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ABSTRACT 

Sarker, Koushik, M.S., Department of Electrical and Computer Engineering, College of 
Engineering and Architecture, North Dakota State University, May 2010. Verification 
of Synchronous Elastic Pipelined Systems. Advisor: Dr. Sudarshan K. Srinivasan. 

The constant shrinking of technology has lead to several design challenges that 

the synchronous design paradigm is unable to cope with. Elastic design is a novel and 

promising design paradigm that overcomes many of these challenges by using 

components that are insensitive to the latencies of its inputs. 

Verification is a critical problem for any design paradigm. The complexity of 

elastic designs arises when the system is pipelined. We develop formal verification 

techniques to verify synchronous elastic pipelined systems. Note that the goal of 

verification is not to establish the correctness of the algorithm for synthesizing elastic 

circuits, but instead, to find bugs and formally prove the correctness of elasticized 

designs. 

We develop two formal verification procedures. The first procedure checks the 

correctness of elastic pipelined systems against their synchronous parent pipelined 

systems. The second procedure checks the correctness of elastic pipelined systems 

against their high-level non-pipelined specifications (such as an instruction set 

architecture). Datatlow through elastic architectures is complicated by the insertion of 

any number of elastic buffers in any place in the design. We introduce elastic token­

flow diagrams, which arc used to track the flow of data in elastic architectures. We 

provide a method to construct such diagrams. We also develop highly automated and 

systematic procedures based on elastic token-flow diagrams that compute functions that 
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map states of elastic systems to states of their specifications. Such functions, known as 

refinement maps, are used to compare behaviors of elastic and synchronous systems and 

hence prove their equivalence. We elasticized a 5-stage DLX processor that enables the 

insertion of buffers in its data path. We constructed several elastic processors by 

introducing up to 5 elastic buffers at various places in the data path and verified 

equivalence with both their synchronous parent pipelined systems and also with their 

instruction set architecture specifications. 
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CHAPTER 1. INTRODUCTION 

The impact of persistent technology scaling results in a previously ignored set of 

design challenges such as manufacturing and process variability and increasing 

significance of wire delays. These challenges threaten to invalidate the effectiveness of 

synchronous design paradigms at the system-level. Several alternate design paradigms 

to deals with these challenges are being proposed. Synchronous Elastic Networks (SEN) 

[I, 2] has been proposed as an effective approach to design latency-insensitive systems. 

Another popular trend is latency-insensitive designs, which allows for variability in data 

propagation delays [3]. 

The design of latency insensitive circuits is becoming popular in current design 

techniques. These circuits can solve the time constraint problem in the digital circuit 

design. In current nano technologies, the layout of the circuit is generated first, and then 

we can compute the delay of the paths in the circuit. Situations are likely where the 

communication latencies need to be fixed after the layout of the chip has been 

generated. In this case, the designer has to make the necessary modifications in the 

circuit and afterwards generate the layout once again. Synchronous Elastic circuits are 

one kind of latency .insensitive circuits and can resolve the communication delay 

constraints. The new latency insensitive design needs to be verified to make sure that it 

behaves in the same way as the conventional synchronous circuit does. 

The goal of our research is to convert a conventional synchronous 5 stage 

pipeline microprocessor to an elastic model and then verify its functionality. There are 

1 



several protocols and algorithms which can change synchronous circuits to elastic 

circuits. We use the 'Synchronous Elastic Flow' (SELF) protocol [l]. For verification 

techniques, We use refinement map and rank function [ 4]. 

This chapter provides an overview of the problems that will be addressed in the 

rest of the thesis and gives a brief summary of the thesis contents. 

1.1. Elastic Architecture 

Cortadella et al. [ 1] presents SELF (Synchronous Elastic Flow) which can 

efficiently convert regular synchronous designs into elastic forms. The structure of the 

elastic system is a collection of elastic modules and elastic channels. All flip-flops are 

replaced by Elastic Buffers (EB). For every EB, there is a control block which results in 

changing or holding states of an EB. The Free State Machine (FSM) specification for 

the control block shows that states of the EB can be half, full or empty. The data 

transfer is indicated by the combination of valid and stop signals generated from the 

control block. They also demonstrated different circuit blocks for an elastic buffer, 

control circuits, multiple input output controllers that they refer as joins and forks. 

Register files and the instruction and data memories were considered as combinational 

units. They implemented the linear elastic pipeline with three versions of controllers. 

The authors claim that this technique is scalable and can be introduced at the level of 

functional units. 

Krstic et al [2] gives a mathematical representation of the elastic systems. They 

introduced machines as a mathematical abstraction of circuits without combinational 
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cycles. The circuits are considered as stream functions. In order to define elastic 

behavior they demonstrated four parts of elastic machine - input output structure, 

persistence conditions, liveness conditions and the transfer determination conditions. 

Their work involves mathematical representations of the elastic behavior. But they did 

not describe any particular protocol like Cortadella et al. did. Their paper is good for 

understanding the behavior of elastic circuits, but cannot demonstrate any particular 

protocol to convert a conventional model to an elastic one. 

The latency insensitive model proposed by Carloni et al. [3] involves the 

preliminary assumption that the system is completely synchronous. The circuit blocks 

are considered as a collection of modules having zero delay, i.e. a delay negligible with 

respect to the period of the common clock which is referred to as a virtual clock. After 

the final implementation is done, the operation of the circuit is controlled by a real clock 

which has a precise frequency. Their approach is to ignore time constraints during the 

early phases of the design when correct measures of the delay are not yet available. 

After the corresponding physical implementation is completed, they try to fix the 

problem, ifthere is any, by inserting the right amount of relay stations. There will be no 

modification in the functionality or layout of the individual modules since every module 

works according to the latency-insensitive protocol. 

All these techniques are useful to design latency insensitive circuits. In our 

research work, we prefer to implement the SELF protocol proposed by Cortadella et al. 

Our goal is to transform a conventional synchronous 5 stage machine into its elastic 
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form by using SELF protocol. The second part of my work is to verify the new design. 

In the next section, I discuss about verification methodology. 

1.2. Microprocessor Verification Techniques 

Well-founded Equivalence Bisimulation (WEB) technique [4, 5] is used to 

verify the functional correctness of pipeline machines. The WEB technique involves 

refinement map which can be efficiently used for processor model verifications [6], 

which will be defined in greater detail in later chapters. Some important features of 

WEB refinement technique is that, it accounts for stuttering [6], preserves safety and 

liveness properties [7, 8] and demonstrates compositional reasoning for pipelined 

processor verification [9, 10, 11]. 

The Bit-level Analysis (BAT) tool [12, 13] was used for bit-level verification for 

the pipeline machines. The equivalence checking of elastic pipelined systems against 

their synchronous parents were done using BAT. BAT considers all the inputs and 

outputs as bit vectors. Memories are also considered as bit vectors in a special way. 

