
DEVELOPMENT TOOLS FOR CONTENT CREATION IN

VIRTUAL ENVIRONMENTS

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Guy Eric Hokanson

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

November 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

DEVELOPMENT TOOLS FOR CONTENT CREATION

IN VIRTUAL ENVIRONMENTS

By

GUY ERIC HOKANSON

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

Date Signature t/p' \

ABSTRACT

Hokanson, Guy Eric, M.S., Department of Computer Science, College of Science
and Mathematics, North Dakota State University, October 2010. Development
Tools for Content Creation in Virtual Environments. Major Professor: Dr. Brian M.
Slator.

lmmersive Virtual Environments (IVEs) for education are designed and

implemented to enable students to learn complicated concepts in an exploratory

and inquiry based manner. The environments are constructed so that multiple

users can interact with the educational simulation and learn to think like a scientist.

Developing these IVEs requires a multi-disciplinary development team that

consists of more than just software engineers. It requires content experts to

provide the information needed to create the best and most interactive lessons

possible. While some content experts have a strong interest in technology and are

capable of working with the development environment directly, many are more

interested in their fields of expertise and would prefer to leave the programming

and technical details to others. This presents a logistical problem as the experts

have to somehow transfer their knowledge to the programmers who encode it into

the IVE.

In order to increase productivity it is suggested that web based, content

editors would alleviate this development bottleneck. These tools would need to be

cross platform, accessible anywhere Internet is available and not require the

installation of any special software. This paper describes the design and

implementation of a principled set of tools; Bot Conversation Editors used to create

agent conversations, Task Editors to create and manage player tasks, and Help

Editors to manage educational content in in-game reference materials.

iii

ACKNOWLEDGEMENTS

I would like to express my appreciation to my advisory committee: Dr. Brian

M. Slator, Dr. Donald P. Schwert, Dr. Anne Denton, and Dr. Juan (Jen) Li. A

special thanks to my thesis advisor, Dr. Slator for his encouragement and the

occasional prodding that got me through the entire process.

Thanks to the Computer Science students who have worked with me over

the years, particularly Otto Borchert for his suggestions, constructive criticism, and

putting up with my sometimes inane questions.

I would also like to thank those members of the World Wide Web

Instructional Committee that I had the opportunity to work with: Dr. Brian M. Slator,

Dr. Donald P. Schwert, Dr. Bernhardt Saini-Eidukat, Dr. Lisa Daniels, Dr. Jeff

Terpstra, and Dr. Jeffrey Clark.

Finally, I would like to thank my father who bought me my first computer

long before they became ubiquitous.

iv

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

1. INTRODUCTION ... 1

1 .1 Motivation ... 2

2. BACKGROUND ... 4

2.1 Technology Background .. .4

2.2 IVE Background ... 6

2.2.1 On-A-Slant Background ... 6

2.2.2 Geology Explorer Background ... 7

2.2.3 eGEO Background ... 8

2.3 Bot Background .. 8

3. LITERATURE REVIEW ... 11

3.1 Content Development Tools developed at NDSU 11

3.1 .1 The ZeleCon or the Zelenak Conversation Constructor 11

3.1.2 Virtual Entity Tool ... 13

3.2 Other Content Development Tools ... 14

4. IMPLEMENTATION ... 16

4.1 Bot Conversation Editors .. 17

4.1.1 Using the BCE ... 17

4.1.2 Bot Editor Implementation .. 22

4.1.2.1 List of Agents ... 22

V

4.1.2.2 Add New Bot. ... 27

4.1.2.3 Edit Bot .. 29

4.1.2.4 Dump the XML 30

4.2 Task Editors ... 32

4.2.1 Using the Task Editor. .. 34

4.2.2 Task Editor Implementation ... 38

4.2.2.1 List of Tasks .. 38

4.2.2.2 Add New Task ... 40

4.2.2.3 Edit Tasks .. 41

4.2.2.4 Dump the XML ... 44

4.3 Dictionary and Help Editors46

4.3.1 The Geology Explorer Help Editor .. .46

4.3.2 The On-A-Slant and eGEO Dictionary Editors47

5. CONCLUSION ... 51

6. REFERENCES .. 55

vi

LIST OF FIGURES

Figure 1. The conversation network of a software agent named Red Blossom 16

Figure 2. The list of agents .. 18

Figure 3. The Bot conversation interface ... 20

Figure 4. Database tables that store software agent conversations 25

Figure 5. Bot Editor system diagram .. 26

Figure 6. A sample XML bot conversation template file ... 28

Figure 7. The bot conversation XML file for the Dog Travois Women 31

Figure 8. The list of tasks ... 35

Figure 9. The edit task interface .. 37

Figure 10. Database tables that store task information .. 39

Figure 11. (a) The task_questions database table .. .40

Figure 11. (b)The task_answers database table40

Figure 12. A sample XML task template file41

Figure 13. The XML task file for the Hide Scraper task .. .45

Figure 14. Dictionary database tables .. .48

Figure 15. The eGEO Dictionary Editor .. .49

Figure 16. The On-A-Slant Dictionary Editor ... 50

Figure 17. A screen capture from the On-A-Slant Virtual Village IVE 53

Figure 18. A screen capture from the eGEO IVE ... 54

vii

1. INTRODUCTION

Many will argue the future of the Internet lies in user-generated content.

Koster (2006) writes eloquently about the issues involved with user-created

content on the web - the efforts are unfocused and incomplete. He concludes that

the best hope is for good editing tools to allow content providers to work easily and

well.

At North Dakota State University (NDSU), the World Wide Web

Instructional Committee (WWWIC) conducts research into intelligent educational

media. These systems are educational games that cover subjects such as cellular

biology, geology, environmental science, micro-economics, computer science, and

archaeology/anthropology.

These lmmersive Virtual Environments (IVEs) for education are designed

and implemented to enable students to learn complicated concepts in an

exploratory and inquiry based manner. The environments are constructed so that

multiple users can interact with the educational simulation and learn to think like a

scientist.

Developing these IVEs requires a multi-disciplinary development team that

consists of more than just software engineers. It requires content experts to

provide the information needed to create the best and most interactive lessons

possible. Typically, these content experts have little experience with programming

and are unable to translate their knowledge directly into the code. This presents a

logistical problem as the experts have to somehow transfer their knowledge to the

programmers who encode it into the IVE. This is frequently done through various

1

forms of messaging or face-to-face meetings but this can be inefficient. It is often

hard to describe exactly what is wanted in a message and having two people

working on a single task is inefficient and often frustrating. Also, waiting for

messages to arrive or setting up a convenient meeting time results in delays and

loss of productivity.

1.1 Motivation

For many years WWWIC has been developing tools to assist in building

lmmersive Virtual Environments. Most of these were built as necessity demanded.

This paper describes the design and implementation of a principled set of tools,

leveraging from the experience we have developed in this area.

During the development on the On-A-Slant Virtual Village IVE, it became

apparent that the current state of information flow between content experts and

programmers was an impediment to the development process. Considerable time

was lost waiting for content to be delivered to the programmers and entering and

editing text is not an efficient use of the programmer's skills. Also, the review and

edit cycle was extremely inefficient.

Once information was entered by the programmers they would notify the

content experts, usually by email. The content experts would then review the

information and send their comments and changes back, again usually by email.

This process would often take days for something that could be completed by one

person alone in a few minutes, if afforded the appropriate tools.

While training the content experts in the skills necessary to modify the

necessary parts of the IVEs source files is a possibility, it is not an efficient use of

2

content expert time and many would find it a daunting task. There is also the

possibility that the content expert, with limited training, could make unintentional

changes to other parts of the IVEs source files, causing further lost effort.

In order to increase productivity it is proposed that simple, web based,

content editors will alleviate this development bottleneck. These tools will enable

content experts to add their information directly into the necessary areas of the

IVEs without programmer assistance. Furthermore, the use of these tools will help

prevent errors, especially when dealing with complex data and knowledge

structures.

To be fully functional, these tools would need to be cross platform and

accessible anywhere the Internet is available. Further, they should not require the

installation of any special software.

3

2. BACKGROUND

This section provides background information on the technologies used to

develop the tools covered in this paper and the IVEs in which they were

implemented.

2.1 Technology Background

The tools described in this paper were developed using free and open

source software. This collection of software is essentially the components needed

to build a viable general purpose web server and is often referred to as LAMP, an

acronym for Linux, Apache, MySQL, and PHP or Perl.

LAMP is an open source Web development platform that uses Linux as the

operating system, Apache (Apache Software Foundation, 2009) as the Web

server, MySQL (Oracle Corporation, 2010) as the relational database

management system and PHP (Hypertext Preprocessor; PHP Group, 2010) or

Perl (Perl.org, 2010) as an object-oriented scripting language. In our case

PostgreSQL (PostgreSQL Global Development Group, 2010) was used instead of

MySQL because of its more advanced SQL (Structured Query Language) support

and significantly more flexible licensing.

Linux is a free open source computer operating system that provides basic

functionality and the ability to run additional software and services, such as a web

server or database server.

Apache is a web server that runs on top of the Linux operating system that

listens for requests from other computers and either translates that request into a

4

filename, and sends that file back over the Internet, or into a program name, and

then runs that program and sends its output back over the Internet.

PostgreSQL is an open source object-relational database management

system that stores, retrieves and processes data.

PHP & Perl are server side scripting languages that can be used to create

dynamic web pages and applications. In this context, they facilitate the interaction

between HTML web pages, a LambdaMOO server and a PostgreSQL database.

LambdaMOO (Curtis, 1997) is a database server that provides a network

accessible, multi-user, programmable, interactive system well-suited to the

construction of text-based adventure games, conferencing systems, and other

collaborative software and at the same time provides a programming language for

writing the simulation and customizing the IVE. The LambdaMOO server has three

main purposes in IVEs: 1) It is the repository for user data so a player can connect

using various instances of the client and still maintain their user history; 2) It

handles messaging for broadcast and inter-client communications; 3) It also

manages the representations of all non-interface game objects such as software

agents, players, tasks and the other multitude of environmental objects that make

up a virtual environment.

