
IMPLEMENTATION OF PARTICLE MODEL CONTROL APPROACH TO

A FIXED AXLE UGV

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Nikhil Gupta

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Mechanical Engineering

July 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

Implementation of Particle Model Control Approach

to a Fixed Axle

By

Nikhil Gupta

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, siguatmes have been
removed from the digital version of this document.

ABSTRACT

Gupta, Nikhil, M.S., Department of Mechanical Engineering, North Dakota State
University, July 2010. Implementation Of Particle Model Control Approach To A Fixed
Axle UGV. Major Professor: Dr. Majura F. Selekwa.

Robotic vehicles are normally modeled as rigid bodies under general motion,

combining translation and rotation motions. While such modeling results in motion

controllers that are easy to implement, these controllers are also limited in the number of

degrees of freedom (DOF) that can be controlled. The robotic vehicle with limited DOF

operates well in structured terrain conditions with sufficient stability and friction. When the

vehicle is operated in unstructured terrains, such as those that are sandy, snowy, or steep

terrains, which might be slippery, such an approach fails to operate well. Since additional

applications of robotic vehicles are in unstructured terrains, it is important to find

alternative control models that will increase the number of controllable DOF and add more

robustness and flexibility to the vehicle's performance.

This thesis proposes the modeling of a vehicle as a system of particles centered at

the wheels, with each particle controlled independent of one another in order to achieve the

desired vehicle motion. In this work, the Particle Model Control approach was tested on the

robotic platform BIBOT-1. The work illustrated the major vehicle kinematics under

different steering modes and how the controls for the robotic motion can be formulated on

the basis of Particle Modeling. A control system, based on Particle Modeling using

decentralized control architecture, was designed and tested on BIBOT-1. The preliminary

test results obtained from the trial runs were then analyzed on the basis of root mean square

(R.M.S.) error performance factors. Some future work was also suggested in order to gather

more results and validate the modeling approach.

Ill

ACKNOWLEDGEMENTS

I am deeply indebted to my academic advisor, Dr. Majura F. Selekwa, for his

invaluable guidance and contributions, his understanding and patience, and his constructive

comments and suggestion in pursuit of my M.S. degree.

I thank my advising committee members, Dr. Annie Tangpong, Dr. Mariusz

Ziejewski, and Dr. Jacob Glower for their guidance and support in the completion of this

thesis. Without their expert views and reviews, the thesis would be too informal piece of

writing.

I also thank Dr. Alan Kallmeyer, chair of the department of Mechanical

Engineering, for having confidence in me and providing the financial support to pursue my

degree at North Dakota State University.

I sincerely thank all of the faculty, staff, and graduate students at Department of

Mechanical Engineering for their help and for providing a nice and wonderful working

environment.

Finally, my deepest gratitude goes to my family members: my parents, my sister

and my cousin brothers. Their constant encouragement and support have always helped me

to overcome the odds during my work. Without their unconditional love and sacrifice. l

would not have been able to come so far to continue my studies.

IV

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... viii

LIST OF FIGURESix

1. ROBOTS: PAST, PRESENT AND FUTURE ... 1

1.1. Early Developments .. I

1.2. Wheeled Ground Robotic Vehicle: Present State .. .4

1.2.1. Structure .. 4

1.2.2. Actuation .. 4

1.3. The Future Of Robotic Vehicles And Motivation .. 6

1.3 .1. The Future of Robotic Vehicles .. 6

1.3.2. Motivation .. 7

2. RESEARCH HYPOTHESIS .. 9

3. PARTICLE MODELING AND PROBLEM STATEMENT 11

3.1. Particle Kinematics ... 11

3.2. Particle Model Approach To Vehicle Motion Control.. 14

3.3. Particle Model Control Approach On A Fixed Axle Robotic Vehicle 16

3 .3 .1. Fixed straight steering configuration .. 17

V

TABLE OF CONTENTS (Continued)

3.3.2. Front (or rear) wheel turning steering ... 18

3.3.3. All wheel steering general motion .. 20

3 .3 .4. All wheel steering translation motion (parallel)

