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ABSTRACT 

Omotoyinbo, Tayo, M.S., Department of Mathematics, College of Science and Mathematics, 
North Dakota State University, May 2010. Absolute Stability of a Class of Second 
Order Feedback Non-Linear, Time-Varying Systems. Major Professor: Dr. Nikita 
Barabanov. 

In this thesis, we consider the problem of absolute stability of continuous time 

feedback systems with a single, time-varying nonlinearity. Necessary and sufficient 

conditions for absolute stability of second-order systems in terms of system parameters 

are developed, which are characterized by eigenvalue locations on the complex plane. 

More specifically, our results are presented in terms of the associated matrix-pencil 

{A+ bvc*, v E [11,1, /L2]}, where /Li, /J,2 E ffi., A is n x n-matrix, b and c are n-vectors. 

The stability conditions require that the eigenvalues of all matrices A +bvc*, p1 ~ v ~ 

µ2, lie in the interior of a specific region of the complex plane ( a cone to be specific). 

Thus, we have the following reformulation of the problem. Find the maximal cone 

satisfying the following condition: If all eigenvalues of corresponding linear systems 

belong to this cone, then system is absolutely stable. Known results show that this 

cone is not smaller than { z E <C : 3; ~ arg z ~ 5;} ( called the 45°-Region). The result 

is proven using Lyapunov functions of two different types. It is known that usually 

the approach based on Lyapunov functions provides essentially sufficient conditions 

for absolute stability. We will use a different technique which provides necessary 

and sufficient conditions for absolute stability. The problem setting, the approach, 

and methods to solve the problem will be presented in Chapter 3. The contents 

of Chapters 1 and 2 include preliminary concepts, definitions, and facts basic to 
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the theory of feedback control systems. In Sections 3.1 and 3.2, we introduce basic 

results of the theory of stability for feedback control systems (i.e., for systems of 

arbitrary order n E z+). In particular, we will introduce the notion of absolute 

stability for feedback control systems, linear differential inclusions, dual inclusions, 

and asymptotic stability of linear inclusions. Sections 3.3, 3.4, and 3.5 are devoted 

to the core of this thesis: the analysis of absolute stability of systems of order two 

(i.e., n = 2). In Section 3.4, we present the proof of a variant of sufficient conditions 

for absolute stability that was first introduced in [2], and in Section 3.5, we prove the 

new result that shows the necessity of the condition given in Section 3.4. Chapter 4 

is a summary of the results obtained in this thesis and highlight some possible future 

investigations. 
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CHAPTER 1. INTRODUCTION 

In this chapter, we present a collection of basic results in the theory of ordinary 

differential equations relevant to the subject of feedback control systems. The proofs 

are omitted for most of the facts, with references given. This chapter includes the 

following: definition, existence and uniqueness theorems for solutions of ordinary 

differential equations, definition of stability, and sufficient criteria for different kinds 

of stability which use the Lyapunov functions. 

1.1. General Background: Existence and Uniqueness Theorems 

Let us consider an ordinary differential equation of the form 

x = f(x, t), (x, t) EE, 

where x is an absolutely continuous n-vector function; x denotes the ordinary deriva­

tive with respect to the independent variable, t; E is an open set of Rn+i (where 

0 < n E z+); and the map f: E-----+ Rn is t-measurable and x-continuous. The vector 

x is often thought of as space variable and t as time. We will denote the Euclidean 

norm of a vector x by I lxl I and the corresponding induced norm on n x n matrices, 

A, is defined as follows: 

IIAII = sup{IIAxll: x E Rn, llxll :S 1} 

Definition 1.1.1. /15} A map r.p : I -----+ Rn is called a solution of equation (l) if r.p is 

absolutely continuous and 

cp = f(t,0, t) a.e. on I. 

The curve t-----+ (r.p(l), t.) lying in Eis called a /,rajeclory of equation (1). 

Usually, we look for solutions where the trajectory passes through a specific point, 

(to, x 0) E E. The problem of finding such solutions is called an initial-value problem. 

Regarding the existence of a solution for an initial-valued problem, we have the 
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following general theorem. 

Theorem 1.1.1. {15j(Caratheodory) 

Let f(x, t) be a function defined on R = {(x, t): It - tol ~ a, llx - xoll ~ b} CE, and 

suppose it is measurable in t for each fixed x and continuous in x for each fixed t. If 

there exists a Lebesgue-integrable function, m( ·), on the interval It - t0 I ~ a such that 

lf(x, t)I S m(t), ((x, t) E R), 

then there exists a solution, <p, of the initial-value problem 

{ x = f(x,t) 

x(to) = x 0 

on some interval It - fol S (J, ((J > 0). 

(2) 

(3) 

Caratheodory's theorem provides a general setting in which the existence of 

solutions can be taken for granted. In this thesis, we always stay within this context 

and only consider the initial-value problem, x = f(x, t), x(t0 ) = x0 , where f is a 

function measurable with respect to t and continuous with respect to x. The following 

theorem gives a criterion for uniqueness of a solution to an Ordinary Differential 

Equation (ODE), which is sufficient for many practical cases. We will use the following 

notation: C ( R) is the space of continuous functions on the set R and C1 ( R) is the 

space of continuously differentiable functions on the set R. 

Theorem 1.1.2. {15} Let ·i/J = 1/J( r·, t) be a nonnegative function defined on the set 

Sa= {(r, t): 0 < t < a, r ~ O} (a> 0), (4) 

such that the Jv.nction 1/J is Lebesgue measumble in t for fixed r and continuous 

nondecreasing in r for fi.red t. Further, for every bounded subset, B C Sa, let there 

2 



exist a function, XB E L1(0, oo), such that 

7/J(r, t) S XB(t) V (r, t) E B. 

Suppose that, for each a: E (0, a), the function p defined by p(t) = 0, 0 :=; t < a:, is the 

only absolutely continuous function on O :S: t < a: which satisfies 

p'(t) = 7/J(p(t), t) a.e. t E (0, a:), 

such that p~(0) exists and p(0) = p~(0) = 0. Let f E C(R) and satisfies 

lf(x, t) - f(x, t)I s 7/J(lt - tol, Ix - xi) t -/= to. 

Then, there exists, at most, one solution 1P E C1 ( R) for the initial-value problem (3). 

In Theorems 1.1.1-1.1.2, we have obtained estimates for the size of the solution 

domain. However, none of these estimates put a limitation or bound on the domain 

of the solution. That is, it might be possible that, for a particular equation, the 

solution is defined for all real t even though the existence theorem only guaranteed 

the existence of a solution on a small finite interval. Hence, we need a result about 

how large the domain of the solution may be. 

Theorem 1.1.3. (Extension Theorem) /16}. Let f (x, t) be a continuous function on 

an open (x, t)-set E, and let x(t) be a solution of (l) on some interval. Then, x(t) 

can be extended (as a solution) over a maximal interval of existence (w-,w+)- Also, 

if (w-,w+) is a maximal interval of e.r,i:stence, then x(t) tends to the bo'U,ndary, 3E, 

of East-, w_ and t-, w+. 

Now, by Caratheodory's theorem, every initial-value problem has at least one 

solution; by Theorem 1.1.2, there is, at most, one solution; by Theorem 1.1.3, for 

each initial-value problem, there is a maximal interval to which the solution can be 

extended. Therefore, let x(t, t0 , x 0) denote the maximal solution of system (3) passing 
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through the point (to, x0 ) E E. Note that x(t, t0 , x 0 ) is a well-defined function on some 

subset, E1, of JRn+2 with values in IRn. The function x(t, t0 , x0) will play a major role 

in subsequent results. It provides a tool for investigating the asymptotic behavior of 

all solutions, in particular stability of solutions to initial-value problems. 

1.2. Asymptotic Behavior of Systems: Stability 

The following definitions are due to A. M. Lyapunov. They are very important 

in modern control theory. 

Definition 1.2.1. /16} A solution x(t, t0 , x 0 ) of system (3) is called Lyapunov stable 

if, for every E > 0, there exist S > 0 such that, for every vectory0 such that llx0 -y0 II < 

o, it follows that llx(t,to,x0) - x(t, to,y0 )11 < c for every t 2:: to, 

Lyapunov stability does not imply that solutions starting at a neighboring point 

tend to each other. The next definition concerns this issue. 

Definition 1.2.2. /16} A solution x(t, t0 , x0) of system (3) is called asymptotically 

stable if 

(1) x(t, t0 , x0 ) is Lyapunov stable. 

(2) There is a positive number, 'Y, such that llx(t, t0 , x0 )-x(t, t0 , y 0 )11 ---+ 0 as t---+ oo 

for every vector y 0 such that 11 x 0 - y 0 I I < 'Y · 

Note that (1) does not imply (2). Now, let us consider solutions starting at 

arbitrary points, not necessarily in a neighborhood of a given solution. 

Definition 1.2.3. [16} A solution x(t, to, x 0 ) of system (3) is called globally asymp­

totically stable ifx(t, to,x0 ) is Lyapunov slable and llx(t, to,x0)-x(t,t0 ,y0)11---+ 0 as 

/, ---+ oo for each initial value, y 0 . 

Certainly, global asymptotic stability implies asymptotic stability. 

Assume 71( t) is a solution of the initial-value problem (3). Consider the following 

change of variable; z(t) = x(t) - 71(t). Then, by equation (3), we have 

z = f(z(t) + ri(t), t) - f(71(t), l). 
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Let us denote the right-hand side of (5) by f(z, t). Hence, by this change of variable 

system ( 1) becomes 

z = f(z, t). (6) 

Notice that function z(t) = 0 is a solution of system (6) (known as the zero solution 

of system (6)). In the stability theory of systems for ordinary differential equations, 

it is convenient to assume that we are dealing with the stability property of the zero 

solution for system (1). 

