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ABSTRACT 

Loree, Paul Edward, M.S., Department of Computer Science, College of Science and 
Mathematics, North Dakota State University, June 2010. Post-Deployment Key 
Management in Heterogeneous Wireless Sensor Networks. Major Professor: Dr. Kendall 
Nygard. 

Many wireless sensor network applications require secure communication between nodes 

in the network. However, establishing pair-wise keys between nodes to provide security is 

challenging due to the limited resources in sensor nodes and the hostile environments in 

which they are deployed. Many key establishment schemes have been previously proposed 

for wireless sensor networks. However, most of these schemes were designed to work in a 

homogeneous network environment in which the nodes all have similar capabilities. Our 

work establishes that better performance can be achieved in a heterogeneous sensor 

network environment. We present a key management scheme for establishing pair-wise 

keys after deployment in a heterogeneous wireless sensor network. We take advantage of 

the more powerful nodes present in a heterogeneous network to reduce the communication 

overhead and ultimately the power consumption necessary to perform these services to the 

network. Additionally, by taking advantage of these nodes we are able to increase the 

overall network connectivity and resiliency against node capture attacks. 
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CHAPTER 1. INTRODUCTION 

Several wireless sensor network applications require being able to securely transmit 

messages between nodes in the network to ensure the confidentiality and integrity of the 

data being transmitted throughout the network has not been compromised by an attacker. 

Wireless sensor networks may be deployed to monitor an area in dangerous or secure 

environments. For instance, sensors may be deployed in battlefields to monitor troop 

movements of an enemy or to monitor building infrastructure intrusions. For many 

applications however it is not possible to physically place each node in specified locations 

over the area to be covered. In many cases when it is not possible to place individual nodes, 

thousands to tens of thousands of nodes may be randomly deployed over an area by 

dropping them from aircraft or some other method which scatters the nodes over the area. 

However, this creates a unique problem when attempting to establish symmetric keys 

between neighboring nodes since deployment location is unpredictable and preloading 

symmetric keys on each node may not allow nodes to communicate securely if they do not 

share a key in common. 

A couple narve approaches would be to preload each node with a single globally 

used pair-wise key or a unique pair-wise key for every other node being deployed in the 

network to ensure each node is able to securely communicate between any potential 

neighboring nodes after deployment. However,in both of these approaches if any one node 

is compromised by an attacker, the entire network becomes compromised since the attacker 

would be able to determine all of the keys being used to encrypt the data. The main benefit 

of the first approach is that it requires very little memory to store the key needed to secure 

data transmission between nodes in the network and is highly scalable for the addition of 
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new nodes in the network after deployment. The second approach also allows for perfect 

connectivity between nodes in the network after deployment but this approach does not 

scale well with very large networks since preloading all of the keys onto each node may not 

be possible to do because of the severe memory limitations of wireless sensor nodes. 

Furthermore, this approach does not easily allow for new nodes to be introduced to the 

network after deployment. 

Wireless sensor nodes are severely limited by available resources which must be 

taken into consideration when developing any security mechanism into the network. For 

instance two popular wireless sensor nodes are the MICA2 and MICAz Motes. These 

devices use 8 bit, 16 MHz processors and have a total of 4K bytes of configurable 

EEPROM and 128K bytes of programmable memory [1], [2]. Due to the limitations of 

memory space to store programming code and the necessary keys to ensure security along 

with the limitations in processing power, existing public-key encryption schemes available 

for standard networks are not feasible options. Additionally, these devices are designed to 

run on two standard AA batteries, which may not be replaceable after deploying the nodes 

and thus the battery power available in each node must be preserved as much as possible in 

order to ensure the network continues to operate for as long as needed by the application. 

This presents another constraint when developing a security mechanism into the network 

since wireless communication and computational processes are expensive to battery power 

and must be limited as much as possible so each node is still able to perform its necessary 

functions after the deployment of the network [3]. As such security algorithms developed 

should attempt to be as efficient as possible and attempt to limit the number and size of 
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necessary messages being exchanged between neighboring nodes and limit the number of 

computations necessary to perform the algorithms. 

1.1. Network Model 

In this work we consider two classes of wireless nodes deployed in the wireless 

sensor network (WSN) to form a heterogeneous sensor network (HSN). Low powered 

nodes, L-sensors, such as the MICA2 or MICAz motes and much more powerful nodes, H

sensors, such as the Imote2 [2]. For instance, the Imote2 uses a 32 bit processor which can 

be dynamically configured for either low powered use at 13 MHz up to high powered use 

of 416 MHz operational speed and contains 32M bytes of flash memory and SDRAM 

memory for code and storage. These more powerful H-sensors are comparable to PDAs in 

terms of computational power and have a much longer transmission range than the L

sensors present in the network. Most of the existing work which has been done in the past 

for key distribution in WSN has been focused primarily on homogeneous networks 

consisting of only L-sensors. Since the overall cost of a large scale WSN is typically 

considered we focus on heterogeneous wireless sensor networks (HSN) consisting of a 

large number of L-sensors and significantly fewer H-sensors which will be used as cluster 

heads in the network. 

We take advantage of these more powerful nodes present in the HSN to provide pair

wise key distribution to the lower powered L-sensors after deployment of the nodes without 

the need of deployment knowledge. Furthermore, since H-sensors have a much larger 

transmission range they are able to transmit messages directly to L-sensors within their 

cluster in a single hop which reduces the number of messages being transmitted by the 

network. Additionally since L-sensors must be deployed as economically as possible in 
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large numbers we assume that L-sensors are not tamper resistant. Therefore they are not 

protected from being compromised physically by an attacker and as such may release all 

information they contain. We also do not assume H-sensors contain tamper resistant 

hardware and may also release any information they contain to a physical attacker. 

However, tamper resistant sensors are available which could be used in the network to 

protect from these types of attackers. 

1.2. Work Overview 

The purpose of this study is to develop a set of algorithms to provide efficient 

generation and distribution of pair-wise keying information to a heterogeneous wireless 

sensor network after deployment has occurred. This keying information can then be used to 

create pair-wise keys needed for symmetric encryption of data being transmitted between 

neighboring sensors. To achieve this we have several objectives and tasks which need to be 

completed. 

1.2. L Objective One 

The first objective is to design new algorithms to be used for generating the keying 

information necessary to create the pair-wise keys in a heterogeneous sensor network 

environment. This requires several tasks to be completed. The first task is to design an 

algorithm for generating keying information by the more powerful H-sensors being 

deployed in the network which takes advantage of the extra resources present. This 

algorithm can be found in Subsection 2.6.1. The second task is to design an algorithm used 

by the lower powered L-sensors which allows the advantages of the H-sensor nodes to be 

utilized. The third task is to ensure that a backup method of generating keying information 

for the network exists when the higher powered H-sensors are not available to do so. 
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Details of this algorithm can be found in Subsection 2.6.2. Lastly we must find an efficient 

algorithm for distributing this keying information to the sensors in the network so that pair

wise keys between neighbors can be established. This algorithm is described in Subsection 

2.6.3. 

1.2.2. Objective Two 

The second objective of this study is to analyze our method and compare it against 

existing methods of key management designed for wireless sensor networks to ensure 

improved performance. Several tasks must be completed to do this. The first task is to 

analyze the communication overhead of our scheme and compare it to existing schemes for 

WSNs. These comparisons can be found in Subsection 2.7.1. Our second and third tasks 

are to analyze the storage overhead and computational overhead of our scheme in 

comparison with existing schemes. These results can be found in Subsection 2.7.2. The last 

task required is to investigate the resiliency of our scheme against node capture attacks. 

Subsection 2.7.3 describes these results. 

1.2.3. Objective Three 

Our third objective is to simulate our scheme in order to evaluate network 

connectivity in comparison with existing schemes for WSNs. The first task needed for this 

is to develop simulation software for our scheme and a few of the existing schemes. The 

second task is to experiment using numerous simulations of the schemes under different 

scenarios. Details of regarding the simulation software design and setup can be found in 

Subsection 2. 7.4. The last task is to compare the simulation results of our scheme with the 

existing schemes to show the network's performance improvements with our methods. 

Section 2. 7 .5 contains the results of our simulations. 
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1.3. Thesis Overview 

In this work we present a key generation and distribution scheme for heterogeneous 

sensor networks which take advantage of the additional capabilities ofH-sensors present in 

the network. Additionally, our scheme does not require a priori knowledge of sensor 

deployment locations and allows for sensor nodes to be randomly distributed over the 

deployment area. Chapter 2 discusses our three algorithms for generating pair-wise keys 

depending on if an H-sensor or an elected L-sensor to be used by nodes in the network and 

the algorithm needed for distributing the keys to the nodes in each cluster. We then 

examine our scheme through simulation in comparison to existing schemes which have 

been previously proposed. Finally we conclude our work in Chapter 3. 
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CHAPTER 2. POST-DEPLOYMENT KEY MANAGEMENT 

2.1. Introduction 

In this chapter we describe our post-deployment key management scheme for 

heterogeneous sensor networks. We present three algorithms in our scheme to provide key 

generation and distribution to nodes in the network. In our work we take advantage ofH

sensors present in heterogeneous sensor networks to provide keying information to L

sensors. To take advantage of these nodes, we present an algorithm in Subsection 2.6.1 

designed to be used on these H-sensors for generating keying information. The Subsection 

2.6.2 we present an algorithm to be used on L-sensors which can allow these nodes to 

generate keying information and distribute this information to their neighboring nodes only 

when needed. In Subsection 2.6.3 we present a third algorithm which describes the process 

for distributing keying information once this information has been created. 

