication-computation ratio for the IEEE

51

300 bus system is greater for executions utilizing fewer processors.

The sequential DLA found an optimal solution of 88 PMUs for the 300 bus

system while maintaining a relatively low margin of error, as seen in Table 17.

DLA heuristics MAX-C and MAX-R2L had the lowest margins of error, assigning a

minimal of 88 PMUs. Seqla had a run-time of 219.05 seconds, as shown in Table 10.

Table 17: Sequential DLA IEEE standard 300 bus results
DLA Heuristic Number of PMUs

Minimum Maximum
MAX-C 88 91

MAXSEQ-CPR 90 94
MAX-RlL 91 102
MAX-R2L 88 93

Parla found an optimal solution of 89 PMUs for the 300 bus system, as shown

in Table 18. For Parla executions utilizing two, four, six, eight, or ten processors, the

error margin was roughly equivalent while DLA heuristic MAX-C performed best in

assigning the minimal number of PMUs. A run-time of 127.58 seconds was reported

for Parla's execution in Table 10. Again, we see that Parla and Seqla perform better,

amongst all the algorithms presented, with respect to solution quality.

5.6. 2,383 Bus Power System

Figure 18 shows that the Single Vertex heuristic was able to reach a solution of

1025 PMUs. This solution is 21 PMUs fewer than the best A* optimization of 1046

PMUs, as observed in Table 3. Because the 2,383 bus power system is a large-scale

system, we were only able to run 1,000 trials each for the Greedy, Single Vertex, and

Double Vertex heuristics. The previous trials of the 14, 30, 57, l18, and 300 bus

systems were all executed 100,000 times. We hypothesize that if more trials were run

on the 2,383 bus system, better solutions may have been found.

52

Table 18: Parallel DLA IEEE standard 300 bus results
DLA Heuristic Number of Processors Number of PMUs

Minimum Maximum
MAX-C 2 89 89

4 91 94
6 91 95
8 94 95
10 92 97

MAXSEQ-CPR 2 91 92
4 96 99
6 96 97
8 95 100
10 93 98

MAX-RlL 2 98 102
4 99 103
6 96 103
8 95 101
10 93 106

MAX-R2L 2 89 90
4 94 95
6 92 97
8 92 97
10 92 100

The sequential DLA found an optimal solution of 756 PMUs for the 2383 bus

system as seen in Table 19. DLA heuristics MAX-C and MAXSEQ-CPR had the

lowest margins of error, assigning a minimal of 756 PMUs. Seqla had a run-time of

105.56 seconds, as shown in Table 10.

Table 19: Sequential DLA 2383 bus results
DLA Heuristic Number of PMUs

Minimum Maximum
MAX-C 756 767

MAXSEQ-CPR 786 804
MAX-RlL 917 1000
MAX-R2L 775 825

53

1620

1560

1500

1440

U) !i 1380

a.
0
a.. 1320
a,

.Q

§ 1260
z

1200

1140

1080

1020

I

I Mean+ 1.5*Std Dev
Mean-1.5*Std Dev

'
I Mean+Std Dev

Mean-Std Dev
■ Mean
• Outliers

* Extremes

*

t
J

u
1

Greedy Single Vertex Double Vertex

Heuristics

Figure 18: 2383 bus results.

Parla found an optimal solution of 740 PMUs for the 2383 bus system, as shown

in Table 20. DLA heuristic MAX-C performed best in assigning the minimal number

of PMUs, when utilizing eight processors. A run-time of 66.13 seconds was reported

for Parla's execution in Table 10. Again, we see that Parla and Seqla perform better,

amongst all the algorithms presented, with respect to solution quality.

Table 21 summarizes our proposed algorithms with other published algorithms.

