
A SOFTWARE AGENT SYSTEM FOR PRIVATE EMAIL

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

HariK. Mukka

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

March 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A SOFfW ARE AGENT SYSTEM

FOR PRN ATE EMAIL

By

HARI K. MUKKA

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signahJres have been
removed from the digital version of this document.

ABSTRACT

Hari K. Mukka, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, March 2010. A Software Agent System for
Private Email. Major Professor: Dr. Kendall E. Nygard.

The primary concerns in existing Email and instant messaging systems are

authentication processes, privacy and security issues. These messaging systems transfer the

message content through servers using protocols like the Simple Message Transfer

Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access Protocol

(IMAP) to allow users to communicate. During these processes, messages are being stored

on the servers which can be easily accessed by the network administrator. Invasion of

privacy, integrity of Email content, lack of authentication, and unprotected back-up of

messages stored · on servers could be common underlying problems in the existing

architecture.

The goal of this paper is to build· an Email messaging system which would offer

better privacy and security of Email content to users. The application can be viewed as a

source of communication for people in a private club. In this paper we propose three

different designs for building an email messaging system using the Java Agent

Development Environment (platform to provide communication between agents)

framework. Our application mainly uses intelligent software agents. The three Designs

primarily implement two kinds of software agents, a Facilitator Agent and P-Mail (Private­

Mail) agent. Based on the Design and architecture these agents act accordingly to meet the

user requirements and provide better security and privacy. Finally we conclude by

evaluating the three designs by assessing their performance.

Ill

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Kendall E. Nygard, for his continuous

support, guidance, and expertise. My sincere thanks to Dr. Juan Li, Dr. Gursimran Walia,

and Dr. John Cook for serving on the committee. In addition, I would like to take this

opportunity to thank the faculty and staff of Computer Science Engineering for being part

of the success of my master's study.

Finally, I would like to thank my family and friends for their continuous

encouragement and support.

IV

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES .. , ix

LIST OF FIGURES ... X

1. INTRODUCTION ... 1

1. 1. Impact of Email and Instant Messaging .. 1

1.2. Instant Messaging Systems ... 2

1.3. The Way Email Works .. 2

1.3 .1. Protocols in Action ... 3

1.3 .2. Traditional Architecture of Email Messaging System ... 4

1 .4. Problems Involved with Messaging Systems .. 6

1.4.1. Security and Privacy Issues .. 7

1.5. Pretty Good Privacy (PGP) ... 8

1.5.1. How Does PGP Work? ... 8

1.6. Proposed Idea .. 9

1.6.1. Comparing the Proposed Idea with the Existing Architecture 9

1.6.2. Goals and Objectives .. 10

2. SOFTWARE AGENT BACKGROUND .. 11

2.1. Software Agents .. 11

V

2.2. Why Software Agents? ... 12

2.2.1. Basic Structure of P-Mail Instant Messaging System .. 12

2.3. Java (Object-Oriented Programming Language) .. 13

2.4. Java Agent Development Environment (JADE) ... 14

2.4.1. JADE Packages .. 14

2.5. NetBeans IDE .. 15

2.6. Working with JADE on NetBeans .. 15

2. 7. Loading Agents ... 16

3. DESIGN AND REQUIREMENTS ... 19

3.1. P-Mail Software Agent Requirements .. 19

3.2. P-Mail Mes~aging System Design .. 20

3 .2.1. P-Mail Client .. 21

3.2.2. Associate List ... 22

3.2.3. Facilitator Agent ... 23

3.3. Design Scenarios ... 24

3.3.1. Design-I P-Mail Messaging System .. 24

3.3.2. Design-2 P-Mail Messaging System .. 25

3.3.3. Design-3 P-Mail Messaging System .. 27

4. IMPLEMENTATION AND SCENARIO VISUALIZATION 29

4.1. Methodology and Classes ... 29

vi

4.1.1. P-Mail Agent Class ... 29

4.1.2. Load Agents Class .. 30

4.1.3. P-Mail Messages Class .. , 31

4.1.4. P-Mail Agent ~ehavior Class ... : ... 31

4.2. Facilitator Class and P-Mail Frame Class for Design-I ... 32

4.2.1. Scenario-I Facilitator Class .. 32

4.2.2. Scenario-I PMailFrame Class .. 33

4.3. Scenario-I. Visualization .. 34

4.4. Facilitator Class and P-Mail Frame Class for Designs-2 .. 39

4.4.1. Scenario-2 Facilitator Class .. 39

4.4.2. Scenario-2 PMailFrame Class .. 39

4.5. Scenario-2. -Visualization .. 41

4.6. Facilitator Class and P-Mail Frame Class for Design-3 ... 43

4.6.1. Scenario-3 Facilitator Class : ... 43

4.6.2. Scenario-3 PMailFrame Class .. 44

4.7. Scenario-3. Visualization .. 46

5. ANALYSIS .. 49

5.1. Advantages of the P-Mail Messaging System .. 51

5.2. Message Traffic through a Facilitator ... 51

5.3. Number of Process Steps .. 52

Vil

5.4. Recipient Address to Communicate .. 53

5.5.1. Security Attacks ; ... 55

6. FUTURE WORK AND CONCLUSION .. 58

6.1. Future Work .. 58

6.2. Conclusion .. 58

REFERENCES .. 60

APPENDIX ~ ... 62

Vlll

LIST OF TABLES

1. Mail Agent Class: Member Functions30

2. Load Agent Class: Member Functions .. 30

3. P-Mail M~ssages Class: Member Variables .. 31

4. P-Mail Agent Behavior Class: Member Functions 32

5. P-Mail Agent Behavior Class: Member Variables ... 32

6. Scenario- I Facilitator Class: Member Functions33

7. Scenario-l PMail Frame Class: Member Variables 34

8. Scenario-I PMail Frame Class: Member Functions 34

9. Scenario-2 Facilitator Class: Member Functions .. 39

10. Scenario-2 PMaii Frame Class: MemberVariables40

11. Scenario-2 PMail Frame Class: Member Functions 41

12. Scenario-3 Facilitator Class: Member Functions44

13. Scenario-3 PMail Agent Behavior_ Class: Member Variables45

14. Scenario-3 PMail Frame Class: Member Functions45

15. Recipient Address to communicate .. 54

16. Security Attacks and Their Effects on Each Design 56

IX

LIST OF FIGURES

Figure Page

1. Sending an Email message4

2. Delivery of Email from sender~ SMTP server to recipients SMTP server.. ... 5

3. Retrieving the Email message from the SMTP server 6

4. Nwana:.s Proposed Agent Typology .. 11

5. Private Instant Messaging System (P-Mail)13

6. Console message on JADE boot ... 16

7. RMA GUI .. 17

8. Load agents with RMA .. 18

9. Select Agent Class ... 18

10. Simple Design of P-Mail Messaging System 20

11. P-Mail Client Interface for Messaging ... 21

12. P-Mail Client Associate List ... 22

13. Facilitator Agent .. 23

14. Design-IP-Mail Messaging System .. 25

15. Design-2 P-Mail Messaging System .. 26

16. Design.::3 P-Mail Messaging System .. 28

17. Launch RMA GUI to Load agents '. 36

18. Scenario-I P-Mail clientl .. 36

19. Scenario- I P-Mail client2 .. 3 7

20. Scenario-I Ping Request from clientl sent to client2 37

21. Scenario-I clientl gets access to send message to client2 38

X

22. Scenario-I clientl compose Email to client2 38

23. Scenario-2 clientl .. 42

24. Scenario-2 client2 has the request from clientl 42

25. Scenario-2 clientl composes Email to send to client243

26. Scenario-3 for clientl46

27. Scenario-3 for client2 with the request. .. .47

28. Scenario-3 clientl compose an Email to client248

29. P-Mail Messaging System Design-I .. .49

30. P-Mail Messaging System Design-2 ... 50

31. P-Mail Messaging System Des~gn-3 ... 50

32. Message Traffic through the Facilitator ... 51

33. Process-Steps in a successful process .. 52

34. Process Steps in an Unsuccessful process 53

35. Cryptographic Encryption on a P-Mail Messaging System 55

xi

1. INTRODUCTION

Electronic mail (Email) and instant messaging system have become the most widely

used internet applications to communicate. These applications have become a frequent

form of communication for people in the modem era of technology and communication.

The Internet and their rich internet application have changed the way we communicate and

turned global business into reality. With great ease, we are able to communicate from one

part of the globe to another in very little time through Emails. Email and instant messaging

systems have shown significant impact in terms of the amount of data transmitted

throughout the world. Email and instant messaging systems have significant drawbacks

while providing privacy and security features to their clients. In this paper we make an

attempt to develop an application for messaging which could be used by a private group of

members (private club) to communicate, providing them with more privacy in a more

secured network.

1.1. Impact of Email and Instant Messaging

Email and instant· messaging system usage has shown considerable impact on the

current nature of business. Many corporate companies are encouraging their employees to

use instant messaging to communicate with their co-workers, which makes the

communication process more efficient. It cuts down the usage of phone calls when people

prefer something in written form. Email shows great significance in the following ways:

• Providing ~ convenient communication paradigm

• Replacing regular mail

• Supporting business communication

• Supporting users in rural areas

• Providing convenient access through handheld devices

1.2. Instant Messaging Systems

Instant messaging (IM) networks make use of servers and rich internet protocols as

Email messaging system in-order to transfer the message content from one client

messenger to another client on the network [11]. The user installs a messaging client on the

system which connects to a server which is being processed by IM network vendors (such

as Yahoo messenger, AOl, Gtalk). Each IM service makes use of different protocols to

operate on servers, limitii:ig the interoperability of users on one IM service to communicate

with users on other IM services.

When users want to communicate they start sending the messages to each other via

servers. During this process of transferring the messages the process is being logged on the

server causing the threat to security and privacy of the user content. In most of the IM any

user that has successfully logged onto the system can communicate with other user in plain

text [11].

1.3. The Way Email Works

Millions of Email messages are being sent across the globe every day. When there

is an Email sent aG,ross a server, the domain name is stripped off, and the respective Email

server is contacted. The process of Email communication involves multiple protocols and

various types of servers [2].

In Email communication, a protocol can be defined in terms of a set of predefined

rules to be follows::d in order to successfully communicate or transfer data between the

client and the server [2]. Some of the commonly used protocols for communication are

2

Internet Protocol (IP), Transmission Control Protocol (TCP), Hypertext Transfer Protocol

(HTTP), File Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). These

servers are being used as per the requirement to serve the purpose of communication in

general. In the process of Email communication, we deal with a client and a server that

exchange information with each other using a wide variety of protocols.

1. 3. 1. Protocols in Action

Email clients typically use a variety of protocols to allow users working on

different systems to communicate with each other across the networks. The standard

protocol used for client-server communication is Simple Mail Transfer Protocol (SMTP).

The SMTP protocol can be used to send Emails to the recipient mail server through

the Mail Transfer Agent across Internet Protocol (IP) networks. This protocol is usually

used with Post Office Protocol (POP) or Internet Message Access Protocol (IMAP),

allowing users to access messages residing on the servers.

Internet Message Access Protocol (IMAP)

The IMAP protocol is a standard protocol used to retrieve Email messages from the

local servers [2). IMAP is the most prevalent internet protocol that allows the Email clients

to access data on a remote mail server.· IMAP also allows interoperability with other

servers and clients on the networks.

Post Office Protocol (POP)

POP is one of the standardized Internet protocols to access mailboxes and allow

messages to be downloaded to the systems on the application network layer. There are

several versions of POP that have been developed; the current version in use is POP3.

3

1. 3. 2. Traditional Architecture of Email Messaging System

The process of sending an Email message is very similar to our traditional mail

communication procedure. To send a mail message from one place to another, the mail has

to pass through a _group of local post offices and through the regional post offices. An

Email message can be sent either through a web-based interface (i.e., Yahoo! or Gmail) or

through Email client programs, such as Simple Mail Transfer Protocol (SMTP), which take

care of most of the message-sending processes to the recipient on a network layer. When an

Email message ha~ to be sent to a recipient, the user needs to explicitly mention the server

name to which the message is to be sent. The web server comes into play, contacts the

respective SMTP server, and processes the Email message.

Once the SMTP server picks up the Email message from the web-server, it can send the

message to the recipient SMTP server in multiple ways (Figure 1).

IJj/ Web

Sender
Wcbmail Server

Figure 1. Sending an Email message [2].

• The Email message can be directly transmitted to the receiver's SMTP server.

• The sender's SM!P server calls the back-up server to back up the message and

then, in turn, calls the receiver's server.

4

• The SMTP server can even stack the message and try sending it later.

Any of the steps could come into play, and the message will be dropped onto the receiver's

server to be picked up by the user.