BAT takes in a machine description and LTL specification, and tries to find a 

counterexample. The machine specification has 4 required sections, :vars, :init, :trans, 

and :spec. The equivalence checking of the elastic pipelined systems against their 

instruction set architecture specification was performed using ACL2-SMT. The 

processor models were defied at bit level using BAT and term level using ACL2-SMT. 
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1.3. Thesis Contributions 

A major part of the thesis involves the conversion a 5 stage DLX pipeline 

machine to its synchronous elastic model. We use Synchronous Elastic Flow (SELF) 

protocol to convert a conventional synchronous pipeline microprocessor to an elastic 

one. The elastic pipeline machine is tolerant to the inputs of variable latency in terms of 

clock cycle. Each of the individual stages is constructed using Elastic Buffers. The 

memories and register files are treated as combinational blocks. Each Elastic Buffer is 

controlled by an associated control block. The control block deals with two I bit signals 

- valid and stop. The valid signal indicates that the receiver is ready to accept data from 

the sender. The stop signal tells the sender not to transmit data if the receiver is not 

ready. We used 5 additional Elastic Buffers in different paths of the pipeline machine; 

these additional buffers introduce variable latency in the forwarding data paths. 

We develop a formal verification procedure to check the correctness of 

synchronous elastic pipelined processors against their synchronous parent systems. Note 

that the goal of the verification procedure is not to establish the correctness of the 

algorithm for synthesizing elastic circuits, but instead, to find bugs and formally prove 

the correctness of elasticized designs. Dataflow through elastic architectures is 

complicated by the insertion of any number of elastic buffers in any place in the design. 

We introduce elastic token-flow diagrams, which are used to track the flow of data in 

elastic architectures. We provide a method to construct such diagrams. We also develop 

a highly automated and systematic procedure based on elastic token-flow diagrams that 
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computes functions that map states of elastic systems to states of the synchronous 

parent systems. Such functions, known as refinement maps are used to compare 

behaviors of elastic and synchronous systems and hence prove their equivalence. We 

elasticized a 5 stage DLX processor that enables the insertion of buffers in its data path. 

We constructed several elastic processors by introducing up to 5 elastic buffers at 

various places in the data path and verified equivalence with their synchronous parent 

processor. 

We also develop a formal verification procedure to check that elastic pipelined 

processor designs correctly implement their instruction set architecture (ISA) 

specifications. The notion of correctness we use is based on refinement. Refinement 

proofs are based . on refinement maps, which- in the context of this problem- are 

functions that map elastic processor states to states of the ISA specification model. Data 

flow in elastic architectures is complicated by the insertion of any number of buffers in 

any place in the design, making it hard to construct refinement maps for elastic systems 

in a systematic manner. We introduce token-aware completions functions, which 

incorporate a mechanism to track the flow of data in elastic pipelines, as a highly 

automated and systematic approach to construct refinement maps. We demonstrate the 

efficiency of the overall verification procedure based on token-aware completion 

functions using six elastic pipelined processor models based on the DLX architecture. 
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CHAPTER 2. ELASTIC CIRCUITS 

2.1. Properties and Applications 

The current trend in circuit design is constant technology scaling which is 

reducing the circuit area by a great deal. As a result, wire delays are becoming 

important and comparable to gate delays. This causes severe problems in the 

synchronous design paradigm. In current design techniques, the design layout is 

generated first. The time delays of the different circuit paths are computed after that. As 

a result, number of clock cycles required to transmit data over a particular block of 

circuits cannot be estimated because of the effect of the long wire delays. 

After the final layout has been generated, it is possible to compute total gate and 

wire delays. But circumstances may arise where wire delays can contribute the major 

part of the circuit delay. In this situation, the designer has to go back to the initial design 

to make the necessary changes to reduce the effect of wire delay. The layout of the new 

design is generated to adjust the total delay in terms of number of clock cycles. This 

delay optimization process creates complexity as the initial design and the layout is 

changed several numbers of times. 

Synchronous elastic circuits can overcome this problem. Elastic circuits are 

latency insensitive circuits. If latency is introduced in any part of the elastic circuit, they 

behave similarly like their synchronous parent circuits do. The comparative dataflow for 
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the synchronous and elastic circuits is shown in Table 2.1. This characteristic of elastic 

circuits allows different inputs to vary in time to reach a particular execution unit. 

Clock Cycle 1 2 3 4 5 
Synchronous 

t t t t t 
System 

Elastic System t * * t t 

Table 2.1. An example of token flow in synchronous and elastic system. 

In conventional synchronous circuits, valid data is present in every clock cycle. 

On the contrary, invalid data cycles may appear in case of elastic circuits. We refer to 

the valid data as tokens (t) and invalid data as bubbles (*). The insertion of bubbles does 

not alter the functionality of the elastic system. 

Synchronous elastic circuits overcome the wire delay problems. The core idea of 

the synchronous elastic circuit is to break the long wire into small chunks and insert 

additional buffers in between them. Synthesis of elastic designs incorporates the 

insertion of additional elastic buffers in the data path to handle timing issues in the 

design. While the insertion of these buffers does not affect the functionality of the 

system, the timing behavior is altered. As a result, an elastic system can require several 

transitions to match a single transition of its synchronous parent system. 
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2.2. Synchronous Elastic Flow (SELF) 

Cortadella et al. presents Synchronous Elastic Flow (SELF) [ 1] protocol which 

can efficiently convert regular synchronous designs into elastic forms. The new model 

consists of elastic buffers, control blocks and elastic channels which are implemented 

using the handshaking of valid and stop bits. SELF protocol controls the data transfer 

between two modules using valid and stop bits. Data is transferred over a channel when 

the sender is providing valid data and the receiver is ready to accept it. No data transfer 

occurs when there is not a valid bit. The sender sends the same data once again when 

the sender provides valid data but when the receiver is not ready to accept it. SELF 

protocol also demonstrates special control blocks known as 'join' and 'fork' which are 

used when the circuit has multiple input and output channels. We have used join to 

combine two control signals in multiple input channels; the output of the join is valid 

only when both the inputs are valid. We have used 'eager fork' in multiple output 

channels. An output valid signal is generated for a receiver whenever it is ready to 

accept data. The register file, instruction memory and data memory are considered as 

combinational units. The control layer connections have been made according to the 

original connections that we have for the data path. 

2.3. Elastic Buffers 

Elastic Buffers (EB) are characterized as unbounded First In First Out (FIFO) 

latches. An Ela~tic Buffer, shown in Figure 2.1, is constructed using two transparent 

9 



latches, termed as Elastic Half Buffers (EHB), which operate on the different edges of a 

clock cycle. Each EB is associated with a control block which generates the enable 

signals for the EHBs. The enable signals are AND-ed with the clock phases to 

synchronize the circuit operation with the clock input. The orientation is made in the 

way that the low phase of the clock is AND-ed with the master enable signal and the 

high phase is AND-ed with the slave enable signal. The implementation of an EB 

involves constructing the data-path and the control block. The descriptions of these two 

major blocks are given below: 

2.3 .1. Data Path of Elastic Circuit 

Token transfer in an elastic circuit is caused by two different controlling bits 

termed as valid and stop bits. The valid bit propagates in a forward direction along with 

the token transfer. On the other hand, the stop bit propagates in the backward direction 

and acknowledges the status of the receiving end whether the receiver can accept the 

token. The propagation delay of these valid and stop bits determines the capacity of the 

EB. 

The forward delay (di) is caused by the latency of the valid bit to propagate 

forward. The backward delay (db) is caused by the latency of the stop bit to propagate in 

the backward direction. According to the unbounded specification given by Cortadella 

et al, the values of d1and db should be greater than zero [1]. If d1and db become zero, the 

EB will no longer be active in the circuit, it will act like just a communication wire. 
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Carloni et al [ 4] demonstrated the constraint d1 = db = 1 to be satisfied in order to 

optimize the performance and distribute the EBs in the long communicational channels. 

