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ABSTRACT 

Hashbarger, Carl Stanley, Ph.D., Department of Mathematics, College of Science and 
Mathematics, North Dakota State University. April 2010. Ramification and Infinite 
Extensions of Dedekind Domains. Major Professor: Dr. James Coykendall. 

This dissertation presents methods for determining the behavior of prime ideals 

m an integral extension of a Dedekind domain. One tool used to determine this 

behavior is an algorithm that computes which prime ideals ramify in a finite separable 

extension. Other results about factorization of prime ideals are improved and applied 

to finite extensions. By considering a set of finite extensions whose union is an infinite 

extension, it is possible to predict ideal factorization in the infinite extension as 

well. Among other things, this ideal factorization determines whether a given infinite 

extension is almost Dedekind. These methods and results yield some interesting facts 

when they are demonstrated on a pair of classical rings of algebraic number theory. 
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CHAPTER 1. BACKGROUND 

Much of this paper is dedicated to ideal factorization methods and applications. 

The basics of ideal factorization arise in the Fundamental Theorem of Arithmetic, 

which states that every integer can be factored uniquely into a product of prime 

integers. Of course, if every element in a ring can be factored uniquely into prime 

elements, then every ideal of that ring can be factored uniquely into prime ideals. 

The converse is not true in general. This lends itself to a sensible generalization of 

the Fundamental Theorem of Arithmetic, the ability to factor any ideal (uniquely) of 

a given ring into a product of prime ideals. We begin by introducing a class of rings 

called Dedekind domains that are defined by this property. 

1.1. Dedekind Domains 

Dedekind domains have many equivalent definitions in the literature; we will 

shortly state a list of equivalent characterizations that was adapted from [2]. The 

definition that is most important in the context of this paper, however, is the following: 

Definition 1.1.1. An integral domain is a Dedekind domain if every proper ideal 

factors (uniquely) into a finite product of prime ideals. 

In the context of this definition, a Dedekind domain is the ideal analogue of 

a unique factorization domain. We will primarily be looking at interesting ways 

to predict ideal factorizations in extensions of Dedekind domains. As we will see 

in Theorem 1.4.9, there are large classes of extensions of Dedekind domains that are 

Dedekind. Ideals of any such extension would once again factor uniquely into products 

of prime ideals. There will be many instances, therefore, in which we will take 

advantage of the rich structure of Dedekind domains, in part the aforementioned list 

of alternate characterizations. We will set the stage by looking at integral extensions 

and fractional ideals. 
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Definition 1.1.2. Let S be a ring and let R be a subring of S. An elements E S is 

said to be integral over R if there exists a manic polynomial f ( x) with coefficients in 

R such that f ( s) = 0. The extension S is said to be integral if every element of S is 

integral over R. 

Integral extensions of Dedekind domains have many useful properties that will 

be discussed in the course of this paper. The following lemma shows that an extension 

of a ring by a single integral element is a finitely generated. 

Lemma 1.1.3. Let S be a ring and let R be a subring of S. Lets E S such thats is 

integral over R. Then R [s] is a finitely generated R-module. 

Proof. Since sis integral over R, there exists a monic polynomial f over R of degree n 

such that f(s) = 0. We show R [s] ~ R+sR+s2 R+ · · · +sn-I R. Lett ER [s]. Let m 

be the least integer such that t has a representation t = r0+r1 s+r2 s2+ · +r msm where 

each Ti E R and rm =/= 0. Assume m ~ n, say m = n + k where k is a nonnegative 

integer. Notice that f(s) = 0 implies sm - skf(s) = sm where sm - skf(s) is a 

polynomial of degree less than m. Therefore, t = r 0 +r1s+r2s2 + · · · +r m(sm - sk f (s)) 

is a representation oft where the highest power of s is m-1, contradicting our choice 

of m. So m < n and R [s] ~ R + sR + s2 R + • • • + sn-I R, as desired. 

□ 

It is fairly straightforward that an extension adjoining finitely many integral 

elements will also be finitely generated. The following lemma is essentially a converse 

of the previous lemma. 

Lemma 1.1.4. Let S be an integral domain and let R be a subring of S. If S is 

finitely generated as an R-module, then every element of S is integral over R. 

Proof. Let s E S. We need to show that s is the root of a monic polynomial with 
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coefficients in R. Let { s 1 , s 2 , ... , Sn} be a set of generators for S over R. Then ssi E S 

for each i so we have 

Also, we can subtract ssi, which results in the homogeneous equations 

Let M be the matrix with entries rij if i # j and rij - s if i = j. Let Mi be 

the matrix formed by replacing column i of M with the zero vector. Cramer's rule 

states that if det(M) # 0, then Si = ~::\~? = 0 for each i, but this is a contradiction 

because S # 0. So det(M) = 0. Let N be the matrix with entries rij if i # j and 

7\j - x if i = j. Then f ( x) = det ( N) is a polynomial with leading coefficient either 

1 or -1. Let c be the leading coefficient of f(.T). Then cf(.r) is a monic polynomial 

with coefficients in R and we have 

cf(s) = cdet(M) = 0 

This shows that s is integral over R, as desired. 

□ 

Let R be a ring. A common way to build integral extensions of R is to choose 

a ring S that contains R as a subring, then consider the set of all elements of S that 

are integral over R. 

Definition 1.1.5. Let S be a ring and let R be a subring of S. The integral closure 

of R in S is the set of all elements of S that are integral over R. If R contains all 

of the elements of S that are integral over R, we say R is integrally closed in S. In 
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the special case where R is an integral domain, Q is the quotient field of R, and R is 

integrally closed in Q, we say that R is integrally closed. 

Any integral extension generated in this way is integrally closed, as the next 

theorem shows. 

Theorem 1.1.6. Let S be a ring and let R be a subring of S. Let T be the integral 

closure of R in S. Then T is integrally closed in S. 

Proof. Let s E S be integral over T. Then there exist elements to, t 1, ... , tn- l of T 

such that sn+tn_ 1sn- 1+tn_2sn-2+ · -+t1s+to = 0. Because to is integral over R, R [to] 

is finitely generated over R by Lemma 1.1.3. Similarly, for each i such that O :::; i :::; 

n - 1, ti is integral over R [to, t 1 , ... , ti_ 1], so R [t0 , t 1 , ... , ti] is finitely generated over 

R [to, t 1 , ... , ti_ 1]. We have already seen that s is integral over any ring that contains 

t 0 , t1 , ... , tn-l · In particular s is integral over R [t0 , t 1 , ... , tn-i]. Once again, we 

invoke Lemma 1.1.3 which shows that R [t0 , t 1 , ... , tn-l, s] is finitely generated over 

R [to, t1 , ... , tn-l]. Since there are finitely many finitely generated extensions between 

Rand R [t0 , t 1 , ... , tn-l, s], R [to, t 1 , ... , tn-l, s] is finitely generated over R. Hence by 

Lemma 1.1.4, s is integral over R. This shows that s E T, as desired. 

□ 

Let D be an integral domain with quotient field Q. Then D is a subring of 

auy extension field K of Q as well as Q itself. Therefore, it makes sense to discuss 

the integral closure of D in K, call it R. If K is a finite separable extension of Q, 

then there is an element I E K such that Q ( 1 ) = K. See [2] for details. Such an 

extension can often be associated to a polynomial that has I as one of its roots, as 

in the following definition. 

Definition 1.1. 7. The polynomial f ( x) is said to be a minimal polynomial for K 

over Q if f(x) is irreducible as an element of Q [x] and K ~ Q [x] / f(x) ~ Q (,). 
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One characterization of Dedekind domains involves a special class of module 

called the fractional ideals. 

Definition 1.1.8. Let D be an integral domain with quotient field Q. A fractional 

ideal of D is a nonzero D-submodule I of Q such that al ~ D for some nonzero 

a ED. 

Definition 1.1.9. Let D be an integral domain. Let I be a fractional ideal of D. 

Then I is said to be invertible if there exists a fractional ideal J such that I J = R. 

In this case, we call J the inverse of I. 

It is straightforward that the inverse of a fractional ideal is unique. Notice that 

the ideal 1-1 := {a E QI al~ D}. Is a fractional ideal of D. If I is invertible, 

then 1-1 is the inverse of I. For another example of an invertible fractional ideal, let 

a -/- 0 be any element of the quotient field of the integral domain D. Then aD is a 

fractional ideal with inverse ¾D. In particular, this shows that any principal ideal of 

D is invertible. The following lemma shows that invertible is a stronger condition for 

ideals than finitely generated: 

Lemma 1.1.10. Let D be an integral domain. Then any invertible fractional ideal I 

of D is finitely generated over D. 

Proof. Let J be the fractional ideal of D such that I J = D. Then there exists ai E I 

and bi E J such that a1 b1 + a2b2 + · · · + anbn = 1. Let c E I be arbitrary. Then 

ca1b1 + ca2b2 + · · · + canbn = c. Because each element cbi E I J = D, we can take 

{a1, a2, ... , an} to be a generating set for I. 

□ 

Definition 1.1.11. A principal ideal domain D is said to be a discrete valuation 

domain if D contains a unique nonzero prime ideal or if D is a field. 
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A useful property of discrete valuation domains is that the ideals are totally 

ordered by inclusion. To see this, let V be a discrete valuation domain with unique 

prime ideal (p). Notice that the only non units in V are of the form pku where u is a 

unit in V. Hence the only nonzero proper ideals of V are of the form (pk). So the total 

ordering on the nonzero proper ideals of V is defined by (pi) :2 (pi) where 1 ::; i ::; j. 

Of course, all ideals of V contain (0) and are contained in V, which completes the 

total ordering. The following lemma from [2] gives us a nice way to show that a given 

domain is a discrete valuation domain. 

Lemma 1.1.12. Let D be a Noetherian integrally closed domain such that D has a 

unique nonzero prime ideal P. Then D is a discrete valuation domain. 

Proof. Let Q be the quotient field of D. For any ideal I, define the fractional ideal 

1-1 := { a E Q I al S: D}. Clearly D S: 1-1 always holds. We show that D i;; p-1 . 

Let A be the set of all ideals J in D such that D i;; 1-1 . Let b =I- 0 be an element 

of P. Any such element is a nonunit, or else P = D, a contradiction. Since the 

fractional ideal (b)- 1 contains the element b- 1 , we have D i;; (b)- 1 . So (b) E A and 

A is nonempty. Because D is Noetherian, A contains a maximal element, say M. 

Notice that M is not the zero ideal because b E M. We show !vl is a prime ideal of 

D. Let r E D and s E D such that rs E M and r (/. .M. Since M E A, there exists 

an element t E M-1 
\ D. Since t E M-1 and rs E M, trs E D. This means that 

st(rD + M) S: D, which implies st E (rD + M)-1 . If st(/_ D, then Di;; (rD + M)-1 

implies (rD + M) E A. This is a contradiction of the maximality of M because 

M i;; (rD + M). So assume st E D. Then t(sD + M) s;:; D, which shows that 

t E (sD + M)-1
. Because t (/. D, Di;; (sD + M)-1 so (sD + M) EA. So we have 

(sD + M) S: M S: (sD + M), that is M = sD + M and s E M. This proves that 

M is a nonzero prime ideal of D, so P = M i;; D. Thus P E A, and D i;; p-l. 

For any fractional ideal I of D, define the set F (I) := { a E Q I al S: J}. We show 
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that F (I) ~ D. Because I is a fractional ideal, there exists c E J such that cl ~ D. 

Then c:F ( I) ~ D, so c:F (I) is an ideal of D. Since the mapping F (I) -----+ c:F ( I) is a 

D-module isomorphism, F (I) is module isomorphic to an ideal of D. If we combine 

this with the fact that D is Noetherian, we see that F (I) is finitely generated. By 

Lemma 1.1.4 every element of F ( I) is integral over D. Since D is integrally closed, 

F (I) ~ D, as claimed. Notice that P p- 1 is an ideal of D that contains P. Since P 

is the unique prime ideal of D, P is maximal and we have P = P p-l or D = P p-l. 

Suppose P = P p- 1 . Then for any element a E p- 1
, aP ~ P, so by definition 

p- 1 ~ F (P). We have already seen that D ~ p-l and that F (P) ~ D, so we have 

D ~ p-l ~ F (P) ~ D, a contradiction. Therefore, D = P p-l, and by definition 
00 00 

P is invertible. We show n pn = 0. Suppose not, then n pn is a fractional ideal 
n=l n=l 

X X 00 OC 

of D. If a E p- t, then aP ~ D, so a n pn ~ aP n pn ~ D n pn = n pn. This 
n=l n=l n=l n=l 

shows that p-l ~ F (nQlpn). As we have seen, D ~ p-l ~ F (nQlpn) ~ D, 
00 00 

contradicting n pn -=f. 0. Since n pn = 0, there exists a E P \ P 2
. Notice that 

n=l n=l 
a E P implies aP- 1 ~ D. Suppose aP- 1 ~ P. Then a E aD = aP- 1 P ~ P 2

, a 

contradiction. Recall that P is the unique maximal ideal of D. Therefore, the only 

ideal not contained in Pis D, so aP- 1 = D. Thus aD = aP- 1 P =DP= P, which 

shows that P is principally generated. Let I be an ideal of D. Every proper ideal 

is contained in some maximal ideal. In this case the only choice is P, so I ~ P. 

Let k be the least integer such that I ~ pk but I cJ;_ pk+l. Let b E J \ pk+I. Also, 

b E pk = ak D implies akw = b for some w E D. Suppose w E P. Then b E pk+I, a 

contradiction. Sow t/:. P, which means that w is not contained in a maximal ideal. In 

particular, w is a unit. So we have I ~ pk = ak D = akwD = bD ~ I, which shows 

that ak D = I hence I is principally generated. Thus every ideal of D is principal and 

by assumption D has a unique nonzero prime ideal, which proves our result. 

□ 
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We now prove a few preparatory lemmata before giving the characterization 

theorem for Dedekind domains. Similar results are found in [2]. 

Lemma 1.1.13. Let R be a ring and I an ideal of R. Let P be a prime ideal of R 

that contains I. Then the mapping P ~ PI I defines a one-to-one correspondence 

between the prime ideals in R that contain I and the prime ideals of RI I. 

Proof. Elementary ring theory states that RIP ~ (RI I)l(PI I). Since P is prime, 

RIP is an integral domain, which implies (RII)l(PII) is an integral domain. Thus 

Pl I is prime in RI I. This shows that P ~ Pl I maps prime ideals to prime ideals. 

Also, if J is a prime ideal of R such that I ~ J and (RI I)l(ll I) ~ (RI I)l(PI I), 

then RIP~ RI J so P ~ J. This shows that P ~ Pl I is one-to-one. Now let Q be a 

prime ideal in RI I, and let f: R-. RI I be the canonical homomorphism. We show 

that 1-1 (Q) is a prime ideal of R that contains I. We know that Q s;:; RII implies 

J-1(Q) s;:; R. Let a ER and b ER such that ab E J- 1(Q). Then f(ab) E Q implies 

J(a)f(b) E Q implies f(a) E Q or J(b) E Q. Hence a E 1-1(Q) orb E 1-1(Q). In 

any case, 1-1(Q) is prime. Notice that O E Q, so 1-1(Q) contains the kernel of J, 

which is J. Thus 1-1 
( Q) is a prime ideal of R that maps to Q under P ~ PI I. This 

shows that P ~ PI I is surjective, and we have our result. 

□ 

Lemma 1.1.14. Let D be an integral domain, and let I be an ideal of D. Suppose I 

has the prime ideal factorizations I= P1P2 ... Pm and I= Q1Q2 ... Qn where Pi is 

invertible for each i. Then m = n, and after reindexing we have Pi = Qi for each i. 

Proof. We induct on rn. If m = 1, then we have A= I= Q1Q2 ... Qn, Suppose n > 

1. Since A is prime, we know that A ;;;;i Qi for some i. Since also A ~ Q1 Q2 ... Qn ~ 

Qi, we know that A = Qi. Hence D = P 1-
1 A = Q1 Q2 ... Qi-I Qi+1 ... Qn, This 

contradicts The fact that the ideals Qj for i -/= j are proper. Therefore, n = l and 
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A = I = Q1. Assume that our result holds for all k < m. Let AA ... Pm = 

Q1 Q2 ... Qn. Reindex so that P 1 is an ideal that does not strictly contain any Pi. 

Because A is prime and Pi 2 AP2 ... Pm = Q1Q2 ... Qn, Pi 2 Qi for some i. 

Reindex so that Pi 2 Q1. Since Q1 is prime and Q1 2 Q1Q2 ... Qn = AA ... Pm, 

Q1 similarly contains some Pi. So we have Pi ~ Q1 ~ A. Because of our choice for 

A, the containment cannot be strict, hence Pi= Q1 = P 1. Multiplying by P 1-
1 gives 

AP3 ... Pm= Q2Q3 ... Qn. By our induction hypothesis, m = n and after reindexing 

Qi = Pi, so we have our result. 

□ 

Lemma 1.1.15. Let D be a Dedekind domain. Then every invertible prime ideal P 

of D is maximal. 

