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ABSTRACT

Nitschke, Matthew Cody, M.S., Department of Mathematics, College of Science
and Mathematics, North Dakota State University, May 2010. Local Risk
Minimization Under Time-Varying Transaction Costs. Major Professor: Dr. Nikita
Barabanov.

Closely following the results of Lamberton, Pham, and Schweizer [5] we construct
a locally risk-minimizing strategy in a general incomplete market including transaction
costs. This is done in discrete time under the assumptions of a bounded mean-
variance tradeoff and substantial risk. Once we establish all the required integrability
conditions, a backward induction argument is implemented to obtain the desired
strategy for everv square-integrable contingent claiin. We model the trausaction costs

as an adapted stochastic process and provide all necessary proofs in detail.
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CHAPTER 1. INTRODUCTION

In this chapter, we review some of the main historical contributions to Mathe-
matical Finance. This is intended to give this work some context in the larger arena
of financial mathematics. We also cover some basic definitions and facts used in this

work. In the interest of brevity, proofs are omitted, but references are given.
1.1. Historical Background

The first attempt toward a mathematical description of the evolution of stock prices
on the basis of probabilistic concepts was Louis Bachelier in 1900 [1]. He regarded
stock prices on the Paris stock exchange S = (S;);»0 as random stochastic processes.
Each process was modeled as a random walk SEA) (A is a given increment of time)
for t =0,4A,24, ..., with
S =5+ 3 &Y,
]

1
k<lz

where the (4] are identically distributed random variables taking two possible values

+0 /A each with probability % Hence, under this formulation
ESY =5,

The major drawback of this model is that it allows negative prices.

Under the assumption of uncertainty in financial markets, the next notable
development was made in 1952 by H. Markowitz {6]. This paper established the
basis of investment portfolio theory, concentrating on the optimization of investment
decisions under uncertainty. This is the origin of mean-variance analysis, which
revealed that a key ingredient determining unsystematic risks of a given portfolio
is the covariance of prices. This was the first time that diversification was shown to
be important in a mathematical context.

The very next year, M. Kendall discovered that it was logarithms of prices

Sk

5~ and not the prices themselves that behave as a random walk [4]. Thus, setting

In



hy. = In =% one obtains
k Sio1’

SszOC][k7 nZl,

where Hy = h; + - + hy and each hg is an independent random variable. This later

lead to P. Samuelson [9] developing the so-called geometric Brownian motion
Sl = Sg(i‘u) t Z 1

where W = (W,);» is standard Brownian motion, the continuous-time generalization
of the random walk H,.

The lack of interest in financial mathematics and the subsequent slow devel-
opment, of the field was due in large part to low market volatility, stable interest
rates, and fixed foreign exchange rates. Thus, there was not a consensus amoug
economists that the market could be understood as randomly generated. Simple
regression models were sufficient to describe market trends. However, a number of
developments in the early 1970°s, most notably the Nixon administration’s decision
to eliminate the gold standard, changed everything. Since the market became much
more volatile, investors were more eager to determine ways to hedge against possible
logs. This set the stage for the most momnental result in financial mathematics, the
Black-Scholes formula for the rational price of a European call option, appearing in
1973.

In that year, two seminal papers were published “The Pricing of Options and
Corporate Liabilities” by F. Black and M. Scholes [2] and “The Theory of Rational
Option Pricing” by R. Merton [8] that revolutionized option pricing and consequently
caused a sharp rise in interest in the theory. An iimmense number of applications were
developed almost overnight. Manv cousider these results to be the birth of modern
matheniatical finance.

These results along with other results establishing the theory lead to complete
characterization of the fair price of an option in a complete market. That is, pricing

theory is well established for a shmplified market in which every possible final portfolio
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value can be exactly attained. However, it can be shown that completeness is
readily destroyed by even weak assumptions on the model [11]. Thus, a complete
market is not a realistic representation of financial markets. If a market without
arbitrage is incomplete, then the situation becomes considerably more complex. In
an incomplete market an investor cannot hope to replicate a given claim faithfully.
That is, an investor cannot faithfully reach a final portfolio value claimed at the
time of initial investment. There is intrinsic error due to the market in any strategy
when completeness is destroyed. Hence, we can only hope to choose a strategy that
minimizes this error in some suitable sense. Measuring the riskiness of a strategy by
a quadratic criterion was first proposed by H. Féllmer and Sondermann in 1986 [3]
for the case when the price process is a martingale. This result was extended to the
general semimartingale case by Follmer’s student, Martin Schweizer in 1991 [10].

It was Schweizer who first introduced the local quadratic optimality criterion
local risk-minimization. 'This approach to risk-minimization has been studied by
several authors for frictionless models without transaction costs. In the case of
transaction cost models, it has been studied by Mercurio and Vorst in 1997 [7] and,
most notably, Lamberton, Pham, and Schweizer in 1998 [5].

However, both of these results assume that transaction costs are fixed over the

entire time horizon [0, N]. In this thesis, we slightly generalize the 1998 result to

H

consider transaction costs modeled as a random variable. The whole framework of

this paper and results essentially follow [5].

1.2. Some Basic Definitions and Facts on Stochastic Processes

In order to describe a financial market consisting of stocks and bonds in discrete time,
a (B,S)-market, we introduce a probability space (2, §, P) consisting of the sample
space {2, g-algebra § on 2 and a probability measure P on §. The sample space 2
consists of all elementary events w, which represent possible market situations.

At the core of any market model are random variables X : w — R, functions of

elementary cvents w € {2 which are measurable with respect to §.



Any successful market model should take into account the dynamic nature of
random assets, usually modeled as stochastic processes. That is, we need a way
to adjust the expected value of assets or other values as new information becomes
available to market participants. To model this phenomenon, consider the following
construction.

For all Lebesgue sets A € R¥, define Bp(A) = A x RY"%. Let § = o(By(A) :
A € L(RY)), the -algebra generated by such sets and let P be a probability measure
on §. Then, for all sets C € Fx we have that C is of the form A x RY* for A € L(RF),
clearly P(C) = P(A x RY %), Next, consider function f: RY - R, f € L;(P), and

define an §,-measurable function g such that for all C € F,, we have that

/ fdP = / gdP .
4O JC

This function ¢ is called a conditional expectation of f with respect to o-algebra Fy.
In order to explicitly write ¢(x), consider the probability density function of future

values xxy1,...,2n given past values xy,...,x;
]):I'lwuelk(l'k—q-ls Ceey JL’N) .
Thus, we define g as:
9(3;) = (/RN_k f(l'1, cees xf\f“)pml....,z;\-(xk-kla ce st)d‘Ik—e—l cedry

Note that if we consider two vectors whose values are known to be equal for the first
k comiponents (up to time k), o1 = y1...., 2% = yp. then g(x) = g(y) P-as. since g
18 §rp-measurable.

To adjust the expected value to changing information. we repeat this process as

new information hecomes available. So. we consider a sequence of such sub a-algebras,



F = (Fk)k>0, each more refined than the previous:
S0CSH C--CF - CF.

Such a sequence is called a filtration. In particular, o may be equal to the trivial
a-algebra {0, Q} and §x may be cqual to F. This sets the stage for the definition of

conditional expectation.

Definition 1.2.1. Let (Q, 5, P) be a probability space, X : Q@ — R F-measurable,
E|X| < o0, and ® a o-algebra on Q with & C F. Then, the conditional expectation

E[X|®] is the ®-measurable random variable such that

/ EIX|&)(w)P(dw) = / X(w)P(dw) forall B e ®.
B B

The existence of such a variable is a consequence of the Radon-Nikodym theorem.
In order to incorporate time into a model of changing asset prices, we define a

stochastic process over a finite time horizon {0, N].

Definition 1.2.2. A finite stochastic process on a sample space §2 is a sequence of

random variables X1, Xy, ... . Xn defined on Q. This sequence is usually denoted

X = (Xg)renN):

A stochastic process X can have some important properties which we now

introduce.

Definition 1.2.3. A predictable process X = (X}) in discrete time s a process such

that each X 18 Fr—1-tmeasurable.

Definition 1.2.4. An adapted process X = (Xy) is adapted to the filtration F if X
is Fe-measurable for all k. We do not mention § if it is clear with respect to which

filtration the process X is adapted.

Definition 1.2.5. A stochastic process X 15 a martingale with respect to the filtration



§ = (Fr)rep.n if X is adapted to §, E|X| < oo and
El X8 = Xk P-a.s. forallk=0,1,..., N-1.

In order to understand how properties of a stochastic sequence depend on the
properties of the filtration, it seems natural to decompose the sequence into two
subsequences. Assume (§x)re[o,n] 15 a filtration, P is a measure on §n, and (H)geo,n
is an adapted stochastic sequence Hy, = h) + -+ + hy, where Hy = 0 and Fo = {0, Q}.
Assume Elhi| < oo for each k > 1. Then conditional expectations E[h;|F;-1] are

well-defined and we can write

Hy=)  ElhelSa] + ) (b — Eluie])
k<n k<n
Define
A, = Z Elh|Fe],

k<n
and

My =Y (b = ElhgFx-i]) -

k<n
The representation

H, = A, + M, n>1,

is called the Doob decomposition for stochastic process H = (Hy)keo,n)-
The sequence A = (A )rep,n) is predictable and the sequence M = (My)rep,n

is a martingale.

