
VIRTUAL-EXPERIMENT-DRIVEN PROCESS MODEL (VEDPM)

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Chin Aik Lua

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Computer Science

April 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

Virtual-Experiment-Driven Process Model (VEDPM)

By

Chin Aik Lua

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Lua, Chin Aik, Ph.D., Department of Computer Science, College of Science and

Mathematics, North Dakota State University, April 2010. Virtual-Experiment-Driven

Process Model (VEDPM). Major Professor: Dr. Kendall Nygard.

Computer simulations are the last resort for many complex problems such as swarm

applications. However, to the best of the author's knowledge, there is no convincing work

in proving ''What You Simulate ls What You See" (WYSIWYS). Many models are built

on long, subjective code that is prone to abnormalities, which arc about corrupted virtual

scientific laws rather than software bugs. Thus, the task of validating scientific simulations

is very difficult, if not impossible. This dissertation provides a new process methodology

for solving the problems above: Virtual-Experiment-Driven Process Model (VEDPM).

VEDPM employs simple yet sound virtual experiments for verifying simple, short virtual

laws. The proven laws, in turn, are utilized for developing valid models that can achieve

real goals. The resulted simulations (or data) from proven models arc WYSIWYS. Two

complex swarm applications have been developed rigorou~ly and successfully via

VEDPM--proving that VEDPM is workable. In addition, the author also provides

innovative constructs for developing autonomous unmanned vehicles--swarm software

architecture and a modified subsumption control scheme, and their design philosophies.

The constructs are used repeatedly to enable unmanned vehicles to switch behaviors

autonomously via a simple control signal.

Ill

ACKNOWLEDGEMENTS

I would like first to thank my family who supported my journey through NDSU,

especially my parents, Lua Keap Meow and Lim Teng Lan; my brothers, Lua Tiong Aik,

Lua Toong Aik, and Lua Beng Ex; and my sister, Lua Wan Chin. I also want to thank Dr.

Kendall E. Nygard, my academic advisor, for his support all these years, Dr. Karl R.

Altenburg for his research advice, and my committee members, Dr. Weiyi (Max) Zhang,

Dr. Juan (Jen) Li, and Dr. Chao You.

IV

TABLE OF CONTENTS

ABSrfRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... x

LIS'f OF FIGURES .. xi

CHAPTER 1. INTRODUCTION ... 1

1.1. Motivation .. I

1.2. The Objectives of This Dissertation .. 3

1.3. Working Definitions for the Terms Used4

1.4. Sum1nary of Each Chapter .. 6

CHAPTER 2. BACKGROUD AND RELATED WORK .. I I

2.1. Traditional Process Models .. 12

2.1.1. Ad-hoc Model .. 12

2.1.2. Waterfall Model ... 12

2. 1 .3. Iterative Model ... I 3

2.1.4. Other Models--Combinations of Waterfall and Iterative 15

2.1.5. Prototyping .. 15

2.1.6. Spiral Model .. 16

2.1. 7. Agile Methods .. 17

2.1.8. Reuse Model .. 17

2. I. 9. The Exploratory Model .. I 8

2.1.10. Summary of Traditional Process Model .. 19

2.2. Traditional Verification and Validation (V&V) .. 19

V

2.2.1. Reviews, Inspections, and Walkthroughs .. 20

2.2.2. Testing ... 20

2.2.3. Summary of Traditional V&V .. 22

2.3. Backgrounds of Swarm Simulations and Unpiloted Vehicles 23

2.3. l. Summary of Swarm Simulations and Unmanned Vehicles 25

CHAP'l'ER 3. PREVIOUS WORK ... 26

3.1. The Overviews of Two Previous, Related Papers .. 26

3.2. The Proof Process of Virtual Experiment Layer in Solar Sails 28

3.3. Empirical Observation and Experiments ... 30

3.4. Gravity and Light Force in EA ... 32

3.4.1. The Model Design .. 32

3.5. Scientific Simulations of Solar Sails ... 34

3.6. Testing Universal Gravitational Constant Using Proven Code 36

CHAPTER 4. VIRTUAL-EXPERIMENT DRIVEN PROCESS MODEL (VEDPM)41

4.1. Virtual-Experiment-Driven Process Model (VEDPM)41

4.1.1. Phase I: Virtual Experiments42

4.1.2. Phase II: Verify Models44

4.1.3. Phase Ill: WYSIWYS Simulations .. .44

4.2. A Simple Example Showing How VEDPM Works in Three Phrases45

4.3. Critical Thinking in Developing Navy Swarms and Tetwalkers via VEDPM 50

4.3.1. Virtual Laws and Experiments in Navy Swarms 50

4.3.2. Virtual Laws and Experiments in Tetwalkers .. 51

4.4. Strengths and Weaknesses of VEDPM ... 52

VI

CHAPTER 5. SWARM BEHAVIOR DESIGN .. 54

5.1. General Swarm Software Architecture .. 55

5.2. Modified Swarm Behavior Control Scheme .. 56

5.3. Minimalist Swarm Design Philosophy .. 57

5.3.1. Minimalist for Hardware .. 57

5.3.2. Minimalist for Software ... 58

5.3.3. Minimalist for Heuristics .. 58

5.3.4. Minimalist for Virtual Laws ... 58

5.3.5. Minimalist for Goals .. 58

5.4. Swarm Software for Real-World Applications .. 59

CHAPTER 6. VEDPM APPLICATION 1--NAVY SWARMS ... 61

6.1. Introduction to Navy Swarms ... 61

6.2. Navy Swarms' Design Strategies .. 63

6.2.1. Virtual Experiments ... 63

6.2.2. Virtual Forces ... 64

6.2.3. Autonomous Behaviors .. 64

6.2.4. Minimalist .. 65

6.3. The Virtual Experiment Setup for Navy Swarms .. 65

6.4. Switchable Swarm Behavior Model Development via Proven Virtual Forces ... 71

6.5. Vector Algorithms in Behaviors ... 74

6.5.1. Vector Algorithm for AUAV-follow-CUAV Behavior 75

6.5.2. Vector Algorithm for AUAV-follow-target Behavior 75

6.6. Navy Swarms' Strengths and Weaknesses ... 76

Vil

6.7. Conclusion for Navy Swarms ... 77

CHAPTER 7. VEDPM APPLICATION 11--NASA TETWALKERS 78

7.1. Introduction ofTetwalkers .. 78

7.2. Background of Tetwalkers .. 79

7.3. Tetwalkers' Design Strategies ... 80

7.3.1. Virtual Experiment ... 80

7.3.2. Virtual Forces and Physical Laws ... 81

7.3.3. Autonomous Behaviors .. 81

7.3.4. Center of Gravity (CG) ... 82

7.3.5. Frictions ... 82

7.3.6. Vectorized Goals .. 83

7.3.7. Tetwalkers' Group Behaviors ... 84

7 .3.8. Mini1nalist .. 84

7.4. Tetwalkers' Simulation and Software Architecture .. 85

7.5. Validation ofTetwalker's Virtual Strut Forces via Virtual Experiments 89

7.5.1. Proving Virtual Expansive Force via Virtual Experiment 90

7.5.2. Proving Virtual Contractive Force via Virtual Experiment.. 92

7.5.3. Proving Virtual Expansive Force via CG Virtual Experiment 93

7.6. Proven Short Source Code via Valid Strut Forces ... 97

7.7. A Successful Gait Behavior Model Developed via VEDPM 98

7.8. Mathematical Constructs--Vectors and Trigonometry 101

7.9. WYSIWYS Simulation Demos ... 107

7.10. Strengths and Weaknesses .. 112

VIII

7.11. Conclusion for Tetwalkers .. 112

CHAPTER 8. CONCLUSION AND FUTURE WORK. ... 113

8.1. Summaries on Objectives ... 113

8.2. Future Work of Universal Gravitational Constant ... 115

8.3. Future Work of Navy Swarms .. 116

8.4. Future Work of Tetwalkers ... 116

8.5. Conclusion of Dissertation .. 116

REFERENCES CITED .. 118

IX

LIST OF TABLES

Table Page

1. Numerical Evidence Verifying Gravity Equation .. 31

2. Relative Errors Obtained by Breaking Equations40

3. Numerical Data Confirming Acceptable Accumulated Errors in Radius 69

4. Numerical Values for Expanded Regular 1-Tet .. 92

5. Numerical Values for Shrinked Regular l-Tet .. 94

6. Numerical Confirmation of CG .. 97

X

LIST OJ? FIGURES

Figure

L Main Characteristics of VEDPM .. 2

2. Swarm Software Architecture and Subsumption Control Scheme 3

3. The Self-explanatory Steps of Waterfall Model .. 13

4. The Self-explanatory Steps of Iterative Model .. 14

5. Sail's Vectors in .lava3D .. 30

6. Light Force Components .. 32

7. Four Ways in Turning Sail's Surface .. 34

8. Light Force Reduces (Left) or Increase (Right) Sail's Velocity 35

9. Steps of VEDPM .. 42

10. A Naive UAV with Forward Thrust and Right Torque46

11. Virtual Experiment Conducted by Reader B .. .47

12. Swarm Software Architecture ... 55

13. Subsumption Control Scheme .. 56

14. Three Virtual Forces of UAV ... 66

15. Counterclockwise Circling with Left Torque and Forward Thrust.. 66

16. Visual Confirmation of Near Circle Motion .. 68

17. Swarm Architecture .. 71

18. Subsumption Control Scheme for CUAV ... 72

19. Subsumption Control Scheme for AUA V ... 72

20. Visual Confirmation of Navy Swarms· Scenarios ... 73

21. Adaptive Behavior via a Remote Signal ... 74

XI

22. Software Architecture for Expanding or Contracting Struts 86

23. Modified Subsumption Control Scheme for Tetwalkers .. 86

24. VEDPM Rejecting the Failed 4-Tef s Gaits .. 88

25. Virtual Experiment for Strut Expansions .. 91

26. Visual Confirmation of Enlarged Regular Tetrahedral .. 91

Virtual Experiment for Strut Contractions .. 93

28. Visual Confirmation of Shrinked Tetrahedral ... 94

29. Visual Confirmation of cc:; .. 96

30. Perfect Shape and Gaits of Imaginary Tetwalker .. 99

31. Virtual Tet Chasing Imaginary Tel ... 99

32. One Complete Gait of Shadow Chasing .. 100

33. Virtual Experiments on both Virtual & Imaginary Tets ... 109

34. A Tet without Nodes for Fast Simulation .. 110

35. Tet Groups Following Fial Waypoints .. 110

36. Tet Groups Following Curved Waypoints ... 11 l

XII

CHAPTER I. INTRODUCTION

I.I. Motivation

The main motivation of this dissertation is to propose a sound process methodology

for developing scientific simulations. This methodology utilizes the scientific method in

virtual experiments for validating complex simulations such as a swarm of Unmanned Air

Vehicles (UAVs) tlying in proximity of each other. The verified simulations are realistic-

that is, What You Simulate ls What You See (WYSIWYS). The current process models fail

to address the unique problems posed by scientific simulations. Climate scientists, for

instance, cannot ask the critics to accept their climate simulations due to the following

doubts:

• How can the "climate'' scientists, who are not programmers, prove that their

simulations are reflecting real-world's sciences?

• How can they be sure the simulation code is not corrupted'?

• How can they ensure the virtual climate models are sound?

The climate simulations address a serious global crisis and the researchers spent

countless hours in perfecting their models. Their effort may not be rewarded if one cannot

tell the differences between the models and animations from Pixar studios.

Scientific simulations are important tool and often the last resort for many complex

problems. Despite that, there are no rigorous steps in applying the scientific method to the

virtual world. The real experiments implementing the scientific method have the following

characteristics:

• The experimental variables must be isolated, tested, and measured. For

unambiguous result, each variable, if separable, is targeted in a unique

laboratory setting demanded by its properties.

• The data obtained from the experiments are related to the variable being

examined.

• Unexpected results are the norm of experiments and experimenters must

modify their models according to new discoveries.

• The results are repeatable.

A new process methodology, called Virtual-Experiment-Driven Process Model

(VEDPM), is proposed by this author to mimic real experiments and utilize the scientific

method. VEDPM, depicted in Figure 1, has the following unique characteristics that are not

found in current process models:

Abort 1
. Virtu~v, I

ExperimeQ1§
• I

Feedbacks
--- ---------------,

Proven
Laws
~

V~tift
JYJ9cJ~t~
,_

Proven
Models

Figure 1. Main Characteristics of VEDPM

r r..,NYSWYS' J~ t ~
, ~fmulatdorrs.

1. Virtual experiments--before any virtual model is developed, VEDPM

emphasizes the virtual laws (e.g. laws that define forces) that govern a model

must be identified and proven in virtual experiments. If the laws or

experiments are not identified or constructed soundly, the relevant simulation

is then not feasible--that is, the experimenters can abort the simulations in this

phase to save costs. Simple and innovative virtual experiments are designed

for proving each law. The proven laws should be few in number and short in

code, and none of them is discarded or modified.

2

2. Verify models--they emphasize that the model cannot create its own laws but

can utilize all the proven ones. If the model follows them faithfully, it is then

proven.

3. WYSIWYS simulations--they highlight that the proven model, in turn,

provides high-fidelity simulations and/or data as well as feedbacks to improve

the model.

VEDPM is discussed more in depth in Chapter 4. Two complex real swarm

applications (Chapter 6 & 7), utilizing the principles of VEDPM, have been developed

successfully to support the claims of VEDPM. Swarm behaviors (Chapter 5) proposed by

the author, consisting of swarm software architecture and a subsumption control scheme,

are also needed for the applications. The software architecture from the left diagram of

Figure 2 describes how behavior models are integrated tightly with virtual experiments for

validation. The behaviors are refined into hierarchical ones and controlled by the

subsumption scheme as shown in the right diagram.

S e r,s o rs

l
Bnl1.iv1or-s I

M i lll('IJ\/t:.'r'S ! Fee acks

Vrrtl1~1I r xI1c-rI111cI1ts

Si1,111l.iti o 11s ___ _,

N 11 • Beh..tv10,-

Second BPhr1v1or

F11·st Bt>'1.tv1or

- i

7 - ~
M . tlH .. ' llVl.'f° ••

Figure 2. Swarm Software Architecture and Subsumption Control Scheme

The author utilized the constructs above repeatedly to develop the first switchable

swarm behaviors as demonstrated in Chapter 6 and robust Tetwalkers ' behaviors in

Chapter 7. Other contributions are design philosophies of VEDPM and swarm behaviors.

1.2. The Objectives of This Dissertation

The author wants to achieve the following objectives:

3

1) To show that VEDPM is a powerful tool for proving scientific simulations.

2) To demonstrate that scientific method like virtual experiments can be

constructed via VEDPM.

3) To illustrate virtual laws need innovative minds to create.

4) To prove that VEDPM is feasible via two applications.

5) To build WYSIWYS simulations.

6) To provide general software architecture and a modified subsumption control

scheme for swarm behavior model.

7) To demonstrate that the autonomous behaviors can be switched via a simple

control signal.

8) To show that emergent intelligence is possible at swarm level.

9) To explain that behavior models coupled with VEDPM are powerful tools for

developing applications for unmanned vehicles.

1.3. Working Definitions for the Terms Used

Definitions are important to avoid unnecessary arguments and enhance the clarity

of ideas presented here. For the purpose of this dissertation, the author is not concerned

about other strict definitions expressed or stated from experts or literature. The author

defines them "loosely" to convey the main ideas to readers:

1. Virtual experiments--these are the central concept of this dissertation on how

to mimic real experiments with scientific method being applied soundly to

the virtual environments.

2. Virtual-Experiment-Driven Process Model (VEDPM)--a new process

methodology to ensure a realistic simulation.

4

3. Virtual laws--they are computing version of physical laws with discrete

properly. They are proven via virtual experiments.

4. Emergent intelligence--the overall group behaviors appear to be

"intelligence" though the participants may not aware of it. An individual

goose, for example, takes local cues in lining up a ±lying formation from

neighboring geese, and the desired formation seems '•intelligently.'' The

author does not believe the swarm intelligence is comparable to human's

one.

5. Autonomous behaviors--these robust and independent actions are not

preplanned.

6. Local cues--they are hints provided locally and cannot be foreseen by central

planners. The geese, for instance, get local hints from neighboring ones in

±lying formation, which may not be visible to the farthest member geese of

the group.

7. Reactive behaviors--they are uncontrolled rellexive actions like hands recoil

from hot surfaces. For swarm agents, these can be behaviors induced

automatically from sensors or control signals.

8. Software verification and validation (V &V)--if the developed software meets

right requirements, then validation is achieved. If the right product is

produced, then verification is done. The differences between verification and

validation are unimportant for practitioners except to the theorist. For the

purpose of this dissertation, the author uses these terms to mean the laws or

models have been proven via VEDPM. It serves no purpose to verify the

5

correctness of source code in VEDPM as the ·'right" code may not produce

the right laws. For this reason, the traditional V &V are not employed in

VEDPM. The author, instead, introduces virtual laws and experiments as

testing tools for proving the source code.

9. Swarm software agents--software agents have many definitions (1, 3, 4,

5]. The author defines the term loosely for individual software processes that

represent individual autonomous UAVs.

10. What You Simulate Is What You See (WYSIWYS)--a realistic scientific

simulation governed by proven virtual laws via virtual experiments for

scientific research. It is directly opposite to Pixar 's animations.

11. Scientific simulations--they are special kind of simulations where sound

virtual laws can be mimicked from existing real physical laws.

12. Process models--they are theoretical software development methodologies on

how software is developed or tested effectively in fulfilling customers' and

users' requirements. So far, the methodologies are arts and not sciences.

13. Unmanned vehicles--these are autonomous machines that can walk

(Unmanned Land Vehicles, ULVs), tly (Unmanned Air Vehicles, UAVs),

swim (Unmanned Water Vehicles, UWVs), and do space flight (Unmanned

Space Vehicles, USVs).

1.4. Summary of Each Chapter

Chapter 2 introduces three main types of traditional software process models: Ad

Hoc, Waterfall, and Iterative. Ad Hoc is the most intuitive: one just writes the code, runs

the program, and hopes for the best. Waterfall is a top-down process model that plans ewry

6

development step ahead of actual work. Iterative model will develop core software first,

then adds more functions and improves the previous software in next iterative step. The

rest of the models such as Prototyping are combinations of Waterfall and Iterative process

models. In the chapter, the author argues that none of the process models addresses the

unique problems posed by scientific simulations than VEDPM. The model closer to

VEDPM is Ad Hoc in its unrestrictive and intuitive approach to problem solving. It,

nevertheless, lacks virtual experiments for proving virtual laws, which in turn, prove the

models and simulations. Some proponents of Exploratory Model insist that scientific

simulations are part of the model. However, like Ad Hoc, Exploratory does not emphasize

scientific method, virtual laws, and experiments. Moreover, it is more restrictive than Ad

Hoc model. Chapter 2 continues to introduce the traditional V & V method for code testing.

The author argues that the abnormalities of virtual laws are the issue and not the code per

se. In addition, the traditional reviews, inspections, and walkthroughs are not concerned

with the abnormalities. As such, VEDPM excludes traditional V &V since they are

ineffective for proving realistic scientific simulations. The last part of Chapter 2 is about

the background of swarm simulations and unmanned vehicles, and the problems facing

them. In particular, there is no tool for verifying the simulations. VEDPM was inspired by

the validating problem facing swarm simulations, which is the topic of Chapter 3.