Proof. Suppose P is an invertible prime ideal that is not maximal. Then there 

exists d E D \ P such that P + dD =/- D. Because D is Dedekind, there exists 

a prime ideal factorization P + dD = AA ... Pn. Similarly, we have P + d2 D = 

Q1 Q2 ... Qm. Let * be the image of * under the canonical mapping D ---+ D / P. 

Then dD = P + dD = AA ... Pn and J2 D = P + J2 D = Q1 Q2 ... Qm- Notice 

that Pi and Qi are prime ideals containing P. Thus by Lemma 1.1.13 we know 

that the images A and Qi are prime ideals in D. Since P is prime in D, D / P 

is an integral domain. This means that principal ideals in D / P such as d2 D are 

invertible. Therefore, Q1 Q2 ... Qm is invertible, hence each Qi is invertible with 

inverse Q1Q2 ... Qi-lQi+l ... Qm(Q 1Q2 ... Qm)-1. So we can apply Lemma 1.1.14 to 

the factorizations P? P:j ... P~ = d2 D = Q1 Q2 ... Qm. Consequently, m = 2n and 

we can reorder so Q2j-l = Q2j = Pj for all 1 :S j :S n. If we let </> denote the 

isomorphism in Lemma 1.1.13, then we have ¢- 1 (Q2j-i) = cp- 1 (Q2J = <1>- 1 (Pj), 

which implies that Q2j-l = Q2j = Pj. As a result, (P + dD) 2 = P + d2 D and we 

have P ~ P + d2 D = (P + dD)2 ~ P 2 + dD. So we can write any element of P in 
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the form a+rd where a E P 2 and r ED. Since a E P and a+rd E P, rd E P. Since 

also di P, we know r E P. Hence P ~ P 2 + dP ~ P, and we have P = P 2 + dP. 

Because P is invertible D = p- 1 P = p- 1(P2 + dP) = P + dD, which contradicts 

our assumption. Therefore, every invertible prime ideal is maximal, and we have our 

result. 

□ 

Lemma 1.1.16. Let D be a Dedekind domain. Then every nonzero prime ideal P of 

D is invertible. 

Proof. Let p be a nonzero element of P. Then there exists the prime ideal factorization 

(p) = PiA ... Pn. Because P is prime and P 1A ... Pn = (p) ~ P, Pk ~ P for some 

k. The fractional ideal PiP2 ... Pk-IPk+ 1 ... Pn l D multiplied by Pk gives D, so Pk 
p 

is invertible. By Lemma 1.1.15, Pk is maximal. Combining this with Pk ~ P gives 

Pk = P. This means P is invertible, as desired. 

□ 

The following lemma allows us to apply properties of the local ring Dp to D. 

Lemma 1. 1. 1 7. Let D be an integral domain. Let p be a prime ideal of D. Let 

H = D \ p. Let Dp denote the localization of D at the prime ideal p. Let Q be the 

quotient field of D, and let Q (,) be a finite extension of Q. Let R be the integral 

closure of D in Q (,). Let L be the integral closure of DP in Q (,). Define the ring 

RH:= { ! E Q (1 ) Ix ER, y EH}. Then L = RH, 

Proof. We show RH ~ L. Since D ~ Dp, The integral closure of D is certainly 

contained in the integral closure of Dp. This justifies that R ~ L. Also, by definition 

Dp contains t for all y E H. Therefore, L contains these elements as well, which 

justifies that RH ~ L. We show L ~ RH. Let l E L. Then l is the root of a monic 

polynomial with coefficients in Dp, say ln+ abn-l ln-I + abn- 2 ln- 2 + ·.·+!!.lb l +QQ.b = 0 where 
n-1 n-2 1 0 
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ai E D and bi E H. Let /3 = bn_ 1bn_2 ... b1bo, Multiplying the above equation by /3 

gives (f3lr + Cn-1 (/31r-1 + Cn-2(/31r-2 + ... + C1 (f3l) + Co = 0 where Ci = a;1~-i E D. 

This proves that f3l is integral over D; that is, f3l E R. From above bi E H, so /3 E H. 

Therefore, 13- 1 E RH which implies f3lf3- 1 = l E RH· Hence L ~ RH, and we have 

our result. 

□ 

One of the characterizations of Dedekind domains involves Krull dimension, 

which we will define here. 

Definition 1.1.18. Let D be a ring. The Krull dimension of D is the supremum of 

the set of all k such that P0 s;;; Pi s;;; · · · s;;; Pk and each Pi is a prime ideal of D. 

For example, a field has Krull dimension 0. An integral domain that is not a 

field has Krull dimension at least 1, because there is some nonzero prime ideal that 

contains the zero ideal, which is prime. If we combine the results of Lemma 1.1.15 

and Lemma 1.1.16, we see that every nonzero prime ideal of a Dedekind domain 

is maximal. This implies that Dedekind domains have Krull dimension at most 1. 

Therefore, the following corollary is valid for Dedekind domains. 

Corollary 1.1.19. Let D be an integral domain of Krull dimension at most l, p 

a prime ideal of D, H = D \ p, Q the quotient field of D, Q(,) a finite extension 

of Q, R the integral closure of D in Q(,), L the integral closure of Dp in Q(,), 

and RH := { ! E Q ( 1 ) I x E R, y E H}. Then there exists a prime factorization 

pR = Pt1 P2k
2 

••• Pr~,m if and only if there exists a corresponding prime factorization 

Proof. Because of Lemma 1.1.17, we know that L = RH, so it suffices to replace L 

with RH, Consider the homomorphism a: R---+ RH defined by a(r) = f. It is a well 

known result that a is injective, so a embeds R in RH. We show that if Pi is a prime 
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ideal of R that contains pR, then Pi RH is a prime ideal of RH that contains pRH. 

First notice that pRH ~ PiRH follows from the fact that p ~ Pi. We show PinH = 0. 

Assume otherwise; then there exists some a E Pin H. Recall a E H implies a t/:- p. 

Since p ~ Pi and p is maximal in D, we have PiR :2 (aD + p)R = DR= R. This 

contradicts the fact that Pi is a (proper) prime ideal of R. So we know that PinH = 0. 

Suppose that PiRH = RH, Then a-1(PiRH) = R, so there exists* E PiRH such 

that * = a ( 1) = f · Therefore, there is some h 1 E H such that bh1 = hh1, hence 

bh1 E Pin H. This contradicts Pin H = 0. So PiRH £;: RH. Assume that ~ E RH 

and ~ E RH such that ~~ ~ = t E Pi RH. Then there is some h4 E H such that 

h4h3r1r2 = h4h1h2b1. Notice h4h3r1r2 E Pi but h4h3 (/:_ Pi, so r1r2 E Pi. Because 

Pi is prime, either , 1 E Pi or r2 E Pi. This implies that ~ E PiRH or ~~ E PiRH, 

which justifies that Pi RH is prime. Suppose pR = P{1 P2k
2 

••• P,!m. Then we have 

PRH = pRRH = P{1 Pf2 
•• , P,!mRH = (P1RH)k 1 (P2RH)k 2 

••• (PmRH)km. Thus we 

have proven the only if condition of the theorem where ~i = Pi RH. We show that 

if ~i is a prime ideal of RH containing pRH, then a- 1 (~i) is a prime ideal of R 

containing pR. Since pRH ~ ~i- pR = a-1(pR1-d ~ a- 1(~i)- We show that a- 1(~i) 

is a prime ideal of R. Let c1 E R and c2 E R such that c1 c2 E a-1 ( ~i). Then 

a(c1c2) = a(c1)a(c2) E ~i- Since ~i is prime, either a(ci) E ~i or a(c2) E ~i­

Therefore, without loss of generality, c1 = a-1(a(ci)) E a-1(~i), This shows that 

a-1 (~i) is prime in R. Assume that pRH = (~1)k1 (~2)k2 .•. (~m)km is a prime 

factorization for pRH, Then pR = a- 1(pRH) = a-1((~1)k1 (~2)k2 ••• (~m)km) = 

a-1(~1)k1 a-1(~2)k2 
... a-1(~m)km. As we have seen, a-1(~i) is prime, so we let 

a- 1 (~i) = Pi and we have our result. 

□ 

We are ready to state the characterization theorem for Dedekind domains. More 

characterizations appear in the literature, but the following list contains six that are 
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best suited to the purposes of this paper. 

Theorem 1.1.20. Let D be an integral domain. The following are equivalent: 

1) D is a Dedekind domain. 

2) Every proper ideal of D factors uniquely into a finite product of prime ideals. 

3) Every nonzero ideal of D is invertible. 

4) Every fractional ideal of D is invertible. 

5) D is Noetherian, integrally closed, and has Krull dimension at most 1. 

6) D is Noetherian and for every nonzero prime ideal p of D, the localization 

Dp is a discrete valuation domain. 

Proof. 1) ==} 2) : 

Suppose that every proper ideal of D factors into a finite product of prime 

ideals. By Lemma 1.1.16, those prime ideals must be invertible. By Lemma 1.1.14, 

any such factorization must be unique, which proves our result. 

2) ==} 3) : 

Let l be a nonzero ideal. Then we have the pnme ideal factorization l = 

AA ... Pn where each Pi is a nonzero prime. By Lemma 1.1.16, each Pi is invertible, 

h l -1 p-lp-l p-l d · d ence = 1 2 . . . n as es1re . 

3) ==} 4) : 

Suppose every nonzero ideal of D is invertible. Let l be a fractional ideal of D 

and a E D a nonzero element such that al ~ D. Then al is a nonzero ideal of D, 

hence by assumption there exists a nonzero ideal J of D such that al J = D. Then 

l(aJ) = D implies that l is invertible with inverse al, and we have our result. 

4) ==} 5) : 

Suppose every fractional ideal of D is invertible. Since ideals of D are fractional 

ideals of D, every ideal is invertible hence finitely generated by Lemma 1.1.10. This 

shows that D is Noetherian. Let Q be the quotient field of D, and let c E Q be 
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integral over D. By Lemma 1.1.3, we know that D [c] is a finitely generated D­

module, say D [c] S: D + c1D + c2 D + • • • + cnD where each ci E Q. Because 

ri E Q, there exists bi such that bici E D. Thus if we let b = b1b2 ... hn, then 

bD [c] S: bD + bc1 D + bc2 D + • • • + bcnD S: D because each bci ED. So we know that 

D [c] is a fractional ideal of D, which means D [c] is invertible by assumption. So let 

J be the fractional ideal of D such that JD [ c] = D. Because D and D [ c] share the 

same identity element, we have D [c] = (D [cl) D = (D [cl) ((D [cl) J = (D [cl) J = D. 

Thus D [c] = D, which implies that c E D and Dis integrally closed. Suppose there 

exists a nonzero prime ideal P and maximal ideal lvf such that P <;:; M. Both P 

and M are invertible by assumption with inverses p-1 and M- 1
, respectively. Also, 

M- 1 p is an ideal of D because M- 1 p S: M- 1M = D. Because M- 1PM = P and P 

is prime, either M s;;;: P or M-1 P s;;;: P. Since M S: P contradicts our supposition that 

P <;:; M, we continue under the assumption that M-1 PS: P. Under this assumption 

R = MM- 1 S: M- 1 = M- 1R = M- 1pp- 1 S: pp-1 = R, which implies R = M- 1 . 

Hence R = M M- 1 = MR = M, which contradicts the maximality of M. So we 

cannot have a nonzero prime ideal P and a maximal ideal M such that P <;:; M. This 

proves that the Krull dimension of D is at most 1. 

5) ==? 6) : 

We prove that Dp satisfies the hypotheses of Lemma 1.1.12. To see why Dp 

is integrally closed, apply Lemma 1.1.17. Since the integral closure of D is D, the 

integral closure of Dp is again Dp. By assumption, D is Noetherian. Notice that any 

ideal of Dp is of the form I Dp where I is an ideal of D. This is because localization 

either turns an element of I into a unit or does not, and this determines what happens 

to I in Dp, If localization turns an element of I into a unit ( that is, In D \ p =I- 0), 

then locally I Dp = DDp = Dp. If localization does not turn an element of I into 

a unit, then the ideal retains its structure in Dp, In either case, the property of 
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finite generation of ideals is preserved under localization, and this shows that Dp is 

Noetherian. By assumption, D has Krull dimension 1, so the only nonzero prime 

ideal contained in p is p itself. As we have seen in the proof of Corollary 1.1.19, 

prime ideals of D contained in p correspond to prime ideals of Dp. Since there is a 

unique nonzero prime ideal contained in p, there is a unique nonzero prime ideal of 

Dp, namely pDp. Therefore Dp is a discrete valuation domain by Lemma 1.1.12. 

6) ==;, 1) : 

Let I be an ideal of D. Recall that for any ideal I of D, 1-1 := { a E Q I al ~ D} 

is a fractional ideal of D such that D ~ 1-1. The product I 1-1 ~ D, and hence is an 

ideal of D. Suppose I 1-1 i;;; D. Then there exists a maximal ideal M such that J 1-1 ~ 

Mi;;; D. By assumption, the ideal I DM is principal in DM, say I DM = 5;DM where 

a E J ands E D \ M. By assumption, Dis Noetherian. Hence I is finitely generated, 

say I= (b 1 ,b2 , ... ,bn)- For each i such that 1 :=:; i :=:; n,-¥ E IDM. Therefore, 

t.1· = 9:.if:i for some di E D and Si ED\ M. So bissi = adi. Let c = ss1s2 ... Sn. Then s s, 

cbi E aD, hence ~bi E D. Thus, if t1b1 + t2b2 + · · · + tnbn is any element of I, then 

_ac (t1b1 + t2b2 + · · · + tnbn) = .£t1b1 + .£t2b2 + · · · + .f:tnbn E D. This means that .£ E J-1, a a a a 

which implies c = a~ E J 1-1 ~ M. Notice that c is a product of elements of the 

multiplicatively closed set D \ M, soc E D \ M, a contradiction. Therefore, I 1-1 = D 

and I is invertible. We define the ideal M (I) for every ideal I ~ D. If J i;;; D, let 

M (I) be a maximal ideal containing I. If J = D, then let M (I) = D. Because of the 

relations JM(J)-1 ~ M(I)M(I)- 1 = D, we know that the fractional ideal JM(J)-1 

is, in fact, an ideal of D. Also, D ~ M(I)-1 implies I= ID~ IM(I)- 1• Notice that 

M(I) = M(I)JJ-l = I(M(I)J- 1) ~ (JM(J)- 1)(M(J)J- 1) = 11- 1M(I)M(I)- 1 = 

D, where equality holds if and only if J = D. Therefore, I = IM (It 1 if and only if 

I = D. So let I i;;; D. Define the ideal 10 = I, and for every nonnegative integer n 
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let In+l = InM(In)- 1
. Consider the chain of ideals 

We have seen that In+l = In if and only if In = D. This means that every "~" in the 

chain is actually a "S:" unless there is some m for which Im = D, after which every 

"~" is actually "=". Because D is Noetherian, every ascending chain of ideals must 

stabilize, so there exists some minimal integer rn such that Im = Im+l = ImM(Im)- 1
. 

As mentioned, this implies Im = D, so the above chain of ideals is of the form 

This means that for each i such that O :s; i :s; m - 1, Ji S: IiM (Ii )-1
. This implies 

that Ii S: D, hence M (Ii) is a maximal ideal containing Ji. Because D = Im = 

Im-1M(Jm_i)-1, we multiply by M(Jm_i) to get M(Im_i) = DM(Im_i) = Im-1· If 

we also recall how each ideal Ji was defined, we get 

Multiplying both sides by M(I)M(I1 )M(I2) ... M(Jm_2) and replacing Im-1 with 

MUm-1) results in 

M(I)M(I1)M(h) ... MUm-d = I 

Thus I factors into a product of prime ideals, as desired. 

□ 

1.2. Almost Dedekind Domains 

Property 6) in Theorem 1.1.20 has a straightforward generalization if we remove 

the Noetherian condition. 
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Definition 1.2.1. An integral domain D is said to be an almost Dedekind domain 

if for every nonzero prime ideal p of D, the localization Dp is a discrete valuation 

domain. 

Theorem 1.1.20 clearly shows that Dedekind implies almost Dedekind. On the 

other hand, there are many examples of almost Dedekind domains that are not 

Dedekind in the literature. A thorough collection of construction techniques and 

papers with interesting examples of almost Dedekind domains is given in [8]. We will 

state a result of [4] that will be a useful tool in determining whether a ring is almost 

Dedekind. 

Theorem 1.2.2. Let D0 be an almost Dedekind domain with quotient field K 0 . Let 

{ Kn} be a set of fields such that each Kn is a finite separable extension of K 0 . Let 
00 

K := LJ Kn Let Dn be the integral closure of D 0 in Kn for all n ;?: 0. Then D := 
n=O 

00 

LJ Dn is the integral closure of D 0 in K. Choose a maximal ideal P of D. Define 
n=O 

Pn = P n Dn for each n ;?: 0. Then Pn is a factor of PoDn, say to the en power. Also, 

D is almost Dedekind if and only if the set { en} is bounded for every maximal ideal 

P of D. 

Proof. See [4] for details. 

□ 

1.3. The Discriminant 

We define the discriminant of a monic polynomial. The discriminant of a monic 

polynomial gives useful information about the associated field extension, as we will 

see later. 

