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ABSTRACT 

Hanson, Thomas Alan, M.S., Department of Statistics, College of Science and Mathematics, 
North Dakota State University, December 2010. Robust Tests for Cointegration with 
Application to Statistical Arbitrage Trading Strategies. Major Professor: Dr. Rhonda 
Magel. 

This study proposes two new cointegration tests that employ rank-based and least absolute 

deviation techniques to create a robust version of the Engle-Granger cointegration test. 

Critical values are generated through a Monte Carlo simulation over a range of error 

distributions, and the performance of the tests is then compared against the Engle-Granger 

and Johansen tests. The robust procedures underperform slightly for normally distributed 

error terms but outperform for fatter-tailed distributions. This characteristic suggests the 

robust tests are more appropriate for many applications where departures from normality 

are common. One particular example discussed here is statistical arbitrage, a stock trading 

strategy based on cointegration and mean reversion. In a simple example, the rank-based 

procedure produces additional profits over the Engle-Granger procedure. 
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CHAPTER 1. INTRODUCTION 

Cointegration can be conceptually described as a long-run equilibrium relationship 

between two or more nonstationary time series. When considered independently, the time 

series each appear to wander in an unpredictable random walk, but there exists some linear 

combination of those same variables that is stationary and therefore follows a pattern of 

mean-reversion. This concept has widespread applications, particularly in economics and 

finance, in which theories predict stable equilibria among nonstationary time series such as 

bid and ask quotes of a given stock over time and across different markets. 

To help fix this idea, consider the graphs in Figure A. The top row consists of time 

series plots of two variables, x and y, each constructed by the cumulative sum of 100 

independent standard normal random variables. Both series were transposed vertically so 

that the first term is zero. Though they begin at the same point, these variables are 

otherwise completely independent of each other and are nonstationary. The third plot, a 

scatterplot of y versus x, makes the random and independent nature of their relationship 

visually clear. There is no evident relationship between the two time series. Finally, the 

fourth plot is a time series plot of the difference of these two variables. If the two series 

were cointegrated, this difference would be stationary and demonstrate mean reversion, 

which would manifest itself in multiple crossings of the x-axis. In this case, however, the 

difference series appears qualitatively similar to the random walks of each time series. 

By contrast, Figure B shows the analogous four plots for two cointegrated series, c 

and d. As before, the data for time series c were generated by the cumulative sum of 100 

independent standard random normal variables. However, in this case, the second series 

I 



was set equal to the first, plus a random disturbance term drawn from a standard normal 

distribution. The two series were once again transposed vertically to begin at the origin. 
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Figure A. Non-cointegrated time series 

The cointegrated relationship between c and dis evident in all four graphs. The 

first two plots demonstrate that the series tend to vary contemporaneously; their local 

minima and maxima occur at approximately equal points. The scatterplot shows a strong 

linear relationship between the two variables, in stark contrast to the random scatterplot of 

Figure A. Finally, the difference series appears to be stationary; the mean and variance 
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both appear to be approximately constant. The fourth graph also exhibits strong mean

reversion with its multiple crossings of the x-axis. 
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Figure B. Cointegrated time series 

This is an illustration of bivariate cointegration, in which the linear combination of 

two nonstationary time series is stationary. While multivariate cointegration is well

defined, this investigation is limited to the bivariate case. The next section provides a 

theoretical overview of the motivation for this study. 
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Theoretical Underpinnings of the Study 

The purpose of this paper is to propose robust cointegration tests based on the 

seminal work of Engle and Granger (1987), who provided the first cointegration test that 

serves as the initial baseline model for this paper. Their original test, in turn, relies on the 

work of Dickey and Fuller (1979) and their eponymous unit root test. There are numerous 

benefits to this overall procedure, not the least of which is its conceptual simplicity. The 

two proposed robust tests in this study are modifications to this basic testing procedure. 

However, the Engle-Granger and Dickey-Fuller tests suffer from the flaw of 

notably weak power, particularly when the underlying distributions are non-Gaussian. To 

improve efficiency generally in the face of fat-tailed distributions, researchers frequently 

employ nonparametric methods. The two such methods employed in this study are 

weighted-Wilcoxon regression and least absolute deviation regression. 

The Wilcoxon test is based on ranks and is known in the location problem of 

estimating the median to have 95% efficiency for the normal distribution. Hettmansperger 

and McKean (1998) provide a table that further compares Wilcoxon, least absolute 

deviation (LAD), and least squares estimates for a contaminated normal distribution ( er= 3). 

They demonstrate the superiority of the rank-based procedures for even 1 % contamination, 

and for 15% contamination the Wilcoxon procedure is 50% more efficient. LAD 

estimation also surpasses the least squares estimate, but the crossover occurs at I 0% 

contamination. 

The issue of extreme, and perhaps even infinite, variance has been recognized as a 

problem for time series analysis in general for quite some time. Several approaches for 

dealing with such series have been tried over the years, including Granger and Orr ( 1972), 
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who suggested trimming the series before applying standard techniques. The issue has 

been particularly prevalent in the financial literature (e.g. Mandelbrot, 1963; Fama, 1965). 

Dealing with cases of extreme variance time series necessitates robust methods. 

The driving motivation of this study is that Wilcoxon estimation sacrifices little 

when error distributions are normal and provides a significant improvement for fat-tailed 

distributions. LAD estimation underperforms even more for the case of normally 

distributed errors, but it may represent an improvement for extremely fat-tailed 

distributions. This paper proposes modifications to the Engle-Granger procedure and 

Dickey-Fuller test based on Wilcoxon and LAD procedures. 

The format of the remainder of this paper is as follows. Chapter 2 reviews the 

relevant literature on the topics of robust regression, unit root tests, and cointegration tests. 

The development of the proposed robust cointegration tests as well as the simulation study 

methods are laid out in chapter 3; this chapter also hypothesizes the anticipated 

relationships between the manipulated parameters and the power of the tests in Monte 

Carlo simulations. The results of those simulations are presented in chapter 4. To illustrate 

one potential use of the new tests, chapter 5 provides an application in the form of a 

statistical arbitrage stock trading strategy, and chapter 6 concludes. 
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CHAPTER 2. LITERATURE REVIEW 

The formal concept of cointegration is, in relative terms, a recent addition to the 

statistics and econometrics literature. It was Granger (1981) who formally introduced the 

idea and coined the term, while the first formal test for cointegration was presented by 

Engle and Granger (1987). Despite this recent pedigree, the origins of cointegration can be 

traced back at least as far as Yule (1926), who recognized the spurious regression problem 

that arises when least squares regressions are naively applied to trending time series. 

Furthermore, the research on cointegration has been intimately tied to the prior 

development of unit root testing, of which perhaps the most well-known test is the 

Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979, 1981). 

After some basic definitions, this chapter reviews the literature on the interrelated 

topics of regression techniques, unit root testing, and cointegration. In doing so, it provides 

the background to motivate and develop the testing procedures that are used in this 

simulation study. First, robust regression techniques are presented, namely rank-based 

weighted-Wilcoxon (WW) regression and LAD regression. These two techniques are 

employed as robust alternatives to least squares in the proposed testing procedures. Second, 

the development of unit root testing is discussed, focusing on the Augmented Dickey-Fuller 

(ADF) test. Finally, a brief history of cointegration testing is presented. This study 

primarily utilizes the seminal works by Engle and Granger (1987) and Johansen (1988), 

while alternative cointegration tests are also discussed briefly. 

Basic Concepts and Definitions 

To motivate the concept of a time series with a unit root, consider the AR(l) 

process y 1 = py
1
_ 1 + u

1
, where the error terms u1 are assumed to be normal, independent and 
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identically distributed with mean zero and unit variance. (The series is often simplified 

with the assumption or modification that y 0 = 0 as well.) There are three different cases for 

this model. First, when IPl<l, the process is stationary. Second, when IPl=l, the process is 

a non-stationary random walk; finally, when IPI> 1, the process is a non-stationary, 

explosive model. 

It is simple to demonstrate that an AR(l) process is non-stationary when IPl=l. 

t 

Assuming y 0 = 0, we can rewrite the series as y
1 

= L u
1 

(fort= 1, 2, 3 ... ) by repeated 
i=l 

t 

substitution. This implies Var(y 1 ) = L CJ'
2 = t. (Non-stationarity can be similarly 

i=l 

expressed when IPI> 1.) On the other hand, when IPl<l the variance converges 

asymptotically to 
1 

2 
• Similarly, the autocovariance function of an AR(l) depends on t 

1-p 

only if the process has a unit root. If an AR( 1) process also includes a constant drift 

parameter, the mean will also vary with t (Maddala and Kim, 1998). 

The term "unit root" arises from rewriting an AR(p) process in terms of the lag 

mP -a1mp-I - ... - aP = 0. This equation is said to have a unit root if m = 1. For an AR(l) 

process, only one unit root is possible in which case the process is said to be integrated of 

order 1, denoted as I( 1 ). An AR(p) process can potentially have multiple roots, say r 

instances, of m = 1, in which case it is integrated of order r and denoted I(r). For many 

applications and economic theories in particular, it is sufficient to consider I(l) processes. 
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Robust Regression Techniques 

In reviewing the infamous priority dispute between Gauss and Legendre regarding 

the invention of least squares regression, Stigler (1981) described least squares regression 

as "the automobile of modem statistical analysis" (p. 465). He explained that while the 

method has limitations and occasional problems, it is still used for the bulk of statistical 

analyses. When approaching a new problem or constructing a new test, statisticians still 

often begin with the least squares approach, departing for more complex analysis only 

when necessary. In fact, this approach is perfectly valid in many situations, since least 

squares estimates correspond to maximum likelihood estimates when experimental errors 

are normally distributed. Therefore, Engle and Granger (1987) naturally employed least 

squares techniques in their original development of cointegration tests. 

In many applications, however, the assumptions that underlie the Gauss-Markov 

theorem and least squares regression are violated: the error terms may be correlated or 

possess unequal variances, for example. Some researchers argue even further that in 

economic time series the variance may be infinite (e.g., Mandelbrot, 1963), which would 

invalidate the assumptions of even the classical proof of the Central Limit Theorem. 

Therefore, widening the potential application of the original Engle-Granger (1987) two

stage cointegration test to such time series requires a more robust estimation method. In 

creating new cointegration tests, this study employs the two alternative regression 

techniques of weighted-Wilcoxon (WW) and Least Absolute Deviation (LAD). 