1.3. Self-Financing Portfolios in a (B,S)-Market

In the framework of the model described in section 1.2, we consider two cate-
gories of primary assets: risky assets representing stocks and less-risky assets which

represent bonds. We assume an investor has m 4+ 1 stocks and a bond available



for trade whose value can be described by stochastic processes S? = (S/i)ke[ﬂ,,»\r'}> for

i=0,...,mand B = (Bg)rep.n). We adopt the random walk conjecture of Kendall [4]

that the logarithms of the prices S = (Si)rejp,n) behave as a random walk. Thus,

setting hy = In sfk] we obtain a formula for stock prices

Sy = Sye'lx k>1

where H), = hy + -+ - + hy is the sum of independent random variables hq, ..., Ay and

Elhi| < oo for each k& > 1. Similarly,
By = Bye'™

where Ry = r) + -+ + 7, and r; is the interest rate of the bank account at time j.

There is a distinct difference between these two types of financial asscts. 13, is
Sk 1-measurable which means that the state of the bank account at time k is already
clear at time k — 1. hence (By)weio,ny is predictable.  Alternatively, the stocks S
are §p-mmeasurable, meaning their actual values are known only after onc obtains all
information §y arriving at time k. This is why bank accounts (bonds) are considered
less risky assets and stocks are considered risky assets.

We normalize the units based on the positive asset [3;, which not only simplifies
the model, but also provides a more transparent measure of gains and losses. Thus,
in the sequel we work with discounted units X; = g% fori=1,...,m.

A central concept in financial mathematics is the value of an investment port-
folio. We define a portfolio ¢ as a stochastic sequence that represents the quantity of

stocks and bonds an investor has at discrete tinie intervals
@k: (9[\«+1,7?k) for k:(),17...,j\i?)

where 8, are predictable and 7, are adapted random variables. The values 8, (w) and

i (w) can be positive, zero, or negative, which means the investor can borrow from

-1



the bank account or sell stock short. Predictability of the process 8 is a mathematical
formulation of the informational constraint that # is not allowed to anticipate the
movement of risky asset prices. This fact is realized in the notation since at time £,
the investor determines @4, the amount of risky asset to be held over the interval

k,k+1).
We make the following canonical assumptions regarding an investor on the {B,S)-

market [12]:
1. The investor can:
(a) deposit money into the bank account and borrow from it.
(b) buy and sell stock.

2. A transfer of money from oe asset into another can be done with no transaction

costs (we’'ll relax this condition later).

3. The assets arc infinitely divisible, meaning the investor can buy or scll any

portion of stock and withdraw any amount from the bank.

The value of a portfolio is considered a function of the strategy ¢. It is defined

as the sum of assets in the portfolio at time &
Vilo) = et Xi + 1.

Thus, the total value of portfolio ¢ up to time A is

A- A‘
Vi(0) = Vo(0) + Y (D + A X))+ ) 04X,
J=1 J=1

The value AC; = Ar; + Af,41 X represents funds which are invested (if AC; > 0) or
withdrawn (if AC; < 0) from an investor’s capital at time j. If AC; = 0 for all j, then

the portfolio is called self-financing. Therefore, the cumulative value of self-financing



portfolios can be written as
Vi(¢) = Volo) + G (0)

where the cumulative capital gains due to the market (and not investment) up to

time k can be defined as

k
Gr(0) =Y ;0K

=0
k . . .
The sequence Cj, = ij] AC; with Cy = 0 is called the cumulative cost process.

This motivates a formal definition of this constraint.

Definition 1.3.1. A strategy is called self-financing if 1ts cumulative cost process

C = (Ci)rep,n 5 constant or equivalently if its value process V = (Vi )rejo,N] 15
Vi = Vi + Gi(0) for k € [0, N],

where Vo = Cy is the initial investment.

Thus, after time zero such a strategy is self-supporting, which means no addi-
tional investments arc made. In fact, any fluctuations in X can be neutralized by
rebalancing # and » in such a way that no further gains or losses result.

Theretore, we can determine the best strategy by systematically adjusting the
quantities of assets at each discrete time step. (At each step, the quantity of assets
is adjusted to maximize valuc.)

Along with the martingale property of risky assets, one of the essential properties
of a fair financial market is the absence of arbitrage. That is, the opportunity of an
investor to make a profit out of zero investient. If an arbitrage situation arises, the
market forces of supply and demand would quickly eliminate such opportunitics. As
an example, suppose gold in Moscow sells for $2 per ounce and in New York for $2.10
per ounce. A flood of investors would buy gold in Moscow and sell it in New York,

which would raise demand in Moscow and lower it in New York. Thus the price



quickly would balance at an equilibrium point. Therefore, a market is “rationally
organized” if the investors get no opportunitics for riskless profit. This concept is

placed into a mathematically rigorous context in the next thcorems.

Definition 1.3.2. A self-financing strateqy ¢ brings an opportunity for arbitrage
at time N if, for starting capital Vo(¢p) = 0, we have that Vy(¢p) > 0 P-a.s. and
P(Vn(¢) > 0) > 0.

Theorem 1.3.1 (First Fundamental Theorem of Asset Pricing). Assume a (3, 5)-
market on a filtered probability space is formed by a bank account B = (By)repo,n,
By > 0 and finitely many assets S = (S,...,5™), S* = (S})kepn). Assume also
that this market operates at instants k = 0,1,..., N, where Fo = {0, Q} and Fy = §.
Then, this (B,S)-market is arbitrage-free if and only if there exists at least one measure
P equivalent to P such that the discounted price process X = (X[ )rep,n) = (%&)ke[o,/\f}a

is aﬁ—martingale. That is, E5|X}| <oc foralli=1,...,m and k=0,...,N and

E5 [ X,

Sk_l] =X, | forallk=1,...,N.

This theorecm asserts that in order to guarantee an arbitrage-frce market, a
measure P must exist that forces the discounted price process X = (g—i)kG[o,N] to be
a martingale. Thus, as one might suspect, the martingale property is important to
model a fair and rational market. These measures P, called martingale measures, arc

an cssential ingredient in a fair and efficient market.

1.4. Upper and Lower Hedges, Put and Call Options

The concept of a hedge plays an important role in financial mathematics. It is an
instrunent of protection enabling an investor to have guaranteed levels of capital, and

to insure transactions on securities markets. This is a key component of the present

work.
We will assuine that transactions in our (B, S)-market are made only at instants
k=0,...,N. Let fy = fx(w) be a non-negative §y-measurable function treated as

10



an “obligation” or terminal payoff. This function is also sometimes called a contingent

claim.

Definition 1.4.1. An investment portfolio ¢ is called an upper (lower) hedge if
Vn(®) > fn P-a.s. (respectively Vn(9) < fn P-a.s.).

Definition 1.4.2. H* = {¢: Vy(¢) > fn P-a.s.} is the class of upper fy-hedges and
H,={¢: Vn(¢) < fn P-a.s.} the class of lower fn-hedges.

A perfect hedge ¢ is a strategy such that Vy(¢) = fn P-a.s. In fact, the equality
Vn(¢) = fy means that the hedge ¢ replicates the contingent claim fy. When
H,(H* # 0, every contingent claim fy is exactly replicated, which is essential to a

complete market.

Definition 1.4.3. A (B, S)-market is complete with respect to time N if cach bounded
§n-measurable payoff is replicable. That is, there exists a perfect hedge ¢, a portfolio

such that

V:\r(d)) = fN P-a.s.

The property of completeness can be formulated in terms of martingale measures
P. The next theorem concerns the relationship between completeness and the set

P(P) of equivalent martingale measures P.

Theorem 1.4.1 (Sccond Fundamental Theorem of Asset Pricing). An arbitrage-free
financial (B, S)-market is complete if and only if the set P(P) contains a single unique

element.

Therefore, we can understand the completeness criterion in terms of the set of

martingale measures equivalent to P.

Corollary 1.4.1. A (B, S)-market is incomplete if {P| > 1. That is, there is more

than one unique P equivalent to P.

In general, completeness of a (B, S)-market is a fairly strong condition, which

imposes serious constraints on the structure of the market.

11



This fact invokes natural questions about constraints imposed on the model.
That is, one usually considers only sclf-financing strategies in a complete market,
which is a way to measure the true value of a strategy based solely on the initial
investment. In this case, we are interested in determining the optimal “rearrange-
ment” of asset quantities, without additional investment. However, if the market is
incomplete, we cannot hope to exactly replicate a contingent claim.

In a general incomplete market, it is nnpossible to impose the self-financing
constraint and simultancously insist on exact replication. Thus, if we force the
strategies to be self-financing, we must relax the constraint on exact replication.
Alternatively we could fix the value of the contingent claim at time N, and allow
continued investment by relaxing the self-financing constraint. In both situations, we
need a way to measure the “success” of a given strategy.