A Concurrent Versions System (CVS; Price & Ximbiot, 2006), is an open

source, network-transparent program that allows developers to manage different

development versions of source code files by recording changes made to each

file.

5

The Eclipse (Milinkovich, 2010) Integrated Development Environment (IDE)

is an open development platform comprised of extensible frameworks, tools and

runtimes for building, deploying and managing software across its lifecycle.

2.2 IVE Background

The educational systems currently at our disposal are the Geology Explorer

(Saini-Eidukat at al., 2001) and the Geology Explorer 3D (eGEO; Schwert et al.,

2010), the Virtual Cell (White et al., 1999), Dollar Bay and Blackwood (Slator et al.,

2001), the On-A-Slant Virtual Village (Hokanson, et al., 2008), and the

Programmingland MOOseum of Computer Science (Slator and Hill, 1999). All of

the IVEs are of the 'desktop VR' variety, where students join an immersive

simulation using a personal computer and then explore the 'virtual space' in a

goal-directed manner, assuming a role and learning the content by actively

participating in the problem-solving context. These have been rigorously tested in

formal educational environments and have shown to be both engaging for

students and highly effective (McClean et al., 2001) in a range of controlled

studies conducted over several years.

The three IVEs currently using the tool set described in this paper are the

On-A-Slant Virtual Village, the Geology Explorer, and eGEO.

2.2.1 On-A-Slant Background

On-A-Slant Virtual Village is a virtual reconstruction of a sedentary Native

American village located along the Missouri River near Mandan, North Dakota,

USA. The On-A-Slant village was established in the second half of the sixteenth

6

century and was abandoned around 1781, more than two decades before the

Lewis and Clark expedition would explore that region for the United States. The

environment is a "learn by doing" simulation based on a 3D reconstruction of the

archeologically important Mandan village. Students explore the site, discover

artifacts, and develop an interpretation of the relationship between the archeology

and society by interacting with the visualized context.

In the game, students are sent back in time to explore the village, learn

about the food, family, lifestyle, education, and other cultural elements of the

Mandan people before the full impact of Euro-American expansion. At the same

time students are taught the methods and logic of anthropology and archaeology

at an introductory level.

2.2.2 Geology Explorer Background

The Geology Explorer is a goal-oriented computer game in which students

learn about geology by acting like scientists exploring a new world. Within this

virtual world, students "travel" to an imaginary Planet Oit, in order to gather

geologic data about this newly discovered planet. Students act like geologists by

performing various tests in order to identify unknown rocks and minerals and

create a geologic map, which serves as an interpretation of the underlying geology

of the area.

In the game, students are transported to the planet's surface and acquire a

standard set of field instruments. Students are issued an "electronic log book" to

record their findings and are assigned a sequence of exploratory goals. These

goals are structured using a scaffolding learning strategy (Vygotsky, 1986) and are

7

intended to motivate the students to view their surroundings with a critical eye, as

a geologist would. The students make field observations, conduct small

experiments, take note of the environment, and generally act like geologists as

they work towards their goals. A scoring system has been developed, so students

can compete with each other and with themselves.

2.2.3 eGEO Background

eGEO is a 3D immersive virtual environment (sometimes referred to as the

Geology Explorer 3D) with a primary focus to interest students in careers in the

geosciences. As geology is rarely taught at the high school level, student interest

in careers in the earth sciences tend to be lower than that of the more often taught

biology or chemistry. The eGEO environment is based on the same concepts as

the original Geology Explorer but combines math and chemistry concepts along

with the geologic goals. In this way, teachers in high school mathematics,

chemistry, and environmental science can use eGEO in their classrooms, in hopes

of increasing interest in a career in the geosciences.

2.3 Bot Background

The method that transforms an IVE into a learning experience is

enculturation within the virtual conditions. Enculturation in this sense refers to

learning through social observation and interaction (Spindler & Spindler, 2000).

Learning through enculturation is a social process. That is, it requires two

or more actors. One actor is the student and the other actor can be another

student, a tutor, or other software agent. Without this social interaction, students

8

are compelled to learn through rote memorization or other nonsocial interactions

that can slow down, frustrate, or even skew knowledge. Furthermore, social

interaction is fundamental to the real world, at least in the physical and social

sciences, and as such bears directly on the student's ability to begin approaching

problems in ways found in real-world disciplines (Borchert et al., 2010). Thus, in

the role-based scenario of the virtual world, the amount of social interaction bears

directly on the effectiveness of the learning environment for the student. In other

words, the more the student interacts with objects and persons, the greater

informal guided discovery and through that, the diffusion of knowledge.

In lmmersive Virtual Environments, software agents (Bots for short) are

implemented to exhibit authentic behavior(s) of the following types (Slator, 1999):

• Atmosphere agents that simply lend color to the IVEs. These do not directly

effect game play but provide animation and interest without causing distraction.

For example, in an urban simulation there might be a street magician, a street

vendor, a beat cop, a street sweeper, and so forth; in a museum simulation

there might be visitors wandering the exhibits or vendors selling popcorn; on a

virtual planet perhaps animals roaming the desert.

• Infrastructure agents who contribute in some way to the game play. In the

On-A-Slant Virtual Village simulation, there are villagers who answer questions

and demonstrate various aspects of village life. In a museum simulation, one

might expect a tour guide; on a virtual planet, another kind of guide.

• Tutoring agents are unobtrusive but proactive software agents that provide

assistance to students in the course of their diagnostic reasoning within the

9

scientific problem solving required to accomplish their goals. They provide help

if needed, remediate on student actions, and point students in the right

direction. Diagnostic tutors work from knowledge of the materials found in the

environment, the student's history, and knowledge of the experiments needed

to complete a student's tasks (Slator et al., 2003). They monitor a student's

progress in completing a task and identify when a student may be having

difficulty. Depending on the results of this analysis, tutors may decide to

remediate on the spot, or to defer remediation until the student begins to show

an identifiable pattern of behavior (Slator et al., 2006).

For example, the On-A-Slant Virtual Village has forty interactive software

agents, several of each type, with which players can interact.

10

3. LITERATURE REVIEW

In order to appreciate the value of the described content development tools,

it is necessary to understand what other tools currently exist. The goal of this

section is to provide relevant background information to show the technological

gaps that these tools were created to fill.

3.1 Content Development Tools Developed at NDSU

Creating IVEs is an intensive process in terms of design, knowledge

engineering, and software development. Over the years, WWWIC has gained

experience in the crafting of these systems and has designed and developed an

integrated library of software tools to substantially streamline the development of

future IVEs. These tools primarily support simulation and agent building with the

ultimate aim of moving development into the hands of content specialists,

teachers, and curriculum developers, rather than computer programmers.

3.1.1 The ZeleCon or the Zelenak Conversation Constructor

Some WWWIC IVE's use conversation networks for agents within the

environment. A conversation network is a vector of 3-tuple response nodes

containing an identifying question, a list of responses, and a list of follow up

questions. Each node is unique based on its identifying question and one node is

designated as being the root or "init" node of the network. The "init" node is the

starting point of the conversation and contains only the follow up questions that

will be loaded into the conversation at startup. Each follow up question in a node

points to an identifying question in another node. Every identifying question has a

11

list of possible responses and each response has an associated follow up

question.

These conversation networks give depth to the character of the agent.

However, building multilevel conversation networks directly in LambdaMOO, which

is one of the programming languages used to create virtual environments, is

tedious and error prone. In addition, the direct coding approach does not allow the

user, who is building the virtual world, to visualize the conversation network and

test the traversal of the conversation network.

To solve this problem the ZeleCon or the Zelenak Conversation Constructor

(Zelenak, 1999a) was built for the construction of multilevel conversation networks

for the agents with an easy to use graphical user interface. The tool is built in Java

and integrates three independent programs under centralized control. The

independent programs are: 1) the Visualization Program for visualizing the

topology of the conversation network, 2) the Response Constructor for creating

nodes within the conversation network and control the automatic readjustment

through several options such as scrambling, shaking, randomly exciting, and

freezing the conversation structure, and 3) the Testing Program for testing the

traversal of conversation network. There is also a fourth program called the Telnet

Window, which allows for direct connection to the educational simulation and can

be used by an advanced user to submit commands to the server or for a log of the

session.

The ZeleCon Controller integrates these components under a centralized

control window, provides a connection to the educational simulation environment

12

as well as uploading and downloading of the conversation structure from the

simulation environment.

Conversations are displayed in the Visualization Program in graph form,

with nodes on the graph indicating something an agent would say while links in the

graph indicate student choices. Upon building a conversation, that conversation

can be virtually tested and eventually exported to the MOO for use in the game

(Zelenak, 1999b).

The ZeleCon was developed for a different generation of IVEs and the

extensive modifications needed to make it work with the On-A-Slant and eGeo

projects made its use impractical. The ZeleCon is also a Java applet which

requires the installation of the Java Runtime Environment (JRE) plug-in, putting it

outside the "No special software" installation constraint.

3.1.2 Virtual Entity Tool

The Virtual Entity Tool (Xinhai, 2000) employs an entity template system

with a form-filling interface to enable creation of multiple instances of a category.

For example, they define a template for minerals that specifies the properties

indigenous to minerals, and ranges of values associated with each property. Then,

a content specialist will create new minerals, quartz, tourmaline, talc, etc., with a

graphical form-filling interface where values such as color, texture, and hardness

can be quickly and easily selected from menus. This tool is general in that any

category of entity (animal, vegetable, or mineral) can be constructed with it (Slator

etal., 1999).

13

3.2 Other Content Development Tools

A number of organizations that develop virtual environments for education

have produced tools for use by content experts with limited or no programming

skills. These tools typically come in two categories; those for editing visual content

and those for creating a complete environment.

Creating and manipulating 3D models and graphics in a virtual environment

requires an expert in visual content. Tools for this purpose range from commercial

stand alone modeling suites like Maya (Autodesk, 2010) and Blender (Blender

Foundation, 2010) to environment specific tools like Unreal Technology's

Unreal Ed (Epic Games, 2010) and Second Life's Build tool set (Linden Research,

2010).