Chapter 3 explains why two previous works are important to this dissertation. One

paper has many weaknesses that the author wants to avoid in the dissertation. The other one

has strengths that the author wants to include. The Solar Sail paper is the '·prototype'' of

VEDPM. It is helpful to discuss in great length on how virtual laws are proven rigorously

via virtual experiments in that paper. Most importantly, the author shows the creative

7

process in selecting, modifying, and validating the well-accepted physical formulas. The

author demonstrates that the product of the paper, the proven gravitational code, can be

utilized to determine the significant digits of universal gravitational constant--a problem

that is difficult to solve in real experiments. The ability of finding simple, sound equations

is an important skill for VEDPM.

Chapter 4 stresses that VEDPM is the main objective of this dissertation. It has

three main parts: virtual experiments, verify models, and WYSIWYS simulations. Virtual

experiments are difficult idea to convey as some developers may think they are not

necessary. The examples of climate and swarm simulations, nonetheless, suggest

otherwise. The output of virtual experiments is proven laws, which in turn, are utilized to

verify models. The proven models provide WYSIWYS simulations. The WYSIWYS

feedbacks are used to improve the law or for adding next law. The experimenters can abort

VEDPM if they fail to discover any law. One interesting requirement of VEDPM is that all

proven laws must be used! The logic for that is subtle: nature does not hide all facts, but

programmers do, intentionally or unintentionally. Section 4.2 explains the importance of

critical thinking in designing virtual laws and experiments for Navy Swarms and

Tetwalkers. Finally, the section lists the strengths and weaknesses of VEDPM.

Chapter 5 starts with swarm software architecture consisting of sensors, behaviors,

maneuvers, virtual experiments, and simulation. The virtual experiment layer provides the

proven forces to drive the behaviors. For a behavior model, sensory input served as a

trigger to activate a behavior. Behaviors layer decides the maneuvers but the proven forces

from virtual experiments layer animate the requests. The behaviors layer can be expanded

into more specific hierarchical behaviors that are controlled by modified subsumption

8

scheme. The scheme consists of a state and behaviors that has higher priority for higher

behavior. The autonomous actions are resulted from the hierarchical behaviors and their

priorities. The state, however, can interrupt them according to its goals. For switchable

behaviors, shown in Navy Swarms, a UAV can have more than one control schemes that

are triggered from a remote signal. The chapter continues to introduce minimalist as the

preferred design philosophy in several issues. The behaviors coupled with principles of

VEDPM are developed successfully for two real applications described in the next two

chapters.

Chapter 6 demonstrates how three virtual forces, defined by the respective virtual

laws, are created and proven by virtual experiments via VEDPM. The chapter explains an

innovative and sensible virtual experiment is required for proving each force supported by

reliable simulations and numerical data. The proven forces arc fully defined by 9 Java code

statements, which are easy to comprehend and refute by critics. Despite the short, simple

code, it can drive complex Navy Swarms' scenarios depicted at the end of the chapter. The

WYSIWYS simulations prove that the decentralized behavior model can achieve

complicated tasks including switching behaviors for different goals triggered by a remote

signal without losing dynamic local maneuvers of UAVs. The simulations conclude that

numerous, inexpensive, and autonomous swarm munitions are a threat to Navy carriers.

Chapter 7 describes another successful application via VEDPM--Tetwalkers that

are Unmanned Land Vehicles (ULVs). Unlike the UAV's engine, the Tetwalkcr's strut

forces change only its shape. Tetwalker moves zigzagly by shifting its CO toward a

direction. Since each strut force may not be in the direction of motion, the design of

Tetwalkers' behaviors is more demanding than UAVs'. The chapter describes how virtual

9

strut forces are proven rigorously by virtual experiments supported with reliable

simulations and numerical data. Like Navy Swarms, the code for proven forces is short

with only 6 Java statements. The chapter explains in detail how the proven forces help to

discover an effective and proven behavior model that can achieve goals. The author wants

to emphasize that without VEDPM, it is difficult to verify Tetwalkers' gaits. The

WYSIWYS simulations demonstrate that Tetwalkers can explore Mars autonomously.

Using VEDPM, this feasibility is known today rather than 30 years later!

Chapter 8 concludes this dissertation, which discusses whether the objectives listed

in Chapter 1 have been met as well as future work.

10

CHAPTER 2. BACKGROUD AND RELATED WORK

The first part of the chapter introduces the traditional process models. They are not

suited for scientific simulations as there is no methodology to validate the sciences (not

code per se) being simulated. There are three main types of process models--Ad-hoc,

Waterfall, and Iterative. The rest of the models combine or expand some of the elements of

the three models. And none of them deals with rigorous requirements of scientific

simulations.

The second part is about how to ensure software correctness and meet users' or

customers' requirements. The traditional test methods are verification and validation,

which consist mainly of reviews and code testing. These methods do not address

misrepresentation of scientific facts in simulations but errors in code or requirements.

Scientific simulations are about discovery that does not have predefined requirements.

The third part discusses the swarm literature and unmanned vehicles. The best

known swarm simulator is initiated by Santa Fe Institute (SFI), New Mexico [8). Though

the project was intended for ·'scientific" investigation in emergent behaviors of swarms, it

suffers the same weakness as climate simulator mentioned above--that is, no methodology

for validating simulations. Moreover, the software is overly complex and designed for all

kinds of swarm applications. The author believes that each scientific simulation, like real

world counterpart, has unique virtual laws and experiments waiting to be discovered. Thus,

it makes no sense to have a general scientific simulator. Most swarm simulators are closer

to animations than scientific endeavors. To the best of author's knowledge, there is no

work in applying the modified subsumption control scheme to unmanned vehicles. In

addition, there is no work like VEDPM for validating all scientific simulations.

11

2.1. Traditional Process Models

There are three main types of process models: Ad-hoc, Waterfall, and Iterative.

Each is explained in more detail in the following subsections:

2.1.1. Ad-hoc Model

This model is simply trial and error. It was used by many early software

developments. It relies entirely on the skills and experience of the individual staff members

performing the work. The feedbacks are mainly from the developers themselves. The main

advantage of this model is to provide developers the greatest freedom in finding the

solutions to the vague requirements, which are often changed with new results from

running the programs. The main disadvantage is that the quality of the program is poor

since it changes often with new findings. This model has one element '•similar'' to VEDPM

than others is the need of experimenting which code works and which does not. Unlike

VEDPM, it does not support scientific method, virtual laws and experiments.

2.1.2. Waterfall Model

The main principles of Waterfall (6], as shown in Figure 3, are the following:

• The project is divided into sequential phases with directions of feedbacks

represented as arrows. Some overlaps between phases are allowed.

• It emphasizes on planning, schedules, and budgets.

• lt uses formal reviews and extensive documentations to control the software

quality.

• Approvals are needed for ending or initiating each phase.

The main strengths provided by Waterfall:

• The orderly phases and strict controls ensure quality, reliability, and

12

maintainability of the software.

• The development progresses can be measured.

• With well planning, it conserves resources.

L_ S<lftvv,1r,1 r~- 'll••·· ,,,, ,,1 _,../ V ,1,,1 t1jt)ll

r,,-..-l11, I I,, ''I'' ,,.,-/ / V, ,,f,, 111•>11

[),•1 Iii, • f I l ,, 111 _,,,./" V,•1 lfr, l11C"Jfl I-
t

l_
1_

Figure 3. The Self-explanatory Steps of Waterfall Model

The main weaknesses of Waterfall are listed below:

• Real projects rarely follow the sequential flow required by the model.

• Changes that occur late in the life cycle are more expensive.

• The model requires users to identify their requirements early.

Waterfall is most appropriate for the following applications:

• Applications are large, expensive, and complex.

• Applications have clear goals and solutions.

• Applications' requirements are clear.

However, they are not appropriate for the following applications:

• Large applications with constant changing requirements.

• Real-time applications.

• Event-driven applications.

2.1.3. Iterative Model

Iterative Model [6], as shown in Figure 4, addresses the main weaknesses of

Waterfall with the following principles:

13

• Feedbacks are allowed between requirements and iterations.

• It has smaller, incremental releases.

• It can accommodate changes occurred later in development.

Software Development Iterations

Figure 4. The Self-explanatory Steps of Iterative Model

The main strengths provided by Iterative Model:

• Each release provides faster results with less upfront costs.

• Valuable feedbacks can be obtained early.

• It does not require clear requirements from the start.

The main weaknesses of Iterative Model are the following:

• Users need to be actively involved throughout the project.

• Communication and coordination skills take center stage in project

development.

• Informal requests for improvement lead to control and quality issues.

Iterative Model is most appropriate for the following applications:

• Project objectives are unclear.

• Functional requirements may change frequently and significantly.

• Projects that need to be implanted immediately.

14

However, it is not appropriate for the following applications:

• Project objectives are clear.

• Projects that are mainframe-based or transaction-oriented batch systems.

• The future scalability of design is critical.

2.1.4. Other Models--Combinations of Waterlall and Iterative

Other models such as Prototyping, Spiral Model, Agile Methods, Reuse Model,

Exploratory Model, etc. use elements found in Waterfall and/or Iterative. They are

discussed briefly in the following paragraphs.

2.1.5. Prototyping

It was developed on the assumption that it is often difficult to know all of the

requirements at the beginning of a project. Typically, users know the objectives of the

project but the details of data, system features, and capabilities. A throwaway prototype

code is often developed for users' feedbacks, and entire new programs will be developed

once the requirements are identified. Each release (Iterative) is a small-size Waterfall.

Prototyping Models allow development without up-front requirements and developers can

build simple version of the system and present it to customers, and the prototype code is

often thrown away.

Prototyping has the following steps:

1. Requirements definition--it is similar to the conceptual phase of Waterfall,

but not as comprehensive.

2. Design--once the initial requirements are collected, the prototype is rapidly

developed.

3. Evaluation--the prototype is presented to the customer for comments and

15

improvements.

4. Refinement--new requirements coJlected from customers are studied and the

prototype is refined further.

The main problems of Prototyping are the following:

• lt can give customers a false impression that prototype is the finished product

that has met all requirements.

• Due to rapid development, Prototyping can lead to poorly designed systems.

Other variation of Prototyping is Rapid Application Prototyping, which emphasizes

strict time limits on each release and relies heavily on rapid application tools for quick

development

2.1.6. Spiral Model

The main feature of this model is risk assessment for each cycle of release

(iterative) that uses steps in Waterfall. It was designed to include the best features from

Waterfall and Prototyping with risk assessment. Similar to Prototyping, an initial system is

developed, and then repetitively modified based on input from customers. Unlike

Prototyping, each development uses steps similar to Waterfall. Risk assessment is

important step to evaluate whether the project should continue. The Spiral has the

following steps:

l. Project goals--similar to Waterfall's conceptual phase, the goals or obstacles

are identified, and alternatives are determined.

2. Risk assessment--the associated risks and alternatives are identified and

evaluated.

3. Development--detailed requirements are determined and code pieces are

16

developed.

4. Management--customers can analyze the results and feedbacks are given to

developers.

Unlike earlier models, the risk assessment component provides a valuable tool in

assessing software development risks in software processes. The costs, however, can be

more, and risks sometimes cannot be evaluated precisely.

2.1.7. Agile Methods

These methods do not focus on processes, documents, task distribution and

development phases but on individuals, working software, customer collaboration and

responsiveness to changes according to a plan. They use short iterations and working

together with customers to achieve better communication, maneuverability, speed and cost

savings. The main problem of the methods is that customers may not want a fully

cooperating relationship with the team due to demanding work from them.

2.1.8. Reuse Model

This process reuses existing software components for new projects. It is particular

suited for object oriented computing environments, which is popular in today's software

development. The reused modules are maintained in software library that can be copied by

any projects. It has the following steps:

• Definition of requirements--initial system requirements are collected.

• Definition of objects--the objects are identified.

• Collection of objects--scan the software libraries for potential reused objects.

• Customized objects--if reused objects are not suitable, create new ones.

• Create prolotype--a prototype created and/or modified using the necessary

17

objects.

• Prototype evaluation--the prototype is evaluated to determine if it adequately

meet the requirements.

• Requirements refinement--requirements are further refined as a more detailed

version of the prototype is created.

• Objects refinement--objects are refined to reflect the changes in the

requirements.

The main problems of Reuse model are the following:

• It is limited to object-oriented development environments.

• The reused components are developed in other systems under certain

circumstances. As circumstances change beyond the limits of the model, the

results from using it are no longer predictable.

2.1.9. The Exploratory Model

In some cases, it is difficult to identify a system's requirements as much of the

research is based on guesswork and estimation. Like Ad-hoc model, there are no precise

specifications. Exploratory is simple and has the following steps:

I. Initial development--a brief system's requirements are created for a

rudimentary starting point.

2. System construction--a system is developed or modified based on available

information.

3. System test--the system is tested to see the results and on to improve them.

4. System Implementation--after many iterations, the system is finished if the

results are satisfactory.

18

The main problems of Exploratory Model are listed below:

• It requires high-level programming language such as LISP.

• It is hard to predict the costs and cost effectiveness.

• The design is crude.

The Exploratory model is discussed last as it seems similar to VEDPM. However,

the main differences are the following:

• It does not support scientific method, virtual laws and experiments, and

WYSIWYS simulations.

• It does not emphasize a short-code layer that mimics virtual laws like the 9

code statements in Navy Swarms or the 6 statements in Tetwalkers.

• It applies to all kinds of simulations but VEDPM is limited to scientific ones.

• In short, VEDPM is not Exploratory model.

2.1.10. Summary of Traditional Process Model

The author could not find a suitable traditional model for addressing the validity of

scientific simulations despite claims from Exploratory and Ad Hoc. This is not a surprise

since current processes do not separate the underlying virtual laws and subjective science

models. The model designers fail to recognize a science knowledge and programming skill

are inadequate to address the validity issues.

2.2. Traditional Verification and Validation (V&V)

This subsection explains general concepts of traditional V & V [38, 39, 40, 41].

Traditional V & V is the process ensuring that software being developed will meet right

requirements (validation) and right product (verification). The differences between

verification and validation are unimportant for practitioners except to the theorist. The

19

practitioners use the term V & V to refer all the activities that ensure all the required

functions are satisfied. The two main activities of V & V are reviews (including inspections

and walkthroughs) and testing.

2.2.1. Reviews, Inspections, and Walkthroughs

Reviews are conducted during and at the end of each phase of the process life cycle

to determine whether the requirements, design concepts, and specifications have been met.

Reviews consist of the presentation of material to a review board or panel. They are most

effective when conducted by personnel who have not been directly involved in the

development of the software being reviewed. Reviews can be formal and informal.

informal reviews are conducted on an as-needed basis. The developer chooses a review

panel and provides and/or presents the material to be reviewed. The material may be as

informal as a computer listing or hand-written documentation.

Formal reviews are conducted at the end of each life cycle phase. The acquirer of

the software appoints the formal review panel or board, who may make or affect a go or

no-go decision to proceed to the next step of the life cycle. Formal reviews include

Software Requirements Review, Software Preliminary Design Review, Software Critical

Design Review, and Software Test Readiness Review.

An inspection or walkthrough is a detailed examination of a product on a step-by

step or line-of-code by line-of-code basis. The purpose of conducting inspections and

walkthroughs is to find errors. The group that does an inspection or walkthrough is

composed of peers from development, test, and quality assurance.

2.2.2. Testing

Testing is the operation of the software with real or simulated inputs to demonstrate

20

that a product satisfies its requirements and, if it does not, to identify the specific

differences between expected and actual results. There are varied levels of software tests,

ranging from unit or element testing through integration testing and performance testing,

up to software system and acceptance tests.

Testing can be formal or informal. Informal tests are done by the developer to

measure the development progress. "Informal" in this case does not mean that the tests are

done in a casual manner, just that the acquirer of the software is not formally involved, that

witnessing of the testing is not required, and that the prime purpose of the tests is to find

errors. Unit, component, and subsystem integration tests are usually informal tests.

Informal testing may be requirements-driven or design-driven. Requirements-driven

or black box testing is done by selecting the input data and other parameters based on the

software requirements and observing the outputs and reactions of the software. Black box

testing can be done at any level of integration. In addition to testing for satisfaction of

requirements, some of the objectives of requirements-driven testing are to ascertain:

• Computational correctness.

• Proper handling of boundary conditions, including extreme inputs and

conditions that cause extreme outputs.

• State transitioning as expected.

• Proper behavior under stress or high load.

• Adequate error detection, handling, and recovery.

Design-driven or white box testing is the process where the tester examines the

internal workings of code. Design-driven testing is done by selecting the input data and

other parameters based on the internal logic paths that are to be checked. The goals of

21

design-driven testing include ascertaining correctness of the following:

• All paths through the code--for most software products, this can be feasibly

done only at the unit test level.

• Bit-by-bit functioning of interfaces.

• Size and timing of critical elements of code.

Formal testing demonstrates that the software is ready for its intended use. A formal

test should include an acquirer-approved test plan and procedures, quality assurance

witnesses, a record of all discrepancies, and a test report. Formal testing is always

requirements-driven, and its purpose is to demonstrate that the software meets its

requirements.

Each software development project should have at least one formal test, the

acceptance test that concludes the development activities and demonstrates that the

software is ready for operations. In addition to the final acceptance test, other formal

testing may be done on a project. For example, if the software is to be developed and

delivered in increments or builds, there may be incremental acceptance tests. A~ a practical

matter, any contractually required test is usually considered a formal test; others are

"informal."

After acceptance of a software product, all changes to the product should be

accepted as a result of a formal test. Post acceptance testing should include regression

testing. Regression testing involves rerunning previously used acceptance tests to ensure

that the change did not disturb functions that have previously been accepted.

2.2.3. Summary of Traditional V & V

After careful studies in various traditional methods of software verification and

22

validation, the author concluded that they are not well suited for VEDPM, which utilizes

virtual laws and experiments as crucial tools for verifying WYSIWYS simulations.

Traditional V &V concerns about code errors and incorrect requirements while VEDPM

focuses on representing real sciences in virtual worlds. In short, traditional V & V was not

designed for validating scientific simulations.

2.3. Backgrounds of Swarm Simulations and Unpiloted Vehicles

Swarm simulations mainly concern on imitating local, emerging, autonomous,

reactive group behaviors of social beings like flock of birds, schools of fishes, swarms of

insects, etc. Craig Reynolds' work [7] is frequently cited as model example for swarm

simulations. lt, however, has the following drawbacks:

• It is not a scientific simulation but movie animation.

• There is no behavior design in enabling swarm agents to achieve higher and

practical goals.

• There is no mechanism for improving the current swarm behaviors.

Another popular swarm simulator is developed by Santa Fe Institute (SFI), New

Mexico [8]. lt was developed for ·'scientific research" for "general'' swarms. Although the

SF! 's simulator is more rigorous than Craig Reyno ids' simulation, it suffers similar

weaknesses:

• The sciences in the simulator cannot be tested.

• The code is long and complex.

• It is a "general tool" for swarm simulations--i.e., all laws are predicted and

changes to the basic architecture is impossible.

• It is an open-source project, which implies everyone can add some code to it.

23

Though there are many other swarm simulations, they are not as rigorous as SFI's

simulator. Moreover, they have similar design flaws as SFI 's simulator.

The overall design philosophy of emergent intelligence through local interactions

with neighboring individual members is inspired by natural or synthetic swarms such as

ants [9], [10], graphical turtles [11], boids [7], and fishes [12].