When transmitting the Email m~ssage from sender's SMTP server to the recipient's SMTP

server, the message may be processed through several other SMTP servers (Figure 2). Each

server adds a "Received" stamp . to the message. These message stamps give users
I

information about all the servers that have come into action in order to transmit the

message to the destination SMTP server. The received Email messages will be stored in a

file system on the recipient's server. In order to access the message stored in the file, the

SMTP server has to process these messages either through Internet Message Access

Protocol (IMAP) or Post Office Protocol (POP).

Recipient's Backup
SMTP Server#2

Sender's SMI'P Server
SMTP Protocol

Recipient's Baclcup
SMI'P Server# 1

Recipient's SMTP Server

Figure 2. Delivery of Email from senders SMTP server to recipients SMTP server[2].

The Email _client programs contact the servers ~ough the IMAP or POP protocol

to retrieve the Email message for the user. As a final step (Figure 3), the recipient can

5

either use a web-based interfac~ or a computer's Email client program to retrieve the Email

message from the server.

POP/IMA}
Protocol ,r \

Web

Wcbmail Server Recipient

Figure 3. Retrieving the Email message from the SMTP server [2].

1.4. Problems Involved with Messaging Systems

A thorough understanding about how Email and the instant messaging systems

work will also be-helpful to understand the drawbacks. and underlying problems of the

architectural design to process messages using servers and rich internet protocols. To

elaborate, Emails and the messages tran~mitted using IM system are processed through

.
servers are prone to security attacks and privacy concerns. Messages which we assumed

were deleted may- still exist on the servers. The user credentials are never completely

secure once we log-in to servers which can be easily hacked by professionals. If one gains

access to a server, the messages can be e~ily accessed by a network administrator, and the

message content can be changed before the message is sent to the recipient. These concerns

about information security and data integrity of the Email messages exist on the application

network layer. The standard Simple Message Transfer Protocol (SMTP) fails to support

6 "

message encryption during the transmission process through the servers. The messages are

sent in plain text format which, in turn, raises a question about integrity of the message

content.

1.4.1. Security and_Frivacy Issues

During the process of delivering the Email message from the sender's SMTP server

to the recipient's SMTP server, there is a good chance of the message being backed up on

the server and stored there for a significant period of time without leaving any indications

to the sender or th_e receiver. The process of message transfer is pretty much the same in

case of instant messaging making use of servers. At any time, the administrator can gain

access to the backed-up messages that are on the server and read the Email messages. The

user's private information, like user name and password, which are needed by the POP and

IMAP protocols in.order to retrieve the Email messages residing on the server's file system

can be read by any eavesdropper who understands the flow of information between the

system and the servers on the application layer. The common underlying security threats

are as follows:

• Eavesdropping (can easily gain access on the Email messages)

• Identity theft (insecure identity)

• Fraudulent Email messages.(false Emails)

• Lack of authentication

• Invasion of privacy (concerns about Email privacy)

• Integrity of Email content (lack of data integrity)

• Unprotected backup (back-up of messages stored on servers)

7

Email messages sent through the Email clients may even include the internet

protocol address which could reveal information such as the sender's location and the city

from which the message was sent through the Email servers.

1.5. Pretty Good Privacy (PGP)

The privacy of Email messages over the internet has been compromised quite a bit

because they are backed up on servers which can be easily accessed by the network

administrator at any time [7]. Pretty good privacy (PGP) is a way of providing more

security and privacy for email messages by encrypting and decrypting the Email messages

throughout the system. PGP provides cryptographic privacy for Email messages.

1.5.1. How Does PGP Work?

PGP is public key encryption technique which uses the asymmetric key algorithms

to encrypt and decrypt the Email message. POP has a special command to process the

creation of your own personalized pair of public and private keys. Public-key encryption

provides the user with a pair of cryptographic keys known as public key and private key.

The private key is always kept as a secret, and the public key can be distributed throughout

the network [7].

-
When a user sends an Email to a recipient, the message is encrypted with the

recipient's public key which can only be decrypted with its corresponding public key.

Encryption algorithms never provide 100% security for the users. POP assures users to

protect the content of Email messages by encryption and decryption, but fails to protect the

identity of either the sender or the recipient.

8

1.6. Proposed Idea

All the above-mentioned problems, which are related to the security and privacy

issues of sending an Email message or an instant message through IM are being processed

through servers and making use of standardized protocols. This threatens the users with

regard to sending private content, leaving signs of insecurity in the minds of users [l]. The

privacy and securify concerns need to be considered, and by valuing the user concerns, we

need to build an application which makes use of protocols to less effect and which avoids

the unnecessary backup of user Email messages or the instant messages being logged on

the servers.

This paper proposes an idea to build an application based on a software agent's

collaboration. The Private mail (P-Mail) agent messaging system tran~fers the Email

message from the sender to the receiver with the help of intelligent software agents. The P­

Mail software agents are programmed as per the user requirements, making the content

more secure and private by communicating the information to other agents. Software

agents transfer the Email message to the recipient with less concern for privacy and

security. This paper proposes an application which would emphasize user authentication

more by providing more security to Email message content.

1.6.1. Comparing the Proposed Idea with the Existing Architecture

The proposed Private Mail (P-Mail) messaging system doesn't implement any kind

of server's in-order to transfer the message from one user to another on the network.

Instead they will be using a Facilitator to provide the access control to clients to transfer the

message to the recipient. The proposed architecture is more suitable to the pool of people

who want to communicate in private we call a private club. Every time the user needs to

9

authenticate with the recipient client in order to send a message and also needs to get the

permissions to transfer the message successfully. The proposed design is a different from

the way communication occurs between the users when compared with the IM systems or

Email messaging system aiming to have the process in more private and secure.

1.6.2. Goals and Objectives

The objectives of the P-Mail messaging system can be defined as

• To build an application which uses protocols to less extent

• To avoid unnecessary backup of Email messages

• To build a secure Email messaging- system

- 10

2. SOFTWARE AGENT BACKGROUND

The use of software agents is rapidly growing in the field of computer science and

artificial intelligence. Software agents are programs that can mimic most human behaviors

or activities. The P-Mail software agent messaging system explains how software agents

collaborate with other agents to carry out the task of successfully transferring Email

messages from sender to recipient along with maintaining the privacy of the messages sent.

2.1. Software Agents·

A simple definition that can be given for "software agent" would be any software

program that is designed to perform or carry out an assigned task automatically in order to

retrieve or transfer the information with intelligence. Programming agents can perform the

tasks as per the context's requirements. They perform the task continuously in a flexible

manner, responding to changes in the environment without requiring any human

intervention. Nwana proposed an agent typology [3] for agent classification according to

which agents can be classified as illustrated in Figure 4.

Sman
Agrmts

Collaborative
Agents

Figure 4. Nwana's Proposed Agent Typology (3).

11

Figure 4 illustrates that agents can be autonomous (ability to control their own

actions to be performed), co-operative (ability to communicate with other agents

effectively), reactive (responding in a timely manner), goal oriented (knowi"ng the job to be

performed), mobile (ability to move in an environment) and sufficiently flexible in their

actions. Based on the above-inherited features, the agents can be classified into the

following categories [8]

• Collaborative or cooperative agents

• Interface agents

• Learning agents

• Smart agents or hybrid agents

Multi-agent systems (MAS) can be defined as a group of intelligent agents that

collectively interact with other agents to-carry out a problem to be solved [8]. A MAS

performs the operation by collaborating with other agents which might be difficult to carry

out with single agent.

2.2. Why Software Agents?

In the proposed i<,iea, software agents could be used to address the problems with

privacy and security in the process of transmitting the Email message from one user to the

other. In a traditional Email messaging system, there is always a problem with invasion or

integrity of the message content. We choose software agents which can collaborate with

other agents to process the entire Email messaging system.

2. 2.1. Basic Structure of P-Mail Instant Messaging System

The P-Mail Instant Messaging System rules out the option of using servers and

makes use of P-Mail agents. This is an attempt to ensure true privacy in an Email system.

12

In the proposed architecture, each P-Mail client is an intelligent software agent with

considerable flexibility to collaborate with other P-Mail clients (figure 5).

P-Mall
G,llent

P-Mail
Facilitator

P-Mail
Client

Figure 5. Private Instant Messaging System (P-Mail) [5].

Each P-Mail agent can communicate with every other P-Mail agent that it

recognizes and can decide whether to accept the messages or not. During this process,

messages are neittJ.er stored on any server nor back-up for any particular reasons. The

above architecture is an idea derived from peer-to-peer communication on a network layer.

The system is built using one of the most popular programming languages, Java on JADE

(Java Agent Development Environment).

2.3. Java (Object-Oriented Programming Language)

This object-oriented programming language was developed by James Gosling at

Sun Microsystems. Java is based on C++. syntax and differs in many ways in its style of

programming. Once correctly compiled, Java programs are portable and can be run

securely across dffferent platforms. Java is a high-level, object-oriented programming

language that provides many additional features and benefits. It is simple, _object oriented,

13

multithreaded, robust, portable, high performance, secure, etc. Java is the core

programming language used in this paper to develop the P-Mail software agent application

in JADE.

2.4. Java Agent Development Environment (JADE)

JADE is a framework that simplifies the implementation of multi-agent systems in

compliance with the FIPA (Foundation for Intelligent Physical Agents) specifications [9].

JADE was fully de.veloped using the Java programming language. It provides a middleware

for developing and successfully executing the agent applications. It provides mobility,

security, and many other features so that _agents can collaborate with several other agents

on the platform. JADE contains one main container for the agents and also allows the

creation of severai other containers which can reside on the same system or on different

systems. A series of containers is collectively called a JADE platform.

The main container on JADE always holds two special agents:

• Agent Management System (AMS): provides the naming services, ensuring agents

are unique and also destroying the agents.

• Directory Facilitator (DF): provides a service which is very similar to yellow pages

and which is helpful for other agents to find and communicate successfully.

2.4.1. JADE Packages

The JADE -[9] environment includes a library of classes that programmers need to

use to build their software agents and to perform actions to collaborate with other agents.

Some of the core packages used by JADE for multi-agent systems are

• Jade.core.ad: implements the Agent Communication Language (ACL) messaging

service

14

• Jade.core.event: implements the event notification service

• Jade.core.management: implements the agent life-cycle management service

• Jade.core.messaging: implements the messaging service

• Jade.core.mobility: implements the mobility and cloning service

2.5. NetBeans IDE

NetBeans is a free, open-source integrated development environment (IDE) for

software developers that are built on Java. NetBeans is used to develop rich client

applications. Each NetBeans module provides a well-defined function. It provides reliable

application architecture that is developed in no time. On NetBeans, it is easy to develop or

build applications that are robust and extensible across the framework. NetBeans IDE is

easy to use; it is· quick to learn and to develop applications which are robust and rich in

functionality. The P-Mail software agent messaging system is built using JADE on the

NetBeans IDE.

2.6. Working with JADE on NetBea.ns

The only software requirement needed by JADE to execute the systems is the Java

Run Time Environment (Version 1.4). After the class path is set to the root directory, the

following command is used to launch the main container of the platform [9]:

Java jade.Boot [options] [AgentSpecifier list]

In order to launch a new agent container, the following command can be used:

Java jade.Boot-container [options] [AgentSpecifier list}

The Agent.doDelete() method can be called to stop the agent execution, and the

Agent.takeDown() method can be called to destroy or suspend the agent.

15

2. 7. Loading Agents

JADE can be run in several different ways; it can be run on one co~puter or many

other computers. The simple way is to run.JADE on one single system and one single main

container. The following command can be used to boot JADE: run jade -gui [9]. Once the

boot process is complete, the message shown in Figure· 6 is displayed on the console of

NetBeans IDE.

nm: .
re 24, 2010 10:16:43 PM jade.eore.RuneilM beginConeainer

~= -------------
Thi• i■ JADli! a.7 - ravi■ion 6164 of 2009/07/01 17:34:16
clovnl.aaded 111-0pen Source, under LGPL r■■eric:t.i.on■,

•t http://j■d■ .eil■b.c:aa/

re 24, 2010 10:16:45 PM jad■ .c:ore.Ba■•.S.:rvi.ce i.nit
DIIO: Service j~de.con,.aan.v-ae.AqeneHanav-a1. inieialised
re 24, 2010 10:16:45 PM jade.c:oi:e.Ba■•S.:rvic:e i.nit
DIIO: Service jad■ ."Clr■.-■■aqinq.MIH■aqinq i.nitial.i■ed

· re :a, 2010 10:16:45 PM ;,ac1a.coze.Ba■-Servi.ce init
IlfJO: Sarviee jade.cora.a:ioil.iey:llqentHabil.i.1.y i.nieia1iHd
reb 24, 2010 10:16:46 PM jad■ .c:ora.Ba-sa:rvic:9 i.nit
Illl'O: Service jad■ .core.event.lfo1.i.ficat.ion ini.1.1-lised
re 24, 2010 10:16:45 PM jllde.c,ore --Haginq.lle9■aqinqServic:e. clearCec:hadSlic:-e
IBJ'O: Cleari.nq each•
reb 24, 2010 10:16:46 PK jllde.&p.http.Hr;rPSarver <i.nit>

Dn'O: HTTP-KTP t1■inq XML par■■r c:ma. ■un.axv.apaebe.-J:ea■ .i.ntera■ l.jaxp.SUPaz■-rI-.,1$.lAXPSAXPerear

re 24, 2010 10:16:46 PM jllde.cor•.-■■■qinq.M■■■•qiJMJServic:a boot

DTl'O: MTP addre■■e■ :

h1'1.p://Harry-PC:777B/ac:c
reb 24, 2010 10:16:46 PM jade.core.AqentContainerilllpl joi.nPlatfara

IJIIO: ---------~----
.1,Qant container Main-cont.1.narlHarry-PC i■ ready.