Weighted-Wilcoxon regression. The WW-estimate uses a rank-based approach to 

minimize the influence of outliers and departures from normality. Terpstra and McKean 

(2005) explained that a minimum of the following function provides a WW estimate of a 
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linear model, where bij denotes a weight used in the (i, j)th comparison and the residuals are 

DwR(P)= 2)ijle/P)-ei(p~ 
lsi<Jsn 

When bij = I for i * j and zero otherwise (Wilcoxon weights), Hettmansperger (1984) 

demonstrated that this dispersion function reduces to a simpler form: 

Here R(e/fJ)) denotes the rank of the residuals, which demonstrates explicitly why WW 

regression can be considered a rank-based procedure. Terpstra and McKean (2005) noted 

further that this function corresponds to Jaeckel' s (1972) dispersion function with 

Wilcoxon scores. Hettmansperger and McKean (1998) commented that the dispersion 

function is invariant to location, so a reasonable and typical estimate of the intercept is 

given by Po = med~; (/J )}. Finally, Hettmansperger (1984) elucidated the robust property 

of the estimate by noting that the influence of outliers has a linear effect as opposed to the 

quadratic influence of least squares. 

Tests for significance of the regression parameters can be obtained through the 

reduction in sums of squares test, Rao's scores test, or a Wald test (Hettmansperger and 

McKean, 1998). Terpstra and McKean (2005) provided details on each of these statistics, 

and more importantly, have made R code available that calculates the test statistics. 

Conceptually, the methodology is a straightforward standardization of the WW coefficient 

estimates. The calculation of the variance-covariance matrix, however, is complex and 

involves the estimation of nuisance parameters. Hettmansperger and McKean (1998) and 
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Terpstra and McKean (2005) provided the theoretical development and R code 

implementation of the procedure, respectively. 

The proposed test statistic of this study is built through Monte Carlo simulation. 

Therefore, the asymptotic, distributional theory of the Wald test itself and the consequent 

p-values reported by the code of Terpstra and McKean (2005) are not of primary concern. 

The only value used in the proposed robust cointegration test is the standardized statistic 

that the R code labels TV AL. This statistic is the WW estimate of the slope coefficient, 

standardized by a measure of standard deviation. While it is thus analogous to the t-test of 

lest squares, the statistic does not follow a standard t-distribution. 

Least absolute deviation regression. Historically, LAD regression actually predates 

the development ofleast squares by 50 years, and its potential efficiency advantage over 

least squares was known by Laplace (Wilcox, 1997). Once least squares estimators were 

shown to be maximum likelihood estimators when errors are normally distributed, however, 

LAD regression was rarely employed. Only the most basic ideas behind LAD estimates are 

covered here, because they are necessary for the later development of robust unit root and 

cointegration tests. 

Consideration of the formulae for the least squares and WW estimates anticipates 

the dispersion function for LAD estimation. As a reminder, the least squares estimate is 

determined by minimizing the following expression, with notation consistent with that 

given above for the WW estimate: 

i=I 

This makes it notationally clear that least squares methods is a minimum of the sum of the 

squared residuals. Similarly, the WW estimator above is based on the sum of each residual 
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multiplied by its rank. The LAD estimator minimizes the sum of the absolute values of the 

residuals: 

DLAD(p)= ih(/J~ 
i=I 

This lessens the influence of outliers even more and produces better estimates for 

leptokurtic distributions. 

As with WW regression, the coefficients need to be standardized to calculate a test 

statistic. This is the statistic that is aggregated in the Monte Carlo simulation study for the 

proposed cointegration test. Koenk:er and Bassett (1978) proposed an estimate of the 

asymptotic covariance matrix that can be easily implemented in the R function 

SUMMARY.RQ. Once again, this statistic is analogous to the least squarest-statistic, 

though it does not share that distribution. Most importantly for the robust properties of the 

statistic, Koenk:er and Bassett (1978) observed that while LAD estimates underperforrn 

least squares estimates for Gaussian errors, they substantially outperform them for a wide 

range of other error distributions. 

Both WW regression and LAD regression are robust alternatives to least squares, 

minimizing the influence of outliers. The need for such robust analysis has been 

acknowledged by a wide range of research, particularly in economics and finance 

(Mandelbrot, 1963; Fama, 1965). In his book on the topic, Wilcox (1997) summarizes the 

reasons for this need, including low power, poor coverage, and distortions that arise from 

incorrect variance estimates. All of these can lead to incorrect conclusions in the face of 

fat-tailed distributions. This motivates the use of alternative regression techniques to create 

the proposed robust cointegration tests of this study. Before describing those tests, the 

preliminary topic of unit root testing is introduced in the next section. 
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Unit Root Tests 

Unit roots arise in non-stationary autoregressive processes and gained prominence 

following the work of Nelson and Plosser (1982). In that paper, the authors argued that 

most macroeconomic time series are 1(1) processes, that is the series contained an 

autoregressive unit root. Because of this economic association, cointegration is often 

understood conceptually as a test for an equilibrium relationship between two non

stationary time series. Unit root tests play two important roles in cointegration testing. 

First, they are necessary as a pre-test to ensure that candidate time series are 1(1 ). Second, 

they are often used directly in cointegration tests themselves, most notably as part of the 

Engle-Granger cointegration test. 

The robust cointegration test proposed in this study seeks to improve on the power 

of existing tests, in part, by creating a more robust unit root test for use in the Engle

Granger methodology. The proposed unit root test is a modification of the Augmented 

Dickey-Fuller (ADF) test, and this section reviews the development of that statistical test. 

Following that, some alternative unit root tests are reviewed briefly, and the final two 

sections discuss previous attempts to make the ADF test more robust by using rank and 

LAD methods. These variations on the ADF test anticipate the unit root tests that are 

employed as part of the more robust cointegration test proposed in this simulation study. 

Dickey-Fuller and ADF tests. The seminal test for the presence of a unit root is the 

Dickey-Fuller test statistic (Dickey and Fuller, 1979), which was later extended to the 

Augmented Dickey-Fuller test (Dickey and Fuller, 1981 ). This test remains one of the 

most popular and commonly utilized tests. The basic version is based on a least-squares 

regression of the equation x
1 

= µ + px
1

_ 1 + &
1 

• This is reparameterized to the following 
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form: Ax-
1 
= µ + (p l )x1-1 + t:

1 
• This equation is then estimated with least squares, and the 

appropriate t-statistic is used to test the null hypothesis that p l. 

This test statistic, however, has a nonstandard distribution because the series is non

stationary under the null hypothesis. If the standard critical values from at-distribution are 

used, the result can be significant over-rejection of the null (Maddala and Kim, 1998). 

Phillips ( 198 7) describes the limiting distribution of the statistic in terms of Wiener 

processes. This differs from the original approach of Dickey and Fuller (1981), who 

calculated the appropriate critical values for the above model and others, such as those 

including a linear time trend. 

One shortcoming of the original Dickey-Fuller test is that it includes the implicit 

assumption that the error term is not serially correlated. The ADF test overcomes this 

problem by expanding the previous equations to the following form: 

m 

xi = µ + /Jt + px1-1 + LAiL\xH + t:, 
i=l 

m 

ru:1 = µ + /Jt + (,o-1)x1_ 1 + LA;AxH + t:1 

i=l 

The lag length (m) in the equations above must be determined by the researcher. The 

number can be assumed a priori or determined in a general-to-specific search from a pre

determined maximum. Other possible methods for determining the appropriate lag length 

include the Akaike Information Criterion (AIC) or the Schwarz Criterion (SC). Once the 

lag length has been chosen, a least squares regression on the second equation leads to an F 

ratio to test the null hypothesis that /3 0 and p 1 ( or a t-statistic if no time trend is 

included). As above, the critical values are non-standard due to the non-stationary nature 

of the series under the null hypothesis. 
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The ADF test is generally presented in elementary textbooks of time series and 

econometrics; it is also widely available in computer programs. Therefore, it is likely the 

most widely used (Maddala and Kim, 1998). However, scholars have proposed many other 

unit root tests, several of which are discussed in the next section. 

Alternative unit root tests. There are three primary reasons for the multiplicity of 

unit root tests. First, there is no uniformly most powerful test for the unit root hypothesis 

(Stock, 1994 ). The other two reasons lie with the size distortion and low power that have 

been a constant source of criticism for unit root tests. Some of the earliest Monte Carlo 

evidence of size distortion can be found in Schwert (1989), while Delong, et al. (1992) 

complained about the low power of several tests, including the ADF test. Agiakloglou and 

Newbold (1992) make similar observations regarding the size and power of several unit 

root tests. Because of these problems, new tests are constantly being developed. This 

section highlights a few of the tests that have been proposed as replacements to the ADF 

test. 

Two extensions to the basic ADF test have been proposed, the Said-Dickey test 

(Said and Dickey, 1984) and the Phillips-Perron (PP) test statistic, as developed by Phillips 

(1987) and Phillips and Perron (1988). The Said-Dickey procedure allows for both AR and 

moving average (MA) error distributions and therefore begins from a different assumption 

of the data-generating process than the ADF test. However, the final test statistic is based 

on a least squares regression and at-test that follows the Dickey-Fuller distribution. 

Therefore, the test fails to provide a more robust estimate for fat-tailed error distributions. 

While the PP test statistic is typically referred to as nonparametric ( e.g., Banerjee, 

Dolado, Galbraith, and Hendry, 1993), this characterization misleadingly conceals the fact 
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that it is still based on the same least squares regression as the ADF test. The test simply 

modifies the ADF test statistic with nonparametric corrections that are meant to account for 

the effect of autocorrelated errors. Once again, the underlying least squares regression 

limits the robustness of the test. Furthermore, while the PP test has slightly higher power 

than the Said-Dickey test, both tests suffer from significant size distortions (Phillips and 

Perron, 1988). These tests offer only marginal improvements over the ADF test. 

Maddala and Kim (1998) discussed a wide variety of other unit root tests. The 

diversity of available unit root tests is both vast and largely peripheral to the development 

of this study. Among them are the test proposed by Sargan and Bhargava (1983) that is 

based on the Durbin-Watson statistic, a variance ratio test based on the work of Cochrane 

(1988) and Lo and MacKinlay (1988), and tests based on instrumental variables as found in 

Hall (1989) and Choi (1992). 

Tests that reverse the hypotheses and use stationarity as the null have also been 

proposed. The primary example is known as the KPSS test, developed by Kwiatkowski, 

Phillips, Schmidt, and Shin (1992). Maddala and Kim (1998) also reviewed related tests by 

Park (1990) and Leyboume and McCabe (1994). Each of these tests offers some 

improvement at the cost of complexity, but none has been found to be universally better in 

simulation studies. 

Among the other candidates mentioned by Maddala and Kim (1998) in their 

overview of the literature are Mand MM estimators (Lucas, 1995a; Lucas, 1995b), a 

likelihood based test using nonnormal errors (Rothenberg and Stock, 1997), and a test 

based on errors with a !-distribution (Hoek et al., 1995). Another proposed test is the range 

unit root test of Aparicio, Escribano, and Sipols (2006). For the most part, these tests have 
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not been widely employed nor have any comparison studies identified them as generally 

superior. Following their review of the literature on unit root tests, Maddala and Kim 

(1998) urged researchers to consider the proper role of unit root tests and summarized the 

current state of the art with two observations: first, tests beyond the ADF and PP are rarely 

employed by practitioners or researchers, and second, the commonly used versions of these 

two popular tests are so lacking in power that they do still need to be replaced or improved. 