Research in the area of autonomous behaviors, motor schema, and force fields as

their control mechanism is in its infancy. Gillen and Jacques describe a simulator to

evaluate control alternatives for intelligent munitions [13]. Passino et al. [14] explore a

reactive biomimicry approach to developing a search map of a battlefield area with UAVs.

Three examples of autonomous, multiple, mobile robotics aspires to similar control design

goals: achieving a global behavior in a group of distributed robots using only local sensing,

minimal communication, and behavior-based control mechanism are given by Fredslund

and Mataric [15].

Werger [16] demonstrated a robot soccer-playing team with a minimalist, behavior

based control system. By combining a few basic behaviors, two different group formations

of three robots emerged. Mataric [17] showed how a set of simple behaviors, based on

local sensing, can be combined so that a global behavior emerges. For example, a global

flocking behavior emerges as each robot performs its local. Kube and Zhang [18]

demonstrated that only two basic local behaviors, avoidance and goal seeking, are enough

for the physical robots to perform a collaborative box-pushing global behavior.

Altenburg, Schlecht and Nygard [19] developed a framework for a simulator that

employs a swarm of UA Vs with limited sensors and local behaviors to achieve the attack,

and is arguably more robust than a deliberative approach.

24

2.3.1. Summary of Swarm Simulations and Unmanned Vehicles

Despite the works cited above, the author's work is different in the following

manners:

• A general software architecture (in Chapter 5), tightly coupled with virtual

experiments, were designed for unmanned vehicles such as UA Vs, UL Vs,

UWVs and USVs. The same, common architecture has been applied

successfully for UA Ys (Chapter 6) and UL Vs (Chapter 7), and partially for

USV (Chapter 3).

• A switchable subsumption control scheme is created to enable each

unmanned vehicle in achieving a higher goal, and a different one by

switching to another set of the scheme.

• A validating tool, VEDPM, is utilized to verify the behaviors scientifically. It

is proven via successful applications described in Chapter 6 & 7.

The foundation of this dissertation is inspired from author's previous work--NASA

Solar Sail project, which is explained in next chapter.

25

CHAPTER 3. PREVIOUS WORK

3.1. The Overviews of Two Previous, Related Papers

Two related published papers from the author, "Synchronized Multi-Point Atlack

by Autonomous Reactive Vehicles with Simple Local Communication" [20] and "Ai"l\J'TS

with Firefly Communication" [21], are discussed in this section. The author wants to avoid

the weaknesses of first paper and employ the strengths of second paper. The first paper

presents a model consisting of a swarm of unmanned, autonomous flying munitions to

conduct a synchronized multi-point attack on a target. The UA Vs lack global

communication or extensive battlefield intelligence, instead, relying on passive short-range

sensors and simple, inter-agent communication. The multi-point synchronized attack is

successfully demonstrated in a simulated battlefield environment. The simulation results

indicate that the reactive, synchronized, multi-point attack is effective, robust and scalable.

It is especially well suited for numerous, small, inexpensive, and expendable UAVs.

The strengths of first paper are the following:

• The behaviors achieve a complex task.

• The UA Vs are able to cooperate with each other for a common goal.

• Simple and minimalist sensors.

The weaknesses are the following:

• The physical laws or mechanics are not sound.

• The unsound laws cause some abnormalities.

• All computational units are based on pixels and thus useless for scientific

experiments or research.

• The behaviors are not switchable for different goal(s).

26

The second papers is concerning Autonomous Nano-Technology Swarm (ANTS)

from NASA that employs numerous, autonomous, I-kg solar sails for surveying and

studying asteroids in the Asteroid Belt. There is no convincing work on a simulator that

validates the solar sail's behaviors and weak propellant system in the extreme space

environment. Thus, the author has developed and verified an Environment Agent (EA) that

simulates gravity and light force based on well-understood Newtonian and sound light

force equations. Sail Agents (SA) simulate swarm behaviors that are able to turn their

reflective surface in four orthogonal directions and produce 3-D maneuvers. The simulator

is able to model key behaviors of SA-;. The author also provides a model that has the

simplest swarm behaviors and unorthodox sensors for testing feasibility of ANTS using

EA The communication is done via on-off light patterns, which are similar to fireflies'

light signals.

The strengths of second paper are the following:

• The simulations and numerical data are sound.

• The two basic forces are represented universally by mathematical equations.

• The gravity and the simulation errors, which are minimal, can be checked by

an independent equation that is not part of the code.

The weaknesses are the following:

• There is no separate and independent virtual experiment software layer. That

is, the virtual laws' code is intertwined with model's, which violates the

principle of VEDPM.

• The behaviors are not switchable for different goal(s).

• It is the prototype of VEDPM. Thus, full benefits of VEDPM were not

27

applied.

In spite of drawbacks, the design of virtual laws and their proofs, as explained in

details in the following subsections, inspired the author to develop a full-fledged VEDPM

3.2. The Proof Process of Virtual Experiment Layer in Solar Sails

Gravity is a major component of EA and was developed from the bottom up to

provide validation in three ways: 1) the universal gravity equations implemented in code

are verified to ensure they will provide the intended results, 2) the simulation results meet

accuracy standards, and 3) the underlying force-vector model is sound.

The Newtonian gravitational law is represented from equations (1), (2), & (3) stated

below. Equation (1) and (2) describe gravity everywhere, but equation (3) describes gravity

as perfect circular orbits. Theoretically, with the same initial values, both groups of

equations describe the same orbit. Equation (1) and (2) are coded, but not equation (3). The

gravity in code is proven if it agrees with the theoretical one with minimum deviation as

explained below.

law:

Gravity from the sun acting upon the sail is computed using Newton's gravitational

Gravity GMmtr2

Gravity = GM!r2 ... (})

Where G = constant of gravitation

= 6.6742 * l(F11 m3 kt\·-2 f 6]

M sun's mass 1. 9891 * l(J-'° kg /5]

m = sail's mass 1 kR

r = distance between sail and sun

28

Equation (l) is easy to use since the only variable is r. Once the gravity is known,

the aceeleration is given by Newton's second law:

F = ma

Where F sun~- attractive force on sail

m = sail:,· mass = I kg

a = sail:,· acceleration

Since the sail\· mass I kg. the equation can he simplified:

F =a ... (2)

If the acceleration is known, the sail's velocity and position within a given second

can be calculated. For example, the sail's acceleration at l AU, 149,597,870,000 meters [5],

from the sun is computed as:

(2) (1). by Galileo's Principle of Equivalence

a= GM/ ,J

a= 6.6742 * 10-11m3kg-1s 2 * 1.9891 * Hl0 kg/(149597870000m)2

a 5.9321 * 10-3 m!:l

Since acceleration a is a vector, one cannot determine the velocity and displacement

without its direction. The directions of sail's starting acceleration, velocity, and

displacement are depicted in the left diagram of Figure 5. The acceleration 5.9321 * Hr'

m/s2 means the change of velocity in I second is 5.9321 * Hr3 m/s (Newton's 2nd Law) in

vector a's direction. Assuming velocity v's magnitude is 0.018 m/s and 90 degrees from

acceleration a, then the net velocity, u, is computed by vector addition shown in the right

diagram.

Vector u's magnitude is the square root of (5.9321 * 10-3 mis/+ (0.018 m/s)2
,

29

which is 1.8952 * 10·2 m/s in velocity u' s direction. The new displacement represents the

new sail's location at the end of the second. The process is repeated again for the next

second. Note that equation (3) is not involved.

+Y

,,

.,~
,, ... ,.

Sall

, ,

,,," Dlaplacement

+x .,
... .,

New dkplaccnwnt
+Z

Figure 5. Sail's Vectors in Java3D

Newton's second law can also be applied in circular motion:

Where v is velocity and other factors are defined above. Equation (3) is well tested

through experiments. It indicates that for a perfect circular orbit, r is constant since it is the

radius of the perfect circle. If r is constant, then acceleration a must be constant (since this

is the same force at equal distance and thus the same acceleration, equation (1) & (2)), and

by the validity of equation (3), the magnitude of velocity v is constant, as well too. The

direction of velocity v is a tangent to the circle since any other directions will either

increase or decrease the magnitude of the velocity ..

3.3. Empirical Observation and Experiments

The coded gravity was proven correct via experimental simulations and supported

by the corresponding numerical data. At the start of the simulation, EA positions the sail at

coordinate (149597870000, 0, 0). That is, 1 AU at the X-axis from the origin (0, 0, 0). As

30

EA required to push the sail around a near perfect circular orbit, equation (3) is used to

calculate the theoretical starting velocity (i.e., at time = 0 second) at 1 AU for the sail,

which is 2.9789 * 104 m/s. The author observed the sail moved in a circle. The numerical

speeds and radii of the sail at 1 AU confirmed the same visual observation. Table 1 shows

10 speeds and radii at the corresponding nth second. Unlike the theoretical starting value,

the nth-second speed and radius are calculated once every simulated second from equation

(1) & (2) by EA.

S = theoretical starti111 peed of ail = 89 • 11>4 ml

R = theoretical starting radius from sail to sun= 149 597,870,000 m

= a .. orbitiaa,second

N radi

3155296 1.7434 • 10·3 -8.7549 • 103

6310592 2.8209 • ur3 • 104

9465888 2.8209 • 10·3 -1.4166 • 104

12621184 1.7434 • 10 -8. 7549 • 1oJ

15776480 -7 .3487 • 10·9 7.1442 • 10·2

18931776 -1.7434 • 10-3 8.7550 • toJ

22087072 -2.8209 • 10·3 1.4166 • 104

25242368 -2.8209 • 10.J

28397664 8.7550 • 1oJ

8.4320 • 10·2

Table 1. Numerical Evidence Verifying Gravity Equation

From Table 1, the nth-second speed and radius are nearly constant throughout the

simulation. For example, the difference between the 31,552,960th-second (about 1 year)

and theoretical starting speed is -5.3878 * 10·9 m/s. Similarly, the difference in radius is

8.4320 * 10·2 m. Over a few hours of running the simulation, the differences in speed and

radius at the 6.988 * 1010th second (2215 years) are -2.7537 * 10·3 m/s and 1.3828 * 104 m.

31

Other numerical data at other locations such as 3.3 AU confirm the same observations of

Table 1. Thus, the sail travels in a near perfect circle as predicted. This establishes the

validity of gravity in the code.

3.4. Gravity and Light Force in EA

3.4.1. The Model Design

After proving the gravity vector is sound, the next step is to add light-force vectors

to the proven model. Blomquist's equations [22] are employed since the light-force

equations are in vector forms:

drag= 9.12 * 10--0 * s (fr cos30 + 1/2 (1 - fr) cos 0)

lift= 9.12 * 10·6 * s ifr cos2 0 sin 0)

Where 0 = the angle between incident fight & sail surface's normal.

s = total sail's surface in square meters.

9.12 * 10·6 N/m2 = light force/m 2 due to normal incident fight (i.e., 0 = 0) at 1 AV.

lift = a force component along orbit.

drag == a force component away from sun.

fr = sail material's reflectivity, 1 means all reflected, and O means all absorbed.

Graphically, they are depicted in Figure 6:

Figure 6. Light Force Components

Drag is the force vector that is in the direction of incident light, where lift is the

32

force vector that is perpendicular to the incident light. The light-force equations are

formulated at 1 AU only. The author modified them into universal equations for a sail that

is r meters away from the sun with 100 m2 sail surface as:

drag= 9.12 * 104 (AU!r/ (fr cos30 + 112 (I - fr) cos 0) ... (4)

lift= 9.12 * 10·4 (AU!r/ (fr cos2 0 sin 8) ... (5)

A few observations about equation (4) & (5) are noted here. First, since the sail's

mass is 1 kg, the light-force vectors in the equations are equal to their respective

accelerations using equation (2). Second, 0 describes how the sail turns its surface. Third, if

0 90°, both drag and lift becomes O and thus has no light force--i.e., the edge of solar

sail's surface is facing the sun directly. Fourth, if 0 0° & fr= 1, then lift= 0, but drag=

9.12*10-4 m/s2 (1, 4]--this implies the sail's entire reflective surface is facing the sun

directly. Fifth, ifO 35.3° & fr= 1, lift has maximum value of 3.51 * 10·4 m/s2
• Sixth, for

light-force simulations, the author assumes fr= 1 for all 0. Finally, all lifts have drag

counterparts, which imply a sail orbits around an asteroid (one of the main goals of ANTS)

could be difficult, if not impossible, as none of the drags or lifts are pointing toward the

sun.

The light-force calculations are similar to gravity example above except for their

directions. Additional observations are the following:

• Acceleration a is always orthogonal to lift but parallel and opposite to drag.

• Java 3D computes the net force by vector addition of a, lift, and drag.

• The net acceleration will change the sail's velocity v.

• The changed velocity v will change the displacement at the end of the second.

• The process is repeated in the next second.

33

SA can tum its surface counterclockwise (CC), clockwise (CW), up, and down as

shown in Figure 7.

Up

cc .. • .. C'"'\lV

♦
I><>VY':D.

Figure 7. Four Ways in Turning Sail's Surface

CC is turning the cross counterclockwise horizontally with Up-Down arrows fixed. The

opposite is CW. Up is turning the cross clockwise vertically with CC-CW arrows fixed.

The opposite is Down. SA can only choose one of the four turnings in each second.

Without them, the sail cannot move in a 3-D space. Equation (4) & (5) can be applied

correctly in each direction as the sail's surface is a perfect square.

Unlike gravity experiments, there is no well-established theoretical light-force

equations to prove the validity of equation (4) & (5) in code. However, if the equations are

incorrect (not likely), it could potentially be replaced with other formulas as the underlying

model in EA is still sound.

3.5. Scientific Simulations of Solar Sails

One way to verify light force without an independent equation is to compare its

behaviors against proven ones from gravity. Thus, an asteroid ball (obeys only gravity) and

a sail (obeys gravity and light force) were used for experimental simulations as shown in

Figure 8. At the same starting position, both objects orbit together with the same velocity if

default 0 = 90° (means no light force).

34

Figure 8. Light Force Reduces (Left) or Increase (Right) Sail's Velocity

The left picture shows the sail's speed is slower than the ball by setting 0=-35.3°,

where light force 'acting against the sail's direction of motion. The opposite effect is setting

0=+35.3° that increases the sail's speed as depicted in the right picture. The author has

visually confirmed that the sail was able to maneuver in 3-D space using four turnings

manually, even at 3.3 AU. The corresponding numerical data agreed with visual

simulations. It was, however, difficult to make the sail closer to the ball. Hence, the initial

results indicate that orbiting around an asteroid (the main mission of ANTS) is difficult, if

not impossible_.

In summary, the light force is verified via experimental simulations and by

additional reasoning listed below:

• As EA repeats the same proven process within each second, the light-force

vector computations are valid by mathematical induction.

• The much weaker light-force vector is added to the proven gravity vector.

• The observed light-force effects in the simulations were consistent and

predicted by equation (4) & (5).

• All vector computations are monitored in one Java method. Thus, potential

35

"misbehaviors" can be traced from there.

• Java 3D methods like vectorl.angle (vector2) are used to check the

orthogonality of gravity, lift, and drag in each calculation. And the fact that it

is 90 degrees all the time proves the vector calculations are correct.

3.6. Testing Universal Gravitational Constant Using Proven Code

Some readers may be confused why the universal gravitational constant is being

experimented hereby. The main reason is to convince the readers that the meticulously

proven gravity code from Solar Sails is so valuable that it can help to determine the elusive

value of universal gravitational constant (denoted G). Thus, the full-fledged VEDPM is an

extremely powerful tool to solve some of the toughest problems in sciences. The

experiment designed for testing the constant is explained in the following subsection.

Universal gravitational constant appears in many equations of physics such as

Newtonian law of universal gravitation, Einstein's theory of general relativity, etc.

Presently, most laboratory experiments [42, 43, 44, 45] agree with the first 2 significant

digits of G: 6.6 * 10-11 m3kg- 1s-2
• The value, nevertheless, varies with each experiment due

to extraordinary weak force of gravity. To improve the digits significantly, the

experimenters, assuming they survive, have to live near a massive black hole.

Despite the difficulty, the author attempted to use the proven code to improve the

significant digits of the constant. There are, however, several challenges in that approach:

• G value is determined solely from real-world experiments, and cannot be

derived from equations such as those employed in Solar Sails.

• Mathematical equations are supersymmetry--i.e., the values on both sides of

the equations are always balanced off, including the incorrect ones. This

36

implies the gravitational constant cannot be derived by manipulating

arithmetic operators on related equations.

• At present, very little is known about the nature of gravity. Thus, it is

"impossible" to prove the true value of G through theoretical analysis.

Despite the challenges, the author believes the gravity simulator can help to

investigate the constant by utilizing Kepler's Laws:

• Kepler's Laws describe the orbital phenomena that are affected by gravity

indirectly.

• Kepler's 2nd and 3rd Laws are already implanted indirectly in Solar Sail

gravity simulator. For instance, the sail sweeps through equal circular area in

one simulated second (2rn.1 Law), and completes one revolution with period

proportional to the radius of the circle (3 rd Law).

• The author believes the specific strength of gravitational pull gives orbital

properties of Kepler's Laws.

The steps of finding more significant digits of the constant are the following:

l. Incorporating equation (3) above into Kepler's 3 rd Law:

T = clv = 27l:r/v

r2 = 4,l,.Z/(GM/r)

r2 4tlr3;GM

1'1 = (4tl!GM)r1
••• (6)

(rJ • • / ~ 3rd L ,\ LS proportwna to r·, aw1

Where T = orbital period

37

c = circumference of the orbit

v = tangential velocity

2. Substituting an arbitrary G value in the equation to calculate the theoretical T

value. For example, put G 6.67 * Hf11 in the equation (6) above:

(4n!/(6.67 * JO-II* 1.989] *]{fO))(}49,597,87(),()()())"

T = 31562889. 7066 seconds

3. Running the gravity simulator with initial velocity calculated from equation

(3) using G = 6.67 * 10-11 at position (149597870000, 0, 0). The time taken

for the returning sail to reach its original position after one revolution is

recorded. After 31562889 seconds, there is still 21044.0106 meters away

from the original starting point, and with one additional second, the sail will

go past the starting position. The fractional last second is not calculated by

the simulator as it is smaller than one-second time step. In short, the

remaining distance produced from the fractional second is a "break" from the

rigid equations.

4. Comparing 21044.0106 meters from the simulator to the distance predicted

exactly from theoretical last fractional second, which is 0. 7066 s *

29780.2624 mis= 21042.7334 meters.

5. Calculating the last-second "relative error ratio" of the two distances using

the example: 21044.0106/21042.7334 1.0000606955. Then, compute the

"relative error'' by subtracting 1.0000606955 from 1.0, which is

0.0000606955; if the number is less than 1.0, then use 1.0 to minus that

number. The main idea of this step is to break the theoretical equations;

38

otherwise, they will provide a ''false" gravitational value as demanded from

the equations. Thus, the "fuzzy" 21044.0106 meters are from the simulator.

Whereas 21042.7334 meters are predicted exactly by Kepler's 3rd Law.

6. The G value that reflects the lowest relative error is "correct" based on the

assumption the real G value will demonstrate the Kepler's property of orbital

period.