Definition 1.2.4. System (6) is called Lyapunov (asymptotically, globally asymptot­

ically, respectively) stable if z( t) = 0 is Lyapunov ( asymptotically, globally asymptot­

ically) stable. 

Definition 1.2.5. A solution x(t, t0 , x 0 ) is Lyapunov ( asymptotically, globally asymp­

totically, respectively) stable for system {3) if and only if z(t) = 0 (i.e., zero solution) 

is Lyapunov ( asymptotically, globally asymptotically, respectively) stable for equation 

(6). 

Based on the above discussion, we have the following revision. Let us consider 

the system of differential equations 

x = f(x, l), (7) 

where x and f are vector functions with n real coordinates, with the following general 

assumptions: f(x, t) is measurable with respect to l and continuous with respect to 

x, and satisfies a local Lipschitz condition with respect to x on 

R = {(x, t): t 2: to, llxll <a< oo}. 

Assume 

f(O, l) = 0, /; 2 lo. (8) 

Our assumption implies the existence and the uniqueness of the solution passing 
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through any point (x0 , t) E Rn+l with x0 E JR. In addition, from condition (8), 

it follows that x = 0 is a solution of equation (7), and because uniqueness holds, 

any solution of equation (7), distinct from x = 0, cannot vanish on its interval of 

existence. 

We have the following definitions. They relate to the concept of stability for the 

zero solution, x(t) = 0, of equation (7). 

Definition 1.2.6. The zero solution, x(t) = 0, of equation (7) is called Lyapunov 

stable, if for every E > 0, there exists t5 > 0 such that llx(t, to, x0)11 < E for every 

t 2: t0 whenever l!x0 11 < o. 

Definition 1.2. 7. The zero solution, x(t) = 0, of equation (7) is called asymptotically 

stable if. it is Lyapunov stable and there exists a positive number, "I, such that 

lim llx(t, to, x0) II = 0 
t-oo 

(9) 

for every x(t, to, x 0 ) with llx0 11 < "(. 

Definition 1.2.8. The zero solution, x(t) = 0, of (7) is called globally asymptotically 

stable if it is Lyapunov stable and lim llx(t,to,x0 )11 = 0 for every initial value, x 0 . 
t--+oo 

Now, consider the problem of efficiently checking the stability of the zero solution 

for a given system. For some particular class of differential equations that we can 

actually solve, the above definitions of stability can be easily checked. There is a way 

which may allow us to determine whether the zero solution is stable (Lyapunov sta­

ble, asymptotically stable, and globally asymptotically stable, respectively) without 

knowing the solutions of the differential equation. 

Let us introduce the real-valued function V(x, t) c C 1(E0 x JR+), where Ea is 

given. Suppose x(t) is a solution of x = f(x, t). When x(t) is in E0 , the derivative 

of V(x(t), t) with respect to t can be calculated using the chain rule. Thus, it can 

be determined whether V is increasing or decreasing along the solution through x by 

examining 
. av av 

V = ~(x(t), t) · f(x(t), t) + -a (x(t), t). 
ox /, 
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The idea of Lyapunov's method and the related results is to impose conditions on the 

test functions, V and V, which will imply stability. To formulate the main theorem 

about Lyapunov functions, we need the following definitions. 

Definition 1.2.9. /17} Let E0 E JR.n with OE int(E0 ). Function V: E 0 x JR.+-, JR. is 

called positive definite (denoted V » 0) if 

(1) V(O, t) = 0, V(x, t,) 2 0 for all (x, t) E Eo x JR.+. 

(2) For all E > 0, there exists c5 > 0 such that, for all x E Eo and llxll 2 E, we 

have V(x, t) 2 c5 for all t 2 to. 

Similarly, function V(x, t) is called negative definite (denoted V « 0) if -V(x, t) is 

positive definite. 

Definition 1.2.10. (17} A positive, definite function, V(x, t), is called a Lyapunov 

Junction for system (3) if 

av av 
ax (x, t) · f(x, t) + at(x, t) ~ O 

for each x E Eo and t 2 t0 . 

The following theorems formulate criteria for different kinds of stability based 

on the existence of Lyapunov functions for a given system (7). 

Theorem 1.2.1. /17) Given equation (7 ), assume that there exists a Lyapunov 

function V(x, t). Then, x = 0 is Lyapunov stable. 

Likewise, for asymptotic stability, we have the following statement. 

Theorem 1.2.2. /17) Given equation (7 ), assume that there exists a Lyapunov 

Junction V(x, t) such that 

av av ax (x, t) · f(x, l) + at(x, t) « O 

and V(x, t) - 0 as x - 0 uniformly with respect to t 2'. t0 . Then, x(t) O is 

asypmtotically stable. 
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Finally, for global asymptotic stability, we have Krasovsky-LaSalle principle. 

Theorem 1.2.3. (Krasovsky-LaSalle principle)/19} If there exists a Lyapunov func­

tion V(x, t) such that 

av av ax (x, t) · f(x, t) + at(x, t) » 0, 

V(x, t) ----. 0 as x----. 0 and V(x, t) ----. cio as x----. oo uniformly with respect to t, then 

x(t) = 0 is globally, asymptotically stable. 

Notice that the above Lyapunov theorems provide only sufficient conditions for 

stability of the solutions for system (3). In particular, these conditions depend on the 

existence of a certain (Lyapunov) function that satisfies some restrictive properties. 

The following theorem provides conditions for the converse statement. 

Theorem 1.2.4. (Persidsky) Consider x = f(x, t), f(O, t) = 0. Assume x = 0 is 

Lyapunov stable. Then, there exists a function V ( x, t) such that V » 0 and for all 

solutions x(-) we have dV(:?),t) :S O for all t. 

Lyapunov functions play an important role in stability analysis. In general, it 

can be difficult to construct a Lyapunov function for an arbitrary system. Hence, sta­

bility criteria given by the existence of Lyapunov functions (Lyapunov and Persidsky) 

are a mere reformulation of the stability problem. However, constructing Lyapunov 

functions for a certain class of differential equations is quite simple. One such class 

of differential equations is the class of linear differential equations with a constant 

coefficients. First, we will introduce linear differential equations, a special but very 

important class of ordinary differential equations. 

1.3. Linear Systems 

A linear system of differential equations has a form 

x = A(t)x + b(t), 
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where A(t) and b(t) are piecewise continuous n x n and n x 1 matrices, respectively. 

Theorem 1.3.1. f15}(Existence Theorem for Linear Systems) 

For every x0 E Rn, the initial-value problem for system (11) with initial condition 

x(to) = x0 (12) 

and t0 E [a, b] has a solution x = x(t) on a ::; t ::; b, and this solution is unique. 

Notice that the uniqueness of the solutions for equations (11) and (12) imply 

the following corollary. 

Corollary 1.3.1. If x(t) is a solution of equation (11) with b(t) = 0 and x(t0 ) = 0 

for some t0 E [a,b], then x(t) = 0. 

Definition 1.3.1. If b(t) in equation (11) is identically 0, that is, if equation (11) 

has the form 

x = A(t)x, (13) 

then the equation is said to be linear homogenous. 

The main property of linear homogenous systems, from which many other 

properties can be derived, concerns the algebraic structure of the solution set, stated 

as follows. 

Definition 1.3.2. Let Ji,··· , fm be n-vector functions on (a, b). Then, Ji,··· Jm 

are linearly dependent on ( a, b) if there exist constants c1, · · · , Cm (not all zero) such 

that, for all t E (a, b), 

(14) 

If fi, · · · , J~ are not linearly dependent on ( a, b), they are linearly independent on 

(a, b). 

Theorem 1.3.2. [15/ The set of all solutions of equation (13) is an n-dimensional 

linear space. 
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Remark 1.3.1. Prom the preceding theorem, it follows that we can construct the set 

of all solutions of (13) as soon as we known linearly independent solutions. 

A basis of the space for all solutions of system (13) is called a fundamental 

system of solutions. Assume now that we have n solutions of system (13): 

Consider matrix X( t), the columns of which are vectors 

An important question concerning system (13) is to decide whether X(t) is the matrix 

of a fundamental system of solutions. The complete answer to this question is given 

by the next theorem. 

Theorem 1.3.3. (15} The necessary and sufficient conditions that x 1 , x2 , · · · , xn form 

a fundamental system for system (13) are the following: x1 , x2 , · • • , xn are solutions 

of system (13), and 

detX(t) =/= 0, for at least one point t E ( a, b). (15) 

Given the homogenous linear system, 

x = A(t)x, (16) 

where A(t) is a continuous n x n matrix for t E (0, oo). A solution of system (16) 

with initial condition x(t0 ) = x 0 has the form 

where X(t) is an arbitrary fundamental matrix of system (16). 
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Theorem 1.3.4. /15} LetX(t) be afundamentalmatrixofsystem (16). System {16} 

is Lyapunov stable if and only if all solutions are bounded on [0, oo). That is, there 

exists a positive real number, M, such that 

IIX(t)II ~ M, t 2 0. (17) 

System {16) is asymptotically stable if and only if all solutions tend to zero at infinity, 

that is, 

lim IIX(t)II = o. 
t-+oo 

(18) 

For the case of homogenous linear systems with constant coefficients, 

x=Ax, (19) 

we have the following results. 

Theorem 1.3.5. {17} System (19} is Lyapunov stable if and only if, for all eigenval­

ues,\ of A we have Re(.\,) ~ 0, and all the Jordan blocks of matrix A corresponding 

to eigenvalues Ai such that Re(.\i) = 0, have dimension one. 

Theorem 1.3.6. {17} System {19} is asymptotically stable if and only if, all eigen­

values of A lie in the half space c- = {z EC: Re(z) < 0}. 