The next two sections review unit root tests that aim to correct these problems by 

employing rank methodologies and LAD estimation, the same methodologies that will be 

employed in this investigation 

Rank-based unit root tests. One method to introduce rank procedures into the ADF 

test is to transform the original time series into its ranks and then perform the standard test 

on the series of ranks. This test is sometimes referred to as the rank-ADF test and was 

introduced by Granger and Hallman (1991). They observed that the ADF test can perform 

poorly when the data generating process of the time series is nonlinear. In such a situation, 

their rank-ADF test performs better in terms of power. Since most time series are generally 

modeled as linear, at least in the short term, this advantage would appear to be modest. 

This perhaps explains why the test has been adopted and studied by so few practitioners. 

Breitung and Gourieroux (1997) made a slight modification to the rank-ADF test by 

applying a rank transform to the first differences of the original data and then performing 

the standard ADF test. One benefit of this unit root test is that it holds even when variance 

of the data generating process is infinite, so long as the error distribution is symmetric 

(Janicki and Weron, 1994). This test is robust for structural breaks as well as additive and 

innovative outliers. However, in a comparison with the rank-ADF test, Fotopoulos and 
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Ahn (2001) show that the test has lower power and in some cases deteriorates below even 

that of the basic, parametric ADF test. 

Hasan and Koenker (1997) exploit the relationship between quantile regression and 

rank statistics to give a new test procedure for the hypothesis that a series qt contains a unit 

root. The test is based on the following statistic, where bn is the regression rank score 

process of Gutenbrunner and Jureckova (1992) and q;_I represents the projection of q1-1 

With slight modification, they demonstrate that the statistic is asymptotically normal under 

the null hypothesis. 

The results of a Monte Carlo simulation in Hasan and Koenker ( 1997) clearly 

demonstrate their test's superiority when the error distribution is nonnormal. For a time 

series of length 100, the ADF test is inferior for both Cauchy and t3 distributions and 

performs only slightly better in terms of power for normal errors. Hasan (2001) extends 

the rank-based methods above to the situation where the error distribution has infinite 

variance, namely the Levy stable distribution with stability index a= (1.2, 1.0, 0.8, 0.5) 

and finds similar results. He observes that the Hasan-Koenker test actually performs better 

as the tails of the error distribution become fatter, in stark contrast to the ADF test. 

Koenker (1997) considers the loss of power under conditions of normality to be an 

acceptable risk to insure against the poor performance of the least-squares methods in 

situations with heavier tails. 
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However, there are at least four problems with the Hasan-Koenker approach. First, 

the test has significant size distortion ( all reported power figures and comparisons in their 

papers are necessarily size adjusted power). Second, they impose an assumption of 

asymptotic normality on limited sample sizes, rather than generate critical values. Third, 

the test statistic requires the estimation of nuisance parameters. Last, the complex rank

based methods they use are not easily implemented in software packages. All of these 

shortcomings are addressed by the straightforward WW-based ADF test that is proposed in 

the next chapter. 

LAD-based unit root tests. A unit root test based on LAD regression was developed 

by Herce ( 1996). He proposed several statistics based on modifications of the LAD 

regression estimate, PLAn, that he described as analogous to the Phillips-Perron 

adjustments to the ADF test. Of several candidates, the statistic he denoted L /J,µ possessed 

the best properties in terms of power, and he derived the distribution of the statistic as the 

product of independent Wiener processes and a standard normal random variable. 

Herce (1996) provided the results of several simulation studies that demonstrated 

the superiority of his test statistic when the errors followed a double exponential 

distribution and the time series had length 100 and 200. This is unsurprising given that 

LAD regression is optimal for that distribution. The LAD-based test also outperformed in 

the case of contaminated normal errors, but significantly underperformed for normal errors. 

The primary weakness of this LAD-based test is that the test has arbitrarily low 

power for normally distributed errors. Herce (1996) noted that the problem occurs because 

the LAD-based tests are inconsistent in that case, and the power can remain arbitrarily low 

even in the limit, as the length of the time series increases. Nuisance parameters also 
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remain a problem for implementation. Surmounting these problems is the motivation for 

the LAD-based unit root test described in the next chapter. 

Cointegration Tests 

The statistical concept of cointegration is grounded in the problem of the spurious 

regression that can occur when dealing with nonstationary time series. Hendry ( 1986) 

provided the long historical background of nonsense regressions, of which one example is 

Hooker (1901), who demonstrated a relationship between trade and the marriage rate. 

Granger and Newbold (1974) provided a rule of thumb for identifying such meaningless 

relationships, suggesting that any R2 greater than the Durbin-Watson statistic should raise 

suspicions. Such problematic series require first differencing of the variables, unless they 

can be shown to be cointegrated. 

Co integration implies that a linear combination of nonstationary time series exists 

that is itself stationary. In other words, the two time series do not drift arbitrarily, but 

return toward an equilibrium relationship. This is sometimes referred to, especially in the 

field of finance, as mean-reversion of the relationship. A variety of tests have been 

proposed to identify cointegrated time series, but the bulk of analysis today is done with 

one of two tests. The first is one of the original tests proposed by Engle and Granger ( 1987) 

and the other is the test developed by Johansen (1988) that uses reduced rank regression. 

This section outlines these two tests and concludes by mentioning a few of the available 

alternative procedures. 

Engle-Granger cointegration test. The first test for cointegration was developed by 

Engle and Granger (1987), and it validated the use ofleast squares with nonstationary 

series. Once it is established that the time series are 1(1 ), a cointegrating regression is run, 
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which in the bivariate case used in this simulation study is a least squares regression of the 

form y
1 
=a• x

1 
+ z

1 
, where zi represents the error term. The estimate a is often described 

as superconsistent because it converges to its true value at a rate of T, rather than the usual 

convergence rate of T12 (Stock, 1987). 

Once the least squares estimate is determined, the series of residuals z I is calculated. 

If that series has a unit root, it implies a lack of mean reversion or equilibrium in the two 

original series. Therefore, the series would not be cointegrated. Conversely, if the series 

were cointegrated, the residuals would constitute a stationary series and not contain a unit 

root. Engle and Granger (1987) examine the potential use of a number of tests, and in the 

end argue in favor of an augmented Dickey-Fuller test as the most powerful. 

It is imperative to notice that the standard ADF test critical values do not apply for 

the Engle-Granger cointegration test. The reason is that the series of residuals is itself 

based upon the cointegrating regression estimation. For this reason, Engle and Granger 

(1987) used Monte Carlo simulation to generate the appropriate critical values. Their work 

provides a control or baseline comparison for the least squares test that can be compared to 

the robust cointegration tests proposed in this study. 

To conclude this section, several potential problems exist with the cointegrating 

regression need to be addressed. First, in limited samples the bias can be significant, as 

demonstrated by Banerjee et al. (1986). Second, the limiting distribution is non-normal, 

which creates the same problem as spurious regression: typical t and F statistics are not 

applicable (Stock, 1987). A third issue is normalization. If the regression were normalized 

to the series x,, the regression would be of the form x
1 

/3 • y
1 
+ z

1
, and it is generally the 

case that /J ~ ½. However, Ng and Perron (1997) demonstrated that the least squares 
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estimator can have poor finite sample properties in one direction and not the other. Finally, 

any serial correlation or endogeneity (which can be modeled by non-zero covariance of the 

error terms) requires the estimation of nuisance parameters (Maddala and Kim, 1998). The 

next section examines one test that attempted to overcome these problems. 

Johansen cointegration test. The most widely used cointegration test, according to 

Maddala and Kim (1998), was proposed by Johansen (1988) and further developed by 

Johansen and Juselius (1990). The primary motivation and benefit of the Johansen 

cointegration test is that it avoids the need for normalization. The procedure applies 

maximum likelihood estimation in a vector autoregression model, with the assumption that 

the error terms are normally distributed: 

l'r = A1l'r-1 + · · · + Akl'r-k + ut 

Here Y1 is a vector of 1(1) variables, so the first difference will be stationary. The model 

can be rewritten to capitalize on this property: 

~l'r = B1 l'r-1 + B2 ~l'r-1 +···+Bk ~l'r-k+I + ut 

Since all of the differenced terms are stationary while JTi_1 is non-stationary, the matrix B 1 

cannot be full rank. If it has rank r, then it can be rewritten as the product of two matrices 

AB, and BY are then the r cointegrated variables. In the bivariate case, there is at most one 

cointegrating constant. 

The Johansen estimation procedure is called reduced rank regression and ends with 

maximizing the likelihood function by solving an eigenvalue problem. This results in two 

tests for cointegration known as the trace and maximum eigenvalue statistics. Each of 

these is based on the fact that if there are r cointegrating vectors, this implies that the (n - r) 

smallest eigenvalues are zero. Johansen and Juselius (1990) favored the maximum 
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eigenvalue test, and critical values can be found in Osterwald-Lenum (1992). For 

consistency in this simulation study, however, the critical values are generated, as 

described in the next chapter. 

Alternative cointegration tests. The search for effective cointegration tests has 

continued to challenge researchers, given the numerous potential problems and multiple 

settings for such tests. Of particular interest in this study, leptokurtic error distributions 

invalidate the assumptions that underlie most test procedures. Other problems can have a 

dramatic effect on the power of cointegration tests as well: nonlinearities, homoskedasticity, 

or structural breaks. 

General robust methods can in some cases deal with these multiple problems. 

Koenker and Bassett (1978) observed that biased estimators do exist that are superior for 

non-Gaussian distributions, even beyond the case of infinite variance: "While least squares 

is obviously abysmal for distributions having infinite variance (having zero efficiency for 

the Cauchy for example) its gross inferiority to a variety of nonlinear estimators is by no 

means confined to distributions with infinite variance" (p. 35). 

Both the Engle-Granger and Johansen tests perform poorly when faced with 

nonlinearities, homoskedasticity, or structural breaks. Therefore, a range of alternative 

tests has been proposed using various methods, including induced order statistics 

(Escribano, Santos, and Sipols, 2008), record counting correction (Escribano, Sipols, and 

Aparicio, 2006), and a nonparametric version of the Johansen test (Bierens, 1997). 

Furthermore, modifications to unit root testing allows for new cointegration tests, as can be 

found in the fully modified least squares of Phillips ( 1995) and range unit root tests 

(Aparicio, Escribano, and Sipols, 2006). 
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The range of new tests is impressive since the very concept of cointegration was 

defined less than thirty years ago. However, few of them have yet been used in 

applications or compared in published simulations. One particular advantage of this study 

is the direct application and comparison of the proposed robust cointegration tests. 

Furthermore, the proposed tests combine robust techniques with the simplicity of the 

Engle-Granger test. 