As can be clearly seen, the A*, Seqla, Parla algorithms are as optimal as other

algorithms. Run-times could not be compared since not all published algorithm run­

times were available. Nevertheless, we are convinced - following our simulation

54

Table 20: Parallel DLA 2383 bus results
DLA Heuristic Number of Processors Number of PMUs

Minimum Maximum
MAX-C 2 769 786

4 781 814
6 783 804
8 740 816
10 756 864

MAXSEQ-CPR 2 812 856
4 806 847
6 820 877
8 777 877
10 803 901

MAX-RlL 2 881 956
4 846 919
6 844 971
8 757 923
10 819 902

MAX-R2L 2 791 824
4 803 828
6 810 861
8 766 871
10 796 875

results - that our newly proposed distance level algorithms are comparable, if not

more optimal in execution times.

Table 21: Comparison with other PMU placement methods

IEEE Integer Simulated Immunity A Proposed Algorithms

Test Program- Annealing Genetic Proposed

System ming [2] [5] Algorithm Model [27]
[16]

A* Seqla Parla

14-Bus 3 3 3 3 3 3 3

30-Bus - 7 7 7 7 7 7
57-Bus 12 11 11 11 12 11 10
118-Bus 29 - 28 28 29 29 28

To conclude our simulation findings, we suggest that if the given bus system is

55

small, then the A* heuristic with the pruning methods presented would be the ideal

for solving the problem. On the other hand, for large bus systems of 118 buses or

greater, we recommend the utilizing sequential distance level algorithm (Seqla) or

the parallel distance level algorithm (Parla) with the MAX-C DLA heuristic. For

Parallel A* executions, the communication-computation ratio should be limited to

0.6. Communication-computation ratios greater than 0.6 mean the utilized processors

will process less computational tasks, and more communication tasks than desired.

56

CHAPTER 6. CONCLUSION

In this paper, we tackled the PMU placement problem. We proposed heuristics

varying from a Greedy heuristic to an informed search A* heuristic. The DLA,

a novel family of algorithms was presented. Parallel algorithms, parallel A* and

parallel DLA were introduced as multi-processor algorithms useful in solving the PMU

placement problem. Experimental results for all algorithms introduced in this paper

were presented. Based on the results presented, we concluded that for small-scale

power systems the A* heuristic with the proposed pruning methods would be the ideal

choice for solving the PMU placement problem. For large-scale power systems, the

novel sequential or parallel distance-level algorithms presented were most practical.

57

REFERENCES

[1] X. H. Abbasy and H. M. Ismail, "A Unified Approach for the Optimal PMU

Location for Power System State Estimation," IEEE Transactions on Power

Systems, Vol. 24, No. 2, pp. 806-813, May 2009.

[2] A. Abur and B. Xu, "Observability Analysis and Measurement Placement for

Systems with PMUs," IEEE Power Systems Conference and Exposition (PES

'04), Oct. 2004, pp. 943-946.

[3] A. Ali, Optimal Placement of Phasor Measurement Units, Technical Report

PSERC-05-58, Electrical and Computer Engineering Department, Texas A and

M University, Oct. 2005, 13 pp.

[4] J. R. Altman, A Practical Comprehensive Approach to PMU Placement for Full

Observability, Master's Thesis, Electrical and Computer Engineering Depart­

ment, Virginia Polytechnic Institute and State University, Jan. 2007, 64 pp.

[5] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa, "Power System Observ­

ability With Minimal Phasor Measurement Placement," IEEE Transactions on

Power Systems, Vol. 8, No. 2, pp. 707-715, May 1993.

[6] S. Chakrabarti and E. Kyriakides, "Optimal Placement of Phasor Measurement

Units for Power System Observability," IEEE Transactions on Power Systems,

Vol. 23, No. 3, pp. 1433-1440, Aug. 2008.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman, NY, 2001.

[8] M. Kafil and I. Ahmad, Optimal Task Assignment in Heterogeneous Distributed

Computing Systems, IEEE Concurrency, July-Sept. 1998, pp. 42-51.

58

[9] R. M. Karp, "On the complexity of Combinatorial Problems," Journal of

Networks, Vol. 5, No. 1, pp. 45-68, 1975.

