
POST-DEPLOYMENT KEY MANAGEMENT IN HETEROGENEOUS

WIRELESS SENSOR NETWORKS

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

by

Paul Edward Loree

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

June 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

POST-DEPLOYMENT KEY MANAGEMENT IN

HETEROGENEOUS WIRELESS SENSOR NETWORKS

By

PAUL EDWARD LOREE

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Loree, Paul Edward, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, June 2010. Post-Deployment Key
Management in Heterogeneous Wireless Sensor Networks. Major Professor: Dr. Kendall
Nygard.

Many wireless sensor network applications require secure communication between nodes

in the network. However, establishing pair-wise keys between nodes to provide security is

challenging due to the limited resources in sensor nodes and the hostile environments in

which they are deployed. Many key establishment schemes have been previously proposed

for wireless sensor networks. However, most of these schemes were designed to work in a

homogeneous network environment in which the nodes all have similar capabilities. Our

work establishes that better performance can be achieved in a heterogeneous sensor

network environment. We present a key management scheme for establishing pair-wise

keys after deployment in a heterogeneous wireless sensor network. We take advantage of

the more powerful nodes present in a heterogeneous network to reduce the communication

overhead and ultimately the power consumption necessary to perform these services to the

network. Additionally, by taking advantage of these nodes we are able to increase the

overall network connectivity and resiliency against node capture attacks.

111

ACKNOWLEDGMENTS

I would first like to thank my parents, my brothers and my sister for supporting me

while I pursued this master's degree. I would also like to thank Larry Atwood, Scott Kast

and Dr. Selmer Moen at Minot State University who encouraged me to pursue a graduate

degree. I would also like to thank Dr. Kendall Nygard and Dr. Xiaojiang Du for their

support and advice while completing my research. Finally, I would like to thank the North

Dakota EPSCoR for funding my research in 2008-2010.

IV

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1. INTRODUCTION .. 1

1.1. Network Model ... 3

1.2. Work Overview ... 4

1.2.1. Objective One .. 4

1.2.2. Objective Two .. 5

1.2.3. Objective Three .. 5

1.3. Thesis Overview .. 6

CHAPTER 2. POST-DEPLOYMENT KEY MANAGEMENT ... 7

2.1. Introduction ... 7

2.2. Related Work ... 7

2.3. Key Space Models ... 11

2.4. Rabin's Cryptosystem '""··· .. 13

2.5. Assumptions .. 14

2.6. Post-Deployment Key Management ... 15

2.6.1. H-sensor Algorithm ... 16

2.6.2. L-sensor Algorithm .. 18

2.6.3. Key Distribution Algorithm ... 20

2.7. Performance Evaluation .. 23

2. 7 .1. Communication Overhead ... 23

2.7.2. Storage and Computational Overhead ... 25

2.7.3. Resilience ... 28

2.7.4. Simulation Design and Setup ... 29

2.7.4.1. E-G Simulator Process .. 31

2.7.4.2. SBK Simulator Process .. 32

2.7.4.3. PDKM Simulator Process ... 34

2.7.5. Simulation Results ... 35

V

2.7.5.1.

2.7.5.2.

2.7.5.3.

2.7.5.4.

2.7.5.5.

E-G Network Connectivity ... 35

SBK Network Connectivity .. 38

PDKM Scheme Network Connectivity .. 41

SBK Scheme Elected Sensors .. 43

PDKM Scheme Elected L-sensors ... 47

2.8. Conclusion ... 50

2.9. Acknowledgement ... 50

CHAPTER 3. CONCLUSION ... 51

REFERENCES .. 54

Vl

LIST OF TABLES

1. Preloaded Parameters .. 16

2. Keys Stored ... 27

3. Keys Stored with 2:: 90% Connectivity ... 27

4. E-G Simulation Parameters ... 31

5. SBK Simulation Parameters (both versions) ... 31

6. PDKM Simulation Parameters .. 31

7. E-G Scheme Network Connectivity Means and 95% Confidence Intervals 37

8. SBK Scheme Network Connectivity Means and 95% Confidence Intervals41

9. PDKM Network Connectivity Means and 95% Confidence Intervals43

10. Elected L-sensors Means and 95% Confidence Intervals (WSN model) 46

11. Elected L-sensors Means and 95% Confidence Intervals (HSN model)46

12. Elected H-sensors Means and 95% Confidence Intervals (HSN model) 47

13. PDKM L-sensors Elected Means and 95% Confidence Intervals 50

vu

LIST OF FIGURES

Figure Page

1. Algorithm for H-sensors .. 18

2. Algorithm for L-sensors .. 21

3. Distributes keying information to nodes requesting to be added to the cluster 22

4. Messages exchanged between cluster heads and cluster sensors 23

5. E-G Scheme Network Connectivity .. 36

6. E-G Scheme Network Connectivity Standard Deviation .. 37

7. SBK Scheme Network Connectivity (WSN and HSN models) 38

8. SBK Scheme Network Connectivity Standard Deviation (WSN and HSN models) .. 39

9. PDKM Network Connectivity ... 42

10. PDKM Network Connectivity Standard Deviation .. .43

11. SBK Nodes Elected ... 45

12. SBK Nodes Elected Standard Deviation .. .45

13. PDKM L-sensors Elected .. 49

14. PDKM L-sensors Elected Standard Deviation49

vm

CHAPTER 1. INTRODUCTION

Several wireless sensor network applications require being able to securely transmit

messages between nodes in the network to ensure the confidentiality and integrity of the

data being transmitted throughout the network has not been compromised by an attacker.

Wireless sensor networks may be deployed to monitor an area in dangerous or secure

environments. For instance, sensors may be deployed in battlefields to monitor troop

movements of an enemy or to monitor building infrastructure intrusions. For many

applications however it is not possible to physically place each node in specified locations

over the area to be covered. In many cases when it is not possible to place individual nodes,

thousands to tens of thousands of nodes may be randomly deployed over an area by

dropping them from aircraft or some other method which scatters the nodes over the area.

However, this creates a unique problem when attempting to establish symmetric keys

between neighboring nodes since deployment location is unpredictable and preloading

symmetric keys on each node may not allow nodes to communicate securely if they do not

share a key in common.

A couple narve approaches would be to preload each node with a single globally

used pair-wise key or a unique pair-wise key for every other node being deployed in the

network to ensure each node is able to securely communicate between any potential

neighboring nodes after deployment. However,in both of these approaches if any one node

is compromised by an attacker, the entire network becomes compromised since the attacker

would be able to determine all of the keys being used to encrypt the data. The main benefit

of the first approach is that it requires very little memory to store the key needed to secure

data transmission between nodes in the network and is highly scalable for the addition of

1

new nodes in the network after deployment. The second approach also allows for perfect

connectivity between nodes in the network after deployment but this approach does not

scale well with very large networks since preloading all of the keys onto each node may not

be possible to do because of the severe memory limitations of wireless sensor nodes.

Furthermore, this approach does not easily allow for new nodes to be introduced to the

network after deployment.

Wireless sensor nodes are severely limited by available resources which must be

taken into consideration when developing any security mechanism into the network. For

instance two popular wireless sensor nodes are the MICA2 and MICAz Motes. These

devices use 8 bit, 16 MHz processors and have a total of 4K bytes of configurable

EEPROM and 128K bytes of programmable memory [1], [2]. Due to the limitations of

memory space to store programming code and the necessary keys to ensure security along

with the limitations in processing power, existing public-key encryption schemes available

for standard networks are not feasible options. Additionally, these devices are designed to

run on two standard AA batteries, which may not be replaceable after deploying the nodes

and thus the battery power available in each node must be preserved as much as possible in

order to ensure the network continues to operate for as long as needed by the application.

This presents another constraint when developing a security mechanism into the network

since wireless communication and computational processes are expensive to battery power

and must be limited as much as possible so each node is still able to perform its necessary

functions after the deployment of the network [3]. As such security algorithms developed

should attempt to be as efficient as possible and attempt to limit the number and size of

2

necessary messages being exchanged between neighboring nodes and limit the number of

computations necessary to perform the algorithms.

1.1. Network Model

In this work we consider two classes of wireless nodes deployed in the wireless

sensor network (WSN) to form a heterogeneous sensor network (HSN). Low powered

nodes, L-sensors, such as the MICA2 or MICAz motes and much more powerful nodes, H

sensors, such as the Imote2 [2]. For instance, the Imote2 uses a 32 bit processor which can

be dynamically configured for either low powered use at 13 MHz up to high powered use

of 416 MHz operational speed and contains 32M bytes of flash memory and SDRAM

memory for code and storage. These more powerful H-sensors are comparable to PDAs in

terms of computational power and have a much longer transmission range than the L

sensors present in the network. Most of the existing work which has been done in the past

for key distribution in WSN has been focused primarily on homogeneous networks

consisting of only L-sensors. Since the overall cost of a large scale WSN is typically

considered we focus on heterogeneous wireless sensor networks (HSN) consisting of a

large number of L-sensors and significantly fewer H-sensors which will be used as cluster

heads in the network.

We take advantage of these more powerful nodes present in the HSN to provide pair

wise key distribution to the lower powered L-sensors after deployment of the nodes without

the need of deployment knowledge. Furthermore, since H-sensors have a much larger

transmission range they are able to transmit messages directly to L-sensors within their

cluster in a single hop which reduces the number of messages being transmitted by the

network. Additionally since L-sensors must be deployed as economically as possible in

3

large numbers we assume that L-sensors are not tamper resistant. Therefore they are not

protected from being compromised physically by an attacker and as such may release all

information they contain. We also do not assume H-sensors contain tamper resistant

hardware and may also release any information they contain to a physical attacker.

However, tamper resistant sensors are available which could be used in the network to

protect from these types of attackers.

1.2. Work Overview

The purpose of this study is to develop a set of algorithms to provide efficient

generation and distribution of pair-wise keying information to a heterogeneous wireless

sensor network after deployment has occurred. This keying information can then be used to

create pair-wise keys needed for symmetric encryption of data being transmitted between

neighboring sensors. To achieve this we have several objectives and tasks which need to be

completed.