Summary 

This chapter has highlighted the relevant literature relating to three broad areas: 

robust regression techniques, unit root tests, and cointegration tests. Despite the variety of 

extant tests, low power is a persistent problem for cointegration tests, particularly when the 

errors are leptokurtic. Making robust modifications to the Engle-Granger procedure should 

improve performance for such fat-tailed distributions. The next chapter outlines such 

modifications as well as the simulation study methods that allow for comparison of the 

tests. 
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CHAPTER 3. TEST DEVELOPMENT AND SIMULATION STUDY METHOD 

This investigation compares the properties of the Engle-Granger and Johansen 

cointegration tests with WW (rank)-based and LAD-based procedures. In order to estimate 

the size and power of the four tests, Monte Carlo simulations were designed and 

implemented in R code. According to the website of the R Project for Statistical 

Computing (http://www.r-project.org), "Risa language and environment for statistical 

computing and graphics." The open source code format allows for compilation of the work 

of several authors as well as a great deal of flexibility to manipulate existing functions. All 

simulations and graphics in this investigation were created in the R environment. 

This chapter begins by explaining the modifications made to the ADF test to make 

it more robust. It then describes the procedures of the Engle-Granger cointegration test and 

the modifications made to it in order to create two proposed cointegration tests that are 

robust to fat-tailed errors. The implementation of the Johansen procedure is also outlined. 

Following that, the details of the simulation study are provided: the data-generation process 

used and the various parameters altered for the purpose of comparing the three 

cointegration tests. 

ADF Test Modifications 

Since the goal of this investigation is to replace least squares procedures with more 

robust techniques in cointegration testing, it is not sufficient to modify only the first step 

from the Engle-Granger procedure, the cointegrating regression. The unit root test must 

also differ from the classic ADF test, to remove its reliance on least squares estimation in 

favor of a more robust method. The R function used for all three unit root tests in this 
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study is MY.DP.TEST, which includes three versions based on least squares, Wilcoxon, 

and LAD regressions. 

The first version, based on least squares regression, is identical to the original ADF 

test. The function LS FIT conducts a least squares regression of the first difference of the 

residuals on the residuals themselves. The test statistic of interest is the t-statistic for the 

null hypothesis that the slope is equal to zero. Rejection of the null hypothesis implies a 

stationary series. Conversely, non-rejection entails a non-stationary time series. However, 

in this simulation study, previously published critical values are not used to determine p

values or a rejection decision. Instead, the t-statistic is retained to generate critical values. 

This simulation technique is what allows a direct and valid comparison to the robust 

techniques by guaranteeing all tests share an empirical and not just nominal size. 

The second version of the unit root test is an application of WW regression in the 

same general format as the ADF test. The difference in the residuals is regressed on the 

residuals via WW regression, using the function WWEST. The slope coefficient is 

standardized, and the distribution of this statistic is built through replication in the Monte 

Carlo simulation. The 5% critical value is then used in estimations of the test's size and 

power. 

Similarly, LAD regression is used for the third and final version ofMY.DF.TEST. 

Once again, the coefficient is estimated and standardized. This test calls the quantile 

regression function RQ, and the standard errors are calculated using the method of Koenker 

and Bassett ( 1978). Replication of the procedure then provides the 5% critical value of the 

test statistic. 
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Cointegration Tests 

As discussed previously, the Engle-Granger test procedure consists of ordinary least 

squares regression followed by an augmented Dickey-Fuller test (which also involves least 

squares estimation). In the simulation study, the former calls the basic R function LM. 

The latter was carried out by the least squares version of the function MY.DP.TEST. 

Replicating the Engle-Granger test with its least squares procedure fulfills two roles. 

First, it allows for comparison to the original results and thereby provides confidence in the 

validity of the simulation. Second, it provides a baseline for comparison with the proposed 

tests. The two proposed tests are robust variations on this seminal cointegration test. 

The first robust cointegration test is based on WW regression procedures. First, the 

weighted Wilcoxon estimates are calculated using the function WWFIT (Terpstra and 

McKean, 2005; Terpstra, McKean, and Naranjo, 2001)1. The procedure employs a 

Wilcoxon weighting scheme. Analogous to the Engle-Granger method, these estimates 

supply residuals for the second step of the co integration test, which is conducted by use of 

the WIL version of MY.DP.TEST. 

The other proposed robust cointegration test uses LAD regression procedures 

throughout. It begins with a cointegrating regression using the function RQ. This step 

provides the residuals that are then tested for stationarity using the LAD version of 

MY.DP.TEST. 

The implementation of the Johansen (1991) cointegration test comes from the 

contributed package Urea (Pfaff, 2006). This package includes the function CA.JO, which 

is employed to calculate the maximum eigenvalue version of the Johansen test. (The trace 

1 The R code for this function (and other necessary sub-functions) is made available by Terpstra and McKean 
at this website: http://www.stat.wmich.edu/mckean/HMC/Rcode/ AppendixB/ww.r 
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statistic is not considered.) To mitigate any size distortions, the critical values of this test 

statistic are also generated through Monte Carlo simulation; however, no modifications are 

made to this test. It is included in this study solely for comparison. 

The first three tests follow analogous procedures, utilizing different regression 

techniques for each step. The Johansen test is included for comparison because it is one of 

the more popular extant cointegration tests. The simulation proceeds by generating time 

series and applying each of the four tests independently within each replication. 

Comparison of their performance (in terms of power) is the primary contribution of this 

study. The remainder of this chapter discusses the various other parameters that are 

modified to allow for comparison under a multiplicity of conditions. 

Simulation Study Parameters 

Time series length. Much of the theory of cointegration tests is based on the 

validity of asymptotic distributions. However, practitioners frequently work with time 

series of limited length. One primary example is financial time series, where structural 

change can invalidate long-term time horizons, and the data are measured at discrete 

intervals. Therefore, this applied study focuses on finite series, specifically series with 

lengths t = (50, 100, 250). The largest of these values corresponds approximately to the 

number of trading days on the New York Stock Exchange in a given year. This is of 

particular interest in the application to statistical arbitrage trading strategies, as discussed in 

Chapter 5. 

Data generating process. The Monte Carlo simulations all employ the following 

data-generation process for the two time series x and y: 
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xi+ Yi= u1 

Xi + f3Y1 = et with !Pl~ 1 

u1 = u1-1 +&11 /3 = 2 

et = pet-I + &21 

In general, the cointegrating constant f3 can take on any real value, but it is convenient for 

the purpose of testing and comparison to limit the data-generation to this one particular 

value, which is also a common assumption in previous studies ( e.g., Phillips and Hansen, 

I 

1990). The error vector ( & 11 , & 21 ) consists of two independent and identically distributed 

stable random variables, each with an expected value of zero. The basic form of this DGP 

has been widely employed (e.g., Banerjee, Dolado, Hendry, and Smith, 1986; Engle and 

Granger, 1987; Phillips and Loretan, 1991; Kremers, Ericsson, and Dolado, 1992). Solving 

for x and y gives the following equations that are used to generate the simulated time series: 

x1 = /3(/3-lt1u 1 -(f3-lt1e1 

Yi =-(f3-lt1u 1 +(f3-lt1e1 

When !Pl = 1 , both variables are I(l) and the two series are not cointegrated. In that 

case, the null hypothesis is false; this allows for estimation of the tests' size. When IPI < 1, 

both variables are still I(l) but they are cointegrated with cointegrating coefficient /3 = -2. 

Thus, varying the value of rho allows for estimation of power. It is more difficult for the 

tests to differentiate the near-cointegrated cases when IPI is close to one; that is, power 

varies inversely withp. The simulations include a range of values for comparison among 

the three testing procedures: p = (0.8, 0.9, 0.95, 1). 

In the simulations, time series oflength t + 20 are generated by this data-generating 

process, and the first 20 values are then discarded. This methodology minimizes start-up 
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effects. Furthermore, it allows for the valid inclusion of a constant term in all regressions 

and tests. 

Some authors have broadened the data-generating process to allow for correlated 

error structure. For example, Hansen and Phillips (1990) generate multivariate normal 

error terms. They view the degree of covariance as a measure of the endogeneity of the 

system. While covariance and endogenous variables may be important in many 

applications, their consideration adds to the complexity and lies outside the scope of this 

investigation. All error terms in the Monte Carlo simulations in this study are independent, 

and the next section addresses their other properties in more depth. 

Error distributions. The data-generating process described above is quite general 

with regard to the distribution of the error terms. Engle and Granger (1987) considered 

only normally distributed errors in the development of their cointegration test. Most papers 

since then have made similarly strong restrictions by considering a narrow range of error 

distributions. The purpose of the proposed WW - and LAD-based methods is to 

demonstrate more robust tests that apply to a broader range of error distributions. 

Stable distributions provide a family of probability distributions that can include the 

properties of both heavy tails and skewness. One theoretical reason for their use is that the 

normal distribution is a special case within this family. In fact, the normal, Cauchy, and 

Levy distributions are the only three special cases within this family for which a density 

function exists in closed form. In general, stable distributions are those distributions that 

maintain their shape under addition, leading to Nolan's (2003) definition of the stable law: 

if X, X1, X2, ... ,Xn are independent and identically distributed stable random variables, then 

for all n, X 1 + X 2 + ... + Xn ~cnX + dn for some constants en > 0 and dn, 
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There are at least three reasons that stable distributions meeting this criterion may 

be chosen as a model for a given data set, as outlined in Nolan (2003). First, there may be 

theoretical reasons for expecting such a distribution in a physical process. Second, 

empirical investigations may demonstrate that a data set exhibits heavy tails and skewness. 

This motivation has a long history in finance and economics, with examples from 

Mandelbrot (1963) and Fama (1965) to Rachev and Mittnik (2000). Stock prices in 

particular are well known to exhibit leptokurtic, left-skewed distributions. 

The final motivation for modeling with stable distributions is the Generalized 

Central Limit Theorem (GCLT). For comparison, the classical Central Limit Theorem 

states that for a random sample drawn from a distribution with some mean µ and positive 

2 ✓n(x -µ) 
(non-infinite) variance CT, n ~ Z, where Z is the standard normal 

a 

distribution (Hogg, McKean, and Craig, 2005). The GCLT drops the assumption of finite 

variance and shows that the limiting distribution must be stable. That is, if X X 1, X 2, .. ,,Xn 

are independent and identically distributed random variables, there exist constants an > 0, 

bn, and a non-degenerate random variable Z such that an (X1 + ... + Xn)-bn ~Z if and 

only if Z is stable (Nolan, 2003). Therefore, if an observed data series can be thought of as 

the sum of many small terms it may be modeled adequately by a stable distribution. This is 

precisely the case in many financial time series, including stock prices. 