Notice that both criteria in Theorems 1.3.5 and 1.3.6 concern the problem of 

finding the signs of the real parts of the roots of the characteristic polynomial of 

matrix A. There exist several conditions that assure that all roots of an algebraic 

equation, 

have negative real parts. We shall mention here the well-known Hurwitz-Routh 

criterion. 
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Let us consider the characteristic polynomial of matrix A, 

(20) 

Definition 1.3.3. /12) The polynomial J(z) = det(zl - A)= zn + an_ 1zn-l + · · · + 
a1z + a0 is called Hurwitz if all roots of J(-) have a negative real parts. 

We will denote set of all Hurwitz polynomials of degree n, by Hn· To formulate 

the Hurwitz-Routh criterion, we need the following n x n matrix: 

a1 

ao 

0 
D= 

0 

0 

a3 

a2 

a1 

ao 

0 

as 

a4 

a3 

a2 

0 

0 

0 

0 

0 

1 

constructed as follows: Define ai = 0 if i s; 0 or i > n, an = l. Then, dij = a2j-i, 1 s; 

i s; n, 1 s; j s; n. We will denote the principal minor of order j, by 6j, 1 :s; j s; n. 

Theorem 1.3.7. (Hurwitz and Routh}[12} 

Polynomial f(z) = zn + an-1Zn-l + · · · + a1z + ao is Huriwitz if and only if 6j > 0 

for all j, 1 s; j s; n. 

1.4. Method of Lyapunov Equations 

As mentioned earlier, constructing Lyapunov functions for systems of the linear 

constant coefficient (ODE) is quite simple. This scctiou is devoted to the basic 

Lyapunov stability theory of such systems. 

Let us consider, again, a linear system with constant coefficients 

x=Ax. (21) 

Recall that system x = Ax is asymptotically stable if and only if, all the eigenvalues of 
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matrix A have a negative real part. (Le., The characteristic polynomial det(,U-A) = 

O is Hurwitz.) The following definitions will be useful in the subsequent analysis. 

Definition 1.4.1. Matrix A is Hurwitz if det(,U - A) is Hurwitz. 

Note for any (n x m)-matrix A= {%}~~7,j=l• we will denote by A* an (m x n)­

matrix, with entries A*= (aii) (where ii.ii denotes the complex conjugate of aii). 

Definition 1.4.2. Matrix A ·is positive definite (denoted by A > OJ if, for any x E 

Rn, x -=f 0, we have x* Ax > 0. Similarly, Matrix A is negative definite ( denoted by 

A< OJ if, for any x E Rn, x -=f 0, we have x*Ax < 0. 

Remark 1.4.1. If A> 0, then A*> 0, and A·;-A > 0 (where A·iA is called the real 

part of matrix A and denoted by lRe{ A} J. 

Notice that a system x = ax is stable if and only if 2lRe(a) = a+ a < 0. The 

generalization to system (21) is A+A* < 0. Clearly, A+A* < 0 is satisfied if and only 

if 2lRe(Ax, x) < 0 for all nonzero x. If A+ A* < 0, then system matrix A is stable. 

Indeed, consider any eigenvalue, >., of A and a corresponding unit eigenvector, v, that 

is Av= >.v and llv/1 = 1. Then, 0 > 2lRe(Av, v) = 2lRe(>.). Since>. is arbitrary, A is 

stable (Hurwitz). Recall that matrix A is similar to another matrix F if there exists a 

matrix, say T (det T -=f 0), such that F = TAT-1 . Because similarity transformations 

preserve eigenvalues, they also preserve stability. We will establish that A is Hurwitz, 

if and only if A is similar to matrix F that satisfies 

F + F* < 0. (22) 

Assume that A is similar to matrix F, and suppose there exists a matrix, say 

T, sati8fying 

TAT-1 + (T*t 1 A*T* = F + F* < 0. 

Let P be the positive definite matrix defined by H := T*T. Note that H = H*. Pre­

multiplying and post-multiplying the previous inequality by T* and T, respectively, 
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yields 

HA+A*H < 0. (23) 

If A is similar to a matrix that satisfies equation (22), then A is Hurwitz, and there 

exists a strictly positive matrix H satisfying (23). The following lemma shows that 

the existence of a strictly positive matrix H satisfying (23) guarantees stability. 

Lemma 1.4.1. /17} Consider system 21. Suppose that there exists a strictly positive 

matrix H satisfying {23). Then, A is Hurwitz. 

A strictly positive matrix H which satisfies inequality (23) is referred to as a Lyapunov 

matrix for system (21). 

So far, we have shown that, if (23) holds for some matrix H, then system matrix 

A is stable. Is the converse true? That is, if A is stable, does there exist an opera.tor 

H such that (23) holds? Moreover, if this is true, how does one find such a matrix 

H? First, notice that inequality (23) is equivalent to 

HA+A*H+C=O, (24) 

where C is any strictly positive matrix. This linear matrix equation is known as the 

Lyapunov equation. One approach to check for the existence of a Lyapunov matrix 

could be to choose a strictly positive matrix, C, and determine whether the Lyapunov 

equation has a strictly positive solution for matrix H. The following result shows that, 

if system matrix A is Hurwitz, then (24) has a solution, H, for every C. 

Lemma 1.4.2. (Lyapunov)/17} Assume that system matrix A is Hurwitz and C = 

c• > 0. Then, there is a Hermitian matrix, H (i.e., H = H* ), such that HA+A*H = 

-C. Matrix H is positive definite and unique. This is given by 

(25) 

Using the previous two lemmas, we can state the main theorem of this section 

as follows. 
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Theorem 1.4.1. /17} The following statements are equivalent: 

(1) Linear system x = Ax is Lyapunov stable. 

(2) There exist strictly positi:ve, definite matrices H and C satisfying the Lyapunov 

equation, HA+ A*H + C = 0. 

(3) For any strictly positive matrix C, the Lyapunov equation, HA+A*H+C = 0, 

has a strictly positive, definite, unique solv.tion H. 

(4) System matrix A is similar to a matrix F that satisfies the inequality F+F* < 0. 

Remark 1.4.2. V(x) = x*Hx is a positive, definite Junction. It is a Lyapunov 

function for the linear system with constant coefficients 

x=Ax. (26) 

Therefore, any stable linear system, x = Ax, has a Lyapunov function of the form 

V(x) = x*Hx. Furthermore, the above analysis shows that each strictly positive, 

definite matrix C uniquely determines a quadratic Lyapunov function, V(x) = x*Hx, 

where His the unique solution of the Lyapunov equation, HA+ A*H + C = 0. 
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CHAPTER 2. FEEDBACK CONTROL SYSTEMS 

2. 1. Introduction 

The general theorems of stability find important applications for applied science 

in various fields. Among many, one of the most interesting problems is the stability 

of systems in control theory. In this chapter, we give a brief overview of the main 

concepts in feedback control theory, we introduce the notion of controllability, ob­

servability, transfer function, and minimal realization. 

We will begin our discussion by considering an initial value problem for 

autonomous, ordinary differential equations of the form 

{ x = f(x(t)), 

x(O) = x0 . 

(t > 0) 
(27) 

where a point x 0 E Rn and the function f : Rn ---+ Rn are given. The map x : 

[0, oo) ---+ Rn is interpreted as the dynamical evolution of the state of some system 

that equation (27) models. We can generalize this model by assuming that function 

f depends upon some parameter belonging to set U C Rn so that f : Rn x U ---+ ]Rn. 

Then, if we select some u E U and consider the corresponding dynamics 

{ x = f(x(t), u) 

x(O) = x0 

(l > 0), 
(28) 

we can obtain the evolution of our system when the parameter is set to the value u. 

We can further generalize this model by allowing the value of the parameter to 

vary as the system evolves. That is, define a function u : [0, oo) ---+ U. Notice that 

the syE<tem behavior is now dependent on the control function, u(t). We call function 

u : [0, oo) ---+ U a control function. With control function given, we consider the 

16 



initial-value problem 

{ x = f(x(t), u(t)) 

x(0) = x0 . 

(t > 0). 
(29) 

The solution x( ·) of equation (29) depends upon control u( ·) and the initial condition. 

Hence, we will use the following 

x(·) = x(•, u(·),x0). 

Hereafter, we assume that our ordinary differential equation is linear in both 

the state x(-) and the control u(-). Consequently, it has the form 

{ x = Ax(t) + Bu(t) 

x(0) = x0 

where A E Mnxn and BE Mnxm_ 

2.2. Controllability and Observability 

(t > 0), 
(30) 

In this section, we address the following fundamental questions in mathematical 

control theory. 

Controllability: For any given initial point x0 and a target set S C ]Rn, does there 

exist a control steering the system to S in finite time? 

Observability: Given an n-vector c and a function y(•) = c•x(•), can we, in 

principle, reconstruct x(•)? In particular, do observations of y(·) provide enough 

information for us to deduce the initial value, x0 , in equation (30)? 

The following definition, due to R. E. Kalman, plays a crucial role in many 

control theory problems. 

Definition 2.2.1. [13/ The pair (A, B) is called controllable if, for any pair of points 

xo, x1 E ]Rn and any positive number T, there exists a control function u : [O, T] ---t ]Rn 
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such that the solution of system x. = Ax+ Bu with initial data x(0) = Xo has the 

property x(T) = X1. 

In other words, pair (A, B) is controllable if, for any initial and terminal points, 

x0 and x 1 and any time period, T, there exists a control which brings the system from 

x0 to x 1 during time period T. The following theorem provides several necessary and 

sufficient conditions of controllability for pair (A, B). 

Theorem 2.2.1. /20] The following statements are equivalent. 

1. Pair (A, B) is controllable. 

2. For any t > 0, J; eAsBB*eA"s ds > 0. 

3. [A - >.J/B] has full row rank for all A E C. 

4. For dny eigenvector, z, of A*, we have B* z-/- 0. 

5. Then x (nm) matrix [B, AB, A 2B, · · · , An-I BJ has full row rank. 

6. For any set of complex numbers A = P1, A2, · · · , An}, such that, A = A, there 

exists a matrix F such that, A is the set of eigenvalues of A+ BF. 