Definition 1.3.1. Let Q be a field, and let f(x) E Q [x] be a manic separable 

polynomial of degree n with roots r 1 , r 2 , ... , rn. Then the discriminant of f(x) is 
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given by the product 
n 

d(J(x)) := IJ (ri - rj) 2 

i>j 

It is straightforward from the definition yet worth noting that the discriminant 

d(f ( x)) = 0 if and only if f ( x) has a repeated root in some splitting field. When f ( x) 

is a minimal polynomial for a finite separable extension of a field, there is another 

characterization of the situation where d(J(x)) = 0. This characterization appears in 

[7] as follows. 

Theorem 1.3.2. Let D be a Dedekind domain, Q the quotient field of D, , an 

element of the algebraic closure of D, Q(,) a finite separable extension of Q, R the 

integral closure of D in Q(,), and f(x) a minimal polynomial for Q(,) over Q of 

degree n. Then d(J(x))-/= 0 if and only if {1, ,, 1
2, ... , ,n-I} is a basis for Q(,) over 

Q. 

Proof. See [7] for details. 

□ 

We will give a few alternate characterizations of the discriminant. One of the 

characterizations involves the formal derivative of a monic polynomial and the other 

involves the trace, both of which are defined below. 

Then the formal derivative of f(x), denoted J'(x), is given by f'(x) = nxn-I + (n -

l)an-1Xn-2 + (n - 2)an-2Xn-3 + · · · + 2a2X + a1 

Definition 1.3.4. Let Q be a field and let K be a finite separable field extension of 

Q of degree n. Let r 1 E K. Then there exists a minimal polynomial of degree n 

for r1 over Q, say f ( x). Suppose the roots of f ( x) in some field extension are given 

by r1, r2, ... , r n. The trace of r 1 is the function Tr : K ---+ Q defined by Tr(r1) = 
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Theorem 1.3.5. Let Q be afield, f(x) E Q [x] a manic separable polynomial of degree 

n, and r1, r2, ... , rn the roots of f(x). Suppose f(x) = xn + an-1Xn-l + an-2Xn-2 + 

· · · + a2x2 + a1.T + ao where each ai E Q. Define bm-l = mam for all m such that 

1 ::; m ::; n-1 and bn-1 = n. Thus f'(x) = bn-1Xn-l +bn-2Xn-2 + · · · +b2x2 +b1x+bo. 

Let I E {r1, r2, ... , rn}, Define the matrix 

Tr(l) Tr(,) 

M:= 
Tr(,) Tr(,2) 

In addition, define the matrix 

0 0 1 
N:= 

bn-1 bn-2 b1 

0 bn-1 bn-2 

0 0 

Tr( ,n-2) Tr( ,n-1) 

Tr(,n-l) Tr(,n) 

0 0 

0 

0 

0 

bo O O O 0 

b1 bo O O 0 

Then d(J(x)) = det(M) = (-1) n(~-i) det(N) 

Proof. The proof is computational; see [l]. 

□ 

The discriminant can be defined on any set of elements in an extension field. 
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This definition coincides with the polynomial definition of a discriminant in the case 

where the field extension is generated by a minimal polynomial. However, because 

not every field extension is generated in this way, it will be necessary in some cases 

to use the following definition from [7]. 

Definition 1.3.6. Let D be a Dedekind domain, Q the quotient field of D, 1 an 

element of the algebraic closure of D, Q( 1 ) a finite separable extension of Q of degree 

n, R the integral closure of D in Q(,), and { ai} the set of n distinct embeddings of 

Q(,) in a given algebraic closure ofQ. Let Y = {y1 ,y2 , ... ,Yn} be a subset ofQ(,). 

Then the discriminant of Y is given by dQ(,)jQ(Y) = det( aiyj )2 . 

The discriminant gives important information about the module generated by 

Y, as in the following result from [7]. 

Theorem 1.3. 7. Let D be a Dedekind domain, Q the quotient field of D, 1 an element 

of the algebraic closure of D, Q(,) a finite separable extension of Q of degree n, R the 

integral closure of Din Q(,), and {ai} the set ofn distinct embeddings ofQ(,) in a 

given algebraic closure of Q. Let Y = {y1 , y2 , ... , Yn} and W = { w1 , w2 , ... , Wn} be 

subsets of Q(,). Then there exists a matrix X such that Y = XW and dQ(,)jQ(Y) = 

det(X) 2 dQ(,)jQ(W). Then Y and TV generate the same module if and only if det(X) 

is a unit in D. 

Proof. See [7]. 

□ 

The previous theorem shows that whenever the discriminants of D[,] and R 

differ by a factor of a unit, D[,] = R. For a demonstration of the consequences of 

the relationship D[,] = R, see Example 2.2.1. 

20 



1.4. Extensions of Dedekind Domains 

This section is devoted to extensions of Dedekind domains, more specifically the 

integral closure of a Dedekind domain in a finite separable extension of the quotient 

field. We will continue working with such extensions for much of the rest of the paper, 

so for ease of notation we define them as Dedekind D - R constructions. 

Definition 1.4.1. Let D be a Dedekind domain, Q the quotient field of D, 1 an 

element of the algebraic closure of Q, Q(,) a finite separable extension of Q of degree 

n, and R the integral closure of D in Q(,). Then R is said to be a Dedekind D - R 

construction. Whenever we speak of Dedekind D - R constructions, D, Q, 1 , R, and 

n will be as in this definition. The diagram below gives the layout of the situation. 

R ~ Q(,) 

T T 
D ~ Q 

At the end of this section, we will have prove an important classical result 

of algebraic number theory, that any Dedekind D - R construction is Dedekind. For 

now, we discuss the most familiar class of Dedekind D - R constructions, the algebraic 

rings of integers. 

Definition 1.4.2. Let IF be an extension of Q created by adjoining the roots of a 

manic polynomial with coefficients in Z. An algebraic ring of integers is the integral 

closure of Z in IF. 

As mentioned, any algebraic ring of integers is a Dedekind D - R construction. 

\\'e know that Z is a Dedekind domain. and since Q is of characteristic 0, every 

extension of Q is separable [2]. This leads us to our first example of a Dedekind D -

R construction. 
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Example 1.4.3. Let lF be Q adjoined with the roots of the polynomial x 2 + 5, so 

lF = Q( .J="5). The integral closure of Z in lF is an algebraic ring of integers; it can 

be shown using an argument in the spirit of Theorem 4.2.10 that this ring is Z[.J="5] 

Let p be a prime ideal of the Dedekind domain D. In the existing literature, 

much work has been done to predict the behavior pR in a Dedekind D - R construc­

tion. One question that is often asked is whether pR factors as a product of two or 

more ideals of R, and if so, how. Depending on the answer to this question, p is 

classified as a ramified, split, or inert prime, as in the definition below. 

Definition 1.4.4. Let p be a prime ideal in the Dedekind domain D. Let R be a be a 

Dedekind D - R construction. Consider the ideal pR. Since R is a Dedekind domain, 

pR factors uniquely as a product of prime ideals in R, say pR = Pt P;2 
••• P?. If 

k = l and e1 = 1 then we say pR is inert. If k > l and ei = l for all l ::; i ::; k then 

we say pR is split. If ei > l for some 1 ::; i ::; k then we say pR is ramified. 

We return to Example 1.4.3 to illustrate inert, split, and ramified: 

Example 1.4.5. Recall that the integral closure of Z in Q( .J="5) is Z[.J="5]. Then 

2 and 5 are ramified primes because (2) = (2, yC5 + 1) 2 and (5) = ( .J="5) 2 . The 

primes 3 and 7 are split because (3) = (3, yC5 + 1)(3, yC5 + 2) and (7) = (7, yC5 + 

3)(7, .J="5+4). For an example of an inert prime, consider 11 because (11) is a prime 

ideal in Z [ .J="5] . 

We set about proving that Dedekind D - R constructions are Dedekind, first by 

proving a series of lemma ta. The first lemma is from [5], and it has many important 

consequences above and beyond the discussion of this section. 

Lemma 1.4.6. Let R be a Dedekind D - R construction. Let f(t) be a minimal 

polynomial for Q (r) over Q, and let d(J ( t)) be the discriminant off ( t). Let E := 
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D[t]/ f(t). Then d(f)R ~ E ~ D [,]. In addition, R is finitely generated as a D­

module. 

Proof. Let E := D[t]/ f(t). Then a basis for E over Dis given by {1, 1 , ,~y2, ... , ,n-l }. 

Notice that the quotient field K of E is given by K = Q[t]/ f(t). A basis for K over 

Q is again given by { 1, 1 , 1
2, ... , ,n-l}. Define the trace Tr : K - Q as the function 

that maps each element of K to the sum of its conjugate elements. If a E R, then 

Tr(a) ED. This is because f(t) = (t - ,i) (t - 12 ) ... (t - rn) where ri is a conjugate 

of 1 . The coefficient of tn-I, which must be an element of D, is -(,1 + 12 + · · · + rn)­

Also notice that Tr is linear over elements of Q. Define the matrix 

Tr(l) Tr(1 ) 

M:= 
Tr( ,n-1) 

Theorem 1.3.5 states that det(M) = d(f). Let b E R. Since R ~ K, b can 

be represented in the form b = q0 + q11 + q21
2 + · · · + qn_1,n-l where qi E Q for 

1 ~ i ~ n-1. For O ~ j ~ n-1, b1J is a product of elements of R, hence b1J ER and 

consequently Tr(b1 j) E D. So define dj := Tr(b1J). Since Tr is linear and b1J has 

the representation b1 j = qo1 j + q1 ,H 1 + · · · + qn-I ,Hn-l, dj has the representation 

dj = qoTr(,J) + q1Tr(,H1) + · · · + qn_1Tr(,Hn-I ). This defines a linear equation for 

each j such that O ~ j ~ n - 1. For ease of notation define the vectors: 

do qo 

- d1 - ql 
d - q -

dn-1 qn-1 

With these definitions the aforementioned linear equations are represented by 
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the system: 

----t ----t 
Mq=d 

By Theorem 1.3.2, we know that d(.f) -/- 0. This yields 0 -/- d(.f) = det(M). 

Therefore, we can apply Cramer's rule to the previous system. For 1 :S k :S n 
----t 

define A1k as the matrix formed by replacing column k of A1 with d. Then by 

Cramer's rule we have Qk-I = de~i~~k). Since the entries of Mk are in D, Qk-id(J) = 

det(Mk) E D. Hence bd(J) = Qod(J) + Q1d(J)r + Q2d(J)r2 + · · · + Qn-1d(J)rn-I_ 

Because the coefficients of the ,.,/ terms are all elements of D, bd(J) E E. Thus 

d(J)R ~ E ~ D[r], which gives us our first result. For the second result, notice 

that division by d(J) gives R ~ d(J\t)) E. Therefore, any element r E R has the 

representation r = codd(t)) + c1d{T(m + c2 d(J~t)) + · · · + Cn-idz;~t;) where each ci ED. 

So R is finitely generated as a D-module, and we have our second result. 

□ 

Lemma 1.4. 7. Let R be a Dedekind D - R construction. Let P be a prime ideal of 

R. Then D n P is a prime ideal of D. 

Proof. Since D C R, there exists an injective homomorphism cp : D ----+ R. By passing 

to equivalence classes, we can define a mapping 7/J : D / ( D n P) ----+ R/ P Notice that 

¢(D n P) ~ P. Therefore, the kernel of 7/J is the set of all elements of D that map 

into P under ¢. This is precisely D n P, so the kernel of 7/J is 0. This means 7/J is also 

injective. This proves that D / D n P is a subring of R/ P. Since P is a prime ideal, 

R/ P is an integral domain. Hence there are no zero divisors in D / ( D n P), proving 

that D n P is a prime ideal of D. 

□ 

Lemma 1.4.8. Let R be a Dedekind D - R construction. Let Pi and P2 be prime 

ideals of R such that P1 ~ A and D n A= D n P2 . Then Pi= P2 . 
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Proof. Let a E A \ A. Let m(x) = xk + bk_1xk-l + bk-2Xk-2 + · · · + b1x + bo 

be a polynomial with bi E D such that m(a) = 0. Suppose bi E A n D for all 

O ~ i ~ k - l. Then since m(a) - ak E A, ak E A. Because A is prime, a E A, 

which contradicts our supposition that each bi E A n D. So there exists a minimal 

j such that bj tJ_ A n D. Thus b0, b1 , ... , bj-l are all elements of A n D. Then 

b0 + b1a + b2a2 · · • + bj_ 1aj-l = c E A and m(a) E A, so m(a) - c = aJ (ak-j + 

ak-j-lbk-l +ak-}-2bk_2+· · ·++abj+l +bj) E A. We know a tJ_ A hence aJ tj. A, which 

implies ak-j +ak-j-lbk-l +ak-}-2bk_2+· · ·+abj+1 +bj EA ~ A. Because also a EA 

we know ak-j + ak-j-lbk-l + ak-}-2bk_2 + · · · + abj+l E A, so bj E An D = An D. 

This contradicts our choice of b1 and hence our assumption that there is an a E A\ A. 

So A = A, and we have our result. 

□ 

Theorem 1.4.9. Let R be a Dedekind D - R construction. Then R is a Dedekind 

domain. 

Proof. We saw in Lemma 1.4.6 that R is finitely generated as a D-module. Since also 

D is Noetherian, R is Noetherian. By Theorem 1.1.6, we know that R is integrally 

closed. We show that the Krull dimension of R is 1. Let A s;:; A be prime ideals of 

R. Lemma 1.4.8 shows that D n P 1 s;:; D n A. Lemma 1.4.7 asserts that D n P 1 and 

D n A are both prime ideals of D. By Theorem 1.1.20 D has Krull dimension 1, so 

D n A = 0. Hence D n A = 0 = D n O and O ~ A, which by Lemma 1.4.8 shows that 

0 = A. But then A s;:; P2 implies A = 0, which proves that the Krull dimension of 

R is 1. Since we also R is N octhcrian and integrally closed, by Theorem 1.1.20 R is 

Dedekind. 

□ 
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Corollary 1.4.10. Every algebraic ring of integers is Dedekind. 

Proof. See Theorem 1.4.9 along with the comments following Definition 1.4.2. 

□ 
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CHAPTER 2. IDEAL FACTORIZATION VIA 

POLYNOMIALS 

2.1. An Ideal Factorization Theorem 

We are ready to refine the theory that will be used to determine ideal factoriza­

tions in Dedekind D - R constructions. Directly computing the prime factorization 

of a given ideal can be quite difficult. However, for a given ideal in an appropriately 

chosen Dedekind domain, there often exists a much simpler polynomial factorization 

that corresponds to the ideal factorization. Many of the works in the references section 

also determine ideal factorizations by computing the factorizations of corresponding 

polynomials; see [3], [4], [1], [5], and [6]. The methods in this paper are most similar 

to those in [5]. Essentially, the idea is to compute ideal factorizations in D[,] and 

pass those factorizations on to R. 

We begin by defining the conductor ideal, an ideal of great importance in making 

connections between D[,] and R. 

Definition 2.1.1. Let R be a Dedekind D - R construction. Then the conductor 

ideal, denoted l, is defined as 

l := { x E D [,] I xR ~ D [,]} 

We give a series of lemmata that will assist us in proving the ideal factorization 

theorem. 

Lemma 2.1.2. Let R be a Dedekind D - R construction. The set l is an ideal of 

both D[,] and R. In addition, tD[,] = tR. 

Proof. If a E R, b E Rand x E l, then certainly xab E D[,]. So l is an ideal of both 

D[,] and R. Also, since x E lR implies x E D[,] and x E lR implies x E l, we have 
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the relationship ([.R ~ lD[,] ~ lR. Hence the subsets above are equalities, and we 

have our result. 

□ 

Lemma 2.1.3. Let R be a Dedekind D - R construction. Let TE {D[,], R}. Define 

Q;(T) := { I ~ T I I is a nonzero ideal of T and IT+ ([.T = T}. Then the mapping 

r : Q;(D[,]) -----+ Q;(R) defined by r(I) = IR is an isomorphism of commutative 

multiplicative monoids. 

Proof. The fact that Q;(D[,]) and Q;(R) are commutative multiplicative monoids 

follows if we define the binary operation to be ideal multiplication with identity 

element D[,]. We show that T is an isomorphism. Let I E Q;(D[,]). Then R = 

RD[,] = R(D[,]I + D[,]l) = RI+ Rl = r(I) + Rl. This shows that the image 

of T is contained in Q;(R). We know T is a homomorphism because for I E D[,] 

and .J E D[,] we have r(I J) = RI J = RI RJ = r(I)r( J). We next show that T is 

injective. Let I E Q;(D[,]). Then I = I+ I Rl = I+ IR n lR = IR n (I+ lR) = 

IRn(I+lD[,]) = IRnD[,]. The equality IRn(I+lR) = IRn(I+lD[,]) is due to 

Lemma 2.1.2. The equality I+ I Rl = I+ I Rn lR holds because I Rl = I Rn lR. To 

see this, let x E IR n lR. Since ID[,] + <[.D [,] = D [,], there exist a E IR and b E ([.R 

such that a+ b = l. Thus x = xa + xb EI Rl. We have shown that IR n ([.R ~ I Rl. 

