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ABSTRACT 

In the modern world, social media wields a lot of power. Twitter, particularly, has 

provided people a platform to express their opinions about everything under the sun from 

mundane everyday life to politics, race, religion etc. It has often come under scrutiny for 

unabashed propagation of hate speech. This project employs natural language processing 

techniques on a corpus of tweets to detect hate speech. A total of 3538 unique tokens are 

identified that appear only in tweets classified as hate speech. With the help of data visualization 

techniques like word clouds and frequency distribution plots, it became evident that the 

occurrence of sexist, homophobic, and racist slurs is the most frequent in hate tweets. This 

implies that women, LGBTQ+ community, and people of color are the most targeted sections of 

society. 
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1. INTRODUCTION 

Artificial Intelligence (AI) is perhaps the most disruptive and important technology of our 

times. When OpenAI launched chatGPT in 2022, the focus of the entire world shifted to AI, 

machine learning and more specifically to natural language processing (NLP). NLP is a branch 

of machine learning that deals with unstructured data to analyze how elements of human 

language are structured together to impart meaning [1]. While the world is addressing important 

questions about restricting AI, so it does not replace humans, it is hard not to marvel at the kind 

of problems we are able to solve with NLP today. Some of the real-world applications of NLP 

are machine translation, text summarization, text classification, product recommendations, and 

sentiment analysis. Sentiment analysis specifically is an NLP technique that analyzes text to 

determine polarities (positive, negative, or neutral), emotions (happiness, sadness, or anger), or 

state of mind (interest or disinterest) towards target entities or topics. Despite the advances in 

machine learning algorithms and the advent of large language models, sentiment analysis is still 

restricted to solving business problems like gauging customer response from social media to 

certain products and marketing campaigns or devising action plans to market products based on 

customer feedback. The possibility of employing sentiment analysis for more humane tasks like 

identification of hate speech on social media and flagging harmful content remains seemingly 

untapped. 

As of June 2023, 4.8 billion people use social media every day. An average user spends 

864 hours a year scrolling through various apps. Social media algorithms are optimized for 

engagement which means they end up becoming echo chambers to cater to user’s preferences. 

Twitter’s ex CEO Jack Dorsey admitted how the algorithm enables the propagation of tweets 
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with negative sentiments over tweets with positive sentiments. With no accountability and 

unconditional freedom, the spread of negativity and hate on social media is rampant today.  

United Nations has defined hate speech as “any kind of communication in speech, writing 

or behavior, that attacks or uses pejorative or discriminatory language with reference to a person 

or a group on the basis of who they are, in other words, based on their religion, ethnicity, 

nationality, race, color, descent, gender or other identity factor”. Usage of hate speech often 

comes in contention with freedom of speech. But given the impact hate speech can have, it 

becomes important to flag inflammatory posts on social media for removal. However, this task 

cannot be wholly accomplished by targeting the usage of certain words identified in the hate 

speech lexicon. Understanding the nuances and context of certain words in a sentence is 

important for hate speech detection. Not every offensive text can be classified as hate speech. 

For instance, the usage of the ‘n’ word in African American rap music can be deemed offensive 

but not hate speech [2]. Besides, social media language comprises of made-up words, broken 

vocabulary, incorrect usage of grammar. In addition, it consists of abbreviations, nonstandard 

punctuation, improper spelling, emoticons, and slangs. Context-aware ways to utilize ambiguity 

are either nonexistent or inefficient due to the lack of facial expressions, visual, and tone-of-

voice clues. 

Despite the advances in the field of NLP, it is still a difficult task to deduce the 

underlying meaning of a sentence. The focus of this study is to use sentiment analysis techniques 

to extract the sentiment of text. This will be incorporated with various data processing techniques 

aimed at creating a clear distinction between hate speech and generally offensive speech to 

understand the nuances. This can be helpful in ensuring social media platforms remain clean and 

wield less destructive power. 
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In this project, sentiment analysis techniques are used along with data visualization 

techniques aiming to: 

(a) Identify and flag tweets that violate hate speech policies. 

(b) Identify the sections of society that are most vulnerable and susceptible to hate speech 

attacks. 
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2. LITERATURE REVIEW 

Hate speech depends greatly on nuance. There is a fine line between hate speech and 

offensive language. This makes the task of sentiment analysis for hate speech detection hard. 