1.2. L Objective One

The first objective is to design new algorithms to be used for generating the keying

information necessary to create the pair-wise keys in a heterogeneous sensor network

environment. This requires several tasks to be completed. The first task is to design an

algorithm for generating keying information by the more powerful H-sensors being

deployed in the network which takes advantage of the extra resources present. This

algorithm can be found in Subsection 2.6.1. The second task is to design an algorithm used

by the lower powered L-sensors which allows the advantages of the H-sensor nodes to be

utilized. The third task is to ensure that a backup method of generating keying information

for the network exists when the higher powered H-sensors are not available to do so.

4

Details of this algorithm can be found in Subsection 2.6.2. Lastly we must find an efficient

algorithm for distributing this keying information to the sensors in the network so that pair

wise keys between neighbors can be established. This algorithm is described in Subsection

2.6.3.

1.2.2. Objective Two

The second objective of this study is to analyze our method and compare it against

existing methods of key management designed for wireless sensor networks to ensure

improved performance. Several tasks must be completed to do this. The first task is to

analyze the communication overhead of our scheme and compare it to existing schemes for

WSNs. These comparisons can be found in Subsection 2.7.1. Our second and third tasks

are to analyze the storage overhead and computational overhead of our scheme in

comparison with existing schemes. These results can be found in Subsection 2.7.2. The last

task required is to investigate the resiliency of our scheme against node capture attacks.

Subsection 2.7.3 describes these results.

1.2.3. Objective Three

Our third objective is to simulate our scheme in order to evaluate network

connectivity in comparison with existing schemes for WSNs. The first task needed for this

is to develop simulation software for our scheme and a few of the existing schemes. The

second task is to experiment using numerous simulations of the schemes under different

scenarios. Details of regarding the simulation software design and setup can be found in

Subsection 2. 7.4. The last task is to compare the simulation results of our scheme with the

existing schemes to show the network's performance improvements with our methods.

Section 2. 7 .5 contains the results of our simulations.

5

1.3. Thesis Overview

In this work we present a key generation and distribution scheme for heterogeneous

sensor networks which take advantage of the additional capabilities ofH-sensors present in

the network. Additionally, our scheme does not require a priori knowledge of sensor

deployment locations and allows for sensor nodes to be randomly distributed over the

deployment area. Chapter 2 discusses our three algorithms for generating pair-wise keys

depending on if an H-sensor or an elected L-sensor to be used by nodes in the network and

the algorithm needed for distributing the keys to the nodes in each cluster. We then

examine our scheme through simulation in comparison to existing schemes which have

been previously proposed. Finally we conclude our work in Chapter 3.

6

CHAPTER 2. POST-DEPLOYMENT KEY MANAGEMENT

2.1. Introduction

In this chapter we describe our post-deployment key management scheme for

heterogeneous sensor networks. We present three algorithms in our scheme to provide key

generation and distribution to nodes in the network. In our work we take advantage ofH

sensors present in heterogeneous sensor networks to provide keying information to L

sensors. To take advantage of these nodes, we present an algorithm in Subsection 2.6.1

designed to be used on these H-sensors for generating keying information. The Subsection

2.6.2 we present an algorithm to be used on L-sensors which can allow these nodes to

generate keying information and distribute this information to their neighboring nodes only

when needed. In Subsection 2.6.3 we present a third algorithm which describes the process

for distributing keying information once this information has been created.

We follow up in Section 2.7 with analysis of our scheme against previously

proposed schemes which have been designed for wireless sensor networks. We then present

our results from simulations in Subsection 2. 7 .5 performed on our scheme and compare

these results with a predistribution scheme and a post-deployment scheme which have been

previously proposed.

2.2. Related Work

Many schemes have been proposed in the past for securing the wireless transmission

of data in WSN. However, most of these works focus only on homogeneous sensor

networks which limit the capabilities of the network. Eschenauer and Gligor proposed a

scheme (E-G) in [4] which preloads a set of pair-wise keys onto each node being deployed

by randomly selecting a quantity of keys from a larger pool of keys that have been

7

generated prior to deployment. After the nodes have been deployed in the area and they

have completed their bootstrapping process, nodes in the network are able to establish pair

wise keys with their neighboring nodes if their neighbors have also selected one or more

keys in common from the pool of keys. However, this approach relies on the probability of

two neighboring nodes having selected at least one of the keys from the pool in common so

either a large selection of keys must be preloaded on each node or the key pool size must

be kept small to ensure a high probability of connectivity.

Eschenauer and Gligor's scheme was improved upon in [5]. Chan et al. proposed a

scheme which increases the security of the network by requiring q > 1 keys must be shared

between neighboring nodes in order to create a secure link between nodes. This

requirement of requiring more keys in common increases the security of the network. This

also in turn requires more nodes which must be compromised by an attacker in order to

compromise the network. However, by increasing the number of keys which must be

shared between nodes it decreases the probability of any two neighboring nodes sharing q

keys in common.

Zhu et al. presented a key management scheme in [6] where they defined a minimum

time, T min, where the network is considered secure after deployment. Any processing

necessary for booting the network and establishing secure communication links between

nodes must take place in less than or equal to this time limit, Test ST min· Their approach

preloads a global symmetric key to use during network discovery while bootstrapping the

nodes and this key is assumed to remain secure during T min while pair-wise keys can be

established between neighboring nodes.

8

Two independently proposed predistribution schemes were presented in [7] and [8].

These two schemes are similar in their approach by generating a pool of key spaces and

preloading each node with randomly selected keying shares from the key spaces pool,

where one keying share belongs to one of the key spaces from the pool. The difference in

their approaches lies on the key space model they use which are presented in [9] and [10],

respectively. Two nodes in the network are then able to establish a pair-wise key after

being deployed if they contain keying shares from the same key space. These key space

models presented in [9] and [10] are further discussed in Section 2.3 below.

Group-based key predistribution schemes have also been proposed in [11], [12], [13]

and [14]. In [11], Du et al. proposed grouping sensor nodes prior to deployment which

would be dropped into the coverage area in groups. In this scheme a large pool of keys is

generated and further partitioned into groups of keys with each group of sensor nodes being

assigned one of the subsets from the larger key pool. When groups being deployed will be

neighboring on another, the subsets of keys associated with those groups will contain

overlap of keys to be used in order to increase the probability of connectivity between

neighboring groups of nodes. Nodes are then preloaded with randomly selected keys from

the subset assigned to them and deployed in their geographical regions accordingly. In [12],

Yu and Guan proposed a similar scheme however they divided the deployment area into

regular hexagon regions and each group of nodes preloaded with a selection of pair-wise

keys was deployed into a specific hexagonal region. Liu et al. proposed group-based

scheme in [13] which creates groups based on IDs which have been assigned to each sensor

prior to deployment. In their scheme each node belongs to two groups, a disjoint

deployment group and a disjoint cross group. Nodes belonging to the same group can

9

establish a secure communication link between themselves based on key predistribution

schemes found in key based schemes [4], [5], or [15] or key space schemes in [9] or [10]. A

similar approach was proposed in [14]. In this scheme Zhao et al. defined different

deployment groups and cross groups which result in nodes belonging to more than one of

each type of group. The major drawback to all of these group-based approaches is the

requirement of deployment knowledge for sensor placement before the sensors have been

deployed in the network. In our work we eliminate the need for prior deployment

knowledge.

In [16], Liu et al. proposed an in situ scheme for WSNs which does not require

deployment knowledge and removes the probabilities of any two neighboring nodes

sharing a common key after deployment by generating keying shares during the

bootstrapping phase of deployment. Their scheme, called SBK, uses elected service nodes

to generate keying shares from either of the previously mentioned key space models in [9]

and [10]. After keying shares have been generated by these probability-based elected

service nodes, the service nodes distribute the keying information to worker nodes within a

maximum hop distance from the service node. Since this scheme was designed for

homogeneous WSNs one of the drawbacks to this scheme is the computation and

communication overhead required by the elected service nodes. These nodes are considered

expendable in the network as they are likely to die shortly after the bootstrapping phase

from battery depletion.

Our work extends on the SBK scheme in [16] by introducing a HSN network model.

With the inclusion ofH-sensors in the network we develop algorithms to put much of the

workload of generating and distributing keying shares based on the key space models

presented in [9] and [10] which have been redesigned for use in WSNs in [7] and [8],

respectively. Additionally, preliminary work discussed here was presented in [17].

2.3. Key Space Models

Two key space models which were presented in [9] and [10] will work for our

scheme for generating and distributing keying information to allow nodes in the network to

establish pair-wise keys with their neighbors. In [10] a polynomial based key space was

proposed. This model uses a bivariate symmetric n-degree polynomial such that

(1)

over a finite field Fq, where q is a large prime number suitable for cryptographic keys. A

pair-wise key can be established between two nodes in a network which share the same

coefficients ai, the key space, by exchanging their IDs and computing the formula found in

Equation 1. For example, assume sensor nodes with IDs u and v. By exchanging their IDs

and inputting their ID along with their neighbors ID into the formula, a pair-wise key can

be established by nodes u and v since f(u, v) = f(v, u). Thus the key kuv kvu·

The second key space model presented in [9] is similar to the polynomial based

model but is a matrix based approach. In this model, a symmetric (n + 1) x (n + 1)

public matrix G and a symmetric (n + 1) x (n + 1) private matrix Dare with Dover a

finite field GF(q) and q is a large enough prime number suitable for cryptographic keys.

These two matrices are used to create a matrix A, shown in Equation 2.

A= (D · G)T (2)

Sensors are given the information needed to establish a pair-wise key by giving a sensor,

for instance the node with ID u, the uth row of A and the uth column from G. Neighboring

nodes are able to establish a pair-wise key by exchanging their columns from G. For

11

example, assume neighboring nodes have the IDs u and v. Sensor u and v exchange their

columns G and compute their pair-wise key kuv = kvu with Equation 3 below:

K=A·G (3)

since if D is symmetric than K is also symmetric.

Furthermore, with a properly designed G matrix, message transmission lengths can

be reduced between nodes by only requiring a seed value of G to be transmitted to the

neighboring node (e.g. using a Vandermonde matrix [7]). However, this does increase the

computational needs of the receiving sensor since the column must be generated after

receiving the seed.

