
XGraphML - A TOOL FOR TRANSFORMING UML TO GRAPHML

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Sandeep Raavi

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

April 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

XGRAPHML - A TOOL FOR TRANSFORMING

UML TO GRAPHML

By

SANDEEP RAA VI

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signahues have been
removed from the digital version of this docmnent.

ABSTRACT

Raavi,Sandeep, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, April 2010. XGraphML-A Tool for
Transforming UML to GraphML. Major Professor: Dr. Jun Kong.

This paper proposes and implements XGraphML, a tool which transforms a file from a

UML format to a GraphML using XSLT and JAXP technologies. The tool connects

ArgoUML with VEGGIE through this transformation. ArgoUML is an open-source tool

used to model software artifacts through UML diagrams and uses UML as a standard

saving mechanism. On the other hand, VEGGIE (i.e., the Visual Environment for Graph

Grammar Induction and Engineering) utilizes GraphML as a standard saving mechanism.

XGraphML takes a UML file as input and produces a corresponding GraphML file. Based

on XGraphML, software engineers use ArgoUML to model software artifacts and then pass

the designed model to VEGGIE for further analysis.

A stylesheet is used to transform UML format to a GraphML. The stylesheet is

processed using the XGraphML tool that has been introduced through this paper.

XGraphML provides a way to transform one major graph format to another. This tool is

built on the base of Java, which is one of the most common programming languages and

enhances extendibility for further use. Furthermore, a graphical user interface has been

implemented which enables the users to view the transformation on the screen and then

save it to the desired location on the system.

lll

ACKNOWLEDGEMENTS

I thank Dr. Jun Kong for being my advisor, providing exceptional guidance and

giving insight throughout the research, making this paper possible. I would like to thank

Dr. Kendall Nygard, Dr. Gursimran Walia and Dr. Jin Li for serving on my committee.

I would like to thank my family, all my friends and everyone who encouraged me

for their continuous support while completing this paper.

iv

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES ... v iii

CHAPTER 1.INTRODUCTION ... 1

1. I . Background ... 3

I.I.I. XML .. 3

1.1.2. Types of XML based graph formats .. 4

1.1.3. VEGGIE- A tool for graph grammar. 5

1. I .4. ArgoUML and UML diagrams .. 5

1. 1.5. Class Diagrams .. 6

1.2. Approach .. 7

CHAPTER 2. RELATED WORK .. 9

2.1. XMI to HTML ... 9

2.2. Pamda tool. ... 9

2.3. XMI2GXL Translator ... 10

2.4. JAXP I .4 (Java API for XML parsing) .. 10

2.4.1. SAX (Simple API for XML) ... 10

2.4.2. DOM (Document Object Model) API. 11

2.4.3. API forXSLT ... 11

2.5. <oXygen/> xml Editor. ... 11

2.6. Eclipse IDE .. 12

V

TABLE OF CONTENTS (Continued)

CHAPTER 3.UNDERSTANDING XMI,PGML AND GRAPHML. 13

3 .1. Core elements of XMI ... 13

3 .1.1. Classes and Attributes. 14

3.1.2. Associations .. 18

3.2. Core elements of PGML. .. 20

3 .2.1. <Group> .. 20

3.2.2. <rectangle> ... 20

3.2.3. <text> ... 21

3.3. Core elements of GraphML .. 23

3.3.1. Nodes ... 24

3.3.2. Edges .. 24

3.3.3. Port 25

3.3.4. <desc> .. 25

3.3.5.<data> ... 25

3.4. Sample GraphML .. 26

3.5. Generated GraphML for a simple association .. 27

3.6. Comparison of UML format and GraphML format. 28

CHAPTER 4. IMPLEMENTATION OF XSLT .. 30

4.1. Elements used in the transformation ... 33

4.2. XGraphML.xsl ... 34

4.2.1. Initial Version Check and Validation 37

4.2.2. Classes or Nodes ... 39

VI

TABLE OF CONTENTS (Continued)

4.2.3. Methods .. 39

4.2.4. Attributes ... 40

4.3. Association or Edges .. .40

4.3.1. Source .. 41

4.3.2. Sourceport ... 41

4.3.3. Target. .. 42

4.3.4. Target Port ... 42

4.3.5. Directed or Undirected Edge ... 43

CHAPTER 5. IMPLEMENTATION OF THE TOOL-XGRAPHML 44

5 .1. Block Diagram of the transformation .. 44

5.2. Basic Interface of the tool .. 45

5.3. Implementation of Transformer class ... 48

CHAPTER 6. CASE-STUDY .. 51

6.1. Class diagram for a Shopping Cart ... 51

6.2. Case Study ... 54

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 56

7.1. FUTURE WORK .. 57

BIBILOGRAPHY .. 59

Vll

LIST OF FIGURES

Figure

1.1. Contents of an . uml format. 2

1.2. ArgoUML ... 6~

1.3. Simple Class diagram with an association between them 7

3 .1. Example of a class diagram .. 14

3.2. XMI Code generated for Fig3.1 .. 17

3.3. XMI Code generated for an association .. 19

3.4. PGML file generated from two classes and a relation 23

3.5. Sample GraphML file .. 26

3.6. Generated GraphML code for Fig(3.5) .. 27

3.7. GraphML file for a simple graph with a single association 28

3.8. Element level comparison .. 29

4.1. Pattern matching of XSLT ... 32

4.2. Basic elements of a stylesheet and their description 34

4.3. XgraphML.xsl ... 37

5.1. Block diagram of the transformation :44

5.2. Screenshot of XGraphML. ... 45

5.3. Opening an UML file ... 46

5.4. With an UML file loaded ... 46

5.5. Transformation in progress .. .47

5.6. Progress indicator ... 47

5.7. Usage of Transformer class .. 48

Vlll

LIST OF FIGURES (Continued)

6.1. Shopping Cart Example ... 51

6.2. Shoppingcart.graphml. ... 53

6.3. List of classes in UML format and GraphML format. 54

6.4. List of associations in UML format and GraphML format. 55

IX

CHAPTERl

INTRODUCTION

In the current programming world where everything is moving from procedure

oriented programming to a declarative way of programming, XML is one such language

which has enhanced declarative way of programming to a greater extent [2]. XML is a

mark-up language in which all the elements are self-declarative. These custom-made

elements change depending upon the needs of user. Technologies like Web Services and

Hibernate use XML to configure applications which are built using modern day

technologies.

The Unified Modeling language has become a de-facto modeling standard in the

present world of OOAD (Object oriented Analysis and design), and UML has made the life

of a developer easier and simpler with all the various diagrams [6]. A model is required to

create a user's visual abstraction of an application before it is built or coded. Most of the

programmers prefer to create a blueprint and to visualize the outcome before an actual

application is built. The blue print can be a class diagram, a visual model or any UML

diagram [6]. There is a growing need in today's IT world to represent a complex UML

diagram in the form of a graph, which provides an abstract view to the user.

This paper deals with two forms of XML graph formats, UML format [1] and

GraphML(Graph Markup language) [14], which are based on the XML standard. A class

diagram is saved with an extension of .uml, which is an XML based format with a

combination of two different subsets of XML formats (XMI, PGML).

The .uml refers to a format in which a class diagram is generated within ArgoUML,

but UML refers to the Unified Modeling Language, which is a standard for modeling

language. The . uml format in Fig I. I .has the first and last element as <uml> in the XML

file, which is shown in the below XML.

<uml>
<xmi>

< >
</xmi>
<pgml>

< >
</pgml>

</uml>

Fig 1.1. Contents of an .uml format

VEGGIE (Visual Environment for Graph Grammar Induction and Engineering), a

tool for context sensitive parsing, takes .graphml as input and applies graph grammars for

further analysis. As Veggie does not accept a UML diagram directly, so the UML diagram

has to be converted to GraphML in order to retrieve the graph. This generates a need to

have an interface that bridges the gap between UML and VEGGIE through the

transformation. A graph that is generated using the designed tool can be fed into VEGGIE

to process the graph further into a meaningful format. Veggie retains the semantics of a

UML diagram using graph grammars and self-declared production rules. GraphML is also

an XML based language which lays ground towards an exchange format for graph

visualizations [14]. This format is designed to support all the tools which support XML and

are saved with an extension of .graphml and .graph.

2

During the transformation of UML to GraphML, the semantics of a UML diagram

has to be identified in order to further break down the complex structure and generate a

host graph. This was my main motivation in constructing an open source tool that does this

transformation and retains the semantics of a UML diagram.

The main objective of this paper is to design and implement an open source tool

that can easily convert a UML diagram from XML to a graphml. This tool helps a user to

break down the complexity of a UML diagram and better understand the abstract level of

information through the transformation. The derived host graph is further analyzed in

VEGGIE by custom graph grammars and production rules.

1.1. Background:

1.1.1. XML

With the evolution of internet and Web technologies, there is a wide need to process

the dynamic data currently served in most websites. Processing this type of dynamic data in

web pages can be easily achieved by injecting XML files [21]. If a company plans to

upgrade its architecture, the entire data in an older version has to be transformed into a

newer version, which involves a great investment of time and resources. As one format is

not compatible to another, this demands a common language, or a bridge, which is

compatible across different platforms and makes the transformation easy. Most companies

use XML as a medium to exchange data between two incompatible systems.

Aspects like dynamic data processing and ease of use makes XML a user friendly

language across cross platform architectures.Techniologies like Web-services and XHTML

enhanced the usage of XML (Extensible Mark-up Language). XML is a subset of SGML

3

(Standard Graph Markup language) (8] and is a mark-up language created for documents

containing structured information. In this language users can define custom tags depending

on their usage, and this makes XML independent and application neutral language. Every

application has its own document structure, and a DTD (Document Type Definition) is

used to provide grammar to a particular structure and forms a base to XML (23]. Any XML

based language would have a DTD predefined according to OMG, and this can further be

modified depending upon application requirements.

1.1.2. Types of XML based graph formats

This paper is focused on graph transformation and graph grammars. Therefore, we

take into account some of the core XML based graph formats like:

1. PGML (Precision Graphics Markup Language)

2. XMI (XML Meta data Interchange) (Refer to Chapter-3)

3. GraphML (Graph Mark-up language) (Refer to Chapter-3)

PGML is a XML based 2D scalable graphics language designed to meet vector

graphics needed by novice and expert level graphics artists (25]. PGML uses the imaging

model of the PostScript language that is used by most of the graphic designers and is the

basis for some of the major graphing applications like Corel Draw, Adobe Illustrator, etc. A

PGML drawing consists of the collection of one or more graphical objects-path objects,

shape objects and text objects [27].The XML elements generated by this drawing have a

certain standard defined by W3C. A user utilizing PGML can do all sorts of enhancements,

such as adding color to the drawing and setting thickness to the diagrams ..

4

1.1.3. VEGGIE- A tool for graph grammar

VEGGIE is a tool which provides context-sensitive parsmg and induction

environment [11]. This tool is used to produce complex graph grammars for visual

languages by using a machine learning system and injecting production rules. There has

been a wide range of usage for graph grammars in the visual modeling industry, and several

tools have been developed to enhance this use. Most of the software engineers prefer to

view their programs and workflows visually in the form of graphs or diagrams. There are

several ways to express graphs in natural language processing.

