A SOFTWARE AGENT SYSTEM FOR PRIVATE EMAIL

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Hari K. Mukka

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

March 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A SOFTWARE AGENT SYSTEM

FOR PRIVATE EMAIL

By

HARI K. MUKKA

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

- LV Vg

ABSTRACT

Hari K. Mukka, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, March 2010. A Software Agent System for
Private Email. Major Professor: Dr. Kendall E. Nygard.

The primary concerns in existing Email and instant messaging systems are
authentication processes, privacy and security issues. These messaging systems transfer the
message content through servers using protocols like the Simple Message Transfer
Protocol (SMTP),—Post Office Protocol (POP), and Internet Message Access Protocol
(IMAP) to allow users to communicate. During these processes, messages are being stored
on the servers which can be easily accessed by the network administrator. Invasion of
privacy, integrity of Email content, lack of authentication, and unprotected back-up of
messages stored ';Jn servers could be common underlying problems in the existing
architecture.

The goal of this paper is to build an Email messaging system which would offer
better privacy and security of Email content to users. The application can be viewed as a
source of commur_lication for people in a private club. In this paper we propose three
different designs for building an email messaging system using the Java Agent
Development Environment (platform to provide communication between agents)
framework. Our application mainly uses intelligent software agents. The three Designs
primarily impleme;lt two kinds of software agents, a Facilitator Agent and P-Mail (Private-
Mail) agent. Based on the Design and architecture these agents act accordingly to meet the
user requirements and provide better sécurity and privacy. Finally we conclude by

evaluating the three designs by assessing their performance.

iti

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Kendall E. Nygard, for his continuous
support, guidance, and expertise. My sincere thanks to Dr. Juan Li, Dr. Gursimran Walia,
and Dr. John Cook for serving on the committee. In addition, I would like to take this
opportunity to thank the faculty and staff of Computer Science Engineering for being part
of the success of my master’s study.

Finally, I would like to thank my family and friends for their continuous

encouragement and support.

v

TABLE OF CONTENTS

ABSTRACToooorren e s iii
ACKNOWLEDGMENTS ...ttt erere vt tsne s netesse s bestn e srasresasessssesssessnssansasenes v
LIST OF TABLES ... oottt ettt s s tae st ca st s e e sssesa st s s s sasas i abas s essesessaeseses ix
LIST OF FIGURESccoccoocoomsvrirrr et et e X
1. INTRODUCTIONooovrmmmnrrcosiseessssssssesssssesssoassss s ssssssss oo s seessssssseeeson 1
1.1. Impact of Email and Instant MeSsaging..........cooveriiinriiiiicniieniciices e 1
1.2. Instant MesSaging SYSEIMISccuecvviverierieiriereee e eeeree e seseenensse e enseseeseesresseseseseseses 2
1.3. The Way Email WOTKS.......cccouiiiiiiiiiie e scnne s s 2
1.3.1. Protocois N ACHION coeviriiieeeeierctiertte e srie e e eateetbe e seeaeerbessae s essressnneestensaaansensseeseanns 3
1.3.2. Traditional Architecture of Email Messaging System e 4

1.4. Problems Involved with Messaging Systems........ccccveiireiviiieeeciiniirec e e 6
1.4.1. Security and Privacy ISSUEScociivenireiiiice e 7

1.5. Pretty Good Privacy (PGP) ..ot 8
1.5.1. How Does PGP Work?............. e 8

1.6. Proposed [dea.........ocovomiiiiiiii 9
1.6.1. Comparing the Proposed Idea with the Existing Architectureccooceevinnnn. 9
1.6.2. Goals and ObBJECHVES....cocereciiririeiieiiieeiereneener e e ee s e e vas s reesnresraeessaasees 10

2. SOFTWARE AGENT BACKGROUNDcoovtiiieiiiiiricieriiecitesescressesas e seaess e eae s 11
2.1. Software Ag-ents .. 11

2.2. Why Software AZENtS?cccoivuivieiriiieeeieeieeeereessterireeesasnissssae s essressesssasnessssanesssas 12

2.2.1. Basic Structure of P-Mail Instant Messaging System s 12

2.3. Java (Object-Oriegted Programming Language)ccccoeeveeviriveeeieineecereerieeennn 13
2.4. Java Agent Development Environment (JADE).......ccocoveivieeniniieeniiiiierniienens 14
2.4.1. JADE PACKAEEScceeuiirireieieeieiiecrieie e steterensi e ssiesestaeeaesaesse b ess et esten snesensans 14

2.5, NetBeans IDE........ooo ittt 15
2.6. Working with JADE ON NetBeansc.ccceeviiiieiieiciie e 15
2.7, LOAGING AQEIISooveoeoreeveseeeetecesss s sseeseeeees s seeeeess e seeeseeseeseeneeessseeeessereessseee 16
3. DESIGN AND REQUIREMENTS ettt et he et et he e e e ae s et e e nr e et b e s e atesbeneehereeeen 19
3.1. P-Mail Software Agent Requiremeﬁts .. 19
3.2. P-Mail Messaging System DESIZNc.cccuvuveviiriveiericricrieieceiense e eve s e aneas 20
3.2.1. P-Mail Chent 21
3.2.2. ASSOCIALE LSt ..o ettt eeb et 22
3.2.3. Facilitator AGENT......ccovei ittt ceie et rassara e stesbeenre s e sssessesbaesresvevans 23

3.3. Design Scel;arios ... 24
3.3.1. Design-1 P-Mail Messaging Sy§tem 24
3.3.2. Design-2 P-Mail Messaging SYStBMccvveivvecriereeriieeeee e 25
3.3.3. Design-3 P-Mail Messaging SYSEMcoveivviceveecnrrernsieeerrserereennrssseeseceeeennsine 27

4. IMPLEMENTATION AND SCENARIO VISUALIZATIONccoovvovieivrinieveeeeens 29
4.1. Methodology and Classes 29

4.1.1. P-Mail AENt Class......cccuervvieriiniernienirerserite ettt et seeeereesieeenecneesiens 29

4.1.2. Load AEnts CLASS....cuviiiiiiiiriiiie ettt sttt st e st et sbee i 30
4.1.3. P-Mail MesSages Class........cccoeviiiiiieniieriiieeeiiee st esieeesieeeesreeesieeeesineeneneesnees 31
4.1.4. P-Mail Agent Behavior Class.........ccccoeiemiiiininieiieiic s 31
4.2. Facilitator C.lass and P-Mail Frame Class for Design-1ccoccoeoiiininincncnnnnn. 32
4.2.1. Scenario-1 Facilitator Class.........cocererieevniinniceiiiieiee e 32
4.2.2, Scenario-1 PMailFrame Classcoocvvviiiriieinnie it 33
4.3. Scenario-1. Visuali-zation .. 34
4.4. Facilitator élass and P-Mail Frame Class for Designs-2cccoeevveevvveecieenieennens 39
44.1. Scenari0-2 Facilitator Class.......coiuverieiirriienieeceee e 39
4.4.2, Scenario-2 PMailFrame Class ... 39
4.5. Scenario-2. VisualiZationcccecveviiiirininienii ettt 41
4.6. Facilitator Class and P-Mail Frame Class for Design-3c.ccccooivniniiicnnnee. 43
4.6.1. Scenario-3 Facilitator Class.........c.ooiii 43
4.6.2. Scenario-3 PMailFrame Classcoccoviiiiiiiniiniiieccecececeee e 44
4.7. Scenario-3. VISUALIZAION ...cc.eevvuiiiriiiiiiniriiie ettt ettt 46
5. ANALYSIS ..o OO O O TOO ORI TOTOTRTPOY 49
5.1. Advantages of the i’-Mail Messaging SYStemc.ccocverviineneeieineireei e 51
5.2. Message Traffic through a Facilitator........c..coocooiieiiiniece e, 51
5.3. Number of Process SIEPSc.cvvvviruiriiiieiiciiere ettt 52
vii

5.4. Recipient Address to COMMUNICALE.........couireereeriinieeiiieiecenee et se e naee

5.5.1. Security Attacks........ccoceerrernen. Heeserterertererteseesasteseeesetestesataessanesntesanessasresstanes

6. FUTURE

WORK AND CONCLUSIONcooiviiiiiiiiiniiieiiieeceeie e

6.1, FULUTE WOTK oot e e e e e nenaenaeees

6.2. Conclusion

REFERENCES ..o, TN

APPENDIX

vili

LIST OF TABLES

Table Pape
1. Mail Agent Class: Member FUNCtions.ccocooeiiiriiriniiiieicetiercenee e 30
2. Load Agent Class: Member Functions...............coviiiiiiiiiiiiiii e,

3. P-Mail Messages Class: Member Variables..............
4, P-Mail Agent Behavior Class: Member Functions.................cooviiiiiiininin. 32
5. P-Mail Agent Behavior Class: Member Variables.....
6. Scenario-1 Facilitator Class: Member Functions..................cocooviiivicnninnnns

7. Scenario-1 PMail Frame Class: Member Variables..............coviiiiiiiiininnnn.

8. Scenario-1 PMail Frame Class: Member Functions...........ccovvieeeoricaaannaannnnn. 34

9. Scenario-2 Facilitator Class: Member Functions...........cooeeivviiiicnicin i,
10. Scenario-2 PMail Frame Class: Member Variables..................c.ccocovveeivnn.n,
11. Scenario-2 PMail Frame Class: Member Functions.............c.coooviiiiniiiinnnn 41
12. Scenario-3 Facilitator Class: Member Functions..............cc.ocoiiiiiiiiniinnnnn.
13. Scenario-3 PMail Agent Behavior Class: Member Variables...........