The capacity of the EB is an important issue for the elastic circuit design. The number 

of tokens that can be stored in an EB is equal to its capacity. The following property 

defines the capacity of an EB: 

Figure 2.1. Block diagram of a latch based EB [ 1]. 

EB capacity property The capacity of an EB, C, must satisfy the following constraint: 

For simplicity and convenient use of EBs, both the values of d1 and db are 

assumed to be one, therefore, making the minimal capacity of the EB to two. In the 

experiments of this research work, all EBs have been constructed using two storage 

cells, mainly two back to back transparent latches with different polarity. 

The design methodology of the elastic circuit data is to convert all flip-flops to 

two back to back latches, one receiving the data as input and the other releasing the 

stored data as output. We call these latches the master and slave latch, respectively. The 

master and slave latch have their individual enable signals which are generated from the 
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control block of an EB. The control block and its input-output signals are described in 

the following sub-section. 

2.3.2. Control of Elastic Circuit 

The control block of an EB governs the token flow in the elastic circuit. The 

control block is constructed using simple combinational gates and 1-bit control latches. 

The values of the control latches are used to prove the invariant property of the elastic 

machines, the details of the invariant properties are discussed in the later chapters. 

Figure 2.2 shows two different implementations of Elastic Controllers; in our research 

work, we used the circuit shown in Figure 2.2 (b ). 

Y1 Yr Y1 Yr 

SI Sr s, \ 
(a) (b) L 

Figure 2.2. Two different implementations of elastic controllers [I]. 

The controller has one valid input (Vi) and one stop input (St). It generates a 

forward propagating _output valid signal ( Vr) and backward propagating output stop 

signal (Sr), The enable signals for the master and slave EHBs are indicated by Em and Es, 

which are AND-ed with the low and high phase of the clock respectively. 
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The controllers are synchronized with the clock and are connected in accordance 

with connections between EBs in the data path. Each controller has the following three 

possible states: [ 1, 14, 15] 

I. Empty: The EB has no valid data token in storage. Therefore, the master and 

slave EHB is empty. 

2. Half: The corresponding EB has one valid data token. The slave EHB keeps the 

valid data and the master EHB remains empty. 

3. Full: The corresponding EB has two valid data tokens. Both the master and slave 

EHB have valid data. In this case, the controller generates an output stop signal 

to the immediate sender. 

2.3.3. Advanced Join and Fork 

Advanced structures such as 'join' and 'fork' [l, 14] are used when there are 

multiple input output channels. Figure 2.3 shows the implementation of a 'join' block. 

'Join' needs to be used if there are multiple inputs coming to a particular unit. The 

output of the 'join' will be valid only if both the input valid signals are true. Multiple 

'joins' can be used in a nested structure if there are more than 2 inputs for a particular 

block. 
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Figure 2.3. Join structure for multiple input channels [1] 

The implementation of a fork is shown in Figure 2.4. Two latches of the fork are 

helpful to trace the output valid signals. The value of a particular fork latch is set to I if 

the corresponding output valid output is true. Unlike the join, the fork can transfer data 

to a particular receiver whenever the receiver is ready to accept the token. The back to 

back connection of a join and a fork does not create a combinational cycle and therefore 

this type of connection was used in this research work. 

Figure 2.4. Fork structure for multiple output channels [l]. 
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The core idea of Synchronous Elastic Flow (SELF) protocol in elastic circuits is 

to replace all latches with Elastic Buffers (EB), include control blocks for each of the 

EBs and use special control blocks for multiple inputs and outputs channels. Dataflow 

through elastic architectures is complicated by the insertion of any number of elastic 

buffers in place in the design. Using the SELF protocol, we elasticized a 5-stage DLX 

processor that enables the insertion of additional buffers in the datapath. 
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CHAPTER 3. PRELIMINARIES ON REFINEMENT 

3 .1. Core Theorem of WEB Refinement 

The refinement problem can be described as follows. Given a high-level 

specification, say S, and a low-level implementation, say I, show that I correctly 

implements S. Refinement proofs are relative to a refinement map r, a function that 

maps implementation states to specification states. Our notion of refinement is based on 

stuttering bisimulation: for every pair of states w, s such that w is an implementation 

state and s = r(w), we have that for every infinite path a starting at s, there is a 

"matching" infinite path 6 starting at w, and conversely. That a and 6 "match" implies 

that applying r to the states in 6 results in a sequence that is equivalent to a up to finite 

stuttering (repetition of states). Stuttering is a common phenomenon when comparing 

systems at different levels of abstraction and occurs when the implementation takes 

multiple steps to match a single step of the specification. 

A detailed description of the theory of refinement can be found in [5]. It is 

enough to prove the correctness formula [4] given in Definition I (shown below) in 

order to establish refinement. In the formula below, IMPL denotes the set of 

implementation states, !step is a step of the implementation machine, and Sstep is a step 

of the specification machine. rank, used for deadlock detection, is a witness function 

from implementation states to natural numbers whose value decreases when there is 

stutter. 
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Definition 1. (Core WEB Refinement Correctness Formula) 

('r:limpl E IMPL :: 

spec= r (imp[) /I next-spec= Sstep (spec) II 

next-imp!= Jstep(impl) II next-spec f. r (next-imp!) 

- spec= r (next-imp!) II rank (next-imp!) < rank (imp!) ) 

In the above formula, imp! is an implementation machine state. spec is the 

specification machine state obtained by applying the refinement map r to imp!. next­

spec is the successor of spec obtained by stepping the specification machine in state 

spec and next-imp/ is the successor of imp/ obtained by stepping the implementation 

state machine in state imp/. The formula above states that for every implementation 

machine state imp/ its corresponding specification state spec, if the successors of spec 

and imp/, namely, next-spec and next-imp/, respectively, do not match, then applying r 

to next-imp/ should result in state spec and the rank of next-imp/ should decrease with 

respect to the rank of impl. The proof obligation that spec = r (next-imp!) is the safety 

component and guarantees that if the implementation makes progress, then the result of 

that progress is correct as given by the specification. However checking safety alone 

provides no guarantee that the implementation will always make progress, i.e., will not 

deadlock. The proof obligation that rank (next-imp[) < rank(impl) is the liveness 

component and guarantees that the machine will not deadlock, i.e., will always make 

forward progress. 
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The correctness formula given above is expressible in a decidable fragment of 

first-order logic. Therefore, the correctness of pipelined machines as given by this 

formula can be automatically checked using a decision procedure for that logic. 

3.2. Equivalence Checking 

The goal of our verification procedure is to show equivalence between an elastic 

processor and its synchronous parent. The notion of equivalence that we use is Well 

Founded Equivalence Bisimulation (WEB) refinement [5], which is based on 

comparing behaviors of implementation (elastic) and specification (synchronous) 

systems. Synthesis of elastic designs incorporates the insertion of additional elastic 

buffers in the data path to handle timing issues in the design. While the insertion of 

these buffers does not affect the functionality of the system, the timing behavior is 

altered. As a result, an elastic system can require several transitions to match a single 

transition of its synchronous parent system. This phenomenon is known as stutter and is 

accounted for by WEB refinement. A detailed description of the theory of refinement 

can be found in [5]. It is enough to prove the following correctness formula [4] to prove 

refinement (thereby establish equivalence) between an implementation and its 

specification. 