Separating the two is crucial in hate speech detection. In the recent times, a lot of studies have 

been conducted on automatic detection of hate speech. Lexical detection methods classify all 

texts containing certain terms as hate speech, and therefore, tend to have low precision [2]. Kwok 

and Wang in their study on detecting tweets against Black population found that 86% of the time 

a tweet was classified as racist was because of the use of offensive words. The usage of anti-

black racist words is quite prevalent among the black population and the majority of the time the 

usage can be termed offensive rather than hate speech or racist speech. Similarly, the word ‘gay’ 

can be used in contexts both related and unrelated to hate speech [3]. This once again underlines 

the importance of nuance in hate speech detection.  

Machine learning algorithms based on feature engineering are widely used in the field of 

hate speech detection [4]. Gitari et al. (2015) took a lexicon-based approach and designed 

various sentiment features for hate speech detection that accounted for sentence structure [5]. For 

instance, the occurrence of a relevant noun (like ‘Blacks’, ‘Jews’) and verb (like ‘kill’, ‘loot’, 

‘beat’) in a sentence. Silva et al. in their study to analyze the targets of hate on social media used 

a strategy that searches for sentence structures I <intensity> <user intent> <hate target> [6]. 

This template captures when hate is targeted towards a group of people (e.g., ‘I just hate Jews’). 

Bag-of-words approaches lead to high false positives as the presence of offensive words leads to 

misclassification [3]. Burnap et al. derived classification features from content of each tweet, 

grammatical dependencies between words, incitement to respond with antagonistic actions to 
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create a supervised machine learning classifier [7]. However, it just conflated offensive language 

with hate speech making it difficult to identify hate speech. 

Deep learning-based methods have shown significant promise. Zhang et al. used a 

Convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU) to learn higher-level 

features [8]. Tekiroglu et al. constructed a dataset based on hate speech and its responses and 

used the pre-trained language model GPT-2, for hate speech detection [9]. 
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3. METHODOLOGY 

Opinion mining is a subfield of linguistics and natural language processing that deals 

with sentiment analysis [10]. It evaluates the degree of polarity of words and sentences and 

extracts views and feelings from textual data [11]. Sentiment analysis is an excellent way to 

know how the target audience or consumers feel about a particular product, campaign, or even an 

idea. The origin of sentiment analysis can be traced back to 1950s, when it was primarily used on 

written paper documents. In the modern world, sentiment analysis is used in every field 

imaginable. Governments use sentiment analysis to sense public mood on policy announcements, 

political parties use it to predict public response to political campaigns, large corporate houses 

use sentiment analysis to predict the consumer response to their products or marketing 

campaigns or to see how their competitor’s products are received by consumers.  

For this project, two different approaches have been used for performing sentiment 

analysis on tweets for hate speech detection. The first approach involved building three different 

binary classification models – multinomial naïve Bayes classifier, random forest classifier, and 

logistic classifier to study their performance. The reason these specific algorithms were chosen 

was because of the success they have showed in previous work in this field. Figure 1 shows the 

schematic process flow diagram to building these models. The initial steps are the same for all 

three classifiers. We collect data either by scraping Twitter or from public datasets. Data is then 

preprocessed, and a vocabulary of tokens is built. Data visualization techniques help in 

understanding our data better and generalizing about the dataset. The textual tokens are then 

converted into numbered form or vectors to be fed to our machine learning models which 

perform the task of classification. 
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Figure 1. Schematic process-flow diagram for binary classification algorithms 

 

The second approach involves fine-tuning a pre-trained language model Bidirectional 

Encoder Representations from Transformers (BERT) for sequence classification. In a 

transformer the input consists of sentence pairs. The self-attention mechanism in the transformer 

allows BERT to model many downstream tasks, whether they involve single text or text pairs 
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[13]. For each downstream task, the inputs and outputs are plugged into BERT and all 

parameters are fine-tuned end-to-end.  

 

Figure 2. Architecture of a BERT model 

 

For text classification tasks the input representation is a single sentence instead of a pair 

of sentences (e.g., <Question, Answer>) because the second sentence is relevant only in next-

sentence prediction tasks and not in text classification tasks. Figure 2 shows the architecture of a 

BERT model. The encodings from a BERT tokenizer are passed into the Embeddings module. In 

simple terms, embeddings are vector representations of tokens. Then, embeddings are passed 

into the encoder module. The base BERT model has 12 transformer layers in the encoder. Output 

Bert Tokenizer

Embeddings

BERT Encoder

BERT Pooler

Classification 
Head



 

9 

from each layer feeds into the other in a sequential manner. The BERT pooler returns an 

embedding for the [CLS] token which is passed on to the classification head, which in turn 

returns the classification for the text sequence. 