One of the most common ways to hedge in a financial market is through options.
An option is a contract issued by a financial institution which gives its purchaser
the option to buy or sell an underlying asset. Options are used to both hedge
against possible loss and speculate on future market trends. The two most comimon
forms of which are American and European options. The difference concerns the
investor’s flexibility to exercise the contract on or before an agreed upon maturity
date. American options allow the investor to exercise the contract at any time on or
before the maturity date. On the other hand, European options only allow action
at the tiime when the contract expires. Also, there are two favors of anv optiown.
depending on whether one is buying or selling the contract. A call option is the
buyer’s option aud a put option is the seller’s option. For simplicity, we focus only
on call options, since the analysis is essentially the same. Thus, the payoff functions

for call options are defined as:

American Option  f, = (S, — K)*
European Option fy = (Sy — K)7

where 7 is a stopping time on [0, N] and e = max(a, 0). Sy is the price at time N

12



and K is the strike price.

Definition 1.4.4. A stopping time 7 = 7(w) is a nonnegative random variable

independent of the future such that

{w:T(w) <t} €F

for each t > 0.

By terms of the contract, the buyer has the right to buy shares of stock S at

strike price K. Thus, in the case of a European call option if

Sy > K The investor gains
Sy = I The investor breaks cven

Sy < K The investor doesn’t exercise the option

Oue of the main problems in financial mathematics is the pricing and hedging
of contingent claims using dynamic trading strategics based on the price process S.
Contingent claims model financial contracts, the most common example of which is
a European call option. Therefore, in order to hedge against future loss, the investor
must make sure that Sy > K. Of course, one cannot forget that in general the issuer
of such an option charges a fee, so Sy > I does not guarantee a successful hedge by
the investor.

In the current paper we consider the problem of hedging in an incomplete
market, which includes transaction costs. In particular, we consider the case when
the contingent claim fy is fixed and strategics are not sclf-financing. We use a certain
cost functicnal which is constant on sclf-financing strategies. We minimize this cost
functional and recursively work backward toward V4 (¢), determining the best portfolio
choice over eacli local time interval [k, & + 1), under appropriate conditions. That is,
we minimize the cost of the strategv using a mean-variance criterion over each of

these intervals. This can be thought of as a model of a European-type option.

13



CHAPTER 2. LOCAL RISK-MINIMIZATION

2.1. Formulation of the Problem

In order to properly formulate the problem under investigation, we start with
some important definitions. Throughout this paper, we consider only the discrete-
time case. That is, we only allow actions at integer time values £ = 0,1,..., N over

the finite time horizon [0, V].

Definition 2.1.1. A trading strategy ¢ = (6,n) is a pair of processes

0 = (gk)kzl,...,N+I » = (TIk)k:O,l,...,N

such that (0x) is predictable and (ni) s adapted.

In discrete time, a random variable is predictable if it is measurable with respect
to knowledge up through all previous times. That is, 6y is Fr_1-measurable for each
k. Similarly, a random wvariable is adapted if it is measurable with respect to current

information, thus §y-measurable.

Remark 2.1.1. Predictability s a property imposed on the process § = (0;) to model

the informational constraint that 0 is not allowed to anticipate the movement of X.

Definition 2.1.2. The value of a portfolio at time k is

Vi(@) == 01 Xi + 1,

where X, = f?—’; is the discounted price at time k of the risky asset and the price of

cach bond is equal to unity.

Remark 2.1.2. Note that one wishes to formulate the value process so that it is
adapted. Hence, at time t = k, the number of shares in the risky asset held over the

time interval [k, k + 1) is determined.

14



Definition 2.1.3. A contingent claim is a pair of random variables (On i1, mNn) such
that both Oy, and ny are §ny-measurable. That is, in this problem setting, a contin-
gent clatm 1s a pair of random amounts of both stocks and bonds known at the end of

some finite time interval. The corresponding value of this claim is denoted
Hw) =0y Xn(w) + nn(w) .

Realistically, the amount of capital an investor gains purely due to the market
should be bounded during each discrete time interval. For this reason, it is natural
to model the gains using functions from a familiar and well-behaved space, namely

Ly(P). In this context, we define the set of all admissible processes (¢y).

Definition 2.1.4. The process ¢ = (8,7) is called admissible (with respect to process
X ) if the process 8 = (0) is predictable, 6, ANXy € Lo(P), and Vi(p) € Lo( P). The

set of admissible processes we denote by ©(X).

To model transaction costs, we consider an additional term in the cost process
mentioned above. Since the cost of making a financial transaction is some fraction of

the price of the given asset, this suggests the following mathematical description:

bid price : (1 — X)X, Me(w) € [0, X0], Ao <1 P —as.
ask price : (14 ) X ju(w) € [0, 410, 10 # 00 P — ass.,

where \g € R™ and pg € RT. In many realistic market situations, the transaction
costs are symunetric which incidently simplifies the model. Hence, we assume \, = puy,

and that A is adapted. In this context, we define the cost process.

Definition 2.1.5. The cost process of a strategy ¢ = (6.1) is
k k
C/,:((p) = Vk((f)) — ZQJAXJ -+ Z X}/\J ’0‘1'4_1 e 0J| k= O, N . (1)
j=1 j=1

This is the total cost of strategy ¢ up to time £, including transaction costs.

This process clearly depends on the adapted transaction cost parameter A\, and 4,

15



the number of shares of stock traded up through time k. In the next section, we
formulate this process more carefully.

The way we measure the success of a given strategy is through the risk process.
This is defined as the conditional variance of the remaining cost of implementing
strategy ¢ under information available to the investor at the current time k. This
quadratic process was first implemented by Hans Follmer and Dieter Sondermann

in [3].

Definition 2.1.6. The risk process of a strategy ¢ is
Ri(¢) = E [(Cr(¢) = Ci(#))*8x] k=0,1,...N. (2)

Remark 2.1.3. In this definition we assume the cost process Ci(¢) is square inte-

grable i.e. Cy(¢) € Lo(P).

Problem: Find an admissible strategy which minimizes the functional Ry (¢)

for all k.

2.2. Local Risk-Minimizing Strategies

At time k£ an investor following strategy ¢ buys (or sells) n, — -1 bonds and 6., — 0
s} &) Y N k k-1 k+1 k

shares. So the total incremental cost due to a transaction during [k, & + 1) is
Me — M1 + (Orrr — 01) Xi (1 + Aisign(Gxsq — 6k))

where again each Ay is adapted and Ay € [0, \g] P-a.s.
The incremental cost can be presented in terms of the portfolio’s value at time A,

which will be useful later in this paper. This can be done as in the following series of

16



operations:

Mk — k1 + (Org1 — Oc) Xi (1 + Arsign(Opy1 — O1))
=M — k=1 + Oup1 X + O 1 X Aysign(Onyr — 01) — 0 Xi

=0k X Asign(Ory1 — k)
= Mk + Ok Xy + X Ae (01 — Ox)sign(On41 — Ok) — i1 — 01Xy,
=k + Ok 1 Xk — (ko1 + 0 X)) + Xe Ak (Org1 — Or)sign(Gry1 — Ok)
= Vi(®) = (Me—1 + O X)) + XiAx [Ors1 — Ok

= Vi(®) = (o1 + Ox Xi + 0 Xpot — O Xi1) + X i [Ok41 — Ok
= Vi(¢) = Vie1(9) — Ou( X — Xio1) + XA [0p1 — Ok
= Vi(¢) = Vic1 (@) — 08X, 4+ XiAy |Oy1 — Onl

Summing all of the incremental costs up to time k yields the total cost of following
the strategy ¢ from an initial investment up to time k. This is expressed in cquation
(1) as the cost process of strategy ¢.

Ultimately, we're interested in minimizing the risk globally. It turns out that
an efficient means of achieving this goal is to minimize risk locally over each time
increment [k, k + 1). Thus, we're motivated to rewrite the risk process so it can be
understood in a local context. That is, instead of remaining risk we should rewrite
the risk process to accommodate local changes of cost. This motivates the following

definition of a locally risk-minimizing strategy.

Definition 2.2.1. Let ¢ = (6,7n) be a strategy and k € {0,1,...,N — 1}. A local

perturbation of ¢ at date k is a strategy ¢' = (6', 1)) with

0;=0; forj#k+1

0y =mn; forj#k.

A strategy ¢ 18 locally risk-minimizing if and only if

Ri(¢) < Ry(¢')
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for all admissible strategies ¢' and for all k € [0, N — 1].

This definition sets the stage for a recursive formula to determine the minimum

risk of a given strategy. The first thing to note is that the cost process necessarily is a

martingale if the strategy used is locally risk-minimizing. This leads to the following

preliminary result.

Proposition 2.2.1. If the strategy ¢ is locally risk-minimizing, then the cost process

Cr(@) is a martingale.

Proof. According to the definition of Cy(¢), we have

ACL = Ciq — Cy

k+1 k+1 k
= Vier = 3 AKX+ XA 00 — 0] = Vi + > 0,AX,
J=1 j=1 j=1

k
=Y XA 10500 - 4]
j=1
= Vi1 = Vi = 01 AXp1 + X1 Mo [0k0 — 01|
= (Vk+1 - 9k+1AXk+1) + (Xk+1)\k+1 |9k+2 - 9k+1| - Vk) .