Figure 6. Console message on JADE boot.

The Remote Mofi!toring Agent (RMA) controls the life cycle of the agent [4]. The

following commands can be executed from the RMA Graphical User Interface (GUI) tool

bar. "File Menu" has the "Close" option to close an existing RMA agent. We can terminate

the agent by calling the doDelete() method. The "Shut Down Agent Platform" option

16

terminates all the existing containers and the living agents. The "Start Ne~ Agent'' option

creates a completely new agent, and the "Kill Selected Items" option takes down all

selected agents at once. "Suspend Selected Agents" calls the doSuspend() method intact to

suspend the agent actions [9].

Figure 7 sho~s a snapshot of the RMA graphical user interface window that pops up once

the boot command is run successfully. The RMA GUI provides the user with a wide variety

of options to create and manage agents. The user can initiate the agent with just one click

on the GUI icon. All operations can be performed in the main container or when a

container is created.

1j RMAOHany-PC:1099/JADE • J~~E Re-.,ie Agent Management GUI l,;:;;,l®~

Fie Actions Tools Remote Platforms Help

[~1~~,--™J~[i] ~~ [j][i] [j][i]~[i]~ ~
\' EJ AgenlPlatforms - name I addresses I state I owner

t-EJ "Harry-PC:1099/JAOE• NAME !ADDRESSES !STATE IOWNER

t- l:J Main-Container
~ ii RMA@Harry-PC:1099/JADE .

ii ams@Harry-PC:1099/JADE
a df@Harry-PC:1099/JADE ·-

- -

-
:

.
::

,.
- -

-
Figure 7. RMA GUI.

"Start new agent" pops up a new window (figure 8) that provides the user with the option

to enter the agent name, argument, and class name from where the agent has to be initiated.

17

A tab besides the Glass name provides the user with all available agent classes to create an

agent using it's instance.

• [id Insert Start Parameters w1
Agent Name . PMail1 -pass Name I• 1-
~rguments soft agent1

I I Pwner - I_ - - -
~ontainer Main-Container

OK cancei

Figure 8. Load agents with RMA.

Figure 9. shows the pop-up wiI!dow with all the available class names to select and create

an agent. By selecting a class name and then saying OK, the respective class agent will be

created immediately.

[ii Select Agent class
. -

· r.11uumat11 contains 11 classes tllatextend ,_ .. _ --- A-ent
. ctassname

ade.core.Agent .

Uade.domain.dl"
-...,-:--- l - c..-,--

lia4e.tools.OummyAgentDummyAgent
Uade.tools.SockelProxyAgent.SockelProxyAgent
Uade.tools.introspedor.lntrospedor
Uade.tools.logglng.LogManaoerAgent I
· ade.tools.rma.rma

I jade.tools.sniffer.Sniffer
I jade.tools.testagent TestAgent .
I· iade.wrapp~r.gateway.GatewayAgent

'
.

-

..
. •· '

I
I - Ok I -cance1

Figure 9. Select Agent Class.

In Chapter 3, we will discuss more about the design and requirements of the P-Mail

Messaging System.

18

3. DESIGN AND REQUIREMENTS

This chapter gives a brief introduction about the design and requirements for

building the P-Mail software agent messaging system. The idea behind i~plementing the

P-Mail software agent messaging system .is to keep the message secure and private while

transmitting the Email message from sender to the receiver. To serve this purpose, we use

agent-to-agent colfaboration on the Java Agent Development Environment (JADE).

3.1. P-Mail Software Agent Requirements

P-Mail software_ agent messaging can be implemented by software agent

collaboration to communicate in many different ways, from which we consider three

potential scenarios that can be implemented. In this chapter, we will go into detail about

how these three scenarios differ from each other in terms of design and requirements.

The P-Mail messaging system requires two different kinds of software agents.

According to the purpose requirements, these agents have been named as

• P-Mail agent

• Facilitator agent

These agents behave according to the user requirements and the way they have been

programmed to serve the purpose of messaging from one P-Mail client to another. Both P­

Mail and facilitator agents are intelligent software agents. A facilitator agent plays an

important role in the design of the entire P-Mail messaging system. It facilitates

communication between ·the P-Mail agents and P-Mail clients. The messages are never

stored on any of the servers or saved at any other locations. The P-Mails will be sent from

one client agent to another client agent without any intermediate support to conduct the

task. More about the agent's design will be discussed in the next section.

19

3.2. P-Mail Messaging System Design

The P-Mail messaging system has been designed to provide privacy and security to

the Email messages. Potentially, this also eliminates the possibility of a client receiving

SP AM messages. The peer-to-peer architecture of the P-Mail messaging system allows a P­

Mail client to send an Email message to any client on the network.

Figure 10 presents the hi~-level architectural design of the P-Mail messaging system. An

individual P-Mail client can be set-up on the user's machine, which can be a desktop, PDA,

etc. Each client machine has a user-interface to send, receive, compose, and read the Email

messages. In order to send messages to a client, all clients should communicate through the

facilitator agent to get tl!e address of a specific client to transmit the message which is

shown in red. Messages can only be sent to other P-Mail clients, nono the facilitator, the

communication paths of which are shown in black on the network [4].

P-Mail
Client

P-Mail
Client

Figure 10. Simple Design of P-Mail Messaging System [4].

20

3.2.1. P-Mail Client

The P-Mail client has a user interface to send/receive Email messages to/from other

P-mail clients on the network. Communication between the P-Mail clients is restricted on a

network layer. AP-Mail client would communicate with other P-Mail clients only if it is

present in the associate list, which means they are programmed in such a way that an agent

can communicate with any other agent that it knows and can accept its messages. Each

client agent has a list of a_gents with whom it can communicate. The client interface can be

divided into three different components (figure 11):

• Associate list tab

• Sent and received messages tab

• Compose tab

- -

Q As1oclalel• 104L1genl1 111c:aw11rs..i1 .
D ·- I Su•- 0... I
D ,o1,_ag1n14 soft aa,n12 1Tost1 IT!lu Mar04 23:2. .. IT1IIM111aao1

Dao1...ao-,ie soft aaant2 1Tts12 IThu Mar 04 23:2 ... IToll Muaaot2

D •ott..•gonll
eCP~

..
~

Iii PMoil Ou1loot
-.

t:J Assoctatts· sott..aoent2 fSlltl
[),041...-, - I I Dale INSlllM
Qsott..ago,,15 Soft 1Dtnl1 ITUt1 [TIIU Mar 04 23:2. .. IT•st Mouagt1
Qsott..ago,C7 Soll 1aen11 1Tost2 11nu Mar 04 23:2. .. ITtst Mes,.,,.2

n sott..agonl9
n ,041.. ... 11

Tq: r--- 7

41 I It
. . SlllljKt l I

I ---
I I

- ·1;

,,

"

,I i:.:J
.

,◄ I • 1_1_ IRtlruhd

Figure 11. P-Mail Client Interface for Messaging.

21

3. 2. 2. Associate List

The Associate list provides a list of all P-Mail clients(Figure 12) present on the

network with which a user can communicate effectively. The Associate list displays list of

clients with two different statuses, displaying all the network clients that are currently

online/oflline.

•~ r.•"tiat.--- .,_

-
r::l so1Laoent1 Rac•INd r Sent D sott_agent2 avail: I Aaent SU-d I Date I Mess

I D sott_agent4 offl.ir
I D sott_agent6 ollLlr

I D so1Lagent8 offl.ir

' - - -..
(ij PMail _9utlook I

son_agent2 ~rs.a,,
- D soft_agent1 avallabl

Anent I SUbled I D sOILaoent5 011Un•
D sott_agenf7 offl..lne

D sotLagent9 offl..lne

D so1L.agent11 offl..lne .

.

. ~: 1

Addntas: I
◄ I Ill I II SUbject I

i ··- ·-

Figure 12. P-Ma!l Client Associate List.

The associate list will be refreshed periodically, updating the client status. The user

cannot communicate with a client that is not present in his or her associate list; in order to

do so, the user either needs to get permission from the client, or it needs to add the client to

the current list of associa!es that are online. If the user sends a message to an offiine client,

the message will be displayed for the client when it goes online.

22

3.2.3. Facilitator Agent

The facilitator agent plays a significant role in the client communication process.

The facilitator never receives the Email message; it only manages the communication

between different agents (figure 13). The facilitator agent provides the agent name service

and access control between the agents. It stores the information for each agent and its

public address.

I
/

J
I

/

$tep4(YIN)
Add.-

Agem AgentAddress

~

Figure 13. Facilitator Agent.

Whenever a client comes online, it registers with the facilitator saying that it is

ready to communicate with other clients on the network, and at the same time, if a client

goes offline, it un-checks with the facilitator. The P-Mail client always inquires with the

facilitator to get the recipient's address to send the message successfully. The facilitator, in

turn, will check with the receiver client if it is willing to communicate with the sender

client and replies with the appropriate response. Depending on the way the facilitator works

and controls access between the agents, we created three different designs ~or P-Mail client

communication.

23

3.3. Design Scel!arios

On the basis of the functions and the strategies employed by the facilitator to

process the request from the P-Mail clients. We have designed three scenarios that can be

implemented for the P-Mail messaging system.

3.3.1. Design-IP-Mail Messaging System

In design-I, the facilitator communicates with the sender's P-Mail client and does

not interact with the recipient's P-Mail client. Only on request, the facilitator directly

provides the recipient client's address to communicate without trying to see if the recipient

P-Mail is willing to communicate.

Process flow Design-1 [Figure 14]:

Step 1: The ultimate goal of the process is to transmit the message from agent-A to agent­

B. Agent-Bis part_of agent-A's associate list. Agent-A, hence, inquires with the facilitator

to get agent-B's address during step 1.

Step 2: A facilitator serving the purpose of agent name service has all the agent

information and its public addresses for communication. After receiving the request from

agent-A, the facilit,§ltor provides it with agent-B's address to communicate.

Step 3: Having received the agent name and agent address, agent-A pings agent-B,

requesting to start the communication process.

Step 4: Receiving the ping request from agent-A, agent-B needs to decide whether it is

willing to communicate with agent-A. If agent-B is willing to communicate with the

sender, it would accept the ping request; otherwise, it might deny the request to

communicate with agent-A.

24

Jstof Agent§

James §
Associate List

Agent AgentAddress

Ping Agent to
Communicate

·,"'-~.._ /~

·"-·---- Step 5 (Message)__./.,... -~--- _____ ..,..,. . ..--~

Message Transfer

_ Figure 14. Design-IP-Mail Messaging System.

Associate list

Step 5: Agent-A is allowed to send the Email message after receiving the acceptance from

agent-B in response to the ping, or it is simply a request denial.

3.3.2. Design-2 P-¥ail Messaging System

In design-2, the facilitator is designed to handle the address request from the P-Mail

client to the recipient agent to communicate with, thereby sending the same request to the

destination agent asking whether to start the process of communication.

25

Process flow Design-2 [Figure 15):

Step 1: With an intention to transmit the message from agent-A to agent-B, agent-A needs

to get the address by inquiring with the facilitator. In this case, ta request is sent to

facilitator agent to get the address.

Step 2: The facilitator makes use of the agent name service and contacts the destination

agent to see if it is willing to communicate with the sender (agent-A).

Step 3: After receiving the request from the facilitator, agent-B has to make a decision

about whether to allow or deny agent-A to send the message.

/
/

Req fo~,A~ess

- I

I
I
I

// Step 1

//
I
I

;tofAgent (===I 8
·- §

Associate List

Response on ReQ

Step 3 (YIN}
Address

Mess.age Transle<

Agent Agenl Address

"--,.,",,,,

' \
\

Pr~sReq

\
Step 2 \

\

\
\
',
',
',
I
I

•

Associate List

Figure 15. Design-2 P-Mail Messaging System.

26

Step 4: In step 3, if the destination agent accepts the request, then it will reply with its

address to send the Email message. If agent-B accepts the request, then agent-A will have

the address to communicate with agent-B; otherwise, agent-A has been denied to

communicate with the agent-B.

3.3.3. Design-3 P-Mail Messaging System

Design-3 facilitates the sender P-Mail agent with the recipient's address through the

facilitator only when destination agent is willing to communicate; otherwise, the facilitator

will simply deny the address request.