VEGGIE motivates us to work further in the direction of the transformation from

one graph format to another to further enhance interoperability between two graph formats.

Graph grammar is generally achieved by specifying certain production rules and is

represented as a graph in the form of nodes and edges. As most graph transformation tools

consider GraphML format to be flexible and easy to generate, we consider going further in

that direction with our research and proposing a tool that transforms UML format to

GraphML. GraphML also employs almost similar kinds of formatting, such as nodes, edges

and endpoints.

1.1.4. ArgoUML and UML diagrams

ArgoUML is an open source UML modeling tool which is built on the platform of

Java, making it even more popular and compatible on multiple platforms. This tool shown

in Fig 1.2. can be used to draw UML 1.4 diagrams like Class, State, Use case, Activity, and

Collaboration diagrams, among others[8] .ArgoUML uses re-engineering to generate code

[3) for all the diagrams mentioned above. We can also use the same tool to retrieve a model

5

from code, generated with the help of reverse engineering. Keeping all the features and

scalability in mind, working with this tool is ideal and an efficient match.

There is a broad classification ofUML diagrams in the current version of UML 2.0,

which constitutes 13 different types of diagrams. In this paper we consider class diagrams,

as these diagrams are the most efficient way of expressing classes and objects in object

oriented programming. Programmers represent the entire application into classes, attributes

and methods.

lie [di '[low ~••• &range !iefwalion C(llique lool• He1P

f~~ t1' [~ ~ El El ..., :-,,.. . +--• ~ f 8 f t ·
ll!derllYTwe,Nomo _J_:_J '
o- Cl Pronle Configuration
o- E3 untiUecModel

•I
;,, ·-.n,..,.,r""' I

.'r O • [') ••• □ •

ByPnor1'y - 7 -.: uems i f ◄ Tooo•an1 'VtoPPltlP'A 'tror.mu~•1lft1\IOII l Pre.11e111/11io11 r~!A'r.e l (Ml'Jrllillt~ :-,il"!f!ll\\1~ rri,,tpt-!IJViilH'I cJ11•ckhS1

c:l High
o- □ Med1um

i· D :No ToDollem ielected
! i

t-c:l- Low _ ___,L _____ _
PtQa 9 Sec I 9/11 N. 5.2" Ln 12 Cat II

Fig 1.2. ArgoUML

1.1.5. Class Diagrams

-
10111 Uttdot1 3M t,tal

Class diagrams are a visual representation of a detailed system design. These

diagrams consist of classes, attributes, methods and relationships between classes. A class

6

is drawn as a rectangle with 3 partitions. The first partition has the name of the Class, the

second partition consists of its attributes, and the third has all the methods. Due to a wide

use of OOAD, class diagrams have become popular and are a de-facto standard for

representing a visual static structure.

In Fig 1.3, Employee and Department are two simple classes, and the relationship

between them is named "Works for". This class diagram generated form ArgoUML is

saved in XML format with an extension of .uml.

Employee Department

name : String
Works for

Dnum : int 1 1 .. *
id : int Dname : String
salary : int

payslipO : void
projectsQ : void

Fig 1.3. Simple Class diagram with an association between them

1.2. Approach

In this paper we draw a class diagram using an open source tool ArgoUML and the

class diagram is saved as .UML, which is an XML-based file format. This file is used as an

input to a tool named XGraphML which we have created for the transformation ofUML to

GraphML. This tool is built using Java Swing, XSL T and JAXP [17]. An XSL T is coded

with the help of XPath [18] , where in the source document, i.e., UML, is transformed into

resultant graph format GraphML. We write certain rules in XPath to keep the source

document the same but apply these rules to produce a resultant target document.

We propose and design the tool XGraphML, which consists of a user interface

where users can input .UML files , selecting a corresponding XSLT required for

7

transformation and then get a resulting GraphML file on the other half of the display pane.

The user has an option to edit the document and save it to a desired location on the system.

This file is later used for further analysis as input to VEGGIE by using graph grammars and

production rules. The XSLT can be customized based on the users' needs and achieve a

desired output using XGraphML.

The rest of the paper is organized into 5 chapters. In chapter 2, we discuss some of

the related work to this paper and work done previously in this direction. Chapter 3 offers

an understanding of various graph formats for transformation used in this paper, followed

by Chapter 4, which explains the implementation of xslt. Chapter 5 describes the tool that

has been implemented as a part of this paper. And finally, chapter 6 states the conclusions

and future areas of research.

8

CHAPTER2

RELATED WORK

This chapter gives a brief introduction of some of the available tools in the market

that take XML as input and then generate various outputs. Most of the tools use

sophisticated technologies to achieve these transformations. We analyze tools which

generate code from XMI using re-engineering and then try to implement the same idea of

transformation while using pattern matching techniques.

2.1. XMI to HTML

In order to transform an XMI document to a browser enabled format like HTML, a

coded stylesheet can be used to perform the task of transformation. The main purpose of

this project is to display an object oriented design in a browser [23]. This project uses an

XSL T processor to process the stylesheet along with XMI and generates a HTML file

which can be viewed in a browser.

2.2. Pamda tool

This tool 1s an UML2code generator which supports AOM (Aspect oriented

modeling). This tool takes input of any UML diagram, which supports Aspect oriented

modeling in XMI format and generates corresponding code for it [10). The tool also makes

use of a sophisticated velocity template engine in order to perform this conversion.

9

2.3. XMI2GXL Translator

A stylesheet is written using XSL T where GXL is produced from XML A class

diagram is saved as .xmi from ArgoUML, and then a corresponding XSLT is used to

transform this XMI to GXL [9]. This tool is command based, which requires a file to be

executed from a command prompt and does not have any user interface to do the

processmg.

As described in [13], xslt can be used to transform GXL to GraphML and vice

versa. This paper uses xslt extensively to complete the task of transformation. In this paper,

this methodology is used as a base to use xslt, but with a different set of graph formats.

2.4. JAXP (Java API for XML parsing)

JAXP uses its API (Application programming interface) to parse and validate XML

documents [17]. The initial version of JAXP 1.3 was released with J2SE 5.0, but with the

release of J2SE 6.0 JAXP 1.4, there has been a support of Streaming API for XML (StaX).

JAXP consists of the following APis

1. SAX (Simple API for XML)

2. DOM (Document Object Model)

3. Transformer (Refer to Chapter 5)

2.4.1. SAX (Simple API for XML)

SAX [17] is used for element by element processing in an XML document. In this

method of parsing, a SAXParserFactory class helps us to generate an instance of a parser.

10

There are several interfaces already pre-defined in the API, such as ContentHandler,

ErrorHandler, EntityResolver, and DTDHandler, which consist of some pre-defined

methods .. These methods are used by SAXReader object, which are wrapped in parser.

This kind of parsing is done on an element-by-element basis, which makes it useful on the

server side, rather than the application front.

2.4.2. DOM (Document Object Model) API:

DOM parsing is basically done in a tree-structure format. The entire XML

document is loaded into memory in the form of a tree structure, classified into nodes and

parsing starts from root node to preceding children. This API is generally more inclined

towards interactive applications as the entire XML tree structure is present in the memory,

aiding the user to modify and access results. In this API a DocumentBuilderFactory class is

used to create a DocumentBuilder instance, which is used to parse an XML document.

2.4.3. API for XSL T

JAXP has an API for XSLT processing which is defined in the javax.xml.transform

package, which provides access to the XSLT created by this study, which reads as a stream

of data and is processed with the transformation instructions. This API has been used in

tool creation and to process the stylesheet, and more information on the API is provided in

Chapter 4.

2.5. <oXygen/> xml Editor

In this paper we have used <oXygen> to validate and test stylesheet, using multiple

11

sources and target documents. This tool offers us with a platform of transformation by

providing some core functionalities to experiment with xml, such as editing, parsing,

transformation and to support the modem day needs of programming. This tool also

provides the functionality of SOAP and WSDL testing [19]. We used this tool in debugging

and testing the stylesheet that has been used for transformation in this paper. This tool has

been used for the initial testing of stylesheet as this has almost all the xslt processors

embedded in it. <oXygen/> tool is a commercial software and requires a purchased license;

we used a trial version, which lasts for 30 days and is fully functional as a paid software,

but only for a limited period of time.

2.6. Eclipse IDE

We used Eclipse, an open source IDE, to build XGraphML with the help of four

different classes. The entire project is run as a package which can further be deployed on to

jboss server to make it accessible for multiple users. This open source development

environment provides various plug-ins by importing their respective libraries [7]. Eclipse

incorporates a built-in incremental compiler and full model of java source files. Eclipse can

be used to export the entire project into an executable jar file that makes XGraphML

portable and platform independent, provided java is installed as a pre-requisite on the

machine.

12

CHAPTER3

UNDERSTANDING XMI, PGML AND GRAPHML

In order to transform one format to another there has to be a clear understanding

between all the elements of source and the target document. The source elements are to be

mapped to the target elements with the help of processing instructions written in XSL T. As

this paper deals with the transformation of UML format to GraphML, we have to

understand what elements in UML format correspond to elements in GraphML and then try

to map most all of them. All the elements cannot be mapped with each other as they are in

two different formats, so we try to extract all possible elements from the source document

and then try to inject them in the target document, i.e., GraphML.

3.1. Core elements of XMI

XMI is an OMG standard that deals with the exchange of metadata via XML [16].

In this paper we use an open source tool to draw class diagrams which are saved in . uml

format. All the data that is present in the class diagrams are saved in xmi and pgml

elements that look similar to XML format. XMI has a specific DTD, which was defined by

the OMG [4] when this format was proposed, but ArgoUML uses its customized tages. We

give a brief overview of the XMI format and the elements used from the perspective of

ArgoUML and how the data is stored in this tool.

13

3.1.1. Classes and Attributes

Fig 3.1 shows a simple class diagram with two classes Employee and Department.

The attributes of the classes are name, id, salary, Dnum, Dname and has two methods

payslip() and projects().