However, it is still difficult to carry out the steps above if the "exact" digits of G are

not known. Thus, the author hereby proposes a "correct'' formula for G = n/(✓3*e) * 10- 10

= 6.672594965116014298 ... * 10- 11
• This formula has several peculiar facts:

• The orbital period obtained from the simulator is 31556751 seconds or

365.240 days when G 6.672594965116014298* 10-11. They are close to

one solar year [46, 4 7] despite the fact that the orbit is a circle.

• All three variables, re, ✓3 and e are irrational numbers.

• The first 6 significant digits are 6.67259, which are standard G value since

1987 [48]. The odd for this to occur coincidentally is 1 in 1,000,000.

Some preliminary results using virtual experiment steps and G value described

above are shown in Table 2. The data in Table 2 indeed favor G=6.67259* Hr 11 as it has the

lowest relative error among digits from 6.60 to 6.69 (except 6.67). This is just a

preliminary experiment. To prove the next digit from 6.670 to 6.679, the steps above are

repeated. The process continues until all the desired digits have lowest respective relative

ratios.

The table does not include the digits 6.67 as they agree with the first three digits of

6.67259. To avoid other G candidates taking advantage of the last three assumed-correct

39

digits of 6.67259, three O's are placed at the end of each candidate.

~ctional-secon Fractional-second Relative Error Distance from Distance from Relative Error
~la K ler's 3111 Law Ratio

5846.16 5846.90 0.999875 1.25212*10-4

21661.73 21661.60 1.000006 5.83895*10
6.62000*10-11 20439.59 20439.29 1.000014 1.42691 *10-5

66 ooo• o 25736.77 25736.61 1.000006 6.44118*10
6.64000*10-11 1788.08 1787.14 5.26412*10-4

9-55.7 1955.42 1.87123* 0-4
20282.66 2.93975*10-5

21523.51 3.69460•1(1'
6.68000*10-11 28040.30 28040.86 0.999980 2.00520*10-5

~6W00--10 5532.40 5532.07 1. 000060 5.95391 •10

Table 2. Relative Errors Obtained by Breaking Equations

Though the virtual experiment might be able to show that G = 7t/(✓3*e) * 10-10
, it is

NOT the goal of this subsection. The objective is to demonstrate the power of proven

gravity code developed from Solar Sails. Since proving the constant requires more work,

including rewriting the source code, the author will leave the complete proof of the

constant to future work.

Without the proven gravity simulator, it is impossible to devise the experimental

steps and results shown above. Thus, this justifies the importance of full-fledged VEDPM

for tough scientific problems, which is the focus of next chapter.

40

CHAPTER 4. VIRTUAL-EXPERIMENT DRIVEN PROCESS MODEL (VEDPM)

Although VEDPM concepts are discussed briefly above, this chapter explores them

more. The author emphasizes the main objective of this dissertation is introducing VEDPM

as a new software development process for scientific simulations. The swarm software

architecture, though not a software process, is necessary for constructing successful

behavior models via VEDPM. Section 4.1 introduces the basic elements of VEDPM. A

simple diagram summarizes the process, and then followed by detailed explanation on what

each part does. Section 4.2 explains the critical thinking needed for applying VEDPM on

two real-world, complex applications discussed in Chapter 6 and 7. Section 4.3 lists the

strengths and weaknesses of VEDPM. In particular, the author acknowledges VEDPM is

only valuable for scientific simulations that have virtual laws designed by knowledgeable

experimenters who can "think outside the box.'' It is not for software programmers per se-

mu ltifaceted skills are required.

4.1. Virtual-Experiment-Driven Process Model (VEDPM)

VEDPM shown in Figure 9 has three phases: virtual experiments, verify models

and WYSIWYS Simulations; four branching decisions: proven laws, abort, add 1 law and

feedbacks. The products are proven virtual laws (like forces) and models (like behavior

models).

VEDPM has a clear and simple structure for conveying the main concepts. Unlike

many process models, VEDPM encourages experimenters to quit the process as early as the

first phase if they cannot design the virtual experiments for proving the virtual laws, which

implies a realistic simulation model is not feasible. The details of each phase are explained

in the following subsections.

41

I

Add 1 Law l
Proven
Law•

Abort -
V1rtu;1l

Expr,11111~nts

Add 1 Law t

Feedback•

Vc•t 1fy
IVfu,fc•I'">

Proven
Laws

Proven
Models

Feedback•

Verify
M0cfcls

Figure 9. Steps of VEDPM

4.1.1. Phase I: Virtual Experiments

WYSWYS
Sirnul.1t1ons

Proven
Models WYSWYS

Simul;::1tions

Virtual laws are crucial for the success of scientific simulations, but there is no

rigorous process for proving them. This part is striving to imitate real-world experiments

where physical laws are identified, isolated, and then experimented. Unlike virtual laws,

physical laws are always present in and part of the nature. Since virtual laws are

unnaturally created and integrated into simulations, sound design of virtual experiments are

required for investigating them. If not, the simulations are unrealistic and practical

applications cannot be determined. VEDPM is not for average experimenters, who may not

have comprehensive skills for designing sensible virtual laws and experiments.

Despite some immaterial limitation, physical laws can be coded easily into virtual

ones. Each coded law, obviously, needed to be proven. The experimenter must think

critically for an ingenious virtual experiment that can validate the law clearly. The author,

for instance, has constructed a simple tum-left experiment for probing the validity of

forward thrust and left torque in Navy Swarms. The well-designed experiment, with help

from a reliable equation, is able to prove the forces unambiguously via visual and

numerical evidences. This process repeats until all laws are proven. Otherwise, the

experimenter has to abort VEDPM. All proven laws (or code) are "natural" part of the

42

simulations and thus cannot be discarded or modified.

Code testing in VEDPM is different from traditional process models since it does

not involve with software bugs but abnormal virtual laws, experiments or WYSIWYS

simulations. If the results are fully defined by the experimental laws, the code is then valid.

In other words, a bug-free code that is not conforming to an experimental variable is

buggy. The author offers the guidelines below to minimize a buggy design of virtual

experiments:

• All virtual laws in virtual experiments must be identified, isolated, and

experimented clearly. This is analogous to real experiments in which the

experimental variables under investigation are always identified, isolated, and

experimented.

• Simple, well-accepted laws should be preferred over complicated ones so that

the experimental results are simply demonstrated without controversy.

• Each law must have a reason to exist. The incorrect law corrupts the whole

experiment.

• Each law that has been proven must continue to exist in the simulation. This

corresponds to real world that does not discriminate the presence of any

rightful natural phenomenon.

As VEDPM is new and unorthodox, the author needs to convince readers that it is

the only way to produce realistic scientific simulations. The author, thus, has developed

two swarm applications--Navy Swarms and Tetwalkers--successfully via VEDPM. Chapter

6 and 7 explain the detail steps of employing VEDPM for developing the applications. The

experimental results there support VEDPM.

43

4.1.2. Phase II: Verify Models

The experimenters can design any virtual model. However, only those obey the

proven laws arc chosen. If not, the resulted simulations are not viable. For example, the

behavior models that arc driven by the proven virtual forces were chosen for Navy Swarms

and Tetwalkers. It is futile for model developers to deny as the applications, without the

support of virtual laws, are not feasible and incurring significant costs if continue. To avoid

manipulations from the models, the coded laws and models are separated. VEDPM does

not restrict the length of feasible model code. In this phase, the experimenters should utilize

the proven laws for deciding the feasible models.

4.1.3. Phase Ill: WYSIWYS Simulations

The valid models are now ready to demonstrate realistic simulations--WYSIWYS.

The main characteristic of WYSIWYS is that both intended and unintended simulated

results will be revealed, which are similar to real experiments. The negative outcomes are

the strength of WYSIWYS and evidence of high fidelity simulator. If intended results

occur, experimenters can stop VEDPM. Otherwise, the negative feedbacks are guides to

further and better refinements. If the final refinement is still not satisfactory, the solution is

then not feasible. At the very least, WYSIWYS can confirm the infeasible outcomes.

Some readers may argue that VEDPM has already included in the ·'broad

definition" of traditional process model, and therefore not new. If it is true, there exist only

two types of process model--Waterfall and lterative--the rest, such as Agile Methods, are

combinations of the two. VEDPM has new elements that are not emphasized by traditional

processes for scientific simulations:

• Virtual experiments are constructed innovatively and instrumental for proving

44

the relevant virtual laws.

• A simple, separated, innovative, unique, short code (less than a page,

preferably) is invented to simulate proven virtual laws at every simulated time

step.

• VEDPM implements scientific principles and method FAITHFULLY in

virtual world.

4.2. A Simple Example Showing How VEDPM Works in Three Phrases

Despite many words in explaining the three phases, many readers are still confused

why it is needed. As such, one naive example, which has no practical applications, is

developed quickly via VEDPM. It serves as a shortcut for those readers who wish to skip

Chapter 6 & 7 where practical applications are developed via VEDPM principles.

Assuming the UA V in Figure 10 has the following physical flight mechanics and

initial conditions:

• The UA V has forward thrust represented by velocity v mis due north initially.

• It has right torque represented by a m/s2 due East initially, and a is

perpendicular to v.

• It has no left torque.

• And that are all the forces it has. The magnitudes of a and v are large enough

for useful rightward maneuvers in the virtual environment.

Furthermore, three readers of this dissertation are volunteering themselves to design

a '·scientific" simulation that illustrates the true trajectory of U AV within its abilities.

Reader A or C is proficient in software design and coding--in the simulations, each person

demonstrates that the UA V indeed flies trajectory A or C as indicated in Figure 10.

45

B

A

<C

Figure 10. A Naive UAV with Forward Thrust and Right Torque

Reader B, nevertheless, used VEDPM to develop a simulation that shows trajectory

B. Instead of arguing the proficiency of software skills and bug-free code, reader B

employed scientific method for the simulation. To persuade reader A and C, reader B

demonstrated how the virtual experiment was conducted.

The virtual experiment is set up in Figure 11. Reader B chose feasible and realistic

vo and ao defined by a well-accepted vector circular equation a= v1'/r. The virtual equation

derived from the same physical one computes the same forces discretely (non

continuously); and thus some immaterial errors exist between the two equations. The radius

is ro meters (ro = (v0)2/a0) from the object. Figure 11 is an innovative virtual experiment

design for verifying virtual forces of a and v:

• The expected experimental result is based on a well-tested vector equation of

perfect circular motion with directions of vo and ao represented by the arrows.

• Radius ro, the predicted constant value, can be used to verify the experiment

easily and unambiguously at any simulated moment. The virtual radius will

not be equal to ro exactly since computers are discrete machines.

• The virtual experiment does not involve any statistical analysis since each

46

value of the variables in the equation is completely deterministic.

Figure 11. Virtual Experiment Conducted by Reader B

• If the experiment shows both virtual radius and r0 are close and within

acceptable error range, the virtual thrust and right torque are then verified.

• Thus, virtual experiment in VEDPM concerns about abnormal results or

behaviors rather than software skills or bugs.

To prove VEDPM is workable, reader B wrote experimental code that set the UA V

ro meters away from the object with constant forward velocity vo m/s and rightward

acceleration a0 m/s2
• Reader B knew that if the code could not enable the UAV in

traversing a near perfect circular orbit clockwise in the simulation, as demanded by the

equation, the virtual experiment would have failed. By trials and errors, the expected

circular motion occurred with virtual radius within an acceptable error range, which

validates the virtual forces. It also verifies that the chosen time step, one simulated second,

is small enough to describe virtual forces accurately and realistically. In contrast, one can

think about the "real world" is being simulated from an "imaginary continuous machine"

with infinite speed!

47

The size of the error range depends on the chosen time step. A simulated

millisecond is more precise than a second and has a smaller range. Phase I was completed

for reader B when experimental radius was almost equal to theoretical one at the end of

each second. It is important to emphasize that reader A and C did not have code for

verifying basic forces or simulating virtual experiments. If reader A and C utilize the

principles of VEDPM, they will have to learn the concept of force vectors for designing

their virtual experiments, which in turn, will show them the reverse thrust and left torque

are not feasible. The virtual experiment, thus, is a tool for investigating each force

objectively and scientifically.

In phase II, reader B must write model code that proves trajectory B is the actual

path and obeys the following VEDPM's principles:

• The model cannot have its own force code or change the proven ones.

• It only provides input values to the proven forces.

• It must apply all proven forces.

These principles ensure the model cannot ignore or alter the forces, which are tool

for validating the model code. By experimenting different models, reader B finally wrote

model B that simulated a path ·'close" to trajectory B--an error if it is exactly equal to

trajectory Bas the machine cannot compute the curve continuously. Reader B discovered

that it was impossible to simulate trajectory A and C without violating the proven forces.

Like phase 1, reader B did not concern about software bugs if the simulated path is CLOSE

to expected trajectory. Reader A and C, on the other hand, had no strategies for proving the

underlying forces in their code.

Reader B relied on WYSIWYS simulations in phase III for visual and numerical

48

confirmations. The graphics code that draws the results from the proven model must obey

the following VEDPM's principles:

• The graphics code cannot change the model code.

• It draws objects defined by the proven model.

• It must represent the vectors and data defined by the proven model accurately

and realistically.

Reader B utilized reliable Java3D, a third-party graphics AP!, for drawing

WYSlWYS scenes accurately. Reader B ensured the model and graphical codes were

separated--Java3D had no access to the model. Since the principles were strictly followed,

reader B was confident that the simulations were WYSIWYS, and phase Ill was

completed. Reader A and C did not bother the concepts of WYSlWYS.

By now, the readers should notice that VEDPM is anything but easy as evidenced

by this "simple" example. Reader A and C finished their projects fast without VEDPM.

Their work, however, produces no feasible maneuvers for the UAV. Reader B's work, in

contrast, enables the real U AV to traverse a path close to trajectory C. Some readers may

argue that it is obvious the reverse thrust and left torque are not feasible using common

senses. The author, nevertheless, argues that VEDPM should be used to prove the

''obvious" infeasible solutions scientifically instead of common-sense reasoning. In

addition, the infeasible ones may not be obvious in complex applications.

The simple example demonstrates one crucial aspect of VEDPM--the well-thought

out design of the virtual experiment. Reader B's circle in the virtual experiment is an

effective, powerful and inspired method for verifying the underlying forces of UAV. The

readers should recognize by now that virtual experiments require creative thinking from

49

experimenters, and it is not suited for someone who thinks linearly.

4.3. Critical Thinking in Developing Navy Swarms and Tetwalkers via VEDPM

The naive example has no practical applications and fails to demonstrate the true

power of VEDPM. As a result, two complicated yet powerful applications, Navy Swarms

and Tetwalkers, have been developed via VEDPM principles. The virtual law or

experiment design requires critical thinking, and some general strategies are discussed in

the following subsections.

4.3.1. Virtual Laws and Experiments in Navy Swarms

The objectives of Navy Swarms' simulations are determining whether numerous

UAVs can achieve effective avoidance in close space and switch behaviors autonomously

and adaptively when simple commands such as O or 1 are broadcast from a remote location.

The creative design of virtual laws for Navy Swarms was time consuming but

indispensable. The virtual laws are forces that propel a UA V. The first obvious approach is

applying difficult aerodynamic physical laws in virtual experiments, but there are several

disadvantages:

• Aerodynamic laws are difficult to isolate, measure, and comprehend.

• They are complicated to design and code.

• The experimental results may be inconclusive due to multifaceted causes

implied from the laws.

The author, as an alternative, designed three simple virtual vector forces--forward

thrust, left torque, and right torque. They have the following advantages:

• The vectors can define the magnitudes and orientations of the three forces

accurately.

50

• The resultant forces from vector additions are straightforward.

• The experimental results and abnormalities are unambiguous and easy to

recognize.

Some critics may disagree with the simplistic laws. The author insists that the

simplicity is essential for simple design of relevant virtual experiments. The forces alone

are not enough for the experiments. A well-accepted circular motion equation provides two

circles as expected goals: one circle is for forward thrust and left torque, and the other one

is for forward thrust and right torque. The advantages of perfect circles are described in the

simple UA V example discussed above. The behavior model of Navy Swarms does not

interfere with the forces. It conveys the preferred actions but depends entirely on the

proven forces for final simulated results. And WYSIWYS simulations provide realistic

results of forces in the experiments.

4.3.2. Virtual Laws and Experiments in Tetwalkers

Compared to Navy Swarms, Tetwalkers have only two virtual forces--motor

expansion and contraction--to be tested by virtual experiments. Again, simple vectors are

employed for defining the virtual forces:

• A vector with its tail at the strut's center and head pointing to a node defines

the magnitude and orientation of the expansive force.

• A vector with its tail at a node and head pointing to the strut' s center defines

the magnitude and orientation of the contractive force.

• The expansive and contractive forces have equal magnitudes but different

orientations.

After the forces are defined, creative experiments are needed for proving them. The

51

circular motion equation is not applicable to Tetwalkers due to their unique struts'

structure. The symmetry of regular tetrahedral shape provides a unique method for testing

strut forces in virtual experiments:

• 1-Tet has 4 nodes and 6 struts.

• All 6 struts have equal length.

• If equal force is applied on each strut, the regular shape is maintained,

provided the initial shape is regular.

The objective of the virtual experiments is to confirm 1-Tet is maintaining the

regular shape when equal expansive or contractive force is applied on each strut. Chapter 7

presents evidences that 1-Tet indeed can maintain its regular shape by expanding or

shrinking equilaterally. Like Navy Swarms, the behavior model of Tetwalkers does not

interfere with the forces. And WYSIWYS simulations provide realistic results of forces in

the experiments.

4.4. Strengths and Weaknesses of VEDPM

The strengths of using VEDPM for developing applications are as the following:

• Virtual experiments are a tool for proving laws.

• The proven laws, in turn, are employed for designing or verifying model

code.

• If the laws cannot be proven via experiments, the simulations are then not

feasible.

• The unfeasible simulations are terminated in phase I if the forces cannot be

proven.

• Last, at least two real and complex applications, Navy Swarms and

52

Tetwalkers, have been developed successfully via VEDPM.

There are, of course, weaknesses in applying VEDPM as listed in the following:

• The initial investment in virtual experiments could be high when reasonable

virtual laws are not discovered after a long search.

• Resulted from extreme difficulty in simulating '•virtual" experiments from

mimicking the real ones, the experimenters must be creative and unorthodox-

that is, to "think outside the box," a quality that not every researcher has

despite the rhetoric!

• VEDPM is not suitable for researchers who expect predictable results or

patterns.

• It is sometimes difficult to separate the code between the laws and models,

and between models and graphics.

Despite the disadvantages, VEDPM is the first process model that, to the best of

author's knowledge. requires the experimenters to apply scientific method rigorously.

53

CHAPTER 5. SWARM BEHAVIOR DESIGN

There are several reasons for choosing the swarm behavior applications as example

software developments for demonstrating VEDPM principles and power:

• The author has experience in similar swarm applications for U.S. Navy/ Air

force and NASA The work in [20], for example, is pioneering work and cited

by researchers in Navy, Air force, European defense company, etc., as

evidenced by Google Scholar search f 49). The application mentioned in the

paper, nonetheless, is not developed through VEDPM. A more sophisticated

version resulted in Navy Swarm application was developed via VEDPM

principles.

• The swarm applications are challenging and hence ideal for demonstrating

VEDPM.

• They are scientific simulations and thus virtual experiments are possible.

• The numerous, autonomous and reactive swarm agents with complex group

behaviors and emergent intelligence are best demonstrated in simulations.

• Behavior models are able to achieve real goals adaptively and intelligently

without sacrificing local, autonomous and reactive behaviors.