3.1. Preliminaries 

3.1.1. Python Libraries 

The code for this project was written in Python and executed in Jupyter notebooks. The 

various Python libraries used to accomplish different tasks in this project are listed below: 

• Pandas, Numpy – are used for data loading and manipulation 

• Regular Expression – was used for data cleaning purposes 

• NLTK – was used for data preprocessing tasks like stop word removal, tokenization, 

stemming, lemmatization.  

• Scikit-learn – was used for feature extraction with TF-IDF and CountVectorizer. It 

was also used for data modeling. 

• Seaborn, Matplotlib, Yellowbrick, WordCloud – were used for data visualization 

tasks. 

• Transformers, PyTorch – were used for implementing the transformer model. 

3.1.2. Environment 

All the experiments and computations were performed on a personal Mac computer with 

M1 chip and 8 GB of RAM. 

3.2. Data Collection 

The data for this project is sourced from Cornell University’s 2017 research on 

Automated Hate Speech Detection and the Problem of Offensive Language [12]. The corpus 

contains a random sample of about 25,000 tweets that are manually labeled into three categories: 
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hate speech, offensive language, and neutral as shown in Figure 3. The data, though reliable, is 

highly imbalanced and contains merely 5% tweets that are labeled as hate speech. Association of 

Computational Linguistics (ACL) provides labeled data with tweet IDs of tweets containing hate 

speech. In the past, the Tweeter API could be used to scrape data from twitter using the tweet 

IDs [15]. But, with the recent changes at X, scraping has been rendered almost impossible. A 

publicly available corpus of hate tweets extracted from the ACL dataset was then used to balance 

the dataset. The new balanced dataset is shown in Figure 4. Initial exploratory data analysis 

made it evident that the new dataset had a total of 8,337 tweets with 4,174 tweets classified as 

hate speech with label ‘1’ and 4,163 tweets classified as neutral speech with label ‘0’. This 

dataset had an equitable class distribution of tweets as depicted by Figure 5 and 6. 

 

Figure 3. Manually labeled dataset from Cornell study 
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Figure 4. Data obtained from publicly available ACL dataset 

 

 

Figure 5. Class distribution of tweets before balancing dataset 
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Figure 6. Class distribution of tweets after balancing dataset 

 

3.3. Data Preprocessing 

 

Figure 7. Data Preprocessing Tasks 
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3.3.1. Data Cleaning  

For building a classification model, data cleaning is one of the most crucial steps. As 

shown in Figure 7, it is the first step in data preprocessing. Removal of unwanted columns is the 

foremost step. In this dataset, only two columns hold significance i.e., tweet text and the 

classifier (1 for hate speech and 0 for neutral speech). The second step in data cleaning is 

preprocessing tweets. The raw tweet text comprises of hashtags, twitter codes of retweet and 

quote tweet, punctuation, emojis, unicode characters, whitespaces, URLs. Python’s regular 

expression module is used to remove all these characters from tweets. Figures 8 and 9 show the 

tweets before and after cleaning, respectively. 

  

Figure 8. Tweets before performing data cleaning steps 

 

 

Figure 9. Tweets after performing data cleaning steps 
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3.3.2. Stop Word Removal 

Stop words are the most commonly occurring words in a sentence, comprising of articles, 

prepositions, conjunctions, pronouns, etc. and do not add much information to text. Python’s 

NLTK library provides a corpus of words that are considered stop words. Using this corpus, the 

cleaned tweets are processed such that all the stop words are excluded from the tweets. 

3.3.3. Tokenization 

Tokenizers divide strings into lists of substrings or sentences into a list of individual 

words. The NLTK word tokenizer is used to achieve tokenization. 

3.3.4. Normalization 

3.3.4.1. Stemming 

Stemming is the process of reducing inflected or sometimes derived words to their word 

stem, base or root form. For example, the words ‘run’, ‘running’, and ‘runner’ will be stemmed 

to their root form ‘run’. The NLTK library provides various stemmers. For this project, Porter 

Stemmer is used to remove morphological affixes from words. 

3.3.4.2. Lemmatization 

Lemmatization is the process of reducing a word to its lemma by using morphological 

analysis of the words using dictionaries. In essence, the stem of a word may or may not be a 

meaningful word, but lemma is always a meaningful word. 