3.3.5. All wheel steering zero radius tuming .. 24

4. THE EXPERIMENTAL ROBOT PLATFORM 26

4.1. B1BO1'-1 Structure ... 26

4.2. Thesis Constraints And Scope Of Work ... 30

5. CONTROL SYSTEM DESIGN ... 32

5.1. liard,vare Design .. 32

5 .1.1. Architecture .. 3 2

5.1.2. Hardware Planning ... 36

5.1.3. Hardware Building Blocks ... 39

5.1.4. VBC .. 52

5.1.5. WCU ... 54

5.2. Firm'\vare Design .. 56

5.2. l. The VBC Firmware Development.. .. 57

5.2.2. The WCU Firmware Development.. ... 58

5.3. Some Lessons Learned From This Effort ... 61

5 .3 .1. Power Transistor Switches ... 62

5.3.2. Cross talk in the Power drives .. 65

VI

TABLE OF CONTENTS (Continued)

6. EXPERIMENTAL RESULTS .. 70

7. SUMMARY AND CONCLUSIONS ... 82

REFERENCES ... 83

APPENDIX A .. 95

APPENDIX B .. 10 I

APPENDIX C .. I 08

Vll

LIST OF TABLES

Table

1: Comparison table for the selection of the microcontroller.46

2: Gray code for half wave stepping mode of the stepper motor. .. 60

3: High side gate driver solutions for N-Channel MOSFET. ... 63

4: Binary codes for the selection of steering mode .. 71

Vlll

LIST OF FIGURES

Figure

1: A System of Particles ... 12

2: The Particle Model of a Four-Wheel Vehicle .. 14

3: Five-Degrees of Freedom (DOF) Wheel Control Process ... 15

4: Fixed straight steering configuration .. 17

5: Front wheel steering configuration ... 19

6: All (Four) wheel steering configuration ... 21

7: Parallel steering configuration .. 23

8: Zero Radius steering configuration .. 24

9: The BIBOT-1 robotic vehicle ... 27

10: Block diagram for the initial controller [68]. ... 28

11: Vehicle Control Unit (VCU) [68). .. 29

12: Motion Control Unit (MCU) [68) ... 29

13: Decentralized control architecture .. 34

14: Structure of the Decentralized control system implemented on the
four-wheel fixed axle vehicle ... 35

15: 50 % Duty Cycle PWM signal. .. 37

16: Pulse Density Modulated signal. .. 38

17: Sigma Delta Modulated signal. .. 38

18: H-Bridge configuration .. 40

19: Current flow in H-Bridge when duty cycle< 50% .. .42

20: Current flow in H-Bridge when duty cycle> 50% .. .42

21: Circuit diagram for DC Hub motor driver43

IX

LIST OF FIGURES (Continued)

Figure

22: Circuit diagram for Stepper motor driver.45

23: Circuit diagram for the motor drives' power supply48

24: Circuit diagram for the voltage regulator .. .49

25: Target board for dsPIC33FJ programming ... 50

26: Circuit diagram for target board ... 50

27: Internal circuit diagram for optic isolator ... 51

28: Optic isolator circuit used on board .. 52

29: Block diagram showing the VBC design ... 53

30: Completely assembled VBC. .. 53

31: Block diagram showing the WCU design .. 55

32: Completely assembled WCU ... 55

33: Flowchart for the VBC ... 59

34: Flowchart for the WCU .. 61

35: Bootstrap circuit diagram [95) .. 64

36: Control signals for the Stepper motor drive when in motion ... 66

37: Control signals for the Stepper motor drive when brake applied 66

38: Noise in the DC motor drive signals .. 67

39: Destabilized control signals for the Stepper motor drive ... 68

40: U-Turn in the Front wheel steering mode .. 74

41: U-Turn in the All wheel steering mode .. 75

42: U-Turn in the Zero radius turning mode .. 76

X

LIST OF FIGURES (Continued)

Figure

4 3: Zigzag motion in the Front wheel steering mode ... 77

44: Zigzag motion in the Parallel steering mode .. 78

45: Zigzag motion in the Front wheel steering mode ... 80

46: Zigzag motion in the All wheel steering mode .. 81

Xl

1. ROBOTS: PAST, PRESENT AND FUTURE

Robots were introduced as a way of relieving humans of jobs that are characterized

as dirty, dangerous, and dull (DDD), including jobs that seems to be dangerously

inconceivable. Sooner or later, almost every known field such as manufacturing, service,

or domestic sector has involved some kind of robot technology [I]. The quest for a risk free

and safe work environment for humans has been the driving force behind the evolution of

robot technology. This chapter starts by providing a brief overview on the evolution of

robotic technologies and their applications and it closes by describing the motivating

problem that forms the basis of this thesis.