Note that V}, is the only term in this sum that can be not §, -measurable. The goal is

to isolate the only §r-measurable term, since it is the only term the investor can con-

trol at time k. That is, it’s the only term that depends on 7. So we continue with this

goal in mind. In particular, consider & = Vii) = 03 (1 AX ki1 + Xis1 Aes1 |Oksa — Orrn

as one term and Vj as the other. Thus,
ACL = (Vie1 — O 1 DX + Xpo1 Mig1 [Okg2 — Oea|) — Vi

and so

(ACL)? = a® —2aV, + V2.

Therefore,
E[(ACY 3] = Elo®|§] — 2ViElo|] + V{2
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= Ejo®[§x] — 2ViB[ol8i] + Vi — Elaf&i)* + ElafSi]’
= Var[o|§i] + Ela|Si]? — 2ViEla|F] + Vi
= Var[o|§i] + (ElalFx — Vi)*

Since the strategy is locally risk-minimizing and Vj is the only term in the last formula

which depends on 7y, at time & the value of ng should be chosen such that

Hence, the optimal choice of 7, implies that

Vi(@) = E [Viq1 = Bt DXk + X Aka [Orv2 — Ot | 18] or

E Vi1 = 01 X1 + Xepr M [Okro — Ok | [§6) — Vi = 0 or

E[AVy ~ O Xy + Xer1 A1 1Okez — 01| [S] = 0 or E[ACk1|Fx] = 0, which

means that Ci(¢) is a martingale. O

This result leads directly to the following lemma which allows us to decompose

the local risk process.

Lemma 2.2.1. If the strategy is locally risk-minimizing, then the cost process, Cy (@),

18 @ martingale and the corresponding risk process at time k can be writien as
Ri(¢) = E [Rys1|F) + Var[AC,|E] , P-as. fork=0,1,.,.N—1. (3)

Proof. Since the strategy ¢ is risk-minimizing, the process Ci(¢) 1s a martineale
A ; g

according to the previous proposition. Formula (3) results from the following trans-
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formations, where we define ACY = Cn(¢) — Ci(9).

Ri(9) i= E[(DCY) [8] = B [(ACK + Crar = Cunr)" 84

= B (A0, + £Cen) 134
(ACK)? + 280, OCk + (ACk)? I&c]

:(AC;CVH)Q [3,{ + 2B [ACY ACk 1] + B [(ACk)? [3x]
(ACK) 154] + 28 [ACI8 B(ACun 8 + B (G 3]

= E[(8C) 5] + B (0 ) 18]

= B[E [(8CL) 18en] [8] + B [(8C1)° 1]
= E[Ri1 3] + Var [ACki1[8x] + E [ACk1|T4)?

= E [Rp+1|Fx] + Var [ACe115] -

O

So if the cost process is a martingale, the local risk of a strategy is the conditional
expectation of the remaining risk under current information plus the conditional
variance of the local change in cost. At time k, the investor only has control over 8.,
and 7. Hence, to minimize the local risk 7 it suffices to consider only minimizing
Var [AC|F,] with respect to 8,.;. Thus, for a martingale cost process minimizing
local risk is cquivalent to minimizing the local conditional variance.

This leads naturally to the essential criteria of a locally risk-minimizing strategy.
The necessary and sufficient conditions for a strategy to be locally risk-minimizing
are summarized in the following proposition. Determining such a strategy is the main

focus of this paper.
Proposition 2.2.2. A strategy ¢ = (6, n) is locally risk-minimizing if and only if

1. C(¢) is a martingale.
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2. For each k € {0,..,N — 1}, 8y, satisfies

Orer = argmin Var[AC,, |Fx] . (4)
B, €9(X)

such that O\ AXyy € Ly(P) and 0\ X € Lo(P).

Remark 2.2.1. The fact that 8, is admissible guarantees the first integrability
condition. We prove the integrability of the second condition below which will come

from technical constraints imposed on the process X.

This proposition naturally progresses from the properties of local risk explained
above. In order for us to be able to optimize the strategy with the controls available,
the cost process must be a martingale. The cost process is a martingale from the
optimal choice of 7 shown above. (It is necessarily a martingale from the fact we
assume the strategy is locally risk-minimizing.) Once we have this property, we can
rewrite the risk process as a sum of two terms only one of which is in our control at
time k. Thus, we only concern ourselves with minimizing the variance of the local

change of the cost process with information available at time k.

Proof of proposition 2.2.2. By proposition 2.2.1, C'(¢) is a martingale if ¢ is locally
risk-minimizing. If C(¢) is a martingale, then equation (3) and the definition of C(¢)

imply

Ri(¢) = E [Ris1|Tr] + Var [ACks1 | §x]
= E [Ry11|8k] + Var [Vier = Vi = 1 A Xy + X1 Mewt [Ghsz — Opi1 1 [T -

Now, removing all Fr-measurable terms from the conditional variance, we have
! Teinn AV |
Re(o) = [le{&-] + Var [Vier — Oen AXpi1 + Xior Mgt [Osa = Ok |F] -

We're assuming ¢ € ©(X), so by definition 0y 1 AXi) € Lo(P). Fixk € {0,1,..., N~

1} and let ¢ be a local perturbation of ¢ at time k. Then from the definition of the
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cost process Ci

Cn(9) = Croar(¢') = Vv = Vi — Z; k1 AN + Zz v X [0 - 0;1
= COn(9) — Cry1(0) .

Since we can assume C(¢) is a martingale and since by the previous lemina R (¢) =
E[Ri1(9)|Fk) + Var[ACk11(9)|Fk], we obtain that the risk process of a locally per-

turbed strategy ¢ is
Ri(¢") = E [Ren1(9)|8x] + E [(ACk1(¢')*|T] - (5)

Suppose conditions (1) and (2) hold in the proposition. Since ¢ is a local

perturbation at time £,
Vi (&) = Vi1 (9) and Orir = Oraa - (6)
Thus,
ACk1(9) = Vie1(0) = Vil(@) = Oy AKXt + At X1 |G — 9;/{+1! :
Using equation (5), we obtain the following inequality:
Rinr (8)|8x] + Var [AC1(¢)|5k] + E [ACk (¢)IF)°

=FE| (¢
> E [Re1(0)|3] + Var [ACki1(¢)|F]
> E| (¢ ]3;\»] + Var [ACk41(0)|Sx]

v

Ri(¢') = E [Re (0)|Bk] + E [(ACks1(¢))?|3x]
Ry

= RL(C)) >

where the third inequality relies on condition (2), equation (5) and the irrelevance
of §r-measurable terms in the conditional variance. The last equality comes from

equation (3). By definition, this means that ¢ is locally risk-minimizing.



Conversely, suppose strategy ¢ is locally risk-minimizing, which means (1) holds

by proposition 2.2.1. To show that property (2) follows, recall that

Ri(¢) < Ri(¢')

for locally risk-minimizing strategy ¢ and all locally perturbed strategies ¢'. Since we
have assumed that ¢ is locally risk-minimizing and by comparing cquations (3) and
(5),

Ri(¢) = E [Ris1(9)|3x] + Var [ACky1(0)|Fe]

< E [Ri1 ()] + E [(ACk:+1(¢'))2 3] = Ri(').
This means that we have the following inequality for any Fi-measurable choice of
01 and 7

Var [ACk1(6)[8] < B [(ACkn(¢) 5] - ™

In particular, fix 8, and choose 7, such that E [AC;CH(gb’)‘B’k] = 0. Hence, putting
this together with (7), using the definition of ACy,1(¢’) and property (6) we have
that

Var [ACi11(¢)|F] < Var [ACki1(¢')|F]

for cach k € {0,1,..., N — 1}, which means (2) holds. O

We obtain the required measurability properties in the next section after intro-

ducing some required technical conditions on the process X.

2.3. Substantial Risk and Mean-Variance Tradeoff

We naively assumed that the units in this new market with friction were equiv-
alent to the usual frictionless market. That is, not only the cost process, but also
the value process is different in this new market with transaction costs. Before
we can proceed, we must carefully formulate the conditions in the present market

model. The main goal of this section is to clearly define the relationship between the
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nominal frictionless market and the market we consider in this paper. To that end,

we introduce the following definition.

Definition 2.3.1. Denote as T' the class of all adapted processes v = (V&)k=o0,. N
such that v € {—=1,1] P-a.s. Similarly, denote A the class of all adapted processes
A= (Ae)rep,n such that Ay € [0, Xo] P-a.s. for Ay < 1. So, for y € T and X € A,

XY= X (14 M) fork=01,...N,
and the corresponding value process in the new units s defined as
VY = 1 X+, fork=0,1,..,N .

Note that this generalizes the value of a risky asset with transaction costs since
we allow 7 to take any value in [—1, 1]. In fact, y.(w) is usually —1 or 1 and, as we’ll
see later, all other possible values only concern the case when no transactions occur
during the given time increment (i.e. when 4, = 6).

The point of this section is to carcfully show that the choice of units does
not effect the strategies. That is, we wish to show that under additional technical
assumptions, O(X) = O(X*).

In order to obtain all the necessary integrability conditions required in this
model, a constraint on the process X must be imposed. It turns out that this
constraint not only results in the desired integrability conditions, but also has a
quite natural physical interpretation in the context of our model. Therefore, we do

not consider it as an unnatural restriction on the subsequent results.
Definition 2.3.2. X has substantial risk if there exists a constant ¢ < oo such that

2
X

————— <c¢ P-as. fork=1.,N. 8
E[AXES ] / ¥

The smallest such constant is denoted cy,..