14. Scenario-3 PMail Frame Class: Member FUnctions.cccvuveeeven. 45
15. Recipient Address t0 COMMUIMICALE.cvuveintieit ittt

16. Security Attacks and Their Effects on Each Design...............c.coooiinine. 56

Figure - Page
1. Sending an Email messageoooiiiiiiiiiiiiiiii i 4
2. Delivery of Email from senders SMTP server to recipients SMTP server.....5
3. Retrieving the Email message from the SMTP server.........ccccevvvvenieriienennne. 6
4. Nwana’s Proposed Agent Typologycooveieiiiiiiiiiiiiiiiiiiiiiiniee 11
5. Private Instant Messaging System (P-Mail)cooiiiiii, 13
6. Console message on JADE boot........ccooiiiiviiiiiiiiiiiiiie 16
7. RMA GUIL ..o e e 17
8. Loadagents with RMA e 18
9. Select Agent Class.....oovvieieiiiiiiiiiii e [ETTEPR 18
10. Simple Design of P-Mail Messaging System...........c.c.cooeiiiiiiiii 20
11. P-Mail Client interface for Messaging.........coovvveiiniiiniiiiiiniiaiines 21
12. P-Mail Client Associate List..........coovuviiiiiniiininiieinrencene e 22
13. Facilitator Agent........oovriiieiiiiiiiin e e RTT 23

14. Design-1 P-Mail Messaging System...........c..ccoviiiiviiiiiiiniiinnininn. 25
15. Design-2 P-Méil Messaging System..........cccoevviiiiiiiiiiinieii 26
16. Design-3 P-Mail Messaging System.............ccoviiiiiiiiniieiiiiniiieie 28
17. Launch RMA GUI to Load agents.................cooooiiiiiininn, 36

18. Scenario-1 P-Mail clientl....... e 36
19. Scenario-1 P-Mail client2. ..o 37
20. Scenario-1 Ping Request from clientl sent to client2........................... 37
21. Scenario-1 client1 gets access to send message to client2..................... 38

LIST OF FIGURES

22,

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

Scenario-1 client] compose Email to client2.......................ooi. 38

Scenario-2 clientl................ s 42
Scenario-2 client2 has the request from clientl............................... 42
Scenario-2 client1 composes Email to send to client2........................ 43

Scenario-3 for clientl...... ... 46
Scenario-3 for client2 with the FEQUEST.....oiiiiiiiii 47
Scenario-3 client] compose an Email to client2..............cccovvveinn.... 48
P-Mail Messaging System Design-1...............coooiiiiiiiiiiiiin. 49
P-Mail Messaging System Design-2............ccviiiiiiiiieiiiiiiiii 50
P-Mail Messaging System Design-3......................... 50
Message Traffic through the Facilitator...............c....ceeeeevieeeeeeenenn. 51
Process-Steps in a successful process...........ooevviviiiiiiiiiivi e, 52
Process Steps in an Unsuccessful process.............cocooviiiiiiiiiinnnn, 53
Cryptographic Encryption on a P-Mail Messaging System................... 55

xi

- 1. INTRODUCTION

Electronic mail (Email) and instant messaging system have become the most widely
used internet applications to communicate. These applications have become a frequent
form of communication for pedple in the modern era of technology and communication.
The Internet and their rich internet application have changed the way we communicate and
turned global business into reality. With great ease, we are able to communicate from one
part of the globe to another in very little time through Emails. Email and instant messaging
systems have shown significant impact in terms of the amount of data transmitted
throughout the world. Email and instant messaging systems have significant drawbacks
while providing privacy and security features to their clients. In this paper we make an
attempt to develop an application for messaging which could be used by a private group of
members (private club) to communicate, providing them with more privacy in a more

secured network.

1.1. Impact of Email and Instant Messaging

Email and instant messaging system usage has shown considerable impact on the
current nature of b_usiness. Many corporate companies are encouraging their employees to
use instant messaging to communicate with their co-workers, which makes the
communication process more efficient. It cuts down the usage of phone calls when people
prefer something in written form. Email sﬁows great significance in the following ways:

e Providing a convenient communication paradigm
e Replacing regular mail

e Supporting business communication

e Supporting users in rural areas
e Providing convenient access through handheld devices

1.2. Instant Messaging Systems

Instant messaging (IM) networks make use of servers and rich intemet protocols as
Email messaging system in-order to transfer the message content from one client
messenger to another client on the network [11]. The user installs a messaging client on the
system which comiects to a server which is being processed by IM network vendors (such
as Yahoo messenger, AOl, Gtalk). Each IM service makes use of different protocols to
operate on servers, limiting the interoperability of users on one IM service to communicate
with users on other IM services.

When useré want to communicate they start sending the messages to each other via
servers. During this process of transferring the messages the process is being logged on the
server causing the threat to security and privacy of the user content. In most of the IM any
user that has successfully logged onto the system can communicate with other user in plain

text [11].

1.3. The Way Email Works

Millions of Email messages are being sent across the globe every day. When there
is an Email sent across a server, the domain name is stripped off, and the respective Email
server is contacted. The process of Email communication involves multiple protocols and
various types of servers [2].

In Email communication, a protocol can be defined in terms of a set of predefined
rules to be followed in order to successfully communicate or transfer data between the

client and the server [2]. Some of the commonly used protocols for communication are

Internet Protocol (IP), Transmission Control Protocol (TCP), Hypertext Transfer Protocol
(HTTP), File Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). These
servers are being used as per the requirement to serve the purpose of communication in

general. In the process of Email communication, we deal with a client and a server that

exchange information with each other using a wide variety of protocols.

1.3.1. Protocols in Action

Email clients typically use a variety of protocols to allow users working on
different systems to communicate with each other across the networks. The standard

protocol used for client-server communication is Simple Mail Transfer Protocol (SMTP).

The SMTP protocol can be used to send Emails to the recipient mail server through
the Mail Transfer “Agent across Internet Protocol (IP) networks. This protocol is usually
used with Post Office Protocol (POP) or Internet Message Access Protocol (IMAP),
allowing users to access messages residing on the servers.

Internet Message Access Protocol (IMAP)

The IMAP .protocol is a standard protocol used to retrieve Email messages from the
local servers [2]. IMAP is the most prevalent internet protocol that allows the Email clients
to access data on a remote mail server. IMAP also allows interoperability with other
servers and clients on the networks.

Post Office Protoc;)I (POP)

POP is one of the standardized Internet protocols to access mailboxes and allow

messages to be downloaded to the systems on the application network layer. There are

several versions of POP that have been developed; the current version in use is POP3.

1.3.2. Traditional Architecture of Email Messaging System

The process of sending an Email message is very similar to our traditional mail
communication procedure. To send a mail.message from one place to another, the mail has
to pass through a group of local post offices and through the regional post offices. An
Email message can be sent either through a web-based interface (i.e., Yahoo! or Gmail) or
through Email client programs, such as Simple Mail Transfer Protocol (SMTP), which take
care of most of the message-sending proce-sses to the recipient on a network layer. When an
Email message has to be sent to a recipient, the user needs to explicitly mention the server
name to which the message is to be sent. The web server comes into play, contacts the
respective SMTP server, and processes the Email message.

Once the SMTP server picks up the Email message from the web-server, it can send the

message to the recipient SMTP server in multiple ways (Figure 1).

e

; mrv Saver
SMTP Protocol :
SMTP Protocol

Webmail Server

Figure 1. Sending an Email message [2].

e The Email message can be directly transmitted to the receiver’s SMTP server.
o The sender’s SMTP server calls the back-up server to back up the message and

then, in turn, calls the receiver’s server.

message encryption during the transmission process through the servers. The messages are
sent in plain text format which, in turn, raises a question about integrity of the message
content,

1.4.1. Security and_Privacy Issues

During the process of delivering the Email message from the sender’s SMTP server
to the recipient’s SMTP server, there is a good chance of the message beiﬁg backed up on
the server and stored there for a significant period of time without leaving any indications
to the sender or the receiver. The process of message transfer is pretty much the same in
case of instant messaging making use of servers. At any time, the administrator can gain
access to the backed-up messages that are on the server and read the Emaii messages. The
user’s private information, like user name and password, which are needed by the POP and
IMAP protocols in.order to retrieve the Email messages residing on the server’s file system
can be read by any eavesdropper who understands the flow of information between the
system and the servers on the applicatioq layer. The common underlying ’security threats
are as follows:

e Eavesdropping (can easily gain access on the Email messages)
o Identity theft (insecure identity)

¢ Fraudulent Email messages (false Emails)

o Lackof auihentication

¢ Invasion of privacy (concerns about Email privacy)

e Integrity of Email content (lack of data integrity)

¢ Unprotected backup (back-up of messages stored on servers)

Email messages sent through the Email clients may even include the internet
protocol address which could reveal information such as the sender’s location and the city

from which the message was sent through the Email servers.

1.5. Pretty Good Privacy (PGP)

The privacy of Email messages over the internet has been compromised quite a bit
because they are backed up on servers which can be easily accessed by the network
administrator at any time [7]. Pretty good privacy (PGP) is a way of providing more
security and privacy for email messages by encrypting and decrypting the Email messages
throughout the system. PGP provides cryptographic privacy for Email messages.

1.5.1. How Does PGP Work?

PGP is public key encryption technique which uses the asymmetric key algorithms
to encrypt and decrypt the Email message. PGP has a special command to process the
creation of your own personalized pair of public and private keys. Public-key encryption
provides the user with a pair of cryptographic keys known as public key and private key.
The private key is always' kept as a secret, and the public key can be distributed throughout
the network [7].

When a user sends an Email to a recipient, the message is encrypted with the
recipient’s public key which can only be decrypted with its corresponding public key.
Encryption algorithms never provide 100% security for the users. PGP assures users to
protect the content of Email meésages by encryption and decryption, but fails to protect the

identity of either the sender or the recipient.

1.6. Proposed Idea

All the above-mentioned problems, which are related to the security and privacy
issues of sending an Email message or an instant message through IM are being processed
through servers and making use of standardized protocols. This threatens the users with
regard to sending private 'content, leaving signs of insecurity in the minds of users [1]. The
privacy and securify concerns need to be considered, and by valuing the user concerns, we
need to build an application which makes use of protocols to less effect and which avoids
the unnecessary backup of user Email messages or the instant messages being logged on
the servers. |

This paper proposes an idea to build an application based on a software agent’s
collaboration. The Private mail (P-Mail) agent messaging system transfers the Email
message from the sender to the receiver with the help of intelligent software agents. The P-
Mail software agents are programmed as per the user requirements, making the content
more secure and private by communicating the information to other agents. Software
agents transfer the Email message to the recipient with less concern for privacy and
security. This paper proposes an application which would emphasize user authentication

more by providing more security to Email message content.

1.6.1. Comparing the Proposed Idea with the Existing Architecture

The proposed Private Mail (P-Mail) messaging system doesn’t implement any kind
of server’s in-order to transfer the messége from one user to another on the network.
Instead they will b? using a Facilitator to provide the access control to clients to transfer the
message to the recipient. The proposed architecture is more suitable to the pool of people

who want to communicate in private we call a private club. Every time the user needs to

authenticate with the recipient client in order to send a message and also needs to get the
permissions to transfer the message successfully. The proposed design is a different from
the way communication occurs between the users when compared with the IM systems or
Email messaging system aiming to have the process in more private and secure.

1.6.2. Goals and QObjectives

The objectives of the P-Mail messaging system can be defined as
e To build an application which uses protocols to less extent
s To avoid unnecessary backup of Email messages

* To build a secure Email messaging system

10

2. SOFTWARE AGENT BACKGROUND

The use of software agents is rapidly growing in the field of computer science and
artificial intelligence. Software agents are -programs that can mimic most human behaviors
or activities. The P-Mail software agent messaging system explains how software agents
collaborate with other agents to carry out the task of successfully transferring Email

messages from sender to recipient along with maintaining the privacy of the messages sent.

2.1. Software Agents -

A simple definition that can be given for “software agent” would be any software
program that is designed to perform or carry out an assigned task automatically in order to
retrieve or transfer the information with intelligence. Programming agents can perform the
tasks as per the context’s requirements. T"hey perform the task continuously in a flexible
manner, respondir-lg to changes in the environment without requiring any human

intervention. Nwana proposed an agent typology [3] for agent classification according to

which agents can be classified as illustrated in Figure 4.

Cotlaborative

Lea.rnlng
Agents

nterface

Collaborative Apgents

Agents

Figure 4. Nwana’s Proposed Agent Typology [3].