The reverse containment is always true, so we have IR([. = IR n ([.R as desired. 

Hence, if I E Q;(D[,]) and .J E Q;(D[,]) such that r(I) = RI = RJ = r(J), then 

I = RI n D[,] = RJ n D[,] = .J. This proves that T is injective. We show T is 

surjective. Let .J E Q;(R) and let I = RJ n D[,]. Then R = RJ + R([. implies 

D[,] =Rn D[,] = RJ n D[,] + R([. n Db]= RJ n D[,] + lD[,]. So IE Q;(D[,]). 

In addition, r(I) =RI= (RJ + Rl)RI = RJI + RlI = RJI + D[,]lI = RJI + 

D[,]l n J = RJI + (D[,]l n D[,]) n RJ = RJJ + D[,]l n RJ = RJI + R([. n RJ = 

RJ I+ R<[.J = RJ(I + Rl) = RJ(I + D[,]l) = RJ D[,] = RJ. So T is surjective. 
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Since T is surjective and injective, we have our result. 

□ 

Lemma 2 .1.4. Let R be a Dedekind D - R construction. Let I E <8 ( R). Then 

R/ I~ Db]/(Db] n I). 

Proof. Consider the mapµ: Db] ----, R/ I defined by µ(a) =a+ I for a E Db]. We 

need to show thatµ is a surjective homomorphism with kernel Db] n I. The fact the 

µ is a well-defined homomorphism follows becauseµ is a residue class mapping. All of 

the elements a E Db] such that a E I are precisely the elements such that a+ I= 0. 

Therefore, the kernel of µ is Db] n I. Now we show µ is surjective. Let r E R. 

Because of Lemma 2.1.2 and the equation RI+ Rl = R, we have RI+ Db]l = R. 

So there exists b E I and c E Db]l such that b + c = r. Then since c E Db] such 

that c = r - b we have µ( c) = r - b + I = r + I. This justifies that µ is surjective and 

by the ring isomorphism theorem R/ I~ Dbl/(Db] n I). 

□ 

Lemma 2.1.5. Let R be a Dedekind D - R construction. Let J E ®(Dbl). Then B 

is a maximal ideal of Db] containing J if and only if RB is a maximal ideal of R 

containing RJ. 

Proof. By Lemma 2.1.3, we know that RJ E <8(R). Let M be a maximal ideal of R 

that contains RJ. Notice that because M contains RJ, we have R = RJ + Rl ~ 

M + Rl ~ R. All of the subsets are actually equalities, so M E <8(R). We claim 

that B =Mn Db] is a maximal ideal of Db] containing J such that RB= M. The 

relation RJ ~ M implies J ~ RJ n Db] ~ Mn Db] = B. In particular, we have 

J ~ B. Because Mis a maximal ideal, R/M is a field. Also, by Lemma 2.1.4 we have 

R/M ~ Db]/ B, so Db]/ Bis also a field. Hence Bis a maximal ideal of Db]. The 

properties J ~ Band J E <8(Db]) justify that Db] = Db]J + Db]l ~ B + Db]l ~ 
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Db]. All subsets must be equalities, so BE ®(Dbl). Thus by Lemma 2.1.3, we have 

RB = M which proves our claim, and thereby we have the "only if" condition of the 

lemma. For the "if" condition, let B be a maximal ideal of Db] containing J. We 

have already seen that J ~ B and J E ®(Dbl) implies B E ®(Dbl). By Lemma 

2.1.3, we know that RB n Db] = B. So we can apply Lemma 2.1.4 to conclude that 

RB is a maximal ideal of R. Since also J S:: B implies RJ ~ RB, we have our result. 

□ 

Lemma 2.1.6. Let D be an integral domain and let p be a maximal ideal of D. 

Let H be a multiplicatively closed set such that l E H C D \ p, and let DH := 

Proof. Define the map¢: D---+ DH/pDH by </>(d) = 1+PDH for any d ED. We know 

that ¢ is a well-defined homomorphism because the maps d f--, 1 and 1 f-, 1 + pD H 

are well-defined homomorphisms. Any element 1 E DH is also an element of pD H if 

and only if d E p, so the kernel of ¢ is p. We show that ¢ is surjective. To see this, 

let ~ + pDH E DH/pDH where d E D and s E H. We will find c E D such that 

¢(c) = ~ + pDH. Consider the elements+ pD E D/p. Notice thats EH~ D \ p, so 

s (/. p. Because also D /p is a field, s + pD has an inverse in D /p. Since the canonical 

map D ---+ D /p is surjective, we can find t E D such that the image of t under the 

canonical map is the inverse of s + pD. Thus st+ pD = 1 + pD. We claim c = td 

is an element of D such that ¢(c) = ~ + pDH. By our choice oft, 1 - ts E p hence 

d(l - ts) E p. Notice that 1:. - f1:. = d-tds = d(l-ts) so 1:. - f1:. E pDH. Therefore 
s l s s's 1 ' 

</>(td) = ¥ + pDH = ~ + pDH. Because¢ is a surjective homomorphism with kernel 

P, the ring isomorphism theorem proves that DH /pDH ~ D /p, as desired. 

□ 

Lemma 2.1. 7. Let R be a Dedekind D - R construction and p a nonzero prime 

ideal of D. Suppose that pR = Pt1 P;2 
••• P!,m. Let H = D \ p and define the 
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set RH := t Ir ER, s EH}. Let [Q (r) : Q] 

z1k1 + z2k2 + · · · + Zmkm = n. 

n and [R/ Pi: D/p] zi. Then 

Proof. As shown in Corollary 1.1.19, pRH = (P1RH l 1 (P2RH l 2 
.•• (PmRH lm. In 

Lemma 2.1.6, we showed that Dp/pDp ~ D /p. Lemma 2.1.6 shows that RH/ PiRH ~ 

R/ Pi as well as long as we verify the hypothesis H ~ R \ Pi. To see this, suppose 

h E H n Pi. Then h E D n Pi = p, a contradiction of the definition of H. Thus 

h E H implies h (j. Pi, and H ~ R \ Pi holds. The isomorphisms Dp/pDp ~ D /p 

and RH/ PiRH ~ R/ Pi show that [RH/ PiRH : Dp/pDp] = zi, so it suffices to prove 

this lemma for the rings RH and Dp. We note that RH is finitely generated as a 

Dp module. To see this, replace D with Dp and R with RH in Lemma 1.4.6. As a 

result, RH = r 1Dp + r 2Dp + · · · + rnDp where ri E RH for each i. We show that 

RH has a finite free Dp-module basis by induction on n. If n = 1, the result is 

obvious. Assume that RH has a finite free Dp-module basis for all n :::; z. Now let 

n = z + 1; that is, RH = r 1Dp + r 2Dp + · · · + rz+iDp. For all r E RH, define the 

annihilator Ann(r) = {d E Dp I dr = 0}. It is a well-known fact that Ann(r) is a 

proper ideal of Dp, Let S = {Ann(r) Ir is one of a set of z + 1 generators of RH}. 

Because the ideals of a discrete valuation domain are totally ordered with respect to 

containment, S has a maximal element, say Ann(xi). By definition, x 1 is part of a 

set of z + 1 generators for RH, say RH = x1Dp + x2Dp + x 3Dp + · · · + Xz+IDp. Let 

{d1, d2, ... , dz+1} be a subset of Dp such that .r1d1 + x2d2 + · · · + Xz+idz+I = 0. We 

show that d1x 1 = 0. Assume not; then d1 (/. Ann(x1 ). Every ideal of the discrete 

valuation domain Dp is principal, so we can write Ann(xi) = (t) where t E Dp, 

Because Dp is a valuation domain, either d1 divides t or t divides d1 . If t divides d1 , 

then d1 = ta where a E Dp. As a result, d1x 1 = tax 1 = 0, a contradiction. So we 

can write t = d1b for b E Dp. Therefore, (di) ;2 (t). The total ordering of the ideals 

of Dp implies that we can find a permntation O" on the set { 1. 2, ... , z + 1} such that 
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(da(l)) ~ (da(2)) ~ · • · ~ (da(z+l))- Thus for all i such that 2:::; i:::; z+l, we can write 

da(i) = Yida(l) for some Yi E Dp. Let C = Xa(l) + Y2Xa(2) + Y3Xa(3) + · · · + Yz+lXa(z+l) · 

Notice that the set T = { c, Xa(2), Xa( 3), .. . , Xa(z+l)} generates RH. This is due to 

the fact that the elements of T generate {x1, x2, ... , x2 +1}, which generates RH by 

assumption. Clearly T generates Xa(j) for j ~ 2. To see why T generates Xa(l), appeal 

to the equation c - Y2Xa(2) - Y3Xa(3) - · · · - Yz+1Xa(z+l) = Xa(l)· So T generates RH 

as claimed. Also, we have da(i)C = x1d1 + x2d2 + · · · + x 2 +1dz+1 = 0. Therefore, 

Ann(c) ~ (da(i)) ~ (d1 ) ;2 Ann(xi). This is a contradiction of the definition of 

Ann(x1). Hence d1x1 = 0. Since we have shown that x1d1 + x2d2 + · · · + Xz+1dz+1 = 0 

implies d1x1 = 0, we know that RH = x1Dp EB (x2Dp + x3Dp + · · · + x2 +1Dp)- Our 

induction hypothesis states that M = x2Dp + x3Dp + · · · + x 2 +1Dp has a finite free 

basis over Dp, hence so does x1Dp EB M = RH. So we have the representation 

RH = v1Dp EB v2Dp EB··· EB vuDp where vi E RH and u is some positive integer. Let N 

be the set of nonzero elements of Dp. Define the set (RH )N = { ~ I x E RH, y EN}­

We show (RH )N = Q (,). Apply Lemma 1.1.17, replacing p with (0) and H with 

N = Dp \ (0). We see that (RH )N is the integral closure of Q in Q (,), hence 

(RH) N Q ( 1) as claimed. The previous two claims combine to give Q ( 1) = 

that { V1, v2 , ... , vu} is a basis for Q (,) over Q, which implies u = n. Choose i such 

that 1 :::; i :::; m. We will show [RH/ RH P;ki : Dp/pDp] = z;k;. Notice that there are 

no ideals of RH that properly contain RH P/+ 1 and are properly contained in RH P/. 

Therefore, RH P/ / RH p/+1 is a one dimensional vector space over RH/ RH Pi. Hence 

[RHP/ /RHP/+
1

: Dp/pDp] = [RHP/ /RHP/+ 1
: RH/RH Pi] [RH/RH Pi: Dp/pDp] 

Zi for any positive integer j. Because of the relationship Dp/pDp ~ RH /pRH c 

RH/ RH Pt\ we can think of RH/ RH pik; as a vector space over Dp/pDp. Thus, 

we can construct the decreasing chain of subspaces RH/ RH Pti 2 RH Pd RH pik; 2 
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RH Pl/ RH P/i ;2 • • • ;2 RH P/i / RH pik;. The corresponding factor spaces are isomor­

phic to RH/ RH Pi, RH Pd RH Pl, ... , RH pik;-I / RH Pt. So the dimension 

k; 

[RH/RHPik;: Dµ/PDµ] = L [RHP/- 1 /RHP/: Dµ/PDµ] = kiZi 
j=l 

By the Chinese Remainder Theorem, RH /pRH ~ RH/ RH P 1k
1 EB RH/ RH P;2 EB · · · EB 

RH/ RH P!,m. Combining this with the previous claim gives 

We have already seen that RH = v1Dp EB v2 Dp EB··· EB vnDp, Because pDp is principal, 

v2Dp/v2pDp EB· ··EB vnDp/vnPDp, The vector spaces viDp/vipDp are one dimensional 

over Dp/pDp, so we have [RH/PRH: Dp/PDµ] = n. Therefore, k1z1 + k2z2 + · · · + 

kmzm = [RH /PRH : Dp/pDp] = n, which gives the desired result. 

□ 

We now prove the main theorem of this section. 

Theorem 2.1.8. Let R be a Dedekind D - R construction. Let f(t) E D [t] be a 

minimal polynomial for 1 , so the degree of f(t) is n. Let p be a nonzero prime ideal in 

D such that pR + ([ = R. Let * denote the image of* under the canonical map that re­

duces coefficients of polynomials in D[t] modulo p. Let J(t) = fi(tt1 h(tt2 ••• f m(ttm 

be the factorization of f(t) into distinct irreducibles Ji in D[t]. Then in R we have 

the factorization pR = P1k
1 P;2 

••• P!,m where Pi = fi(,)R + pR. 

Proof. We proceed by showing that D[,]/p ~ D[t]/ f (t). We do this by showing that 

the mapping¢ : D[,] -- D[t]/ J(t) defined by cp(g(,)) = g(t) + J(t)D[t] is a surjective 

homomorphism with kernel p. First, we justify that¢ is well-defined. Let g1(t),g2(t) 
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be polynomials in D[t] such that 91 (,) = 92(,). Then I is a root of 91 (t) - 92(t). 

Since f(t) is the minimal polynomial for 1 , we know that 91 (t) - 92(t) = J(t)h(t) 

for some polynomial h(t) E D[t]. Reducing modulo p yields §i(t) - !h(t) = J(t)h(t). 

Reducing modulo J(t) yields g1 (t) _ !h(t) mod f(t). This shows that </> is well­

defined. To see why¢ is a homomorphism, let 9(,), h(,) ED[,]. Then ¢(9(,)h(,)) = 

g(t)h(t) + f(t)D[t] = (g(t) + J(t)D[t])(h(t) + J(t)D[t]) = ¢(9(,))</>(h(,)). To see 

why the kernel of ¢ is p, suppose 9(,) is in the kernel of ¢. Then g(t) = J(t)h(t). 

This means that 9(t) = f(t)h(t) + m(t) where m(t) is in p. Plugging I in for t 

yields 9(,) = m(,) because by assumption f(,) = 0. But then 9(,) is also in p. 

This proves that the kernel of ¢ is contained in p. The fact that p is contained in 

the kernel of ¢ follows directly from the fact that ¢ reduces the coefficients of the 

polynomials modulo p. So we know that the kernel of¢ is p. Lastly, we show that 

¢ is surjective. This is true because the canonical map g(t) 1------+ g(t) + J(t)D[t] is 

surjective. Similarly, the map 9(t) 1------+ g(t) is surjective. Thus we choose 9(t) such 

that 9(t) 1------+ g(t) + f(t)D[t] under the composition of these canonical maps and we get 

¢(9(,)) = g(t) + f(t)D[t]. This justifies that¢ is surjective. By the ring isomorphism 

theorem, we have D[,]/p ~ D[t]/ f(t). In fact, we know the isomorphism between 

these rings is given by 1/J(9(,) + pD[,]) = g(t) + J(t)D[t]. Since D is a Dedekind 

domain and p is a nonzero prime, p is maximal. This means D /p is a field, hence 

D[t] is a principal ideal domain. Therefore, the prime ideals containing f(t) in D[t] 

are precisely the ideals generated by the irreducible divisors of J(t), namely the 

polynomials fi(t) where 1 ::; i ::; m. Consequently, the only nonzero prime ideals of 

D[t]/ J(t) are those generated by fi(t) + J(t)D[t]. Because the ideals fi(t) + J(t)D[t] 

are principally generated by an irreducible element, they are, in fact, maximal. Also, 

because 1/J is an isomorphism, all maximal ideals of D[,]/p are generated by the 

elements 'lj;-1ui(t) + J(t)D[t]) = Ji(,)+ pD[,]. Thus, the maximal ideals in Db] 
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containing p are of the form fi(-1,)D[,] + pD[,]. By Lemma 2.1.5, the maximal ideals 

in R containing pR are similarly given by Pi = fi(,-y)R + pR. 

Because Risa Dedekind domain, pR factors uniquely into a product of powers 

of the maximal ideals that contain pR. So we have pR = Pf 1 PJ2 
••• PJnm. We 

need to show that Ji = ki for all 1 ::;: i ::;: m. First we show Ji ::;: ki. No­

tice that P1k
1 P;2 

..• P/;t = (Ji(,)R + pR)k1 (h(,)R + pR)k2 
••• Um(,)R + pR)km ~ 

Ji(,) ki h (,) k2 ••• f m (,) km R + p R = f (,) + p R = p R = Pf 1 Pj2 
••• PJnm. This means 

P/; ~ P{ for each i, which justifies Ji ::;: ki. Next, we need to show that deg(fi) = 

[R/I{: D/p] for each i. Consider the mapping (: (D/p)[x] -+ R/Pi defined by 

((g(x)) = g(,) +Pi. Note that this definition makes sense because g(,) E (D/p)[,] ~ 

R. We will show that ( is a surjective homomorphism of vector spaces over D /p, 

the kernel of which is the ideal (Ji)- By the ring isomorphism theorem we will have 

(D/p)[x]/(fi) ~ R/ Pi, which gives the desired result. The reason why ( is well-defined 

is because the maps g(x) 1---t g(,) and g(,) 1---t g(,)+Pi are well-defined. We know ( is a 

homomorphism because ((91 (x)g2(x)) = 91 (,)92(,) + Pi = (91 (,) + Pi)(g2(,) + Pi) = 

((g1(x))((g2(x)). To see that ( is a vector space homomorphism, notice that for 

c E D/p, we have c((g(x)) = c(g(,) +Pi)= cg(,)+ Pi= ((cg(x)). The surjectivity 

of ( is guaranteed by the following argument: Recall that pR + <[ = R. This means 

that there exist a E ([ and {3 E pR such that a+ {3 = l E R. Let r E R be arbitrary. 