This means that the increments of the value of each risky asset are sufficiently
“spread out” away from the mean (sufficiently risky). That is, substantial risk places
a lower bound on the conditional variance of increments of X. Substantial risk also
has a very intuitive interpretation. If we define the return process p = (pr)gep,n) of

X as
_ AX,
Xk-1

o foreachk=1,... N,

then (8) can be written in terms of py as

2
E[Axk}gk_l] > : >0 P—as fork=1,...,N.

E [pil8e-] = X7 .

Therefore, X has substantial risk if and only if there is a lower bound on the returns
of X.
Insisting that X satisfies substantial risk has some very fruitful consequences

sumrnarized in the next lemina.

Lemma 2.3.1. Suppose X has substantial risk. Then the following are true:

1. ©(XM) 2 0(X).

=]

th((ﬁ)) € Lo(P) fork=0,1,..,N forally e, A€ A and for all ¢.
3. 1 Xp € Lo(P) fork=0,1,....N and for all § € O(X).
4. Ce(®) € Lo(P) for k=0,....N and for all ¢.

Proof. First we prove (3) and the other results casily follow. Suppose X has substan-
tial risk. To show the product Gp 1 X € Lo(P), we must show F E(9k+1Xk)2} < 00,

So consider



5 Ei - 2
E (01 X3)’] = E [(akﬂxk)z W}

E{(Axkﬂ)gl?{k]

= 0k+1 [<‘é‘/\k+1 ]&‘} E (AYk+1} *15%]

-3
=F {E [(9k+1AXk+l) 5] mil

<c,E[F [(Hk+1AXk+l)2 Ix] ]
o qu [((Q;H_lAX;H_l)z] < 0.

The third equality comes froin the fact that 8, is Fr-measurable and the inequality
from equation (8). Hence, (3) is proved. Next we prove (1), so consider f;, an arbitrary

element of O(X).

GkAXLH = Ok [Xe (1 + Mevie) — Xt (14 Mo ve-1)]
= 0, [ Xk — Xeo1 + Xedeye — X Ae—1ve-1 — Xeor Aeve + Xoa Aoy
= QkA,Y}C + F)kAXk/\k’)’k + f)ka_lﬂ/\kA"{k .

Since A, and 7, are uniformly bounded for cach & as functions of w, 6, € (X)), and
by property (3) all of the terms in the above sum are square integrable. Therefore,
0,AX)" € Ly(P) which implies that 0, € ©(X*). Thus, we have the desired
coutainment in property (1).

Similarly, we prove property (2), so consider the value of ¢ at time k

V@) = 01 X7 + i
= O (X (1 + Aew)) + 1
= 1 X + Qe X Agye + 15

Thus, as before since every Ay € A and v € I', both Ay and vy, that appear above are

uniformly bounded. From this fact and property (3) it is clear that L”Aj\“’(@) € Lo(P).
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Finally, we consider the cost process

Cr(9) = Vk(¢> E 93+1AX + Z L XA 1850 — 8]

Again, by definition Vi(¢) € La(P), ;1. AX; € Ly(P), and X; Ay, € La(P). So

we’ve established the final property (4) of the lemma and hence it is proved. O

Another technical condition is needed in order to prove tlie reverse inclusion
B(X*) C ©(X). To measure the relative diffusion of the random amount X with

respect to its drift in each time interval, we introduce the following process:

Definition 2.3.3. The mean-variance tradeoff process of X for v € I and A € A up

to time ¢ 18 defined as

/\'va 2
o (P28 )
]{€—} e - f()'f' I: — 07 o 1;\'7 )
=1 Var {AXJ ‘]Ej_lJ

(9)

The “boundedness™ of the above process is usually included in the canonical

structure conditions of a random market model. We follow this convention in the
. . A o

model under consideration. Denote by ¢, (Ay) the smallest of K7 — K7, for all

k € [0, N], then
(E [AX“,M 1])2 < ¢ Var [AX,&'{gk,l} , (10)

Intuitively, this means that for each k, the conditional distribution of X given §i_; is
P-a.s. not concentrated at one point. This condition is similar to that of substantial
risk in that it assumes a sufficiently random market. The structure condition (10) is
needed along with an additional constraint on the variance to obtain our immediate
goal of set containment ©(X*) C O(X). This, along with the reverse inclusion shown

above, due to condition (8). is used in the next proposition to obtain set cquivalence.

Proposition 2.3.1. Assume X has bounded mean-variance tradeoff and substuntial
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risk. Fixy €', A € A and assume there is a constant ¢ > 0 such that
Var [AXQ’*}S,C_I} > ¢ Var|AXu|Fue] - (11)

Then XN has o bounded mean-variance tradeoff and morcover O(X) = 6(X).

Proof. First, we show X*7 has bounded mean-variance tradeoff (i.e. (E[AX;‘W\SV]])? <

Conu VI {AX,?WI&]) To this end, cousider

AXY = X5 (14 Aeyk) — Xeor (14 Mecrviemn)
= Xi — X1 + XMV — Xt Mo ye—1 + Xeo 1 Aeve — Xeo1 Ae vk
= AXp + AXp vk + X1 DA A

By definition 0 < A\, < Ag < 1 P-as. for each &, —1 < 4 € 1 P-as. for each k£ and

Xiep 18 §p-1-measurable, so

AXp + DXk + X1 AN A,
<+ M) AXe+ 22X

Thus, since we assumed X has substantial risk and bounded mean-variance tradeoff,

we have the following series of cquations:

E {(&X;")z m_l} <(1+ M) E[AXEGs ] + 408X2
<1+ M) E[AXE|Fr ] + 4\, B [AXE T ]

(14 0)? + ey ) B IOXESe ]

=m (Var [AX|Feo] + E (AX4|Ek)?)

< mVar [AXg|Fk 1] + oo Var [D X | Fe-]

= m(1 + ¢ ) Var [A X3 Fr-1] -

The scecond inequality follows from the assuuption of substantial risk and in-
equality (8) using the constant c,,.. After the coustant terms are collected (m =

(14 Ag)? + 4M2csr) the final inequality follows from relation (10) and bounded mean-
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variance tradeoff with corresponding constant bound ¢,,,¢(0). Therefore, X* has
bounded mean-variance tradeoff.

Finally, we show that ©(X*) C ©(X) which will lead to the desired result
since the reverse inclusion was previously shown. With this in mind, let 8, € ©(X*)
which implies that 8, AX* € Lo(P). Next, consider the Doob decomposition of this

product (X = Xy + My, + Ay), where AXy = 0.
OAX) = 0, AMY + 0, AAY
Since M * is a martingale and AZA is predictable, we have that
E [gx,j‘wgk_,l} ~-E [AM@*}sM] +E [AAQ’/IS,C_IJ = A4

Thus,
O OXY = OOMY + 0uF | AXYIF5 ]

Also, applying the Doob decomposition to the variance gives

Var [Axﬂmwl} ~E RL\XA&. —E [A){'?ﬂ}&k——l})‘z

3&—1}

rAY Ay Ay 2 Ay 2}
=B | (00574 047 = 2A7) [§i | = B | (0007) s
Also, since we assumed X has bounded mean-variance tradeoff, (10) implics
A 2 )2
(E [Axk*}gk_lb < et E [(AMQ) }m_l} for each k=1,...,N.
Hence, 0,AX," € Lo(P) if and only if .AM]? € Lo(P). Thus, we have the

reverse mplication for predictable 8y i.e. GkAJ\I?7 € L,(F) implies HkAX,;W € Ly(P).
So, By € O(X™) if and only if 0, AMT € Lo(P). Now, 6 predictability and inequality
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(10) together imply that

E [(0:AM,)? [Fam1] = 02E [(AM;)? [Fx-1] = 03 Var [AXL| 1]
< L @Var [Axﬁ”isk,l} — 1 HﬁE[(AA@f”‘)g}&_l}

= Cmut Crnaut

= CN:ME [(91{/_\.1\/[,;\7)2 i&k—l} .

Hence, 0, AM}Y € Ly(P) implies 8,AM; € Lo(P), which meaus that 0, € ©(X*)
implies 6, € ©(X). Therefore, we have the desired inclusion O(X*") C ©(X) and

the proposition is proved. L

Thus, with some mild technical assumptions on the process X, we have that
the sets ©(X) and ©(X*) are equal. This means that the same strategics can be
used regardless of the specific units. Hence, there is ultimately no structural differ-
ence between the techniques used in a market model with and without transaction
costs. Note that both technical assumptions, bounded mean-variance tradeoff and
substantial risk, regard the underlying randomness of the market. These are both
very natural and non-restrictive conditions.

To be sure that the previous lemma holds, the condition (11) must hold. In
order to check this condition on the variance, v, and Ay must be sufficiently known.
However, since hoth quantities are random variables this is not very likely. Therefore,
it’s useful to impose an additional auxiliary condition independent of both v and A

that assures condition (11) holds.

Proposition 2.3.2. If there is a constant § < 1 such that

| E[X2F]
2 CRIVEM o5 pogs. c=1,.... N
\/ Vor [A X el T = ( a.s. fork=1..N (12)

then inequality (11) holds simultancously for all v €I, with c =1 - 4.