11

Figure 4 illustrates that agents can be autonomous (ability to control their own
actions to be pe-rformed), co-operative (ability to communicate with other agents
effectively), reactive (responding in a timely manner), goal oriented (knowing the job to be
performed), mobile (ability to move in an environment) and sufficiently flexible in their
actions. Based on the above-inherited features, the agents can be classified into the

following categories [8]

o Collaborative or cooperative agents
» Interface agents
* Learning agents

e Smart agents or hybrid agents

Multi-agent systems (MAS) can be defined as a group of intelligent agents that
collectively interact with other agents to.carry out a problem to be solved [8]. A MAS
performs the operation by collaborating with other agents which might be difficult to carry

out with single agent.

2.2. Why Software Agents?

In the proposed idea, software agents could be used to address the problems with
privacy and security in the process of transmitting the Email message from one user to the
other. In a traditional Email messaging system, there is always a problem with invasion or

integrity of the message content. We choose software agents which can collaborate with

other agents to process the entire Email messaging system.

2.2.1. Basic Structure of P-Mail Instant Messaging System
The P-Mail Instant Messaging System rules out the option of using servers and

makes use of P-Mail agents. This is an attempt to ensure true privacy in an Email system.

12

In the proposed architecture, each P-Mail client is an intelligent software agent with

considerable flexibility to collaborate with other P-Mail clients (figure 5).

~ P-Mall
Client
P-Mail

Client P-Mail

Client

P-Mail
Facilitator

Fiéure 5. Private Instant Messaging System (P-Mail) [5].

Each P-Mail agent can communicate with every other P-Mail agent that it
recognizes and can decide whether to accept the messages or not. During this process,
messages are neither stored on any server nor back-up for any particular reasons. The
above architecture is an idea derived from peer-to-peer communication on a network layer.
The system is built using one of the most popular programming languages; Java on JADE

(Java Agent Development Environment).

2.3. Java (Object-Oriented Programming Language)

This object-oriented programming language was developed by James Gosling at
Sun Microsystems. Java is based on C++ syntax and differs in many ways in its style of
programming. Once cor-rectly compiled, Java programs are portable and can be run
securely across different platforms. Java is a high-level, object-oriented programming

language that provides many additional features and benefits. It is simple, object oriented,

13

multithreaded, robust, portable, high _performance, secure, etc. Java is the core
programming language used in this paper to develop the P-Mail software agent application
in JADE. -

2.4. Java Agent Development Environment (JADE)

JADE is a framework that simpliﬁes the implementation of multi-al.gent systems in
compliance with the FIPA (Foundation for Intelligent Physical Agents) specifications [9].
JADE was fully developed using the Java programming language. It provides a middleware
for developing and successfully executing the agent applications. It provides mobility,
security, and many other features so that agents can collaborate with seve.ral other agents
on the platform. JADE contains one main container for the agents and also allows the
creation of several other containers which can reside on the same system or on different
systems. A series of containers is collectively called a JADE platform.

The main container on JADE always holds two special agents:
e Agent Managemeﬁt System (AMS): provides the naming services, ensuring agents
are unique and also destroying the agents.
o Directory Facilitator (DF): provides a service which is very similar to yellow pages
and which is helpful for other agents to find and communicate successfully.

2.4.1. JADE Packages

The JADE 9] environment includes a library of classes that programmers need to
use to build their software agents and to perform actions to collaborate with other agents.
Some of the core packages used by JADE for multi-agent systems are

s Jade.core.acl: imﬁlements the Agent Communication Language (ACL) messaging

service

e Jade.core.event: implements the event notification service

e Jade.core.management: implements the agent life-cycle management service
e Jade.core.messaging: implements the messaging service

e Jade.core.mobility: implements the mobility and cloning service

2.5. NetBeans IDE

NetBeans is a free, open-source integrated development environment (IDE) for
software developers that are built on Java. NetBeans is used to develop rich client
applications. Each NetBeans module provides a well-defined function. It provides reliable
application archite;:ture that is developed in no time. On NetBeans, it is easy to develop or
build applications that are robust and extensible across the framework. NetBeans IDE is
easy to use; it is'quick to learn and to dévelop applications which are robust and rich in
functionality. The P-Mail software agent messaging system is built using JADE on the

NetBeans IDE.

2.6. Working with JADE on NetBeans

The only software requirement needed by JADE to execute the systems is the Java
Run Time Environment (Version 1.4). After the class path is set to the root directory, the
following command is used to launch the main container of the platform [9]:
Java jade.Boot [options] [AgentSpecifier list] |
In order to launch a new Eigent container, the following command can be used:
Java jade. Boot —container [options] [AgentSpecifier list]
The Agent.doDeletef) method can be called to stop the agent execution, and the

Agent.take Down() method can be called to destroy or suspend the agent.

15

3. DESIGN AND REQUIREMENTS

This chapter gives a brief introduction about the design and requirements for
building the P-Mail software agent messaging system. The idea behind implementing the
P-Mail software agent messaging system is to keep the message secure and private while
transmitting the Email mé:ssage'from sender to-the receiver. To serve this purpose, we use

agent-to-agent collaboration on the Java Agent Development Environment (JADE).

3.1. P-Mail Software Agent Requirements
P-Mail software = agent messagihg can be implemented by software agent
collaboration to communicate in many different ways, from which we consider three
potential scenarios. that can be implemented. In this chapter, we will go into detail about
how these three gcenarios differ from each other in terms of design and requirements.
The P-Mail messaging system réquires two different kinds of software agents.
According to the purpose requirements, these agents have been named as
e P-Mail agent
e Facilitator agent
These agents behave according to t-he user requirements and the way they have been
programmed to serve the purpose of messaging from one P-Mail client to another. Both P-
Mail and facilitator agents are intelligent software agents. A facilitator agent plays an
important role in the design of the entire P-Mail messaging system. It facilitates
communication between -the P-Mail agen.ts and P-Mail clients. The messages are never
stored on any of the servers or saved at any other locations. The P-Mails will be sent from

one client agent to another client agent without any intermediate support to conduct the

task. More about the agent’s design will be discussed in the next section.

19

3.2.3. Facilitator Agent

The facilitator agent plays a signiiicant role in the client communication process.
The facilitator never receives the Email message; it only manages the communication
between different agents (figure 13). The facilitator agent provides the agent name service
and access control between the agents. It stores the information for each agent and its

public address.

Agemt Agent Address

A

- !
Y
- 74““ //] M‘\Rﬂ R-::Av on Req

- // Step 1 \\ Step 2
\ Step I(YN)
‘f Step 40YM) \ \
/ / Addresa \ \

Figure 13. Facilitator Agent.

Whenever a clien-t comes online, it registers with the facilitator saying that it is
ready to communicate with other clients on the network, and at the same time, if a client
goes offline, it un-checks with the facilitator. The P-Mail client always inquires with the
facilitator to get the recipient’s address to send the message successfully. The facilitator, in
turn, will check with the- receiver client if it is willing to communicate with the sender
client and replies with the appropriate response. Depending on the way the facilitator works
and controls access between the agents, we created three different designs f_or P-Mail client

communication.

23

3.3. Design Scenarios

On the basis of the functions and the strategies employed by the facilitator to
process the request from the P-Mail clients. We have designed three scenarios that can be
implemented for the P-Mail messaging syétem.

3.3.1. Design-1 P-Mail Messaging System

In design-1, the facilitator communicates with the sender’s P-Mail client and does
not interact with the recipient’s P-Mail .client. Only on request, the facilitator directly
provides the recipient client’s address to communicate without trying to see if the recipient
P-Mail is willing to communicate.

Process flow Design-1 [Figure 14]:

Step 1: The ultimate goal of the process ié to transmit the message from agent-A to agent-
B. Agent-B is part of agent-A’s associate list. Agent-A, hence, inquires with the facilitator
to get agent-B’s address during step 1.

Step 2: A facilitator serving the purpose of agent name service haé all the agent
information and its public addresses for communication. After receiving the request from
agent-A, the facilitator provides it with agent-B’s address to communicate.

Step 3: Having received the agent name and agent address, agent-A pings agent-B,
requesting to start the communication process.

Step 4: Receiving the ping request from agent-A, agent-B needs to decide whether it is
willing to communicate with agent-A. If agent-B is willing to communicate with the
sender, it would accept the ping request; otherwise, it might deny the request to

communicate with agent-A.

24

Agemt Agent Address

Facilitator

/f/ i
Req for Address i
f(i'F
o /
/ /
/ Step 1 /
/ Step2 /
- /
/ 4
f; Mdr/oés
i /
i / Ping Agent w0
. yd Cominunicate
- Step 3 .
Agent A AgentB
8 Step 4(YIN) -
ist of Agent ’“*—»ﬁ_%,ﬂﬁg%&!ﬁw - List of Agent
James - Pl Names
- o
. Step 5 (Message)
Massage Transfer
Associate List A L
ssociate List

. Figure 14. Design-1 P-Mail Messaging System.
Step 5: Agent-A is allowed to send the Email message after receiving the acceptance from

agent-B in response to the ping, or it is simply a request denial.

3.3.2. Design-2 P-Mail Messaging System
In design-2, the facilitator is designed to handle the address request from the P-Mail
client to the recipient agent to communicate with, thereby sending the same request to the

destination agent asking whether to start the process of communication.

25

Process flow Design-2 [Figure 15]:

Step 1: With an intention to transmit the message from agent-A to agent-B, agent-A needs

to get the address by inquiring with the facilitator. In this case, ta request is sent to

facilitator agent to get the address.

Step 2: The facilitator makes use of the agent name service and contacts the destination
agent to see if it is willing to communicate with the sender (agent-A).

Step 3: After receiving the request from the facilitator, agent-B has to make a decision

about whether to allow or deny agent-A to send the message.

Agent Agent Address

f/'/ .
-) - \,\‘v
a"/ \
R \
Req for_‘l(ddvess Prodess Req
:(.i' Step 1 Ste P 2 ..\\‘
;‘; ‘\’
;
j‘ :‘
- ! Razponse on Req '3'
- Step 3 (Y/N} "
Address
AgentA AgentB
it of Agent ’ i
Lol Agent ... Step 4(message) .- List of Agent
imes e e Names
Message Transier
Associate List

Associate List

Figure 15. Design-2 P-Mail Messaging System.

26

Step 4: In step 3, if the destination agent accepts the request, then it will reply with its
address to send the Email message. If agent-B accepts the request, then agent-A will have
the address to communicate with agent-B; otherwise, agent-A has been denied to
communicate with the agent-B.

3.3.3. Design-3 P-Mail Messaging System

Design-3 facilitates the sender P-Mail agent with the recipient’s address through the
facilitator only when destination agent is \;villing to communicate; otherwise, the facilitator
will simply deny the address request.

Process flow Design-3 [Figure 16]:

Step 1: Agent-A would like to communicate with agent-B and since agent-B is in the
associate list. Agent-A requests the facilitétor for agent-B’s address during the step 1.

Step 2: Having rec.eived the request from agent-A, the facilitator processes the request by
transferring the request to agent-B. During this process, the facilitator uses the agent name
service to contact agent-B.