The second category of content creation tools is closer to what is described

in this paper. They are not specifically designed to split the IVE creation task

between programmers and content experts but they do allow non-programmers to

construct educational virtual environments.

Alice is an educational software package developed at Carnegie Mellon

University (Alice, 2010). It is designed to be an interactive graphical programming

environment that allows novice users to create 3D virtual environments without

programming knowledge. Alice uses a drag-and-drop interface to manipulate

graphical tiles to assemble a program where the instructions correspond to

standard statements in a production oriented programming language, such as

Java, and C++. Alice is explicitly designed to teach programming to children and

its customizability is insufficient for WWWIC's use in building content rich IVEs.

14

The HI FIVES (the Highly Interactive Fun Virtual Environments in Science)

project at North Carolina State University has created Virtuoso, a development

environment created using the Half Life game engine. This tool makes it easy for

non-programmers to create educational games in a multiplayer setting. They have

a number of games in development for students in grades 6-9 across a wide

variety of disciplines (North Carolina State University, 2008). As mentioned, HI

FIVES requires the Half Life game engine which also puts it outside the "No

special software" installation constraint.

Learnlab is a joint collaboration between Carnegie Mellon University and

the University of Pittsburgh designed to provide expert help in the area of the

learning sciences (Pittsburgh, 2008). In particular, they have developed a number

of tools for creating advanced learning technologies, including the Cognitive Tutor

Authoring Tool (CTAT) and TuTalk (Jordan, Rigenberg, and Hall, 2006). They

claim no programming skill is required but the system is based on

Macromedia/Adobe Flash authoring tools which requires its own set of specific

skills as well as a software installation.

15

4. IMPLEMENTATION

All of our IVE's contain some combination of tutoring, atmosphere, and

infrastructure agents. The On-A-Slant IVE, for which the Bot Conversation Editor

was originally developed, presents most of its educational content through the

interactions (i.e. conversations) between students and infrastructure agents.

Figure 1 shows a simple conversation between a student and a software agent

that provides some basic information on gardening and the use of a bison scapula

as a hoeing instrument.

Agent Conversation Network

Red Blossom

Greeting: Come on over! I'm just tending to my
garden.

Question 1: What is the name of the tool that you are
using?
Response 1: This tool is a hoe.

Question 2: Why are you hoeing the garden?
Response 2: I am hoeing the garden to remove the
weeds and make the soil both soft and loose so that
plants can thrive.

Question 3: Do most tribes plant gardens?
Response 3: It depends on their lifestyle. The
nomadic tribes, who are always moving and following
herds, do not have time to plant and tend a garden.
However, the Mandan's, who are a sedentary tribe, do
plant gardens.

Question 4: How do you make a hoe?
Response 4: Take the shoulder bone of a bison or
deer and attach it to a wooden handle.

Question 5: Can I get a closer look at the hoe?
Response 5: Yes. You can examine the hoe that is
lying on the ground.

Figure 1. The conversation network of an On-A-Slant software agent named Red
Blossom which represents a Mandan woman working in her garden. The graph on
the left represents the question graph. Questions 1 and 3 can be asked at any
time. Question 2 can only be asked after question 1 and questions 4 and 5 can
only be asked after question 2.

16

4.1 Bot Conversation Editors

Creating and maintaining these software agents is a joint task involving

content experts and programmers. The content experts create a written design

that describes the agent, its conversation network, and any tasks it can

accomplish. This design is then given to the programmers to implement. If the

agent needs any modifications or adjustments to the agent, the content experts

have to contact the programmers to make the changes.

The Bot Conversation Editor (BCE) was created so that anyone on the

development team, content experts in particular, could create or update the

software agents using a simple web based interface. Conversations are built using

a form layout that provides options for inserting, deleting, editing and ordering of

conversational statements and responses in hierarchal order.

4.1.1 Using the BCE

The BCE consists of three interfaces; a list of agents, a form for adding

agents to the IVE, and a form for editing agent conversations.

The list of agents (Figure 2) displays all the active software agents in the

environment, their job title, and their location. Clicking on one of the agents in the

list brings up a form for editing the agent's conversation. There are also two

buttons at the bottom of the page. The 'Add New Bot' button brings up a form

where you can enter information necessary to create a new agent. The 'Dump

XML' button updates the CVS repository to reflect any changes made using the

editor. Its operation is discussed later.

17

The interface for adding agents collects the minimal information needed to

create a new agent (agent name, agent's job or title, and agent location), creates

the agent object on the MOO and adds an empty XML bot conversation template

to CVS. The conversation is entered later using the editing interface.

Bot Conversation XML Editor On -A -Slant Home I l\1aint Home I Editor Home

name job obj# location
Corn Silk Final Construction Woman 1124 Village

Crow Woman Winter Lodge Woman 2544 Village
Crows Heart Horse Man 1010 Ceremonial Grounds
Exterior Post Animation Exterior Post Animation Man 959 Village
Lone Cloud Central Post Man 2542 Village
One Buffalo Rafter Woman 2543 Village
Owl Woman Hide Scraping Woman 2992 Ceremonial Grounds
Prairie Flower Exterior Post Overseer Woman 2478 Village
Sage Squash Slicing Woman 2935 Ceremonial Grounds
Small Horn Age-Graded Societies (Men) 2052 Village
Stays at Home Scaffold Woman 10 11 Ceremonial Grounds
Yellow Blossom Age-Graded Societies (Women) 1964 Village
Eternal Bloom Fire Pit Woman 11 17 Earth Lodge B
Rippling Water Horse Corral Woman 166 3 Earth Lodge B
First Daughter Cache Pit Woman 266 2 Earth Lodge C
Little Bluff Storytelling Boy 2089 Earth Lodge D
New Arrow Games Man 1686 Earth Lodge D

•
• { Additional Bots removed from image to conserve space. }
•
White Star Bison Butchering Woman 348 Lakota Village
Bluebird Lookout Girl 1794 Gardens
Red Blossom Gardening Woman 2924 Gardens
Spotted Eagle Fishing Man 2477 Garden Area Plains

Green Leaf Windscreen Woman 2130 Earth Lodge A
Snowbird Bed/Basket Woman 2173 Earth Lodge A
Professor Slator On Bus Tut orial 2623 Tutorial Room

[Add New Bot]

[Dump ><ML I Last XML.jar dump: 12 : 11 PM August 29, 2008

+ View database mainbmanca trace .

Copynght ,~, lOO • · lO 10,

Figure 2. The list of agents displays the active software agents in the environment,
their job title, and their location. Clicking on one of the agents in the list brings up a
form for editing the agent's conversation. There are also two buttons at the bottom
of the page. The 'Add New Bot' button brings up a form where you can enter
information necessary to create a new agent. The 'Dump XML' button updates the
CVS repository to reflect any changes made using the editor. The column of object
numbers is included for easy reference between the content experts' and
programmers' view of the software agent's program object.

18

The edit conversation interface (Figure 3) allows the construction of a

conversation between a player and an agent. It is accessed by clicking an agent

name in the list.

A conversation begins with an initial greeting message. For example, when

a student playing the On-A-Slant Virtual Village game first encounters the agent,

'Little Bluff' (the software agent who talks about the importance of storytelling to

the Mandan people) exclaims "Hi, you're just in time, Grandfather is about to tell

me a story!"

The other parts of a conversation are questions you can ask of an agent

and each question's associated answer. Questions can be added by clicking on

the 'Add new question' link and filling out the form that opens. Existing questions

can be edited by clicking on one of the questions in the list.

Questions are organized in a hierarchical manner by declaring their

dependence on other questions (see the graph in Figure 1). This means that

questions farther down the hierarchy can not be presented to the player until the

higher level questions have been asked. This is achieved by entering a list of

dependent questions into a dependency list. This list is a comma delimited string

of question ID numbers, where ID number is the order that questions are

displayed in the editing interface. Question display order can be manipulated using

'move up' and 'move down' buttons. Unwanted questions can be removed using

the 'delete' button. If a deleted question has dependents then those dependents

are promoted up the hierarchy. This may not be the optimal solution in every case

and the intent was to have the content experts maintain the integrity of the

dependency list using the BCE.
19

Rippling Water (Server obj #1663)

+ intro: Welcome!

+ Add new question.

+ 1) What are you doing?

+ 2) How do you clean a horse corral?

- 3) Why do you keep horses Inside of the earth lodge?

hlhy do you keep horses inside of the earth lodge?

question:

hle keep my husband's favorite horse inside at times of bad
weather or when there is a threat from another tribe .

answer:

1
depends:

save changes delete] [move up] [move down] [view entry]

+ 4) Do you keep any other horses inside?

+ 5) Where are the rest of your horses?

[Delete Bot]

+ View dictionary links.

Copyright ~• l004·2010,

Figure 3. The Bot conversation interface allows a content expert to construct a
conversation between a player and an agent. Clicking on 'Add new question' or on
an existing question opens the question editing form where the question's text and
the agent's response are entered. The verb call field is where a function call can
be entered. Questions can be moved up and down the list using the move up and
move down buttons. The view entry button displays a preview of how the question
will look in the IVE. The 'Delete Bot' button removes the agent from the IVE.

20

Sometimes the content experts may want the asking of a question to trigger

a specific event such as assigning the student a new task, displaying a movie, or

starting an animation. To facilitate these events, a function call element can be

associated with each question. This requires interaction outside of the BCE

between content experts and the IVE's programmers to design the event's actions.

A function call is then provided to the content experts who associate it with the

question of their choice by placing it in a question's function call element.

The 'Delete Bot' button at the bottom of the page removes the agent from

the IVE. Agent data is archived in the PostgreSQL database so the agent can be

restored if desired.

If a question contains terminology that may not be familiar to a student,

there is an option to insert a dictionary link into any element of the agent's text.

After creating or editing a conversation, changes are saved to the database

and when the content experts click the 'Dump XML' button, a PHP script extracts

the agent conversation entries from the database, converts them into an XML file

and commits the XML file to the CVS repository.