Employee

name : String
id: int
salary : int

payslipO : void

UML CLASS DIAGRAM

Department
Works for

1 __ .,. Dnum : int
i---------------1 Dname : String

projects◊ : void

Fig 3.1. Example of a class diagram

XMI Code

<XMI xmi.version = '1.2' xmlns:UML = 'org.omg.xmi.namespace.UML' timestamp = 'Thu Feb 25
13:02:45 CST 2010'>
<XMI.header> <XMI.documentation>

<XMl.exporter>ArgoUML (using Netbeans XMI Writer version 1.0)</XMI.exporter>
<XMI.exporterVersion>0.28.1(6) revised on $Date: 2007-05-12 08:08:08 +0200 (Sat, 12 May

2007) $ </XMI.exporterVersion>
</XMI.documentation>
<XMI.metamodel xmi.name="UML" xmi.version="l .4"/></XMI.header>

<XML content>
<UML:Model xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DDB'name

= 'untitledModel' isSpecification = 'false' isRoot '= 'false' isLeaf = 'false' isAbstract = 'false'>
<UML: Namespace.ownedElement>

<UML:Class xmi.id = '10-22-2--73-324c276 l: 1270<>6b<l6ck:-
8000:0000000000000DDC'name = 'Employee' visibility= 'public' isSpecification = 'false' isRoot
= 'false' isLeaf = 'false' isAbstract = 'false' isActive = 'false'>

<UML:Classifier.feature>
<UML:Attribute xmi.id = 'I 0-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DDD'name = 'name' visibility= 'public' isSpecification = 'false' ownerScope
= 'instance'changeability = 'changeable' targetScope = 'instance'>

<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id = 'l 0-22-2--73-324c2761: I 27066bd6dc:-8000:0000000000000DDE'>

<UML:Multiplicity.range>
<UML:MultiplicityRange xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DDF'lower ='I' upper= 'I'/>

14

</UML:Multiplicity.range>
</UML: Multiplicity>

</UML:Structuralf eature.multiplicity>
<UML: StructuralFeature. type>

<UML:DataType href = 'http://argouml.org/profiles/uml 14/default-uml l 4.xmi#-84- l 7--
56-5-43645a83: 11466542d86:-8000:000000000000087E'/>

<IUML:StructuralFeature.type>
</UML:Attribute>
<UML:Attribute xmi.id = 'I 0-22-2--73-324c276 l: l 27066bd6dc:-

8000:0000000000000DE0' name = 'id' visibility= 'public' isSpecification = 'false' ownerScope =
'instance'changeability = 'changeable' targetScope = 'instance'>

<UML:Structura!Feature.multiplicity>
<UML:Multiplicity xmi.id = 'I 0-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DE 1 '>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = 'l 0-22-2--73-324c2761: l 27066bd6dc:-
8000:0000000000000DE2'1ower = '1' upper= '1 '/>

</UML:Multiplicity.range>
</UML:Multiplicity>

</UML:Structuralfeature.multiplicity>
<UML: StructuralF eature .type>

<UML:DataType href = 'http://argouml.org/profiles/uml 14/default
java.xmi#.:000000000000086C'/>

<IUML:StructuralFeature.type>
<IUML:Attribute>
<UML:Attribute xmi.id = 'I 0-22-2--73-324c276 l: 127066bd6dc:-

8000:0000000000000DE3'name = 'salary' visibility= 'public' isSpecification = 'false' ownerScope
= 'instance'changeability = 'changeable' targetScope = 'instance'>

<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id = 'I 0-22-2--73-324c276 l: 127066bd6dc:-

8000: 0000000000000 D E4'>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id ='I 0-22-2--73-324c276 l: 127066bd6dc:-
8000:0000000000000DE5'lower = '1' upper= 'I'/>

</UML:Multiplicity.range>
</UML:Multiplicity>

<IUML:StructuralFeature.multiplicity> ·
<UML: StructuralF eature. type>

<UML:DataType href = 'http://argouml.org/profiles/uml 14/default-uml 14.xmi#-84-l 7--
56-5-43645a83: l l 466542d86:-8000:000000000000087E'/>

<IUML: StructuralF eature. type>
</UML:Attribute>
<UML:Operation xmi.id = 'I 0-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DE6'name = 'payslip' visibility= 'public' isSpecification = 'false'
ownerScope = 'instance'isQuery = 'false' concurrency = 'sequential' isRoot = 'false' is Leaf= 'false'
isAbstract = 'false'>

<UML: BehavioralF eature. parameter>
<UML:Parameter xmi.id = 'I 0-22-2--73-324c276 l: l 27066bd6dc:-

8000:0000000000000DE7' name= 'return' isSpecification = 'false' kind= 'return'>
<UML: Parameter. type>

15

<UML:DataType href = 'http://argouml.org/profiles/uml l 4/default
java.xmi#.:000000000000086B'/>

</UML:Parameter.type>
</UML:Parameter>

</UML: BehavioralF eature. parameter>
</UML:Operation>

</UML:Classifier.feature>
</UML:Class>
<UML:Class xmi.id = 'l0-22-2--73-324c2761 :127066bd6dc:-8000:0000000000000DE8'
name= 'Department' visibility= 'public' isSpecification = 'false' isRoot = 'false'isLeaf =

'false' isAbstract = 'false' isActive = 'false'>
<UML:Classifier.feature>

<UML:Attribute xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-
8000:0000000000000DE9' name= 'Dnum' visibility = 'public' isSpecification = 'false' ownerScope
= 'instance'changeability = 'changeable' targetScope = 'instance'>

<UML:Structura!Feature.multiplicity>
<UML:Multiplicity xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-

8000: 0000000000000 DEA'>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = '10-22-2--73-324c276 l: l 27066bd6dc:-
8000:0000000000000DEB'lower = 'l' upper= '1 '/>

</UML:Multiplicity.range>
</UML:Multiplicity>

</UML:StructuralFeature.multiplicity>
<UML: StructuralF eature. type>

<UML:DataType href = 'http://argouml.org/profiles/uml 14/default
java.xmi#. :000000000000086C'/>

</UML:StructuralFeature.type>
</UML:Attribute>
<UML:Attribute xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DEC'name = 'Dname' visibility = 'public' isSpecification = 'false'
ownerScope = 'instance'changeability = 'changeable' targetScope = 'instance'>

<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id = '10-22-2--73-324c276 l: l 27066bd6dc:-

8000: 00000000000000 ED'>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = 'l 0-22-2--73-324c2761: 127066bd6dc:-
8000:0000000000000DEE'lower = 'l' upper= 'l '/>

</UML:Multiplicity.range>
</UML:Multiplicity>

</UML:Structura!Feature.multiplicity>
<U ML: StructuralF eature. type>

<UML: Data Type href = 'http://argouml.org/profiles/uml 14/default-uml 14.xmi#-84- l 7--
56-5-43645a83: 11466542d86:-8000:000000000000087E'/>

</UML:StructuralFeature.type>
</UML:Attribute>
<UML:Operation xmi.id = '10-22-2--73-324c276 l: l 27066bd6dc:-

8000:0000000000000DEF'name = 'projects' visibility= 'public' isSpecification = 'false'
ownerScope = 'instance' isQuery = 'false' concurrency= 'sequential' is Root= 'false' is Leaf=
'false'isAbstract = 'false'>

16

<UML:BehavioralFeature.parameter>
<UML:Parameter xmi.id = 'l 0-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000DF0'name = 'return' isSpecification = 'false' kind = 'return'>
<UML:Parameter.type>

</UML:Parameter.type>
</UML:Parameter>

</UML:BehavioralF eature. parameter>
</UML:Operation>

</UML:Classifier.feature>
</UML:Class>

Fig 3.2. XMI code generated for Fig3.1.

ArgoUML generates XMI format with numerous elements and attributes, but for

our requirement we only considered core elements that are required for transformation.

Every XMI code generated from the ArgoUML follows a specific DTD [2] (Document

Type Definition).This format is divided into header (<XMl.header>) and content

(<XMI.content>). (<XMI.header>) consists of the exporter, i.e. ArgoUML in our case,

and its version in (<XMI.exporterVersion>). It also has the name of the metamodel and

its version, from which this class diagram has been derived.

As metamodel is UML, we import UML namespace initially in the starting of the

document given as "xmlns:UML = 'org.omg.xmi.namespace" .The name of the class with

other properties of that class are stored in (<UML:Class>) and each class has an auto

generated xmi.id. In the example above, xmi.id is '10-22-2--73-324c2761:127066bd6dc:-

8000:0000000000000DDC,which is a unique id. This id is used as a reference further in the

entire XMI document to make associations. The class name is bold and marked in red to

differentiate readable to the reader. (<UML:Operation>) consists of all the methods that

have been specified in a class. (<UML:Attributc>) contains all the attributes of a

particular class. (<UML:MultiplicityRange>) element has multiplicity like 0 .. *(zcro-to

many), 1.. *(one-to-many), l.. l(one-to-one) and are distinguished as upper limit and lower

17

limit and a value next to it. All the above mentioned elements are child elements to

(<UML:Class>), and every class has all these elements in common. If a class has no

attributes, the name attribute is left empty, but a unique id is auto-generated and is

referenced with the same id in the entire XML.

3.1.2. Associations

Taking Fig 3.1 into consideration, if there is an association between Employee and

Department, the code in the Fig 3 .3 is added up in the above XMI code.

(<UML:Association>) element contains all the properties of the association. The name of

the association is given in the name attribute inside the (<UML:Association>), the origin

and the target classes are referenced with their id m

(<UML:AssociationEnd.participant>). The diagram consists of only one association and

thus there are two end participants which are referenced to both the classes, with their

xmi.ids' 10-22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DDC' for Employee

and '10-22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DE8' for Department.

The multiplicity of the association is given by (<UML:MultiplicityRange>). The name of

the association "Works for" is also given by a randomly auto-generated id "10-22-2--73-

324c2761: 127066bd6dc:-8000:0000000000000DF1 ', which is highlighted in red for the

reader's convenience.

XMI Code

<UML:Association xmi.id = '10-22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DF1'
name= 'Works for' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'
isAbstract = 'false'>
<UML:Association.connection>

<UML:AssociationEnd xmi.id = 'I 0-22-2--73-324c276 I: I 27066bd6dc:-

18

8000:0000000000000DF2'visibility = 'public' isSpecification = 'false' isNavigable = 'true' ordering
= 'unordered'aggregation = 'none' targetScope = 'instance' changeability = 'changeable'>

<UML:AssociationEnd.multiplicity>
<UML:Multiplicity xmi.id = 'l 0-22-2--73-324c2761: l 27066bd6dc:-

8000: 0000000000000D F9'>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = 'I 0-22-2--73-324c276 l: l 27066bd6dc:-
8000:0000000000000DF8'lower = 'l' upper= 'l'/>

</UML:Multiplicity.range>
</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>
<UML:AssociationEnd.participant>

<UML:Class xmi.idref = 'l 0-22-2--73-324c276 l: l 27066bd6dc:-
8000: 0000000000000 D DC'/>

</UML:AssociationEnd. participant>
</UML:AssociationEnd>
<UML:AssociationEnd xmi.id = 'I0-22-2--73-324c276 l: 127066bd6dc:-

8000:0000000000000DF5'visibility = 'public' isSpecification = 'false' isNavigable = 'true' ordering
= 'unordered'aggregation = 'none' targetScope = 'instance' changeability = 'changeable'>

<UML:AssociationEnd.multiplicity>
<UML:Multiplicity xmi.id = '10-22-2--73-324c276 l: l 27066bd6dc:-

8000: 0000000000000D FB'>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id ='I 0-22-2--73-324c2761: 127066bd6dc:-
8000:0000000000000DF A'lower = '1' upper= 1-l 1/>

</UML:Multiplicity.range>
</UML: Multiplicity>

</UML:AssociationEnd.multiplicity>
<UML:AssociationEnd.participant>

<UML:Class xmi.idref = '10-22-2--73-324c276 l: l 27066bd6dc:-
8000:0000000000000DE8'/>

</UML:AssociationEnd.participant>
</UML:AssociationEnd>

</UML:Association.connection>
</UML:Association>

</UML:Namespace.ownedElement>
</UML:Model>
<UML:Multiplicity xmi.id = 'l 0-22-2--73-324c2761: 127066bd6dc:-

8000:0000000000000 DF3 '>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = 'l 0-22-2--73-324c2761: 127066bd6dc:-
8000:0000000000000DF4'1ower = '1' upper= '1 '/>

</UML:Multiplicity.range>
</UML:Multiplicity>
<UML:Multiplicity xmi. id = 'I 0-22-2--73-324c2761: 127066bd6dc:-

8000: 0000000000O00DF6'>

Fig 3.3. XMI code generated for an association

19

3.2. Core elements of PGML

Precision graph markup language is a language which is used to generate 2D

graphics for some pre-defined shapes like rectangle, circle, eclipse and pie wedge.