Step 3: After step 2 and having received the request to communicate, agent-B either has to
accept the request by sending the address in response, or it can simple deny the request.
Step 4: 1f agent-B is willing to communicate, the sender agent will get the address from
step 3 to start sending the Email message. If the recipient agent has denied the request, then

agent-A is unable to send a message to agent-B.

27

Facilitator

A i |

7 o

s { \

§) {
Req k}vﬂ\ddmss II’ ProcessiReq

y / ’

}_f Step 1 i \
‘f ‘;‘j \‘
f tep 4(Y/N) kN
.'; # Addreas ‘,
} / ;
!' Respor}s'e on Req
rd
ye
»
AgentA
tof Agent
imes -~ Step 5
Message i’mnafer
Associate List

Figure 16. Design-3 P-Mail Messaging System.

Email message to the destination agent.

Agent

Agent Addrass

‘ﬂ\ Step 2

A\\
‘t

Respo;'ts}e on Req

Step 3mN\}\~.,.

p)
[
[
i
i

List of Agent
Names

Associate List

Step 5: Once the sender agent has the recipient’s address, it is always allowed to send an

will be discussed in Chapter 4.

The details of all three P-Mail messaging system designs and their implementations

28

4. IMPLEMENTATION AND SCENARIO VISUALIZATION

In this chapter, ‘ we get into the details of all three scenarios and their
implementation, and we visualize how each design has been implemented. The main goal
of each implementation is to transfer Email messages from one P-Mail client agent to
another. In order to send the Email message, the sender’s P-Mail client needs to get the
recipient’s address from tiw facilitator agent. The three implementations differ in

o The way the P-Mail client checks with the facilitator

* The way the facilitator handles the access control.

4.1. Methodology and Classes

In this section, we discuss the classes and functions implemented to handle each
design. The proj’ect mainly depends on the way the facilitator has been implemented. Each
client will be able to compose an Email message with the following fields: client name,
address, subject and message. Design has i)een implemented in such a way that a client can

send messages only if the recipient is willing to communicate.

4.1.1. P-Mail Agent Class

The Mail Agent class is the primary class of the entire project, independent of the
scenarios to be implemented. This class handles the creation of a user interface on each
client machine. The Mail Agent class takes the client name as the argument, creates the
user interface (UI), and registers itself with the facilitator agent by giving its name and
address information. In table 1 we define the member functions used to build this class.
This class creates the instances of two othér classes

o PMailF rame: Creates the client UI by accepting the arguments and

e Facilitator: Client registration

.29

- Table 1. Mail Agent Class: Member Functions

void setUp() i Creates agent
void takeDown() Terminates agent once the process is complete

4.1.2. Load Agents Class

The Load Agents class shown in table 2 is mainly used by the PMailFrame and
PmailAgentBehavior clas.ses to load the Associate list for each client. This class mainly has
two kinds of functions; one would store all the client names and their respective associate
agent lists, and the other contains the associate list of the client.

Class LoadAgents

{
HashMap loadAgent() {...}

List agentListl () {...}
List agentList2 () {...}
List agentList3 () {...}

List agentList4 () {...}

Table 2. Load Agent Class: Member Functions

HashMap<String; Stores client name and its respective associate
List<String>> loadAgent() list of agents
List<String> agentList() Associate agent list

30

4.1.3. P-Mail Messages Class

P-Mail messages is the domain object through which we get and set the values of
the sender’s client name, receiver’s client name, message, date, and subject. This domain
object is mainly used in other classes to access the values set through this object. Table 3

shows the variables used in this class.

Table 3. P-Mail Messages Class: Member Variables

String _ Message which needs to be sent
Message

String) Recipient’s client name
toAgent

String) Sender’s client name
from Agent

String Current date

] Date

String Subject line of the message

Subject

4.1.4. P-Mail Agent Behavior Class 7

The P-Mail Agent Behavior Class handles most of the actions to be performed by
any client to interact with either the facilitator or any other P-Mail client on the network. A
few of those behaviors are to ping another_agent, populate the received and sent lists on the
client’s user interfa_lce, client authentication process, etc. Table 4 and table 5 gives an brief

idea of all the functions used in this class.

31

Table 4. P-Mail Agent Behavior Class: Member Functions

authenticateAgent()

String - Transfers the Email message with
sendMessage() the content to another client.
HashMap<String, Sends a request to another client
String> pingAgent() asking for permission
boolean Takes care of the client

authentication process

List<PMailMessages> getSendList()

Gives the send list

List<PMailMessages> getRecievedList ()

Gives the received list

Void updateRecievedMessages()

Updates the received content

Table S. P-Mail Agent Behavior Class: Member Variables

String Current agent

Current agent name

List<PMailMessages> =~ SendList

List of sent messages

List<PMailMessages> RecievedList

List of received messages

List< String > associateList

List of associate agents

HashMap<String,
List<PMailMessages>> recievedMessagesMap

List of all agents and their respective
received messages.

4.2. Facilitator Class and P-Mail Frame Class for Design-1

4.2.1. Scenario-1 Facilitator Class

In Scenario-1, the design facilitator class is designed in such a way that it takes the

client name to the sender agent as shown in table 6, which then transmits the message and

returns the required address back to the client. The facilitator class also handles the process

of registering the client when it comes online.

32

Class Facilitator

{

getAgentAddress(agent) {...}

loadAgent() {...}

agentAddressInfo(agent, agentAddress) {...}
}

Table 6. Scenario-1 Facilitator Class: Member Functions

String getAgentAddress() Gets agent address
HashMap<String, String> loadAgent() Registers online agents

HashMap<String, String> getAgentAddressinfo() Gives agent name and address

4.2.2. Scenario-1 PMailFrame Class

Each instance of the PMailFrame class creates a PMailFrame which is a client-user
interface through which it can start the process of communicating with other P-Mail clients.
In order to do so, the sender P-Mail client should ask the facilitator for tl'le address. The
facilitator responds with the recipient’s address. Later sender client pings the other client
asking permission {o send the message.

This action can be demonstrated by having the “Get Address” button on the UI.
Clicking on this button requests an address from the facilitator. Once the client has the
address, it can ping the récipient P-Mail to allow transmission of the message. The “Send”
button on the Ul would only be rendered usable if the recipient is willing to communicate.
P-Mail class functions are shown in table 7 and table 8.

Class PMailFrame

{ : }
getAgentAddress(agent) {...}

33

pingAgentToCom_municéte(agent, agent) {...}
respondToCommunicate(agent, agent) {...}
pingRequestYes(true) {...}

refresh() {...}

sendActionPerformed() { v}

Table 7. Scenario-1 PMail Frame Class: Member Variables

String Current agent name
) agent name
String Current agent address
agentAddress
Int)) Enables the send button
enableSendFlag
HashMap<String, String> Responds to the agent
respondAgentMap
HashMap<String, String> Pings the agent.
pingAgentsMap

4.3. Scenario-1. Visualization

Scenario-1 has been implemented according to the design and requirements discussed in
Chapter 3. To create new agents, we must initiate the RMA GUI; open the container; and
create the agent by giving inputs like agent name, arguments, and the base agent class for

which the agent has to be created (Figure 17).

34

Table 8. Scenario-1 PMail Frame Class: Member Functions

Void refreshMail() Refreshes email messages
Boolean Pings the agentto
pingAgentToCommunicate() communicate
Boolean ’ : ‘ Response about whether to
respondAgentToCommunicate() communicate
TreeModal ~ getAssociateTreeModal() ~ Populates the associates
Void Attaches the content to an

object when clicking “send”
and performing the desired

sendBtnActionperformed() action
Void btnGetAddressActionPerformed() Query facilitator for address
Void =~ " Having the recipient’s
btnPingActionPerformed() address send a ping
Void Recipient willirig to
pingReqYesActionPerformed() communicate
Void ’ Recipient not willing to
pingReqNoActionPerformed () communicate
DefaultTableModal getSendMsgs() Populates all the sent items
DefaultTableModal Populates all received
getRecieved Msgs() messages
Void : Clears all the data from the
clearComposeFields() compose window

Once P-Mail client] has been created (Figure 18), we can see the user interface of clientl
and client2 with available functionalities, like compose the Email message, to view the sent
and received messages on the panel. The interface also has a refresh button to get a quick
refresh of the content with the all the available list of agent that it can communicate with

under the associate list. To send a message to client2, client]l needs to get its address. By

© 35

4.4, Facilitator Class and P-Mail Frame Class for Designs-2
4.4.1. Scenario-2 Facilitator Class

In Scenario-2, the design facilitator class is designed in such a way that it takes the
client name to the sender agent that wants to transmit the message. According to the
received response, facilitator checks the recipient’s address and, in turn, sends the request
to the recipient on behalf of the sender. The facilitator class shown in table 9 also handles
the process of registering -clients when they come online.

Class Facilitator -

{
getAgentAddress(agent) {...}

loadAgent() {...}
agentAddressInfo(agent; agentAddress) {...}

communicateRecipientAgent(agent, agent) {...}

Table 9: Scenario-2 Facilitator Class: Member Functions

String © _getAgentAddress() Gets agent address
HashMap<String, Pings the recipient agent
String> communicateAgent()
HashMap<String, ; Gives the agent name and address
String> getAgentAddressinfo()

4.4.2. Scenario-2 PMailFrame Class

-

Each instance of the PMailFrame class creates a PMailFrame which is a client-user
interface through which client can start the process of communicating with other P-Mail

clients. The P-Mail client asks the facilitator for the recipient’s address. The facilitator

39

receives the request from the sender. The facilitator then sends a request stating a P-Mail’s
willingness to communicate. All the class member variables and methods are mentioned in
table 10 and table 11.

The same can be ;1em01istrated by having the “GoFac & PingAgent” button on the
UL Clicking this button asks the facilitator for the address. Once the facilitator has the
request, it can ping the recipient’é P-Mail to allow message transmission. The “Send”
button on the UI would only be rendered usable if the recipient is willing to communicate.
Class PMailFrame
{ -

goFacilitatorToPingAgent(agent) {...}

pingAgentToCommunicate(agent, agent) {...}

respondToCommunicate(agent, agént) {...}

pingRequestYes(true) {...}

sendActionPerformed() {...}

Table 10. S_cenario-2 PMail Frame Class: Member Variables

HashMap<String, String> respondAgentMap Responds to the agent
HashMap<String, String> pingAgentsMap Pings the agent.
String . agent name Current agent name
Int . enableSendFlag Enable the send button

40

Table 11. Scenario-2 PMail Frame Class: Member Functions

Void refreshMail() Refreshes email messages
Boolean pingAgentToCommunicate() Pings the agent to communicate
Boolean res nondAgentToCo.mmunicate Response about whether to

QO communicate
TreeModal getAssociateTreeModal() Populates the associates
Void Attaches content to the object
when “send” is clicked and
sendBtnActionperformed() performs the desired action

Void btnGoFacToPingAg- entActionP Queries the facilitator for an

erformed() address

Void - ‘Having the recipient’s address

btnPingA ctionPerformed() send a ping

Void pingReqYesActionPerformed() Recipient willing to communicate

Void . Recipient not willing to

pingRegNoActionPerformed () communicate
DefaultTableModal getSendMsgs() Populates all the sent items
DefaultTableModal getRecievedMsgs() Populates all received messages

Void . Clears all data from the compose

clearComposeFields() window ’

4.5. Scenario-2. Visualization

Scenario-2” has been successfully implemented according to the design and

requirements. Clientl and client2 are launched accordingly by the RMA user interface.