Process flow Design-3 [Figure 16):

Step 1: Agent-A would like to communicate with agent-B and since agent-B is in the

associate list. Agent-A requests the facilitator for agent-B's address during the step 1.

Step 2: Having received the request from agent-A, the facilitator processes the request by

transferring the request to agent-B. During this process, the facilitator uses the agent name

service to contact agent-B.

Step 3: After step 2 and having received the request to communicate, agent-B either has to

accept the request by sending the address in response, or it can simple deny the request.

Step 4: If agent-B is willing to communicate, the sender agent will get the address from

step 3 to start sending the Email message. If the recipient agent has denied the request, then

agent-A is unable to send·a message to agent-B.

27

j•
//,.

//
·/ I

Req foi;/1i>.ddress /

. l
/ Step1 /

/ ,'

I I
/ ftep4(Y/N)

11
/ Address

/

I

I
I
I
I
I

Agent AgentAddress

!

I
I

PrOC41!$slReq
',
\ Step 2
\
\

\\,
\.

·\.,,

Re11~00R.eq

Step 3{Y/~}..,,,,

\
I
I
I

1

1 RC$P<;_?B'e 011 Req

//
' ', /

tofAgent § 8
'· ·•,,..

Agents

,mes §
Measag.e T ranafer

M ,,,....,.._..,.

Associate List
Associate list

- Figure 16. Design-3 P-Mail Messaging System.

Step 5: Once the sender agent has the recipient's address, it is always allowed to send an

Email message to the destination agent.

The details of all three P-Mail messaging system designs and their implementations

will be discussed iii Chapter 4.

28

4. IMPLEMENTATION ANJ) SCENARIO VISUALIZATION

In this chapter, we get into the details of all three scenarios and their

implementation, and we visualize how each design has been implemented. The main goal

of each implementation is to transfer Email messages from one P-Mail. client agent to

another. In order to send the Email message, the sender's P-Mail client needs to get the

recipient's address from the facilitator agent. The three implementations differ in

• The way the P-Mail client checks with the facilitator

• The way the facilitator handles the access control.

4.1. Methodology and Classes

In this section, we discuss the classes and functions implemented to handle each

design. The project mainly depends on the way the facilitator has been implemented. Each

client will be able to compose an Email message with the following fields: client name,

address, subject and message. Design has been implemented in such a way that a client can

send messages only if the recipient is willing to communicate.

4.1.1. P-Mail Agent Class

The Mail Agent class is the primary class of the entire project, independent of the

scenarios to be implemented. This class handles the creation of a user interface on each

client machine. The Mail Agent class takes the client name as the argument, creates the

user interface (UI), and registers itself with the facilitator agent by giving its name and

address information. In table 1 we define the member functions used to build this class.

This class creates the instances of two other classes

• PMai!Frame: Creates the client UI by accepting the arguments and

• Facilitator: Client registration

29

- Table 1. Mail Agent Class: Member Functions

void setUpQ Creates agent

void takeDownQ Terminates agent once the process is complete

4.1.2. Load Agents Class

The Load Agents class shown in table 2 is mainly used by the P Mai/Frame and

PmailAgentBehavior classes to load the Associate list for each client. This class mainly has

two kinds of functions; one would store all the client names and their respective associate

agent lists, and the other contains the associate list of the client.

Class LoadAgents

{
HashMap loadAgentO { ... }

List agentList 1 () { ... }

List agentList2 () { ... }

List agentList3 () { ... }

List agentList4 () { ... }

}

Table 2. Load Agent Class: Member Functions

HashMap<String;
List<String>>

List<String>

loadAgent()

agentListO

Stores client name and its respective associate
list of agents

Associate agent list

30

4.1.3. P-Mai/ Messages Class

P-Mail me~sages is the domain object through which we get and set the values of

the sender's client name, receiver's client name, message, date, and subject. This domain

object is mainly used in other classes to access the values set through this object. Table 3

shows the variables used in this class.

'fable 3. P-Mail Messages Class: Member Variables

String Message which needs to be sent

Message

String Recipient's client name

toAgent

String Sender's client name

from Agent

String Current date

Date

String Subject line of the message

Subject

4.1.4. P-Mail Agent Behavior Class

The P-Mail Agent Behavior Class handles most of the actions to be perfonned by

any client to interact with either the facilitator or any other P-Mail client ori the network. A

few of those behaviors are to ping another agent, populate the received and sent lists on the

client's user interface, client authentication process, etc. Table 4 and table 5 gives an brief

idea of all the functions used in this class.

31

Table 4. P-Mail Agent Behavior Class: Member Functions

String

HashMap<String,
String>

boolean

sendMessageQ

pingAgentQ

authenticateAgentQ

Transfers the Email message with
the content to another client.

Sends a request to another client
asking for permission

Takes care of the client

authentication process

List<PMailMessages> getSendListO Gives the send list

List<PMaiIMessages> getRecievedList Q Gives the received list

Void updateRecievedMessagesQ Updates the received content

Table 5. P-Mail Agent Behavior Class: Member Variables

String Current agent Current agent name

List<PMailMessages> SendList List of sent messages

List<PMaiIMessages> RecievedList List of received messages

List< String > associate List List of associate agents

HashMap<String, List of all agents and their respective

List<PMailMessages>> recievedMessagesMap received messages.

4.2. Facilitator Class and P-Mail Frame Class for Design-I

4.2.1. Scenario-I Facilitator Class

In Scenario-I, the design facilitator class is designed in such a way-that it takes the

client name to the sender. agent as shown in table 6, which then transmits the message and

returns the required address back to the client. The facilitator class also handles the process

of registering the client when it comes online.

32

Class Facilitator
{

getAgentAddress(agent) { ... }

loadAgent() { ... }·

agentAddresslnfo(agent, agentAddress) { ... }

}

Table 6. Scenario-I Facilitator Class: Member Functions

String getAgentAddress() Gets agent address

HashMap<String, String> loadAgent() Registers online agents

HashMap<String, String> getAgentAddresslnfoQ Gives agent nam~ and address

4. 2. 2. Scenario-] P Mai/Frame Class

Each instance of the PMailFrame class creates a PMailFrame which is a client-user

interface through which it can start the process of communicating with other P-Mail clients.

In order to do so, the sender P-Mail clie~t should ask the facilitator for the address. The

facilitator responds with the recipient's address. Later sender client pings the other client

asking permission to send the message.

This action can be demonstrated by having the "Get Address" button on the UL

Clicking on this button requests an addr~ss from the facilitator. Once the client has the

address, it can ping the recipient P-Mail to allow transmission of the message. The "Send"

button on the UI would only be rendered usable if the recipient is willing to communicate.

P-Mail class functions are shown in table 7 and table 8.

Class PMailFrame

{
getAgentAddress(agent) { ... }

33

}

pingAgentToCommunicate(agent, agent) { ... }

respondToCommunicate(agent, agent) { ... }

pingRequest Yes(true) { ... }

refresh() { ... }

sendActionPerformed() { ... }

Table 7. Scenario-I PMail Frame Class: Member Variables

String Current agent name

agent name

String Current agent address

agentAddress

Int Enables the send button

enableSendFlag

HashMap<String,..String> Responds to the agent
respondAgentMap

HashMap<String, String> Pings the agent.
pingAgentsMap

4.3. Scenario-I. Visualization

Scenario-I has been implemented according to the design and requirements discussed in

Chapter 3. To create new agents, we must initiate the RMA GUI; open the container; and

create the agent by giving inputs like agent name, arguments, and the base agent class for

which the agent has to be created (Figure 17).

34

Table 8. Scenario-I PMail Frame Class: Member Functions

Void refreshMail() Refreshes email messages

Boolean Pings the agenno

l!ingAgentToCommunicateQ communicate

Boolean Response about whether to

resnondAgentToCommunicateQ communicate

TreeModal - getAssociateTreeModal{l Populates the associates

Void Attaches the content to an
object when clicking "send"

and performing the desired
sendBtnActionnerformed{l action

Void btnGetAddressActionPerformed(l Query facilitator for address

Void Having the recipient's
btnPingActionPerformedQ address send a ping

Void Recipient willing to
l!ingReg YesActionPerformedQ communicate

Void Recipient not willing to

l!ingRegN oActionPerformed {} communicate

DefaultTableModal getSendMsgsQ Populates all the sent items

DefaultTableModal Populates all received
getRecievedMsgs{) messages

Void Clears all the data from the
cfoarCom noseFieldsQ compose window

Once P-Mail clientl has been created (Figure 18), we can see the user interface of client!

and client2 with available functionalities, like compose the Email message, to view the sent

and received messages on the p_anel. The interface also has a refresh button to get a quick

refresh of the content with the all the available list of agent that it can communicate with

under the associate list. To send a message to client2, clientl needs to get its address. By

- 35

clicking on "Get Address," it asks the facilitator, and the address field will be populated

instantly.

• }I RMAOHarry-PC:1099/JAOE • JADE Remote Agent Menage GUI b!:IDMit:M
FIie Actions Tools Remote Platforms Help

[~][fil~~~~~ ~ [WJ[a] l:i]OOGl][i]~ ~
,- f::J AgentPlatfonns

9 1::J "Harry-PC:1099/JADE"
9

Iii Clienl1@Harry-PC:1099IJADE
ii Clienl2@Harry-PC: 1099/JADE

ii ~MA@Harry-PC:1099/JADE
Iii ams@Harry-PC:1099/JADE
Iii df@Harry-PC:1099/JADE

addruses state

Figure 17. Launch RMA GUI to Load agents.

owner

Having the address, clientl can ping client2 with the "Ping Agent" button on the

UL This action will send a request to client2 asking for permission to communicate.

i:::ldlent1

~
D dlenl2 available

D dl!IIIW oftllne
D dlent6 oftllne

D dlenl8 offllne

RecelVN r Sent I -
Aaent I Subitd

AgentHame: -=-----
Address:

SUIJject

I Date I Messaae

__ _,I L, !!etM'ffl,.,I
I . .,..Agent I

I ~-----------'1 - -Send~,

Figure 18. Scenario-I P-Mail clientl.

36

~ Requesl from: ____ _]
Want lo communlale?

~ No

Once the request has been sent to client2 (Figure 19), clientl 's name is populated in

the ping request panel to the right of the client2 interface. Client2 is then given the option

to either allow or not to allow clientl to send the Email message by clicking "Yes" or ''No"

on the interface.

• (.i PMd Outlook

Qctjent:l
~- D dlont1 IMlilablo

1-D dlont5 offl.Jno

: D dlonl7 -.ino

l, -D dlont11 offl.Jno
[)dlont11offl.Jne

- r s.nt I
Anent I SUblec:t I Oat• 1. Measa('fflt

Ado,..., I

_________ __, l ,9StW!ffl. l
---~~~---' I --"-1 I

~Dtott .----, - -----------

-
• Figure 19. Scenario-I P-Mail client2.

Pkla Reqveat from:

Client2 accepts or denies the ping request from client 1 (Figure 20, Figure 21). If it accepts

the request, then "send" button will be activated on the interface, and clientl can send

Email to client2 (Figure 22).

C dlanl2

' D dlonl1 ...i1abla

l D dient5 oauna
D caa,wtoaune

. [) dlonl9 olUno

:. D ctient11 oftLine

i-,

-

.... -

IF

,_~_~ - Sent '~ =II L .em,e .J
__ /\11~!!1 l S\lbi•a -=:J ___ D=ato,_____. _ _,,M.~••=sa-ge~-i-

--- --- --- - . ·--·--·- ... - . - ----ku .,r, J
Add,.aa;

Want to communicale?

YM ~

Figure 20. Scenario-I Ping Request from clientl sent to client2.

37

Ii} !'Meil Outlook

li:Jdient1

l D dlent2 available

D dienl-4 offlJne

· D dlent6 olLine

·· D dlemS offlJne

'Rllallllll r· SNt I
Aaenl I SUbltd I Dall I MessaGt

-

AgentName: I e:=11'1=-----_______ __.1 l ei-irel I Pill9 Requell from:

Address: GMl2@flllstudu ~~~-~--' [• J25MJ!l,l J Wllll to COIIIIIIUnlcate?

~~

Figure 21. Scenario-I clientl gets access to send message to client2.

fil PMail Outl~

~dient1

~
D dient2 awilable

D dient4offl..ine

D dient6 offlJne

D dlent8 offlJne

Rec:Md f Sent l

Aoent I SUbied I Dale I Messaae

-
. .

,_

AgetitName: l.~di~~~Q;__ ________ _ L !!MIIINl. l

I l, S!Ree, l Address: !CRenl2@fldSII.~ _

subject Ires e.s~a9e

llesslge: Test Message from dient1 to dient2.

Saad

Refresh •

Ping Reqaeat from:

Figure 22. Scenario-I clientl compose Email to client2.