We follow up in Section 2.7 with analysis of our scheme against previously 

proposed schemes which have been designed for wireless sensor networks. We then present 

our results from simulations in Subsection 2. 7 .5 performed on our scheme and compare 

these results with a predistribution scheme and a post-deployment scheme which have been 

previously proposed. 

2.2. Related Work 

Many schemes have been proposed in the past for securing the wireless transmission 

of data in WSN. However, most of these works focus only on homogeneous sensor 

networks which limit the capabilities of the network. Eschenauer and Gligor proposed a 

scheme (E-G) in [4] which preloads a set of pair-wise keys onto each node being deployed 

by randomly selecting a quantity of keys from a larger pool of keys that have been 
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generated prior to deployment. After the nodes have been deployed in the area and they 

have completed their bootstrapping process, nodes in the network are able to establish pair

wise keys with their neighboring nodes if their neighbors have also selected one or more 

keys in common from the pool of keys. However, this approach relies on the probability of 

two neighboring nodes having selected at least one of the keys from the pool in common so 

either a large selection of keys must be preloaded on each node or the key pool size must 

be kept small to ensure a high probability of connectivity. 

Eschenauer and Gligor's scheme was improved upon in [5]. Chan et al. proposed a 

scheme which increases the security of the network by requiring q > 1 keys must be shared 

between neighboring nodes in order to create a secure link between nodes. This 

requirement of requiring more keys in common increases the security of the network. This 

also in turn requires more nodes which must be compromised by an attacker in order to 

compromise the network. However, by increasing the number of keys which must be 

shared between nodes it decreases the probability of any two neighboring nodes sharing q 

keys in common. 

Zhu et al. presented a key management scheme in [ 6] where they defined a minimum 

time, T min, where the network is considered secure after deployment. Any processing 

necessary for booting the network and establishing secure communication links between 

nodes must take place in less than or equal to this time limit, Test ST min· Their approach 

preloads a global symmetric key to use during network discovery while bootstrapping the 

nodes and this key is assumed to remain secure during T min while pair-wise keys can be 

established between neighboring nodes. 

8 



Two independently proposed predistribution schemes were presented in [7] and [8]. 

These two schemes are similar in their approach by generating a pool of key spaces and 

preloading each node with randomly selected keying shares from the key spaces pool, 

where one keying share belongs to one of the key spaces from the pool. The difference in 

their approaches lies on the key space model they use which are presented in [9] and [10], 

respectively. Two nodes in the network are then able to establish a pair-wise key after 

being deployed if they contain keying shares from the same key space. These key space 

models presented in [9] and [10] are further discussed in Section 2.3 below. 

Group-based key predistribution schemes have also been proposed in [ 11 ], [ 12], [ 13] 

and [14]. In [11], Du et al. proposed grouping sensor nodes prior to deployment which 

would be dropped into the coverage area in groups. In this scheme a large pool of keys is 

generated and further partitioned into groups of keys with each group of sensor nodes being 

assigned one of the subsets from the larger key pool. When groups being deployed will be 

neighboring on another, the subsets of keys associated with those groups will contain 

overlap of keys to be used in order to increase the probability of connectivity between 

neighboring groups of nodes. Nodes are then preloaded with randomly selected keys from 

the subset assigned to them and deployed in their geographical regions accordingly. In [12], 

Yu and Guan proposed a similar scheme however they divided the deployment area into 

regular hexagon regions and each group of nodes preloaded with a selection of pair-wise 

keys was deployed into a specific hexagonal region. Liu et al. proposed group-based 

scheme in [13] which creates groups based on IDs which have been assigned to each sensor 

prior to deployment. In their scheme each node belongs to two groups, a disjoint 

deployment group and a disjoint cross group. Nodes belonging to the same group can 
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establish a secure communication link between themselves based on key predistribution 

schemes found in key based schemes [ 4], [5], or [15] or key space schemes in [9] or [10]. A 

similar approach was proposed in [14]. In this scheme Zhao et al. defined different 

deployment groups and cross groups which result in nodes belonging to more than one of 

each type of group. The major drawback to all of these group-based approaches is the 

requirement of deployment knowledge for sensor placement before the sensors have been 

deployed in the network. In our work we eliminate the need for prior deployment 

knowledge. 

In [16], Liu et al. proposed an in situ scheme for WSNs which does not require 

deployment knowledge and removes the probabilities of any two neighboring nodes 

sharing a common key after deployment by generating keying shares during the 

bootstrapping phase of deployment. Their scheme, called SBK, uses elected service nodes 

to generate keying shares from either of the previously mentioned key space models in [9] 

and [10]. After keying shares have been generated by these probability-based elected 

service nodes, the service nodes distribute the keying information to worker nodes within a 

maximum hop distance from the service node. Since this scheme was designed for 

homogeneous WSNs one of the drawbacks to this scheme is the computation and 

communication overhead required by the elected service nodes. These nodes are considered 

expendable in the network as they are likely to die shortly after the bootstrapping phase 

from battery depletion. 

Our work extends on the SBK scheme in [ 16] by introducing a HSN network model. 

With the inclusion ofH-sensors in the network we develop algorithms to put much of the 

workload of generating and distributing keying shares based on the key space models 



presented in [9] and [10] which have been redesigned for use in WSNs in [7] and [8], 

respectively. Additionally, preliminary work discussed here was presented in [17]. 

2.3. Key Space Models 

Two key space models which were presented in [9] and [10] will work for our 

scheme for generating and distributing keying information to allow nodes in the network to 

establish pair-wise keys with their neighbors. In [10] a polynomial based key space was 

proposed. This model uses a bivariate symmetric n-degree polynomial such that 

(1) 

over a finite field Fq, where q is a large prime number suitable for cryptographic keys. A 

pair-wise key can be established between two nodes in a network which share the same 

coefficients ai, the key space, by exchanging their IDs and computing the formula found in 

Equation 1. For example, assume sensor nodes with IDs u and v. By exchanging their IDs 

and inputting their ID along with their neighbors ID into the formula, a pair-wise key can 

be established by nodes u and v since f(u, v) = f(v, u). Thus the key kuv kvu· 

The second key space model presented in [9] is similar to the polynomial based 

model but is a matrix based approach. In this model, a symmetric (n + 1) x (n + 1) 

public matrix G and a symmetric (n + 1) x (n + 1) private matrix Dare with Dover a 

finite field GF(q) and q is a large enough prime number suitable for cryptographic keys. 

These two matrices are used to create a matrix A, shown in Equation 2. 

A= (D · G)T (2) 

Sensors are given the information needed to establish a pair-wise key by giving a sensor, 

for instance the node with ID u, the uth row of A and the uth column from G. Neighboring 

nodes are able to establish a pair-wise key by exchanging their columns from G. For 
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example, assume neighboring nodes have the IDs u and v. Sensor u and v exchange their 

columns G and compute their pair-wise key kuv = kvu with Equation 3 below: 

K=A·G (3) 

since if D is symmetric than K is also symmetric. 

Furthermore, with a properly designed G matrix, message transmission lengths can 

be reduced between nodes by only requiring a seed value of G to be transmitted to the 

neighboring node (e.g. using a Vandermonde matrix [7]). However, this does increase the 

computational needs of the receiving sensor since the column must be generated after 

receiving the seed. 

A unique property for both of these models is that each is n-collusion resistant. This 

means that as long as less than n nodes which share the key space are compromised then 

the entire key space remains perfectly secure as shown in [9] and [ 1 O]. Furthermore it has 

been shown in [16] that the storage requirements for these key spaces are close to (n + 1) · 

log q for the polynomial based model and (n + 2) · log q for the matrix based model as 

long as the matrix has been properly designed which allows only a seed value to be used 

for G. However, this requires an additional (n -1) modular multiplications to generate the 

column for G before computing the pair-wise key. 

Due to the mathematical similarities between these models, either key space model 

can be used for generating key spaces in our work. We take advantage of the H-sensors 

present in our network to generate these key spaces after deployment and distribute keying 

information to nodes within their transmission range except in the rare occurrences where 

an H-sensor may not provide adequate coverage in areas of the network to cover all 

possible L-sensors being deployed. In instances such as this we use a similar election 
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method as [ 16] to choose L-sensors to become cluster heads in order to generate and 

distribute the necessary keying information in their area. It should be noted however that 

when using a polynomial based model only the IDs of the nodes in the network must be 

exchanged while if the matrix key space model is used either a an entire column of Gora 

seed of the column must be exchanged. 