Both clients have the option of using “Go FAC & Ping Agent” on the interface.

By clientl clicking “Go FAC & Ping Agent” (Figure 23), the request will be sent to the

facilitator querying for client2’s address. The facilitator then sends a request for

41

Class Facilitator

{ getAgentAddress(agent) {...}
loadAgent(‘) {...}
comrhunicateAgent(agent, agent) {...}
setResponse(agent, 1) {...}
}
Table 12. Scenario-3 Facilitator Class: Member Functions
String getAgentAddress() Gets agent address
HashMap<String, String5 loadAgent() Registers online agents
HashMap<String, String> communicateAgent Sends the request to the recipient
Void setResponse() Sets the response from the recipient
Boolean getResponse() Gets the response from the recipient

4.6.2. Scenario-3 PMailFrame Class

Each instance of the PMailFrame class creates a PMailFrame which is a client-user
interface through which it can start the process of communicating with other P-Mail clients.
In order to do so, the sender P-Mail client should ask the facilitator for the address. The
facilitator responds to thé sender’s P-Mail with the recipient’s decision about whether to
start the communication process.

This action can be demonstrated by having the “FAC — Process Request” button on
the UL Clicking this button asks the facilitator for the address. Using the agent name
service, the facilitator prc;cesses the request through the recipient and gets a decision about

whether to communicate or deny the response. The same decision is sent to the sender’s P-

44

Mail to enable/disable the send button on the interface. Member variables and member
functions in table 13 and table 14.
Class PMailFrame |
{ -
facilitatorCommunicateAgent(agent, agent) {...}
respondToCommunicate(agent, agent) {...}
pingRequestYes(true) {...} _

sendActionPerformed() {...}

Table 13. Scenario-3 PMail Agent Behavior Class: Member Variables

String - agent name Current agent name
Int enableSendFlag Enables the send button
HashMap<String, String> pingAgentsMap Pings the agent.

According to the design and requirements discussed earlier, scenario-3 has been
implemented. The created agent, client] (Figure 26), and the client2 interface now have the
“FAC — Process Req” button. If client]l decides to send an Email to client2, client has to
click the button, and imm_ediately, a query would be sent to the facilitator to get the address
for client2. |

Tabl; 14, Scenario-3 »PMail Frame Class: Member Functions

Void refreshMail() Refreshes email messages
Boolean i ineAzentToComm unicate Pings the agent to cornmunicate

45

5. ANALYSIS

In this chapter, we will analyze the three design models of the P-Mail messaging
system that have been implemented. 'I-‘he purpose behind implemenﬁng the P-Mail
messaging system is to provide security, privacy, and authentication for the users. This has
been achieved by using intelligent software agents to collaborate with other software agents
in order to transfer messages from one client to another on a network.

All three designs use the intelligent P-Mail Frame and facilitator ag—ents (Figure 29,
30, and 31) accordingly without using any servers to transmit the messages. By
implementing these designs effectively, we reduce the scope of using servers like SMTP

and POP, and we avoid unnecessary backup of the Email messages on the servers.

Design-1 P-Mail Messaging System:

Agent Agent Address

o

i
Rea fof Address /
7/ -
b /7
/ Step 1
/ Step2 ,

Communicaly
s - \._\
-~ "~
- Step 3 *
tA Agent8
Agen Stepd(YyN) .~ \'°©
Ist of Agent e &g;:‘.‘;m—f List of Agent

dames - -~ P Names
\\\\ Step 5 (Message) .~
Associate List H T

- Associate List

Figure 29. P-Mail Messaging System Design-1.

49

Design-2 P-Mail Messaging System:

Agent Agemt Address

/'/ \
/ ‘\'\
//
. Req q{ka-u Protags Raa
/ Step 1 Step 2 \\
{ \\
| \
-]‘ Reapanes on Req) 9
o smpaomy N
Address
AgentA AgentB
it of Agent A List of Agent
ames \"\f':_" _“mf'),.. - Na n?esM
Messaga Tramuler
Assoclate List e List

" Figure 30. P-Mail Messaging System Design-2.

Design-3 P-Mail Messaging System:

Agem Agent Address

/') RN

/ i \\
" 4 ! N
] e \swz Rewoipenie
A Siep I(YN)
4YN)
/ Address \
- H Rmn‘ on Req
| 7/
- "
AgentA AgentB
tof Agent - A /,/' Ust of Agent
mes '\\» Swp 5 // Names
’ tessage Transler
Assoclate List
Assoclate List

Figure 31. P-Mail Messaging System Design-3.

50

5.1. Advantages of the P-Mail Messaging Systeni
The primary advantages that all three designs provide are as follows:
e The Email messages are never stored on any machine, and they will not use any
servers, such as SMTP or a POP server, to transmit messages.
o The facilita:tor agent provides the agent name service to P-Mail agents.

o Messages will be transferred only between P-Mail client to another P-Mail client.

5.2. Message Traffic through a Facilitator

Each of the P-Mail messaging system design makes use of the facilitator agent. In
all three designs, the sender P-Mail client would query for the recipient’s address.
Facilitator does its job by responding in a desired way, making good use of the agent name
service. Message traffic through a facilit;ator would definitely affect the entire system’s
performance. Lesser the message traffic better the system response; this is because, when
the facilitator starts registering a huge number of agents with itself, the message traffic
would definitely affect the system while querying. Designs 1 and 2 have less message

traffic compared to Design-3 of the P-Mail messaging system (Figure 32).

- Message Traffic through
Facilitator

s .
4 . ;
3
5 ® Message Trafic

- through Facilitator
1
0 = T T -

Design 1 Design 2 Design 3

Figure 32. Message Traffic through the Facilitator

51

5.3. Number of Process Steps

Process steps in a design are all about the number of steps that the design needs to
be processed or how long the process of sending a message from one P-Mail client to
another P-Mail client is. The better design can be justified on the number of process steps it
has to go through to send a message on the network.

To successfully send the message, the number of process steps in Design 2 is less
when compared to Designs 1 and 3.

At the same time, the number of process steps in Design 2 is less when compared to
Designs 1 and 3 even if the recipient’s P-Mail is not willing to communicate. These graphs
clearly suggest that, if the message has been transferred successfully or if it is unsuccessful,
Design 2 does a.good job. .

Figures 33 and 34 illustrate the number of successful and unsuccessful steps to

process the message transfer from the sender to the recipient.

Successful Message Transfer Process
6
- 5 T
4
37 ® Process Steps for
2 4 Successful Process
1
0 T
- Design 1 Design2 Design 3

Figure 33. Process Steps in a successful process.

UnSuccessful Message Transfer Process

B Process Steps for
UnSuccessful Process

Design 1 Design2 Design 3

Figure 34. Process Steps in an Unsuccessful process.

5.4. Recipient Address to Communicate
In either of the designs, if any P-Mail client has to send a message or an Email, it

has to have the recipient’s address, so it queries the facilitator. It does matter at what point
in the process the sender P-Mail client gets the recipient’s address. Two important factors
need to be considered:

e At what step the s_ender has the recipient’s address

e Status of recipient: whether the recipient is willing to communicate
In Designs 2 and 5, the facilitator responds with the recipient’s address to sender P-Mail
client only shown in the table 15 with the permission of recipient P-Mail whether or not it
is willing to communicate. With Design 1, the facilitator responds to the sender’s P-Mail
without any concern to recipient’s status whether it is willing to communicate or not. From

these analyses, it is always better to go with Designs 2 or 3 rather than Design 1.

53

Table 15. Recipient Address to communicate

Design 1 Before recipient decides to
communicate
Design 2 Up on recipient’s decision to
communicate
. Design3 Up on recipient’s decision to
communicate

5.5. Security Attacks and Encryption

In other words, the P-Mail messaging system is a network with a flow of messages
between P-Mail cl-ients and the facilitator agent. In a physical network, there is always a
chance of intruders trying to break through the network, causing issues about privacy and
security. The chances of security attacks are always directly proportional to the number of
process steps involved in sending the message or Email from one P-Mail client to another.
There comes a nee.d for encrypting the messages or the Email content on a network. There
are several kinds of attacks that can potentially happen on the P-Mail messaging system.
PGP, or Public key encryption, is always better to use when there is a request/response
process happening between the P-Mail clients and the facilitator. There is always a chance
of intrusion or secxlrity attacks on the P-Mail messaging system.

If we plan on encrypting the entire P-Mail messaging system to make it more secure
from intruders, we need to encrypt almost all process steps that are being processed on the
nefwork to transmit the message. Therefore, encryption would be directly dependent on the

number of process steps involved in the design. With a closer look at the design, we can

54

decide that Design 2 requires fewer process steps to be encrypted when compared to other

designs (Figure 35).

Cryptographic Encryption

8 Number of times the mess
has to be encrypted

T L5 T

Design 1 Design2 Design 3

Figure 35. Cryptographic Encryption on a P-Mail Messaging System.

5.5.1. Security Attacks

Security attacks can be classified based on the effect they cause on the network. By
assessing the effects of these attacks on the system, we will decide which design is most
and least vulnerable. Most of these attacks are directly proportional to the process steps in
the design [12]. Table 16 shows the significance of each attack on the designs.
Jamming: Jamming in P-Mail scenarios c-an be defined as the effect on the network caused
by blocking the request/response from processing between agents because of the adversary.
Among all three designs, when an adversary interrupts the process flow, there are good
chances of jamming. The more process steps involved to process on the network, the

greater the chances of jamming. Design 2 is much safer to employ in such cases because of

its simple and straightforward design approach.

- 35

Tampering: This can be defined as an intruder making an attempt to break through the
workflow process/process steps by compromising Email content on the network. For these
kinds of attack, it is better to employ a design with fewer processing step carrying the
private/more secured info-rmatidn. In Design-1, we have the recipient’s address, which has
to be kept private, at step 2, and in design 3, this happens at steps 3 and 4. Design 2 is
much better in this scenario.

Collision: In P-Mail messaging, collision can be defined as the process of interception
caused between request to request or request to response from the agents causing network
disruption. i

Manipulate the Routing Information: This term can be defined as the process of

manipulating the network workflow process to give misleading information to the agents.

Table 16. Security Attacks and Their Effects on Each Design

Jamming Good chances of Fewer chances of Can happen quite
occurrence occurrence when often
compared to other
- designs
Tampering- Most vulnerable - Less vulnerable Most vulnerable
Collision Most vulnerable Less vulnerable Most vulnerable

Manipulating

Fewer chances of

Fewer chances of

Less chances of

Routing occurrence occurrence occurrence

Clone attack - No significant effect No significant effect No significant effect
on the design on the design on the design

Encryption High number of Fewer steps to High number of steps
steps to encrypt encrypt when to encrypt when
when compared to compared to other compared to other
other designs. designs designs.