• Last, they cannot be developed convincingly using existing process models

except VEDPM.

Swarm behavior design consists of two parts: swarm software architecture and

modified subsumption control scheme. The first describes how VEDPM is integrated

tightly with swarm behavior model for verification purposes. The latter depicts how

autonomous behaviors are implemented and subsumed. The following subsections describe

54

each part.

5.1. General Swarm Software Architecture

The swarm software architecture, proposed by author in conformance with

VEDPM, is depicted in Figure 12. It has the following components:

• A behavior model that reads information from sensors at each simulated time

step.

• The model suggests maneuvers to virtual experiment layer.

• Virtual experiment layer enforces maneuvers that obey sound physics and

movement mechanics.

• The WYSIWYS simulations, supported by proven forces, provide realistic

feedbacks for further actions.

Sensors

1
(Bel7avior-s I

Maneuvers l Fee acks

I \tir-tual Exper-iments I

Simulations

Figure 12. Swarm Software Architecture

The experimenters need more time to integrate sound physical laws into virtual

experiment layer as virtual forces. One example from the author's previous work [21] in

NASA's solar sails reveals that:

• The author needed to modify two universal light force equations from

existing ones.

• The modification occupied most of project time as the researcher in light

55

forces [22] did not modify them into universal forces.

• If the author could not modify the light forces, the virtual experiments for

solar sails would have failed.

VEDPM is a tool for validating all scientific virtual entities and not just virtual

forces encountered in many swarm applications.

5.2. Modified Swann Behavior Control Scheme

Swarm behavior models could be complex and uncontrollable. A control scheme,

thus, is needed for managing them as outlined in Figure 13.

f_L
Sensor s //

17)

N th Bcl,avior 7

Second Behavior I

First Bct,avior
7

Maneuvers

Figure 13. Subsumption Control Scheme

The behavior control structure utilizes a decentralized architecture inspired by the

subsumption architecture [23], motor schema [24, 25], and force fields [26, 27, 28]. At

each time step, it reads both sensors' input and internal state to invoke the appropriate

behavior that suggests a maneuver. If State does not issue a control signal, the higher

behavior layer (higher rectangle) will inhabit and subsume the lower layer automatically, as

required by the subsumption scheme. The author has modified the original one by

substituting a state that can achieve realistic goals. The original one does not concern with

goal setting. The author also allows behaviors to be any order depending on the missions.

Brooks [23], however, believed a natural, unalterable order exists, and it does not allow

subsets of behaviors. But the author believes any combinations of behaviors are possible if

56

they are proven by VEDPM. This is another reason why VEDPM is important, as it is able

to settle the theoretical barriers imposed by a famous architecture. The tight coupling

between the sensors, state and behaviors is responsible for vehicles reactive maneuvers.

The structure can have N behavior layers as needed to accomplish a goal. A different goal

has the same structure but different layers. The modified subsumption architecture, thus,

can be applied to many other applications.

5.3. Minimalist Swarm Design Philosophy

Swarm software is usually designed for inexpensive, expandable and numerous

unmanned vehicles that exhibit high autonomous behaviors. From the experience of

developing swarm software, the author believes minimalist is the best approach to achieve

the objectives of minimizing hardware costs and software complexity and maximizing

reactive behaviors. Another word for minimalist is "simplicity," which is not necessary

means "na'ive" or "less effort." On the contrary, it takes more effort to figure out minimalist

solutions. Simplicity has its root in "Occam's razor" since it means the simplest solution

should be chosen. And it takes more time and effort to think creatively which solution is

simple!

5.3.1. Minimalist for Hardware

The minimalist approach for hardware has the following goals:

• The hardware sensors and mechanics should be simple and thus are less

expensive and easy to operate.

• The coupling software is less complex due to undemanding hardware.

• The unmanned vehicles are more fault tolerance due to straightforward

software and hardware.

57

• Last, though not proven, the minimalist requirements enable the unmanned

vehicles behave more autonomously.

5.3.2. Minimalist for Software

The minimalist approach for swarm software requires the simplest and minimal

behavior models that achieve the same tasks should be utilized. In traditional reactive

design, for instance, behaviors such as avoidance, aggregation and dispersion are

automatically applied in similar applications. From author's experience, however, only

avoidance is necessary for local and autonomous actions in many situations. Moreover, the

legacy avoidance code can still be simplified further to minimize software complexity, side

effects and bugs.

5.3.3. Minimalist for Heuristics

Swarm behaviors should not use complex heuristics such as fuzzy logics or neural

networks unless it is necessary. The rationale for this is quite simple--do geese use fuzzy

logics for figuring out flight formations? In addition, they add convolution to software

code.

5.3.4. Minimalist for Virtual Laws

A better virtual experiment design should have less virtual laws. For each additional

law, the experimenter has to spend more time and effort for proving its validity.

Tetwalkers, for example, have only two virtual forces derived from the laws for their

elaborated behaviors.

5.3.5. Minimalist for Goals

Navy Swarms are the first swarm behaviors that can incorporate high-level goals

without losing local, autonomous behaviors. Nonetheless, more high-level goals are not

58

necessary a better design. For each additional goal, more time and effort are needed in

coding that may lead to code complexity.

Minimalist is difficult to practice. It requires one to crystallize and simplify one's

designs diligently and intelligently. By comparison, the complicated solutions are easy to

identify and quick to implement initially. In the end, however, the author believes the

minimalist solutions are best suited for autonomous swarm applications.

5.4. Swarm Software for Real-World Applications

Simulations based on Swarm software architecture and modify subsumption

scheme have no value if one cannot prove whether they are realistic, practical or feasible.

However, Navy Swarms and Tetwalkers developed via VEDPM prove that the architecture

and scheme can achieve real goals. The WYSIWYS simulations of Navy Swarms showed

that UA Ys achieved the following real-world goals:

• UAVs could avoid close objects and no collisions occurred during

simulations with certain settings.

• The attackers could follow their leaders.

• The attackers could follow the targets.

• The behaviors of following leaders or targets were switched when a control

signal was received.

• The switch did not affect the autonomous behaviors of attacking UAVs.

The WYSIWYS simulations of Tetwalkers demonstrated that the following real

world goals have been achieved:

• Tetwalkers were able to avoid close objects.

• The gaits were successful as envisioned by NASA

59

• They were able to follow a trait.

• The behaviors were autonomous.

• The tumbling was successful.

• They could reach the target despite themselves as obstacles.

• Collisions did not occur during simulations with certain settings.

Judging from the visual images and numerical data from the WYSl WYS

simulations, the author concludes that the said swarm software architecture and modified

subsumption control scheme are effective. They are applied successfully to UAVs (Navy

Swarms, via full VEDPM), ULVs (Tetwalkers, via full VEDPM) and USV (Solar Sail, via

partial VEDPM). The details of two successful swarm applications employing swarm

behavior design via VEDPM are explained in the next two chapters.

60

CHAPTER 6. VEDPM APPLICATION I--NAVY SWARMS

6.1. Introduction to Navy Swarms

The author describes a software development via VEDPM for realistic and credible

swarm behaviors that can achieve global goals adaptively and intelligently without

sacrificing local, autonomous, reactive behaviors. It has two main parts: the swarm

behavior model and virtual experiments. In every simulated time step, the model suggests

an action, which must be executed by proven virtual forces consisted of only 9 Java

statements, toward a goal. The objective of virtual experiments is to ensure the virtual

forces obey sound physical laws and movement mechanics of Unmanned Air Vehicles

(UAVs). The software design is bottom-up and following a general architecture. The

WYSI WYS simulations generated from proven model, demonstrate that numerous,

inexpensive, expandable, maneuverable UA Vs could sink an aircraft carrier. Navy Swarms

have the following scenarios:

• Large bombers or modified cargo planes transport the UA Vs. At certain

altitude, they are dropped off from a safe distance (several hundred miles or

more) from enemy munitions.

• Once entering the target area, the attacking UAVs (AUAVs) will follow (or

search) enemy aircraft carriers or follow Communication UA Vs (CUA Vs) via

a simple switch signal broadcast from a remote location, and another signal

for switching back.

• Two swarm groups, CUA Vs and AUA Vs, are cooperating for common goals.

• The larger, faster, fewer, high flying and less maneuverable CUA Vs pass

cnntrol signals from remote command centers to AUAVs via sophisticate

61

communication sensors and equipment.

• The smaller, slower, numerous, low tlying and more maneuverable AUAVs

are high explosive munitions that follow either CUA Vs or carriers.

• Though remote military officers cannot control low-level local behaviors,

they can change high-level goals via remote signals.

WYSIWYS simulations are important and powerful tool for studying the

effectiveness of large heterogeneous swarms in attacking enemy targets:

• The unmanned vehicles are expendable; the aircraft carriers, war ships and

their crews are not.

• It is very demanding for enemy ships to shoot down all small and high

maneuverable AUAVs. AUAVs are much cheaper that fighter jets; thus,

some or all of them can be employed as decoys for depleting enemy

munitions.

• The unmanned vehicles cruise at an altitude that may not be reachable by

some enemy munitions.

• Some expensive munitions can reach UAVs--in that case, UAVs are decoys.

• The manned aircrafts are high value targets for AUAVs.

To prove the scenarios, it is imperative that the swarm simulations have the

following requirements:

• The complex scenarios should be powered by a few simple forces.

• The forces must be proven via virtual experiments. The validated forces

prove the behavior model; the verified model proves WYSIWYS simulations,

and in that order.

62

• The source code of proven forces must not be changed or modified, as real

world forces are always present.

The current swarm simulators like the one developed by Santa Fe [8] do not address

the requirements due to the following weaknesses:

• There is no attempt to prove virtual forces rigorously and scientifically.

• There is no attempt to prove that the mathematical equations used are coupled

tightly to the forces.

• There are no separations of force, model and code.

• The source code of forces is changed or modified to suit the solution.

Some "general" simulators claim to represent all real-world forces in many

situations. This assumption is flaw as each force is unique that requires unique coding. A

scientific simulation, at the very least, must be proven via virtual experiments.

6.2. Navy Swarms' Design Strategies

The following subsections are Navy Swarms' design issues in virtual experiments,

virtual forces, autonomous behaviors, and minimalist. The main concepts though have been

discussed hereinbefore and hereinafter, it is helpful to reiterate them again, as they are

neither obvious nor easy to understand.

6.2.1. Virtual Experiments

Virtual experiments are the most important issue in this dissertation. To the best of

this author's knowledge, there is no rigorous work that emphasizes on experimenting

virtual entities. Some forces, like Newtonian gravity, are so renowned that many software

experts think they fully grasp it. The strategies for experiment design are the following:

• Only a few simple forces are considered; hence, air frictions and other minor

63

forces are ignored at this early stage of project.

• The forces are just vector arrows; thus, vector computations are done via

reliable vector methods from Java3D instead of complicated aerodynamic

equations.

• The force code validated by the experiment is preserved.

• If virtual experiments for verifying forces cannot be found, the Navy

Swarms' scenarios are not feasible.

6.2.2. Virtual Forces

The strategies for force design include the following:

• Only three simple forces are considered for initial investigation of Navy

Swarms--forward thrust, left and right torque.

• A well-accepted circular equation can be applied to two virtual experiments-

one is for experimenting forward thrust and left torque (anticlockwise circular

motion), and the other for forward thrust and right torque (clockwise circular

motion).

• If the virtual forces performed as intended, the virtual and theoretical radii

should be close.

6.2.3. Autonomous Behaviors

Autonomous behaviors are desirable design due to reasons below:

• They enable UAVs to execute maneuvers with minimum human supervision.

• They allow numerous UAVs to cooperate smoothly as a group.

• They minimize operation costs as each UAV is not controlled by a remote

pilot but via high-level goals from an officer--that is, local actions such as

64

avoidance are automatic.

• They are often governed by simple heuristics. The avoid behavior, for

example, enables UA Ys to apply close range rule in moving themselves to

opposite direction spontaneously when their sensors detect close objects.

6.2.4. Minimalist

Minimalist design has the following objectives:

• For initial development, only two turnings for air maneuvers are necessary

instead of standard six. This minimize hardware costs and software

complexity

• To streamline swarm behaviors, only three virtual forces are introduced.

• Only three or less behaviors are required for Navy Swarms' scenarios.

6.3. The Virtual Experiment Setup for Navy Swarms

In the following subsections, the author describes how virtual experiments are set

up for proving three virtual forces of UAVs--forward thrust, left and right torques (both

orthogonal to thrust), as depicted in Figure 14. At each simulated second, the virtual forces

perform the following:

• The forward thrust maintains a constant velocity.

• The left torque enables UA V to turn left at constant speed.

• The right torque enables U AV to turn right at constant speed.

The setup does not attempt the following issues:

• To employ complex aerodynamic equations.

• To include air frictions, winds, rains, snows and other weather conditions.

• To simulate movements of UAVs' mechanical parts.

65

• To claim that the forces work for other types of UAVs.

• To add new forces by discarding or modifying the old ones.

Forward Thrust

l
Left Torque ◄---- ----► Right Torque

Figure 14. Three Virtual Forces of UAV

Figure 15 shows the forward thrust coupled with left torque enabling a UA V to fly

counterclockwisely with the following actions:

••••
...

••••• ····•· ········
Center ••••• •. ,~::·:•.......•.....•..........•..

Radius-20000 m

Vo-100m/s

Figure 15. Counterclockwise Circling with Left Torque and Forward Thrust

• A U AV is circling around a center point with a radius of 20000 meters.

• The starting position is at coordinate (20000, 0, 0), which is 20000 meters

away from the center.

• At time t=0 second, it travels at 100 m/s (vector V 0).

• At time t=l second, the velocity is still 100 m/s but the direction has changed

as indicated by V1's arrowhead.

• The position of UA V at t=l is computed by vector addition of displacements

66

from V I and left torque.

• The process repeats again for next second.

The vector values in Figure 15 are not random. The relationship between

acceleration (i.e. force), velocity and radius is predicted by well-accepted circular motion

formula below:

Where a = acceleration in m/../

v = velocity in mis

r radius in m

By plugging in the values from Figure 15, acceleration a can be calculated:

a = 100* 100/20,000 = 0.5 m!:l

The vector a is left torque with magnitude 0.5 m/s2 and orientation toward the

center. Thus, if the UAV traverses a perfect circle, the virtual forces, forward thrust and left

torque, are then proven. The experimental variable, in this case, is radius r=20000 m, which

can be identified and measured easily by experimental code. There are, however, a few

complications in this experiment:

• The circular equation describes continuous motion but the computer that

performs the virtual experiment is a discrete machine--that is, it cannot

compute a continuous curve like Calculus.

• The left torque must push the UA V continuously. However, in Figure 15, it is

assumed to exert the force at exactly t==O second. Thus, the UAV's position at

exactly t=l second IS NOT on the perfect circle, which violates the equation-

that is, the virtual radius (or experimental variable), is not equal to 20000

67

meters, the chosen theoretical radius (or control variable). The forward thrust,

nonetheless, does not violate the equation since it cannot alter the UAV's

orientation.

• The error in two radii is accumulated after each simulated second.

Despite the difficulties, the two forces can still be proven if the accumulated errors

relative to theoretical radius are insignificant. The following paragraphs proceed to conduct

the virtual experiment and prove that the accumulated errors are immaterial as evidenced

by both visual and numerical confirmations that the UA V indeed is negotiating a NEAR

perfect circle in Figure 16 and Table 3, respectively.

The Figure 16 provides visual confirmation that a UAV starts flying from the right

and orbits counterclockwise in a near circle as demanded by the circular equation. The

circle is preserved during long simulations.

Figure 16. Visual Confirmation of Near Circle Motion

The numerical data in Table 3 has four columns:

1. The first column lists Nth simulated seconds. Each row is 3600 seconds apart.

2. The corresponding virtual radius at Nth second is in second column.

68

3. The third column shows the difference between the virtual and theoretical

radii.

4. Error ratios are defined as the errors obtained in column 3 divided by 20000

m. The largest error is 49.84/20000= 0.002492, which is acceptable.

Nth Sec. · Virtu~iRac:lius:: :E~20000 .
· ·; vii <lit) ,. · -v~.'(m),

3600 20037.44 37.44
7200 20049.84 49.84

10800 20028.56 28.56 0.001430
14400 19988.01 -11.99 -0.0005995
18000 19955.71 -0.002215

·_ ~ : 19953.69 " { . •• '

25200 19983.32 -0.0008340
. 2jl,39Q. 20024.40 24.40

32400 20049.02 49.02
36000 20040.52 4052

Table 3. Numerical Data Confirming Acceptable Accumulated Errors in Radius

The author does not apply statistical analysis since the population variables from

the equation are fully determined. A threshold like the acceptable error ratio should not be

more than 0.005 is more meaningful and useful. Moreover, the code can notify the

experimenters when the threshold is breached. Due to cyclic symmetry, the errors stay

within 51 meters in either sign during the experiments. Finally, based on the visual and

numeric evidences, the author concluded that:

1. The accumulated errors of simulation are small and acceptable.

2. The net displacement computed from thrust and left torque is proven;

otherwise, the UAV will not fly in a near perfect circle.

3. All other factors, including graphics, vector class methods, experiment

setting, etc. are all verified. If not, the circular path will not appear.

The forward thrust coupled with right torque have also been proven by similar

69

virtual experiments with the exceptions the other UAV starts at coordinate (-20000, 0, 0)

and circles clockwise. The numerical data, due to symmetry, are the same as Table 3. The

same conclusions are thus applied as well.

The source code that enforces all three proven forces (forward, left and right) in

virtual experiments has only 9 Java statements, as listed below:

1. if(modelVector.length()!=0.0){

if (modelVector.angle(leftTorque)<=Math.Pl/2.0)

modelVector.set(leftTorque);

2. · else modelVector.set(rightTorque);

3. mode/Vector.normalize();

4. mode[Vector.scale(0.5) ;}

5. modelVector.add(velocityOJVA V[i]);

6. mode/Vector.normalize();

7. modelVector.scale(velocityOjVA V[i].length());

8. velocityOJVA V[i].set(modelVector);

9. positionOJVAV[i].add(velocityOJVA V[i]);

If statement 1 has zero value for model vector, the control is passed to statement 5.

Otherwise, statement l checks whether the model vector is close to left torque. If true, it is

set to left torque; or else, statement 2 set it to right torque. Statement 3 & 4 ensure both

turnings have maximum torque (0.5 m/s2
). Statement 5 performs vector addition of current

UAV's and model vectors velocities. Statement 6 & 7 make sure the resultant velocity has

constant value (I 00 m/s). Statement 8 & 9 determine the net displacement. And the same

process repeats again for next second. One can view the 9-statement virtual forces as a

70

basis to accept or reject the feasibility ofNavy Swarms' scenarios. If the readers reject the

scenarios, they have to find errors in the 9-statement code.

6.4. Switchable Swann Behavior Model Development via Proven Virtual Forces

The following subsections introduce the specific swarm software architecture and

subsumption control scheme for behavior model that controls CUA Vs or AUAVs. The

three proven forces have validated the model, which in tum, provides WYSIWYS

simulations. The fact that Navy Swarms' scenarios are generated by the model proves the

intended goals of the scenarios have been achieved, in turn, prove the underlying virtual

forces, software architecture and control scheme are properly design and valid.