ArgoUML uses PGML to define co-ordinate systems for each rectangle represented as a

class in a class diagram. This graph format has some elements which represent advanced

graphical properties like color, font and stroke.

3.2.1. <Group>

The <Group>element of the PGML file has attribute names, descriptions, and has

a reference given by the attribute 'href to each class of a class diagram, and attributes such

as fill, fillcolor, stroke and stroke color are used to enhance the appearance of a class as a

whole. The name attribute is given a specific reference number like "Fig 0.0", "Fig 0. 1.0"

etc. The XML code for the element <group> is given by

<group name="Fig0'' description="org.argouml.uml.diagram.static_structure.ui.FigClass
[168, 72, 112, 112] pathVisible=false; stereotypeView=0; operationsVisible=true;
attributes Visible=true; "href="l0-22-2--73-324c2761: 127066bd6dc:-
8000:0000000000000DDC" fill=" l" fillcolor="white" stroke=" 1" strokecolor="black">

3.2.2. <rectangle>

In a class diagram, a class is represented as a rectangle with three partitions, and

each partition is given a specific coordinates in terms of 'x' and 'y'. Attributes like height

and width are used to specify the dimensions of that rectangle, and attributes like color are

available to make a class look user friendly and interactive. We make use of the xy

coordinates in the resultant graphml. Each class in a class diagram has 3 <rectangle>

elements incorporated in to a <group> element.

20

<group>
<rectangle name="Fig0.0" x="168" y="72" width="l 12" height="l 12" fill="l"
fillcolor="white" stroke="0" strokecolor="0 255 255"/>

</group>

3.2.3. <text>

This element of PGML holds all the text entered into the class, such as the name,

methods and the attributes. Attributes like font, font size and textcolor are added in addition

to the previous attributes. Fig 3.4. shows the generated code in PGML.

<text name="Fig0.3.2" x="l68" y="154" width="84" height="22" fill="0" fillcolor="
white" stroke="0" strokecolor="black" textcolor="black" font="Dialog" italic="false"
bold="false" textsize=" 12" justification="Left">payslipO : void</text>

Generated PGML

<pgml description="org.argouml. um I.diagram. static_ structure. ui. UMLClassDiagraml 10-22-2--
73-324c276 l: l 27066bd6dc:-8000:0000000000000DDB"name="Class Diagram>

<group
name="FigO" description=" org.argoum I. um] .diagram. static_ structure. ui .FigClass[16
8, 72, 112,
112]path Visible=false;stereotype View=O;operations Visible=true;attributes Visible=t
rue; "href=" 10-22-2--73-324c276 l: l 27066bd6dc:-8000:0000000000000DDC"
fill=" 1" fillcolor="white" stroke=" l" strokecolor="black">

<private>
</private>

<rectangle name="FigO.O" x="168" y="72" width="l 12"
height=" 112"fill=" 1 "fillcolor="white"stroke="O"

strokecolor="O 255 255"/> ·
<group name="Fig0.1" description="org.argouml.uml.diagram.ui.FigStereotypesGroup[168,

72, 112, OJ"
href=" 10-22-2--73-324c2 7 61 : 12 7066bd6dc :-8000: 0000000000000 D DC" fi II=" 1 "

fillcolor="white" stroke=" 1"
<private>
</private>

strokecolor="black">

<rectangle name="FigO. 1.0" x=" 168" y="72" width=" 112" height="O"
fill=" 1 "fillcolor="white"stroke=" I" strokecolor="black" />

</group>
<text name="Fig0.2" x="l68" y="72" width=" 112" height="23" fill=" I" fillcolor="white"

stroke="O" strokecolor="black" textcolor="black" font="Dialog"
italic="false"bold="false"textsize=" 12"justification="Center"

21

>Employee</text>
<group name="Fig0.3"

description="org.argouml.uml.diagram.ui.FigOperationsCompartment[168, 153, 112, 30]"
href=" 10-22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DDC" fill=" l"

fillcolor="white" stroke="0"
strokecolor="black">

<private>
</private>
<rectangle name="Fig0.3.0" x="168" y="l53" width="l 12" height="30" fill="!"

fillcolor="white" stroke="0"strokecolor="black" />
<path name="Fig0.3.1"

description="org.argouml.uml.diagram.ui.FigEditableCompartment$FigSeperator"
fill"=" 1" ftllcolor="white"stroke=" 1 "strokecolor="black" >
<moveto x="168" y="l53" />

<lineto x="279" y="l53" />
</path>
<text name="Fig0.3.2" x="168" y="l54" width="84"

height="22"fill="0"fillcolor="white"stroke="0" strokecolor="black" textcolor="black"
font="Dialog" italic="false"bold="false"textsize=" 12"
justification="Left">payslip() : void</text>

</group>
<group name="Fig0.4"

description="org.argouml.uml.diagram.ui.FigAttributesCompartment[168, 95, 112, 58]"
href=" 10-22-2--73-324c276 l: 127066bd6dc:-8000:0000000000000DDC"

fill=" 1 "fillcolor="white"stroke="0" strokecolor="black">
<private>
</private>

<rectangle name="Fig0.4.0" x="168" y="95" width="l 12"
height="58"fill=" 1 "fillcolor="white"stroke="0"

strokecolor="black"/>
<path name="Fig0.4.1"

description="org.argouml.uml.diagram.ui.FigEditableCompartment$FigSeperator"
fill=" l "fillcolor="white" stroke=" 1" strokecolor="black">
<moveto x="l68" y="95" />
<lineto x="279"y="95" />

</path>
<text name="Fig0.4.2" x="l68" y="96"width="79"

height=" 16"fill="0"fillcolor="white"stroke="0"
strokecolor="black"textcolor="black"font="Dialog" italic="false" bold="false''
textsize=" 12"justification="Left"

>name : String</text>
<text name="Fig0.4.3" x="l68" y="l 12" width="38" height="16"
fill="0"fillcolor="white"stroke="0" strokecolor="black" textcolor="black"font="Dialog"
italic="false"bold="false" textsize="12" justification="Left">id: int</text>

<text name="Fig0.4.4" x="l68" y="l28" width="80" height="22"
fill="0"fillcolor="white"stroke="0"
strokecolor="black"textcolor="black"font="Dialog"italic="false"bold="false"justification="Left"
>salary : String</text>

</group>
<rectangle name="Fig0.5" x="168" y="72" width="l 12 heightc=="l 12"

22

fill="0"fillcolor="white"stroke=" 1" strokecolor="black"/>
</group>
<group name="Fig 1" description="org.argouml. uml.diagram.static _structure. ui.FigClass[456,

80, 123,
96]path Visible=false;stereotype View=0;operationsVisible=true;attributes Visible=true; "href=" 10-
22-2--73-324c2761: 127066bd6dc:-8000:0000000000000DE8" fill=" I"
fillcolor="white"stroke=" 1 "strokecolor="black">

<private>
</private>

<rectangle name="Figl.0" x="456" y="80" width=" 123" height="96"
fill=" 1 "fillcolor="white"stroke="0" strokecolor="0 255 255"/>

<group name="Figl. l "description="org.argouml.uml.diagram.ui.FigStereotypesGroup[456,
80, 123, 0]"

href=" 10-22-2--73-324c276 l: l 27066bd6dc:-8000:0000000000000DE8" fill=" l"
fillcolor="white" stroke=" l"

strokecolor="black">
<private>
</private>

<rectangle name="Figl.1.0" x="456" y="80" width="123"
height="0"fill="l "fillcolor="white"stroke=" l" strokecolor="black"/>

</group>
</pgml>

Fig 3.4. PGML file generated from two classes and a relation

3. 3. Core elements of GraphML

GraphML is a format which has been introduced to graph drawing community to

ease the generation of graphs by a customized and user friendly format. Various graph

drawing tools now implicitly use the GraphML format for saving a diagram drawn in those

tools. This kind of graph format is very flexible, extendible with the injection of more

packages and can be widely used for various purposes based on the users' needs. GraphML

is also an XML based format and thus makes things simple for a user to understand the

contents of the file format. GraphML provides some of the core features and properties of

graphs, but does so in its own terminology, using terms such as node, edge etc.

23

3.3.1. Nodes

In GraphML or in basic graph theory, a node is a fundamental unit with which

graphs are formed. The graphs can further be classified into directed or undirected based on

the properties of the nodes and edges which connect them

<node id=" 1" type="Employee" pos=" 160 48">
<port id=" {Employee} 11/>
<data key="attrib">

<attrib id=1Terminal" type="2" bool="True"/>
</data>

</node>
The node element's attributes include id, type and pos, and id is denoted by a

number which can later be identified with the reference of "id". The 'type' attribute of a

node specifies the characteristic of that node and the 'pos' attribute of a node reveals the

position of a node on an xy plane.<port> is a child element to <node>, and this element

gives a specific id on the node, which can be utilized to connect to a different node using an

edge. The <data> element is customized depending on the user's requirement.

3.3.2. Edges

An edge is a line connecting two nodes that are described as a source node and a

target node. The edge can still be classified as directed or undirected based on the direction

of flow or a specific property mentioned in the relationship. The directed attribute is false if

the edge has no specified direction and is true if there is a definite direction.

<edge type= 11 {E}" directed= 11 false 11 source=" l 11 sourceport=" {Employee} 11 target= 11 2"
targetport=" {Department}">

Here the source is the id of the node from which the edge is originated, and this

edge is using the port {Employee} to connect to the target node through port {Department}

ofnode2.

24

3.3.3. Port

A port is an attribute of a node and a node has numerous ports, such as North,

South, East, West (in the example given below). A user can declare his/her own port names

depending on the tool they use and requirement. A port name is mandatory for a node, and

a <port> element has to be declared.

<!ELEMENT port (desc?,(datalport)*)>
<!ATTLIST port name NMTOKEN #REQUIRED>

The above DTD explains the usage of port in GraphML, and a name is given to

the port when it is declared so that the edge can have them as an origin to the respective

node

<nodeid="n0">
<port name="North"/>
<port name="South"/>
<port name="East" />
<port name="West"/>

</node>

3.3.4. <desc>

The description element denoted by <desc> provides a brief description for the

element by which it is declared. This element is not mandatory but adds some additional

information about the element for a better understanding to a user. It is similar to a

<comment> tag which provides some additional information to the user for better

understanding.

3.3.5. <data>

The <data> element is used to declare an id which is used multiple times rather than

using the entire id of the node or edge. For example, <keyid= "kl for ="edge">,which

25

means the id 'kl' is assigned for an edge and, irrespective of how many nodes a graph

contains, the data for node is represented as

<edge source="nO" target="nl ">
<data key="kl ">

<edge>
Here 'kl' is a reference to an edge and, similarly, a key can be assigned to all the

elements, and a data element can be used to represent it as an id that we have declared in

the key.

3.4. Sample GraphML

Fig 3.5. shows a simple graph that consists of seven nodes and eight edges, and

the code generated for such a graph is given below. This graphml graph has been generated

by graph-tool, a tool based on phyton [22].