Definition 2. (Core WEB Refinement Correctness Formula) 

( li"w1 EMA-etas:: SJ= rJ (w) 11 UJ = MA-sync-step (s1) 11 

VJ= MA-elas-step (wJ) 11 UJ ¥- rJ (vJ) 

s1 = rJ (vJ) 11 rank (vJ) < rank (wJ)) 
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In the formula above, MA-elas denotes the set of elastic pipeline processor 

states, MA-etas-step is a step of the implementation machine, and MA-sync-step is a 

step of the specification machine. The refinement map r1 is a function that maps the 

elastic pipeline processor states to the synchronous pipeline machine states. rank, used 

for deadlock detection, is a witness function from elastic pipeline machine states to 

natural numbers whose value decreases when there is stuttering. 

WEB based refinement proofs were further used to check the equivalence 

between an elastic pipeline processor and an Instruction Set Architecture (ISA) model. 

We present a novel highly automated formal verification solution for latency-insensitive 

pipelined microprocessors developed using the SEN approach. The idea is to show that 

the elastic processor correctly implements all behaviors of its instruction set architecture 

(ISA) model, which is used as the high level specification for the processor. The notion 

of correctness that we use is Well Founded Equivalence Bisimulation (WEB) 

refinement, a detailed description of which can be found in [ 5]. It is sufficient to prove 

that the elastic processor (implementation) and its ISA (specification) satisfy the 

following core WEB refinement correctness formula to establish that the elastic 

processor refines i.e. correctly implements its ISA: 

Definition 3. (Core WEB Refinement Correctness Formula) 

(V w2 E MA-elas : : s2 = r2 (w2) 11 u2 = ISA-step (s2) 11 

v2 = MA-etas-step (w2) 11 u2 t- r2(v2) 

s2 = r2 (v2) 11 rank(v2) < rank(w2)) 
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In the formula above, IMPL denotes the set of implementation states, MA-elas is 

a step of the elastic pipeline machine, and ISA-step is a step of the Instruction Set 

Architecture (ISA) machine. The refinement map r2 is a function that maps elastic 

pipeline machine states to ISA states. In fact, the refinement map can be thought of as 

an instrument to view the behaviors of the elastic pipeline machine at its specification 

level, in this case, the ISA. Therefore this technique allows verification tools to easily 

compare the behaviors of the two systems. rank is used for deadlock detection. Our 

focus in this work is to check safety, i.e., to show that if the implementation makes 

progress, then, the result of that progress is correct as specified by the high-level 

specification. 

3 .3. Verification Methodology 

The specific steps involved in a refinement-based verification methodology are: 

(a) Construct models of the specification and implementation. 

(b) Compute the states of the implementation model that are reachable from 

reset (known as reachable states). This is a crucial step as applying the verification 

method to all syntactically possible states (including unreachable states) often leads the 

verification tool to flag spurious bugs ( or spurious counter examples) and thereby 

hindering verification from proceeding. We use invariant properties to compute 

reachable states. 

(c) Construct a refinement map. 

(d) Construct a rank function for the implementation system. 
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( e) The models, the refinement map, and the rank function can now be used to 

state the refinement-based correctness formula for the implementation model, which 

can then be automatically checked for the set of all reachable states using a decision 

procedure. 

We use the Bit-level Analysis Tool (BAT) and Applicative Common Lisps 

(ACL2) system for modeling and verification. For equivalence checking between elastic 

processor and synchronous processor, we used BAT for modeling and verification 

purpose. For equivalence checking between elastic pipeline processor and ISA, 

Modeling and verification is also performed using ACL2-SMT, a system developed by 

combining the ACL2 theorem prover (version 3.3) with the Yices decision procedures 

(version 1.0.10). 
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CHAPTER 4. ELASTIC PROCESSOR MODELS 

4.1. Synchronous Parent Processor 

The elastic processor models are based on the 5-stage synchronous DLX 

pipeline processor. The bit-level models are described using Bit-Level Analysis Tool 

(BAT). The models were also defined at the term-level using the Applicative Common 

Lisp 2 (ACL2) programming language. The models were obtained by elasticizing a 

synchronous 5-stage DLX processor using Synchronous Elastic Flow (SELF) protocol 

approach [l]. The synchronous 5 stage DLX pipeline processor shown in Figure 4.1 has 

5 basic pipeline latches (pc, fd, de, em, mm) which store data after completion of the 

functions of each corresponding stage. 

The program counter (pc) points to the current instruction to be fetched from the 

Instruction Memory (imem). The processor has one level of instruction fetch cycle and 

instruction decode cycle. The Arithmetic Logic Unit (ALU) is capable of processing 

some binary arithmetic and logical operations. The results processed by ALU can be 

stored in the data memory (dmem) or register files (RF). 
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Figure 4.1: High level organization of conventional 5-stage DLX processor. 

4.2. Conversion to Elastic Processor Models 

mm 

The following steps are taken in order to convert the conventional 5 stage DLX 

processor into an elastic processor: 

(1) The five basic latches of the conventional synchronous DLX processor (pc, fd, 

de, em and mm) are converted to Elastic Buffers (EB). EB is split into master 

and slave Elastic Half Buffers (EHB). 

(2) For every EB, a control block is implemented. The control block operates the 

associate EB by generating enable signals for the EHBs. The control block also 

communicates with other EBs by interchanging the valid & stop signal with 

them. 

(3) For multiple input communication channels, the 'join' block is inserted at the 

input of an EB. 
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(4) 'Fork' block is inserted at the node of multiple output channels. 

(5) The control block connectivity is done in accordance with connections between 

pipeline stages in the data path. 

(6) Register file, data memory and instruction memory were considered 

combinational units and no change was made to them. 

The simple model of the elastic 5 stage DLX processor is shown in Figure 4.2. 

Adder 

Instruction 
Memory 

pc 

Register 
File 

Decoding 
Logic 

' ' 

de em 

.......................................................................... 

Figure 4.2: High level organization of elastic 5-stage DLX processor. 
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4 .3. Elastic Processor Models 

The elastic 5-stage DLX processor model with five additional elastic buffers (11, 

12, 13, l4 & 15) is shown in Figure 4.3. The model is defined at the bit-level using the 

Bit-level Analysis Tool specification language [6] and at term level using ACL2. The 

data path width is 32 bits. The model was obtained by first elasticizing a synchronous 5-

stage DLX processor using the Synchronous Elastic Flow (SELF) protocol approach 

15 12 

Figure 4.3: High level organization of elastic 5 stage DLX processor M5. 

The main idea is to replace all flip flops with elastic buffers. The clock network 

is replaced by a netw~rk of elastic controllers, where each controller is used to control 

the elastic buffers in a pipeline stage and synchronize with the controllers of adjacent 

pipeline stages. The network of elastic controllers for the DLX processor with five 

additional elastic buffers in the data path is shown in Figure 4.4. 
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- -► mlid 
-- stop 

Figure 4.4: Network of elastic controllers for the elastic 5 stage DLX processor. 