2.4. Rabin's Cryptosystem 

In this work we assume two network models, one that is assumed to remain secure 

long enough for bootstrapping and key establishment to take place and one which is not. In 

the first model we assume the network will remain secure during some time limit as 

proposed in [6]. In the latter model however we employ Rabin's Cryptosystem [17] which 

provides a computationally asymmetric encryption to be used temporarily for exchanging 

keying information and establishing pair-wise keys. Rabin's cryptosystem is a primitive 

asymmetric encryption algorithm which uses a public key n and a private key (p, q). When 

using Rabin's cryptosystem each node in the network would be preloaded with randomly 

selected large primes necessary to create the public key n = p x q. However, this is only 

used by the cluster heads in the network to create the public key and after bootstrapping has 

completed this information can be deleted from memory. Additionally each node must be 

preloaded with a predefined padding sequence, B, to be appended to the messages in order 

for Rabin's cryptosystem to function properly. 

Encrypting a message with n is computationally cheap for a node and requires one 

modular squaring operation. However, decrypting the message is computationally similar 

as decrypting a message using RSA encryption. When the wireless channel is not assumed 

secure, cluster heads compute n and broadcast a message containing their ID and the value 
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of n to all nodes within transmission range. The nodes receiving n then send their 

preloaded randomly generated symmetric key, k, to the cluster head be used for further 

transmissions during the key distribution process. This key is encrypted using n and is 

denoted by En(kllB) = (kl1B)2 mod n. This information is then sent back to the cluster 

head, along with its ID, which uses the large primes p and q to decrypt the received 

message. Decryption is denoted by Dp,q(En(MIIB)). This message, M, contains the 

symmetric key, k, to use along with the node ID associated with the key. 

2.5. Assumptions 

In our work we consider a heterogeneous wireless sensor network and assume that 

no knowledge of node placement is known prior to deployment. For example, nodes may 

be randomly deployed throughout the area wishing to be covered by an aircraft drop. Our 

network is comprised of a large number of tiny, low cost, low powered, low-end L-sensors 

and significantly fewer numbers of high-end, more powerful H-sensors. H-sensors have 

much higher computational capacity, longer battery life, a longer transmission range and a 

larger memory space available to them. We also assume that each node has been loosely 

time synchronized prior to deployment. Loose time synchronization can be obtained 

through procedures described in [19] and [20]. Nodes are preloaded with parameters 

described in Table 1 below. We assume that H-sensors will be able to continue normal 

function after distributing keying information in their clusters but that L-sensors may die 

shortly after bootstrapping is complete if they were elected as a low powered cluster head 

(LPCH). Additionally we assume two network models, one which is assumed secure during 

the maximum amount of time required for the bootstrapping period and one which is not. 

We assume an appropriate MAC protocol is in place to avoid communication collisions 
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over the wireless channel. Finally we assume a multi-hop routing protocol is in place for 

transmitting messages from L-sensors back to H-sensors since their transmission range is 

much less than H-sensors. 

2.6. Post-Deployment Key Management 

We present our key management scheme for HSNs in this section which was 

published in [17]. Each node in the network requires two algorithms to be preloaded onto 

them prior to deployment. More specifically, we use a separate key generation algorithm 

for H-sensors and L-sensors, which is loaded onto the sensor depending on the type of 

sensor, and a key distribution algorithm which is loaded onto each sensor prior to 

deployment. Due to the extended transmission range ofH-sensors which allows for better 

coverage in a deployment area and the fact that they are used primarily as key management 

nodes in our scheme we limit messages to one-hop transmissions and do not transmit 

messages further than a node's transmission range. Table 1 shown below details the various 

parameters which also must be preloaded onto each node prior to network deployment. 

Each node is loaded with a maximum cluster size depending on its sensor classification, 

il1 which specifies the cluster size to use for H-sensors and il2 defines the maximum cluster 

size for L-sensors. Since H-sensors have more computational power, memory space and 

transmission range available to them, il1 is usually much larger than il2 . Furthermore, by 

setting these values to the degree of the polynomial or dimensions of the matrices used we 

can ensure each key space remains n-collusion secure as described in [9] and [10]. We 

assume this is the case in our study as it prevents node capture attacks by ensuring 

uncompromised nodes in the network are still able to communicate securely. 
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In addition to the maximum cluster size specifications each node contains a unique 

ID and is loaded with a time limit tw. This time limit is the maximum bootstrapping time 

allowed for the network necessary for generating and distributing keying information. If the 

network is not assumed to remain secure during tw, each node must also be preloaded with 

large primes p and q, a randomly generated symmetric key k, and a predefined pattern B 

which are needed for Rabin's cryptosystem. Additionally, each node must also be loaded 

with a large prime used for generating key spaces over a finite field, r and L-sensors 

contain a probability value for election purposes defined as P. 

Table 1. Preloaded Parameters 
A.1 Maximum number of nodes in H-sensor clusters (H-sensors only) 

Az Maximum number of nodes in L-sensor clusters (L-sensors only and Az « l 1 ) 

n Degree of polynomial or matrix dimensions for generating key spaces 

tw Maximum bootstrapping wait time 

ID Unique sensor ID 

r Large prime for generating key space over finite field 

p Probability value of an L-sensor to be elected a cluster head 

p,q Large primes needed for Rabin's cryptosystem ( optional) 

B Predefined padding for Rabin's cryptosystem (optional) 

k Randomly generated symmetric key to use in Rabin's cryptosystem ( optional) 

2.6.1. H-sensor Algorithm 

This section describes our H-sensor algorithm. Each H-sensor deployed in the 

network works as a cluster head and serves as many nodes defined by A.1 within 

transmission range. Figure 1 below details the steps of this algorithm. When a H-sensor is 

in its bootstrapping phase it calls up the H-sensor algorithm and generates a key space 

using one of the two models over a finite field r as shown on line 2. When using the 
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polynomial based model the key generation involves randomly generating n coefficients, 

ai over the finite field r. These coefficients will be distributed to nodes in the network 

which will be used in by the formula previously described to generate pair-wise keys with 

their neighbors. If the matrix based model is used the cluster heads will generate (n + 1) 2 

elements to be used for the public matrix G and the private matrix D. However, if the 

matrix G is constructed properly, such as using a Vondermonde matrix, then only a seed 

will need to be generated. Each node in the network will then need to reconstruct their 

elements from G after receiving this seed. 

Once the H-sensor has completed generating a key space it stores one of the key 

shares for itself which will be used to create pair-wise keys with its neighboring nodes and 

sets a wait time before broadcasting to nodes within transmission range that it has keying 

information available to be distributed, on line 3. The wait time is a randomly selected time 

between zero and half the total time limit, 0 :5: w :5: tw/2, specified in the parameters. 

By dividing the total time for allowed for booting up the network in half and 

randomly selecting a waiting time period serves two different purposes, the first purpose by 

dividing the time limit for bootstrapping is to allow sufficient time so that L-sensors will 

not start their election processes until a time period greater than tw/2 has elapsed allowing 

for L-sensors to attempt to join clusters formed around H-sensors first. The second part, 

which is randomly selecting a wait period, is also to attempt to avoid any message 

collisions between neighboring H-sensors which may have been deployed within 

transmission range of each other. 

Once this value is set the algorithm starts a loop on line 4 which first listens for any 

neighboring H-sensors broadcasts. If it hears a broadcast from another H-sensor during this 
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loop it will request keying information from that cluster head to form a secure cluster head 

to cluster head connection. This allows for H-sensors to be able to communicate directly 

with each other securely and can reduce the number of messages needing to be sent 

between L-sensors for services such as data aggregation back to a base station. Once this 

wait time has elapsed on line 10 the H-sensor initiates the Key Distribution Algorithm, as 

shown in Figure 3. The Key Distribution Algorithm will be discussed in Subsection 2.6.3 

which details the broadcasting method to announce that a key space has been generated and 

to distribute keying information to nodes within transmission range. Once this process has 

completed H-sensors then use their keying information to setup pair-wise keys with any 

other H-sensors and L-sensors within their transmission range to establish a secure 

connection with each. 

H-sensor Algorithm 
1: function HSensor (J1 , tw) 
2: keys ~ genKeySpace() > construct key space for J1 nodes, store one for self 
3: w ~ random(0 < tw I 2) > random wait time 
4: while w > 0 do 
5: listen for broadcasts from neighboring H-sensor cluster heads 
6: if BROADCAST heard 
7: RequestKeylnfo > get keying info (cluster head to cluster head 

communication) 
8: end if 
9: elapse(w) 
10: end while 
11: KeyDistro() 
12: end function 
Figure 1. Algorithm for H-sensors 

2.6.2. L-sensor Algorithm 

In this subsection, we present our L-sensor algorithm which is used for receiving 

keying information from cluster heads and if necessary elect themselves as a LPCH to 

provide keying information to nearby nodes in the network. Figure 2 below shows our 
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algorithm we use for L-sensors in the network. When this algorithm starts the first thing the 

L-sensor does is sets its wait time to half of the total bootstrapping time so that it may listen 

for broadcasting cluster heads. The algorithm then sets a Boolean variable, elected, to false 

on line 3 which is used to determine if the node is eligible to be elected as a LPCH later on 

in the algorithm. Once these variables have been set the algorithm starts a loop to listen for 

broadcasting H-sensor cluster heads announcing they have keying information available to 

be distributed. The L-sensor would request keying information from all H-sensors it hears 

giving this announcement. This is to allow for nodes residing on boundaries of clusters to 

be able to join all of the clusters and establish keys with nodes residing further into the 

cluster which may not have heard the other H-sensors broadcasts. These nodes then provide 

communication links between clusters if messages need to be routed through L-sensors. If a 

L-sensor received keying information from a H-sensor it sets its probability value, P = 0, 

to remove the possibility of being elected a LPCH. This loop continues until the time limit 

w has elapsed. 