56

Clone Attack: In our séenarios, these kinds of attacks can be described as introducing
external agents which are clones of other existing agents to the network. If this situation
occurs on a network, it does not show any significant effect on system performance
because, in order to interrupt the process, it has to register with the facilitator, and the

facilitator does not allow an agent clone to register with it.

57

6. FUTURE WORK AND CONCLUSION

6.1. Future Work

Private Mail messaging system makes use of Facilitator to provide the access
control to the clients and also takes care of agent name service. Facilitator plays a crucial
role in the implementation of P-Mail messaging system. We definitely need to consider the
message traffic th;ough the Facilitator during the process. There’s scope to improve the
Facilitator design to handle the message traffic.

Depending up on. the message traffic and the number of clients trying to use the
Facilitator to send the message we could classify the Facilitator design to be either load
based or distribute:i architectural design.

The proposed idea is more suitable to the private club communication process. We

can develop a design making use of Facilitator and P-Mail clients to support traditional

way of communication process

6.2. Conclusion

In the present world with modern technology and communication growing at a
rapid pace, Email messages have been questioned for their privacy and security issues
while transmitting-messages from one user to another user residing on a network. These
Email clients use a wide variety of protocols and servers to transmit the messages which
are vulnerable to intruders, and the unnecessary backup of data may cause an issue at
certain times.

This paper proposed a technique for designing an Email messaging system modeled
on intelligent software agent collaboration. We have discussed and analyzed three potential

designs to implement the messaging system according to the user’s requirements. The

58

objectives achieved by irpplementing the P-Mail messaging system are that the messages
are no longer stored on the servers, making the minimal use of protocols which might be a
serious concern for security and privacy issues. The P-Mail messaging system ensures the
secure transfer of messages between the users who belong to the pool of members in a
private club on the network. The P-Mail messaging systems ensure the secure transfer of
messages on a network from the sender to the recipient. In the analysis chapter, we
discussed the pros*and cons of each design and learned that Design-2 is less vulnerable to
security attacks and is more secure when compared to Designs-1 and 3. There is less
message traffic through the facilitator in Design-2 compared to the other two designs, and
the facilitator acts much more intellectually in handling requests from the sender and

provides access control to the P-Mail client on the system.

59

REFERENCES

1. Ruth Aylettl, Frances Brazier2, Nick Jennings3, Michael Luck4, Hyécinth Nwana5,
and Chris Preist, “Agent Systems ana Applications”, Volume 13 , Issue 3, Year of
Publication: 1998, ISSN: 0269-8889

2. Erik Kangas, PhD, President of LuxSci “The Cases for Email Security”, Posted Friday,
March 13th, 2009

http://luxsci.com/blog/the-case-for-email-security.html

3. Jeffrey M. Bradshaw, “An Introduction to Software Agents — Agents & the User
Experience”, Year of Publication: 1997, ISBN:0-262-52234-9

http://agents.umbc.edw/introduction/01-Bradshaw.pdf

4. Reticular Systems, Inc, “P-Mail — Private Email and Instant Messaging with Intelligent
Software Agents”, Version 1.0 Rev.0 August 27, 1999, San Diego

http://www.agentbuilder.com/Documentation/PMail/pmail.pdf

5. Reticular Systems, Inc, “Agent Builder, P-Mail: A Private Mail and Instant Messaging
System”, Version 1.0 Rev.0 August 27, 1999, San Diego

http://www.agentbuilder.com/Documentation/PMail/index.html

6. CW Preist, Economic Agents for Automated Trading, in 'Software Agents for Future
Communications Systems', ed A. Hayzelden & J.Bigham, Springer 199§

7. Fred W. Atkinson, IIl , “PGP Encryption”, Johns Hopkins University, Network
Security, April-1996

http://www.mishmash.com/fredspgp/pep.html

60

8. Hyacinth S. Nwana, “Software Agents: An Overview”, Advanced Applications &
Technology Department, Cambridge University, Knowledge Engineering Review, Vol.
11, No 3, pp.1-40, Sept 1996.

hitp://'www.sce.carleton.ca/netmanage/docs/AgentsOverview/ao.htiml

9. Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (TILAB, formerly CSELT),
Giovanni Rimassa (University of Parma), "JADE programmers guide", last update: 18-
June-2007.

10. Martin L. Griss, “Software Agents- as Next generation Software Components”,
Software Technology Laboratories, Palo Alto, CA

11. Mohammad Mannan, P.C. van Oorschot, “Secure Public Instnat Messaging: A
Survey”, School of Computer Science, Carleton University, Ottawa.

12. Kendall. Nygard, “Security Attacks on Sensor Networks and Embeded Systems”,

Computer Science Dept, North Dakota State Univeristy, ND.

61

APPENDIX

In this section we will look into details of how the P-Mail messaging systems have

been developed in programming point of view, based on three designs discussed in

Chapter-3. We will go through all the important classes which are part of the

implementation and get into their details.

MailAgent.java
package jade.pmail;

import jade.core.Agent; //Importing Agent Class from JADE Libraries
import jade.pmail.gui.PMailFrame;

import jade.pmail.util.Facilitator;

public class MailAgent extends Agent {
protected void sc;tup() {//Create Agent
Object[] args = getArguments(); //Retrive all arguments passed to Agent
Facilitator fac = new Facilitator();
if (args !'=null) { -
System.out.println("Passed Arguments are:");//Print all Arguments
for (int i = 0; 1 < args.length; ++i)
{
PMailFrame frame = new PMailFrame(args[i].toString());
fac.agentAddressInfo(args[i].toString(), getName());
frame.setVisible(true);
} -
}
doDelete();
}// Terminate Agent
protected void takeljown() {//Do Clean Up Process
}

62

PMailAgentBehaviour.java
*)

* To extend PMail Action Behavior.
*/

package jade.pmail.util; -

import java.util. ArrayList;

import java.util. HashMap;

import java.util.List;

/**
* @author Hari Mukka
*/
public class PMailAgentBehaviour {
private String current agent;
private List<String> associatesList;
public PMailAgéntBehaviour(String agent) {
this.current_agent = agent;
this.associatesList = new LoadAgents().loadAgent().get(current_agent);
}

private List<PMailMessages> sendList = new ArrayList<PMailMessages>();
private static List<PMailMessages> receivedList = new ArrayList<PMailMessages>();
private static HashMap<String, List<PMailMessages>> receivedMessagesMap = new

HashMap<String, List<PMailMessages>>();

public String sendMessage(String msg, String toAgent, String fromAgent, String date,
String subject){
String authentication = "";
if(authenticate Agent(toAgent)){

authentication = "The agent is authenticated!!";

63

PMailMessages sendObj = new PMailMessages();
sendObj.clearAll(j;
sendObj.setToAgent(toAgent);
sendObj.setFromA gent(fromAgent);
sendObj.setMessage(msg);
sendObj.setDate(date);
sendObj.setSubject(subject);
sendList.add(sendOby);
updateReCf;iveMessages(toAgent, sendObj);
}else{
authentication = "Agent authentica@ion failed!!";

}

return authentication;

public HashMap<String, String> pingAgent(String toAgent, String éddress, String
fromAgent) { _
HashMap<String, String> pingMap = new HashMap<String, String>();
pingMap.put(toAgent, fromAgent);
return pingMap;
}
public boolean authenticateAgent(String associateAgent) {
//System.out.println("'To agent2: "+associateAgent);
//System.out.println(associatesList.size());
if(associatesList != null && associatesList.contains(associate Agent))
return true;
else
return false;
} -
public List<PMailMessages> getSendList() {

return sendList;

64

}

public List<PMailMessages> getReceivedList(String agent) {

return receivedMessagesMap. get(agent),

}

public void upd:ateReceiveMessages(String toAgent, PMailMessages message){

receivedList.add(message);

receivedMessagesMap.put(toAgent, receivedList);

}

public HashMap<String, List<PMailMessages>> getReceivedMap() {

return receivedMessagesMap;

PMailActions.java
package jade.pmail.util;
import java.util.Calendar;

import java.util.GregorianCalendar;

/***

* @author Hari Mukka
*/
public class PMailActions {

public String compose(String msg, String to,
PMailAgentBehavfour mail) {
Calendar cal = new GregorianCalendar();
String date = cal.getTime().toString();

return mail.sendMessage(msg, to, from, date, sub);

65

String from,

String

sub,

PMailMessages.java

package jade.pmail.util;
import java.util.Date;

/***

* @author Hari Mukka
*/
public class PMailMessages {
private String message;
private String toAgent;.
private String fromAgent;
private String date;

private String subject;

public String getMessage(){
return message;
}
public void setMessage(String message){
this.message=message;
}
public String getToAgent(){
return toAgent;
}
public void setToAgent(String toAgent){
this.toAgent = toAgent;)
}
public String getFromAgent(){
return fromAgent;

}
public void setFromAgent(String fromAgent){

66

this.fromAgent = fromAgent;

}

public String getDate(){
return date;

}

public void setDate(String date){
this.date = date; '

} .

public String getSubject(){
return subject;

}

public void setSubject(String subject){
this.subject = subject;

\ | .

public void clearAll() {
this.subject = null;
this.date = null;
this.toAgent = null;

this.message = null;

Scenario-1. Facilitator.java

package jade.pmail.util;

import java.util. ArrayList;
import java.util. HashMap;
import java.util.List; -
/* * %
* @author Hari Mukka
*/

67

public class Facilitator { -

public String getAgentAddress(String agent){

}

HashMap<String, String> map=loadAgent();

return agentInfoMap.get(agent);

public HashMap<String, String> loadAgent(){

}

HashMap<String, String> agentMap=new HashMap<String, String>();
agentMap.put("clientl”, "client] @ndsu.edu"),
agentMap.put("client2", "client2@ndsu.edu"),
agentMap.put("client3", "client3@ndsu.edu"),
agentMap.put(”clienf4", "client4@ndsu.edu");
agentMap.put("client5", "client5@ndsu.edu");
agentMap.put("client6", "client6@ndsu.edu");
agentMap.put("client7", "client7@ndsu.edu");
agentMap.put("client8", "client8@ndsu.edu"),
agentMap.put("client9", "client9@ndsu.edu");

return agentMap;

public HashMap<String, String> agentAddressInfo(String agent, String agentAddress){

}

String address = agentAddress.substring(0, agentAddress.indexOf("@"));
address += "@ndsu.edu";
agentInfoMap.put(agent, address);

return agentInfoMap;

private static HashMap<String, String> agentinfoMap = new HéshMap<String,

String>();

}

68

LoadAgents.java

package jade.pmail.util;

import java,util. ArrayList;
import java.util. HashMap;

import java.util.List;

JAwk

* @author Hari Mukka
*/
public class LoadAgents {
public HashMap<String, List<String>> loadAgent() {
HashMap<String, List<String>> agentMap = new HashMap<String, List<String>>();
agentMap.put("clientl"”, agentList1());
agentMap.pu{("client2“, agentList2());
agentMap.put("client3", agentList3());
return agentMap;
}
public List<String> agentList1(){
List<String> -associatesList = new ArrayList<String>();
associatesList.add("client2");
associatesList.add("client4");
associatesList.add("client6");
associatesList.add("client8");
return associatesList;
}
public List<String> agentList2(){
List<String> associatesList = new ArrayList<String>();
associatesList.add("client1");
associatesList:add("clientS");

associatesList.add("client7");