Then r = ar + {3r. Notice by definition of ([ that ar E D [,], so let ar = h(,) E D [,]. 

Then ((h(x)) = h(,) +Pi= fiiF +Pi= r - (Jr+ Pi= r + Pi. The last equality holds 

because {3r E pR. All that is left is to justify that every element of R/ Pi is of the 

form r + Pi. This is because pR ~ Pi. So ( is onto. We now determine the kernel of 

(. Clearly the kernel of ( is a proper ideal of (D/p)[x]. Because Pi= fi(,)R + pR, 

certainly Ji(',) E Pi, which implies that fi(x)(D/p)[x] is contained in the kernel 

of(. Also, since fi(x) is irreducible by assumption and (D/p)[x] is a principal 
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ideal domain, fi(x)(D/p)[x] is in fact maximal, contradicting that fi(x)(D/p)[x] is 

properly contained in the kernel of (. Thus the kernel of ( is Ji ( x) ( D /p) [x]. We 

have justified that (D/p)[x]/(Ji) and R/Pi are isomorphic as vector spaces over D/p. 

Therefore, deg(Ji) = dim((D/p)[x]/(Ji)) = dim(R/Pi) = [R/Pi: D/p]. From Lemma 

2.1.7 we know that J1 [R/Pi: D/p] + J2 [R/P2: D/p] + · · · + Jm [R/Pm: D/p] = n. 

Combining the last few results, we have n = deg(!) = deg(fi)k1 + deg(Ji)k2 + 

.. · + deg(Jm)km = [R/Pi: D/p] k1 + [R/P2: D/p] k2 + "· + [R/Pm: D/p] km 2:: 

[R/Pi: D/p]j1 + [R/P2: D/p]j2 + · · · + [R/Pm: D/p]jm = n. Consequently, the 

inequality is an equality and we have 

m m 

I: [R/ A: D/p] kb= I: [R/ A: D/p] }b 
b=l b=l 

Combining this statement with 1 :::; ji :::; ki gives ji = ki as desired. 

□ 

The following example illustrates Theorem 2.1.8. This example is especially 

interesting because D /p has infinite cardinality. In algebraic number theory, it is 

often assumed that D /p has finite cardinality. The following example demonstrates 

why this is not necessary. 

Example 2.1.9. Let A be the integral closure of Q [x] in Q (x) (a) where a is a root 

of the polynomial J(t) = t3 
- xt + x. Notice that J(t) is irreducible by Eisenstein's 

Criterion. We will determine the factorizations of a few prime ideals from Q [x] 

in A. In the following section, we will discuss ways of satisfying or avoiding the 

hypothesis pA + l = A. For now, we simply consider the connection between the 

polynomial factorizations and the ideal factorizations. Let q = (x - S)Q [x]. Then 

f (t) = t3 
- xt + x _ t3 

- St + 8 - (t - 2)(t2 + 2t - 4) (mod q). This suggests 

that qA = (x - 8, a - 2)(x - 8, a 2 + 2a - 4)A. Let m = (x - 2)Q [x]. Then J(t) = 
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t 3 - xt + x _ t 3 - 2t + 2 ( mod m), which is irreducible. This suggests that mA is prime. 

Let n = (-4x + 27)Q [x]. For ease of computation, we will factor the polynomial 

4f (t) = g(t) = 4t3 - 4xt + 4x. There is no harm in doing this because g(t) is a unit 

multiple of f(t). Wefactorg(t) to get4t3 -4xt+4x 4t3 -27t+27 _ (t+3)(2t-3) 2 

(mod n). So we suspect thatnA = (-4x+27,a+3)(-4x+27,2a-3)2A. All three of 

the above suggested factorizations tum out to be true; see Example 2.2.4 for details. 

We conclude this section with a discussion on obstructions to applying Theorem 

2.1.8 when Dis not Dedekind. Let D = Q[x,y]. Notice that Q[x,y] has prime ideals 

that are not maximal, for example xQ[x, y] and yQ[x, y]. Theorem 2.1.8 relies on 

the fact that D /p is a field, which would not be true if p were not maximal. So 

we attempt to apply Theorem 2.1.8 in the case where p is maximal. This will still 

create problems. Let R be the integral closure of Q[x, y] in Q(x, y, Jx). The ring R 

is not Dedekind because yR and JxR are prime ideals that are not maximal. As a 

result, ideals of R do not necessarily factor uniquely into a product of prime ideals. 

For example, Theorem 2.1.8 would seem to indicate that (x,y)R = (Jx,y)(Jx,y)R, 

which is clearly false. It is likely that (x, y)R does not have a unique factorization 

into prime ideals, which would only add emphasis to the point that we cannot expect 

to apply Theorem 2.1.8 in this case. 

2.2. The Condition pR + ~ = R 

The condition pR + ~ = R arises as a stumbling block in many attempts to 

factor ideals in a Dedekind D - R construction. It deserves mention that there are 

situations where it is impossible to work around the condition pR + ~ = R; see [3] 

for an example. The methods of [6] tackle this problem because they do not rely on 

pR + ~ = R. For the purposes of this paper, we will either ensure that pR + ~ = R 

holds or work around the situations where it does not hold as in [5]. This will suffice 

because for the Dedekind D - R constructions that we are interested in either p 
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satisfies pR + I[= R or pR has a straightforward factorization. 

One way to ensure that pR +I[= R holds is to choose I such that R = D ['Y]. 

If such a I exists, then a basis for R over D is given by powers of ,. In this case, 

we say that R has a power basis over D. Notice that Dbl = R implies It = R, 

hence pR +I[= R for all primes p E D. We use this fact to justify our statements in 

Example 1.4.5. 

Example 2.2.1. Return to the situation of Example 1.4.5 where D = Z and R = 

Z [ v-5]. The comments in the previous paragraph and Theorem 2.1.8 show that the 

factorization of pZ [ v-5] is determined by the factorization off (t) = t2 + 5 as an 

element of (Z/p) [v-5]. If p = 5Z, then f(t) = t2
. This implies that (5) = (v-5)2 

as an ideal of Z [ v-5]. When p = 2Z, then f (t) = t2 + 1 (t + 1)2 (mod 2). 

Thus (2) = (2, v-5 + 1) 2 in Z [ v-5]. For p = 3Z, f(t) = t2 + 2 _ (t + l)(t + 2) 

(mod 3). Thus (3) = (3, v-5 + 1)(3, v-5 + 2) in Z [ v-5]. Similarly, with p = 7Z, 

f(t) = t2 +5 _ (t+3)(t+4) (mod 7), which justifies (7) = (7, v-5+3)(7, v-5+4). 

We omit the computations required to show that t2 + 5 is irreducible modulo 11. 

However, assuming that this is true, we obtain that (11) remains prime in Z [v-5]. 

The following lemmata will help us detect primes that satisfy the condition 

pR +It= Reven when R does not have a power basis over D. 

Lemma 2.2.2. Let R be a Dedekind D - R construction and p a nonzero prime ideal 

of D. Let d E D \ p such that dR s;;; It. Then p satisfies pR + I[ = R. 

Proof. The assumption that D is a Dedekind domain implies pD is maximal. Since 

dD is a nonzero ideal that is not contained in pD, we have pD ~ pD + dD, which 

implies pD + dD = D. Since D S: R this relationship also takes place in R; that is, 

pDR + dDR =DR= R where the last equality is valid because D and R share the 

same element 1. Consequently, R ;2 pR + I[ ;2 pR + dR = R. All subsets must be 

equalities, so we have our result. 
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□ 

Lemma 2.2.3. Let R be a Dedekind D - R construction, f (t) E D [t] a minimal 

polynomial for 1 , and p a nonzero prime ideal of D. Let d(f) denote the discriminant 

of the polynomial f(t). If d(f) is not in p, then p satisfies pR + Q: = R. 

Proof. By Lemma 1.4.6, d(f)R ~ E ~ D[,]. This implies by definition of Q: that 

d(f)R ~ Q:. By Lemma 2.2.2, we have our result. 

□ 

Example 2.2.4. Return to Example 2.1.9 where A is the integral closure of Q [x] in 

Q (:r) (ci) such that rY is a root of the polynomial f(t) = t3-xt+:r. Let q = (:r:-8)Q [x], 

m = (:r - 2)Q [:r], and n = (-4x + 27)Q [x] as before. By computing det(N) as in 

Theorem 1.3.5, we find that the discriminant off (x) is a unit multiple of x2
( -4x+27). 

Hence d(f) (/. q and d(f) (/. m. By Lemma 2.2.3, qA + Q: = A, which justifies 

the suggested factorization qA = (x - 8, a - 2)(x - 8, a 2 + 2a - 4)A from Example 

2.1.9. Since mA + Q: = A, we also know that m is prime as conjectured in Example 

2.1.9. On the other hand, d(f) E n. Therefore, Lemma 2.2.3 fails for n. We work 

around this by showing directly that nA = P1P:J where Pi = (-4x + 27, a+ 3)A and 

A = (-4x + 27, 2a - 3). By multiplying we see that the generators of PiP:J are 

(-4x + 27)3
, (-4x + 27)2(2a - 3), (-4x + 27)2(a + 3), (-4x + 27)(2a - 3)2, (-4x + 

27)(a+3)(2a-3), and (a+3)(2a-3)2
. We show that all generators are multiples of 

-4x + 27. This is obvious for all generators except for the last, so we justify that the 

last generator is a multiple of-4x+27. Because a is a root of f(x), 4a3 -4xa+4x = 

0. Hence (-4x+27)(1-a) = 4a3 -4xa+4:r+(-4x+27)(1-a) = 4a3 -27o+27 = 

(a+ 3) (2a - 3) 2
, so all generators are multiples of -4x + 27. We have justified the 

containment nA ~ P1P:J. For the reverse containment, we show that -4x+27 E PiP:J. 

Notice that (-4x+27)(27-18a) = (-4x+27)(2o-3)2-2(-4x+27)(o+3)(2a-3) E 

PiP:J. In addition, (-4x+27)9 = (-4x+27)(27-18a)-18(-4x+27)(1-o) E PiP:J. 
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Since 9 is a unit in A, (-4x + 27) E PiP:j. This justifies the second containment in 

the equality nA = Pi P:j, as desired. 
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CHAPTER 3. RAMIFIED PRIMES AND THE 

DERIVATIVE 

3.1. The Ramified Prime Theorem 

The following theorem, which is essentially a corollary to Theorem 2.1.8, gives 

a simplified way to determine ramified primes in an integral extension of a Dedekind 

domain. 

Theorem 3.1.1. Let R be a Dedekind D - R construction, f(t) E D [t] a minimal 

polynomial for 1 , and p a nonzero prime ideal of D. Then p is ramified in R if and 

only if f(r) = 0 and f'(r) = 0 for some r E D/p. 

Proof Both f and f' have the same root modulo p if and only if f has a repeated 

root modulo p. By Theorem 2.1.8, f has a repeated root modulo p if and only if 

pR = Pt 1 P;2 
••• P!t where ki > 1 for some 1 ::; i ::; m. Hence p ramifies in R, and 

we have our result. 

□ 

3.2. The Ramified Prime Algorithm 

Theorem 3.1.1 allows us to use linear algebra to determine ramified primes such 

that pR + Q: = R. Our claim is that some linear combination of polynomials of the 

form tif(t) and tJ f'(t) is equal to a nonzero constant, say a0 f(t) + a1tf(t) + · · · + 

amtm f(t) + bof'(t) + b1tj'(t) + · · · + bvtv f'(t) = c. Then if there exists a root r ED /p 
such that f (r) = 0 and f'(r) = 0, c = 0. That is, c E p. So c is contained in any 

ramified prime p such that pR + Q: = R. We outline an algorithm that computes c. 

Define the polynomials s0 = f(t), s 1 = f'(t), and s2 (t) = nf(t) - tf'(t). Notice that 

s2 (t) is a linear combination of f(t) and f'(t), and that deg(s 2 (t)) < deg(f(t)). If 

s2 ( 0) = s2 ( t) ( that is, if s 2 ( t) is a constant function) then let s2 ( t) = c and we are 

done. Otherwise, continue the process recursively. Let sa(t) = das13(t) + Yatzns0(t) 
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be the definition of Sa from the previous step where Za E Z, da E D, and Ya E D are 

such that deg(sa(t)) ~ deg(s13(t)). 

If deg(sa(t)) < deg(s6(t)), then choose Za+l E Z, da+l ED, and Ya+l ED such 

that Sa+1(t) = da+1s6(t) + Ya+1tza+ 1 sa(t) and deg(sa+1(t)) < deg(s5(t)). 

If deg(sa(t)) 2: deg(s6(t)), then choose Za+l E Z, da+l ED, and Ya+l ED such 

that Sa+1(t) = da+lsa(t) + Ya+1tza+ 1 s6(t) and deg(sa+1(t)) < deg(sa(t)). 

In either definition of Sa+1(t), if Sa+i(O) = Sa+1(t) then let Sa+1(t) = c and we 

are done. Otherwise repeat the process again. We show that the process terminates. 

Suppose not. Then there exists k E Z such that for all a 2: 0, 0 < deg(sk(t)) ~ 

deg(sa(t)). Assume sk+i(t) = dk+isk(t) + Yk+itzk+ 1 s13(t) for some nonnegative in­

teger (3. Then deg(sk+i(t)) < deg(sk(t)), a contradiction of the definition of k. 

So sk+1(t) = dk+1s13(t) + Yk+1tzk+ 1 sk(t) and deg(sk+1(t)) < deg(s13(t)). Assume 

sk+2(t) = dk+2sk(t) + Yk+2tzk+ 2 sk+i(t). Then deg(sk+2(t)) < deg(sk(t)), once again 

contradicting the definition of k. So we have sk+2(t) = dk+2sk+l (t) + Yk+2tzk+ 2 sk(t), 

which implies deg(sk+2(t)) < deg(sk+i(t)) < deg(s 13 (t)). Appeal to induction. Let 

j 2'. 1, and suppose that sk+j-i(t) = dk+j-lSk+j-2(t) + Yk+j-itzk+i- 1 sk(t). Suppose 

also that deg(sk+j-1(t)) < deg(sk+j- 2(t)) < · · · < deg(sk+i(t)) < deg(s13 (t)). Assume 

sk+j(t) = dk+jsk(t) + Yk+jtzk+Jsk+j-i(t). This contradicts the definition of k, so 

sk+j(t) = dk+jsk+j-1(t) + Yk+jtzk+Jsk(t). Thus deg(sk+j(t)) < deg(sk+j-i(t)) < · · · < 

deg(sk+1(t)) < deg(s13(t)). By induction, we can find such a chain of inequalities 

for any j 2'. 1. So let j = deg(s 13 (t)). Then the chain of inequalities shows that 

deg(sk+i(t)) ~ j - i for all positive integers i. In particular, deg(sk+j(t)) ~ j - j = 

0 < deg(sk(t)), contradicting our choice of k. In any case, the process must terminate. 

So let k be a positive integer such that sk(t) = sk(O). Suppose r is a root of 

f'(t) and f(t) as elements of (D/p)[t]. Then sk(r) = sk(O) = sk(t) E p. Therefore, 

by Theorem 3.1.1, all ramified primes p such that R = Rp + l contain sk(t). An 
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interesting corollary to this fact is that there are only finitely many ramified primes 

in any finite separable integral extension of a Dedekind domain D. 

Corollary 3.2.1. Let R be a Dedekind D - R construction and f(t) ED [t] a minimal 

polynomial for 1 . Then there are only finitely many primes of D that ramify in R. 

Proof. By the preceding comments, it suffices to show that there are only finitely 

many prime ideals of D that contain sk(t). To see this, notice that any such prime 

ideal must appear in the prime factorization of the ideal generated by sk(t). Therefore, 

there are only finitely many ramified primes p such that R = Rp + (. On the other 

hand, any prime p such that R =/. Rp + ( contains the discriminant of f(t) by Lemma 

2.2.3. By the previous argument, only finitely many prime ideals of D contain the 

discriminant of f ( t), so there are only finitely many ramified primes that such that 

R =/. Rp + (. Hence there are only finitely many ramified primes in D. 

□ 

Example 3.2.2. Let B be the integral closure of Z in the ring Q (w) where w is 

a root of the polynomial f(t) = t3 - 6t2 + 4t + 2. We use the algorithm described 

above to find the ramified primes of B. Notice that f(t) is irreducible over Z by 

Eisenstein's Criterion. We calculate the polynomial s2 (t) = 3f(t) - tf'(t) = -6t2 + 

St+ 6. Since deg(s 2 (t)) ~ deg(f'(t)), the algorithm states that s3(t) = -s2 (t) -

2f'(t) = l6t - 14. Because deg(s3(t)) < deg(f'(t)), the algorithm gives s4(t) = 

-l6f'(t) + 3ts3(t) = l50t - 64. Since deg(s4(t)) ~ deg(s3(t)), we know that s5 (t) = 

8s4(t) - 75s3(t) = 538. Hence s5 (t) = s5 (0), and primes that divide 538 = 2(269) 

are candidates for ramification. Recall that theoretically, these might not be the only 

ramified primes because the algorithm might miss ramified primes that divide the 

discriminant of f(t). A quick computer computation shows that the discriminant 

of f(t) is 22 (269), so 2 and 269 are, in fact, the only candidates for ramification. 