- 38

4.4. Facilitator Class and P-Mail Frame Class for Designs-2

4.4.1. Scenario-2 Facilitator Class

In Scenario-2, the design facilitator class is designed in such a way that it takes the

client name to the sender agent that wants to transmit the message. According to the

received response, facilitator checks the recipient's address and, in turn, sends the request

to the recipient on behalf of the sender. Tp.e facilitator class shown in table 9 also handles

the process of registering clients when they come online.

Class Facilitator -
{

}

getAgentAddress(agent) { ... }

loadAgent() { ... }

agentAddresslnfo(agent, agentAddress) { ... }

communicateRecipientAgent(agent, agent) { ... }

Table 9: Scenario-2 Facilitator Class: Member Functions

String getAgentAddress() Gets agent address

HashMap<String, Pings the recipient agent
String> communicateAgent()

HashMap<String, Gives the agent name and address
String> getAgentAdd resslnfoQ

4.4.2. Scenario-2 PMailFrame Class

Each instance of the PMailFrame class creates a PMailFrame which is a client-user

interface through which client can start the process of communicating with other P-Mail

clients. The P-Mail client asks the facilitator for the recipient's address. The facilitator

39

receives the request from the sender. The facilitator then sends a request stating a P-Mail's

willingness to communicate. All the class member variables and methods E1:fe mentioned in

table 10 and table 11.

The same can be demonstrated by having the "GoFac & PingAgent" button on the

UI. Clicking this button asks the facilitator for the address. Once the facilitator has the

request, it can ping the recipient's P-Mail to allow message transmission. The "Send"

button on the UI would only be rendered usable if the recipient is willing to communicate.

Class PMailFrame

{

}

goFacilitatorToPingAgent(agent) { ... }

pingAgentToCommunicate(agent, agent) { ... }

respondToCommunicate(agent, agent) { ... }

pingRequest Yes(true) { ... }

sendActionPerformed() { ... }

Table 10. Scenario-2 PMaif Frame Class: Member Variables

HashMap<String, String> respondAgentMap Responds to the agent

HashMap<String, String> pingAgentsMap Pings the agent.

String agent name Current agent name

Int enableSendFlag Enable the send button

40

Table 11. Scenario-2 PMaif Frame Class: Member Functions

Void refresbMailQ Refreshes email messages

Boolean l!in,:,A,:,entToCommunicateQ Pings the agent to communicate

Boolean re:mondA,:,entToCommunicate Response about whether to

il communicate

TreeModal 1:etAssociateTreeModalQ Populates the associates

Void Attaches content to the object
when "send" is clicked and

sendBtnActionnerformed() performs the desired action

Void btnGoFacToPin,:,A,:,entActionP Queries the facilitator for an

erformed() address

Void Having the recipient's address
btnPin,:,ActionPerformedQ send a ping

Void l!in,:,Reg YesActionPerformedQ Recipient willing t~ communicate

Void Recipient not willing to
1!in1:RegN0ActionPerformed {l communicate

DefaultTableModal 1:etSendMs,:,sQ Populates all the sent items

DefaultT ableModal ,:,etRecievedMs1:sQ Populates all received messages

Void Clears all data from the compose
clearComl!oseFields(l window

4.5. Scenario-2. Visualization

Scenario-2 - has been successfully implemented according to the design and

requirements. Clientl and client2 are launched accordingly by the RMA user interface.

Both clients have the option of using "Go F AC & Ping Agent" on the interface.

By clientl clicking "Go FAC & Ping Agent" (Figure 23), the request will be sent to the

facilitator querying for client2's address. The facilitator then sends a request for

41

communication to client2. When client2 has the request for an address frpm a facilitator

(Figure 24), the address field will be populated with the clientl name.

Iii PMail Outlook

Cc1ient1

~ ..

Cl dienl2 available

Cl dlent4 awllable

Cl dlent6 available

Cl dienlS available

0dlenl2

~ D dlent1 available

I· D dients available
~ D dlent7 available

L D dienl9 available

D dient11 gfljne

'RKllvlll Seit

A ent SlJ ed Dalt Messa e

Agea111ame: ~l'e1_tnU ________ ~I L ,9!,EOVl'!&Aet,. l

Address:

Message:

.______,.._____I ~
Figure 23. Scenario-2 clientl.

RlclMNI r Setlt 1-
Aaent I SUbled I Dalt I Messana

AgentHame: . _________ __,

.
Address:

Message:

Seid· 1

le,js®:!Pf

RelrUII

Address Raq from AQeat

Send Address?n

Relrw_J

Addl'9llll Req from Agent

kt!,itj
Setld Addressm

uii:Jl:Ll

Figure 24. Scenario-2 client2 has the request from clientl.

42

Upon receiving a request from the facilitator, client2 can accept or reject the request

by just clicking the Yes/No buttons provided. When client2 opts to communicate with

clientl, client2 will send its address directly to clientl in response (Figure 25), and the send

button on the interface will be activated, which allows clientl to successfully send an

Email message to_ client2. If client2 denies communication, then client 1 cannot send

messages to client2.

lil l'Mlil Outlook

li:ldient1

~
Cl dl&nl2 avallablo

D dienW available
Cl dlonte av.lllablt

- D dlenl8 1111aNable

__.rs..11
Aatnt I SUbiect I Date I Mossaae

..,_: !;;:;ii - 1 .,Gof~,ma-1.,l Addrau ~ from Agattt

Add1Hs: j ,-di~---_Nl ______,I
s..dAddreum

su11tact· Ci.LJ~

Figure 25. Scenario-2 clientl composes Email to send to client2.

4.6. Facilitator Class and P-Mail Frame Class for Design-3

4.6.1. Scenario-3 Facilitator Class

In Scenario-3, the design facilitator gets the request from the sender's .P-Mail to
. .

communicate with the recipient P-Mail. Having received the request, the facilitator sends

another request to The recipient asking for permission to allow the sender to send an Email

message. The recipient's acceptance/denial response to communicate wil! be sent to the

sender's P-mail through the facilitator. Member functions can be seen in the table 12.

43

Class Facilitator

{

}

getAgentAddress(agent) { ... }

loadAgent() { ... }

communicateAgent(agent, agent) { ... }

setResponse(agent, 1) { ... }

Table 12. Scenario-3 Facilitator Class: Member Functions

String getAgentAddress() Gets agent address

HashMap<String, String> loadAgent() Registers online agents

HashMap<String,_String> communicateAgentQ Sends the request to the recipient

Void setResponseQ Sets the response from the recipient

Boolean getResponseQ Gets the response from the recipient

4.6.2. Scenario-3 PMai/Frame Class

Each instance of the PMailFrame class creates a PMailFrame which is a client-user

interface through which it can start the process of communicating with other P-Mail clients.

In order to do so, the sender P-Mail clieQ.t should ask the facilitator for the address. The

facilitator responds to the sender's P-Mail with the recipient's decision about whether to

start the communication process.

This action can be demonstrated by having the "F AC - Process Request" button on

the UI. Clicking this button asks the facilitator for the address. Using the agent name

service, the facilitator processes the request through the recipient and gets a decision about

whether to communicate or deny the response. The same decision is sent to the sender's P-

44

Mail to enable/disable the send button on the interface. Member variables and member

functions in table 13 and table 14.

Class PMailFrame

{
facilitatorCommunicateAgent(agent, agent) { ... }

respondToCommunicate(agent, agent) { ... }

pingRequest Yes(true) { ... }

sendActionPerformed() { ... }

}

Table 13. Scenario-3 PMail Agent Behavior Class: Member Variables

String - agent name Current agent name

Int enableSendFlag Enables the send button

HashMap<String, String> pingAgentsMap Pings the agent.

According to the design and requirements discussed earlier, scenario-3 has been

-
implemented. The created agent, clientl (Figure 26), and the client2 interface now have the

"FAC - Process Req" button. If clientl decides to send an Email to client2, client has to

click the button, and immediately, a query·would be sent to the facilitator to get the address

for client2.

Table 14. Scenario-3 PMail Frame Class: Member Functions

Void re'rreshMaiIQ Refreshes email messages

Boolean
pingAgentToCom m unicateQ

Pings the agent to communicate

45

Boolean Response about whether to
res uondAa:;entToCommunicateQ communicate

TreeModal a:;etAssociateTreeModal(} Populates the associates
.

Void . Attaches content to the object
when the send button is clicked

- sendBtnAction(!erformed(} and performs the desired action

Void Queries the facilitator for an
facProcessRegActionPerformedQ address .

Void . Has the recipient's add;fess send
btftPini,:;ActionPerformedQ aping

Void Recipient willing to

- uini,:;Reg Y esActionPerformedQ communicate

Void Recipient not willing to
nini:;RegNoActionPerformed Q communicate

DefaultTableModal i:;etSendMsi:;s(} . Populates all sent items
.

DefaultTableModal - Populates all received messages
i:;etRecievedMsi:;sQ

Void - Clears all data from the
clearComuoseFields{} compose window

4. 7. Scenario-3. Visualization

i:::ldlon11

Cl dlo"t'Z
Cl dler>t•

Cl dlenl6
[) dltnt8

llac:aMd Sent

A ent

Add,.n:

SUIIIKC

Sub d Dale Messa •

Figure 26. Scenario-3 for clientl.

46

Add,... lleq Iron, AgMt

L l
S.nd - 1

Once the facilitator receives the request for an address from clientl, it processes the

request by handini it to client2 (Figure 27). Then, clie~t2 has to make a decision about

accepting or rejecting the facilitator's request. Whatever client2 decides, it passes the

response on to facilitator. Once the request has been accepted/denied, the facilitator

transfers the same response to client!. Client2 can either click the "Yes" button to accept or

the ''No" button to.reject the proposal to communi~ate with client! .

i) PMail Outlook

~dienl2

D dlent1

D dlent5

[) dlenl7

Qdilllt9

D dienl11

lllcelllld r s.n1 1 Relrtlll

Allen! I Subitd • I Dall I Messaae

. ..

AQelttllme: -----------' I JAC -f>rll9!!!11!Nl .I Alldrus Rlq from Ageat

Address: [,__ _______ _,I die 1

Send Addraa1
Subject

Messaoe:

.___ ______ __, G-iJ

Figure 27. Scenario-3 for client2 with the request.

With client2's acceptance of the request from the facilitator, client! is now allowed

to start successfully sending Email messages to client2 (Figure 28). If client2 rejects the

facilitator's request, client} is n~ver able to send a message to client2.

In Chapter 5, we will be analyzing the performance, security, and privacy issues of

each design and will understand the way these systems react to security attacks. This is an

47

attempt to verify if these designs meet the goals and objectives behind developing the P­

Mail messaging system.

Agenl!WM: I~ 1112 1 L, FN; ;PJ!f!!U'II ..J Aeldreu Req from Aaent

Adclresa: r;l.;;ii;;.tc11 J
5"41 Addrus7

Stlbjlct frestuasm~Scenarioi : :::] u.J~

Ls.ad

Figure 28. Scenario-3 clientl compose an Email to client2.

48

5.ANALYSIS

In this chapter, we will analyze the three design models of the P-Mail messaging

system that have been implemented. The purpose behind implementing the P-Mail

messaging system is to provide security, privacy, and authentication for the users. This has

been achieved by using intelligent software agents to collaborate with other software agents

in order to transfer messages from one client to another on a network.

All three designs use the intelligent P-Mail Frame and facilitator agents (Figure 29,

30, and 31) accordingly without using any servers to transmit the messages. By

implementing these designs effectively, we reduce the scope of using servers like SMTP

and POP, and we avoid unnecessary backup of the Email messages on the servers.

Design-IP-Mail Messaging System:

1

Associate list

Figure 29. P-Mail Messaging System Design-I.

49

Design-2 P-Mail Messaging System:

Associate List
Associate List

- Figure 30. P-Mail Messaging System Design-2.

Design-3 P-Mail Messaging System:

..

A$soclite List

Figure 31. P-Mail Messaging System Design-3.

50

5.1. Advantages of the P-Mail Messaging System

The primary advantages that all three designs provide are as follows:

• The Email messages are never stored on any machine, and they will not use any

servers, such as SMTP or a POP server, to transmit messages.

• The facilitator agent provides the agent name service to P-Mail agents.

• Messages will be transferred only between P-Mail client to another :f>-Mail client.

5.2. Message Traffic through a Facilitator

Each of the P-Mail messaging system design makes use of the facilitator agent. In

all three designs, the sender P-Mail client would query for the recipient's address.

Facilitator does its job by responding in a desired way, making good use of the agent name

service. Message traffic through a facilitator would definitely affect the entire system's

performance. Lesser the message traffic better the system response; this is because, when

the facilitator starts registering a huge number of agents with itself, the message traffic

would definitely affect the system while querying. Designs 1 and 2 have less message

traffic compared to Design-3 of the P-Mail messaging system (Figure 32).

Message Traffic through
Facilitator

5~------------
4 +----------

3 +----------

2

0

Design 1 Design 2 Design 3

■ Message Trafic
through Facilitator

Figure 32. Message Traffic through the Facilitator

51

5.3. Number of frocess Steps

Process steps in a design are all about the number of steps that the design needs to

be processed or how long the process of sending a message from one P-Mail client to

another P-Mail client is. The better design can be justified on the number of process steps it

has to go through tp send a message on the network.