1.1. Early Developments

In early developments, robots were deployed in industrial operations only; hence,

until the 1990s, most of the robotics research was dominated by industrial robots [2], [3].

Some of the early industrial robots were robotic manipulators and guided mobile vehicles.

A robotic manipulator is like an arm, consisting of number of links and an end effecter that

performs the required task; whereas a guided vehicle is a mobile platform that moves along

a predefined path only. In general, these early industrial robots were not flexible enough to

cater unpredictable dynamic work environments such as those occurring in most industrial

chemical processes [4] and in postal mail handling systems [5]. Instead, they were

programmed to rigidly follow predefined work cycles [6]. The success of industrial robots

in the 1970s, and in the 1980s, fuelled the interest for application of robots in many other

sectors including those characterized by dynamic work environments. This led to the

development of more flexible robots in fields such as medical, entertainment, domestic,

military and in space exploration missions, among others [7-1 0].

1

Flexible robots are characterized by the presence of an improved intelligence that

enables them to make reasonable decisions even under unpredictable environments. The

two main types of flexible robots that evolved under this development were the

autonomous mobile vehicles and the anthropomorphic robots, which are presently known

as humanoids [11-14]. The traditional manipulators became parts of these flexible robots

where they were employed as robotic arms. Although some of these flexible robots were

employed just like the traditional industrial manipulators, by relieving human beings of

DDD tasks, for example in rehabilitation [15] and firefighting tasks [16], a significant

number of flexible robots were also employed as assistants to human beings in performing

certain high skilled jobs. For example, medical robots were employed as assistants to

doctors and nurses in performing special surgical operations [l 7].

Humanoids are robots that have a similar structure as that of human beings with a

highly developed artificial intelligence. Because of their human-like physical structure,

they tend to improve the Robot-Human interaction in the social world [18]. Today, there is

an increased interest in these robots especially in the entertainment f 191 and service

industry [20]. Despite recent developments in this area of robotics, there are still a great

number of research problems to be addressed in the control systems, structural design and

advanced intelligence. Typical problems include dexterous motion generation, task

planning, humanlike flexibility in structural design and advanced intelligence to better

interact with human beings such as in social learning, emotion expression and perception.

Alongside the interest in the growth and development of humanoids, there was an

increased interest in autonomous mobile robots also. An autonomous mobile robot is a

robotic system consisting of a mobile platform with locomotive elements that can move

2

from one location to another location in space [21]. Such robots can be terrestrial, e.g., the

National Aeronautics and Space Administration's (NASA) Sojourner Mars Rover [22],

aquatic, e.g., the National Oceanography Centre's Autosub6000 [23], or aerial e.g., the

USAF's Predator [24], [25]. In comparison to humanoids, the autonomous mobile robots

are simple in structure and in operation, but with a great deal of potential applications. The

locomotive elements in the autonomous mobile robots for the aquatic and aerial

environments are usually either propellers or screws, although legs can also be used at the

seabed. Depending on the type of the terrain, the locomotive element for terrestrial robotic

vehicles can be a wheel, track, or leg. Due to the complexity and unpredictability of the

terrestrial environments, the selection of an appropriate locomotive element for a particular

terrestrial robot is in itself a challenge. Wheels work well and provide high maneuverability

in structured terrains, but miserably fail in unstable terrains such as steep, slippery and

irregular terrains; whereas tracks work well in all types of terrains, but with limited

maneuverability. On the other end, legs can traverse all types of terrains but are relatively

slow as compared to wheels and tracks. Despite their disadvantages in unstructured

terrains, wheels are still among the highly preferred locomotive elements. They have an

advantage of being fast in response, easy in steering and employ relatively simple control

systems compared to the other methods.