Fig 3.5. Sample GraphML file

The Fig 3 .6 shows the code generated for a simple graph with 7 nodes and 8 edges.

Each node and edge has a unique id and is referenced later with these ids.

GraphML Code

<?xml version="l.O" encoding="UTF-8"?>
<graphml xmlns=http://graphml.graphdrawing.org/xmlns
xmlns:xsi=http://www.w3.org/200l/XMLSchema-instance
xsi: schemaLocation= "http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/l .O/graphml.xsd">

<graph id="G" edgedefault="undirected">
<node id="nO"/>
<node id="nl "/>

26

<node id="n2"/>
<node id="n3"/>
<node id="n4"/>
<node id="n5"/>
<node id="n6"/>
<edge id="eO" source="nO" target="nl "/>
<edge id="el" source="nl" target="n2"/>
<edge id="e2" source="n2" target="n6"/>
<edge id="e3" source="n3" target="n4"/>
<edge id="e4" source="n4" target="n5"/>
<edge id="e5" source="n4" target="n2"/>
<edge id="e6" source="n5" target="n6"/>
<edge id="e7" source="n6" target="nl "/>

</graph>
</graphml>
Fig 3.6. Generated GraphML code for Fig(3.5.)

3.5. Generated GraphML for a simple association

Fig 3.7. shows a customized GraphML code for the Employee-Department class

diagram with a relationship 'Works for' between both the classes.

GraphML Code

<?xml version=" 1.0" encoding="UTF-8"?>
<!-- This GraphML document was generated from XMI by an XMI-to-GraphML conversion
style sheet.-->
<graphml xmlns:argouml="org.omg.xmi.namespace.UML"
xmlns: UML="org.omg.xmi.namespace. UML">
<graph id="untitledModel" edgedefault="undirected">
<desc>
<!--This graph is derived from a UML-class diagram-->
</desc>
<node id="l" type="Employee" pos="168 72">
<port id=" {Employee}"/>
<data key="attrib">
<attrib id="Terrninal" type="2" bool="True"/>
</data>
</node>
<node id="2" type="Department" pos="456 80">
<port id=" {Department}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>

27

</node>
<edge type=" {E}" directed="false" source=" 1" sourceport=" {Employee}" target="2"
targetport=" {Department}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
</graph>
</graphml>

Fig 3.7. GraphML file for a simple graph with a single association.

3.6. Comparison of UML format and GraphML format

Fig 3.8. shows an element level comparison of both the formats that are used in this

paper. Notes are provided with an explanation for each element, detailing the extent to

which they can be substituted with resultant formats.

UML Format Notes GraphML Format

<XMI> Substitutable, these are the root <graphml>
elements of both the formats
Substitutable, In GraphML all the <graph>

<UML:Model> keys to the corresponding <data> are
declared in this element.
Substitutable, Classes in UML class <node>

<UML:Class> diagrams are represented as nodes in
GraphML
Substitutable, Associations in Class- <edge>

<UML:Association> diagrams are known as edges m
GraphML
For this transformation, we consider <port>

Class-name the class name,which is unique, to be
the port name. Class diagrams cannot
be declared with multiple ports
This has to be generated by the <desc>

NIA stylesheet that we have written, the
stylesheet auto-generates <desc> for
better understanding to the users.
There lS no element m XMI <hyperedge>

NIA corresponding to

28

This element also has to be generated <key>
NIA during transformation and we give a

value for each <key>,and <data> is
represented using this element.
This element in XMI is used to store <key id ="method">

<UML:Operation> all methods inside a particular class.

This element in XMI is used to store <key id ="attribute">
<UML:Attribute> all the attributes and its properties.

This element lS used to store the <key id="leftlimits">
<UML:Multiplicity multiplicity value of the <key id="righlimits">
> corresponding Associations.
<PGML @x, @y> This element gives the position of the <node pos" ">

class on an xy plane

Fig 3.8. Element level comparison

As all the elements cannot be mapped between both formats, we try to extract most

of the data possible from .uml and try to get a GraphML file .In this process, some of the

elements are customized according to our needs and are generated by the stylesheet with

processing instructions specified.

29

CHAPTER4

IMPLEMENTATION OF XSL T

XML Stylesheet language transformation is a simple and the most extensively used

method of transforming two XML files. As UML and GraphML are two formats based on

XML, this paper uses XSLT as the mode of transformation. Transformation is easier using

XSL T, and is simple to extend a stylesheet to incorporate multiple XML file formats at

once.

There are a few alternatives to XSLT, such as XQuery, JSL T and Axgen. XQuery is

a deterministic functional language which is used to transform one form of XML to another

[26]. This language is designed for a large pool of XML data and retrieved using SQ L like

queries. So, for a user to use this language he/she has to be aware of SQL queries. This

language feels natural for the users who are well acquainted with SQL. XQuery lacks

document centric template processing, which makes it more difficult for formatting an

XML document.

JSL T is language which is purely based on JavaScript and is considered an

alternative to XSLT. This language does not use template based processing and any user

who is aware of JavaScript can use this language to do XML transformations. In order to

equip all the functionalities of XSL T into this language, JSON has to be passed instead of

an XML document and the client side template must use AJAX to perform a

transformation. These two features make this language even more complicated when

compared to XSLT.

AXgen is a tool which also takes the input of XML but generates java classes for

OJB by using Jakartas Velocity templates. This tool is built using some sophisticated

30

technologies and is used to take any input from an XMI generating tool like ArgoUML or

Rational Rose and then generate its corresponding java classes. This tool is useful when its

user want to understand a graph from a programmatic stand point, rather than a visual stand

point.

In this paper, XSL T is used as a middleware for any kind of XML transformation in

programming languages like Java, C# and .net, making it scalable. XSLT, when compared

to other techniques of transformation, provides a clear, distinct way of mapping elements

between two XML files. Irrespective of Java, C# or .net, a stylesheet can be embedded

within an application to perform the transformation. One of the most important reasons to

choose xslt for this paper is a need for template based transformation. Second, XML

formatting can be achieved only by XSL T when compared to all the other alternatives

discussed above. XSL T can be used to efficiently display the XML file on multiple web

browsers when compared to other parsing techniques.

XSL (XML Stylesheet Language) is a language which is widely used to transform

one XML format to a different XML format or some form of human readable format like

HTML. With a wide variety of graph formats like GXL, XMI, GML, there is a need to

transform one graph format to another for scalability, thereby reusing the same format with

a minimal loss of data [15]. XSL T is a stylesheet written in XML which uses a basic

paradigm of pattern matching. XSL T consists of XPath and XLink which together

constitute XPointer and is considered a core part of transformation. XPath provides all the

rules for transformation and XLink provides all the needed references from an external data

source. XPath is a component of XSL which visualizes the XML document in a tree

structure and then distinguishes between different types of nodes in a document. XPath and

31

XLink together make XPointer [18], which is used in XSLT to specify certain rules of

transformation in the form of a stylesheet.

As shown in the Fig4.1., XSL T applies a pattern matching technique wherein a

custom template is called and a set of processing instructions are already pre-written in that

template.

XML XML
PATTERN MATCH /'

<?xml version <xsl:stylesheet
<?xml version"I .O">
<student> "l.O"> xmlns:xsl="http://www.w3. <marks> <name> org/1999/XSL/Transform">

<address>abc</addr Source <xsl:tcmplatc match =··r> Target

ess> .;>
..... = - </marks> </name> </.,sl :template> </student>

\..
</xsl :stylesheet>

Fig 4.1. Pattern matching of XSL T

The processing instructions are written inside the <xsl:template> element, and the

attribute match in this element checks for the corresponding match in the source document

using a top-down approach, It then follows the processing instructions to give the desired

target. XSL T, in other words, is also an XML document and contains normal processing

instruction. In the block diagram above in Fig 4.1, template match performs a check from

the root node of the source document and indicates a starting point of the transformation. If

"/" is substituted by "address", an already existing template with the name "address" will

be called and then applied.

XSL T is also based on XML and is used to transform XML to HTML, XHTML

and a plain text document.XSL is a language with many elements. We will not use all of

them, but with a few of the elements, we can make the transformation possible. More and

more elements can be used for advanced users, but by keeping a novice user in mind, we

32

tend to make the stylesheet as simple as possible. In XSL T the transformations are

described as rules which form a pattern, and this pattern is matched against the source tree

and a resultant tree is achieved [5]. The resultant tree can have a similar structure to that of

the source tree or can be completely different.

4.1. Elements used in the transformation

The Fig 4.2 below gives a description of some of the basic elements that have been

used as a part of developing XGraphML. Column 1 lists all the elements and Column 2

gives a brief description of the respective elements.

ELEMENT

~l:output
:,;

xsl:choose

xsl:comment

I DESCR[PTION

This element stores the version of the stylesheet and the namespaces

This element specifies the way the target document is suppos_ed to be

displayed as an output

This element is used to specify variables with a pre'-detined constant

value.

This element is used in-XSLT as a switch case in any programming

language. This element is supposed to be preceded by xsl:when and

the condition is specified in this element

This element is used to specify a message to the output based upon a

the value of the terminate attribute yes/no.

This element is used to output a comment in the target document.

33

ul:element

xsl: for-each

This element is used to create an element in the target document.

This eleiµe11t is used to get the Value of an XML element in the

sotij'ce<clocumentanffaddittothe .. source. •document.

This element is similar to a for loop condition in any programming

language.

This element ··is · similarto.•an •if clause in any .. other programming

Fig 4.2. Basic elements of a stylesheet and their description

4.2. XGraphML.xsl

Fig 4.3 outlines the actual stylesheet which is used for the transformation of UML

to GraphML. We name the stylesheet as XGraphML, and all the XPath processing

instructions are written within the stylesheet.