A unique property for both of these models is that each is n-collusion resistant. This

means that as long as less than n nodes which share the key space are compromised then

the entire key space remains perfectly secure as shown in [9] and [1 O]. Furthermore it has

been shown in [16] that the storage requirements for these key spaces are close to (n + 1) ·

log q for the polynomial based model and (n + 2) · log q for the matrix based model as

long as the matrix has been properly designed which allows only a seed value to be used

for G. However, this requires an additional (n -1) modular multiplications to generate the

column for G before computing the pair-wise key.

Due to the mathematical similarities between these models, either key space model

can be used for generating key spaces in our work. We take advantage of the H-sensors

present in our network to generate these key spaces after deployment and distribute keying

information to nodes within their transmission range except in the rare occurrences where

an H-sensor may not provide adequate coverage in areas of the network to cover all

possible L-sensors being deployed. In instances such as this we use a similar election

12

method as [16] to choose L-sensors to become cluster heads in order to generate and

distribute the necessary keying information in their area. It should be noted however that

when using a polynomial based model only the IDs of the nodes in the network must be

exchanged while if the matrix key space model is used either a an entire column of Gora

seed of the column must be exchanged.

2.4. Rabin's Cryptosystem

In this work we assume two network models, one that is assumed to remain secure

long enough for bootstrapping and key establishment to take place and one which is not. In

the first model we assume the network will remain secure during some time limit as

proposed in [6]. In the latter model however we employ Rabin's Cryptosystem [17] which

provides a computationally asymmetric encryption to be used temporarily for exchanging

keying information and establishing pair-wise keys. Rabin's cryptosystem is a primitive

asymmetric encryption algorithm which uses a public key n and a private key (p, q). When

using Rabin's cryptosystem each node in the network would be preloaded with randomly

selected large primes necessary to create the public key n = p x q. However, this is only

used by the cluster heads in the network to create the public key and after bootstrapping has

completed this information can be deleted from memory. Additionally each node must be

preloaded with a predefined padding sequence, B, to be appended to the messages in order

for Rabin's cryptosystem to function properly.

Encrypting a message with n is computationally cheap for a node and requires one

modular squaring operation. However, decrypting the message is computationally similar

as decrypting a message using RSA encryption. When the wireless channel is not assumed

secure, cluster heads compute n and broadcast a message containing their ID and the value

13

of n to all nodes within transmission range. The nodes receiving n then send their

preloaded randomly generated symmetric key, k, to the cluster head be used for further

transmissions during the key distribution process. This key is encrypted using n and is

denoted by En(kllB) = (kl1B)2 mod n. This information is then sent back to the cluster

head, along with its ID, which uses the large primes p and q to decrypt the received

message. Decryption is denoted by Dp,q(En(MIIB)). This message, M, contains the

symmetric key, k, to use along with the node ID associated with the key.

2.5. Assumptions

In our work we consider a heterogeneous wireless sensor network and assume that

no knowledge of node placement is known prior to deployment. For example, nodes may

be randomly deployed throughout the area wishing to be covered by an aircraft drop. Our

network is comprised of a large number of tiny, low cost, low powered, low-end L-sensors

and significantly fewer numbers of high-end, more powerful H-sensors. H-sensors have

much higher computational capacity, longer battery life, a longer transmission range and a

larger memory space available to them. We also assume that each node has been loosely

time synchronized prior to deployment. Loose time synchronization can be obtained

through procedures described in [19] and [20]. Nodes are preloaded with parameters

described in Table 1 below. We assume that H-sensors will be able to continue normal

function after distributing keying information in their clusters but that L-sensors may die

shortly after bootstrapping is complete if they were elected as a low powered cluster head

(LPCH). Additionally we assume two network models, one which is assumed secure during

the maximum amount of time required for the bootstrapping period and one which is not.

We assume an appropriate MAC protocol is in place to avoid communication collisions

14

over the wireless channel. Finally we assume a multi-hop routing protocol is in place for

transmitting messages from L-sensors back to H-sensors since their transmission range is

much less than H-sensors.

2.6. Post-Deployment Key Management

We present our key management scheme for HSNs in this section which was

published in [17]. Each node in the network requires two algorithms to be preloaded onto

them prior to deployment. More specifically, we use a separate key generation algorithm

for H-sensors and L-sensors, which is loaded onto the sensor depending on the type of

sensor, and a key distribution algorithm which is loaded onto each sensor prior to

deployment. Due to the extended transmission range ofH-sensors which allows for better

coverage in a deployment area and the fact that they are used primarily as key management

nodes in our scheme we limit messages to one-hop transmissions and do not transmit

messages further than a node's transmission range. Table 1 shown below details the various

parameters which also must be preloaded onto each node prior to network deployment.

Each node is loaded with a maximum cluster size depending on its sensor classification,

il1 which specifies the cluster size to use for H-sensors and il2 defines the maximum cluster

size for L-sensors. Since H-sensors have more computational power, memory space and

transmission range available to them, il1 is usually much larger than il2 . Furthermore, by

setting these values to the degree of the polynomial or dimensions of the matrices used we

can ensure each key space remains n-collusion secure as described in [9] and [10]. We

assume this is the case in our study as it prevents node capture attacks by ensuring

uncompromised nodes in the network are still able to communicate securely.

15

In addition to the maximum cluster size specifications each node contains a unique

ID and is loaded with a time limit tw. This time limit is the maximum bootstrapping time

allowed for the network necessary for generating and distributing keying information. If the

network is not assumed to remain secure during tw, each node must also be preloaded with

large primes p and q, a randomly generated symmetric key k, and a predefined pattern B

which are needed for Rabin's cryptosystem. Additionally, each node must also be loaded

with a large prime used for generating key spaces over a finite field, r and L-sensors

contain a probability value for election purposes defined as P.

Table 1. Preloaded Parameters
A.1 Maximum number of nodes in H-sensor clusters (H-sensors only)

Az Maximum number of nodes in L-sensor clusters (L-sensors only and Az « l 1)

n Degree of polynomial or matrix dimensions for generating key spaces

tw Maximum bootstrapping wait time

ID Unique sensor ID

r Large prime for generating key space over finite field

p Probability value of an L-sensor to be elected a cluster head

p,q Large primes needed for Rabin's cryptosystem (optional)

B Predefined padding for Rabin's cryptosystem (optional)

k Randomly generated symmetric key to use in Rabin's cryptosystem (optional)

2.6.1. H-sensor Algorithm

This section describes our H-sensor algorithm. Each H-sensor deployed in the

network works as a cluster head and serves as many nodes defined by A.1 within

transmission range. Figure 1 below details the steps of this algorithm. When a H-sensor is

in its bootstrapping phase it calls up the H-sensor algorithm and generates a key space

using one of the two models over a finite field r as shown on line 2. When using the

16

polynomial based model the key generation involves randomly generating n coefficients,

ai over the finite field r. These coefficients will be distributed to nodes in the network

which will be used in by the formula previously described to generate pair-wise keys with

their neighbors. If the matrix based model is used the cluster heads will generate (n + 1) 2

elements to be used for the public matrix G and the private matrix D. However, if the

matrix G is constructed properly, such as using a Vondermonde matrix, then only a seed

will need to be generated. Each node in the network will then need to reconstruct their

elements from G after receiving this seed.

Once the H-sensor has completed generating a key space it stores one of the key

shares for itself which will be used to create pair-wise keys with its neighboring nodes and

sets a wait time before broadcasting to nodes within transmission range that it has keying

information available to be distributed, on line 3. The wait time is a randomly selected time

between zero and half the total time limit, 0 :5: w :5: tw/2, specified in the parameters.

By dividing the total time for allowed for booting up the network in half and

randomly selecting a waiting time period serves two different purposes, the first purpose by

dividing the time limit for bootstrapping is to allow sufficient time so that L-sensors will

not start their election processes until a time period greater than tw/2 has elapsed allowing

for L-sensors to attempt to join clusters formed around H-sensors first. The second part,

which is randomly selecting a wait period, is also to attempt to avoid any message

collisions between neighboring H-sensors which may have been deployed within

transmission range of each other.

Once this value is set the algorithm starts a loop on line 4 which first listens for any

neighboring H-sensors broadcasts. If it hears a broadcast from another H-sensor during this

17

loop it will request keying information from that cluster head to form a secure cluster head

to cluster head connection. This allows for H-sensors to be able to communicate directly

with each other securely and can reduce the number of messages needing to be sent

between L-sensors for services such as data aggregation back to a base station. Once this

wait time has elapsed on line 10 the H-sensor initiates the Key Distribution Algorithm, as

shown in Figure 3. The Key Distribution Algorithm will be discussed in Subsection 2.6.3

which details the broadcasting method to announce that a key space has been generated and

to distribute keying information to nodes within transmission range. Once this process has

completed H-sensors then use their keying information to setup pair-wise keys with any

other H-sensors and L-sensors within their transmission range to establish a secure

connection with each.

H-sensor Algorithm
1: function HSensor (J1 , tw)
2: keys ~ genKeySpace() > construct key space for J1 nodes, store one for self
3: w ~ random(0 < tw I 2) > random wait time
4: while w > 0 do
5: listen for broadcasts from neighboring H-sensor cluster heads
6: if BROADCAST heard
7: RequestKeylnfo > get keying info (cluster head to cluster head

communication)
8: end if
9: elapse(w)
10: end while
11: KeyDistro()
12: end function
Figure 1. Algorithm for H-sensors

2.6.2. L-sensor Algorithm

In this subsection, we present our L-sensor algorithm which is used for receiving

keying information from cluster heads and if necessary elect themselves as a LPCH to

provide keying information to nearby nodes in the network. Figure 2 below shows our

18

algorithm we use for L-sensors in the network. When this algorithm starts the first thing the

L-sensor does is sets its wait time to half of the total bootstrapping time so that it may listen

for broadcasting cluster heads. The algorithm then sets a Boolean variable, elected, to false

on line 3 which is used to determine if the node is eligible to be elected as a LPCH later on

in the algorithm. Once these variables have been set the algorithm starts a loop to listen for

broadcasting H-sensor cluster heads announcing they have keying information available to

be distributed. The L-sensor would request keying information from all H-sensors it hears

giving this announcement. This is to allow for nodes residing on boundaries of clusters to

be able to join all of the clusters and establish keys with nodes residing further into the

cluster which may not have heard the other H-sensors broadcasts. These nodes then provide

communication links between clusters if messages need to be routed through L-sensors. If a

L-sensor received keying information from a H-sensor it sets its probability value, P = 0,

to remove the possibility of being elected a LPCH. This loop continues until the time limit

w has elapsed.