An earlier instance of the On-A-Slant IVE was deployed using Java Web

Start. At that time the PHP script also added the new or modified XML file to the

deployment package, and client installations were automatically updated upon

connection. The Java 1.6 release redefined the Web Start cache directory

structure making this impractical and necessitated the switch to an installed

application.

21

4.1.2 Bot Editor Implementation

The Bot Editor is a collection of PHP scripts located on a remote web

server. Accessing the editor in a web browser runs scripts that dynamically build

the HTML pages that are viewable to the user.

4.1.2.1 List of Agents

The 'list of agents' web page, shown in Figure 2, is the Bot Editor's start or

'home' page. Accessing this page runs a PHP script that does three tasks.

First, the script opens a socket connection to the LambdaMOO server and

writes the get_bot_list() function call string to the connected file stream. All the

IVE's software agents are stored as objects on the LambdaMOO server. They are

children of the generic avatar object and contain the hierarchical conversation

tree.

The following PHP code is used to connect to the LambdaMOO server to

request a list of agents.

1. $fp = fsockopen ($ip_address, $port, &$errno, &$errstr, 30);
2. if (!$fp) {
3. echo 11 $errstr ($errno)
\n";
4. exit () ;
5. } else {
6. $line= fgets ($fp, 100); // Purge Buffer
7. fputs ($fp, "get_bot_list\n");
8. $line= fgets ($fp, 100);
9. list($keyword, $status, $bot list str) split ('\I', $line, 4);
10. fclose ($fp); - -
11. }

Line 1 of the code establishes a connection to the LambdaMOO server.

Line 2 verifies that the connection is established. If the connection is successfully

created, the code continues by purging the file stream buffer of any residual

garbage data in line 6 and sending the function call in line 7. A string

22

representation of a 2-dimensional list of agents is passed back to the script in line

8. Line 9 separates the agent list ($bot_list_str) from the function call's status

message. Line 10 closes the connection.

When the LambdaMOO server receives the get_bot_list() function call, it

retrieves a list of the active agents in the IVE, determines the agents' id, name,

location, and job description and assembles that information into an array of 4-

tuples defined as (bot id, bot name, bot location, bot job). In order to pass this

information back to the PHP script, the 2-dimensional array is converted into a

nested character delimited string. In this case the string is a semi-colon delimited

list of comma delimited lists.

The following LambdaMOO code is used to assemble a list of active

software agents and return that list to the calling PHP script.

1. try
2. bot_list = {};
3. bots= this:sort_by_area($object_utils:leaves($g.gen_avatar}};
4. for bot in (bots)
5. if ($object_utils:isa(bot.location, $g.room))
6. bot_str tostr(tonum(bot), ", 11

, bot.name, 11
,

11
,

bot. location. name, 11 , ", bot. job) ;
7. bot list= {@bot_list, bot_str};
8. endif
9. endfor
10. except V (ANY)
11. "There is a problem. Log it. 11 ;

12. $g.bug db:log error(V);
13. notify (player~ 11 #BOT_LIST I ERROR Io I 11) ;

14. return;
15. endtry
16. notify(player, tostr(11 #BOT_LIST!OK!",

$string_utils: from_list (bot_list, 11 ; 11), 11 ! 11));

17. return;

Line 3 retrieves a list of all agents in the IVE and sorts the list according to

agent location (bots). Line 4 starts the iteration through the list of bots. Line 5

determines if the current bot is an active agent by determining if it is in a valid

23

game location ($g.room). Line 6 creates the 4-tuple of agent information and line 7

adds the tuple to the list of active agents (bot_list). Lines 10-14 handle an error

situation, and line 16 creates and returns the nested character delimited string of

agent info.

If the function calls status message is "OK", the script parses the nested

character delimited string representation of the list of agents into a 2-dimensional

array. If the return status is not "OK", then the value returned in the message field

has a description of the problem that occurred with the function call.

The second task performed by the PHP script is to compare the list of

active agents with entries in a PostgreSQL database and update the database if

discrepancies are found.

As far as the IVE is concerned, software agent conversations are stored in

XML files, one file for each agent, and on the LambdaMOO server, one object for

each agent. This is inconvenient for editing outside the development IDE,

especially in a web browser, as each edit would require:

• Retrieving the relevant agent information from the MOO
• Checking the associated XML files out of CVS
• Reading in the XML file and parsing out the relevant information to display

in the editor
• Combining the information from the XML file with the information from the

MOO
• Maintaining this information between post actions (either by writing directly

back to the MOO and XML files or storing the information in a temporary file
• Updating the information on the MOO when finished with an agent
• Writing the changes to the XML file when finished with an agent
• Checking the XML file back into CVS

In order to simplify the editing process, software agent conversation info is

stored in a PostgreSQL database (Figure 4). The database contains three tables:

24

1) bot_list which contains the software agent's ID and name, 2) bot_intro that

contains an agent's intro message, and 3) bot_questions that stores the elements

of the conversation.

A conversation element is composed of a question, its answer, the order

the question appears in the conversation box, its place in the conversation

hierarchy, and a function call if the asking of a question is going to trigger an

event. PostgreSQL's advanced query functions are used to manipulate data while

editing.

bot_questions bot_l ist

I' id INTEGER ~ ./ id INTEGER
~ --

bot_id INTEGER name TEXT

question_ order SMALLINT deleted SMALLINT

depends TEXT

question TEXT

answer TEXT bot_intro

verb_call TEXT ~ id INTEGER

message TEXT

----- bot_id INTEGER

Figure 4. Graphical representation of the relationships among the three database
tables that store software agent conversations.

When the Bot Editor's home page is accessed, the PHP script retrieves the

list of agents from the LambdaMOO server and iterates through this list comparing

the information with the agent's corresponding entry in the database. If an entry for

the agent is found in the database, the script compares the data and updates the

database entries if they are different. The reason the database is updated and not

25

the MOO is because the developers have agreed to use the Bot Editor for

maintaining the software agent's conversations. Thus we make the assumption

that the current state of the MOO is always correct. This could lead to problems if

the developers failed to follow convention but it was decided that the minimal risk

outweighed the effort needed to add a routine to resolve concurrent version

issues.

If an entry for an agent is not found in the database, one is inserted.

Correspondingly, if there is an agent entry in the database and not one in the

agent list, the entry is removed.

The final task of the script is to create the table of agents and assemble the

HTML web page displayed in Figure 2. A system diagram for the Bot Editor can be

found in Figure 5.

LambdaMOO PostgreSQL CVS Reoository

Bot Objects Working Database XML Conversation
Files

j L ll j •

,, H , ,
Bot Editor

/ "'" I - Tools for data entry - and manipulation

Content Expert

Figure 5. Bot Editor system diagram. The editor retrieves a list of active software
agents from the LambdaMOO server and combines them with agent information
extracted from XML files stored in the CVS Repository. The combined information
is stored in the PostgreSQL database for fast access and to make use of
PostgreSQL's query toolset.

26

4.1.2.2 Add New Bot

Clicking on the Add New Bot button on the Bot Editor's home page, opens

up an HTML form that collects the information needed to create a new agent. This

information is bot name, bot job (roll in the environment), and bot location. Before

submitting, form data are validated using JavaScript. Each element is checked,

and if found invalid or incomplete the JavaScript routine notifies the user to correct

the problems. Users are not able to continue until all the problems have been

addressed. Notification is handled on the client side without any information being

submitted to the web server.

The form posts to a PHP script on the web server that collects the element

information, opens a connection to the LambdaMOO server, and writes the

create_new_bot() function call to the connected stream. The procedure for

sending the create_new_bot() function call is identical to that of the get_bot_list()

function call except that it has three parameters.

1. fputs($fp, "create_new_bot\n");
2. fputs($fp, "$bot_name\n");
3. fputs($fp, "$bot_job\n");
4. fputs($fp, "$bot_location\n");

The function call returns a string containing the new agent's object ID and a

status message. If the returned status message is "ERROR", execution of the add

bot script halts with an error message notifying the user that the new agent was

not created. A traceback of the LambdaMOO error event is automatically stored in

a bug tracking database (Green, 2000) for later examination by the developers. If

the function call's status message is "OK" the script writes an empty XML agent

27

conversation template file and calls a Perl script to add the new XML file to the

CVS repository (Figure 6).

c?xml version="l.0"?>
cbot_questions>

cbot id="2623" name="New Agent Name">
cintro>c/intro>

c/bot>
c/bot_questions>

Figure 6. A sample XML bot conversation template file.

The following Perl script was used instead of an equivalent PHP script to

perform the CVS manipulation functions because the verbose output from the

CVS commit command would cause PHP shell functions to fail. No explanation for

this was ever found, and with the implementation of the Perl workaround a solution

was never pursued.

1. #!/usr/bin/perl
2. use lib 1 /var/www';
3. use CGI;
4. use CGI: :Carp qw(faltsToBrowser);
5. $q = new CGI;
6. $id= $q->param("bot_id");
7. $path= $q->param("file_path");
8. $cvs_path = $q->param("cvs_path");
9. chdir($path);
10. system("cvs -Q update");
11. system("/bin/cp " . $cvs_path . "/bot_$id.xml . ");
12. system("cvs -Q add bot_$id.xml");
13. 'cvs -Q commit -m "Update from Bot Editor web site."';
14. print $q->redirect(".");

Lines 6-8 read in the variables passed from the PHP script. Line 9 changes

the current directory to the location of the checked out CVS repository files. Line

10 updates the checked out files, and line 11 copies the new XML file into the

repository directory. Line 12 adds the new file to the repository, and line 13

commits the changes to the CVS repository. Line 14 returns control to the Bot

Editor's home page.

28

4.1.2.3 Edit Bot

Clicking on one of the entries in the list of agents brings up the edit

conversation interface (Figure 3). The interface is created by a PHP script that

queries the PostgreSQL database for the agent's initial greeting message and a

list of all the agent's conversation questions. The script then builds a table

containing three types of forms. It first creates a form for editing the initial greeting

message, then a form for adding a new question, and these are followed by a

series of forms for editing questions; one form for each question. Form elements

are populated with the information retrieved from the database.