Once this wait time is over, one of two things can occur. If a node has successfully 

received keying information the value of P will equal zero and the rest of the algorithm is 

skipped and the function ends. However, if a node did not receive keying information from 

an H-sensor the node starts the election process. The first step which occurs, on line 13, is 

to reset the variable w to a random time period less than the remaining time of the 

bootstrapping phase. It will then continue through a loop on line 14 which attempts to elect 

the sensor as an LPCH using the preloaded probability P as the probability to be elected. If 

the node is elected it will generate a key space with the same process an H-sensor has 

generated its key space with the exception that it may use a lower value for the number of 
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nodes it will provide keying information to. If the node has not been elected a LPCH the 

lines 18 through 20 can be added to the algorithm to increase the chance of being elected 

the next time through the loop. This helps speed up the overall network setup time but is 

not necessary for the function of the algorithm. 

Once the key space has been generated the node will first listen for any other LPCHs 

which may have elected themselves earlier then themselves and are already broadcasting 

they have keying information available as shown on line 21. If another node has already 

elected itself then the node which had generated its key space after the announcing LPCH 

deletes its key space information on line 24 and sets its Boolean allowing it to be elected to 

false. 

The L-sensor will then request keying information from the announcing LPCH on 

line 27. However, if another LPCH is not heard this node will continue to remain an LPCH 

and start the key distribution algorithm to announce that it has keying information available 

for nodes within its transmission range as shown on line 30. Once the key distribution 

algorithm has completed the node finishes this function on line 35. After this algorithm has 

completed elected LPCHs are not assumed to have much remaining battery power left and 

as such do not contain their own keying information to setup pair-wise keys with their 

neighboring nodes. However, if they have not been elected the L-sensors remaining will 

initiate steps to find their local neighboring nodes and establish pair-wise keys with them 

by either exchanging their IDs or matrix information as previously described in Section 2.3. 

2.6.3. Key Distribution Algorithm 

This subsection details the key distribution algorithm used by our HSN when a 

cluster head ( either H-sensor or LPCH) has finished generating a key space and needs to 

20 



announce they have keying information available. Figure 3 details the steps of this process 

below. 

L-sensor Algorithm 

1: function LSensor (A2 , tw, P) 
2: w ~twl 2 
3: elected ~ false 
4: while w > 0 do 
5: listen for broadcasts from cluster heads 
6: if BROADCAST heard 
7: RequestKeylnfo > Tx to request keying info (I-sensor to cluster head 

message) 
8: P ~ 0 > remove possibility of becoming LPCH 
9: end if 
10: elapse(w) 
11: end while 
12: if P > 0 
13: w ~ random(tw / 2) 
14: while w > 0 do 
15: elected~ BecomeLPCH(P) > w/ probability P 
16: if elected then 
17: keys ~ genKeySpace() > construct key space for Az nodes 
18: else 
19: increase probability chance (optional) 
20: end if 
21: listen for neighboring node BROADCAST 
22: if BROADCAST heard 
23: if elected 
24: delete key space generated 
25: elected ~ false 
26: end if 
27: RequestKeylnfo > get keying info (cluster head to cluster 

head communication) 
28: 
29: 
30: 
31: 
32: 
33: 
34: endif 

end if 
if elected 

KeyDistro() 
end if 
elapse(w) 

end while 

35: end function 
Figure 2. Algorithm for L-sensors 
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The first step of this algorithm is to broadcast the cluster head / D to all nodes within 

its transmission range. Once this has been completed the cluster head will start to accept 

keying information requests from nodes within range which wish to join the cluster until all 

keying information has been distributed. This is dependent on the number of nodes each 

cluster is allowed to contain as shown on line 4. If Rabin's cryptosystem is used during this 

phase the broadcast message contains the cluster heads / D and the value for n to use for 

encrypting the information request reply message. Nodes within range request keying 

information by sending a unicast message back to the cluster head containing their / D and 

if Rabin's cryptosystem is used they also include the value k which has been encrypted by 

n as described previously in Section 2.4. 

Key Distribution Algorithm 

1 :function KeyDistro(.l1 I ll2 , ID, keys) 
2: BROADCAST(id) > broadcast to all nodes within range 
3: while keyed< .l1 - 1ll.l2 , do 
4: ifreceived(RequestKeylnfo(ID)) 
5: Keyinglnfo ~ an unused key share 
6: keyed ~ keyed u {Keyinglnfo} 
7: send(ID, ko(Keyinglnfo)) 
8: end if 
9: end while 
1 0:end function 
Figure 3. Distributes keying information to nodes requesting to be added to the cluster 

When a request is received from another node the cluster head selects an unused set 

of keying information to send to the requester from the key space it generated as shown on 

line 5. This keying information is added to a used keying information list on line 6 and the 

keying information is sent back to the requesting node using a unicast message which may 

be encrypted using k as shown on line 7. Once all keying information has been distributed 

the function ends and the cluster head may be allowed to delete any keying algorithms and 

variables in order to recover valuable memory space. 
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2. 7. Performance Evaluation 

In this section we evaluate our scheme and analyze the communication overhead, 

storage and computational overhead and the resilience to node capture attacks. We follow 

this up with evaluating our scheme through simulations. 

2.7.1. Communication Overhead 

This subsection analyzes the communication overhead needed by our scheme and 

compares this overhead with the SBK scheme proposed in [16]. Figure 4 below describes 

the message exchanges between a cluster head and nodes being added to the cluster by 

requesting keying information as described in Subsection 2.6.3. 

Message Exchange Process 

Figure 4. Messages exchanged between cluster heads and cluster sensors 

As shown in Figure 4 the cluster head uses a broadcast message to announce keying 

information is available. Once this has been heard by sensors wishing to join clusters they 

request keying information from the cluster head using a unicast message to the cluster 

head. Keying information is distributed to the sensors joining the cluster using another 

unicast message sent from the cluster head back to the sensor joining the cluster. 
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Maximum total network wide communication overhead can be computed using the 

following equation: 

(4) 

In this equation, H is the number of H-sensors being deployed in the network which 

have distributed keying information to nodes within their transmission range and have 

joined their cluster. B is the total number of broadcasts which have been performed by each 

cluster head to announce they have keying information available while ,;i,1 is the total 

number of nodes allowed into the cluster which a unicast messages is sent to distribute 

keying information to the nodes requesting keying information. Similarly, the total 

communication for L-sensors can be computed using the second part of this equation. 

However, with adequate deployment ofH-sensors to cover the area sufficiently we assume 

L will be very small. In the third part of this equation there may be a total of H ,;i,1 messages 

received by the H-sensor cluster heads by nodes requesting information. Additionally since 

L-sensors must reply using a unicast message using multi-hop routing h represents the 

average number of hops in the network a message must be routed in order for the request to 

be received by the H-sensor cluster head. Finally in the last term of this equation d 

represents the average node degree (i.e. average number of neighboring nodes) in the 

network to represent the number of messages needed to exchange information in order to 

establish pair-wise keys with their neighboring nodes. 

The communication overhead for SBK [16J can be determined similarly and is 

shown below in Equation 5. 

s(B + ,;t2) + hs,;t2 + d 
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In this equation, s represents the total number of service nodes elected by the SBK 

scheme. Service nodes provide similar functions as cluster heads in our scheme. The 

remaining variables remain the same as in our scheme. 

The communication overhead is now compared between our scheme and SBK 

scheme in [16]. Due to the longer transmission range of a H-sensor our scheme produces 

significantly less broadcast messages than the SBK scheme. For example, assume 10,000 

sensors have been deployed uniformly over an area of 1,000 by 1,000 meters. Suppose L

sensors with a transmission range of 20 meters and the H-sensors have a transmission range 

of five times that of the L-sensors or 120 meters. In our scheme, 23 H-sensors would need 

to be deployed to distribute keying information in this area. However, in the SBK scheme, 

which is a scheme designed for homogeneous WSNs, 796 L-sensors would need to be 

elected to distribute keying information for the same area. This shows that the value for H 

is much smaller in Equation 4 than the value for s shown in Equation 5. Thus our scheme 

uses significantly less broadcast messages than the SBK scheme in terms of total 

communication overhead. 