3

1.2. Wheeled Ground Robotic Vehicle: Present State

1.2.1. Structure

Autonomous wheeled ground robotic vehicles (also known as Unmanned ground

Vehicles [26]) are just like other ordinary ground vehicles with either two or more wheels

and are moved by turning the wheels accordingly. The basic structure of a wheeled robot

consists of a drive mechanism and a steering control. Although these robots are structurally

simple, their control architecture can be relatively complex in comparison to those of other

robotic vehicles. The control system, in general, comprises of a low level unit for

controlling actuators and a high level unit for controlling the overall kinematics of the

vehicle as one body; the high level unit is also responsible for all decision making and

command generation tasks of the robot. Depending on the complexity of the robotic system

itself and the flexibility in the actuator layout, the high level and the low level controls can

be built either as a single integrated unit or as separate independent units, in which case the

lower units serve as subordinates of the higher level unit.

1.2.2. Actuation

The main actuators that are responsible for the motion of any robotic vehicle are the

traction unit for turning the wheels to cause motion and the steering unit to change the

direction of the robot motion. For a typical four wheel vehicle, the structure of the traction

control unit depends on whether the drive system is a Two Wheel Drive system (Front or

Rear) or a Four Wheel Drive system (All Wheel Drive). In the two wheel drive system,

either the front or the rear axle wheels are driven; whereas in the four wheel drive system

all of the wheels are driven. Furthermore, these drive systems can have differentially

4

driven wheels [27] on the same axle or independent driven wheels. If the drive is

differentially driven, then the traction control becomes relatively easy since the mechanical

differential unit tends to equalize the torque applied on each wheel. In the independent

wheel drive system, however, the traction control tends to be relatively complex, though it

provides more output power and flexibility to the system than the mechanically coupled

differential drive system.

The structure of the steering control unit also depends on the type of steering

mechanism used to steer the robot. Typical steering mechanisms for a rigid chassis include

the skid steering mechanisms [28], the Ackerman steering mechanism [29], [30], and the

all wheel independent steering mechanisms [29]. The skid steering action is performed by

applying different traction speeds on the wheels at both sides of the robot. The

effectiveness of this method depends on the longitudinal and lateral dimensions of the

robot. If these dimensions are relatively short then zero turn radius can be achieved, which

is very useful in congested areas. However, the differential steering tends to fail miserably

if the surface traction is not uniform on the wheels at both sides of the robot, thus

compromising the vehicle stability. Additionally, the drive efficiency of the differential

steering decreases due to the difference in the power requirement at both wheels, which

also limits the speed of the vehicle. Because of these limitations, the differential steering is

confined to toy robots or small sized robotic vehicles such as lawn mowers. The Ackerman

steering mechanism is the most common steering configuration used in modern cars and

trucks. This system is also used in the large-sized robotic vehicles powered by IC engines

such as the Experimental Unmanned Vehicle (XUV) being developed by the Army

Research Lab [31]. In this steering configuration, the rear wheels may be kept fixed relative

5

to the body frame whereas the front wheels are moved simultaneously relative to each

other. The steering effect is produced by changing the direction of rotation of the steered

wheels. The Ackerman steering system is simple in its construction and easy to control but

it requires space for the wheels to swivel. The other major disadvantage of this steering

geometry is that it forces the fixed non-steered wheels to follow the steered wheels, thus

producing a side drag that leads to vehicle instability in sharper turns. The all wheel

steering system is a modern approach in which all wheels of the vehicle can swivel either

simultaneously or independently. Thus a vehicle can traverse in all direction of the plane,

providing great maneuverability.

1.3. The Future Of Robotic Vehicles And Motivation

1.3.1. The Future of Robotic Vehicles

Developments in mobile robot technologies have been helpful in many ways,

making the world a better and safer place to live. Robots have marked great future potential

that can be utilized to completely eliminate human intervention from highly hazardous

fields. As more and more improvements in robot technologies evolve, new demands for

robot applications will also evolve in all work levels, ranging from the semi-skilled to high­

skilled work fields. It is anticipated the futuristic robot will be able to intelligently share the

work environment with humans in a more safe and convenient manner. Despite rapid

improvements in the current levels of robotic technologies, there are still many challenges

that will need to be solved before the bright future of robots can be realized. Among

problems that must be solved include control and navigation [32], [33], and perception and

intelligence [34-36]. Furthermore, there is an increased interest in making future robots as

6

small as possible without compromising their performance. Among the current directions

of robotic research to address these problems include biologically inspired robots, which

will be richly equipped with sensors and have the power of making intelligent judgments,

risk analysis and can react to unpredicted events [37].