The software architecture for each CUAVor AUAV is illustrated in Figure 17:

Sensors

Bellavior-s

Left/Right/Sam i
Feedbacks

Virtual Experiments

Figure 17. Swarm Architecture

The behaviors layer for CUAV can be expanded further into two behaviors that

are controlled by subsumption scheme as shown in Figure 18. The avoid behavior has the

highest priority due to self-preservation and thus placed higher in the scheme. If there are

no close objects, the control, nevertheless, is passed automatically to search target

behavior.

The subsumption control scheme in Figure 19 depicts AUAV, which has the

following behaviors:

71

• To avoid close objects.

• To follow targets or CUA Vs as threats are over.

• The state will take control and switch behaviors when high-level goal signal

is broadcast.

Avoid

Search Targets 7 ►
Left/Right/Same

Figure 18. Subsumption Control Scheme for CUA V

Avoid

Forrovv Leaders

Follovv Targets ------Left/Right/Same

Figure 19. Subsumption Control Scheme for AUAV

WYSIWYS simulations in Figure 20 provide visual confirmation for the activities

of CUA Vs and AU A Vs:

• The balls represent enemy aircraft carriers sail slowly at sea, which is the

squares of checkerboard. The simulated aircraft carriers are not WYSIWYS

since their forces, which are immaterial and irrelevant, are not proven.

• The high-flying CUA Vs are watching over the carriers within an area of

interest. If CUA Vs fly outside the area, they will reverse course.

• By default, each AUAV follows the closest CUAV. If CUA Vs are distant

enough, three distinct AUAVs' groups formed beneath them. BothAUAVs

and CUAVs will avoid close objects impulsively. Once the threats are over,

72

AUAVs follow the closest leader again. Two groups of AUAVs will swap

their members dynamically when they are close.

• The inter-group or intra-group interactions of CUAV s and AUA Vs are local,

dynamics and unpredictable.

• The dynamic groups are beneficial if CUA Vs need AUAVs to cooperate

some tasks together.

Figure 20. Visual Confirmation of Navy Swarms' Scenarios

In Figure 21, AUAVs have switched their behaviors from follow-leader to follow

target behavior after the control signal was broadcast:

• AUAVs switched to new goal adaptively and autonomously--that is, the

switching was done without human supervising.

• AUAVs swapped members among groups when targets are close.

• CUA Vs continued their behavior as before.

The WYSIWYS simulations demonstrate that the Navy Swarms' scenarios are

successful. Moreover, visual images of battleground can be passed from ACA Vs to

73

CUA Vs, and then to remote officers via satellites. The officers have clear view of the

battlefield without physical presence.

Figure 21. Adaptive Behavior via a Remote Signal

Navy Swarms are lethal to aircraft carriers if an officer decides to send the attack

signal (in future work) to AUAVs whose targets are closely monitored and surrounded. The

WYSIWYS simulations also show that AUAVs can adapt to new goals smoothly via

simple control signals sent by remote offices without messing the local autonomous

behaviors. This paradigm can be expanded to accomplish more challenging military tasks

without human soldiers.

6.5. Vector Algorithms in Behaviors

Vector algebra is executed by reliable Vector class methods of Java3D that are

previously tested. Vector computations are utilized by behaviors to ascertain positions,

displacements, ranges, etc. Though there are many class methods for vector computations,

vector algorithms combine them intelligently for specific behaviors. The following

paragraphs summarize how vector algorithms are applied for various behaviors.

74

6.5.1. Vector Algorithm for AUAV-follow-CUA V Behavior

for each time step {

if control signal says to follow target, jump out of this loop

if CUA Vis in sensor range and no closest object in close sphere {

determine the di:iplacement pointed to CUA V

}

find the turning that has the smallest angle relative to the displacement above

suggest the turning to virtual experiment layer

else if close objects are in close sphere {

calculate the displacements of each object

find the shortest displacement

}

find the lllrning that has the greatest angle relative to the displacement above

suggest the turning to virtual experiment layer

else if no CUA Vis in sensor range and no objects in close sphere {

maintain current velocity and direction

}

}

suggest current turning to virtual experiment layer

6.5.2. Vector Algorithm for AUAV-follow-target Behavior

J<1r each time step {

if" control signal says to follow CUA V, jump out of this loop

if target is in sensor range and 1w closest object in close sphere {

determine the displacement pointed to target

find the turning that has the smallest angle relative to the displacement above

75

suggest the turning to virtual experiment layer

}

else if close objects are in close ,\phere {

calculate the di:;placements of each object

find the shortest dL\placement

}

find the turning that has the greatest angle relative to the displacement above

suggest the turning to virtual experiment layer

else if no target is in sensor range and no objects in close sphere {

maintain current velocity and direction

suggest current turning to virtual experiment layer

}

}

6.6. Navy Swarms' Strengths and Weaknesses

The strengths of Navy Swarms are the following:

• The Navy Swarms' scenarios are proven meticulously via VEDPM.

• The 9-statement virtual forces are simple to implement and comprehend.

• The cheap, expandable and autonomous UA V swarms could sink a mighty

aircraft carrier.

The weaknesses of Navy Swarms are examined here:

• CUA Vs magically reverse their orientations at the borders.

• The numerical data, if needed, have to be coded for displaying through a

console or file.

• There are 100 UAVs in the simulations; thus, the numerical data are chaotic.

76

6.7. Conclusion for Navy Swarms

The realistic and proven WYSIWYS simulations, validated by the 9 code

statements, demonstrate that some results cannot be ignored by U.S. Navy in near future:

• The aircraft carriers are vulnerable to swarms of unpiloted vehicles.

• CUA Vs and ACAVs are difficult to be targeted or destroyed by naval

munitions due to their random and reactive motions.

• The cheap UAVs can be used as decoys to deplete munitions.

• UA Vs are fearless.

High-level goals are able to incorporate into local behaviors seamlessly via remote

signals. The paradigm is more powerful and robust than one adopted by Predators, which

are controlled by remote pilots. The VEDPM methodology is not a one-time wonder. The

author has also developed other complex swarm behaviors successfully via VEDPM-

NASA Tetwalkers. They are described in next chapter.

77

CHAPTER 7. VEDPM APPLICATION 11--NASATETWALKERS

7.1. Introduction of Tetwalkers

Tetwalker (Tetrahedral Walker) is a novel and futuristic NASA project for Mars

explorations with unique structures:

• Unlike Mars Rover, Tetwalker does not have wheels. NASA scientists believe

it can traverse difficult terrains like Martian craters.

• It consists of nodes connected by struts, and each strut has a motor at its

center.

• The struts must expand/contract cooperatively for locomotion.

• It moves by shifting its CG.

Tetwalker's gaits via motorized struts are complicated despite its unassuming

appearance. For comparison, the human legs have similar structures such as knees (nodes)

and elongated bones (struts), and each leg essentially has 3 nodes and 3 struts (ignoring

toes). Human children need several years for learning how to walk properly by balancing

their "nodes" and "struts" and predicting the next move "imuitively.'' As a result, VEDPM

is a valuable tool for assessing or studying the feasibility of gait models in virtual

environments. Moreover, VEDPM has been employed successfully in verifying Navy

Swarms' autonomous behaviors, which are similar to Tetwalkers· gaits. The Tetwalker

simulations have the following scenarios:

• A set of ordered waypoints, which form a path, are laid over the crater and

served as goals for Tetwalkers.

• Two Tetwalkers are competing for each waypoint.

• Tetwalker moves by shifting its CG along a direction.

78

• Tetwalker tumbles if its CG is outside the base triangle. After tumbling, it

will first restore to regular tetrahedral shape before selecting a direction.

• Shifting CG in any orientation requires "proper" coordination of all

expanding/contracting struts connected by the nodes.

• If they are dangerously close, they will avoid each other by moving

temporary in opposite directions.

• The avoid or path-following behavior is triggered by proximity sensors,

whereas shape restoring is activated by gyroscopes that measure angular

velocities.

7.2. Background of Tetwalkers

NASA has two types ofTetwalker: 1-Tet (4 nodes and 6 struts) and 12-Tet (9 nodes

and 26 struts). 1-Tet's gaits were orchestrated manually by several NASA scientists via

wireless controllers [29]. From the video, the gaits are obviously slow and preplanned with

great effort. 12-Tet has impractical animated gaits that require corresponding human

intelligence [30]. Nonetheless, the real and successful 1-Tet's gaits did provide important

clues for N-Tet's gait model design:

• The shifting of CG enables locomotion and tumbling successfully.

• The large triangular base provides stability.

• 1-Tet is able to restore regular tetrahedral shape.

• Despite wheels, 1-Tet flip-flops towards a goal in zigzag pattern.

A feasible gait model must be motorized by proven expansive or contractive strut

force. Applying VEDPM principles, the author first employed mathematical constructs, 3D

vectors, as virtual strut forces with magnitudes and orientations; two sound virtual

79

experiments were designed for authenticating the forces, which, in turn, were powerful

tools in searching a feasible gait model.

After several failures, the successful model, validated by the forces, has two parts:

an imaginary Tetwalker, generated by mathematical equations with perfect and valid gaits,

and a virtual Tetwalker with a goal of mimicking the shape of imaginary one--the resulted

gaits, though not perfect (as slacks are allowed), are sufficient for mission objectives

described in Tetwalker scenarios.

As every virtual action derived from the gait model is reinforced by the proven

forces, the resulted simulations are WYSIWYS. Moreover, the WYSIWYS gaits of virtual

1-Tet match closely to the real 1-Tet' s gaits demonstrated by NASA And the model can be

extended for proving N-Tet's gaits. The designs, experiments, gait model and proofs are

explained in detail in the relevant subsections below.

7.3. Tetwalkers' Design Strategies

The strategies address various design issues in developing WYSIWYS simulations

of Tetwalkers such as virtual experiments, forces/laws, autonomous behaviors, etc.

Autonomous behaviors have been studied by some NASA scientists [31, 32, 33, 34, 35, 36]

and the author [20, 21]. The following paragraphs briefly discuss the design issues, and

readers can regard some of them are motivated by VEDPM.

7.3.1. Virtual Experiment

The virtual experiments in Tetwalkers are simpler than those in Navy Swarms as

struts are moved only by two basic forces. To simplify the experiments, the following steps

were implemented:

• The experiments assume strut forces are conserved notwithstanding

80

conditions of the ground or Tetwalkers' mechanical parts--the heat energy is

not generated due to frictions on ground or between parts.

• Java3D's vector class methods are used exclusively for calculating or

manipulating resultant forces since they have been proven reliable and

accurate in virtual experiments from past projects [21].

• The strut's CG is at its very center and mass is uniformly distributed.

7.3.2. Virtual Forces and Physical Laws

Virtual forces that represent sound physical laws are proven via virtual experiments.

The virtual strut expansive and contractive forces are represented by Java3D's vectors,

which implement Newtonian laws. The Double data type stores all, either intermediate or

final, results from vector computations. Although Double had some abnormalities in the

past, it is now reliable and accurate to about 15 significant digits. Furthermore, the author

has applied Double type to other experiments that yielded predicted outcomes. The

experiments and model here, nevertheless, require fewer significant digits.

The two forces are assumed to have equal, constant magnitude but opposite

orientations. Without constant magnitude, the forces are difficult to manipulate and design.

The author does not believe that the complex variable forces can produce a better solution.

Moreover, the complex force design may not be realized into products or controlled easily

by human operators.

7.3.3. Autonomous Behaviors

The autonomous behavior design is appropriate for Tetwalkers' scenarios due to

following reasons:

• Applying minimalist approach, the resulted behaviors are simple, autonomous

81

and spontaneous, which are best suited for Mars exploration. Coupled with

switchable behaviors invented by the author, Tetwalkers can conduct

missions autonomously via simple control signals.

• The work like Navy Swarms strongly suggests that the autonomous behaviors

are fit for Tetwalkers' missions.

• Local behaviors are loosely coupled to higher-goal commands. The gait

behaviors, for instance, will ignore the Tetwalker' s higher objectives if

immediate obstacles or threats are close.

7.3.4. Center of Gravity (CG)

Tetwalker utilizes CG formula to realize that:

• It is in tumbling state if CG projected on the ground is outside the base

triangle.

• lt is in unstable state if CG is too high.

• It is immovable if CG is unchanged for several time steps.

There are other decisions that are based on the statt.: of CG; consequently, CG is like

''machine consciousness" ofTetwalkers.

7 .3.5. Frictions

Frictions are significant part of model design in some NASA reports concerning

Tetwalkers [37]. The author, however, thinks that frictions should not be considered as

evidenced by natural movements of insects, birds, animals or even humans [35, 36]:

• The low-intelligent insects, for example, do not concern themselves about

friction coefficients while moving.

• No animals, including humans, calculate frictions when entering on an icy

82

ground.

• The highly intelligent species such as humans does not work out frictional

values while walking.

Instead of computing frictional values, all species (excluding computers) follow

their instinct or heuristic in the circumstances below:

• If the ground is slippery, CG has to be lower for stabilizing the gaits.

• If one slips or tumbles, one simply struggles to recover by moving the limbs.

• If the limbs are stuck, one will exert maximum effort to be unstuck.

The observations above have been applied to the design of gait model developed

here; as a result, the gaits are more natural and simple. If frictions are not omitted from the

design, one has to tackle the following problems:

• Tetwalkers have limited computing capabilities and data storage, especially in

extreme space environments. A large frictional data require more computing

resources and storage.

• If the data become part of logics with higher priority, they will inhibit local

behaviors and sensors.

• The models that include frictions are complex and difficult to construct.

7 .3.6. Vectorized Goals

A vectorized goal is simply a line vector, coupled with sensors, pointing to a target.

It has several advantages:

• The line vector with inputs from sensors can change its goals dynamically.

• It can follow waypoints computed from a global path planner by pointing to

the closest one al each time step.

83

• It can point to an object in 30 space as its goal.

• It uses vector algebra for computing its orientation and magnitude.

7.3.7. Tetwalkers' Group Behaviors

The author envisions the inexpensive, expandable Tetwalkers to be employed in

large number in future Mars exploration. Thus, a sensible design of group behaviors is

important for effective cooperation among group members. The following simple group

behaviors are desirable:

• Avoid behavior--it is needed for self-preservation. That is, Tetwalker protects

itself before completing its mission. By ensuring self-survival, it indirectly

defends the safety of other nearby Tetwalkers. Other related but individualize

behaviors are flipping and shifting CG.

• Path-following behavior--this is a high-level behavior, which enables

Tetwalkers to move along a preplanned path by following the waypoints that

benefit the missions. It has lower priority than avoid behavior since its goals

are not immediate.

• Nearest-waypoint behavior--each waypoint provides a high-level goal for

Tetwalkers. Tetwalkers will compete for the nearest waypoint but abandon it

if other Tetwalkers are dangerously close.

Though there are only three behaviors, the WYSIWYS simulations demonstrate

that the group interactions are successful--that is, each Tetwalker is able to avoid obstacles,

follow path, and compete for nearest goal dynamically and effectively.

7 .3.8. Minimalist

Minimalist can be explained in one simple word--"simplicity.,. The author believes

84

minimalist is a sensible design to minimize costs, software complexity, the number of

hardware components and sensors. At the same time, it is maximizing robustness,

independence and intelligence of Tetwalkers. Simplicity, nonetheless, does not mean that

the design is easy and straightforward. One the contrary, a great effort, amount of time and

ingenuity are necessary to determine the sensible design. The principle is applied in the

following examples:

• Virtual experiments are just designed for two basic forces and thus

minimizing the proving effort.

• Though Tetwalkers have a few behaviors, they can accomplish complicated

tasks successfully. By implementing minimalist in avoid behavior, for

instance, Tetwalkers avoid close objects by moving in just one direction

(backward) instead of three options (backward, rightward or leftward). From

the WYSIWYS simulations, the one direction only yields robust evading.

7.4. Tetwalkers' Simulation and Software Architecture

To fulfill the design concepts above, the author hereby proposes a software

architecture that has two main components: gait behaviors and virtual experiments. Gait

behaviors, a model, make predictions about movements toward a goal. However, virtual

forces, proven via virtual experiments, enforce Newtonian physics on the predictions. Like

Navy Swarms, if proven forces validate the predictions, the behavior model is then

verified, which in turn, provides WYSIWYS simulations or data.

The gait behaviors and virtual forces described in the following subsections are

applicable to N-Tet. Indeed, from the WYSIWYS simulations, 4-Tet is best suited for Mars

exploration as it is simpler than 12-Tet with the same payload at its center node--unlike 1-

85

Tet that has no safe location for payload.

The gait-behaviors layer in Figure 22 can be expanded into three detailed behaviors

shown in Figure 23, which are controlled by subsumption scheme for achieving goals.

Sensors

Gait Behaviors I
Expand/Contract

Virtual Experiments I Feedbacks

Figure 22. Software Architecture for Expanding or Contracting Struts

Avoid

Shifting CG

Flipping 1

Expand/Contract

Figure 23. Modified Subsumption Control Scheme for Tetwalkers

The inain behaviors perform the following functions:

• Avoid behavior enables each Tetwalker to evade close objects by moving in

opposite orientation.

• Shifting CG behavior allows Tetwalker to move by shifting its CG towards a

chosen direction. It, nevertheless, does not shift CG to a direction but simply

imitates the shape of imaginary Tetwalker who has the given orientation.

• The main purpose of flipping behavior is for restoring Tetwalker to regular

tetrahedral shape after falling.

86

At this early stage of investigation, some restrictions are applied to Tetwalker

scenarios:

• The gyroscope, angle and motor sensors are the only three sensing tools

needed in providing the state of Tetwalker.

• Each strut has only two constant but opposite motor forces.

• The crater's topography is ignored.

The virtual force design has the following desirable criteria:

• Il uses simple Newtonian laws for representing problematical strut forces.

• The source code of virtual forces is about half a page (short, indeed).

• Two simple strut forces are easier to manage, comprehend and verify.

• Proven forces produce valuable WYSIWYS simulations for searching

feasible gait behaviors.

The author used well-established Newtonian laws for depicting virtual forces as

vector arrows in Java3D:

1. The first law is about the property of inertia. It states that all objects with

mass remain in their current state of motions and orientations unless an

external force is introduced. A vector arrow can represent an object's current

motion (arrow length) and orientation (arrowhead).

2. The second law is the rate of change of momentum, which is depicted by the

rate of changing arrow length and/or arrowhead orientation.

3. The third law states that action and reaction are equal but in opposite

directions--two arrows with equal lengths but directly opposite orientations

capture the law.

87

The vector arrows embodying the laws are employed extensively in the scenarios,

for example:

1. A pair of arrows with their tails at the strut center and arrowheads pointing to

both end nodes replaces the expansive forces (first law); the contractive

forces are similar but have directly opposite orientations.

2. The expansion/contraction requests from gait behaviors alter the arrow

lengths correspondingly (second law).

3. The actions at ground nodes produce two equal but opposing arrows (third

law).

One initial but failed gait model strongly suggests that the virtual experiments are

indispensable for validating models. The erroneous model is explained in the following

subsections and figures.

In Figure 24, the intended goal of the model was to move 1-Tet's CG horizontally

without raising its height.

Figure 24. VEDPM Rejecting the Failed 4-Tet's Gaits

As a result, the following suggested gaits would have appeared to be a reasonable

solution:

• Only the top node and connected struts (label 1, 2 and 3) were allowed to

88

shift. The nodes and struts on the ground were motionless.

• The model calculated a position x unit length away from top node along the

horizontal arrow's orientation.