To successfully send the message, the number of process steps in Design 2 is less

when compared to Designs 1 and 3.

At the same time, ·the number of process steps in Design 2 is less when compared to

Designs 1 and 3 e~en if the recipient's P-Mail is not willing to communicate. These graphs

clearly suggest that, if the message has been transferred successfully or if it is unsuccessful,

Design 2 does a.good job.

Figures 33 and 34 illustrate the number of successful and unsuccessful steps to

process the message transfer from the sender to the recipient.

Successful Message Transfer Process

6-r------------
5

4

3

2

0

Design 1 Design 2 Design 3

■ Process Steps for
Successful Process

Figure 33. Process Steps in a successful process. _

52

UnSuccessful Message Transfer Process

4.5 ~-----------
4

3.5
3

2.5
2

1.5
1

0.5

0

_Design 1 Design- 2 Design 3

■ Process Steps for
Unsuccessful Process

Figure 34. Process Steps in an Unsuccessful process.

5.4. Recipient Address to Communicate

In either. of the designs, if any P-Mail client has to send a message or an Email, it

has to have the recipient's address, so it queries the facilitator. It does matter at what point

in the process the sender P-Mail client gets the recipient's address. Two important factors

need to be considered:

• At what step the sender has the recipient's address

• Status ofrecipient: whether the recipient is willing to communicate

In Designs 2 and 3, the facilitator responds with the recipient's address to sender P-Mail

client only shown in the table 15 with the permission of recipient P-Mail whether or not it

is willing to communicat~. With Design 1, the facilitator responds to the sender's P-Mail

without any concern to recipient's status whether it is willing to communicate or not. From

these analyses, it is always better to go with Designs 2 or 3 rather than Design 1.

53

Table 15. Recipient Address to communicate

Design I

Design 2

Design 3

S.S. Security Attacks and Encryption

Before recipient decides to
communicate

Up on recipient's decision to
communicate

Up on recipient's decision to
communicate

In other words, the P-Mail messaging system is a network with a flow of messages

between P-Mail clients and the facilitator agent. In a physical network, there is always a

chance of intruders trying to break through the network, causing issues about privacy and

security. The chances of ~ecurity attacks are always directly proportional to the number of

process steps involved in sending the message or Email from one P-Mail client to another.

There comes a need for encrypting the messages or the Email content on a network. There

are several kinds of attacks that can potentially happen on the P-Mail messaging system.

PGP, or Public key encryption, is always better to use when there is a request/response

process happening between the P-Mail clients and the facilitator. There is always a chance

of intrusion or security attacks on the P-Mail messaging system.

If we plan on encrypting the entire P-Mail messaging system to make it more secure

from intruders, we need to encrypt almost all process steps that are being processed on the

network to transmit the message. Therefore, encryption would be directly dependent on the

number of process steps involved in the design. With a closer look at the design, we can

54

decide that Design 2 requires fewer proce~s steps to be encrypted when compared to other

designs (Figure 35).

Cryptographic Encryption

Design I Design 2 Design 3

■ Number of times the mess
has to be encrypted

Figure· 35. Cryptographic Encryption on a P-Mail Messaging System.

5.5.1. Security Attacks

Security attacks can be classified based on the effect they cause on the network. By

assessing the effects of these attacks on the system, we will decide which design is most

and least vulnerable. Most of these attacks are directly proportional to the process steps in

the design [12]. Table 16 shows the significance of each attack on the designs.

Jamming: Jamming in P-Mail scenarios can be defined as the effect on the network caused

by blocking the request/response from processing between agents because of the adversary.

Among all three designs, when an adversary interrupts the process flow, there are good

chances of jamming. The more process steps involved to process on the network, the

greater the chances of jamming. Design 2 is much safer to employ in such cases because of

its simple and straightforward design approach .

. 55

Tampering: This -can be defined as an intruder making an attempt to break through the

workflow process/process steps by compromising Email content on the ne~ork. For these

kinds of attack, it is better to employ a design with fewer processing step carrying the

private/more secured information. In Design-1, we have the recipient's address, which has

to be kept private,- at step 2, and in design 3, this happens at steps 3 and 4. Design 2 is

much better in this scenario.

Collision: In P-Mail messaging, collision can be defined as the process of interception

caused between request to request or request to response from the agents causing network

disruption.

Manipulate the Routing Information: This term can be defined as .the process of

manipulating the network workflow process to give misleading information to the agents.

Table 16. Security Attacks and Their Effects on Each Design

Jamming Good chances of Fewer chances of Can happen quite
occurrence occurrence when often

compared to other
designs

Tampering· Most vulnerable· Less vulnerable Most vulnerable

Collision Most vulnerable Less vulnerable Most vulnerable

Manipulating Fewer chances of Fewer chances of Less chances of

Routing occurrence occurrence occurrence

Clone attack No significant effect No significant effect No significant effect
on the design on the design on the design

Encryption High number of Fewer steps to High number of steps
steps to encrypt encrypt when to encrypt when
when compared to compared to other compared to other
other designs. designs designs.

56

Clone Attack: In ~mr scenarios, these kinds of attacks can be described as introducing

external agents which are clones of other existing agents to the network. If this situation

occurs on a network, it does not show any significant effect on system performance

because, in order to interrupt the proces~, it has to register with the facilitator, and the

facilitator does not allow an agent clone to register with it.

57

6. FUTURE WORK AND CONCLUSION

6.1. Future Work

Private Mail messaging system makes use of Facilitator to provide the access

control to the clients and_also takes care of agent name service. Facilitator plays a crucial

role in the implementation of P-Mail messaging system. We definitely need to consider the

message traffic through the Facilitator during the process. There's scope to improve the

Facilitator design to handle the message traffic.

Depending up on. the message traffic and the number of clients trying to use the

Facilitator to send the message we could classify the Facilitator design to be either load

based or distributed architectural design.

The proposed idea is more suitable to the private club communication process. We

can develop a design making use of Facilitator and P-Mail clients to support traditional

way of communication process

6.2. Conclusion

In the present world with modem technology and communication growing at a

rapid pace, Email messages have been questioned for their privacy and security issues

while transmitting-messages from one user to another user residing on a network. These

Email clients use a wide variety of protocols and servers to transmit the messages which

are vulnerable to intruders, and the unnecessary backup of data may cause an issue at

certain times.

This paper proposed a technique for designing an Email messaging system modeled

on intelligent software agent collaboration. We have discussed and analyzed three potential

designs to implement the messaging system according to the user's requirements. The

58

objectives achieved by implementing the ·P-Mail messaging system are that the messages

are no longer stored on the servers, making the minimal use of protocols which might be a

-
serious concern for security and privacy issues. The P-Mail messaging system ensures the

secure transfer of messages between the users who belong to the pool of members in a

private club on the network. The P-Mail messaging systems ensure the secure transfer of

messages on a network from the sender to the recipient. In the analysis chapter, we

discussed the pros and cons of each design and learned that Design-2 is less vulnerable to

security attacks and is more secure when compared to Designs-I and 3; There is less

message traffic through t~e facilitator in Design-2 compared to the other two designs, and

the facilitator acts much more intellectually in handling requests from the sender and

provides access control to the P-Mail client on the system.

59

REFERENCES

I. Ruth Aylettl, Frances Brazier2, Nick Jennings3, Michael Luck4, Hyacinth Nwana5,

and Chris Preist, "Agent Systems and Applications", Volume 13 , Issue 3, Year of

Publication: 1998, ISSN: 0269-8889

2. Erik Kangas, PhD, President of LuxSci "The Cases for Email Security", Posted Friday,

March 13th, 2009

http://luxsci.com/blog/the-case-for-email-security.html

3. Jeffrey M. Br~dshaw, "An Introduction to Software Agents - Agents & the User

Experience", Year of Publication: 1997, ISBN:0-262-52234-9

http://agents.umbc.edu/introduction/0 I-Bradshaw. pdf

4. Reticular Systems, Inc, "P-Mail - Private Email and Instant Messaging with Intelligent

Software Agen!s", Version 1.0 Rev.0 August 27, 1999, San Diego

http://www.agentbuilder.com/Documentation/PMail/pmail.pdf

5. Reticular Systems, Inc, "Agent Builder, P-Mail: A Private Mail and Instant Messaging

System", Version 1.0 -Rev.0 August 27, 1999, San Diego

http://www.agentbuiklcr.com/Documentation/PMail/index.html

6. CW Preist, Economic Agents for Automated Trading, in 'Software Agents for Future

Communications Systems', ed A. Hayzelden & J.Bigham, Springer 1999

7. Fred W. Atkinson, III , "PGP Encryption", Johns Hopkins University, Network

Security, April-I 996

http://www.mishrnash.com/fredspgp/pgp.html

60

8. Hyacinth S. Nwana, "Software Agents: An Overview", Advanced Applications &

Technology Department, Cambridge University, Knowledge Engineering Review, Vol.

11, No 3, pp.1-40, Sept 1996.

http://www.sce.carleton.ca/netmanage/ docs/ AgentsOverv iew/ ao. htm I

9. Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (TILAB, formerly CSELT),

Giovanni Rimassa (University of Parma), "JADE programmers guide", last update:18-

June-2007.

10. Martin L. Griss, "Software Agents· as Next generation Software Components",

Software Technology Laboratories, Palo Alto, CA

11. Mohammad Mannan, P.C. van Oorschot, "Secure Public Instnat Messaging: A

Survey", School of Computer Science, Carleton University, Ottawa.

12. Kendall. Nygard, "Security Attacks ·on Sensor Networks and Embeded Systems",

Computer Science Dept, North Dakota State Univeristy, ND.

61

APPENDIX

In this section we_will look into details of how the P-Mail messaging systems have

been developed in programming point of view, based on three designs discussed in

Chapter-3. We will go through all the important classes which are part of the

implementation and get into their details.

MailAgent.java

package jade.pmai!;

import jade.core.Agent; //Importing Agent Class from JADE Libraries

importjade.pmail.gui.PMailFrame;

import jade. pmail. util.Facilitator;

public class MailAgent extends Agent {

protected void setup() {//Create Agent

Object[] args = getArguments(); //Retrive all arguments passed to Agent

Facilitator fac = new Facilitator();

if (args != null) { -

System.out.println("Passed Arguments are:");//Print all Arguments

for (int i = O; i < args.length; ++i)

{

PMailFrame frame= new PMailFrame(args[i].toString());

fac.agentAddre~slnfo(args[i].toString(), getName());

frame.setVisible(true);

}

}

do Delete();

}// Terminate Agent

protected void takeDown() {//Do Clean Up Process

}

}

62

PMailAgentBehaviour.java
/*

* To extend PMail Action Behavior.

*/

package jade.pmail.util;

import j ava. util.Array List;

import j ava. util.HashMap;

import j ava. util.List;

/**

* @author Hari Mukka

*/

public class PMailAgentBehaviour {

private String current_agent;

private List<String> associatesList;

public PMailAgentBehaviour(String agent) {

this.current_ agent = agent;

this.associatesList = new LoadAgents() .loadAgent(). get(current_ agent);

}

private List<PMailMessages> sendList = new ArrayList<PMailMessages>();

private static List<PMailMessages> receivedList = new ArrayList<PMailMessages>();

private static HashMap<String, List<PMailMessages>> receivedMessagesMap = new

HashMap<String, List<PMailMessages>>();

public String se?dMessage(String msg, String toAgent, String fromAgent, String date,

String subject){

String authentication="";

if(authenticateAgent(toAgent)) {

authentication= "The agent is authenticated!!";

63

}

PMailMessages sendObj = new PMailMessages();

sendObj.clearAll();

send Obj .setT oAgent(toAgent);

send Obj .setFromAgent(fromAgent);

sendO bj .setMessage(msg);

sendObj.setDate(date);

sendObj.setSubject(subject);

sendList.add(send Obj);

updateReceiveMessages(toAgent, sendObj);

}else{

authentication "Agent authentica!ion failed!!";

}

return authentication;

public HashMap<String, String> pingAgent(String toAgent, String address, String

fromAgent) {

}

HashMap<String, String> pingMap new HashMap<String, String>();

pingMap.put(toAgent, fromAgent);

return pingMap;

public boolean authenticateAgent(String associateAgent) {

//System. out. println("T o agent2: "+associateAgent);

//System.out.println(associatesList.size());

if(associatesList null && associatesList.contains(associateAgent))

return true;

else

return false;

}

public List<PMailMessages> getSendList() {

return sendList;

64

}

public List<PMailMessages> getReceiv~dList(String agent) {

return recei vedMessagesMap. get(agent);

}
.

public void updateReceiveMessages(String toAgent, PMailMessages message){

receivedList.add(message);

receivedMessagesMap.put(toAgent, receivedList);

}

public HashMap<String, List<PMailMessages>> getReceivedMap() {

return receiveaMessagesMap;