3.4. Data Visualization 

Once the data is preprocessed by doing stop word removal and tokenization, frequency 

distribution plots and word clouds of words within the whole corpus are generated. A frequency 

distribution tells us the frequency of each token within and across the corpus. CountVectorizer is 

used to transform the tokens into vectors based on the frequency of each token in the corpus. It 
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creates a matrix in which each token is represented by a column and each text from corpus is 

represented by a row in the matrix. The value of each cell is the count of a token in the particular 

text. The count vectorized matrix is then used to plot the frequency distribution plots. These plots 

and word clouds of most used tokens helped in making important deductions about data. The 

total number of tokens in tweets labeled as hate speech were 26,101. The number of unique hate 

tokens were 6,378. Similarly, the number of tokens generated from tweets labeled neutral were 

26,012 with 8,290 unique tokens. The word clouds in Figures 11 & 13 and frequency distribution 

plots in Figures 10 & 12 inform us about the most frequently used words in both hate tweets and 

neutral tweets. 

 

Figure 10. Frequency distribution for top 25 tokens in tweets that were not hate speech 
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Figure 11. Word cloud representing top 100 tokens in tweets that were not hate speech 

 

 

Figure 12. Frequency distribution for top 25 tokens in tweets that were hate speech 
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Figure 13. Word cloud representing top 100 tokens in tweets that were hate speech 

 

From the data visualizations, it became evident that both set of tweets had some common 

tokens. This made it difficult for machine learning models to make correct predictions. After 

taking the set difference of the two sets of tokens, 3,538 unique tokens were extracted that 

appeared only in hate tweets. This helped in reducing false negatives. 

3.5. Feature Extraction 

Raw text cannot be directly fed into machine learning models. Feature extraction is the 

process of converting raw text into a set of numerical or categorical features. These numerical 

vectors act as input for machine learning models which then analyze and classify them. There are 

multiple feature extraction techniques. For this project, TF-IDF is used. 

3.5.1. Term Frequency – Inverse Document Frequency (TF/IDF) 

TF-IDF is a measure of importance of a word in a document, adjusted for the fact that 

some words appear more frequently than others. TF-IDF works by determining relative 

frequency of words in a specific document compared to the inverse proportion of that word over 
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the entire document corpus [16]. Essentially, it is a product of two statistics, term frequency and 

inverse document frequency.  

Term Frequency (TF) is the relative frequency of term t in document d. Logarithmically 

scaled TF is formulated as: 

𝑡𝑓(𝑡, 𝑑) = log(1 + 𝑓𝑡,𝑑) 

where, 𝑓𝑡,𝑑 is the frequency of term t in d. 

 Inverse Document Frequency (IDF) is a measure of how much information the word 

provides. It is logarithmically scaled inverse fraction of documents that contain the word. 

𝑖𝑑𝑓(𝑡, 𝐷) = log
𝑁

{𝑑𝐷: 𝑡𝑑}
 

where, 𝑓𝑡,𝑑 is the frequency of term t in d. 

N is the total number of documents in the corpus, N = |D| 

{𝑑𝐷: 𝑡𝑑} is the number of documents where the term t appears 

 The TF-IDF is then calculated as a product of TF and IDF. 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡,𝐷) 
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4. DATA MODELING 

4.1. Data Modeling with Binary Classification Algorithms 

Binary classification is the task of classifying the elements of set into two distinct classes 

based on a classification rule. Sentiment analysis of tweets is a task of classifying a set of tweets 

into two categories: ‘hate speech’ and ‘neutral speech’. This is done by implementing supervised 

machine learning algorithms. Supervised machine learning is a paradigm where we train the 

model on labeled data and then test it to predict or classify unlabeled data. I have employed three 

binary classification algorithms models: multinomial naïve Bayes, random forest classifier, and 

logistic regression. The reason for choosing these algorithms is their popularity and success in 

text classification tasks. In addition to using the traditional classification algorithms, I have also 

fine-tuned a pre-trained transformer model BERT. 