Proof. Since X;7 = Xi(14+ ), we can write AX)" = AX+ X Aeve—Xio 1 Adeo17k-1.

Also, since we're only concerned with the conditional variance, we drop the Fj_i-
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measurable terms. Doing this and rewriting the left-hand side of (11) using definition

of variance, we get the following series of equations:

Var | AXY[§k 1| = Var[A X+ X

= E [((AXe + Xiden) — EIAX + X)) [Fe1]

= E [(AX; — E[AX]Tia] + Xodiww — E XM Fx-1))’]

= F[(AX, — E[AXFeo1)? +2(AX, — EAXT ) (Xedre — B [XedivilFroi])
+ (Xehen = B IXoMNalSe-1])? 1§e]

> Var [AXy|Fio1] = 2B [(AXk — E[AXe|Fx-1]) (Xedvw — E [Xe Ao el Fo-1]) [Sk-1]

= Var [AXWGic1] = 2 [ (AXx — E[AXSe 1)) (Xidere — B [XehvalFeor)) dP

]

]

2 Var [A XS] = 2\/f AXy = B[AXulFe]) dP [ (Xidewe = E [ X Fea]) dP
= Var [AXgFr-1] — 24/ Var [AXe[Fr-1] Var [Xpd eyl Fa-] -

After rewriting variance in terms of its underlying expectations, we get a lower bound
by excluding positive terms. The last estimate is obtained by using the Cauchy-
Schwartz inequality. Therefore, we obtain a lower bound on the conditional variance.
Now, since —1 < =g < Apeye € Ap < 1, P-as for all £, we have an additional relation

between conditional variances
1 3y - (52
Var [Xpdeve 1 §x-1] < E [(Xedin)*|8rm1] < B IXFF] < "IVB»I‘ (AX5|Feo]

Therefore, using this cstimate we get the desired lower bound.

Var [AX,&}&H} >

> Var [AXglFr-1] — 2¢/Var [AX:|Fr-1] Var [XpMve [ Fe 1]
> Var [AX4[F-1] = 2y/ Var [AX Ty ] EVar [A Xl 5]

= Var [AX|Fx 1] — 6Var [A X[ e 1]

= Var [AX,|Fx1] (1= 6).

Hence, Var {AX?’*lSkH} > c¢Var [AX}|3k-1] for positive constant ¢ = 1 — §. There-
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fore, imposing condition (12), which does not depend on A or «, on the conditional

variance of AX7> results in the desired lower bound (11). O
2.4. Existence and Structure of an Optimal Strategy

Now that we’ve established the technical assumptions necessary to properly imple-
ment the model, we address more general questions regarding existence and unique-
ness of minimizers. That is, we're ultimately interested in determining a locally risk-
minimizing strategy which must satisfy proposition 2.2.2 above. So, going backward
from a contingent claim (fn.;,7n), we determine #;,, over each finite time interval

such that

Ore1 = argmin Var [ACk.1|§x)
1 E9(X)
== argmin Var in.H - 9;C+] AX}C_H + Xk—+—1/\}c+1 }{)k_;g - ();_HI ‘Sk] .
051 €O(X)

Therefore, 1t behooves us to be sure that each local minimizer exists and is unique.

To this end, we consider the general conditional variance function defined as:
fle,w):=Var[U —cZ + AZ Y — ¢ |®] (w),

where we assume & C § is a sub sigma algebra of §. Also, let U, Y, and Z be
F-measurable, real-valued random variables such that U € Lo(P), Z € Ly(P) and
YZ € Ly(P). Additionally A is a uniformly bounded random variable such that
Ar € [0,1) P-as. for each k. First, we construct the left and right-hand derivatives
of this general conditional variance function, which will be used to prove subsequent,

existence results.

Lemma 2.4.1. For P-almost ecvery w, c = f(c,w) is a continuous function with left

and right-hand derivatives fL(c,w) and f (c,w) given by

(e, w) = —2Co0U — cZ + AZ)Y — c|. Z(1 + Asign(Y — c))]@)(w)
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and
Jfile,w) = =2C0(U — cZ + AZ|Y — ¢}, Z(1 + Asign(Y — c))’@)(w) ,

where we define

— 4 +1 >0
sign{x) = sign(z) + I{z=g) :=
-1 z<0
(13)
. ) +1 >0
sign{x) = sign(x) — I =gy :=
T -1 <0

Proof. The continuity in ¢ of f(c,w) is evident by the definition of conditional vari-
ance. Also, by symmetry it suffices to determine the right-hand derivative f’ (¢, w).
We do this by computing the corresponding difference quotient. In the following list of
equalities, we write the definition of f in terms of conditional variance and decompose
the result in terms of the underlying expectations. Collecting the appropriate terms

leads to the conditional expectations shown:

flet hw) = flew)
=Var (U — (c+ h)Z + AZ|Y — (c+ h)||®] (w) — Var [U — cZ + AZ|Y — ¢||8] (w)
= E[(U~(c+h)Z+AZ|Y — (c+W))|®] (w)
—(B[U = (c+h)Z+ AZ]Y = (c+ h)||8] (w))*
—~E[(U = cZ+AZ[Y —c])* 8] (w)
+(EU —cZ + AZ)Y — ¢||8] (w))?
- E [(U (e MZ+AZY — (c+ R = (U ~ cZ + AZIY — ¢|)? ]05]
—(B[U = (c+WZ+AZIY = (e+|6]" = E[U—cz +AZ|Y - cl[o]") .

Next, to achieve the desired result we cleverly rearrange the previous two terms

involving conditional expectation. In the interest of simplicity, we make the following
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substitutions:
k=U—(c+h)Z+AZ|Y — (c+ h)]

r=U-cZ+NZ|Y —¢|.

With these substitutions, the expression obtained above simplifies to
flethw) = flow) = Ex* — 72|6] ~ (E[x|6]* - Elr|6]*) . (14)

Note that the terms inside of the first expectation of (14) can be rewritten as the

following product of terms:

kP72 = (k= 7)(h +T)
= (“hZ A AZ(Y = (e )]~ Y = )
(U = 2Z — hZ + AZ(IY — (< R)| + Y —¢]) .

Similarly, the second component of equation (14) can be written as:

(E[r|e])® - (Els|&])”
=(E[U=cZ+AZ|Y —c||86] —E[U—(c+h)Z+A]Y — (c+ h)|]®])
(E[U=cZ+AZ|Y =[]+ E[U~ (c+MZ+AZIY —(c+ )] |®])
=E[-hZ+AZ(]Y —c[ - Y = (c+ h)]) | 8]
E2U = 2eZ —hZ+AZ (Y —c|+ Y — (c+ ) |8] .

Thus, putting all of this together we obtain the following expression:

fle+ how) = fle,w) =
=E[(-hZ+AZ(]Y = (c+ h)| = |Y = c]))
(2U = 2cZ = hZ + AZ([Y = (c+ )| +|Y —c]) | &]
—E[-hZ+XZ(JY —c| =Y = (c+h)]) | 8]
E[2U—2cZ = hZ + XZ([Y —c[+ Y — (c+ h)]) |®]
= Cov[-hZ + AZ(]Y —c| = |Y = (c+ h)]),
U —2cZ — hZ + AZ(JY =+ 1Y — (c+ h)])|®].
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This allows one to construct the desired difference quotient, which is expressed as the

following covariance function:

f(C+hvw)_f(Cy“)) —
h

= Cov [-——Z +AZ (LY_-..—_’h!;i’f—_l) ’
W~ 207 ~hZ+AZ(Y — e~ hl + IV ~ec])|6].

Note that lim sign (Y —c¢— h) = sign (Y — ¢), and we have that

h—0t

Y —c—hi—=1Y — ¢
R B BRI

Also, by the triangle inequality we have that |Y — ¢ —h| < |Y ~¢| 4+ |~h|, which
means that |Y —c—h| — Y —¢| < |=h|. Thus we have the following important
bound:

W —c—h|—|Y —cl| <hforaew and for all h.
Now, since we've established the limit

i IY«—cﬂhlﬂlec]m
hli:gF h = —siga(Y' —¢)

1Y ~c]

and since }'—}——'c—_’%——— < 1, we can apply the dominated convergence theorem

yielding the following series of equalities:

fle+ how)— fle,w)

litn =

-0t ;l?, ‘}, ] f}/’ ‘

= lim Cov [«-Z + )\Zi ¢ k-] ¢ ,
h—y0t h

W —2Z —hZ+NZ(JY —c—h|+

Y —¢f) |&]
A . . . E
= Cov {mz olim azX mez =Y “

h—0+ h

2U = 2cZ + }lim (=hZ +XZ (Y —c—hl+|Y —(])|®

-0+

= Cov [~Z — AZsign (Y — ¢),2U = 2¢Z + 2AZ|Y — | |®] .
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Therefore, we have successfully constructed the right-hand derivative of the general

conditional variance function f(c,w).

flow) = i Leth)=flow

= Cov|~Z ~AZsign(Y = ¢),2U = 2Z + 20Z[Y —¢|

8| (@). (15)

By a symmetrical argument, the left-hand derivative is computed. O

Next, we get at the essential ingredient to ensure the existence of a minimizer

for the problem at hand.