XGraphML.xsl

<?xml version="l.O" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/l 999/XSL/T:-ansform" version="l .O"

xmlns:UML="org.omg.xmi.namespace.UML",
xmlns: argouml=" org.omg.xmi .namespace. UML ">

<xsl:output indent="yes" method="xml"/>
<xsl:strip-space elements="*"/>
<xsl:variable name="tool"

select="XMI/XMI.header/XMI.documentation/XMI.exporter/text()"></xsl:variable>
<xsl:variable name="metamodel name"

select="XMI/XMI.header/XMI.metamodel/@xmi.name"/>
<xsl:variable name="metamodel version"

select="XMI/XMI.header/XMI.metamodel/@xmi. version"/>

<xsl:template match="/">
<xsl:choose>

<xsl:when test="$metamodel_name !='UML' ">

34

<xsl:message terminate="yes">This source document is from an incorrect
mode l</xsl: message>

</xsl:when>
<xsl:when test="$metamodel_ version !=' I .4"'>

<xsl:message terminate="yes">This is an incorrect version</xsl:message>
</xsl:when>
<xsl:when test="$tool!='ArgoUML (using Netbeans XMI Writer version 1.0)"'>

<xsl:message terminate="yes"> The input is not derived from
ArgoUML </xsl :message>

</xsl:when>
<xsl: otherwise>

<xsl:message terminate="no"> This is from a correct version, correct model and
correct tool</xsl:message>

</xsl: otherwise>
</xsl:choose>

<xsl:comment> This GraphML document was generated from XMI by an XMI-to
GraphML conversion style sheet.</xsl:comment>

<graphml>
<graph>

<xsl:attribute name="id">
<xsl:value-of select="//XMI.content/UML:Model/@name"/>

</xsl:attribute>
<xsl:attribute name="edgedefault">undirected</xsl:attribute>
<desc>

<xsl:comment>This graph is derived from a UML-class
diagram</xsl:comment>

</desc>
<xsl:for-each

select="//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Class">
<node>

<xsl:variable name="a" select="@xmi.id"/>
<xsl:attribute name="id">

<!-- <xsl:variable name="cur" select='position()'/>
<xsl:value-of select="$cur" />
<xsl:variable name="pre" select=". "></xsl:variable> -->

<xsl:value-of select="$a"/>
</xsl:attribute>
<xsl:attribute name="type">

<xsl:value-of select="@name"/>
</xsl:attribute>
<xsl:attribute name="pos">

<xsl:for-each select="//pgml/group">
<xsl: if test="@href=$a ">

<xsl:value-of select="rectangle[1]/@x"/>
<xsl:text> </xsl:text>
<xsl:value-of select="rectangle[1]/@y"/>

</xsl:if'>
</xsl:for-each>

</xsl:attribute>

35

<port>
<xsl:attribute name="id">

<xsl:text> { </xsl:text>
<xsl:value-of select="@name"/>
<xsl:text> }</xsl:text>

</xsl:attribute>
</port>
<data key="attrib">

<attrib>
<xsl :attribute name=" id"> Terminal</xsl: attribute>
<xsl:attribute name="type">2</xsl:attribute>
<xsl:attribute name="bool">True</xsl:attribute>

</attrib>
</data>

</node>
</xsl :for-each>

<xsl:for-each
select="//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Association">

<edge>
<xsl:attribute name="type">{E}</xsl:attribute>
<xsl: attribute name=" directed ">false</xsl: attribute>

<xsl:for-each
select="UML:Association.connection/UML:AssociationEnd[l]/UML:AssociationEnd.participant
/UML:Class">

<xsl:variable name="classid" select="@xmi.idref'/>
<xsl:attribute name="source">

<xsl:value-of select="$classid"/>
</xsl:attribute>
<xsl:attribute name="sourceport">

<xsl :for-each
select="//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Class">

<xsl:if test="@xmi.id=$c1assid">
<xsl :text> { </xsl :text>
<xsl:value-of select="@name"/>
<xsl :text>} </xsl:text>

</xsl:if>
</xsl: for-each>

</xsl:attribute>
</xsl:for-each>
<xsl :for-each

select="UML:Association.connection/UML:AssociationEnd[2]/UML:AssociationEnd.participant
/UML:Class">

<xsl:variable name="classid" select="@xmi.idref'/>
<xsl:attribute name="target">

<xsl:value-of select="$classid"/>
</xsl:attribute>
<xsl:attribute name="targetport">

<xsl :for-each
select="//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Class">

36

<xsl:if test=" @xmi.id=$c1assid">
<xsl :text> { </xsl :text>
<xsl:value-of select="@name"/>
<xsl :text>} </xsl :text>

</xsl:if>
</xsl:for-each>

</xsl:attribute>
<desc>

<xsl:comment>This edge represents a relationship between classes in a
UML Class diagram</xsl:comment>

</desc>
</xsl: for-each>

</edge>
</xsl:for-each>

</graph>
</graphml>

</xsl:template>
</xsl :stylesheet>

Fig 4.3. XGraphML.xsl

In the stylesheet above, we declare three variables, tool, meta_model and

metamodel_ version along with some values, and we retrieve the values later in the

stylesheet using a prefix' $'.

4.2.1. Initial Version Check and Validation

<xsl:choose>
<xsl:when test="$metamodel_name !='UML' ">

<xsl:message terminate="yes">This source document is from an incorrect
model</xsl: message>

</xsl:when>
<xsl:when test="$metamodel_ version !='1.4' ">

<xsl:message terminate="yes">This is an incorrect version</xsl:message>
</xsl:when>
<xsl:when test="$tool!='ArgoUML (using Netbeans XMI Writer version

1.0)"'>
<xsl:message terminate="yes"> The input is not derived from

ArgoUML</xsl:message>
</xsl:when>
<xsl:otherwise>

37

<xsl:message terminate="no"> This is from a correct version, correct model
and correct tool</xsl:message>

</xsl:otherwise>
</xsl:choose>

This part of the stylesheet performs the initial validation of the UML file, which has

been generated by ArgoUML or any other tool. If the file is generated by a different tool

apart from ArgoUML, it terminates and gives an error message, "generated from an

incorrect tool". <xsl:choose> is an XML version of switch case as in OOP(Object oriented

programming). The first <xsl:when> checks for the metamodel of the XML. As the

metamodel used by ArgoUML is "UML", the stylesheet checks for the metamodel and if

incorrect, <xsl:message> is passed over the control, and the processing is terminated. A

message is displayed saying that the source document is from an incorrect model. The

second <xsl:when> checks for the version of metamodel if it is equal to 1 .4, if not,

<xsl:message> is executed and an error message is displayed to the user.

If all the initial validation is passed, then the last <xsl:otherwise> is executed where

in the <xsl:message terminate="no"> will execute, which implies that all the previous

validations were true. A message is still displayed to the user saying "This is from a

correct version, correct model and correct. tool." This message informs the user that the

input is from ArgoUML and is from a correct model. Further parts of the stylesheet are the

actual transformation of the XMI document after validation.

As mentioned in the previous sections, <xsl:template match ="/"> is a rule which

starts processing from the root node of the source document. In our case, <XMI> is the root

node of the input document. <xsl:comment> is used to place a comment in the target tree as

we use <!. > or /* */in other programming languages. There is a <key> element that is

38

assigned to either node or edge using an attribute "id" and has different property names,

such as attribute and methods.

4.2.2. Classes or Nodes

<xsl:for-each

select=''//XMl.content/UML:Model/UML:Namespace.ownedElement/UML:Class">

The above "for-each" statement extracts all the data required from within the

<UML:Class> element of the XML This data is transformed as a node into the GraphML

format. Irrespective of the number of classes in a class diagram, the iteration takes place

until the last <UML:Class> element and the corresponding nodes are created in the target

tree.

4.2.3. Methods

<xsl:for-each select=" UML: Classifier .f eature/UML: Operation">
<data key ="method">

<xsl:value-of select="@name" />
</data>

</xsl:for-each>

The above "for-each" loop in the stylesheet checks for the <UML:Operation>

element in source document and then creates a <data> element with the <key> value

"method." The <xsl:value-of> extracts data corresponding to the name attribute inside the

<UML:Operation> element. All the methods declared in a particular class are retrieved and

stored with the key value "method" and placed in their respective classes.

39

4.2.4. Attributes

Every class can have many attributes or none depending upon the users' needs and

the project's requirements. We took both these scenarios into account and then wrote a

condition in the stylesheet that checks for data and retrieves it to a target document.

<xsl:for-each select=''UML:Classifier.feature/UML:Attribute''>
<data key ="attribute">

<xsl:value-of select="@name" />
</data>

</xsl:for-each>

The value of the attribute is classified within <data key="attribute"> and the

attributes of a class are extracted from the <UML:Atrribute> element of the source with an

attribute name. If there are no attributes, the value will be left empty, but a random key is

generated.

4.3. Association or Edges

Associations in a class diagram and edges in GraphML are the same. An edge in

GraphML has many attributes, such as id, source, sourceport, target and targetport. In order

to extract all the data from the class diagram, we use the class name as the port name for

the transformation because Class diagrams do not have a concept of ports.

<xsl:for-each
select=''//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Associati
on">

<edge>
<xsl:attribute name="id">

<xsl:value-of select="@xmi.id "/>
</xsl: attribute>

<edge>

The "id" of an association is specified inside a <UML:Association> element with

an auto-generated id by ArgoUML and is stored in xmi.id attribute. The <value-of>

40

extracts the value of xmi.id and then copies the value to the resultant graphml. The value

extracted from this is classified into an 'id' attribute for edge.

4.3.1. Source

The source attribute in a class diagram is the class from which the association

originates. In our example, Employee would be the source.

<xsl:for-each
select=''UML:Association.connection/UML:AssociationEnd[l]/UML:AssociationEnd.
participant/UML:Class">

<xsl:variable name=" class id" select="@xmi.idrer' />
<xsl: attribute name=" source">

<xsl:value-of select="$classid "/>
</xsl:attribute>

</xsl:for-each>

The for-each condition checks for <UML:AssociationEnd.participant> and drills down to

the <UML:Class> element where the id is retrieved using @xmi.idref.

4.3.2. Sourceport

As the UML Class diagram does not employ the concept of ports, for

transformation we consider source port the name of the class.

<xsl:attribute name="sourceport">
<xsl:for-each

select=''//XMI.content/UML:Model/UML:Namespace.ownedEiement/UML:Class">
<xsl:if test=" @xmi.id=$classid ">

<xsl: text> { </xsl: text>
<xsl:value-of select="@name" />

<xsl: text>} </xsl: text>
</xsl:if>

</xsl:for-each>
</xsl: attribute>

41

4.3.3. Target

Target is the target class in the class diagram or a node in GraphML to which an

association or an edge lS connected. The first occurrmg

<UML:AssociationEnd.participant> element in the source document is the source of the

association, and the second element corresponds to the target. Any Association or edge

cannot have more than two <UML:AssociationEnd.participant> elements as their children

to the<UML:Association> element.

<xsl:for-each
select=''UML:Association.connection/UML:AssociationEnd[2]/UML:AssociationEnd.
participant/UML:Class">

<xsl:variable name=" class id" select="@xmi.idrer '/>
<xsl:attribute name="target">

<xsl:value-of select=" $class id"/>
</xsl:attribute>

</xsl:for-each>

4.3.4 Target Port

The target port is in the recipient class where the association ends, and it can be

retrieved from the '@name' attribute value, which corresponds to the name of the class.

<xsl:attribute name="targetport">
<xsl:for-each

select="//XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Class''>
<xsl:if test=" @xmi.id=$classid">

<xsl:value-of select="@name "/>
</xsl:if>

</xsl:for-each>
</xsl: attribute>

42

4.3.5 Directed or Undirected Edge

An edge can be either directed or undirected without any specific direction. We

specify certain rules in the XSL T, which detennines if the edge is directed or undirected.

We create a <data key ="directededge"> element, and if the edge is directed, we output the

text value as true. If the edge is undirected, the value is false.

<data key="directededge">
<xsl:variable name=''navigationcount'' select=''count(UML:Association.connection

/UML:AssociationEnd[@isNavigable='true'])"/>

</data>

<xsl:choose>
<xsl:when test="$navigationcount> 1 ">directedfalse</xsl:when>
<xsl:otherwise>directedtrue</xsl:otherwise>

</xsl: choose>

43

CHAPTERS

IMPLEMENTATION OF THE TOOL-XGRAPHML

In this Chapter we give a brief overview of the XGraphML tool that has been

designed for the transformation of UML to GraphML using the XSL T, JAXP and Java

Swing. This tool provides a user interface where in the user can import an .uml file, select

the corresponding stylesheet and transform to GraphML. The most important feature is that

the user can see the actual transformation taking place in the other pane of the tool. The

user can compare both the formats together and then save the transformed GraphML to

his/her desired location on the computer.