4.1.1. Multinomial Naïve Bayes 

Naïve Bayes is a learning algorithm that is frequently employed to tackle text 

classification problems [17]. Multinomial naïve Bayes (MNB) is widely used for assigning 

documents to classes based on statistical analysis of their contents. It does so by determining the 

probability that a document (fragment of text) belongs to a particular class. Given the samples S 

intended to be classified, each sample in S is defined as a string that occurred in one or multiple 

documents from a class C. To perform the classification, the terms in S are represented by a 

vector W. Each feature wi of W is an occurrence frequency of the corresponding i-th term in the 

documents from class C. p(wi | C) is the probability that the terms in S occurred in documents 

from class C. The Bayesian probability is computed as follows: 

𝑝(𝐶𝑘|𝑊) =
𝑝(𝐶𝑘) ∗ 𝑝(𝑊|𝐶𝑘)

𝑝(𝑊)
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The main idea behind naïve Bayes is that all features in W independently contribute to 

the probability that S belongs to Ck. MNB assumes that S is represented by feature vectors W. 

Each feature vector wi is the count with which the i-th term from S occurred in the text already 

classified to class C [18]. 

4.1.2. Random Forest Classifier 

Random forest classifier is a classification algorithm that consists of multiple decision 

trees forming an ensemble. It is an extension of bagging method and utilizes randomness in 

creating decision trees. Each tree comprises of data sample drawn from training set with 

replacement called the bootstrap sample. Classification is done by aggregating the predictions of 

individual decision trees to identify the most popular result [19]. 

4.1.3. Logistic Regression 

Logistic Regression is a Machine Learning method that is used to solve classification 

issues. It is a statistical model that is based on the probability of an event taking place. The 

logistic regression hypothesis suggests that the cost function be limited to a value between 0 and 

1 [21]. A Logistic Regression model utilizes a sophisticated cost function known as the 'Sigmoid 

function', which is calculated for any value x as: 

(𝑥) =
1

1 + 𝑒−𝑥
 

Logistic Regression utilizes the gradient descent algorithm to find the optimum weights 

and biases for the model to minimize cost. 

 

4.2. Data Modeling with BERT 

Bidirectional Encoder Representations from Transformers (BERT) is a large-scale 

transformer-based language model that can be finetuned for a variety of tasks. The first 
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transformer model was introduced in the very popular ‘Attention is all you need’ paper [22]. It 

comprises of encoder-decoder architecture based on attention layers. Unlike traditional Recurrent 

Neural Networks (RNN) where input sequence is fed in a continuous method, one word at a time 

to generate word embeddings, a transformer allows passing all the words simultaneously and 

generating word embeddings simultaneously as well.  

In a transformer, the encoder block takes in input embeddings along with positional 

encodings for each word in a sequence. It comprises of a multi-head attention block and a feed-

forward neural network, where it applies self-attention to generate attention vectors for all words 

parallelly. The decoder also operates in a similar fashion. In addition to the multi-head attention 

block and feed forward network, it has masked attention block and a linear and softmax layer. It 

takes in output encodings along with the representations produced by encoder to generate one 

word at a time from left to right. Therefore, the transformer is comprised of two separate blocks 

or mechanisms – an encoder that reads raw text input and the decoder which produces a 

prediction for the task.  

BERT uses transformer at its core but since its goal is to generate a language model, only 

the encoder mechanism is employed [23]. BERT framework consists of two steps: pre-training 

and fine-tuning. The model is pre-trained on unlabeled data over different tasks. For fine-tuning, 

the model is first initialized over pre-trained parameters and then all the parameters are fine-

tuned with labeled data for downstream tasks [23]. A pre-trained BERT model can be fine-tuned 

with just one additional output layer to create state-of-the-art models for wide range of 

downstream tasks such as question answering and language inference, without substantial task-

specific architecture modifications [24]. 
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The BERT model architecture for sequence classification as shown in Figure 3 comprises 

of the tokenizer, embeddings module, encoder, pooler, and a classification head. 

4.2.1. BERT Tokenizer 

BERT tokenizer uses sub-word tokenization algorithm as shown in Figure 14, which 

tends to strike a balance between sequence length and vocabulary size. The algorithm builds a 

vocabulary of tokens of a defined size by selecting and merging the highest scoring character 

pairs in the text dataset. Each token in the vocabulary is assigned an integer ID and embeddings 

of each sentence are generated using these IDs in one-hot encoding fashion. 

 

Figure 14. Tokenization of a sequence at a word, sub-word and character level 

 

The BERT tokenizer generates an output of processed text which has three special 

tokens:  

• Classification token: The [CLS] token signifies the beginning of a sentence. 

• Separation token: The [SEP] token is placed at the end of each sentence in a text 

sequence. This is how BERT differentiates between sentences. 