}

}

}

PMailActions.java

package jade.pmail.util;

importjava.util.Calendar;

import java. util. Gregorian Calendar;

/***

* @author Hari Mukka

*/

public class PMailActions {

public String compose(String msg, String to, String from, String sub,

PMailAgentBehaviour mail) {

}

}

Calendar cal = new GregorianCalendar();

String date= cal.getTime().toString();

return mail.sendMessage(msg, to, from, date, sub);

65

PMailMessages.java

package jade.pmail.util;

import java. util.Date;

/***

* @author Hari Mukka

*/

public class PMailMessages {

private String message;

private String toAgent;

private String fr~mAgent;

private String date;

private String subject;

public String getMessage(){

return message;

}

public void setMessage(String message){

this.message=message;

}

public String getToAgent(){

return toAgenl;

}

public void setToAgent(String toAgent) {

this.toAgent = toAgent;

}

public String getFromAgent(){

return fromAgent;

}

public void setFromAgent(String fromAgent){

66

}

this.fromAgent = fro_mAgent;

}

public String getDate() {

return date;

}

public void setDate(String date){

this.date = date;

}

public String getSubject(){

return subject;

}

public void setSubject(String subject){

this.subject = subject;

}

public void clearAll() {

this.subject null;

this.date = null;

this.toAgent = null;

this.message= null;

}

Scenario-1. Facilitator.java

package jade.pmail.util;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

/***

* @author Hari Mukka

*/

67

public class Facilitator { -

public String getAgentAddress(String agent){

}

HashMap<String, String> map=loadAgent();

return agentlnfoMap.get(agent);

public HashMap<String, String> loadAgent() {

}

HashMap<String, String> agentMap=new HashMap<String, String>();

agentMap.put(11 clientl 11
,

11 clientl@ndsu.edu11
);

agentMap.put(11 client211
,

11 client2@ndsu.edu11
);

agentMap. put(11 client3 11
,

11 c1ient3@ndsu.edu11
);

agentMap.put(11 client411
,

11 c1ient4@ndsu.edu11
);

agentMap. putf'clientS 11,
11 client5@ndsu.edu 11

);

agentMap,put(11client611
,

11 client6@ndsu.edu11
);

agentMap.put(11client7 11
,

11client7@ndsu.edu11
);

agentMap.put(11 client8 11
,

11 client8@ndsu.edu11
);

agentMap.put(11 client911
,

11 client9@ndsu.edu11
);

return agentMap;

public HashMap<String, String> agentAddresslnfo(String agent, String agentAddress){

String address= agentAddress.substring(0, agentAddress.indexOf("@ 11
));

address+= 11@ndsu.edu11
;

agentlnfoMap. put(agent, address);

return agentlrifoMap;

}

private static HashMap<String, String> agentlnfoMap

String>();

new HashMap<String,

}

68

LoadAgents.java

package jade.pmail.util;

import java.util.ArrayList;

import j ava. util.HashMap;

import java.util.List;

/***

* @author Hari ~ukka

*/

public class LoadAgents {

public HashMap<String, List<String>> _loadAgent(){

}

HashMap<String, List<String>> agentMap = new HashMap<String, List<String>>();

agentMap:put("clientl ", agentListl());
-

agentMap.put("client2", agentList2());

agentMap.put("client3", agentList3());

return agentMap;

public List<String> agentListl(){

}

List<String> -associatesList new ArrayList<String>();

associatesList.add("client2");

associatesList.add(" client4 ");

associatesList.addC' client6 ");

associatesList.add(" client8 ");

return associatesList;

public List<String> agentList2() {

List<String> associatesList new ArrayList<String>();

associatesList.add("client 1 ");

associatesList.add(" client5 ");

associatesList.add("client7");

69

}

associatesList.add(" client9");

associatesList.add("clientl 1 ");

return associatesList;

public List<String> agentList3() {

List<String> associatesList = new ArrayList<String>();

associatesList.add("clientl ");

}

}

associatesList.add("client3 ");

associatesList.add(" client?");

associatesList..,add("client9");

return associatesList;

Scenario-1. PMailFrame.java

/*

* PMailFrarne.java

* Created on Jan 23, 2010, 8:38:13 PM

*I

package jade.pmail.gui;

import jade.lang.acl.ACLMessage;

import jade. pmail. util.Facilitator;

import jade. pmail. util.P~ailActions;

importjade.pmail.util.LoadAgents;

import jade. pmail. util .PMailAgentBehaviour;

import jade. pmail. util.PMailMessages;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java. util.HashMap;

import java. util.Li~t;

70

import java. util. Vector;

import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;

import j avax.swing. tree.DefaultMutable TreeN ode;

import javax.swing.tree.DefaultTreeModel;

import javax.swing. tree. TreeModel;

/***

* @author Harl Mukka

*/

public class PMailFrame extends javax.swing.JFrame {

/* * Creates new form PMailFrame * /

private PMailAgentBehaviour pMailAgent;

javax.swing.Tinier timer new javax.swing.Timer(5000, new ActionListener() {

public void actionPerformed(ActionEvent e) {

refreshMail();

pingAgentToCoI11ffiunicate();

associatedAgents.setModel(getAssociates TreeModel());

if(respondToCommunicate()){

sendButton.setEnabled(true);

}else{

sendButton.setEnabled(false);

}

}

});

public PMailFrame(String agent) {

agent_ name = agent;

71

}

pMailAgent = new PMailAgentBehaviour(agent_name);

initComponents();

timer.start(); -

public void refreshMail() {

receivedMsgsTable.setModel(getRecievedMsgs());

System.out.println("Rrefreshing the mail");

}

public boolean pingAgentToCommunicate()

{

}

if(pingAgentsMap ! =null) {

}

for (String agentName: pingAgentsMap.keySet()) {

}

if(agentName.equalslgnoreCase(agent_ name)) {

}

String fromAgent = pingAgentsMap.get(agent_name);

pingReqFrom.setT ext(fromAgent);

return true;

return false;

public boolean respondToCommunicate() {

System.outprintln("agent:"+agent_name + "flag:"+enableSendFlag);

if(respondAgentMap !=null) {

for (String respondToAgentName : respondAgentMap.keySet()) {

if(agent_name.equalslgnoreCase(respondToAgentName) && enableSendFlag

O){

String to Agent respondAgentMap. get(respondToAgentN ame);

72

boolean isVisibleSend = true;

System.out.println("Print agent name to respond:"+toAgent);

System.out.println("Set this Value to Send button on

fromAgent: "+is VisibleSend);

return -true;

}

}

}

}

return false;

I** This method is called from within the constructor to

* initialize the form.

* *I

private void init~omponents() {

pingReqFrom = new javax.swing.JTextField();

setDefaultCloseOpetation(iavax.swing. WindowConstants.DISPOSE _ON_ CLOSE);

setTitle("PMail Outlook");

receivedMsgsTable.setModel(getRecievedMsgs());

j ScrollPane 1. set Viewport View(recei vedMsgsTable);

sentMsgsTable.setModel(getSendMsgs());

j ScrollPane2.setViewportView(sentMsgsTable);

jTabbedPanel .addTab("Sent", jScrollPane2);

associatedAgents. setModel(getAssociatesTreeModel());

jScro11Pane4.setViewportView(associatedAgents);

73

}

public TreeModel getAssociatesTreeModel() {

DefaultMutableTreeNode root= new DefaultMutableTreeNode(agent_name);

LoadAgents agents= new LoadAgents();

HashMap<String, List<String>> agentMap = agents.loadAgent();

List<String> agentList = agentMap.get(agent_name);

if(agentList !=: null){

for (String agent : agentList) {

String ifAgentOnline new Facilitator().getAgentAddress(agent);

DefaultMutableTreeNode child;.

if(ifAgentOnlirie !=null){

child new DefaultMutableTreeNode(agent+" available");

}else{

child= new DefaultMutableTreeNode(agent+" offLine");

}

root.add(child);·

}

}else {

}

DefaultMutableTreeNode child = new DefaultMutableTreeNode("No associates");

root.add(child);

TreeModel model= new DefaultTreeModel(root);

return model;-

private void sendButtonActionPerformedGava.awt.event.ActionEvent evt) {

PMailActions action=new PMailActions();

String sub=enJeredSubject.getText();

String to=enteredToAgent.getText();

String msg=enteredMessage. getT ext();

String response=action.compose(msg, to, agent_name, sub, pMailAgent);

if(response.contains("failed "))

74

}

JOptionPane.showMessageDialog(composePanel, response);

sentMsgsTable.setModel(getSendMsgs());

clearComposeFields();

sendButton.setEnabled(false);

btnPing.setEnabled(false);

private void btnGetAddressActionPerformedGava.awt.event.ActionEvent evt) {

String enteredAgent = enteredToAgent.getText();

agentAddress new Facilitator().getAgentAddress(enteredAgent);

enteredAddress.setText(agentAddress);

if(agentAddress == null II agentAddress.trim().equals('"')){

JOptionPane.showMessageDialog(null,

ACLMessage.AMS _FAILURE_ UNAUTHORIZED);

}else{

btnPing.setEnabled(true);

}

}

private void btnPingActionPerformedGava.awt.event.ActionEvent evt) {

pingAgentsMap = pfyiailAgent. pingAgent(enteredToAgent.getText(),

enteredAddress. getT ext(), agent_ name);

}

private void btnRefreshActionPerformedGava.awt.event.ActionEvent evt) {

refreshMail();

pingAgentToCommunicate();

if(respondT<~Communicate()) {

sendB utton. setEnabled(true);

}

getAssociatesTreeModel();

75

}

private void pingReq YesActionPerformedGava.awt.event.ActionEvent evt) {

String respondToAgent = pingReqFrom.getText();

respondAgentMap = pMailAgent. pingAgent(respondT oAgent,

enteredAddress.getT ext(),agent_ name);

}

I I respondToCommunicate();

pingReqFrom.setText("");

pingAgentsMap.remove(agent_ name);

enableSendFlag = O;

private void pingReqNoActionPerformedGava.awt.event.ActionEvent evt) {

J OptionPane. showMessageDialo g(null,

ACLMessage.AMS _FAIL URE_ REQUEST _ERROR);

pingReqFrom.setText("");

pingAgentsMap.remove(agent_ name);

}

public DefaultTableModel getSendMsgs() {

List<PMailMessages> 1st= pMailAgent.getSendList();

Vector field = new Vector();

field.add("Agent");

field.add("Subject");·

field.add("Date");

field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

for (PMailMessages pmailMessages : 1st) {

Vector data = new Vector();

data.add(pmailMessages. getT oAgent());

76

}

}

data.add(pmailMessages.getSubject());

data.add(pmailMessages. getDate());

data.add(pmailMessages. getMessage());

row Data.add(data);

DefaultTableModel model= new DefaultTableModel(rowData, field);

return model;

public DefaultT~bleModel getRecievedMsgs() {

Vector field = new Vector();

field.add(" Agent");

field.add("Subject");

field.add("Date");

field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

HashMap<String, List<PMailMessages>> receivedMap =

pMailAgent.getReceivedMap();

if(receivedMap.size() >O) {

List<PMailMessages> receivedList = receivedMap.get(agent_ name);

System.out.println("agent name is: "+agent_ name);

if(receivedList != null && receivedList.size()>O) {

for (PMailMessages pmailMessages : receivedList) {

if(agent_ name.equalslgnoreCase(pmailMessages. getT oAgent())) {

Vector data= new Vector();

data.add(pmailMessages. getF romAgent());

System.out. println("the from agent: "+pmailMessages.getT oAgent());

data.add(pmailMessages. getS ubj ect());

77

}

}

}

}

}

}

data.add(pmailMessages.getDate());

data.add(pmailMessages. getMessage());

row Data.add(data);

DefaultTableModel model new DefaultTableModel(rowData, field);

return model;

public void clearComposeFields() {

enteredToAgent.setText(null);

enteredAddress.setText(null);

enteredMessage.setText(null);

enteredSubject.setT ext(null);

enableSendFlag 1;

}

private String agent_ name;

private static HashMap<String, String> pingAgentsMap;

private static HashMap<String, String> respondAgentMap;

private String a~entAddress;

private static int enableSendFlag = 0;

Scenario-2. PMailFrame.java

/*

* PMailFrame.java*

* Created on Jan 23, 2010, 8:38:13 PM

* I I

package jade.pmail.gui;

78

import jade.lang.acl.ACLMessage;

import jade. pmail. util .Facilitator;

importjade.pmail.util.PMailActions;

import jade.pmail.util.LoadAgents;

importjade.pmail.util.PMailAgent;

import jade. pmail. util.PMailMessages;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java. util.HashMap;

import java.util.List;

import java. util. V ~tor;

import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;

import j avax.swing. tree.DefaultMutable TreeN ode;

importjavax.swing.tree.DefaultTreeModel;

import javax.swing.tree. TreeModel;