5.1. Block Diagram of the transformation.

Fig 5.1. explains the transformation ofUML to GraphML. ArgoUML is the tool

used to draw a class diagram and is stored in . uml format.

Fl

l'(GR.\J'lll\fL
Sto,.,d ""

J XP4cS\\1NO

.XSLT

Fig 5.1. Block diagram of the transformation

44

\'EGCH£

Ot 1fl'l "T

OraphML

This file is used as an input to XGraphML tool which has been developed to give us

the targeted output, i.e., GraphML. This output file is further utilized by tools like Veggie

for further analysis with graph grammars.

5.2. Basic Interface of the tool

This tool is built using Java Swing and JAXP, and this tool is still in the initial

stages of development. Many enhancements can still be made to it, all of which will be

mentioned in chapter 7 under future work.

Fig 5.2. Shows a basic interface of XGraphML, which is divided into 2 panes. The

pane on the left side of the tool is used to load an .uml file generated from the ArgoUML

tool. Loading this file can be either done by clicking file and then selecting open or directly

clicking the open button from the toolbar as shown in Fig 5.3. and Fig 5.4.

-~ XGraphML

File Edit Help

·ir~ f ,J;\ li"lidl b l
UML GraphML

Fig 5.2. Screenshot of XGraphML

45

Open ctrl o

Save Ctrl-S

Exit

XMI

Fig 5.3. Opening an UML file

W XGraphML

FIie Edit Help

~ . 'l:1'1 w 0 1
Ul,tl

l<?J.ml version= · 1 o encoding= ~uTF-e- ?>
kuml verslon= ·6 >

<argo verslon=--6 ►
<documentation>
<authorname>c/aulhomame:..
•authorema11► ..-/authoremall►

-<verslon--0.2B 1 ·•Nerslon:,,
<descnption>

</description►

</documentation>
"'Settings>
<notationlanguage>UML 1 4</notatlonlanguage>
<showboldnames>false <lshowboldnames>
<useguillemots►false<Jusegultlemots►

<showassoclat1onnames>true<1showassoctattonnames>
<shoW'lllslbllity>false-r./showvlslbillt)?,
a'.Showmultip l1oty>false</showmultlpl1cit'[•
-.showlnitialva1ue►false .,/s 1, owlnitialva1ue>

<showpropertJes►false·</showpropert1es>

<show1ypes~true</showtypes>
<showstereotypes>ralse</showstereotypes>
<shows1ngu1armultl plicltJes>true ""-/showslngularmultip llclt1es >
<defaultsha dowwldth>1 </defaultsh adowv,rldth >

<hldebldirectionalarrows>true</hldebidirectiona larrows>
-.fontname►Dlalog-</tontname>

<1"ontslze>12</fontslze>
<detaultstereotypevlew>0c/defaultstereotypevlew>
<activediagram>Class Diagram 1 • /act1Ved1agram::.•

</settings>
<searchpalh href: PROJECT _DIR~/>
<members>
<member type= ·profile"'

name=-shopplngcart profile.profile'"' I>

◄ I II I

Fig 5.4. With an UML file loaded

II XGraphML

File Edit Help

[a]: 9tl.. I.I Jl
[Open an fil~ XMI

GrophML

'

:
:

'

'
!

:
'

;

'
'·

'-;:
H . '

L

The moment an .uml file is loaded, a stylesheet is selected and the transformation is

done either by clicking edit and then clicking transform to GraphML or by using a "run

shortcut" icon from the toolbar. As shown in Fig 5.5., the progress bar indicates the

progress of transformation, which starts from 0 and ends at 100 when the transformation is

done. A message is displayed on the screen that changes "Transformation in progress" to

"Done," simultaneously. Anyone using this tool can edit on both the pan~s of the tool

46

depending on the user's needs and can be used as XML editors. The user will clearly

understand both the formats as they are next to each other, which makes it easy to compare.

,.,. · ----- ~ , __ 2L
-- - ---

File Edi l Help

. , ~ JI ,1:lll Wl Dl
UML

<?xml version= "'1.0· encodlnQ = "UTF-8"' ?>
•uml version= .. 6"►
<·argo verslon=•5-,.
<documentation>

<a uthorn ame ><la uthorname>
-< authorema!l></authoremail►

<Verslon>0 28 . 1 <Nerslon►
<description>

-<J'descrtption>
</documentation>
<settings ►

<notation I ang ua ge> UML 1.4</n otationl anguage >

<showboldnames>ta1se...:Jst1owb-oldnames>
<u5e9uitlemots>false</useguil lemots>
<showassoc:iationnames>true</showassociationnames>
<showvlslbilltf> false<lshowvlslbllllf~
<showmultlplicity> lalse</showmu!tiplici~
<showlnltlalvalue>false<'JS howlnitiatvalue>
<showproperties ►fa l se</showproperties:io

-<s howfypes>true<Js howtypes>
<showstereotypes>f'alse<Jsnowstereotypes>
<showslnouIarmuUipll cltles>true<1showslngularmu lt1plh::ltles>
<def"au ltshadowwidth>1</d:efaultshadowwidth>
<hldetildlrectionalarrows>true </hl debidirectionalarrows: ..
<fontname>Dialog•trontname>
<tontsize:-:> 12c:/fontsize:
<defaultstereotypeView>0 <Jdefaultstereotype'view►

<activedlagram>G1ass Diagram 1</activedlagram:..
</settings>
<searchpath I1rer=·PROJECT_DIR· 1~
..:members ►

<member type.:::*profHe•
name="'shopplngcart_prome.prolile· I>

• II

Translormatlon in progr~ss

Fig 5.5.Transformation in progress

GraphML

...). <?xm l version:.:"'1 .0" encoding="UTF-8-?:-
. <!- This GraphML document was generated ·from XM I by a XMl-to~G raphM

<graphml xmlns:argouml:.:"'org .omg.xmi namespace.UML'" xm!ns :UML=-·o
· · <gr3ph id:::"'untitledModel"' edgedefault=.""undirected"">

<desc>
<I-TnIs graph Is derived from a UML-class diagram->
</desc>

· <node 1cr.:•T ' type=-~Shoppm9 ca,r pos-=·150 48->
:':· <poI1 ld=' (Shopplng CaI1)' />
;\: <data key=" attrib"">
;::: <attrtb id="Terrninal .. type:::•2"' bool·="True-/>

</data>
<lnod.e>
<node id'=· 2 .. type='"ltem to purchase" pos=· 14-4 256 .. >

<port ld=-{ltem to purchase}"'/>
<data k:ey:::-attnb-·>
<attrib id=:~ermlnaJ" type="'2"' bool=-"'Tn.1e .. />

The process indicator shows that 24% of the file has been downloaded so far and

once it is done, the progress bar hits 100% and says "Done" as shown in the Fig 5.6. This

provides an interactive feature for the user wherein he/she can look at the progress and

know when the entire transformation is done.

fl ◄ ' 1 ► "-'----"------------------'-'---' J.....1---------'--------------------------'-'
Done,

Fig 5.6. Progress indicator

47

5.3. Implementation of Transformer class

XGraphML uses JAXP to read the input of data i.e .. uml as a stream of data, apply

the stylesheet that contains all the processing rules for transformation and then output

another stream of data as GraphML.

As shown in Fig 5.7, an instance of TransformerFactory is created and sent to the

transformer along with transforming instructions which together make up resultant

document. We import the javax.xml.transform package, which provides an interface to

invoke XSL T stylesheet. One of the most important features of this interface is that there is

no predefined XSL T processor included in this package. Its selection of the processor is

done dynamically. There is no need to import any processors or jar(Java Archive) for

processing, it is in-built. As mentioned earlier, the transformer class processes data in the

form of Stream using the following piece of code given below the figure.

[

UML

TransfonnerFactory

(

~
Transfonner

Transfonnation
instructions

)
Fig 5.7. Usage of Transformer class.

48

)

StreamSource input= new StreamSource(file);
StreamSource xslt = new StreamSource(filel);
StreamResult output= new StreamResult("file:///c:/result.graphml");
Transformer Factory tf = Transformer Factory .new Instance();

try {
tf.newTransformer(xslt).transform(input, output);

} catch (TransformerConfigurationException el) {
System.err.println("Exception in Transformer Configuration " +

el.getMessage());
el.printStackTrace();

} catch (TransformerException el) {
System.err.println("Error in transforming" + el.getMessage());
el.printStackTrace();
}

Various methods of the transformer Class that are used in the transformation through

XGraphML are

1. public StreamSource(java.io.File t)

The above method is used to construct a Stream source from a file f, and in our case, f is

file.

2. public abstract void transform(Source xmlSource, Result outputTarget)

throws TransformerException

The above method is used to initiate the processing of input and output when

both are passed as parameters for the transform() method. A StreamSource is initialized

with a variable input, a reference to a .uml file that has been selected from Jfilechooser.

Irrespective of any file chosen, the file is assigned to the variable "file" and file is sent as

an argument to StreamSource. This in turn reads the selected instance of the file and creates

a new object of StreamSource with input as a reference. A TransformerFactory instance is

created to take processing instructions or the stylesheet required for transformation.

49

Multiple instances of Transformer Factory can be created to process multiple stylesheets in

many threads; hence, it is considered thread-safe.

StreamResult is used to get the resultant or the transformed document and is

initialize it to a variable 'result'. This result is stored at a temporary location

"D:\result.graphml". The result.graphml is displayed on the screen and an option of save is

provided in the toolbar of XGraphML, and users can save the file with a custom name and

at a custom location.

50

CHAPTER6

CASE STUDY

6.1. Class diagram for a Shopping Cart

In the Fig 6.1., a class diagram for a shopping cart has been drawn and the project

has been saved as shoppingcart.uml [24]. The .uml file is imported into XGraphML, and a

resultant output i.e. GraphML is achieved by transformation. The generated graphml is

saved as "shoppingcart.graphml".

Order Hy Type, Mam8

'>•C!Pron1e,;~nn~ur~1on
,,,~1,1nl1tledk!~dil

:lfY Pri·;·.;y· ...
. dl!,(,111

,,-[JM~oJh.1m

dLow

j __ :-i{
d I Sh~plngC#t 10•

ltotalrn:il'IIV'lnteg&1I 1

lplaceorderO I

1

,..
Mer'OlOl)llthase

(IL!a!'l!ITJ' lnl@QM
frcmprodlct

l)iU 1n1"g1111

ad<ltterr(l O .. ~

N,me ·c;~~~ ['l,j•Jtiim 1

Home flio,M 1~ll11!1ll1t1IMu:IBI

Fig 6.1. Shopping Cart example

1

~~-·-·-·
ft'or'r'li:u!lt 1 ClS«n8miilml' Sl•lri!I

Aodress Stnng
B'l'lillaOOrees Stmg

C1edllt.ird
""'◊

c;ronU'l'll)er 1ni.i09r Crian~'SIL.e!USI)
erpir,(hlle 1r1eoer

'" alitur1zll() o· rrompnifcuilt

I,
Preferred Customer

'""'''.~
D1si:ouri 1n1e09,

1 r::nMa~· ~~g app1oveQ
dast Slrng (11sapproveo

I I

We utilize as many elements as possible from the . uml format and then generate

graphml based upon the DTD specified in the standard. The above class diagram consists

of 6 classes, namely shopping cart, credit card, Item to purchase, customer and preferred

51

customer, along with six relations connecting these classes. Fig 6.2. below shows a brief

listing of code produced in graphml format for the shoppingcart class diagram drawn in

ArgoUML. This code has been produced using the XGraphML. This graphml file is further

analyzed in Veggie using graph grammars.