Now we w~ll discuss the observability problem. Let us consider the initial-value 

problem 

{ x = Ax(t) 

x(0) = x0 . 

(t > 0) 

We suppose that we can observe or measure the funcLion 

y(t) := Cx(t) (t 2: 0), 

where matrix C E Mmxn is given; function y is usually called measurement. 

(31) 

(32) 

Definition 2.2.2. Pair (A, C) is called observable if, for any solution of system 

x = Ax such that Cx = 0, we have x = 0. 

The following theorem provides necessary and sufficient conditions of observ­

ability for pair (A, C). 
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Theorem 2.2.2. /20/ The following statements are equivalent. 

1. Pair (A, C) is observable. 

2. For any t > 0, J; eA"sC*eAs ds > 0. 

3. The matrix [ A ~ >.I ] has full calumn rank for all >. E C. 

4, For any eigenvector, z, of matrix A*, we have C* z -=/= 0. 

5. Then x (nm) [C*,A*C,A*<2lC, • • • ,A•(n-l)C*] has full row rank. 

6. For any set of complex numbers A = {>.1, >-2, · · · , >-n}, such that, A = A, there 

exist a matrix F such that, A is the set of eigenvalues of A+ CF. 

7. Pair (A*, C*) is controllable. 

Notice that the equivalence of (1) and (7) in Theorem 2.2.2 shows that observability 

and controllability are dual concepts for linear systems. 

2.3. Realization Theory: Frobenius Forms 

Let us consider system (feedback system) where the dynamics can be described 

by the following equations: 

{ x = Ax(t) + bu(t) 

y = c*x 

(t > 0), 
(33) 

Theorem 2.3.1. {18/ Let us assume that pair (A, b) is controllable; then, there 

exists a nonsingular, constant matrix K such that, for change of variable z = Kx = 

(z1, · · · , Zn)T, we have 

Zn = -8oz1 - 61Z2 - · · . - ()n-lZn + 'IL, 

y = c*K- 1z, 
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where 60, 61, • • · , 6n-l are coefficients of the characteristic polynomial of matrix A : 

This form is called the first Frobenius form of system (33). On the other hand, if we 

assume that pair (A, c) is observable them we have the following result: 

Theorem 2.3.2. /18} Let us assume that pair (A, c) is observable, then there exists 

a nonsingular matrix K E Mnxn such that, for the change of variable z = Kx = 

(z1, · · · , znf, we have 

z1 -5ozn + /3ou, 

Z2 Z1 - 61Zn + /J1 U, 

Z3 Z2 - 62Zn + /J2U, 
(35) 

Zn = Zn-1 - 6n-1Zn + f3n-1 n, 

y Z1. 

This form is called the second Frobenius form of system (33). 

The following function plays an important role in modern mathematical control 

theory. 

Definition 2.3.1. Function W(s) = c*(A- sl)-1b is called the transfer function of 

system ( 33). 

Note that W ( s) is a rational function. If matrix A is Hurwitz and if u( t) = eiwt, then 

ly(t) - W(iw)eiwtl ----> 0 as t----> oo. 

Now, assume function W(s) is a proper, rational function. Let us pose the 

following questions. How can we construct system (33) having W(s) as a transfer 

function? How can we find system (33) of minimal dimension having this property? 
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Denote the coefficients of the rational function W as follows: 

(36) 

Theorem 2.3.3. {18} System (33) with Frobenius form 

x1 = x2 + /Jou, 

x2 xa+fJ1u, 

(37) 
Xn-1 Xn + /Jn-2U, 

Xn -Jox1 - J1x2 - '' · - On-tXn + /Jn-1U, 

Notice that pair (A, b) in system (37) is controllable. Hence, we have the 

controllable realization of transfer function (36). 

Similarly, the following theorem provides the observable realization of transfer 

function (36). 

Theorem 2.3.4. {18} System {33) with Frobenious form 

X1 -6oxn - /Jou, 

X2 = .T1 - 61.Tn - fJ1 U, 

(38) 

The following statement is the complete answer to the question that was posed 

above. 
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Theorem 2.3.5. /18} Systems (37) and (38) present the minimal realization of 

transfer function W if and only if the numerator and denominator of transfer function 

W have no common roots. 

Henceforth, without any loss of generality, we can consider only minimal real­

izations of transfer functions. 
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CHAPTER 3. STABILITY OF FEEDBACK CONTROL 
SYSTEMS 

3.1. Introduction 

In what follows, we shall deal with the absolute stability of feedback con­

trol systems. The basic concepts of Lyapunov exponents and extremal norms will 

be introduced and explored to derive necessary and sufficient conditions for the 

asymptotic stability of differential inclusions and dual inclusions. We will derive 

an important, particular solution, called the "worst-case solutions." We will use this 

concept to establish the largest cone on the complex plane such that, if all eigenvalues 

of corresponding linear systems belong to this region, then the system is absolutely 

stable. · 

3.2. Absolute Stability of Feedback Control Systems 

We shall consider a problem, formulated first by Lur'e and Postnikov, related 

to the stability of some systems occurring in the theory of feedback control. Let us 

consider a system (feedback control system with one nonlinearity, also known as Lur'e 

system) where the dynamics can be described by the following equations: 

{ 
x(t) = Ax(t) + bip(o-, t) 

o-(t) = c*x, 
(39) 

where A, b, and c are constant matrices of dimensions n x n, n x 1, and n x 1, 

respectively. We assume that matrix A is Hurwitz and that pairs (A, b) and (A, c) 

are controllable and observable, respectively. Function ip(a, t) is a real-valued function 

defined on the whole plane, and satisfies condition <p(O, t) = 0, in order for system (39) 

to have a zero solution. In addition, we also assume that function <p is measurable 

int and that there exists a numberµ such that ll'P(t,o-)11::; µllall- This condition 

guarantees the existence of a solution on (-oo, oo) for any initial-value problem that 

system (39) may have. 
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Function <p is generally nonlinear, and sometimes it is only known approxi­

mately. Because, it is not easy to explore the full information about function <p, 

rather we will use some reasonable property in order to prove stability. One of the 

most important properties of <p is presented below. If we use only this property, 

then we will deal with the problem of stability for system (39) with all functions <p 

satisfying this property. 

Fix numbers µ 1 and µ 2 . For the remainder of this thesis, it will be assumed that 

1.p(u, t) is a measurable function with respect to t and continuous with respect to u 

such that 

for all u -=/- 0 and for all t. (40) 

The reason for interest in such functions is due to the fact that such information 

about nonlinear functions, <p, is readily available in many practical cases (nonlineari­

ties with dead zone, with saturation, with hysteresis, etc.) which give fruitful stability 

and performance analysis of system (39). 

We can simplify condition ( 40) by making the following change of variables: 

and 

Then, the lower bound of quotient ( 40) is equal to zero. Hence, without loss of 

generality, we will assume that µ 1 = 0. Also, we denote the new upper bound by 

µ = µ2 - µ1. We use Mµ to denote the set of (nonlinear) functions, <p, that satisfy 

the above sector condition, i.e., 

M " -- {,n ·. 0 S 1.p(a, t) } ,. .,, S µ Va i= 0, t 2 0 , 
u 

where JI is a given positive number. 

The property of interest which we studied concerns a special type of stability, 
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an absolute stability. 

Definition 3.2.1. We say that system {39) is absolutely stable in class M 1, if, for 

any 'P E Mµ, the zero solution is globally, asymptotically stable and this stability is 

uniform with respect to 'P E M µ. 

The subject of this thesis concerns the necessary and sufficient conditions on 

set { A, b, c, µ} for absolute stability of system (39) in class Mµ- In particular, we 

seek criteria that are coordinate independent and can be tested analytically. Before 

formulating the problem and showing new results based on new approaches, we 

first look at early results and conjectures. Let us suppose function 'P is such that 

rp( a, t) = Il(i for all II. Then, we have the following useful result. 

Theorem 3.2.1. /18/ System x = (A+ bI1c*)x for all I1 E [O, µ] is asymptotically 

stable if and only if matrices A+ bvc• are Hurwitz for all II E [O, µ]. 

Theorem 3.2.2. (Mikhailov,Nyquist)/18} Suppose f(>-.) is a polynomial of degree n. 

If J ( iw) =/- 0 for all Lu E IR, then f is Hurwitz if and only if 

Hence, if we combine Theorems 3.2.1 and 3.2.2, the result is the well known 

Nyquist criterion. 

Proposition 3.2.1. (Nyquist criterion) Matrices A+ bI1c* are Hurwitz for all II E 

[O, µ] if and only if matrix A is Hurwitz and if for all II E [O, µ], we have 1 +I1W(iw) =/-

0 for all w 2: 0, and 

6':'00 arg(l + IIW(iw)) = 0, 

where W(s) = c*(A - sI)- 1b is the transfer function of the system. 

Now, let us instead assume function rp((j) is time-invariant and satisfies sector 

inequality 0 :S <p~s) :S µ. In 1949 Aizerman conjectured that, if system (39) with 
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cp(s) = vs is asymptotically stable for all v E [O, µ], then system (39) with any 

function cp satisfying sector condition O :::; '£if1 :::; 11, \f s =/- 0 is globally, asymptotically 

stable. With a slight abuse of terminology, this conjecture may be formulated as 

follows: a sector of linear stability implies a sector of nonlinear stability. In 1956, 

Pliss came up with a counter example [l] to Aizerman's conjecture. In 1957, Kalman 

conjectured that system 

x =Ax+ bcp(c*x) 

is globally, asymptotically stable if cp(O) = 0 and if A+ bcp'(o-)c* is Hurwitz for all 

CJ. Also, a counter example was constructed [7]. If we further generalize and consider 

systems with time-varying nonlinearities, cp(CJ, t) EMµ- Then, there are criteria that 

have been derived for the absolute stability of such systems. The most well-known 

criterion is the circle criterion which is based on the existence of a Lyapunov quadratic 

form. 