Once this wait time is over, one of two things can occur. If a node has successfully

received keying information the value of P will equal zero and the rest of the algorithm is

skipped and the function ends. However, if a node did not receive keying information from

an H-sensor the node starts the election process. The first step which occurs, on line 13, is

to reset the variable w to a random time period less than the remaining time of the

bootstrapping phase. It will then continue through a loop on line 14 which attempts to elect

the sensor as an LPCH using the preloaded probability P as the probability to be elected. If

the node is elected it will generate a key space with the same process an H-sensor has

generated its key space with the exception that it may use a lower value for the number of

19

nodes it will provide keying information to. If the node has not been elected a LPCH the

lines 18 through 20 can be added to the algorithm to increase the chance of being elected

the next time through the loop. This helps speed up the overall network setup time but is

not necessary for the function of the algorithm.

Once the key space has been generated the node will first listen for any other LPCHs

which may have elected themselves earlier then themselves and are already broadcasting

they have keying information available as shown on line 21. If another node has already

elected itself then the node which had generated its key space after the announcing LPCH

deletes its key space information on line 24 and sets its Boolean allowing it to be elected to

false.

The L-sensor will then request keying information from the announcing LPCH on

line 27. However, if another LPCH is not heard this node will continue to remain an LPCH

and start the key distribution algorithm to announce that it has keying information available

for nodes within its transmission range as shown on line 30. Once the key distribution

algorithm has completed the node finishes this function on line 35. After this algorithm has

completed elected LPCHs are not assumed to have much remaining battery power left and

as such do not contain their own keying information to setup pair-wise keys with their

neighboring nodes. However, if they have not been elected the L-sensors remaining will

initiate steps to find their local neighboring nodes and establish pair-wise keys with them

by either exchanging their IDs or matrix information as previously described in Section 2.3.

2.6.3. Key Distribution Algorithm

This subsection details the key distribution algorithm used by our HSN when a

cluster head (either H-sensor or LPCH) has finished generating a key space and needs to

20

announce they have keying information available. Figure 3 details the steps of this process

below.

L-sensor Algorithm

1: function LSensor (A2 , tw, P)
2: w ~twl 2
3: elected ~ false
4: while w > 0 do
5: listen for broadcasts from cluster heads
6: if BROADCAST heard
7: RequestKeylnfo > Tx to request keying info (I-sensor to cluster head

message)
8: P ~ 0 > remove possibility of becoming LPCH
9: end if
10: elapse(w)
11: end while
12: if P > 0
13: w ~ random(tw / 2)
14: while w > 0 do
15: elected~ BecomeLPCH(P) > w/ probability P
16: if elected then
17: keys ~ genKeySpace() > construct key space for Az nodes
18: else
19: increase probability chance (optional)
20: end if
21: listen for neighboring node BROADCAST
22: if BROADCAST heard
23: if elected
24: delete key space generated
25: elected ~ false
26: end if
27: RequestKeylnfo > get keying info (cluster head to cluster

head communication)
28:
29:
30:
31:
32:
33:
34: endif

end if
if elected

KeyDistro()
end if
elapse(w)

end while

35: end function
Figure 2. Algorithm for L-sensors

21

The first step of this algorithm is to broadcast the cluster head / D to all nodes within

its transmission range. Once this has been completed the cluster head will start to accept

keying information requests from nodes within range which wish to join the cluster until all

keying information has been distributed. This is dependent on the number of nodes each

cluster is allowed to contain as shown on line 4. If Rabin's cryptosystem is used during this

phase the broadcast message contains the cluster heads / D and the value for n to use for

encrypting the information request reply message. Nodes within range request keying

information by sending a unicast message back to the cluster head containing their / D and

if Rabin's cryptosystem is used they also include the value k which has been encrypted by

n as described previously in Section 2.4.

Key Distribution Algorithm

1 :function KeyDistro(.l1 I ll2 , ID, keys)
2: BROADCAST(id) > broadcast to all nodes within range
3: while keyed< .l1 - 1ll.l2 , do
4: ifreceived(RequestKeylnfo(ID))
5: Keyinglnfo ~ an unused key share
6: keyed ~ keyed u {Keyinglnfo}
7: send(ID, ko(Keyinglnfo))
8: end if
9: end while
1 0:end function
Figure 3. Distributes keying information to nodes requesting to be added to the cluster

When a request is received from another node the cluster head selects an unused set

of keying information to send to the requester from the key space it generated as shown on

line 5. This keying information is added to a used keying information list on line 6 and the

keying information is sent back to the requesting node using a unicast message which may

be encrypted using k as shown on line 7. Once all keying information has been distributed

the function ends and the cluster head may be allowed to delete any keying algorithms and

variables in order to recover valuable memory space.

22

2. 7. Performance Evaluation

In this section we evaluate our scheme and analyze the communication overhead,

storage and computational overhead and the resilience to node capture attacks. We follow

this up with evaluating our scheme through simulations.

2.7.1. Communication Overhead

This subsection analyzes the communication overhead needed by our scheme and

compares this overhead with the SBK scheme proposed in [16]. Figure 4 below describes

the message exchanges between a cluster head and nodes being added to the cluster by

requesting keying information as described in Subsection 2.6.3.

Message Exchange Process

Figure 4. Messages exchanged between cluster heads and cluster sensors

As shown in Figure 4 the cluster head uses a broadcast message to announce keying

information is available. Once this has been heard by sensors wishing to join clusters they

request keying information from the cluster head using a unicast message to the cluster

head. Keying information is distributed to the sensors joining the cluster using another

unicast message sent from the cluster head back to the sensor joining the cluster.

23

Maximum total network wide communication overhead can be computed using the

following equation:

(4)

In this equation, H is the number of H-sensors being deployed in the network which

have distributed keying information to nodes within their transmission range and have

joined their cluster. B is the total number of broadcasts which have been performed by each

cluster head to announce they have keying information available while ,;i,1 is the total

number of nodes allowed into the cluster which a unicast messages is sent to distribute

keying information to the nodes requesting keying information. Similarly, the total

communication for L-sensors can be computed using the second part of this equation.

However, with adequate deployment ofH-sensors to cover the area sufficiently we assume

L will be very small. In the third part of this equation there may be a total of H ,;i,1 messages

received by the H-sensor cluster heads by nodes requesting information. Additionally since

L-sensors must reply using a unicast message using multi-hop routing h represents the

average number of hops in the network a message must be routed in order for the request to

be received by the H-sensor cluster head. Finally in the last term of this equation d

represents the average node degree (i.e. average number of neighboring nodes) in the

network to represent the number of messages needed to exchange information in order to

establish pair-wise keys with their neighboring nodes.

The communication overhead for SBK [16J can be determined similarly and is

shown below in Equation 5.

s(B + ,;t2) + hs,;t2 + d

24

(5)

In this equation, s represents the total number of service nodes elected by the SBK

scheme. Service nodes provide similar functions as cluster heads in our scheme. The

remaining variables remain the same as in our scheme.

The communication overhead is now compared between our scheme and SBK

scheme in [16]. Due to the longer transmission range of a H-sensor our scheme produces

significantly less broadcast messages than the SBK scheme. For example, assume 10,000

sensors have been deployed uniformly over an area of 1,000 by 1,000 meters. Suppose L

sensors with a transmission range of 20 meters and the H-sensors have a transmission range

of five times that of the L-sensors or 120 meters. In our scheme, 23 H-sensors would need

to be deployed to distribute keying information in this area. However, in the SBK scheme,

which is a scheme designed for homogeneous WSNs, 796 L-sensors would need to be

elected to distribute keying information for the same area. This shows that the value for H

is much smaller in Equation 4 than the value for s shown in Equation 5. Thus our scheme

uses significantly less broadcast messages than the SBK scheme in terms of total

communication overhead.

2.7.2. Storage and Computational Overhead

In this subsection we investigate the storage and computational overhead required by

our scheme. We also compare our scheme with three other previously proposed schemes,

SBK [16], LEAP [6], and the E-G scheme [4]. In our scheme each node may receive a

maximum of one piece of keying information from each cluster it joins. Furthermore each

H-sensor, H, may distribute at most A.1 - 1 pieces of keying information to nodes within

transmission range and each LPCH, L, may distribute A.2 pieces of keying information to

nodes within range. Based on the storage requirements described previously in [16] the

25

total storage upper bound for each node can be found where H is the total H-sensors in the

network and Lis the total LPCHs elected. In the equations below, Equation 6 shows the

upper bound memory requirements for a each node when using the polynomial based key

space and Equation 7 shows the upper bound requirements when the matrix based key

space model is used.

H(n + 1) logr + L(n + 1) logr

H(n + 2) logr + L(n + 2) logr

(6)

(7)

In these equations n denotes the degree of the polynomial or the dimensions of the

matrix being used and r is the large prime preloaded onto the nodes to define the finite

field to be used when generating key spaces. We can compute the total upper bound storage

required by summing the storage space needed for each node in the network using the

Equations 6 and 7 above. We expect the number ofLPCH created after deployment to be

fairly minimal since most L-sensors should be within range ofH-sensor clusters.

Furthermore, due to the additional computational power of H-sensors, H-sensors can create

larger clusters than L-sensors which also increases the resiliency to node capture attack

which will be discussed in Subsection 2.7.3.

Below in Table 2 we compare the number of pair-wise keys for three existing

schemes previously listed: the SBK scheme (16], the LEAP scheme [6], and the E-G

scheme [4]. Since our scheme and the SBK scheme achieve perfect connectivity between

neighboring nodes the total number of pair-wise keys shared stored in each node is the

average node density of the network, d. The LEAP scheme requires three additional keys

to be stored as shown in Table 2. In the E-G scheme, Sis the number of keys preloaded

onto each sensor prior to deployment.