Proposition 2.4.1. Suppose Var[Z|®] > 0 P-a.s., then there exists a B-measurable

random variable ¢*(w) such that for P - almost every w,
flc*(w),w) < fle,w) forallceR.

Proaf. To prove this statement, we first show that f(c¢,w) has a minimum in ¢ then we
construct such a minimizer. With the first goal in mind, we decompose f(c,w) into its

variance and covariance components. For notational simplicity, let s = sign (Y — ¢).
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Since |Y — ¢ = (Y — ¢)sign (Y — ¢), we can decompose f(c,w) as follows:

fle(w).w) = Var [U — cZ + AZ{Y =] |8] (w)
= Var[U —cZ + AZ (Y —¢) s|8] (w)
= Var [(U + AZYs) — ¢ (Z(1 + X)) 18] (w)
= E[(U+A2Ys) = c(Z(14 28))* 8] (w) = E[(U + AZYs) — c(Z(1 + As)) |8]* (w)
= E[(U+AZYs)? = 2c(U+AZY's) (Z(1+ As)) + 2 (Z(1 + As))? 8] (w)
= E[(U+AZYs)*|®] —2cE (U + AZYs) (Z(1 + As)) |®)]
+c2E [(Z(1+ Xs5))° 18] (w) — E[U + AZY 5|6 (w)
F2eE[U + AZY s|8) E[Z(1+ As)|8] (w) — 2E[Z(1 + As)|6] (w)
= Var [/ + AZY s|8] (w) — 2cCov [(U + AZY's), Z (1 + As) | 8] (w)

+ef Var [Z(1 + As)|8] (w) .
Now let
hi(c,w) = Var [Z(1 + As)|®] (w),
hy(c,w) = Cov (U + AZYs), Z(1 + As)|®] (w),
hs(c,w) == Var [U + AZYV s|8] (w).
This, along with the formula for f(c,w) formulated above results in the following

representation of function f(c, w):
fle,w) = hi(e,w) — 2chy(c,w) + ha(c,w).

Since, by assumption U € Ly(P), Z € Lo(P), Y Z € Ly(P). and A € [0,1) P-as., we
have that hy(c,w), ho(c,w), and hy(c.w) are all bounded as functions of ¢. We need

only check that 7, (c,w) doesn’t go negative almost surely since it is clearly the leading
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coeflicient. To that end, consider the limit of this function evaluated as follows:

lim Var[Z(1 + Asign (Y — 0))|&] (w)

ie]= oo
= Var[Z(1 F 1)|®] (w)
= (1 F A Var[Z|B] (w).

Since 0 < A < Ay < 1 P-ass. and Var [Z|8] (w) is assumed positive, this implies that

lim Var [Z(1 + As)|8] (w) > 0.

lef—oc

Theretfore,

1llinl ¢*hy (e, w) — 2chy(c,w) + hs(e,w) = +o0
ci—oC

for P-almost every w, and since h)(c,w), hp(c.w), and hz(c,w) are continuous in ¢,
f(e,w) must have a minimum value P-almost everywhere. Next, we construct such a

J €

B-measurable minimizer. Thus, consider the dyadic integers of order n, D, = {&

Z}. Then, define hte sequence
co(w) i=inf{c € D, : fle,w) < f(,w) for all ¢ € D, }.

Since, by definition the mapping w — f(c,w) is B-measurable for fixed e, the random

variable ¢, (w) is ®-measurable for every n. That is, for arbitrary z € R we have

{en(w) <z} = U ﬂ {w: f(d,w) = fe,w)}.
c<w,ceD,, Dy,
Each f is G-measurable, therefore each set {w : f{c.w) > f(e,w)} is B-measurable.
Hence, {c,(w) < z} is B-measurable. Since zClsi_r)noof(c, w) = 00, the sequence (¢,,),en
is bounded in n for P-almost every w. Also, for any finite subset of R, D,, is finite for
any n € N. Thus, over each finite n, the sequence ¢, (w) attains a minimum. Finally,

the set of dyadic integers is dense in R. Therefore, along with continuity of f(c, w) in
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¢, the above properties imply the minimum ¢ is attained defined by ¢* as:

c(w) = liwllgilclf Cn (W) P-as.

O

Proposition 2.4.1 guarantees the existence of a minimizer ¢*(w) for the general
conditional variance function f(c¢,w). However, this result only concerns the existence
of a minimizer and not the properties of ¢*(w). Therefore, with this in mind, we
introduce the function g(e, 8,w) (with 0 < 3 < 1) which transitions between the left

and right-hand derivatives of f(c,w). Thus,
glew), Bw),w) :=Cov|[U —cZ+ MNZ|Y —c|,Z(1+ AS(8,¢)|®] (w), (16)

where

S(B,¢) = fsign (Y — ¢} + (1 - 3)sign (¥ — ) . (17)

Note that S(3,c¢) has been defined so that g(c, 3, w) transitions between f, (¢,w) and

fr(c,w) as B(w) takes on values from [0, 1]. In particular,

g(¢,0,w) = Cov {U —cZ+AZY — |, Z (1+ dsign(Y }Q’)}

:—'2' +(C w) .

gle. L) = Coy [U = cZ+AZIY =l Z (14 Mgn(Y - ) [6] (w)
— 17 (ew).
Next, we prove the existence of an optimal random variable 5*(w) that is exactly
between f} (¢,w) and f’(c,w). That is, for ¢*(w) given, there is a 3*(w) € [0,1] such
that g(c¢*, 57,w) = 0. This equation will be used to determine an analytic expression

for the optimal c.

Proposition 2.4.2. Asswme that Var Z|®] > 0 P-a.s. and let ¢*(w) be given as

in Proposition 2.4.1. Then therc extsts a &-measurable random variable 5*(w) with
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values in [0, 1] such that
glc* (W), 8*(w),w) =0 for P-almost every w.
Proof. Since ¢* minimizes ¢ — f(c,w) for P-almost every w.
fL(er(w),w) 20 fi(c"(w),w) P —a.s.

Also, by the above discussion 0 > g(¢*(w),0,w) = —5f,(c'(w),w), glc*(w),l,w) =

—3fL(c"(w),w) = 0 s0
g(c",0,w) <0 < g(c", 1,w) P-a.s.
Now, let

B, (w) = argmin{|g(c,(w), 8,w)| : B € D,}.

By properties already established for f(c,w), it follows that w — g(c*(w),5,w) is
®B-measurable for every fixed g and 8 — g(c*(w), 8, w) is P-alimost surely continuous

on {0,1]. Thus, for P-almost every w, 8 = g(c"(w), B,w) has a zero in [0, 1}, so that

min |g(c*(w), B,w)| =0 P-a.s.
Aelo,1]

O

Now that we've established the existence of a random variable 3*(w) such that
g(c*, B*,w) = 0 for P-almost every w, we can use this cquation to get an expression for

the minimumn ¢*(w) in the context of the current problem. Thercfore, we rcarrange ¢
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to solve for the optimal ¢, using the fact that Cov(4, A+ B) = Cov(4, B) 4+ Var(A).

gl 5 w) = Cov (U — ¢*Z + MZ|Y — |, Z((1 + AS(B,¢*)) |®) (w)
= Cov(U—c"Z+ M (Y =) S(B,¢"), Z (1+ AS(B,¢)) |®) (w)
= Cov (U + AZYS(B.¢") — ¢ (Z (1 + AS(B,¢")), Z (1 + AS(B, ¢*))) (w)
= Cov (U + AZYS(3,¢"). Z (1 + AS(B,¢)) 18) (w)
—c*Var [Z (1 + AS(8,¢*)) 8] (w) = 0.

Hence, we obtain a relation that ¢* should satisfy for an analytically tractable formula

of the minimizer of f(c,w).

oy Cov(U+AZYS(B,c"), Z (14 AS(8,¢")) |8) (w)
© (w) = Var [Z (1 + AS(8, ")) 8] (w) ' (18)

2.5. The Main Result

Now that we have established the gencral framework of our model and carefully
checked that local minimizers exist, we are ready to state the main theorem. The
statement. and subsequent proof of the following theorem follow directly from all
of the previous results. The main point is to be sure all the proper integrability
conditions are satisfied and to concisely record our main result. In fact, the main
theorem below formalizes the result of proposition 2.2.2 in terms of trausaction costs,
and uses generalized existence results concerning the functions f(c,w) and g(c, 5, w)

to determine an optimal strategy.

Theorem 2.5.1. Assume that X has a bounded mean-variance tradeoff for A = 0,

substantial risk, satisfies (12) and

Var [L\IY;,T!S;{-_l} > (0 P-almost surely for k=1, N .

Then for any contingent clavm (Ox.y, fin), there exists a locally risk-minimizing strat-
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egy ¢ = (0*,n*) with 6y, = Onsy and nly = fiy. The first component of this optimal
strategy is constructed as follows. There exists a process 8* € I' such that if we define

el by
sign(fi ) — Op) + 6" oy =oyy fork=1,.,N

0 fork =20

then we have that the first component in question is

Cov |AV¥(67), AXYK [
67 = v P-a.s. fork=1,..,N. (20)
Var [AX] 51

Proof. We prove the required integrability and existence criteria by a backward
induction argument and then construct the optimal strategy ¢*. To begin, we define

ey = Oxn11, which by definition 2.1.3 implies that the following hold for &k = N

0t Xy € Lo(P),
Wy=H = Y0 0AX, + S0 X A8, ] € Ly(P).