Let us consider a positive, definite quadratic form, V(x) = x*Hx. By the 

Lyapunov Theorem 1.4.2, dV~(t)) < 0 is sufficient for stability. Let us denote ~(t) := 

<p(a, t). Therefore, 

dV(x(t)) _ 8V(x(t)) dx _ * ( ) 
dt - ot · dt -- 2x H Ax + b( . 

Note that the condition O S cp(;,t) S p, is equivalent to the inequality ((11c*x - () 2: O. 

Denote F(x, ~) := ~(µc*x - (). Then, we have the following questions. 

Question 1: Does there exist a Hermitian positive definite matrix, H = H*, such 

that 

2x*H(Ax + bO < 0 

for all (x, ~) E JR.n+l such that x =/- 0 and F(x, O 2: O? 

We can pose another question. 

(41) 

Question 2: Does there exist a Hermitian matrix, H = H*, and a positive number, 
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T, such that 

2x*H(Ax + b() + TF(x, 0 < 0 (42) 

for all (x, () E JRn+17 It is obvious that ( 41) implies ( 42). The replacement of condition 

(41) by (42) is called S-procedure. Dines theorem [10] states that (41) is equivalent 

to ( 42). The necessary and sufficient condition for the existence of such a matrix H 

is given by the following famous result. 

Lemma 3.2.1. (Kalman and Yakubovich)/14} Assume pair (A, B) is controllable. 

For the existence of a Hermitian matrix H such that 2x*H(Ax + bE} + F(x, ~) :S 0 

for all x, ~, it is necessary and sufficient that ~e{ F(iwI- A )-1 bE, ~)} :S O (Frequency 

Domain Inequality) for all~ EC, and w 2 0 such that det(A - iwl) # 0. 

Then, Frequency Domain Inequality for systems in the class of sector time­

varying nonlinearities gives the following inequality known as the circle criterion: 

'l 
~e{W('iw) + -} 2 0 

µ 
for all w 2 0. (43) 

The circle criterion, which is equivalent to the existence of a quadratic Lyapunov 

function in the majority of cases, only provides an essentially sufficient condition for 

absolute stability. Hence, we need a different. approach to get. necessary and sufficient 

conditions for the absolute stability of system (39) in class Mµ, These conditions 

could be formulated in terms of system parameters { A, b, c, µ} or transfer function 

W(s). In the next section, we will consider a new object which was proven to be useful 

when studying the absolute stability problem. This object is called linear differential 

inclusion. 

3.3. Linear Differential Inclusions: Dual Inclusions and Asymptotic Sta­

bility of Inclusions 

Assume A is a set of n x n real matrices, such that for a constant c, we have 

27 



I IAI I ':S c for all A E A. Let us consider the following differential inclusion: 

dx 
dt E {Ax : A EA}. (44) 

Solutions of this inclusion are absolutely continuous functions x( ·) such that ( 44) 

holds for almost all t. The following known result shows the relationship between the 

absolute stability problem and asymptotic stability of inclusion ( 44). 

Theorem 3.3.1. [8] System {39) is absolutely stable in class Mµ if and only if 

inclusion ( 44), where A = { A + bvc* : 0 -S 11 -S JJ,}, is asymptotically stable. 

Henceforth, we shall study asymptotic stability of inclusion (44). 

One of the pioneering papers about the theory of stability for inclusion ( 44), was 

published by Molchanov and Pyatnisky [4]. In this paper, they showed that linear 

inclusion ( 44) is asymptotically stable if and only if there exists a Lyapunov function 

of the form V(x) = max{IP;xl, i = 1, · · · , m }, where m is an integer number; 

P 1, · · · , P 111 are some constant vectors; and V ( x( t)) is decreasing along all nonzero 

solutions x( ·) of inclusion ( 44). Unfortunately, there are no available methods to find 

the number, m, and vectors, P 1, · · · , P 111 • Therefore, this result cannot be considered 

a solution of the problem for stability of inclusion (44). There were several other 

papers (one, in particular, an early paper of Mejlakhs [5]) which studied necessary and 

sufficient conditions for stability of inclusion (44). None led to numerical procedures. 

The problem remained open until 1988 when a new approach to stability of 

inclusion (44) was developed (papers of [7] and [8]), where the concepts of the 

Lyapunov exponent and the extremal norm for inclusions first appeared. 

Let us consider a number 

-. ln llx(t)II p(A) := sup hmt_,oo---, 
t 

where the supremum is taken over all solutions of inclusion (44) with x(O) -=I- 0. 
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Definition 3.3.1. The number p(A) is called the Lyapunov exponent of inclusion 

{44). 

It may be shown that inclusion ( 44) is asymptotically stable if and only if 

p(A) < 0 [8]. Hence, the problem of asymptotic stability for inclusion (44) is reduced 

to the problem of finding the sign of the Lyapunov exponent, p(A). There exist 

necessary and sufficient conditions for stability of differential inclusions (as illustrated 

by the theorems below), but these conditions are numerically too complicated. 

First, we need to introduce the notion of irreducibility for set A of n x n matrices. 

Definition 3.3.2. [ 8] Set A is irreducible if there does not exist a proper subspace of 

Rn invariant with respect to all matrices A E A. 

Set A is called reducible if it is not irreducible. 

Set A is reducible if and only if there exists a number, k E {l, • • • , n - 1}, and 

a basis in Rn such that each matrix, A E A, in this basis is presented in the form 

where Au is a k x k-matrix. 

The stability problem for inclusion ( 44) with reducible A is equivalent to the 

stability of inclusions with lower order. In particular, if A= ( Au A12 ) for each 
0 A22 

A E A, then the asymptotic stability of ( 44) is equivalent to asymptotic stability of 

inclusions 

Therefore, we will consider only irreducible inclusion (44). 

Similar to continuous time inclusions, we can analyze inclusions in discrete time 

Xk+l E {Axk: A EA}, k = 0, 1, 2, · · · . 
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The Lyapunov exponent for inclusion ( 45) is the number 

-. lnllxkll 
p(A) := sup hmk--+oo k , 

where the supremum is taken over all nonzero solutions of inclusion (45). The 

following algorithm allows us to compute, in finitely many steps, the sign of the 

Lyapunov exponent, p, of inclusion (45) for the case p -=/= 0. We will denote the 

convex hull of a set Z by conv(Zk)- Also, we will denote the set of extremal points of 

a convex set Z by ex(Z). 

Theorem 3.3.2. [8] Assume Z0 is a set of points in ]RN such that Z0 = -Z0 and 

that zero is an interior point of conv(Z0 ). For any k = 0, l, 2, · · · , denote Z~ = {Az: 

A EA, z E Zk} and Zk+l = ex(conv(Zk U Z~). The following statements hold: 

(1) If p(A) < 0, then there exists k such that Zk = Zk+l · 

(2) If p(A) > 0, then there exists k such that zk n zk+l = ¢;. 

If p(A) -=/= 0, then the procedure gives the s-ign of p(A) in a finite number of steps. 

The algorithm could be considered as a solution of the absolute stability problem if 

the growth rate for the number of polygon conv(Zk) edges would not be so big as it 

occurs in many cases even for 4-dimensional inclusion. 

Other important results are based on the following concept. Consider function 

[8] 

where the supremum is taken over the set of solutions x(l) of inclusion (44) with 

initial data x(O) = y. 

Definition 3.3.3. Function v is called extremal norm of inclusion ( 44). 

The following statement is a basis for all important results in the theory of 

stability for linear inclusions. 
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Theorem 3.3.3. [ ?j The following statements are true 

(1) Function v is a norm in Rn. 

(2) For any solution x of inclusion ( 44} and any t ~ 0, we have v(x(t)) ~ eP(A)tv(x(0)). 

{3} For any vector y E Rn, there exists a solution x(·) of inclusion {44} such that 

x(O) = y and v(x(t)) = eP(A)tv(x(0)) for all t ~ 0. 

In the case p(A) < 0, the function II is the Lyapunov function of inclusions (44). 

The following proposition is important. 

Proposition 3.3.1. [?j Assume A is irreducible. The following statements are equiv­

alent. 

{1} Inclusion ( 44} is asymptotically stable. 

{2} Inclusion ( 44} is exponentially stable. 

(3) Lyapunov index p(A) is negative. 

(4) There exists a positive, definite form of an even degree which is a Lyapunov 

function of inclusion ( 44). 

Item (4) in Proposition 3.3.1 above shows that, to prove exponential stability 

of inclusion ( 44), it is necessary and sufficient to prove the existence of a Lyapunov 

function in the class of forms of an even degree. There are no efficient procedures 

to check the existence of such Lyapunov functions for all forms with a degree bigger 

than 2. 

Another approach to check stability of inclusion ( 44) concerns methods to find 

so-called worst-case solutions. In this thesis, a solution is called worst-case solution 

if all solutions of an inclusion tend to zero provided that this single solution (worst­

case solution) tends to zero. The properties of worst-case solutions have been the 

subject of many papers since the 1970s. One of the first results in this area was 

obtained by Pyatnitsky [9]. Pyatnitsky used the Pontrygin maximum principle to 

find these solutions in [9], where the so-called dual system was applied to stability 

theory for the first time. Next, we will introduce the concept of dual inclusions 

and subsequent statements that relate certain properties of dual inclusions with the 
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asymptotic stability of inclusion ( 44) and, therefore, the absolute stability of system 

(39) in class Mµ-

Consider inclusion (44) with the set of matrices A* = {A* : A E A}. This 

inclusion is called the dual to inclusion (44). Denote by p(A*) its Lyapunov exponent. 

The Lyapunov exponents of the original and the dual inclusion coincide: 

Theorem 3.3.4. [B] p(A) = p(A*). 