We show that 2 is ramified by showing that the ideal (2, w )3 B = (8, 4w, 2w2
, w3)B = 
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(8, 4w, 2w2 , 6w2 - 4w - 2)B = 2B. All equalities are clear except for the last. The 

containment (8, 4w, 2w2 , 6w2 - 4w - 2)B ~ 2B is clear because each generator of 

(8,4w,2w2 ,6w2 - 4w - 2)B is a multiple of 2. Also, because 2 = -(6w2 
- 4w - 2) + 

3(2w2)-( 4w) E (8, 4w, 2w2 , 6w2 -4w-2)B, we have the containment (8, 4w, 2w2
, 6w2 

-

4w - 2)B ;;2 2B. Thus (8,4w,2w2 ,6w2 -4w - 2)B = 2B as claimed and 2 ramifies 

in B. We show that 269 is ramified. A computational computer program shows that 

t3 -6t2 +4t+2 _ (t+63)(t+100) 2 (mod 269). So we claim that (269,w+63)(269,w+ 

100)2 B = (2693
, 2692 (w + 63), 2692 (w + 100), 269(w2 + 163w + 6300), 269(w2 + 200w + 

10000),w3 +263w2 +22600w+630000) = 269B. The last equality is the only nontrivial 

equality. Let I be the ideal on the left side of the last equality. The only generator 

that is not clearly divisible by 269 is w3 + 263w2 + 22600w + 630000. However, w3 + 

263w2 + 22600w + 630000 = w3 
- 6w2 + 4w + 2 + 269w2 + 22596w + 629998 = 269w2 + 

22596w+629998 because f(w) = 0. Since 269 divides each of these terms, 269 divides 

w3 + 263w2 + 22600w + 630000 and hence every generator of I is divisible by 269. This 

justifies the containment I ~ 269B. To show the other containment, we will show that 

269 E J. We have seen that 269w2 + 22596w + 629998 E J. Hence 269w2 + 22596w + 

629998 - 269(w2 + 163w + 6300) = -269(3958 + 79w) E J. Also, 269(w2 + 200w + 

10000) - 269(w2 + 163w + 6300) = 269(37w + 3700) E J. So 37(-269(3958 + 79w)) + 

79(269(37w+3700)) = 39234726 E J. This is significant because the greatest common 

divisor of 39234726 and 2693 is 269, which implies that 269 E J. So I ;;2 269B. 

Combining this with the other containment shows that (269,w+63)(269,w+100)2B = 

269B, hence 269 ramifies. 

See the appendix for a Mathematica implementation of the algorithm that 

computes and factors sk(t) in the case where D = Z. 
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CHAPTER 4. INFINITE EXTENSIONS OF Z 

If S is an algebraic ring of integers and p E Z is prime, Theorem 2.1.8 gives 

us a way to determine the ideal factorization of pS. On the other hand, if R is an 

arbitrary integral extension of Z, R need not be Dedekind; indeed, in this case R 

may not even be Noetherian. However, we can still use Theorem 2.1.8 to analyze 

the algebraic rings of integers S such that Z ~ S ~ R to find information about the 

primes of R that lie over (p), as the following examples demonstrate. 

4.1. The integral closure of Z in (Q ( v1c/,, ¼, vfd, ... , 1{/d, ... ) 

Let d be an integer such that d =f. 0 and d =f. 1. Let R be the integral closure 

of Z in (Q ( v1c/,, ¼, vfd, ... , 1{/d, ... ) . Let p be a prime element in Z. In this section 

we will show that for any integer n, we can find a subring of R in which (p) factors 

uniquely into a product of greater than n prime ideals. We start with a few lemmata: 

Lemma 4.1.1. Let d E Z such that d =f. 1 and d =f. 0. Let p E Z be a prime such that 

p does not divide d. Let q E Z be prime such that q does not divide p - 1. Then for 

any w E Z such that w ~ l, there is an integer r such that rq"' = d ( mod p). 

Proof. Suppose p is odd. Let g be a generator for (Z/p::Z)*, the multiplicative group 

of integers modulo p. Let k be the unique integer such that 1 :S; k :S; p - l and gk d 

(mod p). Since q does not divide p- 1, p- 1 has a multiplicative inverse modulo qw; 

call this inverse u. Notice that k - ku (p - 1) _ 0 (mod qw). Thus, there exists and 

integer b such that k - ku (p - 1) = bqw. Also notice that the order of (::Z/p::Z)* is 

(p - 1) so gp-l _ 1 (mod p). So we have (gbtw _ lqw gk-ku(p-l) _ 9k9 -ku(p-l) = 

gk (gP- 1)-ku - gk - d (mod p). Therefore, l (mod p) is the required integer and 

Lemma 4.1.1 is proven for the case where pis odd. 

Suppose p = 2. By hypothesis p does not divide d. Then for any odd prime q 

and w ~ l, 1 qw l d ( mod p), hence 1 is the required integer. 

□ 
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Lemma 4.1.2. Let d, p, and q be as in Lemma 4.1.1. Then xqn - d factors into at 

least n + l terms modulo p for all integers n 2 1. 

Proof. We proceed by induction on n. From Lemma 4.1.1 we know that xq - dis not 

irreducible, so the statement holds for n = l. Suppose xqn -d factors into polynomials 

Ji (x) !2 (x) .. - fm (x) modulo p where m > n. Then notice that xqn+i - d (xqtn -

d = Ji (xq) h (xq) ... fm (xq) (mod p) where the degree of Ji (xq) for 1 ::; i ::; m is 

greater than 1. By Lemma 4.1.1 there exists an r E Z such that rqn+i = d (mod p). 

p) for some 1 ::; i ::; m. Since the degree of Ji (.1:q) is greater than 1, we now know 

that Ji (xq) is not irreducible. Therefore, xqn+i - d factors into at least m + 1 > n + l 

terms. By induction, we have Lemma 4.1.2. 

□ 

Lemma 4.1.3. Let d, p, and q be as in Lemma 4.1.1. In addition, let q #- p. Let 

T0 = Z, and for every n 2 1 define Tn to be the integral closure of Z in Q ( qv'd). 
Then (p) factors uniquely into a product of at least n + l prime ideals in Tn. 

Proof. First we notice that a minimal polynomial for q-vd is J(x) = xqn - d. Put the 

coefficients of J(x) and J'(x) into the matrix N as defined in Theorem 1.3.5. Basic 

linear algebra shows that the determinant of N is (qn)qn(-d)qn- 1 . Since p does not 

divide q and p does not divided, p does not divide det(N). Hence by Theorem 1.3.5, p 

does not divide the discriminant of f(x). So we can apply Lemma 2.2.3, which shows 

that (p) satisfies the hypotheses of Theorem 2.1.8. This means that J(x) (mod p) 

and pTn factor into the same number of terms. By Lemma 4.1.2, J(x) factors into at 

least n + 1 terms modulo p, and our result follows. 

□ 

The rings Tn in Lemma 4.1.3 are interesting in their own right. Clearly Tn i;;;; 
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00 

Tn+I for every n. So we know that the union T := LJ Tn is a ring which corresponds 
n=l 

to the integral closure of Zin ngl Q ( q-vd). As the following example illustrates, some 

prime ideals of T may be finitely generated, while others may not be. 

Example 4.1.4. Let C0 = Z, and for every n 2': 1 define Cn to be the integral 
00 

closure of Z in Q ( 2v'2). Let C := LJ Cn. The ideal I of C generated by the set 
n=l 

{ J2, ~' ~' ... , 2y'2, ... ,} is clearly not finitely generated. Hence any prime ideal 

of C that contains I is also not finitely generated. On the other hand, C contains an 

infinite class of prime elements, hence infinitely many distinct principally (finitely) 

generated prime ideals. Proving this fact will require a lemma: 

Lemma 4.1.5. Let p be a prime such that p _ 5 (mod 8). Then x 2
n -2 is irreducible 

as a polynomial in (Z/pZ) [xl. 

Proof. We accept without proof the following facts from elementary number theory. 

See [7l for details: 

1) There does not exist a E Z / pZ such that a 2 2 ( mod p). 

2) There exists a E Z/pZ such that a2 _ -1 (mod p). 

Because of 1), we know that x2 
- 2 is irreducible in (Z/pZ) [xl. Proceed by 

induction. Suppose that x2
m - 2 is irreducible in (Z/pZ) [xl for all 1 :S::: m :S::: n, and let 

a= 
2y'2 be a root of x 2

n -2. Then [(Z/pZ) [al: Z/pZl = 2n. Notice that the field ex­

tension (Z/pZ) [fol is quadratic over (Z/pZ) [a], hence [(Z/pZ) [fol : (Z/p.Z) [a]l :s; 

2. This means that [(Z/p.Z) [fol : (Z/pZ) [all = 2 if and only if (Z/p.Z) [fol ~ 

(Z/p.Z) [al if and only if fo t/. (Z/pZ) [al. Suppose that this is not the case; 

then fo E (Z/p.Z) [al. Notice that (Z/p.Z) [a] = (Z/p.Z) [a2
] [al. Thus there exist 

b E (Z/p.Z) [a2
] and c E (Z/p.Z) [a2l such that fo = b+ca. Then a= b2 +c2a 2 +2bca. 

By matching coefficients we sec that b2 + c2a 2 = 0 and 2bc = 1. Hence c = ib, and 

we substitute into the first equation to get b2 + 4~2 a 2 = 0 which implies -4b4 = a 2
. 
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Let a be as in 2) above. Then (2ab2
)

2 = o: 2
. Since a E Z/p'll,, 2ab2 E (Z/pZ) [a2l is a 

square root of o: 2
. Therefore, [(Z/pZ) [al : (Z/p'll,) [a2ll = 1. This leads to the contra­

diction 2n = [(Z/pZ) [al : Z/pZl = [(Z/pZ) [al : (Z/pZ) [o: 2
]] [(Z/pZ) [a2l : Z/pZl = 

[(Z/pZ) [a2l : Z/pZl ::; 2n- 1
, where the last inequality follows because o: 2 is a root of a 

polynomial with degree 2n- 1 . Because of this contradiction, we have fo tJ_ (Z/p'll,) [al 

which implies that [(Z/pZ) [fol : (Z/pZ) [all = 2. Therefore, [(Z/pZ) [fol : Z/pZl = 

[(Z/pZ) [fol: (Z/pZ) [all [(Z/pZ) [al: Z/pZl = 2n+ 1
. This proves that any polyno­

mial of degree 2n+l over (Z/pZ) [xl that has fo as a root is irreducible. Consequently, 

x2
n+i - 2 is irreducible in (Z/pZ) [x], and by induction we have our result. 

□ 

Armed with Lemma 4.1.5, we will show that if p is a prime in 'll, such that p = 5 

(mod 8), then pC is prime. It suffices to show that pCn is prime for any n ~ 0. To 

see this, notice that for any a E C and b E C such that ab E pC, there exists some 

n such that a E Cn, b E Cn, and ab E pCn. If pCn is prime, then without loss of 

generality a E pCn. Hence a E pC, which implies pC is prime. 

Lemma 4.1.6. Let p E 'll, be prime such that p 5 (mod 8). Then the ideal pCn is 

prime for every n ~ 0. 

Proof. The minimal polynomial for 2V2 is f(x) = x 2" - 2. The discriminant of f(x) 

is a unit multiple of a power of 2 (see the proof of Lemma 4.1.3). In particular, the 

discriminant of f(x) is not divisible by p, so we apply Lemma 2.2.3 and Theorem 

2.1.8 to show that the factorization of pCn corresponds to the factorization of f ( x) 

modulo p. Since f(x) is irreducible modulo p by Lemma 4.1.5, pCn is prime and we 

have our result. 

□ 
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Theorem 4.1.7. The ideal pC is prime for every prime p 5 (mod 8). 

Proof. Use Lemma 4.1.6 along with the comments preceding it. 

□ 

Computations indicate that if p - 3 ( mod 8), then prime ideals of Cn lying 

over pCn split for finitely many values of n. This provides support for the following 

conjecture. 

Conjecture 4.1.8. The ideal pC can be factored uniquely into a finite product of 

prime ideals for every prime p 3 ( mod 8). 

Besides showing that prime ideals in T may or may not be finitely generated, 

Example 4.1.4 shows that prime ideals from Z may be inert in T. This is because 

we chose the roots of d that are contained in T carefully. On the other hand, the 

ring R contains every root of d. Hence every prime ideal of R will fragment into an 

arbitrarily long product of ideals, as the following theorem guarantees. 

Theorem 4.1.9. Let (p) be a prime ideal in Z. Then for every positive integer n 

there is a subring of R in which (p) factors uniquely into a product of at least n prime 

ideals. Furthermore, if p divides d, each distinct prime ideal appears at least n times 

in the factorization of (p). 

Proof. Case 1: p divides d 

Assume p divides d. Let a be the integer such that pa divides d, but no higher 

power of p divides d. For each integer k > l, define the subring Sk of R as the 

integral closure of Z in Q ( ../J, -Yd, -Yd, ... , ¼). Also define the ideal h of Sk as 

h := (Pa, \'.Id). We proceed by showing (h/ = (pa). The generators of (h)k are 

pak, pa(k-l) ¼, pa(k-2) .::/Ji, ... , pa~' d. Since JP divides each of the generators, 

(pa) 2 (h/. For the other containment, notice that gcd(pak, d) = pa. Thus, we can 
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find integers band c such that bpak + cd = pa. This proves that (pa) ~ (h)\ and we 

have (hl = (pa). So for any integer n > l, choose k = an to get Uantn = (pa). This 

leads to (Pt= (pa)= Uantn which gives (p) = Uanf. Recall that San is a Dedekind 

domain; this means that Uan) factors uniquely into a product of prime ideals in San· 

Each of these prime ideals appears n times in the factorization of (p), which proves 

case 1 as well as the second conclusion of the theorem. 

Case2: p does not divide d 

This case was proven in Lemma 4.1.3, since the ring Tn is a subring of R in which (p) 

factors uniquely into at least n + l prime ideals. 

□ 

Corollary 4.1.10. The ring R is not almost Dedekind. 

Proof. As we saw in Theorem 4.1.9, arbitrarily high powers of prime ideals of Sk 

appear in the factorization of pSk as k grows to infinity. Therefore, Theorem 1.2.2 

shows that R is not almost Dedekind. 

□ 

Notice that a similar argument shows that the ring C in Example 4.1.4 is not 

almost Dedekind. 

Example 4.1.11. In Example 4.1.4, we saw an extension of Z where some primes 

remained inert, but others factored into arbitrarily long products. In this example, 

we will adjoin all roots of 2, which will guarantee the splitting or ramification of all 

primes from Z by Theorem 4.1.9. Let d = 2 so that Sk is the integral closure of Z in 
00 

Q ( v'2, ij2, ~' ... , \/"2) and R = LJ Sk. We show how we can apply the theory of 
k=l 

this section to determine the factorization of 5 in Sk. Notice that 3 is a generator for 

(Z/5:Z)* such that 33 
- 2 (mod 5). Since the multiplicative inverse for 4 (mod 11) 

is 3, 3 - 3(3)(4) = -3(11) = 0 (mod 11). Thus 3-3(11 ) - 33- 3 (3)(4 ) - 33 (34 )-3(3) = 2 
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(mod 5). Therefore, 3-3 = 2-1 _ 3 (mod 5) is a root of the polynomial x11 - 2 

( mod 5). This proves that x - 3 is a factor of x11 
- 2 ( mod 5). Similar com­

putations show that x - 2 is a factor of x121 - 2 (mod 5). So we divide to get 

x11 - 2 (x - 3)h(x)h(x) (mod 5) where h(x) = x 5 + x 4 + x3 + 2x2 + x + 2 

and h(x) = x 5 + 2x4 + x3 + 2x2 + 3x + 2 are irreducible factors of x 11 - 2 (mod 5). 