In general, Stable distributions are characterized by four parameters: a characteristic 

exponent a E ( 0,2 ], a skewness parameter /J E [-1,1], a scale parameter r ~ 0 , and a 

location parameter 8 E iR (Nolan, 2003). In this investigation, the normal distribution (a= 

2, /J = 0) is included as a control or baseline for comparison to the heavy tailed distributions. 
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The other distributions considered are chosen for inclusion due to their tail behaviors; that 

is, the values of a are such that 1 < a< 2, exhibiting a leptokurtic distribution. 

In the Monte Carlo simulations, the particular value of a= l .5 is chosen as the 

midway point, while a= 1.7 is selected due to Mandelbrot's (1963) well-known estimate 

of the parameter from the time series of cotton prices. In that same work, Mandelbrot notes 

that the data suggests that the series are not symmetric. Instead, /3 "takes a small negative 

value" (p. 405). This is the motivation for considering a skewness parameter of /3 = -0.25 

in this study. The joint consideration of a= (l .5, 1. 7) and /3 = (0, -0.25) implies four stable 

distributions used to generate error terms in addition to the normal distribution. The power 

of the WW and LAD tests should increase as a decreases, and the power of all the tests 

should suffer from the skewness that is implied by a negative beta parameter. 

The Engle-Granger data-generating process originally required an expected value of 

zero. Stable distributions, however, do not always have well-defined expectations. 

Specifically, the mean does not exist whenever a:::; 1 (Nolan, 2003). In that case, the 

requirement could be more broadly interpreted to mean a location parameter (8) equal to 

zero. Note that this is equivalent to the original assumption of a zero mean whenever a> l. 

The final parameter is the scale parameter y, which corresponds to variance for the 

normal distribution. In a financial application, this parameter would describe the volatility 

of a given price series. Unlike the other three parameters, which are equal in both time 

series within a given simulation, the ratio of scale parameters is varied so that it takes on 

the values y /y2 = ( 4, 2, 1 ). This ratio can be thought of as a signal-to-noise ratio, as in 

Hansen and Phillips (1990). Using the normal distribution in a Monte Carlo simulation 

study of cointegration, Banerjee et al. (1993) allowed the ratio of variances to cover a 
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similarly wide range. The authors measured the bias in estimating the cointegrating 

coefficient and found that it varied inversely with the ratio of variances. This logically 

implies that power should vary directly with the ratio y/y2 where the scale parameters Y1 

and y2 are used to generate the errors £it and £2t, respectively. 

Lag length. The size and power of the EG and Rank tests are influenced by the 

number of lagged terms included in the second step unit root test (Schwert, 1989). This 

necessitates a choice from several potential guidelines for the number of lagged terms: an 

arbitrary fixed level; a function of the length of the time series, such as Schwert's proposal 

of Jntl12(T /100}11 4 j; the Akaike or Schwarz Information Criteria; or a sequential rule. 

Examples of the last method are discussed in Hall ( 1994 ), in which the superior choice is 

demonstrated to be general to specific. In that method, the researcher begins with a large 

value, tests the significance of the last term, and then decreases the lag length until a 

significant statistic is found. 

In a comparison study of these choices, Ng and Perron (1995) conclude that the 

general to specific method consistently chooses larger values for the appropriate lag length. 

This inclusion of more lags tends to decrease power slightly, but it lessens size distortions 

significantly (Delong, Nankervis, Savin, and Whiteman, 1992). Therefore, once again the 

general to specific methodology is preferred for applied research. 

The question of lag length is clearly non-trivial, and previous research has provided 

guidance for use in any given application. However, considerations of lag length are not 

the primary focus of this study. Furthermore, using the general to specific method would 

add unwieldy complexity and computing time to the simulations. Therefore, for the 
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purpose of this exploratory investigation, lag length is fixed at the prespecified level of l = 

1 for all tests. 

Critical Value Generation 

In making comparisons among Monte Carlo simulation results, it is imperative to 

ensure approximately equal size for each test. Tests that are "liberal" or "conservative" in 

comparison to their nominal size also have distorted power. N ai"ve power comparisons that 

ignore this issue of size distortion can lead to incorrect conclusions. Lloyd (2005 a, 2005b) 

provides several suggestions to ensure valid comparisons, including post hoc 

methodologies to calculate size-adjusted power. He argues most forcefully that no matter 

what method is chosen, steps must be taken to ensure the validity of power comparisons 

among proposed tests. 

This investigation avoids the necessity for size-adjusted power by generating the 

critical values in the same manner as Engle and Granger ( 198 7). The distributions of the 

test statistics are built through 10,000 repetitions of the test under the null hypothesis, and 

the 5% critical values are determined from the empirical distribution of the test statistic. 

These critical values are then used in the simulations to calculate size and power. In this 

way, all of the tests have approximately equal empirical size of 5% and not just a nominal 

size of 5% that can vary widely in application. 

There are two primary advantages of this approach. First, it eliminates the need for 

post hoc size adjustments before comparing the tests. Second, the least squares results are 

analogous to the original results of Engle and Granger (1987). Similar results in that case 

provide assurance that the simulation code is correctly specified. All critical values used 

throughout the simulations were therefore generated using this empirical methodology. 
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Size and Power Estimation 

Once the critical values have been generated, the simulations are run again under 

the null hypothesis of no cointegration. In that case the time series are built from 

independent random errors, and the tests are based upon the generated critical values. 

Theoretically, all tests should have an empirical size of 5% with a standard error of 

a 1-& 
--- , since the simulations are all run with 10,000 repetitions (Lloyd, 2005a). This 
10,000 

standard error is dependent upon the calculated size, but for an expected size of 5% the 

standard error would be approximately just 0.21 79%. 

Power calculations are made by generating cointegrated series and applying the 

tests with the estimated critical values. As mentioned in the discussion of the data 

generating process, power is calculated for three values ofrho: p = (0.8, 0.9, 0.95). 

Summary 

The Monte Carlo simulations employ 10,000 replications on the parameter space t = 

(50, 100,250), y,ly2 (4, 2, 1), and p = (0.8, 0.9, 0.95, 1). Five different error distributions 

are considered in the data generating process. In addition to the normal distribution, errors 

are generated using the four distributions implied by the parameter space a (1.7, 1.5) and 

/1 (0, --0.25). Finally, each of the four cointegration tests (OLS, Rank, LAD, and JO) is 

applied to allow for comparison of the tests' size and power. This gives a total of 720 

experiments. The R code utilized for these experiments appears in Appendix A. 
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CHAPTER 4. RESULTS 

Results for the 720 simulation experiments are presented in tables 1, 2, and 3. In 

table 1, the error distributions are generated with y/y2 = 1, while Tables 2 and 3 have this 

dispersion parameter ratio set to 2 and 4, respectively. In each table, Panel A employs 

normally distributed errors in the data generating process, Panel Buses a Levy distribution 

with fatter tails (a= 1.7), and Panel D has even greater leptokurtosis (a= 1.5). Meanwhile, 

Panels C and E utilize the same respective values of a and also employ a negative skew for 

its error distribution (/J = - 0.25). 

In the tables, the four tests are labeled as follows: least absolute deviation-based test 

(LAD), weighted Wilcoxon rank-based (Rank), least squares Engle-Granger procedure 

(OLS), and the Johansen test (JO). The reported values are the means over 10,000 

repetitions. Standard errors are given by the formula 
al-a 
--''----'- . Therefore, the maximum 
10,000 

half-width of a 95% confidence interval is 0.0098. Therefore, any reported figures for 

power that differ by more than 0.0196 would be guaranteed to differ significantly at the 5% 

level. It should be noted that this is the most conservative estimate of the standard errors. 

For reported power of 0.8, the half-width would shrink to 0.004. Throughout the tables, the 

results display the superiority of the proposed test statistic over the original Engle-Granger 

procedure as well as over the Johansen test. 

Results for Individual Parameters 

This section will review the results in light of each of the varied parameters that 

were discussed previously. First, we observe that the power increases in all cases with the 

length of the time series being tested, as expected. Performance for t = 50 is unacceptable 
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in any case, never surpassing 50%. However, results for t = 250 are adequate for practical 

use in many of the cases, depending on other parameters. 

In all cases, the power of the tests varies inversely withp, again matching 

expectations. Power suffers significantly in the near cointegrated cases, where p = 0.95. 

This is one parameter that demonstrates the superiority of the rank-based test. For example, 

in Table 1, Panel Ethe rank statistic has reported power of92.72% but the OLS test has 

only 21.97% fort= 250 and p = 0.95. In general, the rank test maintains its power better as 

this parameter increases, which is one important aspect of its overall performance. 

To compare error distribution, we must make comparisons across the panels of each 

table. Tables A, B, and D all employ symmetric error distributions. Reading across these 

tables it becomes evident that the LAD and rank tests perform better in the presence of fat

tailed distributions, while the OLS and JO tests have declining power. This is a primary 

advantage of the rank test over the standard Engle-Granger procedure and stems from the 

more robust estimation methods employed. As an example, for p = 0.8 and t = l 00, the 

power of the rank test is 60.08% in Panel A of Table 1, but it improves significantly to 

87.31 % in Panel Band 95.96% in Panel D. For comparison, the OLS test with those same 

parameters goes from 67.44% to 59.07% and 54.87%. 

Panels C and E introduce a skewness parameter of /3 = - 0.25 in the data generating 

process. Surprisingly, this change improves performance of the tests in most cases, though 

this improvement is quite moderate. For instance, the power for the rank test in Panel D, 

with p = 0.95, and t = 250 is 89.67% but the corresponding power in Panel Eis 92.72%. 

That case is representative of the results across all tests. 
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To consider the effect of the dispersion parameter ratio, we need to make 

comparison among the three tables. Again, there is little difference in power due to 

variation in this parameter; however, the general trend is for power to increase as the ratio 

increases. This trend can be seen in the slightly higher power in Table 3. For instance, in 

Panel B, for the rank test with p = 0.95 and t = 250, Table 1 reports power of 70.34%, 

which increases to 74.91 % in Table 2 and 76.38% in Table 3. 

Overall Results 

In Panel A of all three tables, the most powerful test in all cases is the Engle

Granger test. This is unsurprising, since normally distributed errors are a key assumption 

of the theoretical validity of that procedure. However, the rank-based procedure sacrifices 

little power even in this baseline case. The comparison for p = 0.95 and t = 250 is 27.74% 

for the OLS test and 27 .22% for the rank test in Table 1, and the corresponding numbers in 

Tables 2 and 3 are 29.67% and 28.49%, 31.57% and 29.37%. The loss of power is minimal, 

so there is little misspecification risk from using the rank test when errors are, in fact, 

normally distributed. 

For non-normally distributed errors, however, the Rank and LAD tests quickly gain 

power and overtake the Engle-Granger estimation method. In fact, the robust tests perform 

better as the tails of the error distribution get fatter. For instance, the rank test has power of 

only 27.22% for the normal distribution, length of 250, and p = 0.95, but for the same 

parameters and the skew alpha distribution in Panel E, the power increases to 92. 72%. 