It turns out that the worst-case solutions of inclusion ( 44) satisfy certain con­

ditions which may be expressed in terms of dual inclusions and which are closely 

connected to the Pontrygin maximum principle. We will denote the subdifferential 

of the convex function, u, at a point x as 8v(x) and denote the inner product of 

two vectors x, y E ]Rn as (x, y). Assume <let A=/- 0 t/A E A (otherwise, p(A) ~ 0). 

Denote the unit ball with norm v as M = {x E Rn : v(x) :::; l}. Set M is a 

convex, closed, bounded, central symmetric set, such that the origin is its interior 

point. Denote the polar of M as M 0 = {l E Rn : (1, x) :::; 1 t/x E M}. Set M 0 has 

the same properties as M, and v(x) = sup{(l, x) : 1 E M 0 }. Denote the boundary of 

the set M 0 as Q0 = {l E M0 : :lx E M, such that (1, x) = 1 }. Let Q be the boundary 

of M. We say that 1 E M 0 corresponds to x E M if (1, x) = 1. The following result is 

an analog of the Pontryagin maximum principle for continuous, time-linear inclusion 

(44). 

Theorem 3.3.5. [B] For ally E Q there exists a solution x(·) of inclusion ( 44} with 

initial data x(0) = y and such that v(x(t)) = l (or x(t) E Q 'tit> 0), a function I(t) 

such that l(t) = 8v(x(t)) for all t > 0 and a matrix function such that A(t) E A, 

x(t) = A(t)x, i(t) = -A*(t)l(t), and for all t ~ 

(1) (l(t),x(t)) = (1(0),x(0)) = 1, ePtl(i;) E Q0 , e-ptx(t) E Q. 

(2) max{(I(t),Ax(t)): A E Ap} = (l(t),A(t)x(t)) = 0. 

Note that, because the function v is a convex function, it is differentiable almost 

everywhere. Moreover, if vis differentifible at x(0), 1(0) = v'(x(0)), and if matrix A 

is as defined above, then function v is differentiable at x(t) and l(t) = v'(x(t)) for 

32 



all t > 0. Hence, Theorem 3.3.5 shows that if, for at least one xo, we are able to 

find vector 10 E 8v(x0 ) such that 1(0) = 10 , where l( ·) is a solution pointed out in 

Theorem 3.3.5, then we are able to construct the solution x(·) of inclusion (44) such 

that x(0) = y and v(x(t)) = eP(A)tv(x(0)) for all t 2: 0. obviously this is the worst-case 

solution. 

An important application of this result for the problem of absolute stability for 

feedback systems with one time-varying nonlinearity is given below. 

Define the set of matrices 

Aa = { A + bvc* : 0 ~ v ::::; µ}, ( 46) 

where A is an n x n-matrix, b and c are n-vectors, pair (A, b) is controllable, pair 

( A, c) is observable, and µ is a positive number. Note that, for the case of inclusions 

arising in the theory of absolute stability, the property of irreducibility is equivalent to 

the controllability of pair (A, b) and the observability of pair ( A, c). For the particular 

set of matrices Aa, we have the following result. 

Theorem 3.3.6. The following statements are equivalent 

(1) The Lyapunov exponent p(Aa) is negative. 

(2) For all solutions of the system, 

~7 = Ax+ b(c, x)u 

~ -A*l-c(b,l)u 

u ~{1 + sign[(c, x)(b, l)]}, 

it follows that x( t) - 0 as t - oo. 

Notice that for nonzero solutions, functions c*x(t) and b*l(t) have isolated roots [8]. 

Therefore, function u(-) is well defined. 

To find a worst-case solution, it is sufficient to find for any nonzero vector x(O) a 

vector 1(0) from Theorem 3.3.6. Such information is currently unavailable in general 

case. Therefore, the general problem of finding the necessary and sufficient conditions 
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for stability of inclusion (44) is open. On the other hand, for second-order systems 

(i.e., if n = 2), we can efficiently find such solutions in terms of system parameters 

A, b, c and µ as follows. 

Theorem 3.3.7. [11] For second-order systems (n = 2), the Lyapunov exponent 

p(Aa) is negative if and only if the following systems is stable: 

dx/dt; =Ax+ b(c, x)~{l + s-ign[(c, x)(b, x)]}. 

Hence, by the previous theorem, the worst-case solution for second-order feed­

back systems in class M,,. satisfies 

{ 
x=Ax 

x = (A+ b1,tc*)x 

, if c*x(t) • b*x(t) < 0, 

, if c*x(t) · b*x(t) 2: 0. 
(47) 

3.4. Absolute Stability of Second-Order Feedback Systems in Class M,,.: 

Preliminaries 

The above result provides a useful tool that will be utilized in this thesis to 

establish an important result in the theory of absolute stability for a particular class 

of feedback systems. We shall study inclusions of order two with the matrix pencil 

Aa ={A+ bvc* : 0::; v :S µ}, where A E M2x2 ; b E M2x1 ; c E M2x1 ; andµ E JR+, 

arising from the problem of absolute stability for feedback systems 

{ 
x=Ax+b<p(a,t), 

a= c*x 
(48) 

in class 

of sector nonlinearities, We will assume that pairs (A, b) and (A, c) are controllable 

and observable, respectively. 

The problem of interest is to derive necessary and sufficient conditions in terms 

34 



of system parameters, A, b, c and µ, that are readily verifiable and coordinate-free for 

the global asymptotic stability of system (48) for all nonlinearities cp(a, t) belonging 

to class Mw Many stability criteria have been derived for such systems. Duignan and 

Curran proved [2] the absolute stability of system ( 48) in class Mµ, using two types 

of Lyapunov functions. Wulff et al. [3] characterized the existence of such Lyapunov 

functions by eigenvalues of the matrices A+ bvc*, 0 s v S µ; a quadratic or unic 

Lyapunov function exists if all eigenvalues of matrices A+ bvc*, 0 s v s µ lie in the 

set 

{ ISsm{z}I } 
S'Y= zEtC: iRe{z} <1, iRe{z}sO, 1=1. (49) 

Duignan and Curran referred to this region of the complex plane as the 45°-Region. 

In [2], it is proven that, if all eigenvalues of matrices A + bvc*, 0 ::; v ::; µ, lie in the 

interior of sector S1, then system ( 48) is absolutely stable in class Mµ- It is known 

that, usually, the Lyapunov function approach provides essentially sufficient criteria 

for absolute stability. Hence, it is reasonable to expect that there exists a number 

1 > 1 such that system ( 48) is absolutely stable in class Mµ, if all eigenvalues of 

matrices A+ bvc*, 0 ::; v s /L, lie in S'Y. 

This thesis contains results showing that, in fact, boundary 1 = 1 is firm. That 

is, the previous statement, in general, is true only for 1 = 1. Therefore, the problem 

under consideration may be formulated as follows: 

Main Problem: Find the maximal value of 'Y such that, if for any second-order 

system ( 48), all eigenvalues of matrices A + bvc*, 0 ::; v ::; µ, belong to sector S'Y, 

then system ( 48) is absolutely stable in class Mw 

Let us suppose pair (A, b) is controllable. Then, without loss of generality, we 

may assume system ( 48) to be in the controllable, canonical first Frobenius form as 

below 

(50) 
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with given transfer function 

(51) 

where a, z, a1, and a2 are real numbers. We assume matrices A+ bvc* are Hurwitz 

for all v E [O, µ], that is, a1 > 0, a2 > 0. If a < 0, then the change of variables 

( 1--t µ17 - ~' A 1--t A+ bµc* results in the transfer function of form (51) with positive 

a. Hence, without loss of generality, we can assume a 2: 0. 

First, consider the case a > 0. The change of the independent time variable, 

/. 1--t ¾, results in the change of variables 1--t as, hence getting the transfer function of 

form (51) with a= 1. Hence, in the sequel without loss of generality, we will assume 

a = 1. The system under investigation has a transfer function 

(52) 

The following definitions will be useful in stating and proving the main results 

of this thesis. We begin by defining the region in the complex plane that is of primary 

importance to our discussion. 

Definition 3.4.1. [3] {45°-Region) The 45°-Region is the open subset, S1, of the 

complex plane defin.ed by 

{ I S'm{z} I } S1 = zEC: !Re{z} <1, !Re{z}<0. 

Now we will introduce the unic function. 

Definition 3.4.2. [3] For any nonsingular n x n matrix 1\1, we define a. unic function 

on Rn by 
n 

V(x) = IIMxl/1 = I: /(Mx)i/ 
iccl 

where ( M x )i denotes the i th component of vector M.T. 

Note that, a unic function is continuous, bounded, positive, definite and ho-
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mogenous of degree one, i.e., V(ax) = /alV(x) for every scalar o: and every vector x. 

It satisfies the triangular inequality V(x1 + :z:2) :::; V(x1) + V(.r2). Therefore, function 

V(•) is a norm in ]Rn_ 

In addition, the following definition is useful to prove subsequent statements 

about absolute stability. 

Definition 3.4.3. We say that inclusion ( 44) satisfies condition S1 if all roots of 

matrices A+ bvc*, 0 :::; v :::; µ lie in the set S1 . 

A necessary condition for this property, i.e., condition S1, amounts to at-2a2 > 

0. Later, it will be shown that this condition is indeed necessary. In addition, we will 

augment this condition with several others in such a way that the total conditions 

are necessary and sufficient. These additional conditions are given in the following 

lemma. 

Lemma 3.4.1. Assume a1 > 0, a2 > 0. Then, condition S1 is sati.~ficd if and only if 

at > 2a2 , z > -a2 and 

(1) if ar - 2a2 E (0, 1), then z < a1 + Jar - 2a2, as well as 

(2) if ai - 2a2 2-: 1, then z < a1 + ½(ar - 2a2 + 1). 

Before proceeding with the proof of Lemma 3.4.1, we will prove the following auxiliary 

lemma. 