69

associatesList.add("client9");
associatesList.add("client11");
return associatesList;

}

public List<String> agentList3(){
List<String> associatesList = new ArrayList<String>();
associatesList.add("client1");
associatesList.add("client3");
associatesList.add("(;lient7");
associatesList.add("client9");

return associatesList;

Scenario-1. PMailFrame.java
/%

* PMailFrame.java

* Created on Jan 23, 2010, 8:38:13 PM
*/
package jade.pmail.gui;

import jade.lang.acl. ACLMessage;
import jade.pmail.util.Facilitator;
import jade.pmail.util. PMailActions;
import jade.pmail.util. LoadAgents;
import jade.pmail.util. PMailAgentBehaviour;
import jade.pmail.util. PMailMessages;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.HashMap.;

import java.util.List;

70

import java.util. Vector;

import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;
import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree.IjefaultTreeModel;

import javax.swing.tree. TreeModel;

/***

* @author Hari Mukka
*/

public class PMailFrame extends javax.swing.JFrame {
/** Creates new form PMailFrame */
private PMailAgentBehaviour pMailAgent;

javax.swing. Timer timer = new javax.swing.Timer(5000, new ActionListener() {
public void actionPerformed(ActionEvent e) {
refreshMail();
pingAgentToCommunicate();
associated A gents.setModel(getAssociatesTreeModel());
if(respondToCommunicate()) {
sendButton.setEnabled(true);

telse{

sendButton.seiEnabled(false);

}

s
public PMailFrame(String agent) {

agent_name = agent;

pMailAgent = new PMai]AgentBeha\}iour(agent_name);

initComponents();

timer.start(); -

public void refreshMail() {
receivedMsgsTable.setModel(getRecievedMsgs());
System.out.printIn("Rrefreshing the mail");

public boolean ping A gentToCommunicate()
) _
if(pingA gentsMap!=null){
for (String- agentName : pingAgentsMap.keySet()) {
if(agentName.equalslgnoreCase(agent_name)){
String fromAgent = pingAgentsMap.get(agent_name);
pingReqFrom.setText(fromAgent);

return true;

}

return false;

public boolean respondToCommunicate() {

System.out.println("agent:"+agent_name + "flag:"+enableSendFlag);

if(respondAgentMap!=null){
for (String respondToAgentName : respondAgentMap.keySet()) {

if(agent_name.equalsIgnoreCase(respondToAgentName) && enableSendFlag
= 0){

String toAgent = respondAgentMap.get(respondToAgentName);

72

boolean isVisibleSend = true;

System.out.println("Print agent name to respond:"+toAgent);

System.out.println("Set this V-alue to Send button on
fromAgent:"+isVisibleSend);

return true;

}

return false;

} -

/** This method is called from within the constructor to
* initialize the form.

* %/

private void initComponents() {
pingReqFrom = new javax.swing.JTextField();

setDefaultCloseOperation(javax.swing. WindowConstants. DISPOSE_ON_CLOSE);
setTitle("PMail Outlook™);

receivedMsgsTable.setModel(getRecievedMsgs());
jScrollPanel.setViewportView(receivedMsgsTable);
sentMsgsTable.setModel(getSendMsés());
jScrollPane2.setViewportView(sentMsgsTable);

jTabbedPanel.addTab("Sent", jScrollPane?);

associatedAgents.setModel(getAssociatesTreeModel());
jScrollPane4.setViewportView(associated Agents);

73

public TreeModel getAssociatesTreeModel() {
DefaultMutableTreeNode root = new DefaultMutableTreeNode(agent_name);
LoadAgents agents = new LoadAgents();
HashMap<String, List<String>> agentMap = agents.loadAgent();
List<String> agentList = agentMap.get(agent_name);
if(agentList != null){
for (String agent : agentList) {

String ifAgentOnline = new Facilitator().getAgentAddress(agent);

DefaultMutableTreeNode child; .

if(ifAgentOnline !=null){

child = new DefaultMutableTreeNode(agent+" available");

Jelse{
child = new DefaultMutableTreeNode(agent+" offLine");
Yo
root.add(child);
}
telse { .

DefaultMutableTreeNode child = new DefaultMutableTreeNode("No associates");
root.add(child); A

} A

TreeModel model = new DefaultTreeModel(root);

return model;-

private void sendButtonActionPerformed(java.awt.event. ActionEvent evt) {
PMailActions action=new PMailActions();
String sub=enteredSubject.getText();
String to=enteredToAgent.getText();
String msg=enteredMessage.getText();
String response=action.compose(msg, to, agent_name, sub, pMailAgent);

if(response.contains("failed"))

JOptionPane.showMessageDialog(composePanel, response);
sentMsgsTable.setModel(getSendMsgs());
clearComposeFields();
sendButton.setEnabled(false);
btnPing.setEnabled(false);

private void btnGetAddressActionPerformed(java.awt.event. ActionEvent evt) {
String enteredAgent = enteredToAgent.getText();
agentAddress = new Facilitator().getAgentAddress(entered Agent);
entered Address.setText(agentAddress);
iflagentAddress == null || agentAddress.trim().equals("")){
J OptionPaI{e.showMessageDialog(null,
ACLMessage. AMS_FAILURE_UNAUTHORIZED);
telse{
btnPing.setEnabled(true);

private void btnPingActionPerformed(java.awt.event. ActionEvent evt) {
pingAgentsMap = pMail Agent.pingAgent(enteredToAgent.getText(),
enteredAddress.getText(), agent_name);

} -

private void btnRefreshActionPerformed(java.awt.event. ActionEvent evt) {
refreshMail();
pingAgentToComrﬁunicate();
if(respondToCommunicate()){
sendButton.setEnabled(true);

b
getAssociatesTreeModel();

75

private void pingReqYésActionPerformed(j ava.awt.event.ActionEvent evt) {
String responc_lToAgent = pingReqFrom.getText();
respondAgentMap = pMailAgent.pingAgent(respondToAgent,
enteredAddress.getText(),agent name);
i respondToCommunicate();
pingReqFrom.setText("");
pingAgentsMap.remove(agent_name);
enableSendFlag = 0;

private void pingReqNoActionPerforméd(java.awt.event.ActionEvent evt) {
JOptionPane.showMessageDialog(null,
ACLMessage. AMS_FAILURE_REQUEST ERROR);
pingReqFrom.setText("");
pingAgentsMap.remove(agent_name);
}
public DefaultTableMc;del getSendMsgs() {

List<PMailMessages> Ist = pMail Agent.getSendList();
Vector field = new Vector();

field.add("Agent");

field.add("Subject");

field.add("Date");

field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();
for (PMailMessages pmailMessages : Ist) {
Vector data = new Vector();

data.add(pmailMessages.getToAgent());

76

data.add(pmailMessages.getSubject());
data.add(pmailMessages.getDate());
data.add(pmailMessages.getMessage());
rowData.add(data); .

DefaultTableModel model = new DefaultTableModel(rowData, field);

return model;

public DefaultTableModel getRecievedMsgs() {
Vector field = new Vector();
field.add("Agent");
field.add("Subject");
field.add("Date");
field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

HashMap<Sitring, List<PMailMessagés>> receivedMap =
pMailAgent.getReceivedMap();
if(receivedMap.size() >0) {
List<PMailMessages> receivedList = receivedMap.get(agent_name);
System.out.println("agent name is:"+agent_name); ’
if(receivedList != null && receivedList.size()>0) {
for (PMailMessages pmailMessages : receivedList) {
if(agent_name.equalsignoreCase(pmailMessages.getToAgent())) {
Vector data = new Vector();
data.add(pmailMessages.getFromAgent());
System.out.println("the from agent:"+pmailMessages.getToAgent());
data.add(pmailMessages.getSubject());

77

data.add(pmailMessages.getDate());
data.add(pmailMessages.getMessage());
rowData.add(data);

DefaultTableModel model = new DefaultTableModel(rowData, ﬁeld);‘
return model; .
}
public void clearComposeFields() {
enteredToAgent.setText(null);
enteredAddress.setText(null);
enteredMessage.setText(null);
enteredSubject.setText(null);
enableSendFlag = 1;
}
private String agent_name;
private static HashMap<String, String> pingAgentsMap;
private static HashMapy<String, String> respond AgentMap;
private String agentAddress;

private static int enableSendFlag = 0,

Scenario-2. PMailFrame.java
/*

* PMailFrame.java*

* Created on Jan 23, 2010, 8:38:13 PM

*/

package jade.pmail.gui;

78

import jade.lang.ac-l.ACLMessage;

import jade.pmail.util.Facilitator;

import jade.pmail.util. PMailActions;

import jade.pmail.util. LoadAgents;

import jade.pmail.util. PMailAgent;

import jade.pmail.util. PMailMessages;
import java.awt.event.ActionEvent;

import java.awt.event. ActionListener;

import java.util.HashMap_;

import java.util.List;

import java.util. Vector;

import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;
import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree. Default TreeModel;

import javax.swing.tree. TreeModel;

/***

* @author Hari Mukka
*/
public class PMailFrame extends javax.swing.JFrame {

private PMailAgent pMailAgent;

private DefaultMutableTreeNode root;

javax.swing. Timer timer = new javax.sWing.Timer(SOOO, new ActionListener() {

public void actionPerformed(ActionEvent e) {
refreshMail();

pingAgentToCommunicate();

if(respondToCommunicate()){

79

sendButton.setEnabled(true);
telse{
sendButton.setEnabled(false);

}

s
public PMailFrame(Stﬁng agent) {

agent name = agent;

pMailAgent = new PMailAgent(agent_name);

root = new DefaultMutableTreeNode(agent _name);
initComponents();

timer.start();
}

public void refreshMail() {
receivedMsgsTable.setModel(getRecievedMsgs());
System.out.println("Rrefreshing the mail");

public void pingAgentToCommunicate()
{
if(pingAgentsMap!=null){
for (String agentName : pingAgentsMap.keySet()) {
if(agentName.equalsIgnoreCase(agent_name)){
String fromAgent = pingAgentsMap.get(agent _name);
addressReqFrom.setText(fromAgent);

80

public boolean respondToCommunicate() {
if(respondAgentMap!=null){
for (String respondToAgentName : respondAgentMap.keySet()) {
if(agent_name.equalslgnoreCase(respondToAgentName)&& enableSendFlag ==
U
enteredAddress.setText(new
Facilitator().getAgentAddress(enteredToAgent.getText()));

return true; -

}

}

return false;

}

public TreeModel getAssociatesTreeModel() {
LoadAgents agents = new LoadAgents();
HashMap<String, List<String>> agentMap = agents.loadAgent();
List<String> agentList = agentMap.get(agent_name);
String available = "";
if(availableAgents!=null && available Agents.contains(agent_name))
available = "Available";
System.out.printIn("available - "+available);
for (String agent : agentList) {
DefaultMutableTreeNode child = new DefaultMutableTreeNode(agent+"
"+available);
root.add(_child);
}