The controllers are synchronized with the clock, and are connected in 

accordance with connections between pipeline stages in the data path. Each controller 

has three possible states, empty, half, and full, which indicate that the corresponding 

elastic buffer has 0, 1, and 2 valid data tokens, respectively. We call the processor 

model obtained by elasticizing the synchronous DLX MO. The main advantage of the 

elastic processor is that it permits the insertion of additional elastic buffers at any place 

in the data path to break long wires. We therefore inserted additional elastic buffers 11, 

12, 13, 14 and 15 at various places in the model. We inserted lJ in model MO to get model 

Ml. We then inserted 12 in model Ml to get M2. We derived models M3, M4, and MS 

in a similar manner. The model MS is shown in Figure 4.3. The figure also shows the 

positions of the additional elastic buffers and how they are connected with the elastic 

buffers corresponding to the pipeline latches (namely pc, fd, de, em, and mm). These 

models are used to demonstrate the effectiveness of our verification approach. 
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4.4. BAT Model for the Elastic Processors 

Bit-level Analysis Tool (BAT) is used to define the elastic processors at the bit 

level [ 16]. All the latches were represented by bit vectors and are included in the current 

state of the processor, mastate, which combines all the bits stored in the data path and 

control latches. The current state of the synchronous and elastic DLX processor is 

represented by mastate _syn and mastate _elas respectively. 

Synchronous DLX pipeline mastate is the bit vector that holds all the current 

tokens in 5 basic latches (pc, fd, de, em & mm) and 2 forwarding path latches (deargl & 

dearg2). When the synchronous DLX is stepped forward, new tokens are updated in 

each of these latches creating a new bit vector value of the mastate. 

The elastic DLX pipeline mastate structure is more complex as each of the 

latches is split into 2 parts which are referred as Elastic Half Buffers (EHB). It also 

includes the control block and fork circuit latches. Each of the control blocks has four 

1-bit latches. Each of the fork circuits has two I-bit latches. All these combine a larger 

mastate bit vector for the elastic pipeline machine. 

The implementation of mastate gets more complex if additional EB's are placed 

in different parts of the data path. The complexity of mastate for Ml, M2, M3, M4 and 

M5 arises because of two reasons. Firstly, insertion of ll, 12, 13, 14 and 15 one after 

another gradually increases the size of the mastate. Secondly, some additional history 

variables have to be included in the mastate, as we often need to roll back the processor 

to track the previous states of an EB. As an elastic processor can take several transitions 
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to match a single synchronous machine state, it is often necessary to pull up the history 

values to compare elastic states with the synchronous ones. 

In Bit-level Analysis Tool (BAT), a particular EB is implemented using two 

functions named as step_ half and step Juli. The step_ half function makes some changes 

in the token state of an EB when the clock edge transition takes place. The following 

function pc_step_half is a similar type of function. The inputs to the pc_step_half are 

the current token states, control input bits and the clock edge; the function produces an 

gives an output of 68 bits which includes all the next state values for the pc. 

(pc_step_half (68) ((pc_in 32) (pc_w 68) (vi I) (s2 1) (rise I)) 

(local 

((fall (not rise)) 

(pc_low (getppc-low pc_w)) 

(pc_high (getppc-high pc_w)) 

(pc_vs (getppc-vs pc_w)) 

(Ii (ex_ll pc_vs)) 

(hi (ex hl pc _vs)) 

(/2 (ex_/2 pc_vs)) 

(h2 (ex h2 pc_vs)) 

(/]_next (cond (fall (or vl hl)) (Obi 11))) 

(hl_next (cond (rise (and 1112)) (Obi hl))) 
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(h2_next (cond (rise (or 1112)) (Obi h2))) 

(l2_next (cond (fall (and s2 h2)) (Obl 12))) 

(em (andvl (not hl)fall)) 

(es (and 11 (not 12) rise)) 

(pc_low _next (cond (em pc_in) (Obi pc_low))) 

(pc_high_next (cond (es pc_low) (Obi pc_high))) 

(pc_w_next 

(cat pc _low_ next pc_ high_ next 11 _ next hl _ next 12 _ next h2 _ next))) 

pc_ w _ next)) 

The pc_step_half is recalled twice using the function pc_step_full, which 

ensures the transition of an EB to its next token state. The function also updates the 

controller latches to their next state values. 

(pc _step Juli (68) 

((mastate 740) (vi 1) (s2 1)) 

(local 

((ppc (get-ppc mastate)) 

(pc_high (getppc-high ppc)) 

(pc_in (mod+ pc_high 1)) 

(pc_ next (pc _step_ half pc _in ppc v 1 s2 ObO)) 

(pc_.final (pc_step_half pc_inpc_next ObO ObO ]bl))) 

pc _final)) 
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All the pipeline stage EBs (pc, fd, de, em, mm) and additional EBs in the data 

path (/J, 12, /3, 14, 15) are implemented in similar way. The controller connectivity is 

made according to the original data path connections. 
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CHAPTER 5. TOKEN FLOW DIAGRAM 

5.1. Elastic Token Flow Diagrams 

In this section, we introduce elastic token-flow diagrams, which are obtained by 

simulating the flow of data tokens in the elastic controller network. The data tokens are 

assigned numeric labels and the rules of simulation are modified so as to distinguish 

data tokens that correspond to new data units that enter the system, from data tokens of 

data units already present in the processor pipeline. These diagrams make it possible to 

analyze elastic networks and perform reachability analysis, compute refinement maps, 

and compute rank functions for elastic processors in a highly automated and systematic 

manner. 

A token t is a natural number. A token with value O corresponds to a bubble. The 

token-flow diagram is based on the token-state of an elastic controller network, which is 

defined as follows. 

Definition 4. The token-state of an elastic controller network with n controllers is an n­

tuple of pairs (tm, ts) where tm, ts E N. 

A token-flow diagram is a table where each row corresponds to a token-state and each 

successive row is obtained by simulating the numbered tokens in the elastic design that 

is currently being analyzed. The following nine rules are used to simulate these 

numbered tokens in an elastic network. We use the following notation. If e is an elastic 
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controller, then tm,e and fs,e are the tokens in the current state of the controller 

corresponding to the master elastic half buffer (EHB) and slave EHB. t'm .e and t's .e are 

the tokens in the next state of the controller corresponding to the master EHB and slave 

EHB. Vj.e and S;.e are the current values of the input valid and input stop signals to e. 

The values for the valid and stop signals can be obtained from the circuit of the elastic 

controller network. ta and fb are valid tokens. A token with a zero value corresponds to a 

bubble. When the program counter is updated, it corresponds to a new instruction/data 

unit/token introduced into the processor. If t; is the input token to controller, the new­

token function is used to distinguish how the token is updated when it enters the 

controller of the program counter as opposed to other controllers. 

new-token (e, t;) ={ e = pc t;+ l, 

otherwise h 

The J operator corresponds to the join of data flowing from two EBs to one. The rules 

are given below: 

2) (tm,e = 0 I\ ts,e = ta I\ V;.e I\~ S;.e) - (t'm .e = 0 I\ t's .e = new-token (e, !;)) 

4) (tm,e = 0 I\ fs,e = ta I\ V;.e /\ S;.e) - (t'm,e = new-token (e, t;) I\ t's,e = ta) 

6) (tm,e = ta I\ fs,e = tb I\ S;.e) - (t'm,e = ta I\ t's,e = tb) 
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8) (tm.e = 0 A ts.e =0 0 A V;.e) - (t'm .e = 0 A t's.e = new-token (e, f;)) 

9) J (ta, fb) ={ fa > lb la, 

otherwise tb 

Rules 1 through 4 correspond to the half state of a controller, rules 5 and 6 

correspond to the full state of a controller, and rules 7 and 8 correspond to the empty 

state of a controller. Rule 9 describes how two input tokens are merged. In in-order 

pipelines, in a join, tokens with smaller values correspond to feedback paths, and the 

token with the largest value corresponds to an instruction. Rule 9 is used to destroy 

tokens corresponding to instructions that have completed and also helps avoid the 

duplication of tokens. 