Lemma 3.4.2. Assume /3 E [0, 1], 0:2 > /3 and a> 0. Then, ~ < 1. 
a+ a.2-/3 

Proof. (Lemma 3.4.2) Because o:2 > {J, o: > 0, and {J:::; 1, we have a> {J. Therefore, 

we have J o:2 - (3 2-: 0 > (3 - a, which is equivalent to (3 < a+ J o:2 - (3, which, in 

turn, is equivalent to 

/3 < 1. 
a+ Ja2 - (3 

□ 

Proof. (Lemma 3.4.1) System (50) with 1.p(u, t) = vu has characteristic polynomial 

P(s) = s2 + (a1 + v)s + a2 + vz. 
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Evidently, condition S1 is satisfied only if a2 + vz > 0, a 1 + v > 0, 'iv E [0, l]. Hence, 

we will assume that this is true. First, the necessity of the condition S1 is given 

by ay - 2a2 > 0. Indeed, consider the case v = 0, and suppose the characteristic 

polynomial 

has all roots in S1. We have S1,2 = -;i ± ✓ Ur )2 - a2 E S1 if and only if 

either 

or 

It is easy to see that the last condition holds if and only if af > 2a2 . 

Condition S1 fails only if the characteristic polynomials have roots on the boundary 

of S1, i.e., at points ,\(-1 + i), for some,\ 2: 0 and some v E [0, l]. We have 

or 

which is equivalent to 

{ 
-(a1 + v)>. + a2 + vz = 0, 

-2,\2 + (a1 + v)>. = 0. 
(53) 

If,\ = 0, then (53) implies a2 + vz = 0. According to our assumption, a2 + vz > 0. 

Thus, .\ =I- 0. 

If,\> 0, then (53) implies,\= ait', and -a~+"(a1 + v) + a2 + vz = 0. Therefore, 

v2 + 2v(o.1 - z) + o.f - 20.2 = 0, and 
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The goal is to find conditions necessary and sufficient for II i [O, l]. As already 

established, the necessity of condition 81 is given by af - 2a2 > 0. Now, consider the 

following two separate cases. 

Case I: Assume O < ar - 2a2 < l. We need to find a condition equivalent to the 

following property: II= -a1 + z ± J(a1 - z) 2 - (af - 2a2 ) i [O, 1] or, equivalently, 

both roots of polynomial f(II) = Il2 + 2Il(a1 - z) + af - 2a2 do not belong to [O, 1]. 

Notice that, if a1 - z ~ 0, then there are no nonnegative roots, II, of this polynomial. 

Hence, a1 - z ~ 0 is a sufficient condition for this property. Notice, our property also 

holds if (a1 - z)2 - (af - 2a2) < 0. 

Hence, we will consider the subcase (a1-z)2-(af-2a2) ~ 0. We have (a1 -z)2 > 

(a1 -z)2-(af-2a2), because af-2a2 > 0. Therefore, z-a1 > J(a1 - z)2 - (at - 2a2). 

On the other hand, we have 

Now, denote a:= z - a1 and {3 := ar - 2a2 . By assumption, we have z - a1 > 0 and 

0 < af - 2a2 < 1. Because a 2 - f3 ~ 0, by Lemma 3.4.2, we have 

and there is an eigenvalue of matrices A + bI1c*, 0 s v s 1 which lies outside 

the set S1• Hence, if condition 8 1 holds and if z > a1 , 0 S ai - 2a2 s 1, then 

(z - a1) 2 - (ar - 2a2) < 0. This condition is equivalent to 

Therefore, we have the following statement: If O < ar - 2a2 S 1, then condition 

S1 holds if and only if either -a2 S z S a1, or z > a1 and z < a1 + J af - 2a2. 
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Case I I: Assume ar - 2a2 2 1. If -a2 < z :S a1. Then, again as in Case I we 

have condition S1 is satisfied. Now, consider the case z 2 a1. Then, z - a1 ± 

J(a1 - z) 2 - (ar - 2a2) ~ [O, 1] if and only if either 

or 

The last inequality is equivalent to (z - a 1 - 1) > J(a 1 - z) 2 - (ar - 2a2) which, in 

turn, is equivalent to the following equations: 

z - a1 - l > 0 

(z - a1 - 1)2 > (a1 - z)2 - (ar - 2a2) 

We have either 

or 

These conditions are equivalent to 
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which, in turn, is equivalent to z < a1 + a~- 2; 2+1. Therefore, condition S1 is satisfied 

if and only if either 

or 

and 

□ 

3.5. Sufficient Conditions for Absolute Stability in Class Mµ 

In this section, we establish sufficient conditions, in terms of system parameters 

A, b, c andµ, for the absolute stability of system ( 48) in class Mw First, we establish 

conditions necessary and sufficient for the existence of a quadratic and unic Lyapunov 

function for all r.p E Mw It is well known that the existence of a quadratic Lyapunov 

function is equivalent to the frequency domain inequality, which is a basis of the so 

called the circle criterion, much of which was discussed in general context earlier in 

Section 3.1. 

In our case, the transfer function has a form (52). We assume the denominator 

of the transfer function, s2 + a1s + a2, is Hurwitz (i.e., a1 > 0 and a2 > 0). This is a 

necessary condition for absolute stability in class Mw Hence, the circle criterion for 

absolute stability acquires the form 

1 + 1Re{W(iw)} > 0 for all w z 0. 

This inequality is equivalent to the following inequalities: 

0 < 1 + a1e{ _w2 :wi:a: + a2} \;/w Z 0, 

1 z(a2 - w 2) + a1w2 
0 < + ---'--------'---- \;/w z 0, 

(a2 - w2)2 + arw2 

0 < w4 + ·u?(-20,2 + ai - z + ai) + a2z + a~ \;/w z 0. 
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The following result gives the conditions on parameters A, b and c if the last inequal­

ity above holds for all w. 

Lemma 3.5.1. There exists a quadratic Lyapunov function if and only if 

(1) a2z + a~ > 0, and 

(2) either - 2a2 + ar - z + a1 > 0 

or(-2a2+af-z+a1<0 and (-2a2+ar-z+a1)2<4(a2z+aD). 

The proof follows from the inequalities above and the fact that the circle criterion is 

necessary and sufficient for the existence of the quadratic Lyapunov function. 

Taking into account that a2 > 0, we can present condition (1) above in the form 

a2 + z < 0. Provided that condition (1) is true, condition (2) is equivalent to the 

following inequality: 

which may be rewritten as follows: 

Next, we consider conditions for the existence of the unic Lyapunov function of 

the form 

(54) 

Lemma 3.5.2. There exists a unic Lyapunov function (norm) of form (54) if and 

only if 

Proof. Consider the following change of basis (x1, x2) --+ (a, x2). Then, system (50) 

takes the form 

& = zx2 - a2x1 - a1x2 - r.p = -~a- (a1 - z - ~)x2 - r.p(Cl, t), 

i2 = -a2x1 - a1x2 - r.p = -~a - (a1 - a: )x2 - r.p(Cl, t), 
(55) 

(We changed the basis from (x1, x2) to (Cl, x2) by making the substitution x1 
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(J"~x2 , where z -=f 0.) Notice that, if z = 0, then transfer function (51) takes the 

form W(s) = 2+ s + , which satisfies the circle criterion trivially. The first (state) 
s a1s a2 

equation of system (50) can be presented in a new coordinate system as follows: 

(56) 

Taking into account that O ::S 'P~t), we can deduce that function V is a Lyapunov 

function if the diagonal elements of matrix '.D are negative, their absolute values are 

not less than the absolute values of the off-diagonal elements of the second column, 

and at least one column has a strict inequality. The first column clearly satisfies this 

property if and only if z > 0. We will assume z > 0. For the second column, we get 

the inequality 

which is equivalent to the following inequalities: 
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Therefore, system (50) has a unic Lyapunov function if and only if 

□ 

Now, we need to show that, if condition S1 is satisfied, then either there exists a 

quadratic Lyapunov function (that is, circle criterion satisfied) or there exists a unic 

Lyapunov function. 

Theorem 3.5.1. If condition S1 is satisfied, then there exists either a quadratic 

Lyapunov.function or a unic Lyapunov function. 

Proof Let us suppose condition S1 is satisfied. Assume af - 2a2 E (0, 1]. Then, 

condition S1 implies -a2 < z < a1 + Jar - 2a2 • If z > a1 - Ja1 - 2a2, then by 

Lemma 3.5.2, there exists a unic Lyapunov function. On the other hand, if 

then the circle criterion is satisfied if 

This condition is equivalent to 

which is true since af - 2a2 > 0. 

Now assume af - 2n2 > 1. Then, condition 8 1 implies z < n1 + ½(nf - 2a2 + 1). By 

Lemma 3.5.1 the circle criterion is satisfied if 
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which is equivalent to 

which is satisfied because ar - 2a2 - 1 > 0. Therefore, if condition S1 holds, then 

there exists either a quadratic or unic Lyapunov function as claimed. □ 

Lastly, consider the case a= 0. The transfer function has the form 

(57) 

Condition S1 is equivalent to a2 > 0, ar > 2(a2 + z) > 0, ar > 2a2, a1 > 0, and 

a2 > 0. The circle criterion acquires the form 

which is equivalent to 

ar > nu1.:.c{2a2 , 2a2 + 2z }. Hence, ar > ½(2a2 + 2a2 + 2z) = 2a2 + z, and this inequality 

holds. 

All in all, condition S1 implies the existence of the Lyapunov function of at least 

one of the following types: quadratic function and unic function. Therefore, condition 

S1 implies the absolute stability of system (50) in class Mw 

3.6. Necessary Conditions for Absolute Stability in Class Mµ 

In this section, we will show that sector S1 is maximal in the following sense. 