• Padding token: The [PAD] token is placed at the end of short sentences as many 

times as needed to ensure that all sentences are of the same length. 
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Apart from the special tokens, output contains the following three types of integer 

encodings: 

• Input IDs: There are 30522 tokens in the defined vocabulary of BERT base model. 

Each token maps to a unique integer ID. These IDs in a sequence form the input IDs. 

• Attention mask: Attention masks does the task of assigning the value 0 to padding 

tokens and 1 to non-padding tokens. 

• Token type IDs: Token type IDs are all 0 for text classification tasks and have no 

significance. They are used in sentence prediction tasks. 

4.2.2. Embedding Module 

Embeddings are the vector representations of tokens. The encodings from the tokenizer 

and fed into the encoder which in turn generates the following three embeddings for each token: 

• Word embeddings: Each input ID is replaced with corresponding row vector from 

word embedding lookup table which has one row dedicated to each unique token in 

the vocabulary (30522 rows). 

• Token type embeddings: These again have no significance for sequence classification 

tasks but otherwise signify which sentence from input sequence the token is from 

when there are two sentences. 

• Positional embeddings: Positional embeddings let the model know about the order of 

tokens in a sentence. The maximum sequence length in base BERT model is 512, the 

corresponding positional embeddings will be vector of consecutive integers from 0 to 

512. 

All three embeddings are added to generate the final embeddings of the tokens. 
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4.2.3. Encoder 

The encoder in BERT base model has 12 identical layers. Output from one layer is fed 

into the next layer sequentially. The two main components of encoder layers are: 

• Multi-head self-attention: The self-attention mechanism allows the model to consider 

the context of a word in a sentence. It weighs the importance of the token by 

comparing it with other tokens in that sentence. The embedding vector is run through 

a linear layer three times and outputs three vectors of same dimension called query, 

key, and value vectors. Dot product of query and key vectors is then computed to 

measure the similarity between the vectors. Larger the scalar output of the dot 

product, the higher the similarity between two vectors. The scaled similarity score is 

then passed through a softmax function before being matrix multiplied with the value 

vector, resulting in enriched embeddings. The enriched embeddings inform us to what 

degree a token is paying attention to other token vectors. The 12 transformer layers 

with multiple attention heads allow the model to capture different kind of 

relationships between tokens and generating richer token representations.  

• Position-wise feed-forward network: The feed-forward network aims to improve the 

model capacity by continually enriching token representations. It projects the inputs 

to higher embedding size and introduces a non-linearity through GeLU activation 

function. The GeLU function helps to capture non-linear relationships between 

tokens. 

4.2.4. Pooler 

The pooler takes the output from encoder, which is a matrix and applies transformations 

on it to essentially condense it into a single vector representation. The transformations involve 
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processing the classification token [CLS] through a linear projection (dense layer) and a non-

linear activation function. 

4.2.5. Classification Head 

The output from the pooler is passed through the classification head, which projects the 

pooled embedding into a space with dimensionality equal to the number of different classes. The 

outputs The outputs are the logits for which there is one value for each class. Taking the 

maximum value of these logits will give us the predicted class.  
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5. RESULTS AND OBSERVATIONS 

5.1. Model Performances 

The metrics used to analyze the performance of the models are F1score, recall, and 

accuracy. F1 score is used because the initial data was imbalanced. It provided a more accurate 

measure of the model’s performance over other metrics. Recall is used because it is the measure 

of the proportion of hate tweets correctly identified. Accuracy is the measure of how many 

correct predictions the model made, it determines the overall correctness of the model. However, 

correctly classifying hate tweets is more important than misclassifying non-hate tweets, 

therefore, recall is preferred over accuracy. Also, since F1score is the weighted average of 

accuracy and recall, overall, it gives a better idea about the models than both accuracy and recall. 

The metrics were computed from the confusion matrix using Equation (1) through (3). 

 𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

where: 

TP = number of positive samples correctly classified 

TN = number of negative samples correctly classified 

FN = number of positive samples incorrectly classified 

FP = number of negative samples incorrectly classified 

The original dataset was highly imbalanced with only about 6% tweets classified as hate 

speech. The model performance results for the imbalanced dataset are summarized in Table 1. 