5.2. Reachability 

The elastic controller network is a deterministic system. Therefore, reachability 

analysis can be performed by simulating the elastic network starting from an initial state 

until a convergence is reached, i.e., a state of the controller is reached that has already 

been visited as depicted in Figure 5.1. In the figure So is the initial state. When the 

controller network tninsitions from Sr, it goes back to Sk, a state that has already been 

visited. Therefore the reachable states of the controller network are S0 through Sr. 
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Figure 5.1. Reachability analysis of elastic controller network. 

While regular simulation can be used for reachability analysis, we use the elastic 

token-flow diagram instead as information from this diagram about the reachable states 

is later used in computation of the refinement map and the rank function. In the reset 

state of an inorder pipelined processor, all the pipeline latches are actually empty and do 

not contain any valid instructions. This is implemented by resetting the valid bits in the 

pipeline latches. However, the elastic controllers corresponding to the pipeline latches 

are initialized to the half state, i.e., with one token and the controllers of the additional 

elastic buffers are initialized to the empty state. Such an initialization is required as the 

presence of these tokens enable data flow in the elastic system. Also note that once 

states So, ... , Sm are computed using the above initialization, states So, ... , Sk.J can be 

dropped from the set of reachable states as for all practical purposes the actual elastic 

system can be initiali~ed to any one of the states Sk, ... Sm in which the controller of the 

program counter has at least one valid token. 
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5 .3. Reachability Analysis 

For the purpose of reachability analysis, we define the elastic-state of an elastic 

controller network as follows. 

Definition 3. The elastic-state of an elastic controller network with n controllers is an n 

tuple, where each element is either empty, half, or full. 

An elastic-state of a controller network can be easily constructed from its token 

state by observing the number of valid (non-zero) tokens in each controller. We assume 

that the elastic-state function performs such a construction. Reachability analysis is 

performed using the following procedure. 

1) Let ECp be the ordered set of elastic controllers corresponding to the pipeline 

latches (including the program counter) in the elastic processor. The position of a 

controller in ECp is based on its position in the pipeline and is given by the pos function. 

Let EC0 be the set of additional elastic controllers in no particular order. For the DLX 

example ECp = {pc,fd, de, em, mm}, and ECa = {ll, 12, 13, 14, 15}. Then, the initial 

token state SO is given using the following assignments to ECp and EC0 • 

{'lie E ECp :: (tm,e = 0) I\ (t5 .e = n + I -pos (e, ECp))} 

{Ve E ECa :: (tm,e = 0) I\ (t5.e = 0)} 

2) The set of visited states V is initialized to { elastic-state (S 0)}. Initialize the 

current token-state Sc to So and the loop counter i to 0. 

3) Compute the next token-state Si+1 from Si using the elastic token-flow 

procedure given in Section 5 .1. 
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4) If elastic-state (S;+J) E V, then terminate. Otherwise update V = VU { elastic­

state (S;+1)}. 

5) Increment i and goto step 3. 

Table 5.1 shows the elastic token-flow diagram generated for reachability 

analysis of the M5 DLX-based elastic processor. Each entry in the table gives the 

tokens present in an elastic controller. The reachability analysis demonstrates the 

following things: 

State pc fd de em mm 11 12 13 14 15 

So 5 4 3 2 I 0 0 0 0 0 

S1 0 5,4 3 0 2 5 2 I 0 I 
S2 6 5,4 0 3 0 0 0 2 l 2 
83 6 5 4 0 3 6 3 2 2 0 

84 7 6 5 4 0 0 0 3 0 3 

Ss 0 7,6 5 0 4 7 4 3 3 0 
s6 8 7 6 5 0 0 0 4 0 4 

Table 5.1. Token flow diagram: Reachability 

• An entry O indicates that no tokens are present, i.e., lm.e = 0 and ts.e = 0. 

• An entry with a single token t indicates that tm,e = 0 and ts,e =t. An entry 

with two tokens of the form ti, t2 indicates that tm.e =t1 and ts.e =t2. 

For the M5 processor the reachable states of the elastic controller network are 

states elastic-state (S4) and elastic-state (Ss). Note that elastic-state (S4) = elastic-state 
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CHAPTER 6. REFINEMENT 

6.1. Refinement Maps 

Verifying that the elastic implementation refines its synchronous counterpart 

requires a function that maps states of the elastic system to states of the synchronous 

parent system. This function, known as the refinement map, can be thought of as an 

abstraction function that allows one to view an elastic system as a synchronous system. 

We introduce a procedure to compute such refinement maps for elastic pipelined 

processors. The example of constructing such refinement maps have been shown in 

Table 6.1 and Table 6.2 for state l and state 2 of MS processor respectively. 

In elastic systems, some inputs can take several cycles to reach their destination 

stage. Whereas, in synchronous systems, inputs are available to each pipeline stage at 

every cycle. This variability in the latency of inputs in elastic systems is identified by 

bubbles (tokens with a O value) in the elastic token-flow diagrams. If we were to 

construct the token-flow diagram for a synchronous machine, there would be no 

pipeline latch with bubbles, nor would there be pipeline latches with two tokens. Also, a 

new token will be introduced at every step. A synchronous token-state for a pipeline 

with n-stages would be an n tuple with one token for each latch. For the 5-stage 

synchronous DLX, a token state would be of the form (pc, fd, de, em, mm) and three 

possible successive token states for the synchronous DLX would be (5, 4, 3, 2, 1), (6, 5, 

4, 3, 2), and (7, 6, 5, 4, 3). Herein lies the usefulness of token-flow diagrams as they 
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clearly bring out the differences in data-flow between the synchronous and elastic 

systems. 

I State I PC I FD I DE I EM I MM I 
Sc-I 0 8,7 6 0 @ 

Sc ® ® (JJ ® 0 
Sync 9 8 7 6 5 

Table 6.1. Refinement map construction for state I of processor M5. 

I State \ PC I FD I DE \ EM \ MM \ 

Sc-2 0 8,7 6 0 @ 

Sc-I @ 8 7 ® 0 
Sc 0 9,@ (JJ 0 6 

Sync 9 8 7 6 5 

Table 6.2. Refinement map construction for state 2 ofprocessorM5. 

One approach to define the refinement map is to roll back some or all the 

pipeline latches in an elastic state so that all the latches including the program counter 

are in a half state and if fpc is the token of the program counter, then the tokens of the 

other n-1 latches will have the following values: 

(Ve E ECp :: tfl}.e = 0 /\ fs,e = fpc+ I -pos(e, ECp) ). 

Projecting out the values of the slave elastic half buffers corresponding to the 

pipeline latches will give the corresponding synchronous state. Such an approach is 

similar to the commitment refinement map used for synchronous processor verification 

[4]. The extent to which each latch is rolled back depends on the state of the elastic 
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controller network. Therefore, we define one mapping function for each reachable state 

of the elastic controller network. The overall refinement map selects and applies the 

appropriate mapping function for each controller network state. Given an elastic 

controller network state (Sr), the procedure to compute the mapping function is as 

follows. 