Having a large number of form elements displayed on a page can be

confusing to the user so to clean up the interface, a JavaScript routine is used to

dynamically collapse inactive forms. This can be seen in Figure 3 where the form

for question 3 is active and the forms for questions 1, 2, 4, and 5 are collapsed as

are the forms for the initial greeting message, dictionary links, and adding a new

question.

Each type of form in the edit conversation interface submits to a separate

PHP script that makes the appropriate changes to the database. After making the

changes to the database, each script redirects back to the edit conversation

interface.

The 'Delete Bot' button found on the bottom of the edit conversation

interface doesn't actually delete the agent from the IVE. It archives the agent by

moving its object to an archive area and marks its database entry as deleted. This

29

allows the restoration of agents that may have been deleted accidentally or are

currently not it use.

4.1.2.4 Dump the XML

Clicking on the 'Dump XML' button executes a PHP script that builds XML

conversations files and updates the MOO objects for each of the active software

agents in the IVE.

The first step to building the XML files is to query the PostgreSQL database

for a list of agents. Working linearly through this list, the script progressively builds

an XML file for each agent using double iterative loops.

First the outer loop collects the information unique to each agent. ID, name,

and job already exist in the list of agents. The initial greeting message is retrieved

from the bot_intro table in the database. The outer loop then queries the database

to retrieve the questions associated with the agent currently being processed. This

information is found in the bot_questions table. Then an inner loop iterates through

this list of questions to assemble the text, answer, and function call entries. A

dependency list for each question is also created at this time but is stored in a 2-

dimensional array until all the agent's questions have been retrieved. When all the

agent's questions have been processed the outer loop writes the XML file to disk

and connects to the LambdaMOO server to write the agent's dependency list from

the array. This is done by converting the array to a nested character delimited

string and writing the set_depends_list() function call to the connected stream.

1. $depends_str implode("!", $depends_list);
2. fputs($fp, "set_depends_list\n");
3. fputs($fp, "$bot_id\n");
4. fputs($fp, "$depends_str\n");

30

The set_depends_list() function on the LambdaMOO server then converts

the dependency list string back to a 2-dimensional array and sets the agent's

MOO object's question tree property.

After creating an XML file and setting the dependency list for each agent

the script was used to "jar up" the XML files, sign the jar file, and move the jar file

to the Web Start directory. As mentioned earlier, changes in the Java 1.6 Web

Start cache directory structure negated individual package updates making this

impractical, so these functions were removed.

Similar to adding a new agent, the final task when dumping the XML files is

to call a Perl script that commits the new XML files to the CVS repository.

Figure 7 contains a sample agent conversation XML file. The hyperlinked

term 'travois', in the first answer, points to a travois dictionary entry.

<?xml version="l.0"?>
<bot_questions>

<bot id="341" name="(Dog Travois Woman)">
<intro>Hi!</intro>
<question id="l">

<text>What is attached to this dog?</text>
<answer>It is called a <a

href=http://onaslant.ndsu.edu/dictionary/Dictionary.php?method=def&
id=187>travois. These two poles are harnessed to the dog's chest. A
basket is attached between the poles for carrying items.</answer>

</question>
<question id="2">

<text>What are you carrying on the travois?</text>
<answer>This dog is carrying the butchered parts of the

bison. She can pull up to 60 pounds. When we get to camp, I will unpack
the load and we will go back for another.</answer>

</question>
</bot>

</bot_questions>

Figure 7. The bot conversation XML file for the On-A-Slant Virtual Village Dog
Travois Women software agent. For comparison, see Figure 6. The id field in the
<bot> tag refers to the agent's object number on the LambdaMOO server while
the id field in the <question> tag refers to the question's display order.

31

4.2 Task Editors

Learning in IVEs is guided by the completion of goals and tasks. Students

are encouraged to explore the world, perform experiments, and learn concepts. By

following a set of goals, students learn how to do tasks that are important to the

field under study.

Goals make up the overall focus of the IVE's teaching element, and tasks

are the strategically ordered components students must realize and undertake to

reach their goals. Using the constructivist proposition of scaffolded learning

(Vygotsky, 1986), students are given goals and must undertake a set of tasks to

reach those goals. Task models are specific to the discipline under study. Tasks

force the students into learning by doing and can be understood as rehearsals for

real-world problems. Furthermore, the tasks are the principal place in which the

software tutoring agents in the IVE can monitor and assess students'

performances for correction and assessment (Slator et al., 1999; Brandt et al.,

2006).

As an example, one of the goals of the eGEO IVE is to teach students how

to calculate the velocity of a river. This is done by dropping an orange into the

virtual river and measuring how long it takes to travel a measured distance.

In order to accomplish this goal a student needs to complete five tasks.

1. Get Distance Wheel
2. Measure Distance
3. Get Stopwatch
4. Measure Orange Travel Time
5. Calculate Orange Velocity

32

Tasks are also important for assessment, so that the instructor can tell if a

student is capable of completing a particular task from the subject material. Goals

also act as important scaffolding tools. By giving students tasks that are initially

easy and contain many hints, they gain initial success, increasing the odds of

them continuing to play the game. The goals, however, are generally designed to

get progressively harder, resulting in more challenging learning moments as time

progresses.

For example, when a student receives the 'Hide Scraper' task they are

shown a picture of the bone part of an artifact found while excavating. They are

asked to explore the village to locate the item and discover its purpose. Artifacts

are usually located near software agents who have knowledge about the items.

Interacting with these agents provide useful information about the artifacts. When

a student has completed the task's activities, in this case locating the hide scraper

artifact and discovering its purpose, they are given a set of formative assessment

questions intended to help guide students toward their learning objectives.

Similar to managing software tutors, creating and maintaining these tasks is

a joint endeavor between content experts and programmers. Before the

implementation of the content creation tools, content experts would create a

written design that describes the task, its assessment questions, and any sub

tasks it can assign. This design was then given to the programmers to implement.

If the task needed modifications or adjustments, the content experts would have to

contact the programmers to make the changes. Similarly, if the programmers had

questions they would have to contact the content experts for a resolution.

33

The Task Editor was created to allow anyone on the development team to

create or edit task descriptions and associated assessment questions, using a

web based HTML interface. The editor also allows for the creation of multiple

choice, short answer, or essay assessment questions using dynamic forms.

4.2.1 Using the Task Editor

Similar to the Bot Conversation Editor, the Task Editor consists of three

interfaces; a list of tasks, a form for adding tasks, and a form for editing task

content and associated formative assessment questions.

The list of tasks (Figure 8) displays all the active tasks in the environment.

Clicking on one of the tasks in the list brings up a form for editing the task's

description and assessment questions. There are also two buttons at the bottom

of the page. The 'Add New Task' button brings up a form where you can enter

information necessary to create a new task. The 'Dump XML' button updates the

CVS repository to reflect any changes made using the editor.

The interface for adding new tasks collects the minimal information needed

to create a new task (task name), creates the task object on the LambdaMOO

server and adds an empty XML task template to CVS repository. Additional task

descriptions and assessment question information is entered using the editing

interface.

The edit task interface (Figure 9) allows the content expert to enter the task

description. The description is the text and/or images that a student receives when

they are assigned a task and an icon image that is used as a visual representation

of the task.

34

-

GeoEd Maintenance
Task Editor GeoEd Home I ll.·1aint Home

task name

Visit Slate
Laptop Quiz
Talk to Jade 1

Initial Water Testing

Calculate Discharge

Find Gold Task

Visit Slate (Post)

Laptop Quiz (Post)

Get Water Current Meter

Measure River
Send Discharge Report
Mjnjng Plant

~

Get Distance Wheel

Measure Distance

Get Stopwatch
Measure Orange Distance

Calculate orange Velocjty

Get Water Quality Test Kit
create Line Graphs

Water Qualjty Report

---- -

Gather Eutrophjcatjon Water samples
Play Agua survjvor

[Add New Task J

object#

2929

2547

1996

1995

2312

2433

874

368

2341
2344

2345

2097

2103

2365

2367

2380

2382

2383

2385
2421

2464

890

6708

! Dump XML I Last XML.jar dump: 4: 48 PM September 14, 2010.

+ View database maintenance trace.

Figure 8. The list of tasks displays active tasks in the environment. Clicking on one
of the tasks in the list brings up a form for editing task descriptions and
assessment questions. There are two buttons at the bottom of the page. The 'Add
New Task' button brings up a form where you can enter information necessary to
create a new task. The 'Dump XML' button updates the CVS repository to reflect
any changes made using the editor. The column of object numbers is included for
easy reference between the content expert's and programmer's view of the task's
program object.

35

This description includes a small set of activities that the student needs to

complete in order for them to progress to the next step in the completion of their

current learning goal. The editor also allows formative assessment questions to be

attached to the task. Assessment questions are added by choosing the 'Add new

question' option and filling out the presented form. The form allows the content

expert to choose the number of possible answers to the question. A limit of fifteen

answers was chosen to be a practical upper limit for the number of answers.

Selecting zero answers implies an essay question, one answer implies a short

answer question, and two or more answers imply a multiple choice question. For

multiple choice questions, check boxes are provided to indicate which answers are

correct. There is the ability to select multiple correct answers and areas to enter

tutoring responses for correct and incorrect answer submissions. For questions

with multiple correct answers, responses can be for all answers correct, all

answers incorrect, or a combination of correct and incorrect answers.

Once a question has been added to a task they can be edited by clicking on

one of the questions to bring up the edit question form. Question display order can

be manipulated using 'move up' and 'move down' buttons. Unwanted questions

can be removed using the 'delete' button.

After creating or editing a task, changes are saved to the PostgreSQL

database and when a content expert clicks the 'Dump XML' button, a PHP script

extracts the task's entries from the database, converts them into an XML file and

commits the XML file to the CVS repository. A list of question ID's is also sent to

the LambdaMOO server so player objects know which questions are available to

be answered.
36

-

Player Task Xl\1l Editor On -A-Slant Home I i'1ai11t Home I Editor Home

Hide scraper (Server obj #1914)

We have ·ust found an artifact while excavating. We're sending a picture to you now.