[10] S. U. Khan and I. Ahmad, "Comparison and Analysis of Ten Static Heuristics­

based Internet Data Replication Techniques," Journal of Parallel and Distributed

Computing, vol. 68, no. 2, pp. 113-136, 2008.

[11] R. F. Nuqui, State Estimation and Voltage Security Monitoring Using Syn­

chronized Phasor Measurements, Ph.D. Dissertation, Electrical and Computer

Engineering Department, Virginia Polytechnic Institute and State University,

Jan. 2001, 213 pp.

[12] S. Sahni and T. Gonzales, "P-complete Approximation Problems," Journal of

the Association of Computing Machines, Vol. 23, No. 3, pp. 555-565, 1976.

[13] V. V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.

[14] Power Systems Test Case Archive - UWEE, University of Washington. Available

at: http://www.ee.washington.edu/research/pstca/.

[15] R. Zivanovic and C. Cairns, "Implementation of PMU technology in state

estimation: An overview" in Proc. IEEE AFR/CON, vol. 2, pp. 1006A-1011,

Sep. 1996.

[16] F. Aminifar, C. Lucas, A. Khodaei, M. Fotuhi-Firuzabad, "Optimal placement

of phasor measurement units using immunity genetic algorithm," IEEE Trans­

actions on Power Delivery, vol. 24, No. 3, pp.1014-1020, July. 2009.

[17] B. Milosevic and M. Begovic, "Nondominated sorting genetic algorithm for

optimal phasor measurement placement," IEEE Trans. Power Syst., vol. 18,

no. 1, pp. 69-75, Feb. 2003.

59

[18] B. Gou, "Generalized integer linear programming formulation for optimal PMU

placement," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1099-1104, Aug. 2008.

[19] R. F. Nuqui and A.G. Phadke, "Phasor measurement unit placement techniques

for complete and incomplete observability," IEEE Transactions on Power Deliv­

ery, vol. 20, No. 4, pp.2381-2388, Oct. 2005.

[20] B. Gou, "Optimal placement of PMUs by integer linear programming," IEEE

Trans. Power Syst., vol. 23, no. 3, pp. 1525-1526, Aug. 2008.

[21] C. Rakpenthai, S. Premrudeepreechacharn, Sermsak Uatrongjit, and N. R.

Watson, "An optimal PMU placement method against measurement loss and

branch outage," IEEE Transactions on Power Delivery, vol. 22, No. 4, pp.101-

107, Jan. 2007.

[22] J. Chen and A. Abur, "Placement of PMUs to enable bad data detection in state

estimation," IEEE Trans. Power Syst.! vol. 21, no. 4, pp. 1608-1615, Nov. 2006.

[23] D. N. Kosterev, J. Esztergalyos, and C. A. Stigers, "Feasibility study of using

synchronized phasor measurements for generator dropping controls in the colstrip

system," IEEE Trans. Power Syst., vol. 13, no. 3, pp. 755-761, Aug. 1998.

[24] Z. Zhong, C. Xu, B. J. Billian, L. Zhang, S. J. S. Tsai, R. W. Conners, V.

A. Centeno, A. G. Phadke, and Y. Liu, "Power system frequency monitoring

network (FNET) implementation," IEEE Trans. Power Syst., vol. 20, no. 4, pp.

1914-1921, Nov. 2005.

[25] G. T. Heydt, C. C. Liu, A. G. Phadke, and V. Vital, "Solutions for the crisis

in electric power supply," IEEE Comput. Appl. Power Mag., vol. 14, no. 3, pp.

22-30, Jul. 2001.

60

[26] G. Chartrand and L. Lesniak "Graphs Diagraphs," Chapman Hall/CRC, 2005.

[27] F. Amnifar, A. Khodaei, M. Fotuhi-Firuzabad, and M. Shahidehpour,

"Contingency-Constrained PMU Placement in Power Networks," IEEE Trans.

Power Syst., vol. 25, no. 1, pp. 516-523, Feb. 2010.

61

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070