26

Table 2. Keys Stored

I Our S~heme I SBK E-G LEAP
d s d+3

Below in Table 3 we look at an example for pair-wise keys needing to be stored for

90% or greater connectivity. SBK, LEAP and our scheme are all able to achieve 100%

connectivity between nodes and their neighbors. We define connectivity as the ability to

establish pair-wise keys between two neighboring nodes. In this example for an average

node density of 20 nodes SBK and our scheme would only require 20 keys to be stored to

achieve connectivity, while LEAP requires an additional three keys and E-G requires the

most keys needing to be preloaded at 150 keys. Furthermore, E-G scheme achieves

approximately 90% connectivity and requires a substantial amount of memory to store

these keys. From this example we show that we are able to achieve at least as efficient key

storage as SBK and slightly better storage than LEAP but significant storage improvements

from the E-G scheme.

T bl 3 K St d 'th > 90o/c C t' t a e eys ore w1 - 0 onnec 1v1 y
Scheme Ours SBK E-G LEAP
Keys stored 20 20 150 23
Keys established 100% 100% 90% 100%

We now take a look at computational overhead. As discussed in [16] it requires

n + 1 modular multiplications for either key space models to establish pair-wise keys.

When a seed for columns in G are used however each sensor receiving information would

need to rebuild the column which would require an additional n - 1 modular

multiplications for each cluster it joins. This is the same amount of computations as

required in the SBK scheme [16].

27

2.7.3. Resilience

In this subsection we discuss the resiliency for our scheme in regards to node capture

attacks and the disclosure of pair-wise keys to the attacker. As previously mentioned in

Section 2.3, these key space models have a property known as n-collusion resistance and

shown in [9], [1 O], and [16]. This means that n or more nodes in each cluster must be

compromised before the entire key space is compromised and all of the pair-wise keys

generated by it can be calculated. Thus for better resilience against an attacker, when the

value for n is equal to or greater than the cluster size used in our scheme the key space

remains perfectly secure even if the entire cluster is compromised by a physical attacker.

This means that if one or more nodes in a cluster have not been compromised then any

pair-wise keys they contain cannot be determined by the information gathered from the

compromised nodes.

Assume that we have an n-degree polynomial which has been used for generating a

polynomial based key space, and we set our cluster size to N nodes. Let us also assume

N > n. Then when compromised nodes is greater than or equal to n + 1, the coefficients

generated for the polynomial can be calculated by the attacker and the pair-wise keys

which remain in the N - (n + 1) uncompromised nodes in the network can be computed

by using the uncompromised node IDs by solving for a solution to the set of polynomials

which have been generated by the key space. Thus one can achieve perfect resilience

against node capture attack by setting n to be greater than or equal to the cluster size

specified in our scheme. Similarly this can also be shown for the matrix based key space

model.

28

2.7.4. Simulation Design and Setup

In this subsection we discuss the simulation software we designed to simulate our

scheme, the SBK scheme [16], and the E-G scheme [4]. Our simulation software

applications were written using the C# programming language with Visual Studio 2008 and

.NET 3.5. Each of these applications are command line console applications and

simulations were performed on machines running Ubuntu 8.04 LTS using Mono 2 for

.NET applications. We designed three console applications which take the various

parameters needed to simulate each unmodified scheme. Additionally a fourth simulator

was written to simulate a modified version of SBK with the addition ofH-sensors into the

network running the SBK scheme which does not take advantage of these types of sensors.

For our simulation purposes we used the polynomial based key space model for both the

SBK scheme and our scheme.

Each simulator creates a user defined Cartesian plane grid space to be used for

deploying sensor nodes for the network. The user specifies number of nodes to deploy in

this grid space which are then deployed by randomly generating (x, y) coordinates for each

node. This type of deployment method would be similar to an aircraft drop which does not

consider deployment knowledge exists prior to distributing sensor nodes into a

geographical region. Each scheme also requires input to specify the number of sensors to

deploy. For the unmodified SBK and E-G scheme this is only for L-sensors while our

scheme and the SBK with H-sensor simulator requires both the number of L-sensors and

the number ofH-sensors to be deployed. For our simulations we specified 10,000 L-sensors

to be deployed in the region to simulate a dense WSN. In the SBK scheme which

additionally deployed H-sensors we specified 150 H-sensors to be deployed in addition to

29

the 10,000 L-sensors. We specified 150 H-sensors for our modified version of SBK since

150 H-sensors provides near perfect network connectivity in our scheme based on

simulation results with the least number ofH-sensors needing to be deployed.

In each of the simulated schemes, the transmission range needs to be specified for L

sensors and H-sensors. In our study we specified our transmission range for L-sensors to be

20 and H-sensors with a transmission range of 120. In the SBK scheme we specify the

degree of the polynomial to use to be 100 in both of the two simulators for this scheme.

Furthermore, we specify the degree of the polynomial for H-sensors in our scheme to 500

and the degree used by the L-sensors to 100. This larger degree polynomial is used to

create larger clusters than clusters formed by L-sensors and provide keying information to

more nodes within the much larger transmission range of the H-sensors. Lastly, for our

scheme and the SBK scheme we set the probability of an L-sensor to be randomly elected

to provide keying information to 10% in each test.

We varied one of the parameters for each scheme which would increase or decrease

the network connectivity in order to compare these schemes to ours. For the E-G scheme

we varied the number of pair-wise keys preloaded onto each of the distributed nodes in the

network out of a key pool size of 10,000 keys. For both the unmodified and modified

simulators for the SBK scheme we varied the time to live (TTL) for messages being sent.

By increasing the TTL the nodes in the SBK scheme are able to extend the range messages

are able to travel outside of transmission range of the L-sensors. These messages are

rebroadcast from their origin while decreasing the TTL until the TTL is equal to zero.

For our scheme we varied the number ofH-sensors being deployed in the area. By

increasing the number ofH-sensors we deploy we can increase the overall coverage in the

30

network. We can then use these results for comparison with SBK since by eliminating H

sensors from our scheme we are using a method similar to SBK but we are limited to one

hop transmissions and are not able to rebroadcast the messages from cluster heads. Table 4

below shows the parameters used for each scheme simulation run for the E-G scheme.

Table 5 lists the parameters used by the SBK and SBK with H-sensor schemes. In Table 6

we list the parameters used for our scheme during simulation. Each simulation test was run

forty times. The results were then compiled by computing the mean, standard deviations

and confidence scores for the forty simulation test runs.

Table 4. E-G Simulation Parameters
Test# l 2 3 4 5 6 7 8 9 10 11 12
Ke s stored 25 50 75 100 125 150 175 200 225 250 275 300

Table 5. SBK Simulation Parameters both versions)
Test# 1 2 3 4 5 6
TTL (ho s) 1 2 3 4 5 6

Table 6. PDKM Simulation Parameters
Test# 1 2 3 4 5 6 7 8 9 10 11 12
H-sensors 25 50 75 100 125 150 175 200 225 250 275 300

2. 7. 4.1. E-G Simulator Process

When the E-G scheme simulator starts the first step which occurs is the simulator

randomly generates the number of keys to use for the key pool. Once these keys have been

generated the simulator creates sensor objects and randomly selects the number of keys to

store in a list on each sensor from the key pool. Once these keys have been selected by each

node the sensor objects are randomly given their grid locations by randomly selecting the

(x,y) coordinates within the specified grid size. After all nodes have been given

coordinates within the grid space one-hop neighbors are determined for each node and

stored in a list of neighboring nodes in each sensor object. Neighboring nodes are found by

31

finding the Euclidean distances between the target sensor object and all other sensor nodes

created by the simulator. After all of the one-hop neighbors are found for a target sensor

object and stored into a list ofIDs the simulator then checks the lists of keys stored on the

target sensor and its neighbors for matching pair-wise keys from their selected keys. If a

target node and its neighbor share at least one key in common these nodes are marked as a

secured connection and their IDs are stored by each other in a separate key value pair list

containing the ID of their neighbor and the first key found which they share in common.

Finally once all nodes deployed in the network have determined their neighboring nodes

which share keys in common with them the network connectivity is calculated based on the

number of network wide possible links found between sensor objects and their one-hop

neighbors and the number oflinks between nodes which contain a key in common.

2. 7.4.2. SEK Simulator Process

The first step of the SBK simulator creates sensor objects containing the necessary

parameters needed by the algorithm and then randomly selects grid coordinates for their

deployment locations. Once all nodes have been deployed in the simulator, the next step of

the simulator randomly chooses sensor objects to attempt to elect themselves as service

nodes. If a node fails to elect itself another randomly chosen sensor object is selected and

allowed to run the SBK algorithm to attempt to elect itself. This random selection of sensor

objects continues until a node has elected itself as a service node. Once a node has been

elected this sensor object runs the key generation algorithm by randomly choosing

..l2 coefficients to use for the polynomial. Furthermore, its ID is stored into a list by the

simulator of elected service nodes which is used to determine the number of nodes elected

during the test A separate list is used for elected H-sensors in the modified version of the

32

SBK scheme simulator. After ..l2 coefficients have been randomly generated the sensor

object begins to locate its m-hop neighbors using a recursive function in the simulator until

all m-hop neighbors are located based on their Euclidean distances. These steps simulate

the process of a node in the network electing itself and broadcasting it has keying

information available to distribute before another nearby neighbor has done so. Once these

neighbors have been determined the simulator calculates the product of the coefficients

with the IDs of the neighboring nodes over the finite field specified by r and stores these

products as a list on each of the neighboring nodes until at most n nodes have keying

information. This keying information is stored in a key value pair list containing the ID of

the service node and the list of products from the coefficients. This process ofrandomly

selecting a node in the network and giving it a chance to elect itself continues until all

nodes either have been elected or contain keying information from a service node.

Once distribution of keying information has completed the simulator finds all one

hop neighbors for each node which has not been elected based on their Euclidean distance.

After each node has located its one-hop neighbors the simulator checks the key value pair

containing the keying information for matching service node IDs between a target node and

its one-hop neighbors to see if they belong to the same key space. If a neighboring node

and the target node share keying information from the same service node a pair-wise key is

calculated over the finite field and stored in a key value pair list along with the neighbors

ID. After all nodes have calculated pair-wise keys with neighbors which contain the same

key space the network connectivity is calculated using the same process as the E-G

simulator.