+ description:

What information can you discover about this? You may have to explore the village to locate
the artifact. It may look slightly different than the picture. Once you've found it, you'll need
to record your findings, using the field book, and send it back here for examination .

+ Add new question.

- 1) What is the artifact? Qf bio 1" a otone

[update question

object. What ia it1

delete question J [move up J [move down] [add answer

l) ' Spoon

I update answer
::::::;-~==:=:;------------~ □

delete] Ge] I down]

A: 2) ISquaah Knife

I update answer

3) I Hide Scraper

tutoring responses

:~ ~
[delete] Ge] [down J

all
correct

You are correct; thia artifact is a hide scraper!

·-

all
Incorrect

After careful examination of the artifact, ve :found that your
anawer is incorrect.<~>Explore the vil l age for this artifact

first
correct

second
correct

ask queations o:f 11J1yone using it.

+ 2) For what purpose was the artifact used?

+ 3) What else have you discovered about this artifact?

+ View dictionary links.

Copyright ,;, 2110-4 2011il,

and

- - ---- ---- - ---

Figure 9. The edit task interface allows the content expert to enter the task's
description and assessment questions.

37

4.2.2 Task Editor Implementation

The Task Editor is a collection of PHP scripts located on a remote web

server. Accessing the editor in a web browser runs a PHP scripts that dynamically

build the HTML pages that are viewable by the user.

4.2.2.1 List of Tasks

Like the software agents mentioned earlier, Tasks in IVE's are objects on

the LambdaMOO server. They are children of the generic task object and contain

additional functions for assigning tasks to students and calculating point values for

completing tasks. Opening the Task Editor's 'list of tasks' runs a PHP script that

has three functions.

This process mirrors the bot conversation process. First the script opens a

socket connection to the LambdaMOO server and writes the get_task_list{)

function call string to the connected file stream. When the LambdaMOO server

receives the function call it retrieves a list of active task IDs and names and

assembles that information into an array of 2-tuples defined as (task id, task

name). In order to pass this information back to the PHP script the 2-dimensional

array is converted into a nested character delimited string. In this case, a pipe

delimited list of semi-colon delimited lists.

If the function calls status message is OK the script parses the nested

character delimited string representation of the list of tasks back into a 2-

dimensional array. If the return status is not OK, then the value returned in the

message field has a description of the problem that occurred with the function call.

38

As with software agents, IVE task information is stored in a combination of

XML files and LambdaMOO object properties. One XML file and one object per

task. So to simplify the editing process, task information is stored in a PostgreSQL

database. Thus, like with the Bot Editor, the second function of the PHP script is to

compare the list of active tasks with entries in a PostgreSQL database and update

the database if discrepancies are found .

The database contains four tables (Figure 10): 1) task_list which contains

the task's ID and Name, 2) task_description that contains a task's description and

icon information, 3) task_questions (Figure 11 a) that stores the text of the

formative assessment questions and tutoring messages for correct and incorrect

responses, and 4) task_answers (Figure 11 b) that contains all the possible

answers for a question.

task_list
task_description ,

id INTEGER - , id INTEGER
~ L

name TEXT
task_id INTEGER

description TEXT

icon CHARACTER VARYING(40)

task_questions

/- id INTEGER ~
task_id INTEGER

task_answers questlon_ordar INTEGER

I' id INTEGER question TEXT
~ quastion_id INTEGER all_correct_answer TEXT

answer_ order INTEGER all_incorrect_answer TEXT

answer TEXT first_of_two_correct TEXT

correct SMALLINT second_of_two_correct TEXT

Figure 10. Graphical representation of the relationships among the four database
tables, which store task information.

39

task_questions

/' id INTEGER

task id INTEGER

question_order INTEGER

question TEXT

all_correct_answer TEXT

all_incorrect_answer TEXT

ftrst_of_two_correct TEXT

second_ of_two _ correct TEXT

(a)

task_answers

,P id INTEGER

question_id INTEGER

answer order INTEGER

answer

correct

(b)

TEXT

SMALLINT

Figure 11 . (a) The task_questions database table. id is a unique question
identifier. task_id is a foreign key referring to the task to which the question is
associated. question_order is the order the question is displayed in a list of
questions. question contains the text of the question. a//_ co"ect_ answer contains
the agent's response if all parts of the question are answered correctly.
all_incorrect_answer contains the response if all parts of the question are
answered incorrectly. first_of_two_co"ect contains the response if the first part of
the answer is correct and the second part is incorrect. second_of_two_co"ect
contains the response if the second part of the answer is correct and the first part
is incorrect. (b)The task_answers database table. id is a unique answer identifier.
question_id is a foreign key referring to the question to which the answer is
associated. answer_order is the order the answer is displayed in a list of answers.
answer contains the text of the answer. correct indicates the answer is one of the
correct answers for a question.

The final task of the script is to create the table of tasks and assemble the

Task Editor web page, displayed in Figure 8.

4.2.2.2 Add New Task

Clicking on the Add New Task button opens up a HTML form that collects

the information needed to create a new task. Before submitting, form data are

validated using JavaScript. Each element is checked and if found invalid or

incomplete, the JavaScript routine notifies the user to correct the problems.

40

Notification is handled on the client side without any information being submitted

to the web server.

The form posts to a PHP script on the web server that collects the element

information, opens a socket connection to the LambdaMOO server, and writes the

create_new_task() function call to the connected stream. The procedure for

sending the function call is identical to that of the get_bot_list() function call except

that it has one parameter.

1. fputs{$fp, "create_new_task\n");
2. fputs{$fp, 11 $task_name\n 11);

The function call returns the new task's object ID as a return value. If the

function call's status message is "OK" the script writes an empty XML task

template file (Figure 12) and calls a Perl script to add the new XML file to the CVS

repository.

<?xml version="l.0"?>
<tasks>

<task id="186" name="New Task Name" icon='"'>
<description></description>

</task>
</tasks>

Figure 12. A sample XML task template file.

4.2.2.3 Edit Tasks

Clicking on one of the entries in the list of tasks brings up the edit task

interface (Figure 9). The interface is created by a PHP script that queries the

PostgreSQL database for the task's description and assessment questions along

with the answers for those questions and the associated remediation responses.

The script then creates a table containing four types of forms. There is a form for

editing the task's description, a form for adding a task icon, and a form for adding

41

a new assessment question. These three are followed by a series of forms for

editing assessment questions and their associated answers. Form elements are

initialized with information retrieved from the database and each type of form

submits to a separate PHP script that makes the appropriate changes to the

database and redirects control back to the edit task interface when finished.

Since assessment questions can have a variable number of answers, from

an essay answer question with no answers and a short answer question with one

answer, to a multiple choice question with as many as fifteen, forms for adding

new questions are dynamically created using a JavaScript routine. The following

script generates the required elements for a new question form containing, n,

answers.

1. function createForm(n) {
2. data= "<table>";
3.
4.
5.
6.

inter="'";
if(navigator.platform

size
else

67;

7. size 87;
8. if (n < 16 && n > -1) {

"MacPPC") // A hack to fix for Macs

9. for (i=l; i <= n; i++) {
10. data= data+ "ctr>ctd>" + i + ")<\/td><td>" + "<input

type='text' size='"+ size+"' name="+ inter+ "a"+ i +inter+
"'><input type='checkbox' name="+ inter+ "c" + i +inter+
"><\/td><\/tr>";

11. }

12. data= data+ "<\/table>";
13. if (document.layers) {
14. document.layers.cust.document.write(data);
15. document.layers.cust.document.close();
16. } else {
17. document.getElementByid('cust') .innerHTML data;
18. }
19. } else {
20. window.alert("Please select up to 15 entries.");
21. }
22. }

42

When editing an assessment question, the content experts may want to

delete or insert an answer to a specific question. Deleting an answer is a simple

as deleting its entry from the PostgreSQL database. Inserting an answer requires

adding data, which has yet to be entered into a form element, to the database. To

accomplish this, without causing a page refresh, a JavaScript routine was created

to dynamically add the elements required for an additional answer to the existing

question form. The following script adds a form element to the question identified

by the parameter id.

1. function addRow(id) {
2. var tbody =

document.getElementByid(id) .getElementsByTagName("TBODY") [O];
3. var tdel = document. createElement ("TD")
4. var tde2 = document. createElement ("TD")
5. var rowl document.createElement("TR")
6. var tdl = document.createElement("TD")
7. var inl = document.createElement("INPUT")
8. inl.setAttribute("name", "new_answer");
9. inl. setAt tribute ("type", "text") ;
10. if(navigator.platform == "MacPPC") // A hack for Macs
11. inl.setAttribute("size", "67");
12. else
13. inl.setAttribute("size", "87");
14. tdl.appendChild (inl);
15. var inlc = document.createElement("INPUT")
16. inlc.setAttribute("name", "new_correct");
17. inlc.setAttribute("type", "checkbox");
18. tdl.appendChild (inlc);
19. rowl.appendChild(tdel);
20. rowl.appendChild(tdl);
21. var row2 document. createElement ("TR")
22. var td2 = document. createElement ("TD")
23. var in2 = document. createElement ("INPUT")
24. in2.setAttribute("name", "option");
25. in2.setAttribute("type", "submit");
26. in2.setAttribute("class", "button");
27. in2.setAttribute("value", "add answer");
28. td2.appendChild (in2)
29. row2.appendChild(tde2);
30. row2.appendChild(td2);
31. tbody.appendChild(rowl);
32. tbody.appendChild(row2);
33. }

43

Lines 3 through 14 add a text box to the table of answers, lines 15 through 20 add

a checkbox, and lines 23 through 32 add as submit button. Lines 10 through 13 in

the script are not necessary for the functioning of the script but have been added

to adjust the text box element's appearance for the Mac platform.