• It subsequently computed the length differences between current and

imaginary struts as lengthen or shorten requests to strut forces.

• The proven forces strictly implement the Newtonian laws on model's

requests.

The left picture of Figure 24 shows the gaits worked as intended initially. However,

once CG was outside the base triangle, the top node and struts shot up rapidly and

unexpectedly as shown in the right picture. The proven forces did not hide the model's

weaknesses despite initial confidence on the "commonsense" design. This example

demonstrates VEDPM is a valuable tool for the following reasons:

• VEDPM can eliminate unfeasible gait behaviors.

• It improves the model by showing the abnormal behaviors.

• The intended scenes can be verified easily via WYSIWYS simulations and/or

numerical data.

• Most importantly, the proven scenes are realistic and applicable in real world.

7.5. Validation of Tetwalker's Virtual Strut Forces via Virtual Experiments

The following subsections describe virtual experiment designs for proving two strut

forces--expansion or contraction of strut at each simulated second. Unlike Navy Swarms,

the author cannot utilize the well-established circular equation in Tetwalker's virtual

experiments due to its tetrahedral structure. This is expected since real experiments in real

world require new experiment design when new objects are under investigation. Likewise,

89

VEDPM also emphasizes new design for Tetwalker. The simple and unambiguous design

involves great effort, time, and ingenuity. The author, finally, was able to figure out

creative experiments that utilize the property of regular tetrahedral:

1. All strut lengths of regular tetrahedral are equal. If a constant expansive or

contractive force is applied at each strut, the enlarged or shrinked tetrahedral

must maintain the same strut length.

2. If the Tetwalker's CG in Java3D is located directly above the origin (0,0,0),

due to perfect symmetry, the CG's x & y coordinates will not change (both

zeros) while z coordinate (height) varies proportionately with the strut force.

7.5.1. Proving Virtual Expansive Force via Virtual Experiment

The regular 1-Tet's experiment design, shown in Figure 25, for proving expansive

force is as follows:

• The starting regular tetrahedral has 100 cm length at each strut.

• An expansive force of 1.5 cm per second (0.015 m/s) is assigned for each

strut.

• The ending regular tetrahedral has 181 cm length at each strut.

• The expansive force is proven if both visual and numerical observations agree

with the ending regular tetrahedral above.

• If the state of ending regular tetrahedral is achieved, it implies that source

code for the force is bugs free.

• Since the expansive force design applied to N-Tet, a proof on 1-Tet implies

the expansive forces in 4-Tet or 12-Tet are valid as well, provided the source

code for all proven forces are preserved entirely.

90

Figure 26 captures the starting and ending states of the virtual expansion

experiment. The left picture shows the starting 1-Tet has equal strut lengths of 100 cm. The

right picture demonstrates that after 27 seconds, the enlarged regular tetrahedral has equal

length of 181 cm. The added length is equal to 1.5 cm/s * 2 * 27 s = 81 cm. Thus, the

author has visually confirmed that the enlarged lengths appeared to be equal.

Figure 25. Virtual Experiment for Strut Expansions

Figure 26. Visual Confirmation of Enlarged Regular Tetrahedral

Visual confirmation is not exact. The experiment, nonetheless, was coded to

91

provide exact numerical data for supporting the visual confirmation as listed in Table 4,

which shows the length is exactly 181 cm after 27 seconds for each strut, as expected.

Nth Strut Length with Node (X, Y), cm

(Seconds) (0,1) (1,2) (2,0) (3,0) (3,1) (3,2)

0 100 100 100 100 100 100

3 109 109 109 109 109 ;: 109

6 118 118 118 118 118 118

9 127 127 . l'lr.7 .. 127 127 127

12 136 136 136 136 136 136

1S 14S 14S 145 14S 14S 14S

18 1S4 1S4 1S4 1S4 154 154

21 163 163 163 163 163 163

24 172 172 172 172 172 172

181 181 181 181 181 181

Table 4. Numerical Values for Expanded Regular 1-Tet

7 .5.2. Proving Virtual Contractive Force via Virtual Experiment

The regular 1-Tet' s experiment design, shown in Figure 27, for proving contractive

force is as follows:

• The starting regular tetrahedral has 181 cm length at each strut.

• An expansive force of 1.5 cm per second (0.015 m/s) is assigned for each

strut.

• The ending regular tetrahedral has 100 cm length at each strut.

• The contractive force is proven if both visual and numerical observations

agree with the ending regular tetrahedral.

• If the state of ending regular tetrahedral is achieved, it implies the source code

for the force is bugs free.

92

• Since the contractive force design applied to N-Tet, a proof on 1-Tet implies

the contractive forces in 4-Tet or 12-Tet are valid as well, provided the source

code for all proven forces are preserved entirely.

Figure 27. Virtual Experiment for Strut Contractions

Figure 28 captures the starting and ending states of the virtual expansion

experiment. The left picture shows the starting 1-Tet has equal strut lengths of 181 cm. The

right picture demonstrates that after 27 seconds, the shrinked regular tetrahedral has equal

length of 100 cm. The subtracted length is equal to 1.5 cm/s * 2 * 27 s = 81 cm. Thus, the

author has visually confirmed that the shrinked lengths seemed to be equal.

Visual confirmation is not accurate. The experiment, nevertheless, was coded to

provide exact numerical data for supporting the visual confirmation as listed in Table 5,

which shows the length is exactly 100 cm after 27 seconds for each strut, as expected.

7.5.3. Proving Virtual Expansive Force via CG Virtual Experiment

The regular 1-Tet's experiment design for proving virtual expansive force via CG is

as follows:

93

• A regular tetrahedral is placed at the origin in Java3D where CG has

coordinate (0, 0, 20.41).

• An expansive force of 1.5 cm per second (0.015 m/s) is assigned for each

strut.

Figure 28. Visual Confirmation of Shrinked Tetrahedral

Nth Strut Length with Node (X, Y), cm

(Seconds) (0,1) (1,2) (2,0) (3,0) (3,1) (3,2)

0 181 181 181 181 181 181

3 172 172 172 172 172 172

6 163 163 163 163 163 163

154 154 154 154 154

12 145 145 145 145 145 145

136 136 136 136 136

18 127 127 127 127 127 127

21 118 118 118 118 118 118

24 109 109 109 109 109 109

27 100 100 100 100 100 100

Table 5. Numerical Values for Shrinked Regular 1-Tet

• The ending regular tetrahedral has CG at coordinate (0, 0, 36.95).

94

• The expansive force is proven if both visual and numerical observations agree

that CG is at (0, 0, 36.95).

• If CG is at (0, 0, 36.95), it entails the source code for expensive force is bugs

free.

• Since virtual expansive force design applied to N-Tet, a proof on 1-Tet infers

the expansive forces in 4-Tet or 12.:.Tet are valid as well, provided the source

code for all proven forces are preserved entirely.

• The proven expansive force is an indirect proof that the virtual contractive

force, with directly opposite orientation, is valid as well.

CG is computed from the following formula, which involves masses of nodes and

struts and their vector positions:

CG = (M1C1 + M2C2 + ... MmCm + m1C1 + m2c2 + ... mnCn) / (M1 + M2 + ... Mm

+ m1 + m2 + ... mn)

Where,

m = number of struts

M1 + M2 + ... Mm = masses for m struts

C1 + C2 + ... Cm = CG of each strut represented by a 3D vector point.

n = number of nodes.

m1 + m2 + ... mn = masses for n nodes

c1 + c2 + ... Cn = CG of each node represented by a 3D vector point.

M1 + M2 + ... Mm + m1 + m2 + ... mn = total masses of struts and nodes.

To simplify the formula, the following assumptions are made:

• Each node is a perfect sphere and local CG is exactly at its center. Moreover,

95

the mass is evenly distributed.

• The strut is a perfect rod with even mass, and local CG is exactly at its mid

point.

• The mass of each strut or sphere is exactly 1 kg.

Thus, the simple version of CG formula used in experiments is stated below:

C.G. = (C1 + C2 + ... Cm + CJ + C2 + ... Cn) I (m + n)

CG is therefore the vector sum of each strut CG and node CG. It is a vector as

mass gives force, which can be denoted by vector arrows.

Figure 29 captures the starting and ending states of the expansion experiment. The

left picture shows the starting 1-Tet's CG (the green ball at 1-Tet's center) is at coordinate

(0.0, 0.0, 20.41). The right picture demonstrates that after 27 seconds, the green ball is at

(0, 0, 36.95). Therefore, the author has visually confirmed that CG was indeed close to the

intended coordinate and x and y values appeared unchanged if one views from the bottom

of 1-Tet as evidenced by the green ball being covered by the top node.

Figure 29. Visual Confirmation of CG

Visual confirmation is not all. The experiment also provides numerical

confirmation as listed in Table 6, which demonstrates clearly that CG is moving along the z

96

axis from (0, 0, 20.41) to (0, 0, 36.95) within 27 seconds.

~ 3D coordinates, (x,y,z)

(Seconds) x (cm) y (cm) z(cm)

0 0.0 0.0 20.412414

22.249531

6 0.0 0.0 24.086649

9 0.0 o.o ft2s:m·16,
12 o.o 0.0 27.760883

15 0.0 o.o ·29~598001

18 o.o 0.0 31.435118

21 0.0 0.0 33.272235

24 o.o 0.0 35.109352

27 0.0 0.0

Table 6. Numerical Confirmation of CG

The proof for virtual contractive force via CG is similar to steps above except the

force is in opposite direction. Consequently, it is not necessary to construct a virtual

experiment for the contractive force, as it can be inferred from the expansive force

experiment above.

7.6. Proven Short Source Code via Valid Strut Forces

The proven source code representing both valid strut forces are short and has only 6

Java statements as listed below:

1. if (node[i].z <= 0.0 && node[otherNode[i][j]J.z > 0.0) {

node[otherNode[i][j]].add(strutForce);}

2. else if (node[i].z > 0.0 && node[otherNode[i][j]].z <= 0.0) {

strutF orce.scale(-1);

3. node[i].add(strutForce);}

97

4. else {

node[otherNode[i][j]J.add(strutForce);

5. strutForce.scale(-1.0);

6. node[i].add(strutForce);}

If a strut connects one ground node and one aerial node, statements 1 to 3 move the

aerial node and not the ground one. In fact, the force exerts on the ground node is

redirected to aerial one via Newton's third law of forces. If a strut connects two aerial

nodes, statements 4 to 6 will be executed, which exert equal force on the two nodes.

7. 7. A Successful Gait Behavior Model Developed via VEDPM

VEDPM has finally accepted a successful gait model for N-Tets. The model has

two parts: an imaginary Tetwalker generated from mathematical equations, and a virtual

Tetwalker that mimics the shape of imaginary Tetwalkers. Figure 30, for example, shows

the perfect shape of imaginary 12-Tet, which has the following desirable properties:

• The successive gaits are valid--that is, the nodes and struts, when in motion,

are not colliding and at safe distance with each other.

• 12-Tet's CG is able to move horizontally, which is effective for CG shifting-

the main mechanism of locomotion--as demonstrated by NASA

The imaginary gaits are bent by rotating all nodes (excluding the base nodes)

toward respeciive horizontal orientations over an axis of rotation, which connects two base

nodes, resulted in constant height for moving CG. The algorithm of mathematical gaits is

described below:

• The imaginary N-Tet first determines which base strut is closest to a goal.

• It then rotates each non-base node x degrees toward that base strut and

98

beyond, horizontally.

• Each non-base node moves in a line parallel to the goal's orientation.

Figure 30. Perfect Shape and Gaits of Imaginary Tetwalker

Figure 31, the semi-transparent nodes are imaginary ones but struts are not depicted

due to computing speed. The overall figure, nevertheless, is still recognizable.

Figure 31. Virtual Tet Chasing Imaginary Tet

The virtual Tetwalker with gait behaviors enforced by proven strut forces are drawn

as solid nodes and struts. The solid 12-Tet's goal is to have the same length for each

respective strut of Imaginary 12-Tet. To avoid a motionless solid 12-Tet, the goal of

achieving the exact strut lengths are not imposed--that is, slacks are allowed for useful

motions. From the WYSIWYS simulations, the imaginary Tetwalker was able to lead solid

one in achieving its goals. Hence, the mathematical gaits are effective as goal machine.

99

In Figure 32, the solid 12-Tet has just restored back to its original shape of regular

tetrahedral. The reverse process is triggered by the state of tumbling. When solid Tetwalker

tumbles, the imaginary one maintains its last mathematical gait. As solid 12-Tet is able to

move again, the imaginary one will lead the reverse process. Due to symmetry of regular

tetrahedral, the reverse process is possible and implemented effortlessly.

Figure 32. One Complete Gait of Shadow Chasing

The pseudo code for gait behaviors of solid 12-Tet is listed below:

identify 3 base nodes

calculate CG

if CG is in base triangle & not recovery {

}

imitate the imaginary gait and rotate x degrees in chosen direction

compute the different lengths between solid & imaginary struts

pass the differences to strut forces as expansion/contraction requests

if all struts are close to respective imaginary struts, imitate next gait

if CG is outside base triangle, exit this if statement

else CG is not in base triangle {

Tumble the 12-Tet

100

}

else if recovery {

}

imitate imaginary gait and rotate x degrees in REVERSE direction

compute all 26 strut length differences between solid and imaginary struts

pass the differences to strut forces as expansion/contracting requests

if all struts are close to re,\pective imaginary struts, imitate next gait

if it is back to regular tetrahedral, exit this recovery

The pseudo code for implementing proven strut forces on requests made by gait

behaviors:

for each strut connected to 2 nodes{

if one node on ground & other one in air {

use vector addition method to compute the net di!>placement on the other node

}

if both nodes in the air or on ground {

use vector addition to compute net displacements on both nodes

}

}

simulate nodes' positions according to resultant di!>placements.

simulate net strut lengths nodes

7 .8. Mathematical Constructs--Vectors and Trigonometry

The virtual forces, nodes, struts, CG and even imaginary Tetwalkers are denoted by

vectors and trigonometry, which are matured mathematical constructs for both physics and

101

computer graphics. The Math class in Java provides all required functions of trigonometry

for WYSIWYS simulations. The vector algebra is executed by Java3D' Vector3d class

methods. By using reliable Java mathematical libraries, the manipulations of vector forces

are done automatically. These software tools, nevertheless, must be applied innovatively

for solutions demanded by WYSIWYS simulations such as CG, base triangle, imaginary

Tetwalker, strut mid-point, rotation, tumbling, etc. Some important Vector class methods

are described in the following paragraphs:

• Vector3d vector x = new Vector3d()--this creates a vector object that

represents a node's displacement, a strut force, a CG, a goal direction, etc.

• vector _x. add(vector _y)--this method implements vector addition on vector_ x

and vector _y and stores the net vector in vector_ x. It is useful for computing

the net force experienced by a node, for example.

• vector_ x.sub(vector _y)--this method implements vector subtraction on

vector_ x and vector _y and stores the net vector in vector_ x. It is suitable for

calculating the differences of two vectors like the node displacements, which

is represented by two vector positions, for instance.

• vector_x.angle(vector_y)--this method computes the angle between vector_x

and vector _y, and the resulted angle is stored in vector_ x. It is valuable for

building models that involve trigonometry functions. For example, rotating

nodes require angles between 2 vectors.

• vector_ x.cross(vector _ x, vector _y)--this method performs cross product on

vector_ x and vector _y and stores the resultant orthogonal one in vector_ x. It

is employed for computing an orthogonal vector between base strut and

102

normal.

The algorithms described in pseudo code below, coupled with the methods above,

are useful mathematical models for the experiments, simulations, and gait model.

The mathematical model for computing struts:

for each node vector x {

for each node vector y {

strut vector = vector subtraction of x and y

}

Mathematical model for computing CG:

for each node vector{

}

CG vector = vector addition of node vector x

for each strut vector{

mid-point vector = 0.5 * strut vector

CG vector = vector addition of mid-point vector

}

CG vector = CG vector I the sum of nodes and struts

Mathematical model for determining 3 base nodes:

for each node vector {

if node vector x is on the ground & is corner node & baseNode array size < 3

baseNode vector array = assign vector node x to array

if baseNode array size > 2, exit this loop

103

}

The mathematical model for determining CG in base triangle:

for each baseNode vector x {

}

for each baseNode vector y {

}

X vector = vector subtraction of CG & baseNode x

Y vector = vector subtraction of CG & baseNode y

degrees = X.angle(Y)

if degrees = 360 degrees, CG is inside base triangle

else CG is outside base triangle

The Mathematical model for determining which base strut is closest to a goal:

for each baseNode vector x {

}

for each baseNode vector y {

}

X vector = vector subtraction of baseNode x & y

direction vector = vector cross product of X and unit z axis

Yvector = vector subtraction of baseNode x & CG

if CG in base triangle & Y.angle(direction) < = 90 degrees

maintain direction

else reverse the direction vector

if direction.angle(goal vector) is the smallest, baseStrut vector = X vector.

104

the chosen strut is baseStrut vector

The mathematical model for rotating an imaginary Tetwalker:

for each node vector {

}

find which base strut vector is axis of rotation

find mid-point vector on the base strut

project each node vector on the ground

ground vector = vector subtraction of base strut & mid-point

angle = direction.angle(ground vector)

if angle> 90 degrees {

}

angle2 ground.angle(base strut)

use angle2, ground and base strut to find the third side of triangle.

use third side, node vector to find the radius vector of circular path

choose an angle of rotation

find the horizontal distance given by this angle

The mathematical model for tumbling a virtual Tetwalker:

for each node vector {

find which base strut vector is axis of rotation

find mid-point vector on the base strut

project each node vector on the ground

ground vecwr = vector subtraction of base strut & mid-point

angle direction.angle(ground vector)

}

if angle > <JO degrees {

}

angle2 = ground.angle(hase strut)

use angle2, ground and hase strut to find the third side of triangle.

use third side, node vector w find the radius vector of a circular path

choose an angle of rotation

find the height given hy this angle

find the horizontal distance given hy this angle

if ahg le < = 90 degrees {

}

angle2 = ground.angle(hase strut)

use angle2, ground and hase strut to find the third side of triangle.

use third side, node vector to find the radius vector of a circular path

choose an angle of rotation

find the height given hy this angle

find the horizontal distance given hy this angle

use vector addition of height and horizontal vector

use resultant di.\placement to rotate the node

if node hits the ground, stop the rotation

The mathematical model for computing virtual strut forces:

for each node i vector {

for each node j vector {

compute the resultant di!>placement of stna i, j

106

}

}

if node i on ground & base node & node j in air {

applying vector addition on node j's displacement

}

else if node i in air & node j on ground & base node {

applying vector addition on node i's displacement

}

else{

divide displacement by half

applying vector addition of displacement equally on node i and j

}

The major mathematical models are mentioned briefly above. The author ignores

minor ones for shorter chapter. The readers, nonetheless, can sense the importance and

power of these models.

7.9. WYSIWYS Simulation Demos

The author has developed the WYSIWYS simulations implementing the

Tetwalkers· scenarios discussed in section 7.1. Though words like WYSIWYS, VEDPM,

virtual experiments, proven forces, etc. have been mentioned many times, the author

wishes to hammer the concepts again into readers· mind, as VEDPM principles are unique

and subtle.