33

2. 7.4.3. PDKM Simulator Process

In the PDKM simulator the first step of the simulator creates sensor objects

containing the specified parameters needed. Once this step has completed each node is

given randomly generated grid coordinates for deployment. After all nodes have been

deployed into the grid space the simulator first initializes each of the H-sensors deployed

and allows the H-sensor objects to generate the random coefficients of the polynomial for

keying information. Once the H-sensor objects have generated keying information they

locate their one-hop neighbors based on the Euclidean distance between itself and the

remaining nodes in the network. Nodes which have a distance less than or equal to the

transmission range of the H-sensors are then given a list of keying information by taking

the product of the neighboring node's ID and the randomly generated coefficients in the key

space until at most 11 - 1 neighboring nodes are given keying information. We store one

piece of keying information generated by the H-sensor in a key value pair list so the H

sensor is able to establish pair-wise keys with its neighbors within transmission range after

bootstrapping. By generating and distributing keying information on the H-sensors first we

simulate the time period between time zero and half of the maximum time, or t0 :5 w :5

tw/2 allowed for bootstrapping the network.

After each of the H-sensors have generated and distributed their keying information

the remaining L-sensors which do not contain keying information are randomly selected

and given a chance to elect themselves as an LPCH. If a node is successful electing itself it

generates keying information for an 12-degree polynomial and distributes the keying

information to its one-hop neighbors in the same manner as the H-sensors with the

exception that the LPCH does not store keying information for itself. This simulates that

34

this node will die out shortly after bootstrapping and it will not attempt to establish pair

wise keys with its neighboring nodes. Additionally the elected L-sensor's ID is stored in a

list which keeps a record of the number ofLPCHs in the network.

Once every node in the network either contains keying information or has been

elected one-hop neighbors establish pair-wise keys with each other if they contain keying

information from the same cluster head by computing the key using their neighbors ID.

After each node has completed creating keys network connectivity is calculated by the

simulator and the number of elected L-sensors is recorded from the test.

2.7.5. Simulation Results

In this subsection we review the results from our simulations. Each scheme was

simulated forty times for each test listed in Tables 4, 5 and 6. We first examine the network

connectivity between our scheme and the E-G and SBK schemes. We define network

connectivity as the average percentage of nodes which shares a pair-wise key with their

neighboring nodes allowing for secure communication to occur. Figure 5 below shows the

results from the E-G scheme simulation tests and the standard deviations from the results.

Figure 6 shows the results from the SBK simulation for network connectivity and the

results standard deviations for the simulations with and without H-sensors included. In

Figure 7 we present the results from the simulation of our scheme on a HSN. These are the

means of the results from 40 simulation runs in each test.

2. 7.5.1. E-G Network Connectivity

In the results shown in Figure 5 we see that approximately 90% connectivity is

achieved when 150 keys are selected for each node out of a pool of 10,000 keys. However,

in order to achieve near perfect network connectivity it requires almost 250 keys to be

35

preloaded onto each node. Due the memory limitations of L-sensors however this would be

infeasible to do in a large network. For instance, for the network to support 90%

connectivity using 128-bit keys each sensor would require 2.344K bytes of storage. In

order to have near perfect connectivity this scheme requires 250 keys to be preloaded. This

would require 3.906K bytes of memory storage in order to store all of the necessary keys

on each sensor. The standard deviation for these means are shown below in Figure 6.

E-G Network Connectivity

100 - - -

t 90
80 ·..:,

c., 70 G)

El 60
0 u 50
~

40 ~

~ 30
z 20
~ 10

------_/1'

/
/

/
✓

/
/

/ .,
0

25 50 75 100 125 150 175 200 225 250 275 300

Preloaded Keys

Figure 5. E-G Scheme Network Connectivity

The benefit of using such a scheme however is its simplicity. This scheme does not

require complex algorithms to be loaded onto the sensors to create the keys. Since this

scheme does not require complex algorithms to run after the nodes are deployed the

network can be established using very little power due to low computational overhead.

Furthermore, communication overhead can be reduced by having each node use broadcast

messages in its area to announce which keys it contains instead of unicast messages to each

neighbor.

36

E-G Network Connectivity Std. Dev.

0.25

§ 0.2
~
'> ~ 0.15
0
"O
~

"O
0.1

j
0.05 00

0

25 50 75 100 125 150 175 200 225 250 275 300

Preloaded Keys

Figure 6. E-G Scheme Network Connectivity Standard Deviation

Table 7 below shows the mean results from the 40 simulation runs of each test and

the 95% confidence intervals for these results. As we can see from these results we can

achieve 89.458% network connectivity when 150 keys are loaded onto each sensor. When

250 keys are used we are able to obtain 99.805% connectivity. From these confidence

intervals we can see that we can achieve acceptable network connectivity even when keys

are randomly selected from a very large pool of keys.

Table 7. E-G Scheme Network Connectivity Means and 95% Confidence Intervals
Keys Stored Mean Lower Upper

25 6.02 5.98 6.05
~

50 22.11 22.06 22.17
75 42.98 42.91 43.04

100 63.18 63.11 63.24
125 79.00 78.94 79.06
150 89.46 89.42 89.50
175 95.34 95.31 95.36
200 98.17 98.15 98.18
225 99.36 99.35 99.37
250 99.81 99.80 99.81
275 99.95 99.95 99.95
300 99.99 99.99 99.99

37

2. 7.5.2. SBK Network Connectivity

In Figure 7 we show the mean results and their standard deviations in Figure 8 from

both of the SBK simulations; the normal SBK scheme and the modified version which

includes H-sensors being deployed. When the network is homogenous near perfect network

connectivity is established when the TIL is set to four hops. The maximum area covered

by a message transmitted four hops is equivalent to using a single H-sensor with a

transmission range of 80. These results also show that L-sensors which die because they

were elected have a negative impact on the network connectivity overall. Without

considering these nodes in the overall connectivity these results would be slightly higher

than shown here. However, when a node is elected and allowed to die prematurely in the

network a hole is formed in the center of the cluster where the service node was located.

This creates breaks in communication links between other nodes since messages must be

transmitted around this area since no L-sensors are present in these locations anymore.

SBK Network Connectivity

100 -

~ 90
·s= 80 ·..:=

I 70
60

u 50

-
/ ---- - - -

✓ ~
/

./ -
~ 40
E 30
Q) z 20
'#. 10

0

1 2 3 4 5 6

Time To Live (TIL)

Figure 7. SBK Scheme Network Connectivity (WSN and HSN models)

38

~WSNModel

-s-HSN Model

0.8
0.7

f5 0.6
~ .>
cu

0.5
0 0.4

l 0.3
B 0.2
r✓.l

0.1
0

1

SBK Network Connectivity Std. Dev.

2 3 4 5 6

Time To Live (TTL)

- wsNModel

..,._HSN Model

Figure 8. SBK Scheme Network Connectivity Standard Deviation (WSN and HSN models)

By adding H-sensors to the network and not adjusting the algorithm to take

advantage of the longer transmission ranges, the overall network is severely crippled. This

is due to many more L-sensors being elected compared to the number ofH-sensors. This

happens because the probability of electing a node in the network is the same for both types

of sensors. This shows that the SBK scheme does not take advantage of the longer

transmission range H-sensors are capable of and is not a feasible key management scheme

forHSNs.

Below in Table 8 we show the means and the 95% confidence intervals from the

results of both types of simulations. As we can see here for the results of the unmodified

version of SBK (WSN model), the mean network connectivity achieves 96.456% network

connectivity when a TTL is set to three hops. We also see that a limit of approximately

97.4% network connectivity is achieved when four or more hops are used for the TTL. This

could be potentially increased by increasing the degree of the polynomial used. However,

39

by increasing the degree of the polynomial we also incur extra computational and storage

requirements for generating and storing the key space information.

In the HSN model of SBK being deployed which uses the same algorithm as the L

sensors we see that even with the TTL set to three hops we are only able to achieve

83.605% network connectivity instead of the 96.456% connectivity when they are not

present. This shows that the SBK scheme is actually crippled by the inclusion of H-sensors

into the network. Without modifying the parameters used by the H-sensor to compensate

for the larger transmission range the SBK scheme is only able to achieve a maximum of

87.264% network connectivity when the TTL is set to six.

There are two possible modifications to the parameters which could increase the

network connectivity in this case. The first is to increase the probability of election on the

H-sensors to be much higher than that loaded onto the L-sensors. This would allow for the

H-sensors to have a higher chance of being elected first. A second modification would need

to be made to the parameters loaded onto the H-sensors to compensate for their higher

probability of being elected. Since they are able to cover a larger area which would include

more L-sensors within transmission range the degree of the polynomial used must also be

increased. If this was not increased the network would still be crippled since the elected H

sensors would not be able to provide keying information to all of the L-sensors within its

transmission range. This is due to the fact that the cluster formed by the service nodes is at

most as large as the degree of the polynomial being used while still remaining perfectly

secure against node capture attacks.

If an elected H-sensor is not able to provide keying information to all of the sensors

within range of the multi-hop broadcast transmission then nodes which are not able to

40

receive keying information will not be able to establish secure communication with their

neighbors. This is due to the fact that the SBK scheme does not allow nodes which hear a

broadcast message announcing keying information to re-elect themselves if they are not

able to receive keying information from a broadcasting node. When this occurs these nodes

are effectively useless to the operation of the entire network as they are not able to

establish pair-wise keys with their neighbors.