Similar to the Bot Editor, a JavaScript routine is used to clean up the

appearance of the Task Editor by dynamically collapsing inactive forms.

4.2.2.4 Dump the XML

Clicking on the 'Dump XML' button executes a PHP script that builds XML

task question files and updates the MOO objects for each of the active software

agents in the IVE.

The functioning of the XML dumping procedure is almost identical to that of

the Bot Editor. An outer loop queries the PostgreSQL database for information

unique to each task. In this case it is task id, task description and task icon. The

outer loop then queries the database for a list of the task's assessment questions.

An inner loop iterates through this list of questions to assemble the text and

remediation responses for each question. An additional level of looping is needed

to query the database for the set of answers for each assessment question.

The other functional difference is with the data sent to the Lambda MOO

server. A set_question_list() function call sends a 2-tuple list of questions and their

correct answers to the MOO.

1. fputs($fp, "set_question_list\n");
2. fputs($fp, "$task->id\n");
3. fputs ($fp, 11 $question_list_str\n");

44

As with the Bot Editor, the final teas when dumping the XML files is to call a

Perl script to commit the new files to the CVS repository.

Figure 13 contains a sample task XML file for the Hide Scraper artifact

identification task.

<?xml version="l.0"?>
<tasks>

<task id="1914" name="Hide Scraper" icon="hide_scraper.gif">
<description>We have just found an artifact while excavating. We're

sending a picture to you now.

 What
information can you discover about this? You may have to explore the
village to locate the artifact. It may look slightly different than the
picture. Once you've found it, you'll need to record your findings,
using the field book, and send it back here for
examination.</description>

<mc_question id="l" text="What is the artifact?">
<answer id="l" text="Spoon"></answer>
<answer id="2" text="Squash Knife"></answer>
<answer id="3" text="Hide Scraper"></answer>
<answer id="4" text="Hoe"></answer>
<answer id="S" text="Ladle"></answer>

</mc_question>
<mc_question id="2" text="For what purpose was the artifact used?">

<answer id="l" text="To remove hair from the hide of the
animal. 11 ></answer>

<answer id="2" text="To remove fat and flesh from the hide of an
animal"></answer>

<answer id="3"
<answer id="4"
<answer id="S"
<answer id="6"
<answer id="7"
<answer id="8"

text="For ceremonial purposes"></answer>
text="Used as a cooking utensil"></answer>
text="Used to draw water from the river"></answer>
text="Used to catch wild game"></answer>
text="Used for food gathering"></answer>
text="Used in the preparation of food"></answer>

<answer id="9" text="Used to separate the hide from the
carcass"></answer>

<answer id="l0" text="Used to slice"></answer>
<answer id="ll" text="To remove weeds"></answer>
<answer id="12" text="To loosen the soil"></answer>

</mc_question>
<essay_question id="3" text="What else have you discovered about

this artifact?">
</essay question>

</task> -
</tasks>

Figure 13. The XML task file for the Hide Scraper task .. The id field in the <task>
tag refers to the task's object number on the LambdaMOO server. The id field in
the <mc_question> and <essay_question> tags refers to the question's display
order. The id field in the <answer> tag also refers to the answers display order.

45

4.3 Dictionary and Help Editors

Many of our games contain terms and concepts with which a player may

not be familiar with. Embedded dictionary databases are therefore provided to

allow players easy access to definitions and explanations. Originally these

databases were managed by the software developers or a content expert with

some familiarity with database management. This arrangement was inefficient as

delays or miscommunication could occur as information was passed from various

content experts to those managing the databases.

4.3.1 The Geology Explorer Help Editor

The Geology Explorer {Slator, 1998) has an extensive database of help

entries that need to be updated periodically. This used to be a time consuming

and tedious task. A content expert would provide a list of additions and changes to

someone with programming experience. The programmer then had to manually

edit the help database on the LambdaMOO server, export said database to a file,

insert the file into the CVS repository, build the application, and then upload the

application files to the games live Web Start directory.

The Geology Explorer Help Editor was created so that anyone on the

development team could add or update help entries using a web based HTML

interface.

The Help Editor uses a series of CGI scripts and the LambdaMOO server's

built in http service.

46

The help_editor object on the LambdaMOO server creates a table of

existing Geology Explorer help entries and displays them as a web page on the

servers own http port. Clicking on one of the entries brings up an external cgi

created HTML form that allows users to edit or delete the specific entry and its

description. The forms were created using external scripts as a way to get around

LambdaMOO's limited http request implementation. Changes are stored back to

the LambdaMOO server until the entire database is dumped to the CVS

repository.

The web page also provides the options to add a new help entry and to

dump the help database.

Adding a new help entry is similar to the editing function mentioned earlier.

Clicking on the Add New Entry link brings up a form where the user can enter a

new entry and description.

The Dump the Help Database option exports the updated help entries to a

file on the server and calls a CGI script to finish processing. The script merges the

help entries into a java class file. Commits the java file to the CVS repository,

compiles the java class file, and uploads it to the game's application directory

where it can be accessed by the Applet and Web Start game clients.

4.3.2 The On-A-Slant and eGEO Dictionary Editors

In order to reduce network traffic and improve performance, the On-A-Slant

and the eGEO clients were implemented with most non-user specific data stored

client side. This resulted in a different implementation method than that of the

Geology Explorer Help Editor.

47

The IVEs accesses the dictionary data from an XML file located in a

resources directory. In order to make editing this file easy a copy of the

dictionary's data is also stored in a PostgreSQL database (Figure 14 }. This allows

easy access to the data and makes use of PostgreSQL's robust sorting, querying,

and retrieval applications.

dictionary_ definitions dictionary_words

,I id INTEGER word CHARACTER VARYING(255)

/' word_id INTEGER - /' id INTEGER ~

part_ of_ speech CHARACTER VARYING(20)

definition TEXT

Figure 14. A graphical representation of the two tables that make up the dictionary
database.

The Dictionary Editors (Figures 15 & 16) are a series of PHP scripts that

retrieve dictionary information from the database, and present it in an easy to

understand HTML form.

The form allows the user to view entries as they would appear in the game

as well as to select entries to edit, delete, attach images to, or crosslink with other

entries. Changes are saved back to the database.

Similar to the Geology Explorer Help Editor, there is an option to export the

updated help entries to a file on the server and a call to a CGI script to finish

processing. This script extracts the dictionary entries from the database, converts

them into an XML file and commits the XML file to the CVS repository.

48

Geo[d Mdinlendme
Di, trn11My blot or 1 . . • , 1 1 1 I I c •• ,, ". I GeoEd Home I ~laint Home

September 20 2010 at 4 :33 PM

select Term: Updllte Term ond Definition

1._a_uo._rt_zit_e _____ =:BJ----'v= Term:
Quartzite

Deflnlton :
Formed by the regional metamorphism of ~ (metaquartzlte)
or by the cementatlon of sand grains in sandstone by silica
(orthquartzite).

 <lmg src="http;//oit.cs .ndsu.no dak, edu
/ 9eoed/ di ctlona ry _Images/ quartz ite , png">

[Insert reference to I So.nd_s_ton_e _____ v at t he
cursor.

[sava changas] ~ (a dd new t erm) f delete term J

[olow entry I
I Dump XML] Last XML.jar dump : 12: 02 AM November 2, 2010

Copyn9ht •9 l00.f·l0 10 • •

Part of spaach

0 adjactlva

O adverb
0 noun

O varb

Notes:
Use this t ag <br:> for

Carriage re t um. One for

a new paragraph two for

a blank line.

Attach Image (320 ,i n)

~

Figure 15. The eGEO Dictionary Editor. The dropdown box on the left lists the
entries in the dictionary database. The text box and text area in the center are for
editing a term and its definition. The 'insert reference to' button and dropdown box
immediately below the text area, allows the cross linking of dictionary entries. For
the instance shown here, clicking the 'insert reference to' button will link the
highlighted word "sandstone" to the Sandstone dictionary entry. The buttons in the
second row below the text area allow the user to add a new entry or to delete,
preview or save changes to the current term. The attach image area in the lower
right allows the insertion of an image at the cursor. The 'Dump XML' button
updates the database and CVS repository to reflect any changes made using the
editor.

49

Archaeology Dictionary Editor On-A-Slant Home I l\laint Home I Editor Home

Select an entry to modify:

I Bioturbe.tion vJ

Dictionary Entry:

I Bioturbe.tion

Part of Speech:

0 adjective O adverb 0 noun O verb

Definition:

Disturbance at an archaeological site due to biological organisms, from
roots to burrowing animals. Recognizing bioturbation is important as it
creates secondary disposition in site layers. See also ~Reference
wordID="103" >Transformational Process</Reference> .

se.ve che.nges I Tre.nsforme.tione.l Process vi
delete word insert reference to] [reset] I view entry

+ Add new word.

Dump XML] Last XML.jar dump: 2: 25 PM June 25, 2008

Copynght •~l 200-t - 2010,

Figure 16. The On-A-Slant Dictionary Editor showing the cross-link between the
Bioturbation and Transformational Process entries.

50

5. CONCLUSION

Several successful content creation tools have been produced to facilitate

the development of lmmersive Virtual Environments. These tools meet the three

requirements specified in the introduction. They are cross platform, accessible

anywhere internet is available, and do not require the installation of any special

software. The web browser they currently use is sufficient.

Three content experts have successfully used the tools to create and

maintain a number of task and software agents. Figure 17 shows a screen shot of

the On-A-Slant Virtual Village IVE with containing both a software agent and a

task created using the content editors Figure 18 contains a similar screen shot

from the eGEO IVE.

Even during periods of development where there are no content experts

available, programmers have used the Bot Editor to create placeholder agents.

Placeholder agents are created to fill a perceived role until they can be evaluated

and modified by a content expert.

As with many software applications, there are enhancements that were

discussed during and post development but were not feasible to implement due to

time or difficulty constraints. The development of these tools will continue with the

implementation of new features and enhancements.

The current version of the Bot Editor only allows the creation of

conversations were the student asks an agent a question. A new version is in

development that allows the integration of conversation parts where the agent

asks the student a question.