The three binary classification algorithms performed poorly with logistic regression leading with 

an F1 score of 18.49%. Multinomial naïve Bayes classifier failed to make even a single hate 
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speech classification. It classified all the tweets in the validation set as neutral. BERT model 

performed much better than the other algorithms, it attained an F1 score of 47.16% after training 

for over 40 hours. The results offered an interesting insight that accuracy is not a great metric for 

measuring imbalanced data. With almost all tweets classified as neutral, the accuracy of all three 

models was over 94%. 

Table 1. Performance of classification algorithms on unbalanced dataset 

Algorithm F1 Score Recall Accuracy 

Multinomial Naïve Bayes 0% 0% 94.50% 

Random Forest Classifier 17.93% 11.03% 94.09% 

Logistic Regression 18.49% 11.38% 94.13% 

BERT 47.16% 46.50% 94% 

  

Once the data was balanced, the algorithms showed exponential improvement in 

performance. Of the three classification algorithms, random forest classifier had an edge with an 

F1 score of 91.32%. Table 2 shows the performance metrics of the three binary classification 

algorithms as well as the transformer model. The BERT model for sequence classification was 

trained over 3 epochs. The training time was a little over 16 hours. But the transformer model 

outperformed all the three classification algorithms with an F1 score of 92.26%.  

Table 2. Performance of different algorithms on balanced dataset 

Algorithm F-1 Score Recall Accuracy 

Multinomial Naïve Bayes 89.43% 91.85% 89.41% 

Random Forest Classifier 91.32% 93.40% 91.12% 

Logistic Regression 90.35% 86.45% 90.76% 

BERT 92.26% 91.13% 93.16% 
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Table 3. Performance of BERT model over 3 epochs  

Epoch F-1 Score Training loss Validation loss 

Epoch 1 90.45% 0.42450 0.24286 

Epoch 2 91.78% 0.21206 0.21119 

Epoch 3 92.26% 0.16194 0.21061 

 

The BERT model attained very good performance after 2 epochs as shown in Table 3. 

The training error reduced dramatically from 0.42 to 0.21 within 2 epochs. 

5.2. Confusion Matrices 

A confusion matrix summarizes the performance of a classification model. Figures 15 

through 18 show the confusion matrix from multinomial naïve Bayes, random forest classifier, 

logistic regression, and the BERT model. 

 

Figure 15. Confusion matrix for Multinomial Naïve-Bayes algorithm 
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Figure 16. Confusion matrix for Random Forest classifier algorithm 

 

 

Figure 17. Confusion matrix for Logistic regression algorithm 
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Figure 18. Confusion matrix for BERT model 

 

5.3. Findings 

The data visualizations pointed out very interesting data trends. On generating frequency 

distribution plots (Figure 19) and word cloud (Figure 20) of 3,538 words that were unique to hate 

tweets, it became evident that the majority of hate speech was targeted at women (with words 

like ‘sexist’, ‘feminist’, ‘bi**hes’, ‘sexism’, ‘women against feminism’, etc.), the LGBTQ+ 

community (with the ‘f’ word), and the people of African descent (with the different variations 

of ‘n’ word).  
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Figure 19. Frequency distribution for top 25 tokens in tweets that were unique to hate tweets 

 

 

Figure 20. Word cloud representing top 100 tokens in tweets that were unique to hate tweets 

 

The observations help us have a better understanding of the online discourse. It helps us 

to draw dark but very clear conclusions about us as a society. But it also forces us to have more 

discussions on the persistent persecution of certain sections of society on online forums. More 

importantly, it provides us a way forward to tackle hate speech on social media. 
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6. CONCLUSION AND FUTURE WORK 

Machine translation is the not the next ‘big thing’, it is the current ‘big thing’. Despite the 

underlying complications presented by nuance and contextual meaning of words, there has been 

tremendous progress in this field in a very short amount of time. This project has been able to 

demonstrate the capability of classification algorithms in identifying hate speech in text. 

Transformer based models are, without any doubt, one of the strongest contenders in the field of 

Natural Language Processing. However, it is difficult to pick one particular machine learning 

classifier as optimum model for opinion mining because a machine learning model is as good as 

the data it is trained on. This project is limited by the availability of data. Realtime data scraping 

from Twitter by using the keywords identified in this project could help provide even better data 

insights and building a better model. Data sources can also be diversified by collecting data from 

different social media platforms. Additionally, with new advancements happening in the field of 

machine translation, the capabilities of sentiment analysis can also be extended to provide multi-

lingual support as huge amount of the data from non-English speaking countries on social media 

is generally composed of words from multiple languages.  
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