T bl 8 SBK Sh a e c eme N etwor kC onnectiv1ty M eans an 0 on 1 ence nterva s d 95o/c C fid I

TTL
WSN WSN WSN HSN HSN HSN
Mean Lower Upper Mean Lower Upper

1 72.69 72.59 72.78 49.95 49.76 50.13
2 92.43 92.39 92.48 73.27 73.11 73.42

3 96.46 96.41 96.50 83.61 83.40 83.81
4 97.42 97.38 97.46 87.02 86.80 87.23

5 97.48 97.44 97.51 87.19 86.99 87.39

6 97.46 97.42 97.50 87.26 87.08 87.45

2. 7.5.3. PDKM Scheme Network Connectivity

In Figure 9 below we show the mean results from 40 runs of each test of our scheme

on a HSN. We always achieved higher than 90% connectivity or better with near perfect

connectivity occurring when 150 H-sensors are deployed with the 10,000 L-sensors in the

network. For instance when as few as 25 H-sensors are randomly deployed in the network

we are able to achieve a mean of 91.043% network connectivity. Additionally when only

100 H-sensors or more are deployed in the network our scheme achieves over 99% network

connectivity. In comparison with the previous schemes we show we have a much higher

probability of having a fully connected network by taking advantage of these nodes to

manage key generation and distribution. Figure 10 below shows the standard deviations for

these results.

41

PDKM Network Connectivity

100 - - - - -
.e- 98 ·s=
·.::i
Q 96 Cl)

~ 94 0 u
~ 92
0

~ 90

,,---
✓

I
I

I

z
88 ~
86 I I I

25 50 75 100 125 150 175 200 225 250 275 ·300

#H-sensors

Figure 9. PDKM Network Connectivity

Table 9 below shows the means from the results of our scheme in simulation along

with the 95% confidence intervals. As we can see when 150 H-sensors are deployed in a

network with 10,000 L-sensors our scheme achieves 99.9% network connectivity.

Furthermore, in comparison with the SBK scheme we can see that with as few as 75 H

sensors being deployed we are able to achieve higher network connectivity than the SBK

scheme in all of the tests ran with a mean of98.774% network connectivity. This increased

n_etwork connectivity in our scheme is due to the fact that H-sensors in the network do not

rely on any probability of being elected. Additionally due to the increased capabilities of

the H-sensors they are configured to form much larger clusters than the L-sensors being

deployed. This increased cluster size also increases the resiliency of the network against

node capture attacks since many more nodes would need to be compromised.

42

PDKM Network Connectivity Std. Dev.

;;,:
Q,)

1.2
0
,g 1
Cl)

.e- 0.8 -~ -~
0.6 CJ

Q,)

~
0 0.4 u
~ 0.2 0

l
Q,)

0 z
25 50 75 100 125 150 175 200 225 250 275 300

#H-sensors

Figure 10. PDKM Network Connectivity Standard Deviation

Table 9. PDKM Network Connectivity Means and 95% Confidence Intervals
H-Sensors Mean Lower Upper

25 91.04 90.75 91.34
50 96.56 96.35 96.78
75 98.77 98.66 98.89

100 99.49 99.41 99.56
125 99.81 99.78 99.85
150 99.92 99.90 99.95
175 99.95 99.94 99.97
200 99.98 99.97 99.99
225 99.99 99.99 100.00
250 99.99 99.99 100.00
275 100.00 100.00 100.00
300 100.00 100.00 100.00

2. 7.5.4. SBK Scheme Elected Sensors

Next we take a look at the number ofL-sensors elected in our scheme versus the

SBK schemes and also the number ofH-sensors elected when adding H-sensors to the SBK

scheme. Figure 11 shows the results from the SBK scheme for elected nodes for both

simulation types. The standard deviations for these results is shown in Figure 12.

43

In Figure 11 shown below we see a significant drop in the number of nodes elected

in SBK until the TTL is set to three hops. However, when the TTL is set to three in the

WSN model the SBK scheme still requires a mean of 308 L-sensors to be elected to

achieve a mean of96.456% network connectivity. Since the SBK scheme assumes these

nodes to die shortly after deployment the network would consist of only 9692 nodes

remaining to perform the duties the network was deployed for. Furthermore even when

increasing the TTL of the SBK scheme the scheme still requires more than 200 L-sensors

to be elected in order to provide key management to the entire network. The best

performance we could expect from the SBK scheme with a degree of 100 for the

polynomial is when the TTL is set to five or higher. When the TTL is set to five the SBK

scheme needs to only elect 218 nodes in the network to provide key management. In

comparison with our scheme we can achieve better network connectivity by including only

75 H-sensors into the network and near perfect connectivity when 150 H-sensors are

deployed.

Since there is a much denser population ofL-sensors being deployed compared to H

sensors in the SBK scheme H-sensors do not assist in key management but actually

cripples the overall network connectivity. This is because the probability of one of the L

sensors successfully electing itself is approximately 98.5% more likely than the chance that

one of the H-sensors is elected with the addition of 150 H-sensors in the network. As these

results show compared to network connectivity the increased TTL allows for fewer L

sensors needing to be elected in both network models. However, even when the TTL is

configured for six hops it still requires a mean of 357 nodes to be elected when H-sensors

were present in the network.

44

1600

1400
fl!I 1200 Q)

"'=' 0 1000 z
"'=' 800 2
(.)

600 Q) -~
=1:1:: 400

200

0

SBK Nodes Elected

~ Elected L-sensors -
WSNModel

+----- ------------- - Elected L-sensors -
HSN Model

1---------"~ ~--;;;;;;;a1===::;;;;:=a::;;;;:::;;;;::.--,.. Elected H-sensors -
HSN Model

1 2 3 4 5 6

Time To Live (TTL)

Figure 11. SBK Nodes Elected

SBK Elected Nodes Std. Dev.

40

35
s::I

30 0
~

25
>
Q)

0 20

l 15

B 10
tZl

5

0

1 2 3 4 5 6

Time To Live (TTL)

Figure 12. SBK Nodes Elected Standard Deviation

~ Elected L-sensors -
WSNModel

- Elected L-sensors -
HSN Model

....,.. Elected H-sensors
-HSN Model

Table 10 shows the means of the elected L-sensors in the WSN model, which does

not contain any H-sensors, for each test of the SBK scheme under simulation. This table

also shows the 95% confidence intervals from each of the 40 simulation runs of each test.

Table 11 shows the means of the elected L-sensors and 95% confidence intervals from the

45

40 simulation runs of each test when H-sensors are included in the SBK scheme for the

HSN model. Table 12 shows the means for the elected H-sensors and the 95% confidence

intervals from the HSN model under the SBK scheme.

Table 10. Elected L-sensors Means and 95% Confidence Intervals (WSN model)
TTL Mean Lower Upper

1 1399.64 1388.56 1410.72
2 585.29 574.31 596.27
3 307.56 302.71 312.40
4 225.94 223.32 228.55
5 218.00 215.65 220.35
6 219.93 217.55 222.30

Table 11. Elected L-sensors Means and 95% Confidence Intervals (HSN model)
TTL Mean Lower Upper

1 1379.30 1368.29 1390.31
2 640.63 629.56 651.71
3 408.34 402.67 414.01
4 357.93 353.33 362.53
5 356.47 352.29 360.65
6 356.44 351.98 360.89

As we can see in Table 12 under the HSN model the SBK scheme does not elect

many H-sensors to become service nodes due to the equal probability of election from the

L-sensors. From these results we can see that the best method of ensuring H-sensors are

elected in the SBK scheme in a heterogeneous environment would be to keep the TTL to be

a single hop from the service node. This is because many more L-sensors would need to be

elected in order to cover the area which increases the likelihood that an H-sensor will be

elected instead. As stated previously two parameter changes for H-sensors being deployed

in the SBK scheme can be done to increase the number of H-sensors being elected. The

first would be to set a higher probability of election on the H-sensors while also increasing

the degree of the polynomial used by the H-sensors. This would allow for a larger cluster to

be formed around more H-sensors in the network instead of the L-sensors being deployed.

46

Table 12. Elected H-sensors Means and 95% Confidence Intervals (HSN model)
TTL Mean Lower Upper

1 10.80 0.00 21.86
2 2.69 0.00 13.79
3 1.12 0.00 6.80
4 1.00 0.00 5.62
5 1.33 0.00 5.52
6 1.01 0.00 5.47

2. 7.5.5. PDKM Scheme Elected L-sensors

In Figure 13 we show the mean results of elected L-sensors from the simulation tests

of our scheme. The standard deviations for these results is shown in Figure 14. We can see

that many fewer L-sensors need to be elected even when only 25 H-sensors have been

included when using our algorithms. This decreased number of elected nodes allows for

better overall network connectivity since the network continues to stay dense in areas

where SBK service nodes would have perished after bootstrapping has been completed.

When we use our scheme in an HSN 543 L-sensors are elected when only 25 H-sensors are

deployed compared to approximately 1400 needing to be elected when considering a one

hop TTL in the WSN model of SBK and 1380 needed in the HSN model. SBK requires a

three hop TTL in order to decrease below the number of L-sensors needed for key

management in our scheme. Furthermore, we almost completely eliminate the need for L

sensors to be elected after a sufficient number of H-sensors have been deployed. As shown

below in Figure 13, when we include 150 or more H-sensors into the network to handle the

key management for the network less than nine L-sensors must be elected.

Table 13 shows the means of elected L-sensors from the results of each test of our

scheme under simulation and their 95% confidence intervals. In comparison with the SBK

scheme we can see that when as few as 50 H-sensors are included our scheme needs to only

elect a few more L-sensors than the best results achieved from the SBK scheme. For

47

instance, when we deploy 50 H-sensors we have a mean election of 244 L-sensors in the

network compared to 218 L-sensors elected in the WSN model of SBK. Furthermore when

H-sensors are included in an unmodified version of SBK the SBK scheme requires an

average of 113 more L-sensors to be elected in the best case scenario than our scheme.

We also can see that when there is a sufficient number of H-sensors deployed in our

scheme we virtually eliminate the need of electing L-sensors. For instance when 150 H

sensors are deployed only nine L-sensors are needed to be elected in our scheme. This is

further improved as we increase the number ofH-sensors. As we can see below when we

include 225 or more H-sensors in the network we only need to elect one or two L-sensors

in the entire network to handle key management for areas not covered by the H-sensors.

Since fewer nodes are needed to be used for key management in our scheme this also

improves the overall network communication overhead since fewer nodes will need to

broadcast messages compared to the SBK scheme. For example, under perfect

communication, when 150 H-sensors are deployed in our network we need a minimum of

159 broadcast messages to be used to announce key space information is available.