For any 'Y > 1 there exists a second-order system (50) that is not absolutely stable in 

class Mµ, and all eigenvalues of matrices A+ bvc*, 0 :S: z; :S: µ, lie in S-y, 
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To establish this property, we will consider the behavior of the worst-case 

solutions of second-order linear inclusions. Consider the second-order inclusion of 

the form 

~; E {(A+ bvc*)x: 0 ~ z; ~ µ}, (58) 

where 

A = [ O 1 ] , b = [ O l • and c = [ ci ] · 
-CY -/3 -1 C2 

Notice that, by Theorem 3.3. 7, there exists 

l(t) E 8v(x(t)) Vt 2 0 [9] 

such that 

max{l*(t)(A + bvc*)x(t): 0 ~ z; ~ µ} = l*(t)Ax(t) + max {v(l*(t)b)(c*x(t))}. 
O•Sy'.S,:, 

Hence, for the worst-case solution we have 

{ x = Ax , if c*x(t) · b*x(t) < 0 

x = (A+ bµc*)x , if c*x(t) · b*x(t) 2 0. 
(59) 

Recall that the absolute stability of system (50) in class M,:, is equivalent to the 

asymptotic stability of inclusion (58). To find the necessary and sufficient conditions 

for asymptotic stability of inclusion (58), for the case c1 > 0, it suffices to consider 

the solution (which is the worst-case solution) defined as follows: 

i2 = -CYX1 - f3x2 - (c1X1 + C2X2) 

:r:1(0) = 1 

X2(0) = 0 
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for t E [O, to], where t0 is the first positive root of function (c1x1 + c2x2)(t), and 

(61) 

for t E [to, t0 + ti), where t1 is the first positive root of function x2(to + t). 

Inclusion (58) is not asymptotically stable if and only if t0 < oo, t1 < oo, and 

x1(t0+ti):::; -1. In the case when x1(t0+t1):::; -1, inclusion (58) has a solution such 

that x(t +(to+ t1)) = 8x(t) for all t, where t5 = x1(t0 + t1). Define T =to+ t1; the 

values /,0 + kT, (k + l)T, k = 0, 1, 2, · · · are called the switching point because the 

coefficients of the system jump as time traverses through these points. Notice that, 

if t5 = 1, then the worst-case solution is 2T-periodic. 

Theorem 3.6.1. For all, > l, there exist E > 0 and /3 > 0 such that all eigenvalues 

of a system with transfer function 

lie in 

1-fs + 1 
W (s) = - 2-13--­

s2 + {Js + f34 

l~m(z)I 
Sy= {z: l~e(z)I < ,, ~e(z) < O}, 

and the system is not absolutely stable. 

Proof. Consider inclusion (58) with c1 = 1, c2 > 0, a > 0 and /3 > 0. In the sequel, 

we have c2 = 1213f and /3 sufficiently small. 

The idea of the proof is as follows. First, we will show that, for sufficiently small 

/3, the constructed system is not absolutely stable in class Mµ- To this end, we will 

compute the worst-case solution, and we will use the results stated at the beginning 
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of this section. For t E [O, t1], the worst-case solution satisfies the following equation: 

(62) 

Assume the eigenvalues of this system are real, i.e., (/3 + c2) 2 > 4(0: + 1). Denote the 

corresponding eigenvalues by 

Then, there exist numbers r1 and r2 such that, for solution (x1 , x2) of system (62), 

we have 
x1(t) = r1e>-1 t + r 2e>-2 t 

x2(t) = r1,\1e>-1 t + r2,\2e>-2 t. 

Applying initial conditions x1 (0) = 1 and x2(0) = 0, we get r1 = >.~~~2 and r2 = >.1~\2 . 

Hence, 

Then, 

X1 + c2x2 = ,\1 ~ ,\2 [e>-1\-,\2 - c2,\1,\2) + e>-2 \,\1 + c2,\1,\2)]. 

The number /. 0 is the first positive root of function .x 1 (l) + c2x2 (t). Hence, 

and 

e(>-1 ->.2)to = ,\1 + c2,\1 ,\2 

,\2 + c2,\1,\2' 

1 I (/\1 + c2,\1,\2) t0 = --- n ---- . 
A1 - ,\2 A2 + C2A1A2 

We assume that to exists, i.e., ~;!~;~;~; > 0. The value of the pair (x1(t0 ),x2(t0 )) is 
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as follows: 

and 

Denote x 10 := x 1(t0 ) and x20 := x2(t0). This point (x10 ,x20 ) serves as an initial 

condition for the next phase after switching, i.e., we consider the following initial 

value problem 

for t E [to; t1). 

Yi= Y2 

'!h = -a:y1 - /Jy2 

Yi(O) = X10 

Y2(0) = X20 

(63) 

Assume the eigenvalues of this linear system are real, i.e., /32 > 4a:. Denote the 

eigenvalues as 

Then, the general solution to system (63) is 

Yi = Pi e1•1t + p2eµ,2t 

Y2 = P2µ1e'' 1 t + P2µ2eMt_ 

With initial conditions Y10 := Yi (0) and Y20 := Y2 (0), we have 

We use t1 to denote the first positive root of function y2 (t). In addition, we assume 

that t1 > 0. Then, 

e(µ,2-µ1)t1 = _ P1µ1 = µ1µ2x10 - µ1x20. 

])2µ2 µ1µ2X10 - µ2X20 
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this case, 

Y1(ti) = eµiti (Pl -Pl::) = eMti ( X10 - :2 .'.l:20 )-

Taking into account the values of x 10 and X20, we get 

Recall that inclusion (58) is not absolutely stable if and only if Y1(t1) :S: -1. 

Now, set a= {34, c2 = 12~e, E E (0, 1), and f3 as a positive small number. Then, 

The last product tends to zero as /3---+ 0. 

Besides, 

50 



- ---===2a=----- ln (----'-;.C....2 _-_a_c_2) 
- f3 J (32 - 4a + (32 - 4a - µ2 - ac2 

2a - O'.C2 

2a 1 ( /3+~ ) 

= /JJ/32 - 4a + ,62 - 4a n /3 + J/32 - 4a - ac2 

2/34 1-c: /33 
2(34 ( /3+y !32-4/34 - -2- ) 

- --;:===------:-In - /3 J (32 _ 4a + (32 _ 4(34 /3 + J (32 _ 4(34 _ 12c (33 

and 

-- 0 

13-,0 

as ((3 - 0) 

1 + E - -- < -1. 
1-E 

Hence, Y1(t1) -- -i~! < -1 (as /3- 0), and therefore, inclusion (58) is not 

absolutely stable in class Mµ for sufficiently small positive (3. 

To prove the theorem, we only need to check the sector condition for this system, 

i.e., if all eigenvalues of a system where the transfer function is given by 

(64) 

with <p = VCJ, 0 S v S 1, lie in Sa for some a > l. The characteristic polynomial 

of system (64) with rp(CJ) = vCJ is P(>., v) = ).2 + >.(/3 + c2v) +Cl'+ v. Denote the 

roots of P(>-, v) by >.(v). All roots of this polynomial lie in sector S, if and only if 

the following two claims are satisfied: 
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(1) roots of polynomials 

Po(..\) := P(..\, 0) = ..\2 + >..(3 + a, 

P1(>..) := P(..\, 1) = ..\2 + >..({3 + c2) +a+ 1 

lie in ST 

(2) if there exists v such that d~~) is parallel to ..\(v), then ..\(v) E S-y, 

If a = (34 , c2 = 12~f, and /3 > 0, with f3 sufficiently small, then the roots of 

polynomials P0 and A are real and negative, hence belonging to the set S1 . 

Assume v E [O, 1] is such that d~~) = q..\(v), where q E (0,oo). If, for all such v, 

we have ~m{,\(v) = 0}; then, the roots of P(,\, v) lie in S1 for all v E [0, l]. Assume 

~m{,\(v) f 0}, then 

(65) 

for all v, and therefore, 

Taking into account ~~ = q..\, we get 

(66) 

Combining equations (65) and (66) and eliminating ,\2 , 

or 
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Splitting the real and imaginary parts, we get the following equations: 

c=q(f3+cs) 

1 = 2q(a + s). 

Thus, q = 2(o.~v) and 2c2(a + v) = {3 + c2v which, in turn, implies v = /3-;2c2°'. For 

this v, the roots >,.(v) satisfy the equation 

If a = (34 and c2 = 1
2~', then (f3-c2a)2 < /3~:20 for f3 that is sufficiently small. Hence, 

for sufficiently small /3 > 0, we have 

and 

18-m{,,\(v)} I= ✓~ - (c2a - /3) 2 

~e{-X(v)} lc2a - /31 

Hence I ii;,g(~N I converges to ~ as f3 ---+ 0. Assume 'Y > 1. Choose E such that 

/30 such that 
1 

-1+----- <1 1;;-• (1 - 132(;-•l) 

for all /3 E (0, /30), /31 such that Y1(t1) < -1 for all /3 E (0, /31), and /3 such that 

0 < /3 < min{/30 ,/31}. Then all eigenvalues of A+ bvc*, 0 :s; v :s; 1, lie in S1 , but 

inclusion (58) is not absolutely stable in class M 1• as claimed. □ 
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CHAPTER 4. CONCLUSION 

We considered the problem of absolute stability for a second-order feedback 

system in a class of time-varying nonlinearities satisfying the sector condition. It has 

been shown previously that, if all eigenvalues for matrices of a linear system from this 

class belong to the cone 

S1 = {z E (C: -!Re{z} > l~m{z}l,z-/= O}, 

then the system is absolutely stable in class Mµ,-

In this thesis, it was shown that for a bigger cone, this property did not hold in 

general. fyfore precisely, for any 'Y > 1, there existed a system such that all eigenvalues 

for matrices of linear system with nonlinearities from Mµ, belong to the cone 

S1 = {z E (C: -Re{z} > -ylS<m{z}l,z-/= O} 

while the system is not absolutely stable. 

A similar problem for third-order system may be a subject of future investiga­

tion. 
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