2.7.2. Storage and Computational Overhead 

In this subsection we investigate the storage and computational overhead required by 

our scheme. We also compare our scheme with three other previously proposed schemes, 

SBK [16], LEAP [6], and the E-G scheme [4]. In our scheme each node may receive a 

maximum of one piece of keying information from each cluster it joins. Furthermore each 

H-sensor, H, may distribute at most A.1 - 1 pieces of keying information to nodes within 

transmission range and each LPCH, L, may distribute A.2 pieces of keying information to 

nodes within range. Based on the storage requirements described previously in [ 16] the 
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total storage upper bound for each node can be found where H is the total H-sensors in the 

network and Lis the total LPCHs elected. In the equations below, Equation 6 shows the 

upper bound memory requirements for a each node when using the polynomial based key 

space and Equation 7 shows the upper bound requirements when the matrix based key 

space model is used. 

H(n + 1) logr + L(n + 1) logr 

H(n + 2) logr + L(n + 2) logr 

(6) 

(7) 

In these equations n denotes the degree of the polynomial or the dimensions of the 

matrix being used and r is the large prime preloaded onto the nodes to define the finite 

field to be used when generating key spaces. We can compute the total upper bound storage 

required by summing the storage space needed for each node in the network using the 

Equations 6 and 7 above. We expect the number ofLPCH created after deployment to be 

fairly minimal since most L-sensors should be within range ofH-sensor clusters. 

Furthermore, due to the additional computational power of H-sensors, H-sensors can create 

larger clusters than L-sensors which also increases the resiliency to node capture attack 

which will be discussed in Subsection 2.7.3. 

Below in Table 2 we compare the number of pair-wise keys for three existing 

schemes previously listed: the SBK scheme (16], the LEAP scheme [6], and the E-G 

scheme [4]. Since our scheme and the SBK scheme achieve perfect connectivity between 

neighboring nodes the total number of pair-wise keys shared stored in each node is the 

average node density of the network, d. The LEAP scheme requires three additional keys 

to be stored as shown in Table 2. In the E-G scheme, Sis the number of keys preloaded 

onto each sensor prior to deployment. 
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Table 2. Keys Stored 

I Our S~heme I SBK E-G LEAP 
d s d+3 

Below in Table 3 we look at an example for pair-wise keys needing to be stored for 

90% or greater connectivity. SBK, LEAP and our scheme are all able to achieve 100% 

connectivity between nodes and their neighbors. We define connectivity as the ability to 

establish pair-wise keys between two neighboring nodes. In this example for an average 

node density of 20 nodes SBK and our scheme would only require 20 keys to be stored to 

achieve connectivity, while LEAP requires an additional three keys and E-G requires the 

most keys needing to be preloaded at 150 keys. Furthermore, E-G scheme achieves 

approximately 90% connectivity and requires a substantial amount of memory to store 

these keys. From this example we show that we are able to achieve at least as efficient key 

storage as SBK and slightly better storage than LEAP but significant storage improvements 

from the E-G scheme. 

T bl 3 K St d 'th > 90o/c C t' t a e eys ore w1 - 0 onnec 1v1 y 
Scheme Ours SBK E-G LEAP 
Keys stored 20 20 150 23 
Keys established 100% 100% 90% 100% 

We now take a look at computational overhead. As discussed in [16] it requires 

n + 1 modular multiplications for either key space models to establish pair-wise keys. 

When a seed for columns in G are used however each sensor receiving information would 

need to rebuild the column which would require an additional n - 1 modular 

multiplications for each cluster it joins. This is the same amount of computations as 

required in the SBK scheme [ 16]. 
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2.7.3. Resilience 

In this subsection we discuss the resiliency for our scheme in regards to node capture 

attacks and the disclosure of pair-wise keys to the attacker. As previously mentioned in 

Section 2.3, these key space models have a property known as n-collusion resistance and 

shown in [9], [ 1 O], and [ 16]. This means that n or more nodes in each cluster must be 

compromised before the entire key space is compromised and all of the pair-wise keys 

generated by it can be calculated. Thus for better resilience against an attacker, when the 

value for n is equal to or greater than the cluster size used in our scheme the key space 

remains perfectly secure even if the entire cluster is compromised by a physical attacker. 

This means that if one or more nodes in a cluster have not been compromised then any 

pair-wise keys they contain cannot be determined by the information gathered from the 

compromised nodes. 

Assume that we have an n-degree polynomial which has been used for generating a 

polynomial based key space, and we set our cluster size to N nodes. Let us also assume 

N > n. Then when compromised nodes is greater than or equal to n + 1, the coefficients 

generated for the polynomial can be calculated by the attacker and the pair-wise keys 

which remain in the N - ( n + 1) uncompromised nodes in the network can be computed 

by using the uncompromised node IDs by solving for a solution to the set of polynomials 

which have been generated by the key space. Thus one can achieve perfect resilience 

against node capture attack by setting n to be greater than or equal to the cluster size 

specified in our scheme. Similarly this can also be shown for the matrix based key space 

model. 
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2.7.4. Simulation Design and Setup 

In this subsection we discuss the simulation software we designed to simulate our 

scheme, the SBK scheme [16], and the E-G scheme [4]. Our simulation software 

applications were written using the C# programming language with Visual Studio 2008 and 

.NET 3.5. Each of these applications are command line console applications and 

simulations were performed on machines running Ubuntu 8.04 LTS using Mono 2 for 

.NET applications. We designed three console applications which take the various 

parameters needed to simulate each unmodified scheme. Additionally a fourth simulator 

was written to simulate a modified version of SBK with the addition ofH-sensors into the 

network running the SBK scheme which does not take advantage of these types of sensors. 

For our simulation purposes we used the polynomial based key space model for both the 

SBK scheme and our scheme. 

Each simulator creates a user defined Cartesian plane grid space to be used for 

deploying sensor nodes for the network. The user specifies number of nodes to deploy in 

this grid space which are then deployed by randomly generating (x, y) coordinates for each 

node. This type of deployment method would be similar to an aircraft drop which does not 

consider deployment knowledge exists prior to distributing sensor nodes into a 

geographical region. Each scheme also requires input to specify the number of sensors to 

deploy. For the unmodified SBK and E-G scheme this is only for L-sensors while our 

scheme and the SBK with H-sensor simulator requires both the number of L-sensors and 

the number ofH-sensors to be deployed. For our simulations we specified 10,000 L-sensors 

to be deployed in the region to simulate a dense WSN. In the SBK scheme which 

additionally deployed H-sensors we specified 150 H-sensors to be deployed in addition to 
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the 10,000 L-sensors. We specified 150 H-sensors for our modified version of SBK since 

150 H-sensors provides near perfect network connectivity in our scheme based on 

simulation results with the least number ofH-sensors needing to be deployed. 

In each of the simulated schemes, the transmission range needs to be specified for L

sensors and H-sensors. In our study we specified our transmission range for L-sensors to be 

20 and H-sensors with a transmission range of 120. In the SBK scheme we specify the 

degree of the polynomial to use to be 100 in both of the two simulators for this scheme. 

Furthermore, we specify the degree of the polynomial for H-sensors in our scheme to 500 

and the degree used by the L-sensors to 100. This larger degree polynomial is used to 

create larger clusters than clusters formed by L-sensors and provide keying information to 

more nodes within the much larger transmission range of the H-sensors. Lastly, for our 

scheme and the SBK scheme we set the probability of an L-sensor to be randomly elected 

to provide keying information to 10% in each test. 

We varied one of the parameters for each scheme which would increase or decrease 

the network connectivity in order to compare these schemes to ours. For the E-G scheme 

we varied the number of pair-wise keys preloaded onto each of the distributed nodes in the 

network out of a key pool size of 10,000 keys. For both the unmodified and modified 

simulators for the SBK scheme we varied the time to live (TTL) for messages being sent. 

By increasing the TTL the nodes in the SBK scheme are able to extend the range messages 

are able to travel outside of transmission range of the L-sensors. These messages are 

rebroadcast from their origin while decreasing the TTL until the TTL is equal to zero. 

For our scheme we varied the number ofH-sensors being deployed in the area. By 

increasing the number ofH-sensors we deploy we can increase the overall coverage in the 
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network. We can then use these results for comparison with SBK since by eliminating H

sensors from our scheme we are using a method similar to SBK but we are limited to one

hop transmissions and are not able to rebroadcast the messages from cluster heads. Table 4 

below shows the parameters used for each scheme simulation run for the E-G scheme. 

Table 5 lists the parameters used by the SBK and SBK with H-sensor schemes. In Table 6 

we list the parameters used for our scheme during simulation. Each simulation test was run 

forty times. The results were then compiled by computing the mean, standard deviations 

and confidence scores for the forty simulation test runs. 