Another major problem to be solved is that of the mobility and manipulation in difficult

environments such as cluttered environments, environments with moving obstacles, and in

unpredictable terrains such as steep, irregular, unstable and slippery terrains. Presently, the

mobility problem is seriously pursued for defense and space exploration robots, which are

more likely to encounter such environments in their daily missions. As intelligence,

control, mobility, and manipulation problems will be addressed on one side, the other side

of robotics research will focus on the development of new materials and manufacturing

methods that will lead to small sized and light but powerful robots.

1.3.2. Motivation

Multidisciplinary group effort is needed in tackling the research problems for the

futuristic robot; however, Mechatronics will play a major role. One of the problems to be

addressed by Mechatronics is that of robot mobility in unstable terrains. This research is

motivated by the mobility problem. Poor robot mobility capability has been a limiting

factor in the application of robot potential in the most interesting field such as defense and

space exploration. Both the US Department of Defense (DoD) and NASA have invested a

lot in robotics research to develop mobile robot technology that can work in cluttered,

unstructured and unknown terrains with or without the presence of humans [38], [39].

7

The mobility of the wheeled vehicles on unstable and slippery surfaces, such as

snowy surfaces, is a serious challenge since the wheels tend to lose the grip on the surface.

The loss of grip on the surface causes the traction as well as steering control failure. Many

different systems have been developed so far that include the Anti Braking System (ABS)

and the Traction Control System (TCS), which are used to increase the control of the

vehicle during the rough conditions. An ABS prevents the wheels from locking up during

braking by adjusting the braking pressure relative to the vehicle's speed [40] thus

maintaining the steering control, while the TCS optimally distributes the traction force on

tires using the differences in friction between the tires and the road surface [41-45]. The

introduction of such safety systems have resulted in the low rates of road accidents [46],

[47] but have proved to be redundant on slippery surfaces where the ABS excessively

increases the braking distance while the TCS decreases the vehicle acceleration [48]. These

limitations have made the use of such systems on the robots less common.

8

2. RESEARCH HYPOTHESIS

The failure of vehicles traversing on slippery surfaces is not just caused by the lack

of proper terrain detecting methods, but is also due to the lack of appropriate mobility

control methods. Since the robot mobility and kinematics depends on the actuator

dynamics, it is important to have the efficient and better control units that can handle the

actuator dynamics in order to achieve the desired robot kinematics. Some of the recent

research results have shown that by using a control system that optimally coordinates the

traction and steering functions, the mobility of the wheeled robotic vehicle can be

significantly improved [49], which provides hope for using wheeled robotic vehicles in

difficult terrains.

It is the view of some researchers that the mobility problem in these terrains

conditions can be improved by imitating the mechanism of motions of the biological

system such as reptiles (50], (51] and mammals. Biological systems are known to have an

infinite number of DOF that help them adapt to different terrain conditions without

significantly compromising their speed and control. Unfortunately the structural rigidity

and the current approaches in the development of the robot motion controllers have limited

the number of controllable DOF, making it hard to imitate the biological systems.

Normally, the robot is modeled as a rigid body [52], which limits the available controllable

DOF for each wheel to only two, corresponding to the steering angle and the traction force.

It is thought that one method of improving the mobility of robotic vehicles would

be to increase the wheels' controllable DOF to beyond two. This approach is possible by

modeling the robot as a system of particles centered at the wheels such that the relative

positions between the wheels can also be controlled, i.e., the Particle Modeling approach.

9

Since the relative position of the wheel adds another three DOF in a three dimensional (3-

0) space, the net effect of this approach would be five controllable DOF for each wheel.

Thus the Particle Modeling approach is likely to be more effective in controlling the

motion of robotic vehicles because of its added DOF, however, this approach has not been

tested before.