Substituting x11 in for x reveals that x 121 - 2 - (x11 - 3)h(x11 )h(x11 ). We have 

mentioned that x - 2 is a factor of x 121 - 2 (mod 5), so (x 11 - 3), h(x11 ), and 

h(x 11 ) cannot all be irreducible. Therefore, there are at least four factors of x 121 - 2 

(mod 5). A computer program can verify that there are actually five factors, say 

x 121 - 2 _ (x - 2)g2 (x)g3 (x)g4 (x)g5 (x) (mod 5) where each gi(x) is an irreducible 

polynomial in ( Z / 5:Z) [ x] . Repeating this process shows that ( x 11 t - 2 ( mod 5) factors 

into at least n + 1 terms for all n 2: 1. There are corresponding factorizations of 

ideals, for example 5S11 = (5, \1/2 - 3) (5, h ( \1/2)) (5, h ( \1/2)) S11 and 5S121 

(5, 1\1/2-2) (5,g2 ( 
1\1/2)) (5,g3 ( 

1\1/2)) (5,g4 ( 
1\1/2)) (5,g5 ( 

1\1/2)) S121. Let Tk be 

the integral closure of Z in (Q ( 11V2). The ideals in the above factorizations of 

5Sn and 5S121 are prime in T1 and T2, respectively, but notice that this does not 

guarantee that they are prime in S11 and S121 . However, we do know that the prime 

factorizations of 5S11 and 5S121 are of length at least three and five, respectively. This 

demonstrates the power of the first part of Theorem 4.1.9 .. which states that ideal 

factorizations of 5Sk increase in length as k increases. To see the second part of 

Theorem 4.1.9 in action, we look at the factorization of 2Sk. It is easy to verify that 

for every k 2: 1 the ideal h := ( {/2) has the property If Sk = 2S k, Each h is a 

proper ideal, hence each factors into prime ideals. So prime ideals appear to a power 

greater than or equal to k in the factorization of 2S k. As we have seen in Theorem 

1.2.2, this shows that S is not almost Dedekind. 
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4.2. The integral closure of Z in Q (-/Pi, -jP2, ,v1P3, ... , y1PN, ... ) 

Let {Pi} be the set of odd primes of Z. We will be looking at the extent to which 

primes from Z fragment in a ring that contains the square root of every element of 

Z, the integral closure of Z in Q ( v'2, -/Pi, -jP2, ,v1P3, ... , \fPN, ... ) . We again build 

up to the main results by considering first some finite extensions of Z. 

Lemma 4.2.1. Let p 1 and p2 be distinct primes in Z. A minimal polynomial for 

the extension Q (-/Pi, -/P2) over Q is f(x) = x 4 
- 2(p1 + p2)x2 + (P1 - P2)2. The 

discriminant of f(x) is 46PiP~(P1 - P2)2. 

Proof. The roots of f (x) are -/Pi + -jP2, -/Pi - -jP2, --/Pi + -jP2, and --/Pi -

-jP2. We show Q(-/Pi,-/P2) = Q(-/Pi+-/P2) = Q[x]/f(x). It suffices to prove 

that Q (-/Pi, -/P2) ~ Q (-/Pi+ -/P2) because the containments Q (-/Pi, -/P2) 2 

Q [x] / f(x) 2 Q (-/Pi+ -/P2) are obvious. Notice that ~ E Q (-/Pi+ -/P2) due 

to the fact that (-/Pi +-jP2)2 = p1 +2~+p2. Hence -/Pi= ~;P1 (-/Pi +-/P2) E 

Q (-/Pi+ -/P2). Similarly, -jP2 E Q (-/Pi+ -/P2), which proves Q ( -/Pi, -/P2) ~ 

Q (-/Pi + -/P2). We know that Q (-/Pi, -/P2) is a degree 4 extension, and f ( x) is 

a degree 4 polynomial, so f(x) must be irreducible and therefore must the minimal 

polynomial for Q(-/Pi,-/P2) over Q. Let r1,r2,r3,r4 be the roots of f(x). The 

discriminant of f(x) is the product f1i>i(ri - ri)2. A straightforward computation 

shows that the discriminant of f ( x) is 4 6PiP~ (p1 - p2 ) 2 . 

□ 

The following lemma shows that the minimal polynomial in the previous lemma 

factors as an element of lF[x] where lF is any finite field. 

Lemma 4.2.2. Let lF be a finite field. Let a and b be elements of lF. The polynomial 

f(x) = x 4 + ax2 + b2 is not irreducible in lF[x]. 
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Proof. Suppose IF has characteristic 2. Assume that there does not exist h E IF such 

that h2 = a. Then a =J. 0. Since IF is a finite field, the set of all nonzero elements 

of IF is a cyclic group under multiplication. Hence every nonzero element of IF is the 

power of some generating element g E IF. Because the order of IF is even, the order 

of the multiplicative group is odd hence gl = l for some odd integer t. Suppose 

a = gz for some integer z. We also have a = gzgl = gz+t and since t is odd, either 

z or z + t is even. In either case we have g2
m = a for some integer m, which gives 

(gm )2 = a, a contradiction. Therefore, we can assume that there exists h E IF such 

that h2 = a. Then we have x4 + ax2 + b2 = (x2 + hx + b) 2 as desired. Now consider 

the case where IF does not have characteristic 2. Suppose 2b - a = c2 for some c E IF. 

Then we have (x2 +ex+ b)(x2 
- ex+ b) = x4 + (2b - c2 )x2 + b2 = x4 + ax2 + b2

, 

which proves the lemma. So we continue under the assumption that there is no 

c E IF such that 2b - a = c2
. Suppose -2b - a = d2 for some d E IF. Then we 

have (x2 + dx - b)(x2 
- dx - b) = x4 + (-2b - d2 )x2 + b2 = x4 + ax2 + b2

, which 

similarly proves the lemma. So we also have the assumption that there is no d E IF 

such that -2b - a = d2
. Notice that in particular, we have shown that 2b - a and 

-2b - a are nonzero. As we have seen, there exists a generating element g E IF 

such that any nonzero element of IF is some power of g. So write 2b - a = l and 

-2b-a = gJ. If i is even, then½ is an integer and we have (g½) 2 = gi = 2b-a, which 

is a contradiction. So i is odd, and by a similar argument j is odd implying that i + j 

is even. So -4b2 + a2 = (2b - a)(-2b + a) = gigj = gi+j = g2k for some integer k. 

Thus (gk) 2 = -4b2 + a2
. Because 2 =J. 0, (x2 + a-t;l)(x2 + a-,l) = x4 + ax2 + a 272

k = 
4 2 a 2 -(-4b2 +a2 ) 4 2 2 

x + a.T + 4 = x + ax + b as desired. This completes the proof. 

□ 

Theorem 4.2.3. Let p, PI, and p2 be distinct prime elements of Z such that p =J. 2 

and p does not divide PI - p 2 . Let R be the integral closure of Z in Q ( vfPI, JP2). 

53 

---------- ----------



Then p is not inert in R. 

Proof. Lemma 4.2.1 states that f(x) = x 4 
- 2(p1 + p2)x2 + (p1 - P2) 2 is a minimal 

polynomial for Q ( ffi, ..jp,i.) over Q. In addition, Lemma 4.2.1 guarantees that p 

does not divide the discriminant of f(x), since p does not divide 2,P1,P2, or P1 - P2-

By Lemma 2.2.3, we know that the ideal generated by p satisfies the hypotheses of 

Theorem 2.1.8. Therefore, the factorization of pR into prime ideals mirrors the prime 

factorization of f(x) as an element of (Z/pZ)[x]. By Lemma 4.2.2, we have our result. 

□ 

Let K = Q ( ffi, ..jp,i., .jP3, ... , ffe, ... ) and B the integral closure of Z in 

K. It should be noted that given any odd prime p, we can always find p1 and p2 

that satisfy the hypotheses of Theorem 4.2.3. Theorem 4.2.3 states that any such 

p is not inert in the integral closure of Z in Q(p1, p2). For the case p = 2, notice 

that 2 = (ffi + ✓Pi - 2)(ffi - ✓Pi - 2). So if ✓Pi - 2 is an integer, then 2 is not 

inert in the integral closure of Z in Q(pi). In either case, pB factors into a product 

of ideals. Notice this may not be a unique factorization into prime ideals because B 

need not be Dedekind. Regardless, this factorization shows that pB is not prime. In 

fact, adjoining square roots of as few as two distinct primes can cause all primes from 

Z to split or ramify. 

Example 4.2.4. No prime is inert in the integral closure of Z in Q( v'3, v'7). All 

odd primes except for 3 and 7 satisfy the hypotheses of Theorem 4.2.3. The primes 3 

and 7 are not inert because v'32 
= 3 and v'72 

= 7. Finally, 2 = ( v'3 + 1) ( v'3 - 1), so 

2 is also not inert. 

On the other hand, there exists a prime p that divides p1 - p2 and remains inert 

in the integral closure of Zin Q( ffi, ..jp,i.). Notice that in this case, p does not satisfy 

the hypotheses of Theorem 4.2.3. 
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Example 4.2.5. The prime 5 is inert in the integral closure of Z in Q( J3, vl3). 

We will show in Theorem 4.2.10 that this integral closure is Z[J3, 1+{13]. Accepting 

this as fact for now, we see that 5 is inert in Z[ J3] because the minimal polynomial 

x2 - 3 is irreducible in (Z/5Z)[x]. To show that 5 is inert in Z[J3, 1+{13], we need 

to verify that x2 - x - 3 is irreducible in (Z[J3°]/5Z[J3°])[x]. Assume not; then 

x2 - x - 3 = (x +a+ bJ3°)(x + c + dJ3°) where a, b, c, d are elements of Z/5Z. It 

is straightforward to verify that x2 - x - 3 is irreducible in (Z/5Z) [x], so assume 

that b and d are not both 0. Since x2 
- x - 3 = (x + a+ bJ3°)(x + c + dJ3°) = 

x2 +[a+ c + (b + d)J3°]x + ac + 3bd +(ad+ bc)J3, matching coefficients reveals that 

[a+ c + (b + d)J3°] = -1 and ac + 3bd +(ad+ bc)J3 = -3. Matching coefficients 

again leads to the equations a+ c = -1, b + d = 0, ac + 3bd = -3, and ad+ be= 0. 

Hence by substitution, 0 = ad- d(-1- a)= d(2a + 1). Since this operation is taking 

place in the field Z/5Z, either d = 0 or 2a - 1 = 0. However, as we have seen d = 0 

implies b = 0, which is a contradiction. So 2a - 1 = 0 and because the multiplicative 

inverse of 2 in Z/5Z is 3, a = 3. Substituting again gives c = -4, implying that 

-12 - 3b2 = -3. The last equation is true if and only if b2 = 2 ( mod 5), which is a 

contradiction. So x2 
- x - 3 is irreducible in (Z[J3°]/5Z[J3°])[x], hence 5 is inert in 

Z[J3, 1+{13]. 

The previous two examples show that only for carefully chosen PI, p2 , and p does 

p remain inert in the integral closure of Z in Q( Jpi', -Jpi.). An interesting follow-up 

question is whether or not for every integer N ~ 1 there exists a set of primes {Pi}~0 

such that p0 remains inert in the integral closure of Z in Q( Jpi', -Jpi., ... , ffM). As 

far as we know, this is an open question. Theorem 4.2.3 and the arguments in the 

examples above show that if the answer to the question is yes and all Pi are odd, then 

PI P2 · · · PN (mod Po). 

We define notation that will assist in proving the next few results. Let {Pi} be 
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the set of all odd primes. For technical reasons, we assume that P1 = 3, although 

some of our results will hold regardless. Let K 0 = Q and KN+I = KN ( JPN+1) for 

all nonnegative integers N. Then we have K = Q ( JPI, yp,i., $3, ... , ffN, ... ) = 
00 00 

LJ KN. Let B 0 = Z, BN the integral closure of Zin KN, and B = LJ BN. Because 
N=I N=I 

of the containments Bi ~ B1 for all i ~ j, B is the integral closure of Z in K ( this 

coincides with our previous definition of B). Let q be an odd prime in Z and q0 the 

ideal generated by q in Z. Let Vo be the localization of Z at q0 . Choose a prime ideal 

q1 that lies over q0 in B1 . Define Vi to be the localization of B1 at q1 . Inductively 

choose a prime ideal qN that lies over qN-I in BN. Define VN to be the localization 

of BN at qN. Continuing in this manner, we define VN for all nonnegative integers 
00 

N. Let V = LJ VN. As before, we have v; ~ ½ for all i ~ j. For all N 2 1, define 
N=l 

CN to be the integral closure of VN-I in KN. 

Lemma 4.2.6. The maximal ideal of VN is generated by a single element of BN. 

Proof. Recall that Theorem 1.1.20 guarantees that VN is a discrete valuation domain, 

hence the maximal ideal qN VN is principally generated. If qN VN = v VN for some 

v EVN, then v = ~ where r E BN ands E BN \ qN. Since ¾ is a unit in VN, we have 

qNVN = vVN = ¾rVN = rVN, as desired. 

□ 

Lemma 4.2.6 allows us to choose an element YN E BN for each nonnegative 

integer N such that YNVN = qNVN. This allows us to make connections between the 

factorizations of elements of B N and the factorizations of ideals of B N, as we will see 

in the following results: 

Lemma 4.2.7. Let O ~ M < N be integers. Then yy!;VN = YMVN where k is the 

number of elements in the set { M ~ j ~ N - l I q1 ramifies in Bj+1}. 
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Proof. We will look at the prime factorization of the ideal qjBj+l for each M:::; j:::; N. 

By Lemma 2.1.7, qjBJ+1 factors into at most [Kj+l : Kj] = 2 prime ideals. If qj 

remains prime, then qjBj+l is the unique prime ideal of Bj+1 lying over qj in Bj+l · 

This means that our choice of qj+l is forced to be qjBj+l· By Corollary 1.1.19, 

qj ½+1 = qj+l ½+1· If qj splits in Bj+l, then we have qjBJ+1 = ab where a and b 

are distinct prime ideals of BJ+1 that lie over qj, Without loss of generality choose 

a = qj+l · By Corollary 1.1.19, qj ½+1 = qj+l b ½+1 = qj+l ½+1, where the last 

equality follows from the fact that b contains units in ½+1. Notice that in either 

case, qj ½+1 = qj+l ½+1 which means that qj ½+1 is the unique prime ideal of ½+1 

Therefore, Yj ½ ½+1 = yj ½+1 = YJ+l ½+1 · Suppose qj ramifies in Bj+l · then the 

prime factorization qjBJ+1 c2 implies that c is the unique prime ideal of Bj+l 

lying over qj. Hence c = qj+1 and we have qjBj+1 = q;+l · Appealing again to 

Corollary 1.1.19, the factorization qj ½+1 = q;+ 1 ½+1 holds. Therefore, in this case, 

Yj ½ ½+1 = Yj ½+1 = Yj+ 1 ½+1 • Because each ½ shares the same identity element, 

the factorizations of yj ½+1 take place in VN as well. So if qj ramifies in Bj+l, then 

Yj VN = Yj ½+1 VN = Yj+ 1 ½+1 VN = Yj+ 1 VN, If qj does not ramify in Bj+1, yj VN = 

YjVJ+1VN = YH1½+1VN = Yj+1VN, So let {j1,J2, ... ,jk} be the set of integers M:::; 

Ji :::; N - l such that qj; ramifies in Bj;+l · Then YM VN = Yh VN = yJ
1 
+l VN = Yj

2 
VN = 

4 V - 4 V - - 2k-l V - 2k V 2k V d . d Y12+1 N - Y13 N - · · · - Yjk N - Yjk+ 1 N = YN N, as esire . 

□ 

Corollary 4.2.8. Let O :::; M < N be integers. Then qj ramifies in Bj+l for some 

NJ :::; j :::; N - l if and only if there exist s E B N, t E B N \ qN, and r E B N \ qN such 

that YMt = s2r. 

Proof. ( ~) 

Suppose qj ramifies in BJ+1 for some M :::; j :::; N - l. Then we have k 2". 1 in 

Lemma 4.2.7. Thus YMVN = y'f;VN. This means there exists a unit of VN, say v, such 
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that YMV = yr;. Because v is a unit in VN, we can write v = ~ where t E BN \ qN 

and r E BN \ qN, Hence YM~ = yr; implies YMt = yr;r, and we have our result if we 

let s = Yt-

Suppose that for all j such that M :::;; j :::;; N - 1, qj does not ramify in Bj+l · 

Then according to Lemma 4.2.7, YMVN = YNVN and hence YMVN is the unique prime 

(maximal) ideal of VN. Suppose that there exist s E B N, t E B N \ qN, and r E B N \ qN 

such that YMt = s2r. Then YM E qN implies Y1,1t E qN and hence s2r E qN, Since 

r €J. qN, we have s 2 E qN. Because qN is prime, s E qN. Since t and r are units in 

VN, YMVN = YMtVN = s2 rVN = s2 VN S: sVN S: VN, This is a contradiction of the 

primality and maximality of YMVN, and we have our result. 