The particular example cited above is especially powerful evidence in favor of the 

rank-based test, because it is an example of two series that are near cointegrated. As rho 

approaches one, previous testing procedures have notoriously low power. For time series 
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oflength 50 and 100, the power of the OLS method barely exceeds the test's size. Clearly, 

this is a substandard test for drawing any valid conclusions, because the risk of Type II 

error is so large. The Johansen test, also popular in the finance and economic literature, 

suffers from the same problem. This is one more argument supporting the proposed rank

based test statistic of this study. 

Finally, note that the rank-based test statistic is relatively stable over all simulations. 

The critical value of the rank-based test range from -3.36 for a time series oflength 50 with 

normally distributed errors to just -2.98 for a time series oflength 250 in Panel E of Table 3. 

This stability is a desirable feature because it demonstrates that slight misspecifications will 

not dramatically alter the test's conclusions. It also provides a heuristic rule-of-thumb for 

the test, since all critical values are approximately -3. 

Overall, the superiority of the proposed test statistic is evident. It possesses greater 

power for fat-tailed distributions, while sacrificing little in the baseline case of normal 

errors. It has stable critical values with a nominal and empirical size of 5%. It performs 

well for near-cointegrated series, and it is conceptually simple and easy to implement with 

existing statistical packages. 
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Table 1. Simulation results, dispersion ratio = 1 
Panel A 

Error Distribution: Normal (alpha=2, s = I) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7573 0.0468 0.1278 0.0786 0.0600 

100 -3.5673 0.0529 0.2971 0.1171 0.0738 

250 -3.2925 0.0565 0.8746 0.4409 0.1804 

Rank 50 -3.3637 0.0446 0.1710 0.0822 0.0542 

100 -3.3008 0.0549 0.6008 0.1852 0.0890 

250 -3.3049 0.0500 0.9999 0.7917 0.2722 

OLS 50 -3.4451 0.0464 0.1970 0.0846 0.0583 

100 -3.3570 0.0525 0.6744 0.2009 0.0926 

250 -3.3595 0.0465 1.0000 0.8424 0.2774 
JO 50 16.1066 0.0464 0.0988 0.0611 0.0502 

100 15.4048 0.0506 0.3573 0.1129 0.0614 
250 15.2527 0.0476 0.9956 0.5818 0.1626 

PanelB 
Error Distribution: alpha = c( 1. 7, 1. 7) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7025 0.0534 0.2423 0.1111 0.0699 
100 -3.4337 0.0471 0.6320 0.3127 0.1304 
250 -3.0901 0.0498 0.9950 0.8765 0.5325 

Rank 50 -3.3453 0.0497 0.3364 0.1229 0.0705 
100 -3.2876 0.0464 0.8731 0.4213 0.1557 
250 -3.1685 0.0483 0.9990 0.9844 0.7034 

OLS 50 -3.5084 0.0463 0.1648 0.0706 0.0509 
100 -3.4543 0.0482 0.5907 0.1568 0.0719 
250 -3.3896 0.0498 0.9944 0.8009 0.2414 

JO 50 17.2826 0.0445 0.0760 0.0508 0.0455 
100 16.6621 0.0460 0.2673 0.0808 0.0535 
250 16.0289 0.0456 0.9920 0.4943 0.1302 

Panel C 
Error Distribution: Skew al~ha= 1. 7, beta= -0 .25 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.6807 0.0518 0.2503 0.1138 0.0731 

100 -3.3901 0.0531 0.6487 0.3159 0.1417 
250 -3.1056 0.0472 0.9956 0.8756 0.5287 

Rank 50 -3.3656 0.0456 0.3334 0.1219 0.0668 
100 -3.2249 0.0553 0.8942 0.4501 0.1688 
250 -3.1552 0.0484 0.9990 0.9861 0.7092 

OLS 50 -3.4908 0.0483 0.1707 0.0749 0.0545 
100 -3.3929 0.0553 0.6367 0.1823 0.0757 
250 -3.3895 0.0524 0.9953 0.8187 0.2494 

JO 50 16.9852 0.0474 0.0802 0.0532 0.0454 

100 16.1435 0.0496 0.2915 0.0971 0.0592 

250 15.7251 0.0503 0.9926 0.5350 0.1393 
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Table 1. Simulation results, dispersion ratio = 1 
Panel D 

Error Distribution: alpha= c(l.5, 1.5) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7795 0.0486 0.3505 0.1483 0.0769 

100 -3.2988 0.0510 0.8554 0.5208 0.2382 

250 -2.9658 0.0468 0.9976 0.9795 0.7997 

Rank 50 -3.4042 0.0506 0.4566 0.1653 0.0822 

100 -3.2064 0.0494 0.9596 0.6408 0.2747 

250 -3.0834 0.0475 0.9971 0.9920 0.8967 

OLS 50 -3.5393 0.0512 0.1477 0.0591 0.0521 

100 -3.4828 0.0534 0.5487 0.1439 0.0685 

250 -3.4894 0.0503 0.9866 0.7400 0.1828 

JO 50 17.7879 0.0517 0.0753 0.0533 0.0469 

100 17.5695 0.0473 0.2067 0.0706 0.0513 

250 16.9348 0.0595 0.9904 0.4661 0.1171 

Panel E 
Error Distribution: Skew alpha= 1.5, beta= -0.25 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7221 0.0523 0.3689 0.1578 0.0765 

100 -3.2546 0.0558 0.8665 0.5473 0.2510 

250 -2.8872 0.0498 0.9974 0.9846 0.8294 

Rank 50 -3.3592 0.0561 0.4792 0.1865 0.0837 

100 -3.1594 0.0563 0.9663 0.6840 0.2974 

250 -2.9851 0.0511 0.9967 0.9938 0.9272 

OLS 50 -3.4979 0.0536 0.1600 0.0744 0.0514 

100 -3.4823 0.0503 0.5510 0.1458 0.0674 

250 -3.4185 0.0528 0.9896 0.8012 0.2197 

JO 50 17.7707 0.0515 0.0773 0.0520 0.0448 

100 17.6218 0.0428 0.2035 0.0721 0.0486 
250 16.3744 0.0511 0.9908 0.4578 0.1121 
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Table 2. Simulation results, dispersion ratio = 2 
Panel A 

Error Distribution: Normal (alpha=2, s = 1) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7356 0.0508 0.1331 0.0766 0.0616 

100 -3.5960 0.0495 0.2980 0.1246 0.0796 

250 -3.3808 0.0491 0.8659 0.4184 0.1675 

Rank 50 -3.3135 0.0516 0.2060 0.0918 0.0610 

100 -3.3197 0.0524 0.6251 0.2007 0.0937 

250 -3.3613 0.0489 1.0000 0.8044 0.2849 

OLS 50 -3.4125 0.0520 0.2251 0.0975 0.0610 

100 -3.3722 0.0523 0.6991 0.2170 0.0988 

250 -3.3764 0.0451 1.0000 0.8542 0.2967 
JO 50 15.9884 0.0495 0.1017 0.0609 0.0514 

100 15.2867 0.0544 0.3672 0.1178 0.0693 
250 15.4269 0.0469 0.9945 0.5641 0.1574 

Panel B 
Error Distribution: ale ha = c( 1. 7, 1. 7) 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.7836 0.0477 0.2628 0.1206 0.0705 

100 -3.3833 0.0505 0.6692 0.3492 0.1667 
250 -3.0876 0.0495 0.9964 0.8938 0.5585 

Rank 50 -3.3655 0.0457 0.3747 0.1518 0.0733 
100 -3.2332 0.0514 0.9086 0.4913 0.1994 
250 -3.1450 0.0512 0.9998 0.9916 0.7491 

OLS 50 -3.4863 0.0466 0.1872 0.0792 0.0549 
100 -3.3956 0.0491 0.6753 0.1918 0.0850 
250 -3.3872 0.0559 0.9977 0.8548 0.2680 

JO 50 16.8036 0.0520 0.0846 0.0578 0.0449 
100 16.1418 0.0490 0.2920 0.1009 0.0573 
250 15.9556 0.0517 0.9932 0.5151 0.1292 

Panel C 
Error Distribution: Skew alEha=l.7, beta= -0.25 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.6893 0.0543 0.2832 0.1268 0.0741 

100 -3.3937 0.0516 0.6650 0.3515 0.1570 
250 -3.1219 0.0489 0.9964 0.8785 0.5575 

Rank 50 -3.3040 0.0559 0.4091 0.1559 0.0800 
100 -3.2002 0.0567 0.9116 0.5174 0.2110 
250 -3.1415 0.0510 0.9998 0.9914 0.7553 

OLS 50 -3.4606 0.0505 0.1983 0.0820 0.0542 
100 -3.4496 0.0462 0.6496 0.1801 0.0790 
250 -3.3655 0.0543 0.9977 0.8685 0.2737 

JO 50 16.4920 0.0524 0.0936 0.0624 0.0503 
100 16.4871 0.0432 0.2721 0.0843 0.0574 
250 15.7819 0.0492 0.9920 0.5290 0.1308 
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Table 2. Simulation results, dispersion ratio = 2 
Panel D 

Error Distribution: alpha = c( 1.5, 1.5) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7031 0.0518 0.4242 0.1897 0.0868 

100 -3.2656 0.0532 0.8808 0.5874 0.2961 

250 -2.9564 0.0466 0.9993 0.9867 0.8412 

Rank 50 -3.4320 0.0476 0.5273 0.2079 0.0841 

100 -3.2086 0.0472 0.9740 0.7165 0.3377 
250 -3.0381 0.0488 0.9990 0.9965 0.9389 

OLS 50 -3.5729 0.0505 0.1621 0.0636 0.0461 
100 -3.4984 0.0487 0.5961 0.1506 0.0682 

250 -3.4643 0.0501 0.9929 0.8189 0.2121 
JO 50 17.8688 0.0504 0.0786 0.0522 0.0503 

100 17.2983 0.0479 0.2137 0.0737 0.0529 
250 17.2949 0.0491 0.9817 0.3768 0.0958 

Panel E 
Error Distribution: Skew a!Eha= 1.5, beta= -0.25 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7201 0.0483 0.4127 0.1949 0.0915 
100 -3.3260 0.0486 0.8664 0.5705 0.2769 
250 -2.8859 0.0492 0.9992 0.9878 0.8540 

Rank 50 -3.4223 0.0444 0.5353 0.2172 0.0919 
100 -3.1551 0.0542 0.9786 0.7366 0.3588 
250 -3.0096 0.0473 0.9990 0.9979 0.9451 

OLS 50 -3.5613 0.0450 0.1544 0.0677 0.0478 
100 -3.4482 0.0526 0.6433 0.1681 0.0773 
250 -3.4730 0.0481 0.9947 0.8262 0.2203 