Table 4. E-G Simulation Parameters 
Test# l 2 3 4 5 6 7 8 9 10 11 12 
Ke s stored 25 50 75 100 125 150 175 200 225 250 275 300 

Table 5. SBK Simulation Parameters both versions) 
Test# 1 2 3 4 5 6 
TTL (ho s) 1 2 3 4 5 6 

Table 6. PDKM Simulation Parameters 
Test# 1 2 3 4 5 6 7 8 9 10 11 12 
H-sensors 25 50 75 100 125 150 175 200 225 250 275 300 

2. 7. 4.1. E-G Simulator Process 

When the E-G scheme simulator starts the first step which occurs is the simulator 

randomly generates the number of keys to use for the key pool. Once these keys have been 

generated the simulator creates sensor objects and randomly selects the number of keys to 

store in a list on each sensor from the key pool. Once these keys have been selected by each 

node the sensor objects are randomly given their grid locations by randomly selecting the 

(x,y) coordinates within the specified grid size. After all nodes have been given 

coordinates within the grid space one-hop neighbors are determined for each node and 

stored in a list of neighboring nodes in each sensor object. Neighboring nodes are found by 
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finding the Euclidean distances between the target sensor object and all other sensor nodes 

created by the simulator. After all of the one-hop neighbors are found for a target sensor 

object and stored into a list ofIDs the simulator then checks the lists of keys stored on the 

target sensor and its neighbors for matching pair-wise keys from their selected keys. If a 

target node and its neighbor share at least one key in common these nodes are marked as a 

secured connection and their IDs are stored by each other in a separate key value pair list 

containing the ID of their neighbor and the first key found which they share in common. 

Finally once all nodes deployed in the network have determined their neighboring nodes 

which share keys in common with them the network connectivity is calculated based on the 

number of network wide possible links found between sensor objects and their one-hop 

neighbors and the number oflinks between nodes which contain a key in common. 

2. 7.4.2. SEK Simulator Process 

The first step of the SBK simulator creates sensor objects containing the necessary 

parameters needed by the algorithm and then randomly selects grid coordinates for their 

deployment locations. Once all nodes have been deployed in the simulator, the next step of 

the simulator randomly chooses sensor objects to attempt to elect themselves as service 

nodes. If a node fails to elect itself another randomly chosen sensor object is selected and 

allowed to run the SBK algorithm to attempt to elect itself. This random selection of sensor 

objects continues until a node has elected itself as a service node. Once a node has been 

elected this sensor object runs the key generation algorithm by randomly choosing 

..l2 coefficients to use for the polynomial. Furthermore, its ID is stored into a list by the 

simulator of elected service nodes which is used to determine the number of nodes elected 

during the test A separate list is used for elected H-sensors in the modified version of the 
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SBK scheme simulator. After ..l2 coefficients have been randomly generated the sensor 

object begins to locate its m-hop neighbors using a recursive function in the simulator until 

all m-hop neighbors are located based on their Euclidean distances. These steps simulate 

the process of a node in the network electing itself and broadcasting it has keying 

information available to distribute before another nearby neighbor has done so. Once these 

neighbors have been determined the simulator calculates the product of the coefficients 

with the IDs of the neighboring nodes over the finite field specified by r and stores these 

products as a list on each of the neighboring nodes until at most n nodes have keying 

information. This keying information is stored in a key value pair list containing the ID of 

the service node and the list of products from the coefficients. This process ofrandomly 

selecting a node in the network and giving it a chance to elect itself continues until all 

nodes either have been elected or contain keying information from a service node. 

Once distribution of keying information has completed the simulator finds all one

hop neighbors for each node which has not been elected based on their Euclidean distance. 

After each node has located its one-hop neighbors the simulator checks the key value pair 

containing the keying information for matching service node IDs between a target node and 

its one-hop neighbors to see if they belong to the same key space. If a neighboring node 

and the target node share keying information from the same service node a pair-wise key is 

calculated over the finite field and stored in a key value pair list along with the neighbors 

ID. After all nodes have calculated pair-wise keys with neighbors which contain the same 

key space the network connectivity is calculated using the same process as the E-G 

simulator. 
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2. 7.4.3. PDKM Simulator Process 

In the PDKM simulator the first step of the simulator creates sensor objects 

containing the specified parameters needed. Once this step has completed each node is 

given randomly generated grid coordinates for deployment. After all nodes have been 

deployed into the grid space the simulator first initializes each of the H-sensors deployed 

and allows the H-sensor objects to generate the random coefficients of the polynomial for 

keying information. Once the H-sensor objects have generated keying information they 

locate their one-hop neighbors based on the Euclidean distance between itself and the 

remaining nodes in the network. Nodes which have a distance less than or equal to the 

transmission range of the H-sensors are then given a list of keying information by taking 

the product of the neighboring node's ID and the randomly generated coefficients in the key 

space until at most 11 - 1 neighboring nodes are given keying information. We store one 

piece of keying information generated by the H-sensor in a key value pair list so the H

sensor is able to establish pair-wise keys with its neighbors within transmission range after 

bootstrapping. By generating and distributing keying information on the H-sensors first we 

simulate the time period between time zero and half of the maximum time, or t0 :5 w :5 

tw/2 allowed for bootstrapping the network. 

After each of the H-sensors have generated and distributed their keying information 

the remaining L-sensors which do not contain keying information are randomly selected 

and given a chance to elect themselves as an LPCH. If a node is successful electing itself it 

generates keying information for an 12-degree polynomial and distributes the keying 

information to its one-hop neighbors in the same manner as the H-sensors with the 

exception that the LPCH does not store keying information for itself. This simulates that 
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this node will die out shortly after bootstrapping and it will not attempt to establish pair

wise keys with its neighboring nodes. Additionally the elected L-sensor's ID is stored in a 

list which keeps a record of the number ofLPCHs in the network. 

Once every node in the network either contains keying information or has been 

elected one-hop neighbors establish pair-wise keys with each other if they contain keying 

information from the same cluster head by computing the key using their neighbors ID. 

After each node has completed creating keys network connectivity is calculated by the 

simulator and the number of elected L-sensors is recorded from the test. 

2.7.5. Simulation Results 

In this subsection we review the results from our simulations. Each scheme was 

simulated forty times for each test listed in Tables 4, 5 and 6. We first examine the network 

connectivity between our scheme and the E-G and SBK schemes. We define network 

connectivity as the average percentage of nodes which shares a pair-wise key with their 

neighboring nodes allowing for secure communication to occur. Figure 5 below shows the 

results from the E-G scheme simulation tests and the standard deviations from the results. 

Figure 6 shows the results from the SBK simulation for network connectivity and the 

results standard deviations for the simulations with and without H-sensors included. In 

Figure 7 we present the results from the simulation of our scheme on a HSN. These are the 

means of the results from 40 simulation runs in each test. 

2. 7.5.1. E-G Network Connectivity 

In the results shown in Figure 5 we see that approximately 90% connectivity is 

achieved when 150 keys are selected for each node out of a pool of 10,000 keys. However, 

in order to achieve near perfect network connectivity it requires almost 250 keys to be 
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preloaded onto each node. Due the memory limitations of L-sensors however this would be 

infeasible to do in a large network. For instance, for the network to support 90% 

connectivity using 128-bit keys each sensor would require 2.344K bytes of storage. In 

order to have near perfect connectivity this scheme requires 250 keys to be preloaded. This 

would require 3.906K bytes of memory storage in order to store all of the necessary keys 

on each sensor. The standard deviation for these means are shown below in Figure 6. 
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Figure 5. E-G Scheme Network Connectivity 

The benefit of using such a scheme however is its simplicity. This scheme does not 

require complex algorithms to be loaded onto the sensors to create the keys. Since this 

scheme does not require complex algorithms to run after the nodes are deployed the 

network can be established using very little power due to low computational overhead. 

Furthermore, communication overhead can be reduced by having each node use broadcast 

messages in its area to announce which keys it contains instead of unicast messages to each 

neighbor. 
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Figure 6. E-G Scheme Network Connectivity Standard Deviation 

Table 7 below shows the mean results from the 40 simulation runs of each test and 

the 95% confidence intervals for these results. As we can see from these results we can 

achieve 89.458% network connectivity when 150 keys are loaded onto each sensor. When 

250 keys are used we are able to obtain 99.805% connectivity. From these confidence 

intervals we can see that we can achieve acceptable network connectivity even when keys 

are randomly selected from a very large pool of keys. 

Table 7. E-G Scheme Network Connectivity Means and 95% Confidence Intervals 
Keys Stored Mean Lower Upper 

25 6.02 5.98 6.05 
~ 

50 22.11 22.06 22.17 
75 42.98 42.91 43.04 

100 63.18 63.11 63.24 
125 79.00 78.94 79.06 
150 89.46 89.42 89.50 
175 95.34 95.31 95.36 
200 98.17 98.15 98.18 
225 99.36 99.35 99.37 
250 99.81 99.80 99.81 
275 99.95 99.95 99.95 
300 99.99 99.99 99.99 
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2. 7.5.2. SBK Network Connectivity 

In Figure 7 we show the mean results and their standard deviations in Figure 8 from 

both of the SBK simulations; the normal SBK scheme and the modified version which 

includes H-sensors being deployed. When the network is homogenous near perfect network 

connectivity is established when the TIL is set to four hops. The maximum area covered 

by a message transmitted four hops is equivalent to using a single H-sensor with a 

transmission range of 80. These results also show that L-sensors which die because they 

were elected have a negative impact on the network connectivity overall. Without 

considering these nodes in the overall connectivity these results would be slightly higher 

than shown here. However, when a node is elected and allowed to die prematurely in the 

network a hole is formed in the center of the cluster where the service node was located. 