Now, assume the above conditions hold for £ = 1,...,N. We're interested in
determining 6} assuming &;_| is given for each k. so we define the following (where

the general random variable Y is replaced by 87 ).
fule,w) = Var [E W2 IBk]) — eXi+ AXy 60, — cf i&""l} (w),
and

grlc, B, w) = Cov [E WeISe] — Xy + A X ]6,‘;“ — ol X (14 ASk(B, 0)) iSk—l] (w).
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Sk(8,¢) is defined so that sign and sign do not appear separately:
Sk(B, ¢) := Bsign (O — ) +(1— 3)sign (91:+1 - c)
= sign (9,:+1 - c) +(28(w) = 1) Iioy \=c}-

In propositions 2.4.1 and 2.4.2 we established the existence of §_,-measurable ran-

dom variables d; and 3 such that
fiulfr(w),w) < felc,w) P-as. for all ¢ € R and for each k

and

g (0 (w), Bf (w),w) =0 P-as. for each k.

For notational simplicity, we define the process 6} := 28; — 1, so we have
Su(87(w), B1(w) ) = sign (07,, — 0) + 6ulior_, oz = i

Therefore, we reformulate the general equation (18) into the context of the present

theorem as follows:

_ Cov [E Wi 8] + MeXubily g, Xa (1+ M) [§aa] ()

()Z(w) Var [Xk (1 —+ )\kgk) ]&—1] (w)

(21)

P-a.s. for cach k. By assumption Xi#},, and W} are both square integrable, both
Ar and & are uniformly bounded for each &, thus (21) is well-defined. Therefore
we've established the existence of a process §* € I' such that if we define &, as in
(19), equation (21) determines the first compounent of risk-minimizing strategy ¢*.
Now that we have proved the main existence question, we focus on verifying that
the proper integrability conditions hold. With this in mind, we first verify that the

product 0 AXy is an element of Lo(F). For simplicity, let v be an arbitrary process
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in I' such that v, = & for all £, and define
W = EIWS k] + M&eXebiy ),

which is in Ly(P) by our assumptions on &, X, and W7 . This definition allows one

to write (21) in the more compact form:
Cov [W7, 50|50 |

g; = . (22)
g Var [AX[:\'Y‘S;C,AIJ

The Cauchy-Schwartz inequality, the assumption that X satisfies (10) along with

proposition 2.3.2 imply the following series of relations:

E(0:0X,)%

-

B[R = B 5k AN = Bl X 3 ) [Fac) :
= F d e AXy

EB{(AXY - EAXY 18k-11)2|Fk-1)

=E|E| Wi B[] (5| AX}

A Y*“f ElAX) [Fk-

<FE

[ E[(lr‘i@f‘“’—E[W’,;\"FSlcf11)21'&4} D)
X Z ‘X’f
E[(AX-BDX) [§r-1) [§r-1]

VA ) [AX ISA 1]]

E\/c];r O \k Jk 1

Varw 3,1
Var[axFe_.]

< E | Niriom oo
B
[Var o Fk—1
dec=

IN

E Var [AX[Fi] 4 Cmo(0)Var [AX ]|

bj

W(l + Fmbt(o))var[AXklgk—l]]

E[ u l'fk 1} (
cvar(a J\xm N

i /\

e C“’”"Uf(o))\/'ar{AXk}gk_l]}
=101 + €, (0)E [(“‘/}Z\’)ZJ .

Note that the first estimate is due to the Cauchy-Schwartz inequality, the second
is from inequality (11), and the final two estimates come from the assumption of

bounded ean-vartance tradeoff with A = 0 and the definition of variance. Thus,
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since we assumed W} € Lyo(P), we have verified that indeed 6;AX, € Lao(P). Also,
by our assumption that X has substantial risk as in the proof of lemma 2.3.1 we
conclude,

B [(0:Xk1)’] = E [E [0 X7 154-1] e o

<o B [(0p0X8)?] < 00
So, 05 X)—1 € Lo(P) which means our assumption holds for £ — 1. This puts us into

position to prove that the 6} obtained previously in fact satisfies the desired relation

67 = argmin Var [E[W;l&k] — . AX, + M Xy
0,€0(X)

— O] |Fk-1] - (23)

Since we’ve shown that both 05 A Xy, and 6; Xj_1 are clements of Lo(P), we have that
the sum is integrable, hence i AX, + 0; X1 = 0; Xy € La(P). This means that if
0r is Fr_1-measurable and satisfies 8, A Xy, € Lo(P) and 0, Xy € Ly(P) then we can

write

fk(ﬁk(w),w) = Var [E[W;I;‘{k] — GkAXk + )\ka - Gk‘ ‘gk—l] (w) P-as. (24)

Thus (23) is satisfied for & by (24) and optimality conditions previously obtained.
From the assumption on W} and 6, X, for k£ and square integrability of #;X;

established above,
Wi =W = 000X + M Xy | D05 | € La(P).

Therefore, the assumption that W} € L,(P) for all k also holds for £—1, and induction
is complete.
Now that we have the required integrability and optimality properties, we obtain

the optimal strategy ¢*. Therefore, we define the second component n* of ¢* as

n=FK [VV,:

F] = 07, Xy fork=0,1,..,N. (25)
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Since we’ve established the square integrability of both W} and #; X, for k =
0,...,N, n; is adapted and the sum ., X + 7z € La(P). Also, since we've shown
that 6 A X}, € Ly(P), by definition 2.1.4 6} € O(X) = ©(X*"). Thus, ¢* = (6*,n")

is a strategy such that
9;v+1XN + 77*\ = E["VHS’\] = E[H}&VE - 6—)N+1XN + 1N -
Hence, we've obtained the contingent claim exactly
Over =Onars Wy =i

Therefore, by proposition 2.2.2 and equation (23) we conclude that ¢* is locally risk-
minimizing. Since the optimal second component of ¢™ is given by (25), we have
that

VkAE(ﬁ.ﬁ) =0 XiAelp + F [Wr;:

3] =n".
Thus, equation (22) can be written in the more compact form (20) stated in the

theorern. Ul

Note that if Var[AXk!Sk_l] =0, AX} is Fr-measurable. In this ease, the actions
at times & and &£ 4+ 1 can be combined and one time step can be eliminated without
loss of generality. Thus, the assumption that Var[AX k1gk_1} > 0 is natural and not

restrictive on the results.
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CONCLUSION

We have obtained a locally risk-minimizing strategy ¢* for every square-integrable
contingent claim in a general incomplete market. This was done in discrete time
with transaction costs modeled as adapted random variables. Closely following the
approach of Lamberton, Pham, and Schweizer [5], we prove the existence of such a
strategy under the assuimptions of a bounded mean-variance tradeoff, substantial risk,
and a non-degeneracy condition on the conditional variances of asset returns. This
was done in parallel with usual dynamic programming algorithms.

An immediate possible extension to this work is the formation of a carefully
constructed example, illustrating the effect of time-varying transaction costs. A more
long-term prospect is the possibility of extending these results to continuous time

models.

47



1

9]

REFERENCES

L. Bachelier Theorie de la Speculation, Annales de L’Ecole Normale Supericcure,
Vol. 17 (1900), 21-86.

F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal
of Political Econonty, Vol. 81 (1973), 637-659.

H. Follmer and D. Sondernnann, Hedging of Non-Redundant Contingent Claims,
in Contributions to Mathematical Economics (W. Hildenbrand and A. Mas-Colell,
eds.), North Holland, New York, (1986), 205-223.

M.G. Kendall, The Analysis of Economic Time-Series. Part 1: Prices, Journal of
the Royal Statistical Society, Vol. 96 (1953), 11-25.

D. Lamberton, H. Pham, and M. Schweizer, Local Risk-Minimization Under
Transaction Costs, Mathematics of Operations Rescarch, Vol. 23 (1998), 585-612.

H. Markowitz, Portfolio Selection, Journal of Finance, Vol. 7 (1952), 77-91.

F. Mercurio and T.C.F. Vorst, Option Pricing and Hedging in Discrete Time
with Transaction Costs and Incomplete Markets, in Mathematics of Derivative
Securities (M.A. Dempster and S.R. Pliska, eds.), Cambridge University Press,
New York, (1997), 190-215.

M. C. Merton, Theory of Rational Option Pricing, Bell Journal of Economics and
Management Science, no. 4 (1973), 141-183.

P. A. Samuelson, Rational Theory of Warrant Pricing, Industrial Management
Review (1965), 13-31.

[10] M. Schweizer, Option Hedging for Semimartingules, Stochastic Processes and

Their Applications, Vol. 37 (1991), 339-363.

[11] M. Schweizer, A Guided Tour Through Quadratic Hedging Approaches, in Option

Pricing, Interest Rates and Risk Management (E. Jouini, J. Cvitanic, and
M.Musicla, eds.), Cambridge University Press, New York, (2001), 538-574.

[12] A. Shiryaev, Essentials of Stochastic Finance: Fuacts, Models, Theory, World

Scientific, River Edge, 1999.

48



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053