JO 50 17.8953 0.0478 0.0702 0.0525 0.0468 
100 16.7842 0.0544 0.2544 0.0869 0.0619 
250 16.5880 0.0508 0.9883 0.4364 0.1086 
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Table 3. Simulation results, dispersion ratio= 4 
Panel A 

Error Distribution: Normal (alpha=2, s = 1) 

Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.8014 0.0473 0.1307 0.0753 0.0611 
100 -3.5844 0.0469 0.3063 0.1255 0.0751 

250 -3.3837 0.0466 0.8696 0.4285 0.1762 

Rank 50 -3.3361 0.0513 0.2084 0.0929 0.0668 

100 -3.3513 0.0449 0.6134 0.1957 0.0896 
250 -3.3115 0.0506 1.0000 0.8253 0.2937 

OLS 50 -3.4352 0.0494 0.2287 0.0955 0.0685 
100 -3.3874 0.0462 0.6993 0.2234 0.0963 
250 -3.3462 0.0503 1.0000 0.8747 0.3157 

JO 50 15.9883 0.0478 0.1072 0.0612 0.0529 
100 15.4493 0.0479 0.3533 0.1149 0.0666 
250 15.2203 0.0489 0.9966 0.5958 0.1701 

Panel B 
Error Distribution: alpha = c( 1. 7, 1. 7) 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.6671 0.0529 0.2893 0.1385 0.0780 

100 -3.4183 0.0491 0.6668 0.3555 0.1677 
250 -3.0954 0.0490 0.9969 0.8873 0.5729 

Rank 50 -3.3428 0.0503 0.4114 0.1724 0.0818 
100 -3.2155 0.0536 0.9154 0.5184 0.2168 
250 -3.1421 0.0541 0.9999 0.9922 0.7638 

OLS 50 -3.4652 0.0519 0.1999 0.0874 0.0580 
100 -3.4146 0.0522 0.6849 0.1963 0.0789 
250 -3.3885 0.0532 0.9991 0.8651 0.2740 

JO 50 16.7684 0.0550 0.0874 0.0566 0.0491 
100 16.1619 0.0535 0.2945 0.0973 0.0577 
250 16.0871 0.0495 0.9910 0.4958 0.1246 

Panel C 
Error Distribution: Skew al12ha= 1. 7, beta= -0.25 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.7416 0.0469 0.2760 0.1350 0.0741 

100 -3.4350 0.0469 0.6558 0.3446 0.1671 
250 -3.1023 0.0465 0.9970 0.8846 0.5736 

Rank 50 -3.3232 0.0515 0.4103 0.1719 0.0863 
100 -3.2654 0.0487 0.9031 0.4934 0.2137 
250 -3.1514 0.0489 1.0000 0.9923 0.7595 

OLS 50 -3.4661 0.0495 0.2008 0.0849 0.0608 
100 -3.4563 0.0477 0.6604 0.1759 0.0792 
250 -3.4412 0.0475 0.9992 0.8503 0.2536 

JO 50 16.7270 0.0488 0.0879 0.0591 0.0508 
100 16.2613 0.0495 0.2841 0.0897 0.0529 
250 15.8871 0.0519 0.9909 0.5164 0.1389 
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Table 3. Simulation results, dispersion ratio = 4 
PanelD 

Error Distribution: al12ha = c(l.5, 1.5) 
Method t CV Size 0.8 0.9 0.95 

LAD 50 -3.7132 0.0521 0.4380 0.2135 0.0991 
100 -3.2826 0.0479 0.8798 0.5891 0.3183 
250 -2.9145 0.0516 0.9996 0.9893 0.8570 

Rank 50 -3.4267 0.0508 0.5476 0.2415 0.1016 
100 -3.1765 0.0542 0.9809 0.7413 0.3892 
250 -3.0087 0.0555 0.9994 0.9987 0.9498 

OLS 50 -3.5742 0.0496 0.1565 0.0658 0.0447 
100 -3.4334 0.0584 0.6685 0.1812 0.0789 
250 -3.4508 0.0529 0.9974 0.8445 0.2310 

JO 50 18.0358 0.0537 0.0678 0.0489 0.0439 
100 17.1151 0.0518 0.2283 0.0805 0.0534 
250 16.8278 0.0542 0.9865 0.4251 0.1041 

Panel E 
Error Distribution: Skew aleha=l.5, beta= -0.25 

Method t CV Size 0.8 0.9 0.95 
LAD 50 -3.7252 0.0520 0.4374 0.2106 0.1007 

100 -3.2833 0.0480 0.8757 0.5917 0.3106 
250 -2.8691 0.0530 l.0000 0.9901 0.8620 

Rank 50 -3.3860 0.0510 0.5645 0.2565 0.1091 
100 -3.1752 0.0513 0.9815 0.7448 0.3827 
250 -2.9879 0.0520 0.9999 0.9991 0.9538 

OLS 50 -3.5683 0.0474 0.1643 0.0649 0.0484 
100 -3.4858 0.0493 0.6438 0.1646 0.0702 
250 -3.4065 0.0522 0.9975 0.8749 0.2538 

JO 50 17.9290 0.0509 0.0773 0.0551 0.0463 
100 17.0147 0.0554 0.2357 0.0814 0.0530 
250 16.8000 0.0458 0.9875 0.4148 0.1043 
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CHAPTER 5. APPLICATION 

This chapter employs the rank based test statistic in a simple stock trading strategy. 

Statistical arbitrage, also sometimes referred to as pairs trading, is a heavily quantitative, 

econometric-based trading strategy. Its roots can be traced to the long-short mutual fund 

investment strategies of A. Winslow Jones in the 1950s. His idea was to create a hedged 

portfolio of long and short positions to eliminate market risk; the return on the portfolio 

came from the relative performance of the positions. This investment strategy involved 

buying undervalued stocks and selling short overvalued companies, a basic contrarian 

strategy that amounted to betting that the prices would converge, or to put the same thing 

another way, that the spread would shrink. 

The strategy languished in obscurity for years until the mid-l 980s when Nunzio 

Tartaglia assembled a group of traders at Mogan Stanley to create computer models that 

could efficiently access and analyze more data than previously possible. It was largely this 

increase in computing power, along with the sanction of several noted academics including 

Nobel laureates Myron Scholes and Robert Merton, that caused the renewed interest in the 

strategy. Furthermore, by using both long and short positions, this strategy does not require 

the calculation of a fundamental value for any securities; they need simply be separated 

into under- and over-valued subsets. Profits are made on relative performance, and not 

absolute returns (Vidyamurthy, 2004). 

In order to gain a fuller understanding of statistical arbitrage, consider the cash 

flows involved, as illustrated in Figure C below. The investor is long one portfolio of 

stocks, which receive dividends and provide a capital gain or loss, while being short 

another portfolio of stocks on which the trader pays dividends and receives another capital 
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gain or loss. The investor also earns interest on any necessary collateral cash balance. So 

long as the prices of the long positions rise more ( or drop less) than the short positions, the 

investor will have a net gain. 

Received 
dividends 

Initial cash 
investment 

Purchase long 
position 

Sell long 
position 

Net gain (loss) on 
long position 

Borrowed 
stock 

+ 
Sell short 
position 

! ~ Rcimbumd I 
dividends 

Buyback 
short position 

+ , 

Net gain (loss) on 
short position 

Figure C. Statistical arbitrage diagram 

Collateral cash 
~ 

balance 

! 
Interest 
received 

! 
LIBOR rate of 
return on cash 

Though the statistical models employed in statistical arbitrage are unique to the 

individual trader or firm, they all follow the same basic format. First, an initial universe of 

candidate stocks is identified. This preliminary step allows a trader to focus on a particular 

industry or other subset that might be presumed to have a high degree of co-movement in 

stock returns. Second, candidate pairs are tested for cointegration. Third, the spread is 

calculated, and when the spread widens beyond some predefined threshold, the trader takes 

the appropriate long and short positions. 

Data were available for 28 stocks from the Dow Jones Industrial Average over the 

entire period. These stocks were chosen in part for their familiarity and easy access to data. 

Furthermore, because they are all major American companies, there is a reasonable a priori 

expectation that the daily returns on their stocks should be cointegrated over some periods 
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and that the probability of cointegration is higher for such similar companies than it would 

be for a randomly selected pair of equities. 

Stock return data were gleaned from the Center for Research in Security Prices 

(CRSP) database. The companies are Alcoa (AA), American Express (AXP), Bank of 

America (BAC), Boeing (BA), Caterpillar (CAT), Chevron Corporation (CVX), Coca-Cola 

(KO), DuPont (DD), 3M (MMM), AT&T (T), ExxonMobil (XOM), General Electric (GE), 

Hewlett-Packard (HPQ), The Home Depot (HD), Intel (INTC), IBM (IBM), Johnson & 

Johnson (JNJ), JPMorgan Chase (JPM), McDonald's (MCD), Merck (MRK), Microsoft 

(MSFT), Pfizer (PFE), Procter & Gamble (PG), Travelers (TRY), United Technologies 

Corporation (UTX), Verizon Communications (VZ), Wal-Mart (WMT), Walt Disney (DIS). 

There are 378 potential trading pairs from the 28 stocks. Each of these pairs is 

tested using the Engle-Granger and rank-based cointegration tests for each trading year. 

Throughout this application, trading years were defined as 250 contiguous trading days. 

This definition does not coincide precisely with the calendar year, but it simplifies the 

calculations to have every period of identical length. Furthermore, the critical values 

employed were generated by the Monte Carlo simulation using time series of length 250. 

The strategy of statistical arbitrage is played out in two periods. First, the 

identification period is a 250-day period in which the candidate pairs are tested for the 

existence of cointegration. All pairs that are determined to be cointegrated (at the 5% level) 

then enter the trading period, which lasts for another 250 days. The length of time in each 

period can be varied, and the strategy can be made considerably more complex. This 

simple two-period structure with equal time series length is provided as a case study 
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illustration to compare the two cointegration tests. This generic strategy is drawn from 

Whistler (2004). 

Table 4 presents results of the rank and OLS (Engle-Granger) cointegration tests for 

all 16 periods. In every case, the rank-based test identifies more cointegrated pairs. The 

maximum number of identified pairs is in period 9, in which the rank test identifies 99 pairs 

(26.19% of all candidates) to enter the trading period; the minimum number occurs for the 

Engle-Granger test in period 8, in which only 16 pairs are identified (4.23%). 