1) Count the number of pipeline latches that are in the empty state in S,. Let this 

count be ne, Let r be the number of reachable states of the controller. 

2) Starting from a token-state of Sr (such a state can be obtained from the token­

flow diagram constructed for reachability analysis), construct the token-flow diagram 

for ne * r steps. This provides sufficient steps of the token-flow diagram to perform the 

analysis required to compute the mapping function. 

3) Starting from the last token state in the diagram, search backwards in the pc 

column to find the first valid token, say fpc· Construct a synchronous token-state 

corresponding to Sr using the following equation: t1 = fpc + 1- j, where j is the position of 

the latch in the pipeline, with}= 1 for the pc. 

4) Rolling back the pipeline latches is hard to compute directly. We instead use 

history variables that record previous values of pipeline latches. Therefore, all that is to 

be determined to construct the mapping function is which history should be projected. 

This is computed by searching backward in each of the columns in the token-flow 

diagram (where each column corresponds to a pipeline latch), to find the first token that 
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matches the token in the synchronous token-state. If the match for a pipeline latch was 

found k rows going backward, then the Ith history variable is projected for that latch. 

6.2. Token-Aware Completion Functions 

Flushing [ 17] is one standard approach used to compute refinement maps for 

pipelined processors. In this approach, partially executed instructions in the pipeline 

latches are forced to complete, without allowing the machine to fetch any new 

instructions. Projecting out the programmer visible components - which include the 

program counter, register file, instruction memory, and data memory for the models we 

consider - in the resulting state will give the corresponding ISA state. Completion 

functions [18, 19, 20] were proposed as a computationally efficient approach to 

construct flushing refinement maps. One completion function for each pipeline latch in 

the machine is used to compute the effect on the programmer visible components of 

completing any partially executed instruction in that latch. The completion functions are 

composed to form the flushing refinement map. Note that older instructions in the 

pipeline are completed before younger instructions. 

For the DLX example, let fdc, dee, emc, and mmc be the completion functions 

for the latches fd, de, em, and mm, respectively. The ISA state s corresponding to a 

synchronous DLX processor state w (pcw·Jcf'·dew, emw, mmw, rj, imw, dmw) is (pcs, rf, 

im9, dm9) = (fdc(dec(emc(mmc( pew, rj, ims, dmw), mmw), emw), dew), fcf'). 

When we try to apply the completion functions approach to elastic pipelined 

processors, two issues arise. First, in some states of the elastic processor, instructions 
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can be duplicated in the data path, i.e., an instruction can reside in two pipeline latches. 

Such a situation can occur at a fork when the instruction in a buffer before the fork has 

proceeded along one path of the fork, but the other path is blocked. The latch before the 

fork has to retain the instruction until both paths are cleared. A direct application of the 

completion functions-based map to such a state will result in completing the same 

instruction twice leading to an erroneous refinement map. Second, Elastic half buffers 

(EHBs) need not have valid tokens. The contents of such EHBs should be ignored and 

should not be used to update the programmer visible components. Modeling and 

verification were performed using ACL2-SMT [21]. 

We introduce token aware completion functions as a method to compute 

flushing-based refinement maps for elastic pipelined processors. The idea being that 

EHBs which are either holding duplicate instructions or are in an empty state should not 

be completed. This is achieved by first computing the reachable states of the elastic 

controller network. We use token-flow diagrams proposed in [22] to compute the 

reachable states of the system. The output of the token-flow diagrams is a set of token­

states, one token-state for each reachable state. In a token-state, each EHB is assigned a 

numbered token, which is essentially a natural number. A value of "O" indicates a 

bubble, i.e., the EHB' is empty. Also, EHBs with the same instruction will be assigned 

the same token numbers. Thus, using the token-state, duplicate instructions and empty 

EHBs can be identified. 

The token-aware completion functions approach [23] works by first computing a 

two dimensional array, we call token-array. Each row in the array corresponds to a 
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reachable state of the elastic controller network. Each element in a row is a binary 

value. The number of elements in a row is 2n, where n is the number of pipeline latches 

in the elastic system. If token-array (i, j) = 1, then the contents of EHB Hj in the 

reachable state Si should be completed. If token-array (i, j) = 0, then the contents of 

EHB llj in the reachable state S; should be ignored when computing the refinement map. 

Given the set of token-states (which are the reachable states represented using 

numbered tokens) of the elastic controller network of an elastic system, Procedure 1 

computes the token-array for the elastic system. 

Procedure 1: 

In: SR, set of token-states of the elastic controller network and PH, the ordered 

set of pipeline half buffers. The number of token states (ISRI) is r. The number of 

pipeline half buffers (IPHI) is 2n, where n is the number of pipeline latches. The order of 

the pipeline half buffers is determined by the position of the buffer in the pipeline, i.e., 

buffers closer to the end of the pipeline have a higher index. 

Out: token-array for the elastic system. 

(1 ) Initialize i to O. 

(2) Initialize v; (the set of visited tokens) to {O}. The token number "O" 

represents a bubble. Note that initializing v; to {O} causes the procedure to assign a "O" 

value to the empty EHBs in the token-array. 

(3) Initialize} to 2n. 
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(4) Lett= token (S;, PH_;), where token is a look-up function that gives the token 

number for EHB PH_; in tnken-state S;. 

(5) token-array (i,j) = -,(t E Vi). 

(6) Assign Vi = Vi U { t}: adds the token number of EHB PH_; to the visited token 

set. 

(7) lfj-1~ 0, decrement} and goto step 4. 

(8) If i-1 ~ 0, decrement i and goto step 2. 

Procedure 2 takes as input the token-array and computes the flushing refinement 

map for the elastic system using completion functions. 

Procedure 2: 

In: Elastic processor state w: (P1, ... , Pm, H;, ... , H2n)· P;, ... , Pm are the 

programmer visible components and H1, ... ,H2n are the pipeline half buffers. 

Out: ISA states obtained by applying the flushing refinement map tow. 

(1) Let S2n+l = (P1, ... , P,,J. 

(2) Initialize i to 2n. 

(3) r = reachable-state(w), gives the number of the reachable elastic controller 

network state of w, assuming that the reachable states are numbered. 
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(4) Si ={(completion (S;+J, H;) 

S;+1 

token-array(_r, i) 

otherwise 

(5) If i-1 '¢ 0, decrement i and goto step 3. 

Example: The elastic controller network of the M5 processor model has two 

reachable states S1 and S2• The token-states T1 and T2 (given as a vector of token 

numbers for the 

EHBs in M5 in the order (pclfd\delemlmmlllll2Jl31l4ll5) corresponding to these 

reachable states S1 and S2, respectively are: (0,7I0,6I0,5I0,4J0,OI0,010,0J0,310,0I0,3) and 

(0,OJ7,6J0,5IO,0I0,410,710,410,3J0,3J0,0) [23]. Note that there are two tokens in the token-

states for each EB, one corresponding to the master EHB and the other corresponding to 

the salve EHB. The completion function based refinement map obtained using 

Procedures 1 and 2 for any state w of processor model M5 whose elastic controller 

The completion function based refinement map obtained using Procedures I and 

2 for any state w of processor model M5 whose elastic controller network is state S2 is: 
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CHAPTER 7. EXPERIMENTAL RESULTS 

The verification and equivalence checking between conventional synchronous 

pipeline and elastic pipeline were performed using Bit-level Analysis Tool (BAT). The 

processor models were defined at the bit level using BAT. The verification and 

equivalence checking between the elastic processor models and the Instruction Set 

Architecture (ISA) model were performed ACL2-SMT system. In ACL2-SMT, the 

elastic processor models were defined at term level. 