51

There is the potential for concurrency problems to arise if multiple content

experts try to edit the same conversation part or task question. Implementing

atomic transactions within the editors will prevent this problem from occurring.

The ability to upload an image into the CVS image repository should be

added to the Task Editor. Currently, images need to be added to the CVS

repository manually and then linked by adding the proper image tag into the task

description.

52

A~ you an: exploring the wlagc, could you see what you = find out about it/
Rtmeml: , ii may look slightly different than the

~~ Once you've found il, you'll need to record your I
fiodm£s in !he field book. and send il back here for = ... ~'-""'"'""""' .

How do you slice the squash?

I slice il from side to side. horizolllally so each piece can be skewed through the core and
dried efficiently.

Where did you gel the squash?

I grew il in my earoen- But, not C'lerything that we prepare and cat is grown in a earden
We also @)11her food, such as chokecherries and plums, which grow on !he rivertJanks, and
prairie turnips that grow on !he prairie.

--i,all-10 - lll!rc:lclmg • o,dorl ltom the llt below:

Figure 17. A screen capture from the On-A-Slant Virtual Village IVE. The
Archaeology Guide pane in the upper left is showing the Tasks tab. Inside the tab
is the content of the Squash Knife Artifact task. The box in the upper right is the
conversation interface for the software agent Sage. Available bot questions are
listed in the lower pane and the agent's responses are displayed in the upper
pane. In the background is the 3D window showing Sage slicing squash with a
bone knife.

53

'I 11 need to test the river for safe l""els of niltales,

pbupb&IH, arsenic, and dissolved oxygen

I'~ pick up the water quality test kit by clicking on
d. The tesl ki1 is the red box silting behind Jade.

Toll the river for nilrales, phospbales, and arsenic. Some of these are only detectable
ll1rough a chemical tesl, so lake the waler testing kit. You'll also need to lest for dissolved
~Bil lo see if the water is safe for aquatic life. Perform these tests along the entire length
~r ~ IWlil Al. a minimum. you need to lest a1 the mange poles found along the river.

The ""Ill!': quality is not the same tbroughoul the river. L""ds could be safe in one area and

I 1h!c ~..,ou,; in another, so ~•u ~d to ~al.lOl'1Il3pi:lllll!r One test will not do! , 1
---"--------IIC-u Mllill piJ " ,.., 'irliyclk;klitg,..,, opio,rJ ""'llil llill ~

1111
Vlllill ~ltffl'--.-il l ■M,11i1DliCili11N,i'Unlk,.illlil - :,wMl

Figure 18. A screen capture from the eGEO IVE. The box in the middle is the
conversation interface for the software agent Jade. Available bot questions are
listed in the lower pane and the agent's responses are displayed in the upper
pane. Behind the conversation pane and to the right is the Log Book pane
showing the Tasks tab. Inside the tab is the content of the Mission from Jade!
task. In the upper left is the 3D window showing the software agent Jade.

54

6. REFERENCES

Alice. (2010). Alice 2.2 [Software]. Retrieved from http://wwwic.alice.org.

Apache Software Foundation, The. (2009). The Apache HTTP Server Project.
Retrieved from http://httpd.apache.org/ABOUT _APACHE.html

Autodesk, Inc. (2010). Maya [Software]. Retrieved from http://usa.autodesk.com/

Blender Foundation (2010, Oct 14). Blender [Software]. Retrieved from
http://www.blender.org/

Borchert, Otto, Lisa Brandt, Guy Hokanson, Brian M. Slator, Bradley Vender, Eric
J. Gutierrez. (2010). Principles and Signatures in Serious Games for Science
Education, in Gaming and Cognition: Theories and Practice from the Learning
Sciences Edited by: Richard Van Eck. IGI Global. pp. 312-338.

Brandt, L., 0. Borchert, K. Addicott, B. Cosmano, J. Hawley, G. Hokanson, D.
Reetz, B. Saini-Eidukat, D. P. Schwert, B. M. Slator, S. Tomac. (2006). Roles,
culture, and computer supported collaborative work on Planet Oit. Journal of
Advanced Technology for Learning, 3(2), 89-98.

Curtis, Pavel. (1997). LambdaMOO Programmer's Manual for LambdaMOO
Version 1.8.0p6. Xerox, San Francisco, CA. March 1997.

Epic Games, Inc. (2010). Unreal Ed [Software]. Retrieved from
http://www. unreal.com/features. php?ref=ed itor

Green, Nathan. (2000, July 26). Background Bug Logging for LambdaMOO.
Unpublished manuscript.

Hokanson, G., Borchert, 0., Slator, B. M., Terpstra, J., Clark, J. T., Daniels, L. M.,
Anderson, H. R., Bergstrom, A., Hanson, T. A., Reber, J., Reetz, D., Weis, K. L.,
White, R., & Williams, L. (2008). Studying Native American Culture in an
lmmersive Virtual Environment. Proceedings of the IEEE International Conference
on Advanced Learning Technologies (ICAL T-2008). IEEE Computer Society
Press. Santander, Spain. July 1-5. Pg. 788-792.

Jordan, Pamela, Michael Ringenberg & Brian Hall. (2006). Rapidly Developing
Dialogue Systems that Support Learning Studies. Proceedings of ITS06 Workshop
on Teaching with Robots, Agents, and NLP.

Koster, Raph (2006). User Created Content. Raph's Website. Retrieved from
http://www. raph koster .com/2006/06/20/user-created-contenU

55

Linden Research, Inc. (2009, June 4). Building Tools. Retrieved from
http://wiki.secondlife.com/wiki/Building_ Tools

Milinkovich, M. (2005, Nov 20). About the Eclipse Foundation. Retrieved from
http://www.eclipse.org/org/

North Carolina State University. (2008, May 21). HI FIVES. Retrieved from
http://ced.ncsu.edu/hifives/games/index.html

Oracle Corporation. (2010). About MySQL. Retrieved from
http://www. mysql .com/about/

Perl.org. (2010). The Perl Programming Language. Retrieved from
http://www.perl.org/

PHP Group, The. (2010, Sept 17). PHP: Hypertext Preprocessor. Retrieved from
http://php.net

Pittsburgh Science of Learning Center. (2008). LearnLab. Retreived from
http://www.learnlab.org.

PostgreSQL Global Development Group. (2010, Feb 25). PostgreSQL: About.
Retrieved from http://www.postgresql.org/about/

Price, Derek Robert, Ximbiot. (2006, Dec 3). Open Source Version Control.
Retrieved from http://www.nongnu.org/cvs/

Saini-Eidukat, Bernhardt, Donald P. Schwert, & Brian M. Slator. (2001). Geology
Explorer: Virtual Geologic Mapping and Interpretation. Journal of Computers and
Geosciences. 27(4).

Schwert, Donald, Brian M. Slator, Guy Hokanson, Otto Borchert, Bernhardt Saini
Eidukat, Jeffery Terpstra, John Reber, and Lisa Daniels. (2010). Integrating
Mathematics and Chemistry into a Virtual Environment for Geologic Education. 6th
Quadrennial Conference of the International Geoscience Educators Organisation
(IGEO). Johannesburg, South Africa. 30 August - 3 September.

Slator, Brian M. (1999). Intelligent Tutors in Virtual Worlds. Proceedings of the 8th
International Conference on Intelligent Systems. Denver, CO. June 24-26, pp.
124-127.

Slator, Brian M., D. Schwert, B. Saini-Eidukat, P. McClean, J. Abel, J. Bauer, 8.
Gietzen, N. Green, T. Kavli, L. Koehntop, B. Marthi, V. Nagareddy, A. Olson, Y.
Jia, K. Peravali, D. Turany, 8. Vender, J. Walsh. (1998). Planet Oit: a Virtual
Environment and Educational Role-playing Game to Teach the Geosciences. In
the Proceedings of the Small College Computing Symposium (SCCS98). Fargo
Moorhead, April. pp. 378-392.

56

Slator, B.M., P. Juell, P.E. McClean, 8. Saini-Eidukat, D.P. Schwert, A. White, C.
Hill. 1999. Virtual Environments for Education at NDSU. World Conference on
Educational Media, Hypermedia and Telecommunications (ED-MEDIA 99), June
19-24, Seattle, WA.

Slator, Brian M., Lisa M. Daniels, Bernhardt Saini-Eidukat, Donald P. Schwert,
Otto Borchert, Guy Hokanson, Richard T. Beckwith (2003). Software Tutors for
Scaffolding on Planet Oit. Proceedings of the 3rd IEEE International Conference
on Advanced Learning Technologies (ICAL T}. Athens, Greece, July 9-11, pp. 398-
399.

Slator, Brian M., Richard Beckwith, Lisa Brandt, Harold Chaput, Jeffrey T. Clark,
Lisa M. Daniels, Curt Hill, Phil McClean, John Opgrande, Bernhardt Saini-Eidukat,
Donald P. Schwert, Bradley Vender, Alan R. White. (2006). Electric Worlds in the
Classroom: Teaching and Learning with Role-Based Computer Games. New York:
Teachers College Press. Columbia University. 192 pages.

Spindler, George and Louise Spindler. (2000). Fifty Years of Anthropology and
Education, 1950-2000: A Spindler Anthology. Mahwah, New Jersey. Lawrence
Erlbaum Associates.

Vygotsky, Lev. (1986). Thought and Language. Cambridge: MIT Press.

Xinhai Ye, M.S. (2001). Virtual Entity Tool: a Tool to Assist Content Specialists in
Constructing and Maintaining Hierarchical Ojbects in Virtual Scientific Domains.
Unpublished master's thesis. North Dakota State University. Fargo, ND.

Zelenak, Jozef, M.S. (1999a). Conversation Constructor for Agents in Educational
Simulation Environments. Unpublished master's paper. North Dakota State
University. Fargo, ND.

Zelenak, Jozef. (1999b). The ZeleCon Conversation Constructor [Software).
Retrieved from http://wwwic.ndsu.edu/~mooadmin/zelecon/

57