The hypothesis of this research is that, by modeling the vehicle as a system of

independently controlled particles, it is possible to drive the robotic vehicle to effectively

track the desired paths. The primary objective of this thesis is to experimentally test the

applicability of this approach using a standard four wheel fixed axle robotic vehicle as a

starting point. The results of this thesis should offer a clue as to whether it is feasible to

proceed with this approach on more complex robotic vehicles with adjustable axles and

how to implement it. The next chapter discusses the kinematics of a system of particle and

the feasibility of the Particle Model Control approach and its implementation on a fixed

axle robotic vehicle.

10

3. PARTICLE MODELING AND PROBLEM ST A TEMENT

The Particle Modeling approach proposed in the work for a robotic control design

assumes that the wheels of the robot are a system of particles arranged in space. These

particles are identical yet independent to each other, sharing a main goal, i.e. to traverse the

system on the desired track. This facilitates to increase the vehicle's controllable DOF that

can help improve the vehicle's mobility on various terrains. Thus, the main goal of the

thesis is to design and implement a control system for a robot which is modeled based on a

Particle Model approach; it will be implemented on an existing fixed axle robotic vehicle.

3.1. Particle Kinematics

From elementary mechanics [53], it is known for a given system of n particle, each

with mass mk and position vector i\ as illustrated in Figure 1, that there is a relation

between the position of the individual particles and the position vector of the center of mass

position re as

(3.1)

h ➔ Li mii'i " ➔ 0 d 1 . . . f kth . 1 . h w ere, re = ~, L..i mirkle = , an rklG = re atlve pos1t10n o part1c e wit respect
L..t !

to the center of mass.

Similarly, the velocity vk of the particle is expressed as

(3.2)

where Ve is the velocity of the center of mass, and vkle is the relative velocity of the

particle k with respect to the center of mass. If the positions can be resolved in a Cartesian

plane then

(3.3)

11

y

:
/

►

Figure 1: A System of Particles.

where and are magnitudes for the position vectors of particle and the center of

mass, respectively and

(3.4)

The angles of vector in the - plane satisfies

(3.5)

(3.6)

If and are angles of the velocity vector directions relative to the - axis, 1.e.,

(3.7)

(3.8)

12

and the angle between TklG and the Cartesian plane be defined as 0klG, where

(3.9)

then the velocity of particle k can also be expressed in the Cartesian plane as

(3.10)

= [VG c?s 'PG]+ ltklG cos 0klG ± rklG(~klG) sin 0k1Gl.

VG sm 'PG - tklG sin 0klG ± rklG(0klG) cos 0klG
(3.11)

At any positions Tk and Tc, this equation shows that if the velocity Ve of the center

of mass is known, i.e., the magnitude Ve and the direction ({Jc with respect to the x- axis,

then the velocity vk of each particle can be determined by using fklG and (/J k· Note that the

knowledge of Ve, Tk and Tc along with equations (2.1)-(2.9) provides all information

required to determine vk in equation (2.11). At constant velocity, the trajectory of the

center of mass becomes

(3.12)

(3.13)

and the orientation of the center of mass with respect to the Cartesian plane becomes

(3.14)

(3.15)

The basic kinematic equations, i.e., (3.1)-(3.15) defined under Particle Modeling of

a system, can be applied in describing the motion of flocks [59-61] as well as of multi­

robot formation and cooperation [62-66]. However, the use of these equations can increase

13

the number of controlled DOF, thereby improving the robot performance, which has never

been considered for describing and controlling robotic motions. The following work

investigates the applications of this Particle Model approach in controlling a robotic

vehicle.

3.2. Particle Model Approach To Vehicle Motion Control

Based on the particle kinematics, a -wheeled vehicle can also be modeled as a

system of -particles corresponding to the number of wheels; each particle is assumed to be

concentrated at the center of each wheel, i.e., a four wheeled vehicle can be treated as a

system of four particles as shown in Figure 2.

Figure 2: The Particle Model of a Four-Wheel Vehicle.

The motion of the vehicle can be controlled using various present control

algorithms, while the overall control system can be illustrated by Figure 3. Here the

navigation control system on the vehicle provides the navigational information about the

14

speed of the center of mass, Ve, and its orientation m space, r/Je- Along with the

navigational information, the current motion state parameters monitored by the system are

combined together to generate the control parameters for each wheel treated as a particle.