This creates breaks in communication links between other nodes since messages must be 

transmitted around this area since no L-sensors are present in these locations anymore. 

SBK Network Connectivity 
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Figure 7. SBK Scheme Network Connectivity (WSN and HSN models) 
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Figure 8. SBK Scheme Network Connectivity Standard Deviation (WSN and HSN models) 

By adding H-sensors to the network and not adjusting the algorithm to take 

advantage of the longer transmission ranges, the overall network is severely crippled. This 

is due to many more L-sensors being elected compared to the number ofH-sensors. This 

happens because the probability of electing a node in the network is the same for both types 

of sensors. This shows that the SBK scheme does not take advantage of the longer 

transmission range H-sensors are capable of and is not a feasible key management scheme 

forHSNs. 

Below in Table 8 we show the means and the 95% confidence intervals from the 

results of both types of simulations. As we can see here for the results of the unmodified 

version of SBK (WSN model), the mean network connectivity achieves 96.456% network 

connectivity when a TTL is set to three hops. We also see that a limit of approximately 

97.4% network connectivity is achieved when four or more hops are used for the TTL. This 

could be potentially increased by increasing the degree of the polynomial used. However, 
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by increasing the degree of the polynomial we also incur extra computational and storage 

requirements for generating and storing the key space information. 

In the HSN model of SBK being deployed which uses the same algorithm as the L

sensors we see that even with the TTL set to three hops we are only able to achieve 

83.605% network connectivity instead of the 96.456% connectivity when they are not 

present. This shows that the SBK scheme is actually crippled by the inclusion of H-sensors 

into the network. Without modifying the parameters used by the H-sensor to compensate 

for the larger transmission range the SBK scheme is only able to achieve a maximum of 

87.264% network connectivity when the TTL is set to six. 

There are two possible modifications to the parameters which could increase the 

network connectivity in this case. The first is to increase the probability of election on the 

H-sensors to be much higher than that loaded onto the L-sensors. This would allow for the 

H-sensors to have a higher chance of being elected first. A second modification would need 

to be made to the parameters loaded onto the H-sensors to compensate for their higher 

probability of being elected. Since they are able to cover a larger area which would include 

more L-sensors within transmission range the degree of the polynomial used must also be 

increased. If this was not increased the network would still be crippled since the elected H

sensors would not be able to provide keying information to all of the L-sensors within its 

transmission range. This is due to the fact that the cluster formed by the service nodes is at 

most as large as the degree of the polynomial being used while still remaining perfectly 

secure against node capture attacks. 

If an elected H-sensor is not able to provide keying information to all of the sensors 

within range of the multi-hop broadcast transmission then nodes which are not able to 
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receive keying information will not be able to establish secure communication with their 

neighbors. This is due to the fact that the SBK scheme does not allow nodes which hear a 

broadcast message announcing keying information to re-elect themselves if they are not 

able to receive keying information from a broadcasting node. When this occurs these nodes 

are effectively useless to the operation of the entire network as they are not able to 

establish pair-wise keys with their neighbors. 

T bl 8 SBK Sh a e c eme N etwor kC onnectiv1ty M eans an 0 on 1 ence nterva s d 95o/c C fid I 

TTL 
WSN WSN WSN HSN HSN HSN 
Mean Lower Upper Mean Lower Upper 

1 72.69 72.59 72.78 49.95 49.76 50.13 
2 92.43 92.39 92.48 73.27 73.11 73.42 

3 96.46 96.41 96.50 83.61 83.40 83.81 
4 97.42 97.38 97.46 87.02 86.80 87.23 

5 97.48 97.44 97.51 87.19 86.99 87.39 

6 97.46 97.42 97.50 87.26 87.08 87.45 

2. 7.5.3. PDKM Scheme Network Connectivity 

In Figure 9 below we show the mean results from 40 runs of each test of our scheme 

on a HSN. We always achieved higher than 90% connectivity or better with near perfect 

connectivity occurring when 150 H-sensors are deployed with the 10,000 L-sensors in the 

network. For instance when as few as 25 H-sensors are randomly deployed in the network 

we are able to achieve a mean of 91.043% network connectivity. Additionally when only 

100 H-sensors or more are deployed in the network our scheme achieves over 99% network 

connectivity. In comparison with the previous schemes we show we have a much higher 

probability of having a fully connected network by taking advantage of these nodes to 

manage key generation and distribution. Figure 10 below shows the standard deviations for 

these results. 
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Figure 9. PDKM Network Connectivity 

Table 9 below shows the means from the results of our scheme in simulation along 

with the 95% confidence intervals. As we can see when 150 H-sensors are deployed in a 

network with 10,000 L-sensors our scheme achieves 99.9% network connectivity. 

Furthermore, in comparison with the SBK scheme we can see that with as few as 75 H

sensors being deployed we are able to achieve higher network connectivity than the SBK 

scheme in all of the tests ran with a mean of98.774% network connectivity. This increased 

n_etwork connectivity in our scheme is due to the fact that H-sensors in the network do not 

rely on any probability of being elected. Additionally due to the increased capabilities of 

the H-sensors they are configured to form much larger clusters than the L-sensors being 

deployed. This increased cluster size also increases the resiliency of the network against 

node capture attacks since many more nodes would need to be compromised. 
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Figure 10. PDKM Network Connectivity Standard Deviation 

Table 9. PDKM Network Connectivity Means and 95% Confidence Intervals 
H-Sensors Mean Lower Upper 

25 91.04 90.75 91.34 
50 96.56 96.35 96.78 
75 98.77 98.66 98.89 

100 99.49 99.41 99.56 
125 99.81 99.78 99.85 
150 99.92 99.90 99.95 
175 99.95 99.94 99.97 
200 99.98 99.97 99.99 
225 99.99 99.99 100.00 
250 99.99 99.99 100.00 
275 100.00 100.00 100.00 
300 100.00 100.00 100.00 

2. 7.5.4. SBK Scheme Elected Sensors 

Next we take a look at the number ofL-sensors elected in our scheme versus the 

SBK schemes and also the number ofH-sensors elected when adding H-sensors to the SBK 

scheme. Figure 11 shows the results from the SBK scheme for elected nodes for both 

simulation types. The standard deviations for these results is shown in Figure 12. 
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In Figure 11 shown below we see a significant drop in the number of nodes elected 

in SBK until the TTL is set to three hops. However, when the TTL is set to three in the 

WSN model the SBK scheme still requires a mean of 308 L-sensors to be elected to 

achieve a mean of96.456% network connectivity. Since the SBK scheme assumes these 

nodes to die shortly after deployment the network would consist of only 9692 nodes 

remaining to perform the duties the network was deployed for. Furthermore even when 

increasing the TTL of the SBK scheme the scheme still requires more than 200 L-sensors 

to be elected in order to provide key management to the entire network. The best 

performance we could expect from the SBK scheme with a degree of 100 for the 

polynomial is when the TTL is set to five or higher. When the TTL is set to five the SBK 

scheme needs to only elect 218 nodes in the network to provide key management. In 

comparison with our scheme we can achieve better network connectivity by including only 

75 H-sensors into the network and near perfect connectivity when 150 H-sensors are 

deployed. 

Since there is a much denser population ofL-sensors being deployed compared to H

sensors in the SBK scheme H-sensors do not assist in key management but actually 

cripples the overall network connectivity. This is because the probability of one of the L

sensors successfully electing itself is approximately 98.5% more likely than the chance that 

one of the H-sensors is elected with the addition of 150 H-sensors in the network. As these 

results show compared to network connectivity the increased TTL allows for fewer L

sensors needing to be elected in both network models. However, even when the TTL is 

configured for six hops it still requires a mean of 357 nodes to be elected when H-sensors 

were present in the network. 
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Table 10 shows the means of the elected L-sensors in the WSN model, which does 

not contain any H-sensors, for each test of the SBK scheme under simulation. This table 

also shows the 95% confidence intervals from each of the 40 simulation runs of each test. 

Table 11 shows the means of the elected L-sensors and 95% confidence intervals from the 
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40 simulation runs of each test when H-sensors are included in the SBK scheme for the 

HSN model. Table 12 shows the means for the elected H-sensors and the 95% confidence 

intervals from the HSN model under the SBK scheme. 