Table 4: Identification of candidate pairs for trading 

Period Days Rank OLS OverlaE 
1 1 to 250 38 36 34 
2 251 to500 58 54 46 
3 501 to 750 44 26 25 
4 751 to 1000 57 34 28 
5 1001 to 1250 65 28 25 
6 1251 to 1500 58 44 39 
7 1501 to 1750 50 38 30 
8 1751 to 2000 25 16 12 
9 2001 to 2250 99 75 70 
10 2251 to 2500 49 47 33 
11 2501 to 2750 71 51 45 
12 2751 to 3000 38 17 14 
13 3001 to 3250 37 26 22 
14 3251 to 3500 12 4 2 
15 3501 to 3750 78 60 40 
16 3751 to 4000 6 5 4 

One natural question is the extent to which the rank- and OLS-based procedures 

identify entirely different pairs compared to the degree of overlap between the two 

procedures. The last column of Table 4 provides the number of such overlaps, in which a 

candidate pair is identified as cointegrated by both tests. In every period, the number of 

overlaps is a significant percentage of the identified pairs. In no period is the overlap less 

than 50% of the OLS pairs, and that occurs in period 14, in which the OLS procedure 
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identifies only 4 pairs. The next lowest percentages are 67% in period 15 and 70.2% in 

period 10. As one would hope, there appears to be little loss in trading opportunities by 

using the rank-based methodology. Furthermore, if a trader were so inclined, he or she 

could employ both methods to find the greatest possible number of trading opportunities. 

The primary point, however, is that in this sample, the rank based-method always provides 

a greater list of stock pairs to be considered for trading and therefore a greater potential for 

profit. 

In total, there are 877 unique trading opportunities to examine in the second, trading 

step. To calculate trading profits, the first step is to calculate the difference between the 

two stocks, referred to as the spread. When the spread exceeds its historical average, trades 

are placed that will profit if the spread reverts to its average. The algorithm employed is 

based on a 250-day trailing average and standard deviation of the spread. Trades are 

placed when the spread deviates more than two standard deviations from its 250-day 

trailing average. Note that this may occur multiple times for the same pair of stocks, as the 

spread expands, reverts, and expands again. 

Positions are closed for a profit when the spread reverts to the mean or closed as a 

stop-loss condition if the spread widens to exceed three standard deviations. This loss 

prevention rule is an important aspect of the strategy; it is activated in 5.7% of the trades. 

All positions are also closed out at the end of the 250 day trading period. Only 1.9% of the 

candidate pairs reach the end of the period without reverting to the mean, and all of them 

are profitable at the time of being closed out. 

In general, risk and return of statistical arbitrage are affected by a number of factors, 

including exposure to certain industries and sectors, position concentration or 
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diversification, use of cash, and leverage. Leverage, in particular, is a vital part of this 

strategy in order to make significant profits from relatively small spreads. This leverage 

adds greatly to the risk, however, such that it is sometimes described as picking up nickels 

in front of bulldozers (Lowenstein, 2001). The scheme employed here is a simple 

application of the general strategy and is not meant to be realistic, but functions to 

demonstrate one potential application of the rank-based statistic. 

Profits were calculated for all trading opportunities, scaled to a $1 investment for 

every traded pair. Then compounded annual returns were calculated for the rank-based and 

OLS identified pairs. Using only the pairs identified by OLS yielded an annual return of 

10.81 %, in comparison to 12.05% for the pairs from the rank-based test. While both 

figures represent strong investment returns, the rank test is clearly superior. In terms of 

total dollars earned in the seventeen year period, the rank test provides 20.8% more 

earnings. This example provides one application of the test that demonstrates its utility and 

practicality. 

One possible extension of this example would be a high-frequency pairs trading 

scheme. Such a strategy, which does not allow overnight holding periods, may increase the 

profits due to increased trading opportunities or diminish the profitability due to increased 

trading. In general, the optimal sampling frequency is becoming a more pervasive issue 

now that tick level data is becoming more commonly available. One application has been 

estimating covariance using high-frequency data (Pooler, Martens, and van Dijk, 2008). 

Cointegration testing in a high-frequency setting will be an important empirical question as 

data frequency and availability increase. 
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CHAPTER 6. CONCLUSION 

This paper has developed two new test statistics for cointegration, a rank-based and 

LAD-based version of the seminal Engle-Granger test. The superiority of the rank-based 

test, in particular, over the Engle-Granger and Johansen procedures was demonstrated in a 

wide range of Monte Carlo simulations. The application of statistical arbitrage was 

presented as one example of a particular case in which the test may be both useful and 

profitable. 

Future work could explore additional applications of this test. A number of 

heretofore unexplained cointegration results may be due simply to the low power of 

previous tests. For instance, purchasing power parity is found to be violated in empirical 

work surprisingly often. Another example would be price discovery and other market 

microstructure issues, such as the components of the bid-ask spread. Reviewing some of 

the previous literature, particularly in the field of finance, with this new test might yield 

interesting results and potentially some changes in conclusions or interpretations. 

Natural extensions for this statistic in the field of finance are examinations of high 

frequency time series and issues of non-synchronicity. Scholes and Williams (1977) and 

Miller, Muthuswamy, and Whaley (1994) are some of the prominent papers that have 

explored the problem of non-synchronous financial price series. How will the proposed 

test statistic function in such a setting? That question is left for future research. 
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APPENDIX 

The R code below was employed in the Monte Carlo simulations to create critical 

values and test for size and power. The two functions are COINT.SIM and MY.OF.TEST. 

The code requires R packages fUnitRoots, urea, tseries, tframe, quantreg, MASS, SparseM, 

as well as the code from Terpstra and McKean (2005) that can be found at 

http://www.stat.wmich.edu/mckean/HMC/Rcode/ AppendixB/ww .r 

coint.sim=function(t=25,alpha=c(2,2),beta=c(O,O),gamma=c(sqrt(l/2),sqrt(l/2)), 

delta=c(O,O),rho=0.9,8=2,N=l,lags=l,pvalue=.05,coint=T, 

cv .lad=qnorm(pvalue ),cv .rank=qnorm(pvalue ),cv .ls=qnorm(pvalue ), 

cv.jo=O) { 

res.rank=rep(NA,N) 

rej .rank=rep(N A,N) 

res.ls=rep(NA,N) 

rej .ls=rep(N A,N) 

res.jo=rep(NA,N) 

rej .j o=rep(N A,N) 

res.lad=rep(NA,N) 

rej. lad=rep(N A,N) 

t=t+20 #Used to remove "start-up" effects 

for (i in 1 :N) { 

#Generate the two time series 

if ( coint==T) { 

u 1 =cumsum(rstable(n=t,alpha=alpha[ 1 ],beta=beta[ 1 ],delta=delta[ 1 ],gamma=gamma[ 1 ])) 
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u2=arima. sim(n=t,list( ar=rho ),innov=rstable(n=t,alpha=alpha[2], beta=beta[2], 

delta=delta[2],gamma=gamma[2])@.Data) 

ul=u1[21:t] 

u2=u2[21:t] 

yl =(B/(B-1 ))*ul-(l/(B-1 ))*u2 

y2=-(1/(B-1 ))*ul +(l/(B-1 ))*u2 

} 

if ( co int== F) { 

yl =cumsum(rstable(n=t,alpha=alpha[l ],beta=beta[ 1 ],delta=delta[ 1 ],gamma=gamma[ 1 ])) 

y2=cumsum(rstable(n=t,alpha=alpha[2],beta=beta[2],delta=delta[2],gamma=gamma[2])) 

yl=y1[21:t] 

y2=y2[21 :t] 

} 

###LAD test 

ladreg=rq(y2~yl) #Fits an LAD regression 

err.lad=ladreg$residuals 

stat.lad=my.df.test(err.lad,p=lags,mu=T,type="LAD")$tau #ADF test with intercept and 

no time trend 

names( stat.lad)= NULL 

res.lad[i]=stat.lad 

if (stat.lad<cv.lad) rej.lad[i]=l 

else rej.lad[i]=O 

###Rank based test 
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wilreg=wwfit(yl ,y2) #Fits a simple linear regression *with* intercept 

err .rank=wilreg$residuals 

stat.rank=my.df.test(err.rank,p=lags,mu=TRUE,type="WIL")$tau #ADF test with 

intercept and no time trend 

names( stat.rank)= NULL 

res.rank[i]=stat.rank 

if (stat.rank<cv.rank) rej.rank[i]=l 

else rej.rank[i]=0 

###OLS test 

reg=lm(y2~yl) #Fits a simple linear regression *with* intercept 

err.ls=resid(reg) 

stat.ls=my.df.test(err.ls,p=lags,mu=TRUE,type="LS")$tau #ADF test with intercept and 

no time trend 

names( stat.ls)= NULL 

res.ls[i]=stat.ls 

if (stat.ls<cv.ls) rej.ls[i]=l 

else rej.ls[i]=0 

###JO test 

system=cbind(yl ,y2) 

stat.j o=ca.j o( system) 

res.jo[i]=stat.jo@teststat[2] 

if (stat.jo@teststat[2]>cv.jo) rej.jo[i]= 1 

else rej.jo[i]=0 } 
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ans.lad=mean(rej.lad) 

ans.rank=mean( rej .rank) 

ans.ls=mean( rej .ls) 

ans.jo=mean(rej .jo) 

names( ans.lad)='LAD test' 

names(ans.rank)='Rank test' 

names(ans.ls)='OLS test' 

names(ans.jo)='JO test' 

ans=list( ans.lad,ans.rank,ans.ls,ans.jo) 

retum(list(TS.lad=res.lad,TS.rank=res.rank, TS.ls=res.ls, TS.jo=res.jo, 

Q05 .lad=quantile( res.lad,. 05), Q05 .rank=quantile( res.rank,. 05), Q05 .ls=quantile( res.I 

s,. 05), Q05 .j o=quantile( res.j o,. 9 5), 

ERR.lad=ans.lad,ERR.rank=ans.rank,ERR.ls=ans.ls, ERR.jo=ans.jo)) 

} 

my.df.test=function(x, p=l, mu=TRUE, type="LS") { 

n <- length(x) 

d <- diff(x) 

Xtml <- x[l :(n-1)] 

if(p> 1) 

z <- cbind(Xtm I ,input( d,p-1)) 

else 

z <- cbind(Xtm l ,d) 

z <- z[!apply(z, 1,function(x){ any(is.na(x))} ),] 
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} 

if ( type=="LS ") { 

lsest <- lsfit(z[, 1 :( dim(z)[2]-1 )],z[,dim(z)[2]],intercept=mu) 

res <- lsest$resid 

lsest <- ls.print(lsest,print.it=F) 

tau <- ifelse(mu,lsest[[2]] [[ 1 ]][2,3],lsest[[2]][[ 1 ]][ 1,3]) 

} 

#WIL rank-based version ofDF test 

if (type=="WIL") { 

wilest <- wwest(z[, 1 :(dim(z)[2]-1 )],z[,dim(z)[2]],print.tbl=F) 

res <- wilest$tmp 1 $residuals 

tau<- wilest$ans[2,3] 

} 

#LAD version ofDF test 

if (type=="LAD") { 

ladest <- rq(z[,dim(z)[2]]~z[, 1 :( dim(z)[2]-l )]) 

} 

res <- ladest$residuals 

temp <- summary(ladest,se='iid') 

tau<- temp$coefficients[2,3] 

list( tau=tau,x y=z,r=res) 
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