However, in a one hop SBK scheme it would require a minimum of 1400 broadcast

messages when there is no collisions on the wireless medium in the WSN model and 1380

broadcast messages in the HSN scheme. In the best case scenario of SBK we see that it still

requires more broadcast messages needed than in our scheme. For instance in the WSN

model of the SBK scheme it requires a minimum of 218 broadcast messages compared to

the 159 broadcast messages in our scheme when there are 150 H-sensors present. Only

when we deploy 225 H-sensors in our network does it require more broadcast messages

than the SBK scheme. When 225 H-sensors are deployed using our scheme we would then

48

require a minimum of approximately 227 broadcast messages under perfect conditions on

the wireless medium. Furthermore since transmitting data on the wireless medium requires

the most energy to the sensors we have improved the overall energy needs of the network

and assist in increasing the lifetime of the network compared to the SBK scheme.

PDKM Elected L-sensors

600

~
500

5 400
Cl.I

...J 300 -0
0 -(.)

200 0 -~
~ 100

0

25 50 75 100 125 150 175 200 225 250 275 300

#ff-sensors

Figure 13. PDKM L-sensors Elected

70

60
§

.... 50
~ .>
0 40
Q i 30
~ 20
C/.l

10

0

PDKM Elected L-sensors Std. Dev.

"-.

" ' " ~ -· . .
I T l I

25 50 75 100 125 150 175 200 225 250 275 300

#ff-sensors

Figure 14. PDKM L-sensors Elected Standard Deviation

49

--,

Table 13. PDKM L-sensors Elected Means and 95% Confidence Intervals
H-Sensors Mean Lower Upper

25 542.85 524.39 561.31
50 243.97 228.57 259.37
75 99.27 89.89 108.66

100 46.11 39.29 52.92
125 19.93 16.46 23.40
150 8.27 5.97 10.57
175 5.93 4.01 7.85
200 3.55 1.95 5.15
225 1.41 0.60 2.23
250 1.31 0.37 2.25
275 0.23 0.00 0.48
300 0.53 0.14 0.92

2.8. Conclusion

From these results we can see that our scheme improves the performance of the

network by adopting a heterogeneous network model. Furthermore, by taking advantage of

the more powerful high-end H-sensors' additional computing capabilities, memory space,

transmission range and battery life we can increase the overall performance of the network

by using these sensors in the network to handle the key management processes needed to

establish pair-wise keys after deployment. We also decrease the number of L-sensor nodes

expected to die because they have been elected LPCHs in our scheme by increasing the

number ofH-sensors to an suitable level for the deployment area.

2.9. Acknowledgement

This research was supported in part by the North Dakota EPSCoR under grant

43500-2740-FAR0016056 and by the US Army Research Office under grants W911NF-07-

1-0250 and W911NF-08-l-0334, and the National Science Foundation (NSF) under grants

CNS-0721907 and CNS-0709268.

50

CHAPTER 3. CONCLUSION

We have presented a set of algorithms for providing key generation and distribution

for heterogeneous sensor networks which improves the overall performance of the network.

By taking advantage of H-sensors in the network we can increase the network connectivity

of the network since H-sensors should be able to survive the bootstrapping phase of the

network. Additionally due to the increased memory space, processing capabilities and

transmission range we can form larger clusters around H-sensors which also increases the

resiliency of the network from node capture attacks.

In this study we accomplished several objectives and tasks. The first objective was to

design a new set of algorithms for key management for a heterogeneous sensor network. To

accomplish this objective we have designed an algorithm for key generation for more

powerful H-sensors present in the network. We have also presented an algorithm for L

sensors which allows us to take advantage of the more powerful nodes present in the

network. This algorithm also includes a secondary function that also allows for a backup

method of key management that an H-sensor is not present in the deployment area still

requiring key management. Lastly we have presented a method for distributing keying

information from the cluster heads to the rest of the network.

The second objective of this study was to analyze our method and to compare our

scheme to existing schemes previously proposed. In our analysis of our scheme we show

that we have improved the communication overhead by reducing the number of broadcast

messages required throughout the network. We have also shown that our scheme has better

pair-wise key storage requirements than the E-G scheme and the LEAP scheme while

matching the key storage requirements needed by the SBK scheme. Furthermore we have

51

shown through our analysis that as long as the number of nodes compromised is less than

the degree of the polynomial or the size of the matrix used for key space generation that our

scheme remains perfectly secure against node capture attacks.

The last objective we have accomplished in this study is we have shown through

simulation that our scheme allows for better network connectivity than the E-G and SBK

scheme. To accomplish this objective we have designed four simulators written in the C#

programming language. Along with simulating our scheme on a randomly deployed

wireless sensor network, we have also simulated the E-G scheme, the SBK scheme and a

modified version of the SBK scheme which included H-sensors being deployed in an HSN.

Each of these simulators have been run forty times for each test to obtain our results. We

adjusted a parameter for each test which would increase the network connectivity for each

of the key management schemes. From our results we were able to show that our scheme

achieved a higher level of network connectivity than the E-G and SBK scheme with near

perfect network connectivity being obtained.

The first scheme we compared our scheme to was a pre-distribution scheme for

homogeneous sensor networks which pre loads a set of keys from a larger pool of generated

keys onto each node prior to deployment. In our simulation results we were able to achieve

better connectivity than the E-G scheme until a very large number of keys are preloaded

onto each sensor. At this point the E-G scheme performs as well as our scheme in obtaining

near perfect network connectivity.

We have also shown that our scheme performs better than a post-deployment scheme

proposed for homogeneous sensor networks. In the SBK scheme a similar method of key

management is accomplished. However, from our simulation we have shown that the SBK

52

scheme functions best when only when a homogeneous sensor network is deployed.

Furthermore, we have shown that we almost always achieve better network connectivity

with our scheme than the SBK scheme. This is due to SBK relying on L-sensors to provide

key management to the network which they consider casualties of the network after

bootstrapping and would die soon after they have finished with their key management

duties.

We have also compared the number of nodes needing to be used for key

management processes in our scheme with the SBK scheme. From these results we can see

that our scheme requires many fewer nodes to be used for key management than the SBK

scheme. We have also shown that the number of broadcast messages being sent over the

network can be significantly reduced in our scheme when a heterogeneous sensor network

is being deployed. This further increases the lifetime of the network since communication

transmission requires a significantly large amount of battery power for sensors in the

network. By reducing the number of messages needing to be sent we reduce the amount of

power required to handle key management in the network compared to the SBK scheme.

53

REFERENCES

[1] Atmel Corporation. [Online]. http://www.atmel.com

[2] Crossbow Technology Inc. [Online]. http://www.xbow.com

[3] X. Du, M. Guizani, Y. Xiao, and H. Chen, "Two Tier Secure Routing Protocol for

Heterogeneous Sensor Networks," IEEE Transactions on Wireless Communications,
vol. 6, no. 9, pp. 3395-3401, Sept. 2007.

[4] L. Eschenauer and V. D. Gligor, "A Key-Management Scheme for Distributed

Sensor Networks," in 9th ACM Conf Computer and Communications Security,
Washington, DC, 2002.

[5] H. Chan, A. Perrig, and D. Song, "Random Key Predistribution Schemes for Sensor

Networks," in IEEE Symposium on Security and Privacy, Berkeley, CA, 2003.

[6] S. Zhu, S. Setia, and S. Jajodia, "LEAP+: Efficient Security Mechanisms for Large

Scale Distributed Sensor Networks," ACM Transactions on Sensor Networks, vol. 2,

pp. 500-528, Nov. 2006.

[7] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, "A Pairwise Key

Predistribution Scheme for Wireless Sensor Networks," in 10th ACM Conj.
Computer and Communications Security, Washington, DC, 2003.

[8] D. Liu and P. Ning, "Establishing Pairwise Keys in Distributed Sensor Networks," in

10th ACM Conf Computer and Communications Security, Washington, DC, 2003.

[9] R. Blom, "An Optimal Class of Symmetric Key Generation," in Conference on the
Themy and Applications of Cryptographic Techniques, Paris, Fr, 1984.

[10] C. Blundo et al., "Perfectly-Secure Key Distribution for Dynamic Conferences," in

12th Annual International Cryptology Conference on Advances in Cryptology, Santa

Barbara, CA, 1992.

[11] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, "A Key Management Scheme

for Wireless Sensor Networks Using Deployment Knowledge," in IEEE INFOCOM,
Hong Kong, CN, 2004.

54

[12] Z. Yu and Y. Guan, "A Key Pre-Distribution Scheme Using Deployment Knowledge
for Wireless Sensor Networks," in 4th Int'! Symposium on Information Processing in

Sensor Networks, Los Angeles, CA, 2005, pp. 261-268.

[13] D. Liu, P. Ning, and W. Du, "Group-Based Key Predistribution in Wireless Sensor

Networks," in 4th Workshop on Wireless Security, Cologne, DE, 2005.

[14] L. Zhou, J. Ni, and C. V. Ravishankar, "Efficient Key Establishment for Group
Based Wireless Sensor Networks," in 4th ACM Workshop on Wireless Security,

Cologne, DE, 2005.

[15] H. Chan and A. Perrig, "PIKE: Peer Intermediaries for Key Establishment in Sensor
Networks," in IEEE INFOCOM, Miami, FL, 2005.

[16] F. Liu, X. Cheng, L. Ma, and K. Xing, "SBK: A Self-configuring Framework for
Bootstrapping Keys in Sensor Networks," IEEE Transactions on Mobile Computing,
vol. 7, no. 7, July 2008.

[17] P. Loree, K. Nygard, and X. Du, "Efficient Post-Deployment Key Establishment
Scheme for Heterogeneous Sensor Networks," in IEEE GLOBECOM, Honolulu, HI,
2009.

[18] M. Rabin, "Digitalized Signatures and Public-Key Functions as Intractable as
Factorization," MIT Laboratory for Computer Science, Cambridge, MA, 1979.

[19] Q. Li and D. Rus, "Global Clock Synchronization in Sensor Networks," in IEEE
INFOCOM, Hong Kong, CN, 2004.

[20] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, "Clock Synchronization for

Wireless Sensor Networks: A Survey," Ad Hoc Networks, vol. 3, no. 3, pp. 281-323,
May 2005.

55

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063