/***

* @author Hari Mukka

*/

public class PMailFrame extends javax.swing.JFrame {

private PMailAgent pMailAgent;

private DefaultMutableTreeNode root;

javax.swing.Timer timer= new javax.swing.Timer(5000, new ActionListener() {

public void actionPerformed(ActionEvent e) {

refreshMail();

pingAgentToCommunicate();

if(respondToCommunicate()) {

79

sendButton.s~tEnabled(true);

}else{

}

}

});

sendButton. setEnabled(false);

public PMailFrame(String agent) {

agent_ name ~ agent;

}

pMailAgent = new PMailAgent(agent_ name);

root= new DefaultMutableTreeNode(agent_name);

initComponents();

timer.start();

public void refreshMail() {

receivedMsgsTable.setModel(getRecievedMsgs());

System.out.println(!'Rrefreshing the mail");

}

public void pingAgentToCommunicate()

{

}

if(pingAgentsMap ! '."'null) {

}

for (String agentName : pingAgentsMap.keySet()) {

if(agentN ame.equalslgnoreCase(agent_ name)) {

}

}

String fromAgent = pingAgentsMap.get(agent_name);

addressReq From. setT ext(fromAgent);

80

public boolean respondToCommunicate() {

if(respondAgentMap ! =null) {

for (String respondToAgentName: respondAgentMap.keySet()) {

if(agent_pame.equalslgnoreCase(respondToAgentName)&& enableSendFlag ==

O){

enteredAddress.setText(new

Facilitator(). getAgentAddress(enteredToAgent.getT ext()));

return true;

}

}

}

return false;

}

public TreeModel getAssociatesTreeModel() {

LoadAgents agents = new LoadAgents();

HashMap<String, List<String>> agentMap = agents.loadAgent();

List<String> agentList = agentMap.get(agent_name);

String available= "";

if(availableAgents! =null && availableAgents.contains(agent_ name))

available= "Available0
;

System.out.println("available - "+available);

for (String agent : agentList) {

DefaultMutableTr.eeNode child = new DefaultMutableTreeNode(agent+"

"+available);

}

root.add(child);

}

TreeModel model = new DefaultTreeModel(root);

return model;

81

}

private void sendButtonActionPerformedGava.awt.event.ActionEvent evt) {

PMailActions action=new PMailActions();

String sub=enteredSubject.getT ext();

String to=enteredToAgent.getText(); ·

String msg=enteredMessage. getT ext();

String response=action.compose(msg, to, agent_name, sub, pMailAgent);

if(response.contains("failed"))

JOptionPane.showMessageDialog(composePanel, response);

sentMsgsTable.setModel(getSendMsgs());

clearComposeFields();

sendButton.setEnabled(false);

private void btnGoFacToPingAgentActionPerformedGava.awt.event.ActionEvent evt) {

String enteredAgent = enteredToAgent.getText();

System.out. pr1ntln("Entered Agent: "+enteredAgent);

pingAgentsMap = new Facilitator().communicateAgent(enteredAgent, agent_name);

if(enteredAgent null II enteredAgent.trim().equals("")){

JOptionPane.showMessageDialog(null,

ACLMessage.AMS_FAILURE_UNAUTHORIZED);

}

}

for (String string : pingAgentsMap.keySet()) {

System.out. println(string);

}

private void btnRefreshActionPerformedGava.awt.event.ActionEvent evt) {

refreshMail();

pingAgentToCommunicate();

if(respondToCommunicate()){

sendButton.setEnabled(true);

82

}

}

private void pingReq YesActionPerformedGava.awt.event.ActionEvent evt) {

String respondToAgent = addressReqFrom.getText();

respondAgentMap = pMailAgent.pingAgent(respondToAgent,

enteredAddress. getT ext(),agent_ name);

respondToComrnunicate();

addressReqFrom.setText("");

pingAgentsMap.remove(agent_ name 1;
enableSendFlag = O;·

}

private void pingReqN oActionPerformedGava.awt.event.ActionEvent evt) {

JOptionPane.showMessageDialog(null, "Request Denied to communicate");

addressReqFrom.setText("");

pingAgentsMap.remove(agent_ name);

}

private void sendButtonOnClickGava.awt.event.KeyEvent evt) {

sendButton.setEnabled(false);

}

public DefaultTableModel getSendMsgs() {

List<PMailMessages> 1st = pMailAgent.getSendList();

Vector field = new Vector();

field.add(" Agent");

field.add("Subject");

field.add("Date");

field.add("Message");

83

}

Vector<Vector> rowData = new Vector<Vector>();

for (PMailMessages pmailMessages : 1st) {

Vector data= new Vector();

data.add(pmailMessages.getT oAgent());

data.add(pmailMessages.getS ubject());

data.add(pmailMe.ssages. getDate());

data.add(pmailMessages. getMessage());

rowData.add(data);

}

DefaultTableModel model = new DefaultTableModel(rowData, field);

return model;

public DefaultTableModel getRecievedMsgs() {

Vector field new Vector();

field.add("Agent");

field.add("Subject");·

field.add("Date");

field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

HashMap<String, List<PMailMessages>> receivedMap =

pMailAgent.getReceivedMap();

if(receivedMap.size() >O) {

List<PMailMessages> receivedList = receivedMap.get(agent_name);

System.out.printlq("agent name is:"+agent_name);

if(receivedList null && receivedList.size()>O) {

for (PMailMessages pmailMessages: receivedList) {

if(agent_ name.equalslgnoreCase(pmailMessages. getT oAgent())) {

84

}

Vector data = new Vector();

data.add(pmailMessages. getFromAgent());

System.out. println("the from agent: "+pmailMessages. getT oAgent());

data.add(pmailMessages.getSubject());

data.add(pmailMessages.getDate());

data.add(pmailMessages.getMessage());

}

}

}

row Data.add(data);

}

DefaultTableModel model new DefaultTableModel(rowData, field);·

return model;

}

public void clearComposeFields() {

enteredToAgent.setText(null);

enteredAddress.setText(null);

enteredMessage.setText(null);

enteredSubject.setText(null);

enableSendFlag = 1;

}

void setA vailableAgents(List<String> agentsList) {

this.availableAgents = agentsList;

}

private String agent_name;

private List<String> availableAgents;

private static HashMap<String, String> pingAgentsMap;

private static HashMap<String, String> respondAgentMap;

private static int enableSendFlag O;

85

Scenario-3. PMailFrame.java

I*

* PMailFrame.java *
* CreatedonJan23,2010, 8:38:13 PM

*I

package jade.pmai!.gui;

import jade. lang.acl.ACLMessage;

import jade.pmail.util.Facilitator;

import jade.pmail.util.PMailActions;

import jade. pmail. util.LoadAgents;

import jade. pmail. util.PMailAgent;

import jade. pmail. util.PMailMessages;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java. util.HashMap;

import java.util.List;

import j ava. util. Vector;

import j avax. swing.J OptionPane;

import javax.swing.table.DefaultTableModel;

import javax.swing. tree.DefaultM utable TreeN ode;

import javax.swing.tree.DefaultTreeModel;

import javax.swing. tree. TreeModel;

/***

* @author Hari Mukka

*/

public class PMailFrame extends javax.swing.JFrame {

private PMailAgent pMailAgent;

private DefaultMutableTreeNode root;

86

javax.swing.Timer timer= new javax.swing.Timer(5000, new ActionListenerQ {

public void actionPerformed(ActionEvent e) {

refreshMajl();

pingAgentT oCornmunicate();

if(facilitator.getResponse() && enableSendFlag == 0){

enteredAddress.setT ext(facilitator. getAgentAddress(enteredToAgent. getT ext()));

sendButton.setEnabled(true);

}else{

sendButton.setEnabled(false);

}

}

});

public PMailFrame(String agent) {

agent_ name = agent~

}

pMailAgent new PMailAgent(agent_ name);

root new DefaultMutableTreeNode(agent_name);

facilitator new Facilitator(agent_name);

initComponents();

timer.start();

public void refreshMail() {

receivedMsgsTable.setModel(getRecievedMsgs());

System.out.println("Rrefreshing the _mail");

}

public void pingAgentToCornmunicate()

{

87

}

if(pingAgentsMap!=null){

}

for (String agentName : pingAgentsMap.keySet()) {

if(agentName.~qualslgnoreCase(agent_name)){

}

}

String fromAgent pingAgentsMap.get(agent_name);

addressReqFrom.setText(fromAgent);

public TreeModel getAssociatesTreeModel() {

LoadAgents agents = new LoadAgents();

HashMap<String, List<String>> agentMap = agents.loadAgent();

List<String> agentList = agentMap.get(agent_name);

String available '"';

if(availableAgents ! =null && availableAgents.contains(agent_ name))

available= "Available";

System.out.println("available - "+available);

for (String agent : agentList) {

DefaultMutableTreeNode child= new DefaultMutableTreeNode(agent+"

"+available);

}

root.add(child);

}

TreeModel model= new DefaultTreeModel(root);

return model;

private void sendButtonActionPerformed(java.awt.event.ActionEvent evt) {

PMailActions action=new PMailActions();

String sub=enteredSubject.getT ext();

String to=ent:,redToAgent.getText();

88

}

String msg=enteredMessage.getT ext();

String response=action.compose(msg, to, agent_name, sub, pMailAgent);

if(response.contains("failed"))

JOptionPane.showMessageDialog(composePanel, response);

sentMsgsTable.setModel(getSendMsgs());

clearComposeFields();

sendButton.setEnabled(false);

private void facProcessReqActionPerformed(java.awt.event.ActionEvent evt) {

String entereq_Agent = enteredToAgent.getText();

System.out.println("Entered Agent:"+enteredAgent);

pingAgentsMap = facilitator.communicateAgent(enteredAgent, agent_ name);

if(enteredAgent null II enteredAgent.trim().equals("")){

JOptionPane.showMessageDialog(null,

ACLMessage.AMS_FAILURE_UNAUTHORIZED);

}

}

private void btnRefreshActionPerformed(java.awt.event.ActionEvent evt) {

refreshMail();

pingAgentT oCommunicate();

}

private void pingReq Y esActionPerformed(java.awt.event.ActionEvent evt) {

String respondToAgent = addressReqFrom.getText();

HashMap<Stang, Integer> reqFacAddressMap = new HashMap<String, Integer>();

reqFacAddressMap.put(respondToAgent, 1);

facilitator .setResponse(reqF acAddressMap);

addressReqFrom.setText("");

89

}

pingAgentsMap.remove(agent_ name);

enableSendFlag = O;

private void pingReqNoActionPerformedGava.awt.event.ActionEvent evt) {

JOptionPane.show~essageDialog(nuil, "Request Denied to communicate");

addressReqFrom.setText("");

pingAgentsMap.remove(agent_ name);

}

private void sendButtonOnClickGava.awt.event.KeyEvent evt) {

sendButton.setEnabled(false);

}

public DefaultTableModel getSendMsgs() {

List<PMailMessages> 1st = pMailAg~nt.getSendList();

Vector field = new Vector();

field.add("Agent");
-

field.add("Subject");

field.add("Date");

field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

for (PMailMessages pmailMessages : 1st) {

Vector data = new Vector();

data.add(pmailMessages. getT oAgent());

data.add(pmailMe_ssages.getSubject());

data.add(pmailMessages.getDate());

data.add(pmailMessages. getMessage());

row Data.add(data);

}

90

}

DefaultTableModel model new DefaultTableModel(rowData, field);

return model;

public DefaultTableModel getRecievedMsgs() {

Vector field = new Vector();

field.add("Agent");

field.add("Subj ect");

field.add("Date");

field.add(''Message");

Vector<Vector> rowData new Vector<Vector>();

HashMap<Strjng, List<PMailMessages>> receivedMap =

pMailAgent.getReceivedMapO;

if(receivedMap.sizeO >0) {

List<PMailMessages> receivedList receivedMap.get(agent_ name);

System.out. printlri(" agent name is:" +agent_ name);

if(receivedList != null && receivedList.size()>0) {

for (PMailMessages pmailMessages : receivedList) {

if(agent_ name.equalslgnoreCase(pmailMessages. get T oAgent())) {

Vector data = new Vector();

data.add(pmailMessages.getFromAgent());

}

}

System.out.println("the from agent:"+pmailMessages.getToAgent());

data.add(pmailMessages.getSubject());

data.add(pmailMessages. getDate());

data.add(pmailMessages. getMessage());

rowData.add(data);

91

}

}

}

DefaultTableModel ~odel = new DefaultTableModel(rowData, field);

return model;

}

public void clearComposeFields() {

enteredT oAgent. setT ext(null);

enteredAddress.setT ext(null);

enteredMessage.setText(null);

enteredSubject.setText(null);

enableSendFlag = 1;

}

void setA vailableAgents(List<String> agentsList) {

this.availableAgents ·= agentsList;

}

private String agent_narne;

private List<String> availableAgents;

private static HashMap<String, String> pingAgentsMap;

private static int enableSendFlag = O;

private final Facilitator facilitator;

92

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103