TreeModel model = new DefaultTreeModel(root);

return model;

81

private void sendButtonActionPerformed(java.awt.event. ActionEvent evt) {
PMailActions action=new PMail Actions();
String sub=enteredSubject.getText();
String to=enteredToAgent.getText(); "
String msg=enteredMessage.getText();
String response=action.compose(msg, to, agent_name, sub, pMailAgent);
if(response.contains("failed"))

JOptionPane.showMessageDialog(composePanel, response);

sentMsgsTable.setModel(getSendMsgs());
clearComposeFields();

sendButton.setEnabled(false);

private void btnGoFacToPingAgentActionPerformed(java.awt.event. ActionEvent evt) {
String enteredAgent = enteredToAgent.getText();
System.out.printin("Entered Agent:"+enteredAgent);
pingAgentsMap = new Facilitator().communicate Agent(entered Agent, agent_name);
if(enteredAgent == null || enteredAgent.trim().equals("")) { |
J OptionPane.showMessageDialog(hull,
ACLMessage. AMS_FAILURE UNAUTHORIZED);
} -
for (String string : pingAgentsMap.keySet()) {
System.out.printin(string);

}

private void btnRefreshActionPerformed(java.awt.event. ActionEvent evt) {
refreshMail();
pingAgentToCommunicate();
if(respondToCommunicate()){

sendButton.setEnabled(true);

82

private void pingReqYesActionPerformed(java.awt.event. ActionEvent evt) {
String respondToAgent = addressReqFrom.getText();
respondAgentMap = pMail Agent.pingAgent(respondToAgent,
entered Address.getText(),agent_name);
respondToCo;nmunicate();
addressRegFrom.setText("");
pingAgentsMap.remove(agent_name);

enableSendFlag = 0;

private void pingReqNoActionPerformed(java.awt.event.ActionEvent evt) {
JOptionPane.showMessageDialog(null, "Request Denied to communicéte");
addressReqFrom.setText(""); A
pingAgentsMap.remove(agent_name);

} -

private void sendButtonOnClick(java.awt.event.KeyEvent evt) {
sendButton.setEnabled(false);

}

public DefaultTableModel getSendMsgs() {

List<PMailMessages> Ist = pMailAgent.getSendList();
Vector field = new Vector();

field.add("Agent");

field add("Subject");

field.add("Date");

field.add("Message");

83

Vector<Vector> rowData = new Vector<Vector>();

for (PMailMessages pmailMessages : Ist) {
Vector data = new Vector();
data.add(pmailMessages.getToAgent());
data.add(pmailMessages.getSubject());
data.add(pmailMessages.getDate())~ ;
data.add(pmailMessages.getMessage());
rowData.add(data);

}

DefaultTableModel model = new DefaultTableModel(rowData, field);

return model,

)

public DefaultTableModel getRecievedMsgs() {
Vector field = new Vector();
field.add("Agent");
field.add("Subject");
field.add("Date");
field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

HashMap<String, List<PMailMessages>> receivedMap =
pMailAgent.getReceivedMap();

if(receivedMap.size() >0) {

List<PMailMessages> receivedList = receivedMap. get(agent_name);

System.out.println("agent name is:“+agent_name);

if(receivedList != null && receivedList.size()>0) {
for (PMailMessages pmailMessages : receivedList) {
if(agent_name.equalsIgnoreCase(pmailMessages.getToAgent())) {

. 84

Vector data = new Vector();
data.add(pmailMessages.getFromAgent());

System.out.printin("the ffom agent:"+pmailMessages.getToAgent());
data.add(pmailMessages.getSubject());
data.add(pmailMessages.getDate());
data.add(pmailMessages.getMessage());

rowData.add(data);

DefaultTableModel model = new DefaultTableModel(rowData, field);
return model,

}

public void clear_ComposeFields() {

entered ToAgent.setText(null);
entered Address.setText(null);
enteredMessage.setText(null);
entered Subject.setText(null);
enableSendFlag = 1;

\ -

void setAvailableAgents(List<String> agentsList) {
this.availableAgents = agentsList;

¥

private String agent_name;

private List<String> available Agents;

private static HashMap<String, String> pingAgentsMap;

private static HashMap<String, String> respondAgentMap;,

private static int enableSendFlag = 0;

85

Scenario-3. PMailFrame.java

* -

* PMailFrame java *

* Created on Jan 23, 2010, 8:38:13 PM
*/

package jade.pmail.gui;

import jade.lang.acl. ACLMessage;

import jade.pmail.util Facilitator;

import jade.pmail.util. PMailActions;

import jade.pmail.util. LoadAgents;

import jade.pmail.{rtil.PMailAgent;

import jade.pmail.util. PMailMessages;
import java.awt.event. ActionEvent;

import java.awt.event. ActionListener;

import java.util. HashMap;

import java.util. List;

import java.util. Vector;

import javax.swing.JOptionPane;

import javax.swing.table.DefaultTableModel;
import javax.swing.tree. DefaultMutableTreeNode;
import javax.swing.tree. Default TreeModel,;

import javax.swing.tree. TreeModel;

/* * %k
* @author Hari Mukka -
*/

public class PMailFrame extends javax.swing.JFrame {

private PMailAgent pMailAgent;
private DefaultMutableTreeNode root;

86

javax.swing.Timer timer = new javax.swing.Timer(5000, new ActionListener() {
public void actionPerformed(ActionEvent e) {
refreshMail();

pingAgentToCommunicate();
if(facilitator.getResponse() && enableSendFlag == 0){

enteredAddress.setText(facilitator.getAgent Address(enteredToAgent.getText()));
sendB.utton.setEnabled(true);
}else{

sendButton.setEnabled(false);

}
;s o

public PMailFrame(String agent) {
agent_name = agent;
pMailAgent = new PMailAgent(agent_name);
root = new DefaultMutableTreeNode(agent_name);
facilitator = new Facilitator(agent_name);
initComponents();

timer.start();

public void refreshMail() {
receivedMsgsTable.setModel(getRecievedMsgs());
System.out.printIn("Rrefreshing the mail");

public void pingAgentToCommunicate()

{

- 87

if(pingAgentsMap!=null){
for (String agentName : pingAgentsMap.keySet()) {
if(agentName.equalslgnoreCase(agent_name)){
String fromAgent = pingAgentsMap.get(agent_name);
addressReqFrom.setText(fromAgent);

}

public TreeModel getAssociatesTreeModel() {
LoadAgents agents = new LoadAgents();
HashMap<String, List<String>> agentMap = agents.loadAgent();
List<String> agentList = agentMap.get(agent_name);
String available = "";
if(availableAéents!=null && availableAgents.contains(agent _name))
available = "Available";
System.out.printIn("available - "+available);
for (String agent : agentList) { _
DefaultMutableTreeNode child = new DefaultMutableTreeNode(agent+"
"+available);)
root.add(child);
}
TreeModel model = new DefaultTreeModel(root);

return model;

} -

private void sendButtonActionPerformed(java.awt.event. ActionEvent evt) {
PMailActions action=new PMailActions();
String sub=enteredSinject.getText();
String to=enteredToAgent.getText();

88

String msg=enteredMessage.getText();

String response=action.compose(msg, to, agent_name, sub, pMailAgent);

if(response.contains("failed"))
JOptionPane.showMessageDialog(composePanel, response);

sentMsgsTable.setModel(getSendMsgs());

clearComposeFields(); |

sendButton.setEnabled(false);

private void facProcess'RquctionPerformed(java.awt.event.ActionEvent evt) {
String enteredAgent = enteredToAgent.getText();
System.out.printin("Entered Agent:"+entered Agent);
pingAgentsMap = facilitator.comxhunicateAgent(enteredAgent, agent_name);
if(entered Agent == null || entered A gent.trim().equals("")){
JOptionPane.showMessageDialog(null,
ACLMessage. AMS_FAILURE UNAUTHORIZED);

}
}

private void btnRefreshActionPerformed(java.awt.event. ActionEvent evt) {
refreshMail();

pingAgentToCommunicate();

private void pingReqYesActionPerformed(java.awt.event. ActionEvent evt) {
String respondToAgent = addressReqFrom.getText();
HashMap<String, Integer> reqFacAddressMap = new HashMap<String, Integer>();
reqFacAddressMap.put(respondToAgent, 1);
facilitator.setResponse(reqFacAddressMap);
addressReqFrom.setText("");

89

pingAgentsMap.remove(agent_name);
enableSendFlag = 0;
) -

private void pingReqNoActionPerformed(java.awt.event.ActionEvent evt) {
JOptionPane.showMessageDialog(null, "Request Denied to communicate");
addressReqFrom.setText("");

pingAgentsMap.remove(agent _name);

private void sendButtonOnClick(java.awt.event.KeyEvent evt) {
sendButton.setEnabled(false);

public DefaultTableModel getSendMsgs() {
List<PMailMessages> Ist = pMailAgent.getSendList();
Vector field = new Vector();
field.add("Agent");
field.add("Subject");
field.add("Date");
field.add("Message");

Vector<Vector> rowData = new Vector<Vector>();

for (PMailMessages pmailMessages : Ist) {
Vector data = new Vector();
data.add(pmailMessages.getToAgent());
data.add(pmailMessages.getSubject());
data.add(pmailMessages.getDate());
data.add(pmailMessages.getMessage());
rowData.add(data);

90

DefaultTableModel model = new DefaultTableModel(rowData, field);

return model;

public DefaultTableModel getRecievedMsgs() {

Vector field = new Vector();
field.add("Agent");
field.add("Subject");
field.add("Date");
field.add("Message");

Vector<Vector> roWData = new Vector<Vector>();
HashMap<String, List<PMailMessages>> receivedMap =
pMailAgent.getReceivedMap();
if(receivedMap.size() >0) {
List<PMailMessages> receivedList = receivedMap.get(agent_name);
System.out.printin("agent name is:"+agent_name),
if(receivedList = null && receivedList.size()>0) {
for (PiVIailMessages pmailMessages : receivedList) {
if(agent_name.equalslgnoreCase(pmailMessages.getToAgent())) {
Vector data = new Vector();
data.add(pmailMessages.'getFromAgent());
System.out.println("the from agent:"+pmailMessages.getToAgent());
data.add(pmailMessages.getSubject());
data.add(pmailMessages.getDate());
data.add(pmailMessages.getMessage());
rowData.add(data); '

91

DefaultTableModel model = new DefaultTableModel(rowData, field);
return model;
})
public void clearComposeFields() {
enteredToAgent.setText(null);
entered Address.setText(null);
enteredMessage.setText(null);
enteredSubject.setText(null);
enableSendFlag = 1;
}
void setAvailableAgents(List<String> agentsList) {
this.availableAgents = agentsList;
}
private String aéent_name;
private List<String> availableAgents;
private static HashMap<String, String> pingAgentsMap;
private static int enableSendFlag = 0; .

private final Facilitator facilitator;

92

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103