Table 10. Elected L-sensors Means and 95% Confidence Intervals (WSN model) 
TTL Mean Lower Upper 

1 1399.64 1388.56 1410.72 
2 585.29 574.31 596.27 
3 307.56 302.71 312.40 
4 225.94 223.32 228.55 
5 218.00 215.65 220.35 
6 219.93 217.55 222.30 

Table 11. Elected L-sensors Means and 95% Confidence Intervals (HSN model) 
TTL Mean Lower Upper 

1 1379.30 1368.29 1390.31 
2 640.63 629.56 651.71 
3 408.34 402.67 414.01 
4 357.93 353.33 362.53 
5 356.47 352.29 360.65 
6 356.44 351.98 360.89 

As we can see in Table 12 under the HSN model the SBK scheme does not elect 

many H-sensors to become service nodes due to the equal probability of election from the 

L-sensors. From these results we can see that the best method of ensuring H-sensors are 

elected in the SBK scheme in a heterogeneous environment would be to keep the TTL to be 

a single hop from the service node. This is because many more L-sensors would need to be 

elected in order to cover the area which increases the likelihood that an H-sensor will be 

elected instead. As stated previously two parameter changes for H-sensors being deployed 

in the SBK scheme can be done to increase the number of H-sensors being elected. The 

first would be to set a higher probability of election on the H-sensors while also increasing 

the degree of the polynomial used by the H-sensors. This would allow for a larger cluster to 

be formed around more H-sensors in the network instead of the L-sensors being deployed. 
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Table 12. Elected H-sensors Means and 95% Confidence Intervals (HSN model) 
TTL Mean Lower Upper 

1 10.80 0.00 21.86 
2 2.69 0.00 13.79 
3 1.12 0.00 6.80 
4 1.00 0.00 5.62 
5 1.33 0.00 5.52 
6 1.01 0.00 5.47 

2. 7.5.5. PDKM Scheme Elected L-sensors 

In Figure 13 we show the mean results of elected L-sensors from the simulation tests 

of our scheme. The standard deviations for these results is shown in Figure 14. We can see 

that many fewer L-sensors need to be elected even when only 25 H-sensors have been 

included when using our algorithms. This decreased number of elected nodes allows for 

better overall network connectivity since the network continues to stay dense in areas 

where SBK service nodes would have perished after bootstrapping has been completed. 

When we use our scheme in an HSN 543 L-sensors are elected when only 25 H-sensors are 

deployed compared to approximately 1400 needing to be elected when considering a one 

hop TTL in the WSN model of SBK and 1380 needed in the HSN model. SBK requires a 

three hop TTL in order to decrease below the number of L-sensors needed for key 

management in our scheme. Furthermore, we almost completely eliminate the need for L

sensors to be elected after a sufficient number of H-sensors have been deployed. As shown 

below in Figure 13, when we include 150 or more H-sensors into the network to handle the 

key management for the network less than nine L-sensors must be elected. 

Table 13 shows the means of elected L-sensors from the results of each test of our 

scheme under simulation and their 95% confidence intervals. In comparison with the SBK 

scheme we can see that when as few as 50 H-sensors are included our scheme needs to only 

elect a few more L-sensors than the best results achieved from the SBK scheme. For 
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instance, when we deploy 50 H-sensors we have a mean election of 244 L-sensors in the 

network compared to 218 L-sensors elected in the WSN model of SBK. Furthermore when 

H-sensors are included in an unmodified version of SBK the SBK scheme requires an 

average of 113 more L-sensors to be elected in the best case scenario than our scheme. 

We also can see that when there is a sufficient number of H-sensors deployed in our 

scheme we virtually eliminate the need of electing L-sensors. For instance when 150 H

sensors are deployed only nine L-sensors are needed to be elected in our scheme. This is 

further improved as we increase the number ofH-sensors. As we can see below when we 

include 225 or more H-sensors in the network we only need to elect one or two L-sensors 

in the entire network to handle key management for areas not covered by the H-sensors. 

Since fewer nodes are needed to be used for key management in our scheme this also 

improves the overall network communication overhead since fewer nodes will need to 

broadcast messages compared to the SBK scheme. For example, under perfect 

communication, when 150 H-sensors are deployed in our network we need a minimum of 

159 broadcast messages to be used to announce key space information is available. 

However, in a one hop SBK scheme it would require a minimum of 1400 broadcast 

messages when there is no collisions on the wireless medium in the WSN model and 1380 

broadcast messages in the HSN scheme. In the best case scenario of SBK we see that it still 

requires more broadcast messages needed than in our scheme. For instance in the WSN 

model of the SBK scheme it requires a minimum of 218 broadcast messages compared to 

the 159 broadcast messages in our scheme when there are 150 H-sensors present. Only 

when we deploy 225 H-sensors in our network does it require more broadcast messages 

than the SBK scheme. When 225 H-sensors are deployed using our scheme we would then 
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require a minimum of approximately 227 broadcast messages under perfect conditions on 

the wireless medium. Furthermore since transmitting data on the wireless medium requires 

the most energy to the sensors we have improved the overall energy needs of the network 

and assist in increasing the lifetime of the network compared to the SBK scheme. 
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Table 13. PDKM L-sensors Elected Means and 95% Confidence Intervals 
H-Sensors Mean Lower Upper 

25 542.85 524.39 561.31 
50 243.97 228.57 259.37 
75 99.27 89.89 108.66 

100 46.11 39.29 52.92 
125 19.93 16.46 23.40 
150 8.27 5.97 10.57 
175 5.93 4.01 7.85 
200 3.55 1.95 5.15 
225 1.41 0.60 2.23 
250 1.31 0.37 2.25 
275 0.23 0.00 0.48 
300 0.53 0.14 0.92 

2.8. Conclusion 

From these results we can see that our scheme improves the performance of the 

network by adopting a heterogeneous network model. Furthermore, by taking advantage of 

the more powerful high-end H-sensors' additional computing capabilities, memory space, 

transmission range and battery life we can increase the overall performance of the network 

by using these sensors in the network to handle the key management processes needed to 

establish pair-wise keys after deployment. We also decrease the number of L-sensor nodes 

expected to die because they have been elected LPCHs in our scheme by increasing the 

number ofH-sensors to an suitable level for the deployment area. 
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CHAPTER 3. CONCLUSION 

We have presented a set of algorithms for providing key generation and distribution 

for heterogeneous sensor networks which improves the overall performance of the network. 

By taking advantage of H-sensors in the network we can increase the network connectivity 

of the network since H-sensors should be able to survive the bootstrapping phase of the 

network. Additionally due to the increased memory space, processing capabilities and 

transmission range we can form larger clusters around H-sensors which also increases the 

resiliency of the network from node capture attacks. 

In this study we accomplished several objectives and tasks. The first objective was to 

design a new set of algorithms for key management for a heterogeneous sensor network. To 

accomplish this objective we have designed an algorithm for key generation for more 

powerful H-sensors present in the network. We have also presented an algorithm for L

sensors which allows us to take advantage of the more powerful nodes present in the 

network. This algorithm also includes a secondary function that also allows for a backup 

method of key management that an H-sensor is not present in the deployment area still 

requiring key management. Lastly we have presented a method for distributing keying 

information from the cluster heads to the rest of the network. 

The second objective of this study was to analyze our method and to compare our 

scheme to existing schemes previously proposed. In our analysis of our scheme we show 

that we have improved the communication overhead by reducing the number of broadcast 

messages required throughout the network. We have also shown that our scheme has better 

pair-wise key storage requirements than the E-G scheme and the LEAP scheme while 

matching the key storage requirements needed by the SBK scheme. Furthermore we have 
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shown through our analysis that as long as the number of nodes compromised is less than 

the degree of the polynomial or the size of the matrix used for key space generation that our 

scheme remains perfectly secure against node capture attacks. 

The last objective we have accomplished in this study is we have shown through 

simulation that our scheme allows for better network connectivity than the E-G and SBK 

scheme. To accomplish this objective we have designed four simulators written in the C# 

programming language. Along with simulating our scheme on a randomly deployed 

wireless sensor network, we have also simulated the E-G scheme, the SBK scheme and a 

modified version of the SBK scheme which included H-sensors being deployed in an HSN. 

Each of these simulators have been run forty times for each test to obtain our results. We 

adjusted a parameter for each test which would increase the network connectivity for each 

of the key management schemes. From our results we were able to show that our scheme 

achieved a higher level of network connectivity than the E-G and SBK scheme with near 

perfect network connectivity being obtained. 

The first scheme we compared our scheme to was a pre-distribution scheme for 

homogeneous sensor networks which pre loads a set of keys from a larger pool of generated 

keys onto each node prior to deployment. In our simulation results we were able to achieve 

better connectivity than the E-G scheme until a very large number of keys are preloaded 

onto each sensor. At this point the E-G scheme performs as well as our scheme in obtaining 

near perfect network connectivity. 

We have also shown that our scheme performs better than a post-deployment scheme 

proposed for homogeneous sensor networks. In the SBK scheme a similar method of key 

management is accomplished. However, from our simulation we have shown that the SBK 
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scheme functions best when only when a homogeneous sensor network is deployed. 

Furthermore, we have shown that we almost always achieve better network connectivity 

with our scheme than the SBK scheme. This is due to SBK relying on L-sensors to provide 

key management to the network which they consider casualties of the network after 

bootstrapping and would die soon after they have finished with their key management 

duties. 

We have also compared the number of nodes needing to be used for key 

management processes in our scheme with the SBK scheme. From these results we can see 

that our scheme requires many fewer nodes to be used for key management than the SBK 

scheme. We have also shown that the number of broadcast messages being sent over the 

network can be significantly reduced in our scheme when a heterogeneous sensor network 

is being deployed. This further increases the lifetime of the network since communication 

transmission requires a significantly large amount of battery power for sensors in the 

network. By reducing the number of messages needing to be sent we reduce the amount of 

power required to handle key management in the network compared to the SBK scheme. 
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