The WYSlWYS simulations are realistic and applicable in real world as they are

PROVEN by the following sound validation steps:

1. The WYSIWYS simulations are generated by the proven gait behavior model.

107

2. The gait model is enforced by the proven forces.

3. The proven forces are tested and verified rigorously via virtual experiments.

4. The virtual experiments are supported by visual and numerical confirmations.

The following 4 sets of WYSIWYS demos (each set has two pictures) are

demonstrating the solution for N-Tets' (focused on 4-Tets and 12-Tets) scenarios:

5. The first set is demonstrating both 4 and 12-Tet are able to match the

respective strut lengths (their goal) of imaginary Tetwalkers successfully as

evidenced by their spontaneous animations.

6. The second set is demonstrating both simulations are able to save computing

resources for the same scenarios in (1).

7. The third set is demonstrating both 4 and 12-Tets can traverse a flat path

formed by waypoints, avoid close encounters autonomously, compete for

every waypoint and achieve the final goal of reaching the destination.

8. The fourth set is similar to (3) except the waypoints are laid over a crater.

The following is the detail description of each set. The first set is Figure 33, which

shows both 4-Tet and 12-Tet have the following details related to their respective imaginary

Tetwalkers, and how they move:

• The transparent nodes reflect partial structures of imaginary Tetwalkers.

• The solid Tetwalkers represent the virtual struts and nodes.

• The imaginary ones generate a specific shape from mathematical equations

for leading the solid Tetwalkers.

• The solid Tetwalkers, oblivious to the goals of the imaginary ones, imitate the

specific shape within certain slacks. In the simulations, both solid Tetwalkers

108

are clearly driven by the imaginary ones, respectively.

• After each tumbling, the imaginary Tetwalkers will resume to their original

regular tetrahedral shape by following the imaginary shapes in reverse order.

• The graphics depict both solid and transparent Tetwlakers is expensive. Thus,

multiple threads from multi-core processor represent various parts of

Tetwalkers. The nodes and struts, therefore, are not perfectly synchronized,

which is immaterial or irrelevant to experimental results.

Figure 33. Virtual Experiments on both Virtual & Imaginary Tets

The simulations in Figure 34 are similar to previous two except:

• The simulations are faster without depicting the nodes.

• The imaginary Tetwalkers are not displayed.

• Without the nodes and imaginary Tetwalkers, and fewer threads, the

simulations are more efficient in using computing resources.

Figure 35 illustrates the 4-Tet and 12-Tet groups can perform the following:

• They follow waypoints generated from global path planner.

• They can reach each waypoint despite their triangular bases.

109

Figure 34. A Tet without Nodes for Fast Simulation

• They rush to the first waypoint but avoid close objects effectively.

• If the waypoint is reached, the process is repeated for the next one.

• The avoid behavior is reactive, robust and unpredictable despite only one

avoiding orientation, as evidenced by the WYSIWYS simulations.

• They can select an orientation that is closest to the goal autonomously.

Figure 35. Tet Groups Following Flat Waypoints

The WYSIWYS simulations prove that the autonomous, reactive group behaviors

are feasible, which imply potential applications for exploring the unknown Martian

environments.

110

The simulations in Figure 36 are similar to previous two except:

• Tetwalkers can traverse the projected path on the chessboard from the

waypoints laid over the crater.

• This ability is helpful in ascending or descending a slope in future work.

Figure 36. Tet Groups Following Curved Waypoints

From the eight WYSIWYS simulations, it is obviously that 4-Tets can do all the

work of 12-Tets. Thus, this author will advise NASA that according to the WYSIWYS

simulations, 4-Tets should be chosen over 12-Tets as they have the following benefits:

• The software has less complexity.

• The node and strut structures are simpler.

• They use less computing resources.

• They have fewer motors and thus use less energy.

• They have fewer mechanical problems due to fewer parts.

• They carry the same payload.

• They are more cost effective.

• They are easy to operate.

111

7.10. Strengths and Weaknesses

The Tetwalker scenarios have the following strengths:

• The animated gaits are supported by the proven forces.

• The proven forces are implemented by short, simple and verifiable source

code.

• The 1-Tet simulations behave closely to the real one demonstrated by NASA.

• The gait model is applicable to N-Tet.

The weaknesses are listed below:

• Tetwalkers cannot ascend or descend a slope.

• The gaits are not tested for rugged surface.

• The momentum of Tetwalkers is conserved, which is unrealistic but

immaterial.

• There is no gravitational force acting upon Tetwalkers while tumbling. The

simulations, nevertheless, ensure the rotating shape is realistic according to

the properties of rigid body.

7.11. Conclusion for Tetwalkers

The strut forces that drive WYSIWYS demos have been proven rigorously via

virtual experiments. In addition, the forces are short in coding and implementing

Newtonian forces. The WYSIWYS simulations show that the gaits of 1-Tet are close to the

real ones, which prove that VEDPM is a powerful tool for developing realistic simulations

that enable the author to recommend 4-Tets to NASA instead of 12-Tets.

112

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1. Summaries on Objectives

The objectives listed in Chapter 1 may be too ambitious. The author is confident

that they have been achieved based on the reasoning presented below:

1) To prove that VEDPM is a powerful tool in validating scientific simulations.

The author has provided four examples on why VEDPM, indeed, is powerful:

• The gravity and light forces of Solar Sails were successfully proven by the

prototype of VEDPM.

• Likewise, the prototype was able to determine the elusive value of

gravitational constant for the third significant digit correctly.

• Full-fledged VEDPM verified Navy Swarms from the ground up for virtual

laws, experiments, behavior models, and simulations.

• Full-fledged VEDPM validated Tetwalkers from the ground up for virtual

laws, experiments, behavior models, and simulations.

2) To demonstrate that scientific method like virtual experiments can be

constructed via VEDPM.

The constructions of sensible virtual experiments are explained in detail in

Chapter 6 & 7. The experimental simulations and/or numerical data strongly

suggest that the scientific method employed in VEDPM is sound.

3) To illustrate virtual laws require innovative minds to create.

The author emphasizes on how to choose, modify, and create equations or laws

innovatively in several cases below:

• The author chose the simple yet effective equations in Solar Sails. In

113

particular, the author has ingeniously modified the light force equations.

• The author has creatively proposed an interesting equation that has

unlimited significant digits for G value. and using proven gravity code to

test that value.

• The author chose wisely the simple velocity vectors instead of complicated

aerodynamic formulas.

• The author chose simple velocity vectors instead of complex hydraulic

equations.

4) To prove that VEDPM is feasible via two applications.

The WYSIWYS simulations proved that VEDPM were feasible in Navy Swarms

and Tetwalkers.

5) To build WYSIWYS simulations.

The WYSIWYS simulations were demonstrated successfully in Navy Swarms

and Tetwalkers.

6) To provide general software architecture and a modified subsumption control

scheme for swarm behavior model.

The software architecture and subsumption control scheme were constructed

successfully, which are proven in WYSlWYS simulations.

7) To demonstrate that the autonomous behaviors can be switched via a simple

control signal.

This was demonstrated in Navy Swarms' simulations where behaviors were

switched autonomously via control signals as simple as value O and I without

compromising local behaviors.

114

8) To show that emergent intelligence is possible at swarm level.

The Navy Swarms' simulations demonstrated that the numerous, chaotic, and

autonomous UAVs appeared to be intelligent emerged from their behaviors and

interactions.

9) To explain that behavior models coupled with VEDPM are powerful tools for

developing applications for unmanned vehicles.

The impressive WYSlWYS simulations proved that both tools are ideal for

developing applications for unmanned vehicles such as UAVS, ULVs, UWVs,

and USVs.

8.2. Future Work of Universal Gravitational Constant

The first future work, testing gravitational constant, is unintended one since the

author did not develop virtual laws for the constant but Solar Sails. lt will be interesting to

know whether the proposed formula, G= 1rl(✓J *e) * ur10
, is the correct one. lf so, the

unlimited significant digits may be utilized to calculate large-mass phenomena such as

black holes. The data in Table 2 were collected manually by running each G candidate

separately. This, of course, is slow and can be improved by rewriting the source code. If

further virtual experiments indicate that it does not have the lowest relative ratio, some

improvement steps are possible:

• The simulations' time step is one second; a smaller one, like nanosecond, will

provide more accurate G.

• Instead of computing the relative error ratios at last second, the code can be

rewritten to compute the "average relative error ratios" of each second.

• lf the relative error ratio scheme fails, other types of errors may be possible.

115

8.3. Future Work of Navy Swarms

The work in Navy Swarm is minimal in this dissertation for demonstration of

VEDPM. The future work can include other behaviors that are needed for an effective

attack on the carriers. Some useful behaviors may be the following:

• Attack--obviously, the attack behavior must be included for destroying a

target; otherwise, the swarms are just doing reconnaissance.

• Self-destruction--sometimes the missions are cancelled due to changes of

political situations. With this behavior, the swarms are destroyed by

themselves.

• Returning--if the UAVs are expensive and self-destruction is not favor, the

returning behavior then can guide them back to a base.

8.4. Future Work of Tetwalkers

Though Tetwalkers appear more complicated than Navy Swarms, they have only

three behaviors: avoiding, shifting, and tumbling. Additional behaviors may be helpful in

Mars exploration:

• Crater descending--this behavior enables Tetwalker to descend the slope of

the crater.

• Crater ascending--this behavior enables Tetwalker to ascend the slope of the

crater.

• Switchable behaviors--they are useful when earth controllers want to affect

Tetwalkers' behaviors for different goals.

8.5. Conclusion of Dissertation

From the two applications developed meticulously via VEDPM, it is clear that

116

VEDPM is feasible for scientific simulations. This dissertation also demonstrates how to

prove virtual laws via virtual experiments rigorously. The proven code is short: 9 Java

statements for Navy Swarms and 6 statements for Tetwalkers. VEDPM is a valuable and

powerful tool for proving and constructing realistic scientific simulations.

117

REFERENCES CITED

[1] K, Auer and T. Norris, "" ArrierosAlife" a Multi-Agent Approach Simulating the

Evolution of a Social System: Modeling the Emergence of Social Networks with

"Ascape"," Journal of Artificial Societies and Social Simulation, Vol. 4:1, 2001.

[2] P. Davidsson, "Agent Based Social Simulation: A Computer Science View,'' Journal

of Artificial Societies and Social Simulation, Vol. 5:1, 2002.

[3] X. Li, W. Mao, D. Zeng, F. Y. Wang, "Agent-Based Social Simulation and Modeling

in Social Computing," Lecture Notes in Computer Science 5075/2008, 2008.

[4] J. Pavon, C. Sansores and J. J. Gomez-Sanz, "Modelling and Simulation of Social

Systems with INGENIAS," International.Journal of Agent-Oriented Software

Engineering, Vol. 2:2, pp. 196-221, 2008.

[5] P. Terna, "Simulation Tools for Social Scientists: Building Agent Based Models with

SW ARM," Journal of Artificial Societies and Social Simulation, 1 :2, 1998.

[6] B. W. Boehm, "Software Risk Management," IEEE Computer Society Press, 1989

[71 C. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model,"

Computer Graph, Vol. 21:4, pp. 25-34, 1987.

[8] M. Daniels, "Integrating Simulation Technologies With Swarm," Proceedings of the

Workshop on Agent Simulation: Applications, Models, and Tools, University of

Chicago, 1999.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz, ""Swarm Intelligence: From Natural to

Artificial Systems:· Oxford, University Press, 1999.

[10] E. Bonabeau, and G. Theraulaz, "Swarm Smarts," Scientific American, pp. 72-79,

2000.

118

[11] M. Resnick, "Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds," Cambridge, MA, MIT Press, 1994.

[12] D. Terzopoulos, X. Tu, and R. Grzeszczuk, "Artificial Fishes: Autonomous

Locomotion, Perception, Behavior, and Learning in a Simulated Physical World,"

Artificial Life, Vol. 1:4, pp. 327-351, 1994.

[13] D. P. Gillen, and D. R. Jacques, "Cooperative Behavior Schemes for Improving the

Effectiveness of Autonomous Wide Area Search Munitions," Proceedings of the

Cooperative Control Workshop, 2000.

[14] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, and M.

Baum, "Cooperative Control for Autonomous Air Vehicles," Proceedings of the

Cooperative Control Workshop, 2000.

[15] J. Fredslund and M. J. Mataric, "A General, Local Algorithm for Robot Formations,"

IEEE Transactions on Robotics and Automation, special issue on Multi Robot

Systems, Vol. 18:5, 2002.

[16] B. B. Werger, "Cooperation Without Deliberation: A Minimal Behavior-based

Approach to Multi-robot Teams," Artificial Intelligence, Vol. 110:2, pp. 293-320,

1999.

[17] M. J. Mataric, "Designing and Understanding Adaptive Group Behavior," Adaptive

Behavior, Vol. 4:1, pp. 51-80, 1995.

[18] C.R. Kube, and H. Zhang, "Collective Robotic Intelligence," Second International

Conference on Simulation ofAdaptive Behavior, pp. 460-468, 1992.

[19] K. Altenburg, J. Schlecht, and K. E. Nygard, "An Agent-based Simulation for

Modeling Intelligent Munitions," Proceedings of the WSEAS Conference, 2002.

119

[20] C. A. Lua, K. Altenburg and K. E. Nygard, "Synchronized Multi-Point Attack by

Autonomous Reactive Vehicles with Simple Local Communication," Proceedings of

IEEE Swarm Intelligence Symposium, pp. 95-102, 2003.

[21] C. A. Lua, K. Altenburg and K. E. Nygard, "ANTS with Firefly Communication,"

Proceedings of the 2005 International Conference on Artificial Intelligence (/CAI),

2005.

[22] R. Blomquist "Solar Blade Nanosatellite Development: Heliogyro Deployment,

Dynamics, and Control," Proceedings of the 13th USU I AIM Small Satellite

Conference, 1999.

[23] R. A. Brooks, "A Layered Control System for a Mobile Robot," IEEE Journal of

Robotics and Automation, Vol. 2:1, pp. 14-23, 1986.

(24] M.A. Arbib, "Perceptual Structures and Distributed Motor Control, in Handbook of

Physiology, Section 2: The Nervous System," Vol. II, Motor Control, Part I, V. B.

Brooks (ed.), American Physiological Society, pp. 1449-1480, 1981.

[25] R. C. Arkin, "Motor Schema-based Mobile Robot Navigation," The International

Journal of Robotics Research, pp. 92-112, 1989.

(26] J. R. Andrews, and N. Hogan, "Impedance Control as a Framework for Implementing

Obstacle Avoidance in a Manipulator," D. E. Hardt and W. J. Book (Eds.), Control Of

Manufacturing Processes and Robotic Systems, ASME, Boston, pp. 243-251, 1983.

[27] 0. Khatib, "Real-time Obstacle Avoidance for Manipulators and Mobile Robots," The

lnternationalJournal of Robotics Research, Vol. 5: 1, 1986.

[28] B. H. Krogh, "A Generalized Potential Field Approach to Obstacle Avoidance

Control," International Robotics Research Conference, 1984.

120

[29] S. Curtis, "Stepping Video," Goddard Space Fight Center, accessed: Aug. 13, 2010.

http://ants.gsfc.nasa.gov/features/steppin.MPG.

[30] S. Curtis, "12-Tet Video," Goddard Space Fight Center, accessed: Aug. 3, 2010.

http://ants.gsfc.nasa.gov/fcaturcs/12tet totalact mcdium.mov.

[31] P. Clark, S. Kessel, M. L. Rilee, G. Brown, C. Cooperrider, S. A. Curtis, "Extreme

Mobility: Gaits for Tetrahedral Rovers," 38th Lunar and Planetary Science

Conference, LPI Contribution No. 1338, pp.1172, 2007.

[32] S.A. Curtis, W. F. Truszkowski, M. L Rilee and P.E. Clark, "ANTS for the Human

Exploration and Development of Space," Proceedings of the 2003 IEEE Aero.,pace

Conference, 2003.

[33] P. E. Clark, M. L Rilee, S. A Curtis, C. Y. Cheung, G Marr, W. Truszkowski and M.

Rudisill, "LARA: Near Term Reconfigurable Concepts and Components for Lunar

Exploration and Exploitation," /AC Proceedings, 2004.

[34] P. E. Clark, S. A Curtis, M. L. Rilee and S. R. Floyd, "ALI (Autonomous Lunar

Investigator): Revolutionary Approach to Exploring the Moon with Addressable

Reconfigurable Technology," Lunar and Planetary Science XXXVI, 2005.

[35] P. E. Clark, S. A Curtis, M. L Rilee, W. Truszkowski, G. Marr, C.Y. Cheung and M.

Rudisill, "BEES for ANTS: Space Mission Applications for the Autonomous

Nano Technology Swarm," A/AA Intelligent Systems Technical Conference, 2004.

[36] P. E. Clark, M. L Rilee, S. A. Curtis, C. Y. Cheung, G. Marr, W. Truszkowski and

M. Rudisill, "PAM: Biologically inspired engineering and exploration mission

concept, components, and requirements for asteroid population survey," /AC

Proceedings, 2004.

[37) R. P. Wesenberg, ··Addressable Re-configurable Technology(ART) Tetrahedral

121

Robotics," NASA Goddard Space Flight Center, 2007.

[38] T. Vicsek, "Complexity: The Bigger Picture," Nature, Vol. 418, pp. 131, 2002.

[39] G. Fagiolo, C. Birchenhall and P. Windrum (Eds.), Special Issue on "Empirical

Validation in Agent-Based Models," Computational Economics, Vol. 30:3, 2007.

[40] K. G. Troitzsch, "Validating Simulation Models," Proceedings of the 18th European

Simulation Multiconference, 2004.

[41] P. Windrum, G. Fagiolo and A. Moneta, "Empirical Validation of Agent-Based

Models: Alternatives and Prospects,'' Journal of Artificial Societies and Social

Simulation, Vol. 10:2 8, 2007.

[42] V. R Kamat and J. C. Martinez, "Validating Complex Constrution Simulation Models

Using 3D Visualization," Systems Analysis Modelling Simulation, Vol. 43:4, pp. 455-

467, 2003.

[43] R. D. Newman and M. K. Bantel, "On Determining G Using a Cryogenic Torsion

Pendulum," Meas. Sci. Technol., Vol. 10, pp. 445-453, 1999.

[44] M. K. Bantel and R. D. Newman, ·'A Cryogenic Torsion Pendulum: Progress Report,''

Class. Quantum Grav., Vol. 17, pp. 2313-2318, 2000.

[45] M. K. Bantel and R. D. Newman, "High Precision Measurement of Torsion Fiber

Internal Friction at Cryogenic Temperatures," Journal of Alloys and Compounds, Vol.

310, pp. 233-242, 2000.

[46] K. Kuroda, "Does the Time-of-Swing Method Give a Correct Value of the Newtonian

Gravitational Constant?" Phys. Rev. Lett., Vol. 75:15, pp. 2796-2798, 1995.

[47] A. Thompson and B. N. Taylor, "Special Publication 811: Guide for the Use of the

International System of Units (S[)," National institute of Standards and Technology

122

(NIST), 2008.

[48] International Organization for Standardization, ·'Quantities and units - Part 3: Space

and time," ISO 80000-3:2006, 2006.

[49] E. R. Cohen and B. N. Taylor, Rev. Mod. Phys., Vol. 59, pp. 1121, 1987.

[50] Google Search, "Lua: Synchronized multi-point attack by autonomous reactive

vehicles with simple local communication," Google Scholar, accessed: Aug. 3, 2010.

h tlp://scholar .google.com/schola r?cites=4807244610863306992&h l=cn &as sd t=80000000000.

123

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135