□ 

Theorem 4.2.9. The ideal qN ramifies in BN+l for precisely one nonnegative integer 

N. In fact, qN ramifies in BN+1 if and only if PN+l = q. 

Proof. Notice that the polynomial f (t) = t2 
- PN+l is a minimal polynomial for KN 

over KN+l· Recall that CN+l is the integral closure of VN in KN+l· Because of our 

result in Corollary 1.1.19, it suffices to prove that qN ramifies in CN+l for precisely 

one nonnegative integer N. As mentioned in the proof of Lemma 1.4.6, any element 

v E CN+1 has the representation v =a+ b1 where a E KN, b E KN, and, E KN+l 

such that f(r) = 0. So we let,= JPN+l to get v = a+bJPN+l· Because vis integral 

over VN and [KN+l : KN] = 2, v is the root of a monic quadratic polynomial with 

coefficients in VN, Any element of the form a + byPN+I is a root of the polynomial 

g(t) = t2 
- 2at + a2 

- PN+ 1b2 . Because -2 €J. q0 and qN lies over q0 , -2 is not in 

qN, which is the maximal ideal of VN, Therefore, -2 is a unit in VN, Since -2a 

is a coefficient of g(t), -2a E VN, which implies a E VN, Also notice a 2 
- PN+ 1b2 

is a coefficient of g(t), and hence is and element of VN, Let b = ~ where u E VN 
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and w E VN such that u and w have no prime factors in common. We can do this 

because VN is a principal ideal domain by Theorem 1.1.20. In particular, this means 

w does not divide u. Then w 2a2 - w 2PN+ 1b2 = w 2a 2 
- PN+I u2 is an element of VN 

that is divisible by w 2 . Since w 2a 2 is also divisible by w 2
, PN+I u 2 is divisible by 

w 2 . However, we have already made the case that u2 and w 2 have no prime factors 

in common. So w2 divides PN+I, say PN+I = w 2 y where y E VN. Returning to our 

original representation a+b✓PN+I, we multiply by PN+I to get apN+I +bPN+I ✓PN+I = 

apN+I + yu2 ✓PN+I E VN [ ✓PN+i]. So PN+I CN+I ~ VN [ ✓PN+i]. 

Suppose PN+I E qN. We assert that this occurs if and only if PN+I and q are 

associates (unit multiples) in Z. Recall that qN lies over precisely one prime ideal 

from Z, namely q0 . Thus qNnz = q0 , which implies that qN contains a prime element 

from Z if and only if that prime element is in q0 . So q is, in fact, the only prime 

element from Zin qN. Thus PN+I E qN if and only if PN+I is an associate of q, which 

proves our assertion. To see why qN ramifies in CN+l when PN+l and q are associates, 

appeal to Corollary 4.2.8 with YM = q, t = 1, r = l, and s = ytq. We have shown 

that PN+I E qN implies qN ramifies in CN+l · 

Suppose PN+I (/:. qN. We have seen that this occurs if and only if PN+I and q 

are not associates. To complete the theorem, we show that qN does not ramify in 

CN+I· By Lemma 2.2.2 along with the fact that PN+I C ~ VN [ ✓PN+i], qN satisfies 

the hypotheses of Theorem 2.1.8. Let f5N+l be the image of PN+I under the canonical 

mapping VN ---+ VN/qN. Consider the polynomials f(t) = t2 
- f5N+I and f'(t) = 

2t as elements of (VN/qN) [t]. By Theorem 3.1.1, qN ramifies in CN+I if and only 

if both polynomials have a common root, say r E VN / qN. If such a root exists, 

then r 2 
- PN+I = 0 and 2r = 0. Because 2 is a unit in VN/qN, 2r = 0 implies 

r = 0. Substituting into the first equation gives -f5N+I = 0. This implies that the 

characteristic of VN/qN is PN+I, which contradicts PN+I (/:. qN. Therefore, there is 
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no common root for J(t) and f'(t). Theorem 3.1.1 states that qN does not ramify in 

CN+I, and we have our result. 

□ 

Theorem 4.2.9 guarantees that as N gets arbitrarily large, prime ideals of EN 

lying over odd primes from Z ramify exactly once. We turn our attention to prime 

ideals lying over 2. We will make a statement similar to the one in Theorem 4.2.9. 

However, we will prove the statement in a different way. 

As before, let p 1 = 3, {pi}~1 be the set of all odd primes, K 0 = Q, KN+I = 

KN ( vPN+1), K = Q ( ffi, ../f½, v'P3, ... , ffN, ... ), B 0 = Z, EN the integral closure 

of Zin KN, and B the integral closure of Zin K. 

At this point the notation will differ a little from before. We are looking at 

prime ideals that lie over 2, so let m0 the ideal generated by 2 in Z. Choose a prime 

ideal m1 that lies over m0 in B 1 . Inductively choose a prime ideal mN that lies over 

Since p 1 = 3, K 1 = Q ( v'3). We note that B 1 = Z [ v'3]. See [5] for details. 

Theorem 4.2.10. For all N 2': 2 such that PN is equivalent to 3 modulo 4, EN = 

B [v'3+y'PN] 
N-1 2 · For all N 2': 2 such that PN is equivalent to 1 modulo 4, EN = 

B [ l+y'PN] 
N-1 2 · 

Proof. Suppose PN = 3 (mod 4). A minimal polynomial for v'3\v'PN over EN-I is 

given by f(x) = x 2 
- v'3x - PN

4
-

3
_ Also, v'3\v'PN E KN, so v'3\v'PN E BN. This 

proves that BN-1 [ v'3+2v'PN] ~ EN. The roots of f(x) are v'3\v'PN. Therefore, the 

discriminant of f(x) is given by ( v'3+/'ffi - v'3-
2
v'PN) 

2 
= (-2

~) 
2 

= PN• As we 

have seen in Theorem 4.2.9, a prime ideal of Bi-I lying over an odd prime q E Z 

ramifies in Bi if and only if q is an associate of Pi. So let q = p N. Then there does 

not exist O :s; i :s; N - 2 such that a prime ideal lying over p N in Bi- I ramifies in Bi. 

Therefore by Corollary 4.2.8, PN is square-free; that is, any square that divides PN is 

60 



a unit in BN-l· By Theorem 1.3.7, we know that there exists z E BN-1 such that 

PN = d(J(x)) = dKN/KN-l (BN-l [ v'3+2v'PN]) = z2dKN/KN-i (BN ). Because z2 divides 

PN, z is a unit and hence Theorem 1.3.7 implies that BN-1 [ v'3+2v'PN] = BN. 

Suppose PN l (mod 4). If we replace f(x) with x2 
- x + 1-:N and replace 

v'3+
2
v'PN with 1+~ in the proof of the previous case, then the discriminant of f(x) 

is once again PN and the required result holds. 

□ 

Let 1 = v'3+
2
v'PN if PN 3 (mod 4) or 1 = 1+:fF" if PN = l (mod 4). Theorem 

4.2.10 asserts that BN = BN-l [,] has a power basis over BN-l· Hence all primes p 

of BN-l satisfy pBN + ~ = BN as mentioned in the comments preceding Example 

2.2.1. So for any prime ideal p of BN-l, we can apply Theorem 2.1.8 and predict the 

factorization of pBN by factoring polynomials. 

Lemma 4.2.11. Let N ~ l be an integer and mN a prime ideal that lies over 2 

in BN. Then mN contains v3 + 1. In addition, the derivatives of the polynomials 

f(x) = x2 -v3x- PN4-
3 andg(x) = x 2 -x+ l-lN do not have roots in (BN/mNBN) [x] 

for any N ~ l. 

Proof. First we show that mN contains v3 + 1. This is because v3 + 1 E B1 ~ BN, 

( v3 + 1)( v3 - 1) = 2, and mN is a prime ideal that contains 2. Now we prove the 

second conclusion of the lemma. Notice that 2 = 0 (mod mN ). Then f'(x) = -v3 -

1 (mod mN ). Also, g'(x) - 1 (mod mN ). Therefore, neither f'(x) nor g'(x) has a 

root in (BN /mNBN) [x], which proves our result. 

□ 

Theorem 4.2.12. The ideal mN does not ramify in BN+l for any N ~ l. 

Proof. Let N be an integer such that N ~ l. By Theorem 4.2.10 and the comments 

following it, either f(x) = x 2 
- v3x - PN

4
-

3 or g(x) = x2 - x + 1
-:N is a minimal 
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polynomial for KN+I over KN. By Theorem 3.1.1, mN ramifies in BN+I if and only 

if the minimal polynomial for KN+I over KN and its derivative have a common root 

in (BN/mNBN) [x]. We have seen in Lemma 4.2.11 that this is not possible, so mN 

does not ramify in B N + 1. 

□ 

Notice that 2B1 = ( v'3+ 1 )2 B 1 , so there exists a value of N for which mN ramifies 

in BN+I, namely N = 0. Theorem 4.2.12 justifies that there are no other values of N 

that have this property, which suggests the following theorem when combined with 

Theorem 4.2.9. 

Theorem 4.2.13. The ring B is almost Dedekind. 

Proof. By Theorem 4.2.9, prime ideals of BN-I lying over odd primes of Z ramify 

in BN for precisely one value of N 2: 1. By Theorem 4.2.12 and the comments that 

follow it, prime ideals of B N-I lying over 2 ramify in B N for precisely one value of 

N 2: 1. In any case, the number of ramifications is bounded, so we apply Theorem 

1.2.2 to get the required result. 

□ 

Corollary 4.2.14. The integral closure of Z in Q ( v'2, ffe, ffe, ylpi,, ... , y'PN, ... ) 

is almost Dedekind. 

Proof. By Theorem 4.2.13, Bis almost Dedekind. The integral closure of Zin K( v'2) 

is the same as the integral closure of Bin K( v'2). This is a finite separable extension 

of B, so there is still a bound on the ramifications of the primes from Z, and by 

Theorem 1.2.2 we have our result. 

□ 

Corllary 4.2.14 shows that adding the square roots of all integers to an integrally 

closed ring containing Z preserves the almost Dedekind property. We will show that 
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the Dedekind property is not preserved by this operation. In fact, we will show that 

adjoining any infinite set of square roots destroys the Dedekind property. We set 

about proving this fact by first stating a helpful theorem. 

Theorem 4.2.15. Let D be a Dedekind domain and I a nonzero ideal of D. Then 

finitely many prime ideals of D contain I. 

Proof. It suffices to show that a prime ideal p of D contains I if and only if p appears 

in the ideal factorization of I, since finitely many prime ideals appear in an ideal 

factorization of a Dedekind domain. It is straightforward that if p appears in the 

factorization of I, then p contains I. We prove the converse. Suppose the prime 

factorization of I is given by I = AP2 ... Pn. Assume p is a prime ideal of D such 

that p :2 I = P1A ... Pn. Since p is prime, Pi ~ p for some i such that 1 :s:; i :s:; n. 

Since I is nonzero, Pi is nonzero. Because D has Krull dimension 1 by Theorem 

1.1.20, Pi is maximal hence p = Pi. Sop appears in the prime factorization of I, and 

we have our result. 

□ 

The following classification of the integral closure of Zin Q( ,/iii, y1½, ... , ffe) 

1s a good intermediate step in understanding the situation where infinitely many 

square roots are adjoined to Q. 

Theorem 4.2.16. Let {ai}~1 be a set of primes equivalent to 3 (mod 4), {bi}f!1 a 

set of primes equivalent to 1 (mod 4), F = Q(Fi, ... , .,jaiv, -lb;_, ... , ,;r;;:;), and E 

the integral closure of Z in F. Define Tl = Fi, Ti = Fi;Fi if 2 :s:; i :s:; N, and 

Ti= l+~ if N + 1 :s:; i :s:; N + M. Then E = Z[,1,T2, ... ,TN+Ml-

Proof. Let E 1 be the integral closure of Zin Q(Fi)- We show E 1 = Z[Fi]- Because 

E 1 ~ Q( Fi), any element of E 1 is of the form c1 + c2 Fi where c1 E Q and c2 E Q. 

Such an element is a root of the polynomial t 2 
- 2c1 t + cf - a 1 c~. Since every element 

63 



of Ei is integral over Z, -2ci and Ci - ai~ are elements of Z. Suppose Ci t/: Z. Then 

-2ci E Z implies ci = ~ where r E Z and 2 does not divide r. Let c2 = ;; where u 

d . . h . f t B 2 2 r2 2 E '77 an w are mtegers wit no common pnme ac ors. ecause Ci - a1 c2 = 4 - ai c2 tLJ, 

r 2 -4a1 c~ E Z so -4ai c~ = -4::i1 u 2 
E z. This means all prime factors of w must appear 

in the prime factorization of -4a1 u2. Since w is relatively prime to v, and ai is not a 

square, either w is a unit or w is a unit multiple of 2. Assume w is a unit multiple of 

2. Then Ci - aic~ = r; - ai
4
u

2 
E Z. This implies r 2 - aiu2 - 0 (mod 4). Since rand 

u are odd, r 2 - u2 - 1 (mod 4). This leads to the contradiction 2 _ r 2 - a1u2 = 0 

( mod 4). So w must be a unit and c2 is an integer, which contradicts r4

2 
- ai c~ E Z. 

Hence c1 E Z. Since any element of E 1 is of the form c1 + c2Jai where c1 and c2 are 

integers, E 1 = Z[Jai]. LetEi = Z[,,1,12 , ... ,ri]- Suppose i < N. We show that the 

integral closure of Ei in Q( Jai, . .. , y'ai+!) is Ei+i • A minimal polynomial for ri+i 

over Ei is given by f(x) = x2 - Jaix - a;+~-
3

. As noted in Theorem 4.2.10, ai+i is 

. . . . . . (y'ai°+ylai+l y'ai"-yfai+1)2 square-free m Ei, The discnmmant off (x) is given by 2 + - 2 + = 

(-
2
~) 

2 
= ai+i• Hence by Theorem 1.3. 7, Eibi+i] = Ei+1 is the integral closure of 

Ei in Q( Jai, ... , y'ai+I- Suppose N :S i < M. We show that the integral closure of 

Ei in Q(y'ai, ... , ~' .;li";, ... , ~) is Ei+l· This is because the above argument 

holds if we replace f(:i;) with x2 - .T + i-b~+i+i. Hence the integral closure of EN+M-i 

in F is E. Since the integral closure of EN+M-l in F corresponds with the integral 

closure of Z in F, we have our result. 

□ 

We have seen that only finitely many prime ideals contain any nonzero ideal in 

a Dedekind domain. Therefore, no Dedekind domain can satisfy the conclusion of the 

following theorem. 

Theorem 4.2.17. Let {pi} be an infinite set of odd prime integers. If Pi= 3 mod 4 

for some i, reorder the set so that p1 - 3 (mod 4). Let K 0 = Q, Ki= Ki-i(ffi), 
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00 00 

and K LJ Ki. Let B 0 = Z1 Bi the integral closure of Z in Ki 1 and B = U Bi. Let 
i=O i=O 

q be an odd prime element of Z1 q0 the ideal generated by q, and qi a prime ideal of 

Bi lying over q0 . Then infinitely many prime ideals of B contain qoB. 

Proof. We first show that qi splits in for infinitely many i. We have already 

seen that ramification occurs for finitely many i. Therefore, it suffices to show that 

qi is inert in Bi+I for finitely many i. By Theorem 4.2.16, we know that the minimal 

polynomial for Bi+l over Bi where i 2 1 is either /i(x) = x2 
- -Jpi_x - or 

gi(x) x2 - x + I-~i+1
. By Theorem 2.1.8, qi is inert in Bi+l if and only if the 

minimal polynomial for Bi+1 over Bi is irreducible in (Bdqi)[x]. Notice that there 

are only q possible distinct equivalence classes for in Bi/ qi. This is 

because q E qi. hence each equivalence class has a representative Z/ qZ. So there 

are at most 2q distinct polynomials Ji ( x) and g,J x) when considered as elements of 

(Bdqi)[x]. Also, if the minimal polynomial for Bi+I over Bi is irreducible in (Bdqi)[x], 

then it is not irreducible in (Bj/qj)[x] for any j 2 i. This is because the roots of the 

minimal polynomial are added to the extension Bi+1 and Bi+ 1 ~ Bj. So there are at 

most 2q values of i such that qi is inert in Bi+1. This shows that qi splits in Bi+1 for 

infinitely many i. \Ve use this fact to show that infinitely many distinct prime ideals 

of B contain q0B. Suppose not; then there exists an integer m such that precisely m 

distinct prime ideals of B contain q0B. We have seen that there n such that 

the number of indices i < n where qi splits in Bi+I is greater than m. Hence there 

are greater than m prime ideals of En that contain q0Bn. Each of these prime ideals 

is contained in a distinct prime ideal of B, which in turn must contain q0 B. This 

contradicts our assumption that precisely m distinct prime ideals of B contain q0B. 

So infinitely many prime ideals of B contain q0B, and we have our result. 

□ 
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APPENDIX A. MATHEMATICA RAMIFIED PRIME 

ALGORITHM 

This appendix contains the Mathematica code referred to and described in the com­

ments following Theorem 3 .1.1. The input. should be an irreducible polynomial over 

the integers in the variable x, say J(x). The algorithm computes an integer labelled 

s[x] that is a linear combination of polynomials of the form xif(x) and xJ J'(x). The 

output is the prime factorization of s[x]. 

f [x_J input 

For [ {g [x] = f [x] , h [x] = f' [x] , 

r[x] = h[x]*x-(Exponent[g[x], x] - Exponent[h[x], x]), s[x] = h[x], 

lc[poly_] := Coefficient[poly, x, Exponent[poly, x]]}, 

Exponent[s[x], x] > 0, 

{s[x] = Simplify[(lcm/lc[g[x]]) g[x] - (lcm/lc[r[x]]) r[x]], 

If[Exponent[h[x], x] > Exponent[s[x], x], {g[x] = h[x], 

h [x] = s [x] } , g [x] = s [x] J , 

r[x] = h[x]*x-(Exponent[g[x], x] - Exponent[h[x], x])}, 

1cm = LCM[lc[g[x]J, lc[r[x]]JJ 

output= Factorlnteger[s[x]J 
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