Figure 7 .1 shows the invariant constraints for each of the reachable states of the 

elastic processors MO, Ml, ... , MS. In the invariant constraint column, if xis a pipeline 

latch, x0, x112, and x1 are used to indicate the empty, half, and full states of the latch, 

respectively. 

Figure 7 .2 represents mapping function and rank for each of the reachable states 

of the elastic processors MO, Ml, ... , MS. For the refinement map column in the table, 

we use the following notation. If x is a pipeline latch, x\ is used to indicate the 

projected value for that latch, where h indicates the history value (0 for current, -1 for 

previous value, -2 for the value two cycles before, and 1 for the next value). y can either 

be s or m indicating that the projected value is from the slave EHB or the master EHB, 

respectively. Note that sometimes it is easy to compute the next value of the program 

counter, and this value can be used to compute the mapping functions. 
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Elastic Eta,;tic 
Processor Controller Invariant 
Model State Constraint 

MD State- I 
.!. l l .!. l 

pc'! /\fd'- /\de'I. /\em'1 /\mm'-

Ml State-I 1 Oafl J ! ! pc! /\il /\fi /\de! /\em! 1\111111! 

State-2 pc0 1\/11 /\JJi /\de0 /\emi /\111111 1 

M2 State-I 
0 _I _L Q I _L ! 

pc /\{/7 /\fi/1 /\de /\e,n7. /\mm-z 1\/27 

State-2 pd I\ IJ0 11/cfl /\ de i /\ end /\ 111111 1 I\ 12 i 

M3 State-1 ! 0 ! ! .!. fl l /0 pc'! /\II /\_fi/! /\de'! /\em'1 /\{. /\mm! I\ 2 

State-2 pc0 /\//7. /\Ji:il /\de"J. /\em0 At.n /\n1111 1 1112i 

M4 State-I J_ 0 ' .!. .!. (l O I I 
pc"!. 1\/l /\fdi /\de7. /\em"!. /\/3 /\mm 11/22 1\/47. 

State-2 11c0 I\ II! /\fd'- I\ de 1 I\ em0 I\ t.d I\ m11t2' I\ 12° 1\/41 

M5 State-I -' 0 ,J ! 1 J° 0 l O ! pc"! /\II /\ji/'1 /\tle7. /\em7. /\I /\mm 11/27. 11/5 1\/4! 

State-2 pc0 /\ll'- /\Ji/ 1 /\de'! /\em0 /\/3! /\11111111\12° 1\/.57 1\/4'! 

Table 7 .1. Invariants for elastic processor models. 

Elastic Elastic 
Processor Controller Refinement Map 
Model State pc Jd cte em mm rj am Rank 

MD State-I pc? f~ de0 em? 111111? r/1 dm0 . 
·' 

Ml State- I pco .. fd_;- I de; I em- 1 
·' 

11111r; I ,r' ,lt11-2 0 

State-2 11! f</1 de,; 1 em- 1 ., 111111? 1:rl dm- I I 

M2 State-I 11! f~ d -I e, em:; 1 111111; 1 ,:,-0 c/111-2 0 

State-2 pc? fit_;- I de; _? -2 1·-I dm-3 I em~ 111111, ., 
M3 State-I pc? P/1 de? em? mm? ,/1 c/1110 I 

State-2 ll? Ji!? de? t'/11-1 ., 111111° 
.f 

r:to dm- I 0 

M4 State- I pc~ .rJJ de? em? 111111; 1 r/J dm0 I 
State-2 11? fd';I de0 

·' em;-1 mm;2 1:rl i/111-1 0 

M5 State- I pc? Ji!? de? em? 111111- I 
,\ r:10 ,1,,,0 I 

State-2 11? 1,t?. de0 em,;- 1 ' r:t'J c/111- 1 0 ,\ mm; -

Table 7.2. Refinement maps and ranks for elastic processor models. 

The token values in the synchronous token-state for the other latches should then 

be suitably adjusted. The invariant constraints and mapping functions were obtained 

using the procedures described in chapter 5 and chapter 6. 
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The verification results are shown in Table 7.3. The refinement proofs were 

automatically checked using the BAT decision procedure version 0.2 [16]. The 

experiments were conducted on a 1.8GHz Intel (R) Core(TM) Duo CPU, with an L1 

cache size of 2048KB. As can be seen from the table, all the elastic 5-stage DLX-based 

processors were verified against the synchronous DLX within 25 seconds, thereby 

demonstrating the high efficiency of our approach. 

Elastic Verification CNF 
Processor Ttmes [sec] Statistics 
Models :siege ·1otaI vanao1es Clauses L1tera1s 
MO 0.04 0.49 1,723 5J61 29,648 
Ml 15.74 19.25 9,688 43,633 252,084 
M2 18. 70 22.57 10,245 46,736 263,765 
M3 13.20 16.18 8,538 36.735 210,251 
M4 13.86 18.91 9,100 40,357 221.767 
MS 13.95 17.15 8,706 36.673 205,527 

Table 7.3. Verification time for proving equivalence properties between elastic 
processor and synchronous processor. 

The verification time need for equivalence checking between elastic processor 

and instruction set architecture is shown in Table 7.3. The token-aware completion 

functions approach was used to verify safety for six elastic pipelined processors MO, ... , 

MS. The results are shown in Table 7.4. 
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Elastic Yices Total 
Models Boot Vars Ttme (sec) Tune (sec) 
MO 887 0.22 1.07 
Ml 1,101 0.46 2.29 
M2 1,889 1.05 5.07 
M3 2.811 1.32 6.17 
M4 3.096 3.29 16.65 
MS 3,605 4.16 24.42 

Table 7.4. Verification time for proving equivalence properties between elastic 
processor and instruction set architecture. 

Verification was performed using the ACL2-SMT system. The ACL2-SMT 

system incorporates a translator that reduces the correctness theorem to a decision 

problem in the form of a formula in a decidable logic that Yices can handle. The 

decision problem is then checked by Yices. Column "Bool Vars" gives the number of 

Boolean variables in the decision problem. The experiments were conducted on a 

1.8GHz Intel (R) Core(TM) Duo CPU, with an LI cache size of 2048KB. As can be 

seen from the table, each of the elastic 5-stage DLX-based processors were verified 

against the high-level instruction set architecture (ISA) within 25 seconds, thereby 

demonstrating the high efficiency of our approach. 
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CHAPTER 8. CONCLUSION 

We have introduced highly automated and efficient approaches for checking the 

equivalence of elastic pipelined processors against their specifications. The methods 

were demonstrated using 6 elastic 32-bit DLX-based processors defined at the bit-level. 

We have developed a method for checking the correctness of elastic pipelined 

processors against their high-level instruction set architectures. The approach was 

demonstrated by verifying 6 DLX-based elastic processor models. 

For future work, a tool flow can be developed that will incorporate these 

verification methods. The work can be further extended to explore the verification of 

elastic processors that incorporate features such as out-of-order execution and register 

renaming. 
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