Shoppingcart.graphml

<?xml version=" 1.0" encoding="UTF-8"?>
<!-- This GraphML document was generated from XMI by an XMI-to-GraphML conversion style
sheet.-->
<graphml xmlns:argouml="org.omg.xmi.namespace.UML"
xmlns:UML="org.omg.xmi.namespace.UML">
<graph id="untitledModel" edgedefault="undirected">
<desc>
<!--This graph is derived from a UML-class diagram-->
</desc>
<node id=" 1" type="Shopping Cart" pos=" 160 48">
<port id=" { Shopping Cart}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>
<node id="2" type="Item to purchase" pos="l44 256">
<port id=" { Item to purchase}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>
<node id="3" type="Customer" pos="664 24">
<port id=" {Customer}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>
<node id="4" type="Preferred Customer" pos="672 280">
<port id=" {Preferred Customer}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>
<node id="5" type="Creditcard" pos="408 96">
<port id=" {Creditcard} "/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>

52

<node id="6" type="Product" pos="432 304">
<port id=" {Product}"/>
<data key="attrib">
<attrib id="Terminal" type="2" bool="True"/>
</data>
</node>
<edge type=" {E}" directed="false" source=" l" sourceport=" {Shopping Cart}" target="2"
targetport=" { Item to purchase}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
<edge type=" {E}" directed="false" source=" l" sourceport=" { Shopping Cart}" target="S"
targetport=" { Creditcard} ">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
<edge type=" {E}" directed="false" source=" l" sourceport=" {Shopping Cart}" target="3"
targetport=" {Customer}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
<edge type=" { E}" directed="true" source="4" sourceport=" {PrefferedCustomer}" target="3"
targetport=" {Customer}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
<edge type="{E}" directed="false" source="S" sourceport="{Creditcard}" target="4"
targetport=" { Preferred Customer}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
<edge type=" { E}" directed="false" source="6" sourceport=" {Product}" target="2"
targetport=" { Item to purchase}">
<desc>
<!--This edge represents a relationship between classes in a UML Class diagram-->
</desc>
</edge>
</graph>
</graphml>
Fig 6.2. Shoppingcart.graphml

53

6.2. Case Study

Based upon the completed transformation, a case study has been performed to

analyze the level of transformation achieved using XGraphML. In the Class diagram we

have 6 classes and 6 relationships between them. Fig 6.3. lists all classes in the shopping

cart class diagram along with their respective nodes from graphml.

Classes in Class Diagrams Nodes in GraphML

Shopping Cart 1

Item to purchase 2

Customer 3

Preferred Customer 4

Creditcard 5

Product 6

Fig 6.3. List of classes in UML format and GraphML format

As listed in Fig 6.4.,there are six associations in the shoppingcart class diagram,

column 1 shows a list of all relations in the class diagram and column 2 list both source and

target. As mentioned earlier, an edge can be both directed and un-directed, and in our case

we have five undirected edges and one directed edge.

A directed edge in graphml is represented by an attribute directed="false", which

means it is not a directed edge. An edge from preferred customer to customer is directed,

so graphml generates a value of the attribute as 'true'.

54

Associations in Class Diagram Source and Targets in GraphML

From cust Source="l" Target="}"

Shoppingcart➔creditcard Source="l" Target="5"

Shoppingcart➔ Item to purchase Source=" l" Target="2"

Preferedcustomer➔ customer Source="4" Target="3"

From prefcust Source="5" Target="4"

Product➔ Item to purchase Source="6" Target="2"

Fig 6.4. List of associations in UML format and GraphML format

55

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter we have outlined some of the advantages of using XGraphML when

compared to other traditional tools used for transformations. We have eliminated all core

limitations, having very few exceptions and have proceeded further with the

transformation. We have listed all possibilities that would enhance and improve the

efficiency of the tool towards the end of this chapter.

XGraphML provides a very simple interface with only needed options which a

novice user can operate without undergoing any kind of training or referring to any

technical documentation. If a user has a UML file, transformation from .uml to GraphML is

done by selecting 2 buttons. This tool provides a two-pane interface where a user can

'compare both source and target together and list all the discrepancies between both

formats. The results generated by XGraphML can be validated against the source

document. Uml, the source file in this transformation, is uploaded into ArgoUML and the

corresponding transformed graphml file is uploaded into Veggie. Both these tools display

the exact structure of the graph, if the transformation is performed as expected. The user

can visually analyze the results and then modify the stylesheet as required to match both

the source and the target. In order to test the transformation, a class is removed from the

uml file, and then the corresponding node in the graphml file would be eliminated.

Similarly, a relationship in a class diagram corresponds to an edge in graphml. The results

are further analyzed with respect to the position of the classes on the x-y plane, and if the

position of class is changed in the uml file and transformed using XGraphML, the resulting

graphml file would reflect the changed position of the class, but as a node.

56

All the commercial parsers have processors installed in them, and a user has to

configure a scenario with a source stylesheet and a processor required for the

transformation. In order for a user to perform this operation, he/she has to be technically

well versed with xslt processors for him/her to differentiate between processors. In

XGraphML the processor functionality is provided by the transformer class. JAXP provides

an API for transformation that eliminates the need of an XSLT processor.

7.1. FUTURE WORK

Due to the increasingly extensive use of XML and visual representation models in

software engineering, there is a large scope of development in the area of graph

transformation [12]. This tool can be further enhanced to incorporate all the graph formats

and can be used for transformations with only a few minor changes to the stylesheet. This

tool is built only for GraphML, but can be enhanced to get any desired output if the

stylesheet required for processing is written correctly with all appropriate rules embedded

in it.

Only class diagrams were taken into account while designing XGraphML, but this

can be extended to other UML diagrams, such as the activity and State Chart diagrams,

along with others .. This would make a tool scalable to all the UML diagrams present on

board. This tool can be further enhanced by generating a visual model in the form of a

graph simultaneously while the transformation is in progress. This visual model can be

generated in the form of a 30 diagram that offers humongous opportunities for human

computer interfaces [20].

57

Presently, we consider any class-diagrams generated only from ArgoUML, and the

initial validation is purely w.r.t. ArgoUML. If a UML is generated using a different

modeling tool, it would not pass the validation, and the processing would terminate with an

exception displayed on the console. If the user is utilizing a different modeling tool to

generate .uml files, then the stylesheet that has been used in XGraphML may need a minute

manipulation. Otherwise, the user can write his or her stylesheet pertaining to the tool

which is being used.

Some of the elements had to be ignored from source documents, as all the elements

of the .uml format do not match the GraphML specification, and some of elements had to

be auto-generated by the stylesheet solely for this paper.

58

BIBLIOGRAPY

[1] ArgoUML, retrieved fromhttp://argouml.tigris.org/ on (07/15/2008).

[2] XML, retrieved from http://www.w3.org/XML on (02/22/2008).

[3]Linus Tolke and Markus Klink. An introduction to developing ArgoUML.

http://argouml-downloads.tigris.org/nonav/argouml-0.24/cookbook-0.24.pdf retrieved

on (5/17/2009).

[4]XMI,retrieved from http://www.omg.org/technology/documents/formal/xmi.htm on

(10/20/2009).

[5] XSLT 1.0., retrieved from http://www.w3.org/TR/xslt on (10/20/2009).

[6] UML, retrieved from http://www.uml.org/ on (04/25/08).

[7] Eclipse, retrieved from http:/ /www.eclipse.org/ on (05/15/2009).

[8] Alejandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola,

Jeremy Bennett, Linus Tolke, and Michie! van der Wulp. ArgoUml user manual,

retrieved from http:/ /argouml-stats. tigris .org/ documentation/man ual-0 .24-

single/argomanual.html on (05/05/2008).

[9] Daniel Volk, "XIG-An XSLT-based XMI2GXL-Translator". Ph.D. Thesis,

Department of Computer Science, University of the Federal Armed Forces, 2001.

[1 0] Sundeep.V, "A tool for Aspect Oriented Modeling using State-Charts". Master's

Paper, Department of Computer Science, University ofNorthDakota, 2007.

[11] K.L. Ates and K. Zhang, "Constructing VEGGIE: Machine learning for Context

Sensitive Graph Grammars"Proc. 19th IEEE international Conference on Tools with

Art(ficial Intelligence (ICTA/'07), October 2007, IEEE CS Press, 456-463.

[12] AlHakami.H, "From Object-Oriented to Components: Generating Component-Based

59

Software from UML Diagrams". Master's project, Department of Computer Science,

King Saud University, 2007.

[13] U Brandes, J Lerner, C Pich,"GXL to GraphML and vice versa with XSLT", Proc.

2nd Intl. Workshop Graph-Based Tools (GraBaTs '04), 2004.

[14] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M. Marshall, GraphML,

Retrieved from http://graphml.graphdrawing.org/ on (6/12/2007).

[15] R. Holt, A Schurr, S. Elliott, A. Winter, Graph Exchange Language, retrieved from

http://www.gupro.de/GXL/ on (6/12/2007).

[16] OMG Unified Modeling Language Specification, Version 2.0, retrieved from

http://www.omg.org on (08/15/2009).

[17] JAXP: Java API for XML Processing (JAXP) 1 .4., retrieved from http://java.sun.com/

/webservices/jaxp/index.jsp on (06/18/08).

[18] XML Path Language (XPath) 2.0., retrived from http://www.w3.org/TR/xpath20 on

(06/18/08).

[19] Timothy J. Grose, Gary C.Doney, Stephen A. Brodsky. Mastering XMI: Java

Programming with XMI, XML and UML, NY: John Wiley & Sons, Inc, April 2001.

[20] Brad Myers , Scott E. Hudson , Randy Pausch, "Past, present, and future of user

interface software tools", ACM Transactions on Computer-Human Interaction

(TOCHI), v.7 n.1, p.3-28, March 2000.

[21] Rainer Conrad, Dieter Scheffner, J. Christoph Freytag, "XML Conceptual

Modelling using UML, In Proceedings of the Nineteenth International Conference

on Conceptual Modeling (ER2000), October 2000.

[22] Graph tool, retrieved from http://projects.forked.de/graph-tool/ (05/15/2010).

60

[23] XMltoHTML, retrieved from http://www.objectsbydesign.com/projects/

/xmi_to_html.html on (05/15/2010).

[24] Shopping-cart class diagram, Retrieved from

http://www.databaseanswers.org/data models/uml class diagram for shopping cart/i

ndex.htm on (05/05/2009).

[25] PGML, retrieved from http://www.w3.org/TR/1998/NOTE-PGML-19980410.html on

(08/12/2009).

[26] A Critical Analysis of XSL T technology for XML Translation, retrieved from

http://ruleml.org/papers/CriticalAnalysisXSLT .pdf on (08/12/2009).

61

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070