By using equations (2.10) and (2.11) and the combined information, i.e., the navigation and

the current motion parameters, the robot motion control algorithm determines the

individual velocity for each wheel, i\. The wheel velocity vector, i\, is then processed by

the traction controller and the wheel steering controller to achieve the wheel speed of

magnitude vk and the wheel heading direction <pk· The continued motion of all wheels each

with the velocity vector i\ will move the center of mass of the vehicle at a velocity Ve as

demanded by the navigation algorithm.

::\'Iotio11 Update
Panunete~

Whed Dn,-e
Parnmeterr,

Current ~fotion

Parameter,;

Figure 3: Five-Degrees of Freedom (DOF) Wheel Control Process

15

If the distance rklG between each wheel k and the center of mass are not constant,

i.e., it can be changed by the control system so that fklG * 0, then it will create three more

control parameters. In addition to the vk and <pk, the motion update parameters for each

wheel would include rkJG, which creates a total of five DOF.

3.3. Particle Model Control Approach On A Fixed Axle Robotic Vehicle

When this approach is applied on a fixed axle four wheel vehicle where

(3.16)

and

(3.17)

then the updated motion velocity vector i\1c becomes

(3.18)

with (/Jk being a function of 0c only. The vehicle thus reduces the available DOF to two

only. This causes the vehicle to behave as a rigid body; however, the particle kinematics

equations can still be applied for the control of its motion. There are five main steering

motion configurations stated below for a four-wheeled vehicle that has fixed axles and all

wheels steerable and drivable, to which particle modeling can be applied.

Main steering configurations for a four-wheeled vehicle of fixed axles are:

1. Fixed straight steering configuration,

2. Front (or rear) wheel turning steering,

3. All wheel steering general motion configuration,

4. All wheel steering translation motion (parallel) configuration, and

5. All wheel steering zero radius turning configuration.

16

3.3.1. Fixed straight steering configuration

The fixed straight steering refers to the configuration in which the wheels of the

system are always aligned straight to the heading direction of the vehicle. For cornering the

vehicle in this steering configuration, the skid steering [54], [55] is implemented; turning

the left and the right side wheels at different speeds makes the vehicle tum in a direction

depending on the differential velocity vector. In such a steering configuration, if the wheels

move with the same forward velocity, then the vehicle will move in a straight line.

However, if the speed of the wheels on one side increases as compared to the other side,

then the vehicle follows a curved path inward towards the slower wheel. The geometrical

configuration for steering is illustrated in Figure 4.

Vehicle Forward Direction

<p4 I ' ' ' <p3
I I ,....._ _._

(O~g
I

: (b, a) I _, ... --
I

'- I --~ ~ ' V1 I Vr Wheels parallel to
I

Center of Mass (C.M.)
• • _•v/ the vehicle forward

(b/2, a/2) I direction
V1 ' I ~-

(0, 0) _ I _(9, 0)

~
;

I .-
I I I

---.!..... ,.__!,_
I I I

'P1: : 'P2

Figure 4: Fixed straight steering configuration.

In this configuration the left hand side wheels have speed v1 whereas the right hand

side wheels have speed Vr, such that

(3.19)

17

(3.20)

In order to move straight, the velocity v1 should be equal to vr, or the velocity of each

wheel, vk> should be equal to each other with vklG = 0 for all k such that at any instant

(3.21)

For cornering the vehicle, differential velocity vector Liv between the left and the right side

wheels is required such that,

(3.22)

where the ± sign signifies the turning direction which can be either left or right; the

velocity of the center of mass becomes

(3.23)

In this case, the change in the heading direction of the vehicle ({Jc is equal to that of the

wheels <pk> i.e.,

(3.24)

At a constant velocity, the trajectory of the center of mass becomes

(3.25)

and the vehicle orientation becomes

l6vl
'PG = 'Pk = 'Pc0 + f --,;-dt . (3.26)

3.3.2. Front (or rear) wheel turning steering

The front wheel steering configuration is the most common configuration used in

normal road vehicles. In this configuration the front wheels only are steered with respect to

the vehicle center, while the rest of the wheels are kept straight and have to follow the path

18

made by the steered wheels; this causes skidding at the end of the un-steered wheels. The

steering geometry depends on the Ackerman steering principal [56], [57] where the inner

wheel turns tighter than the outer wheel as shown in Figure 5.

y

Figure 5: Front wheel steering configuration.

The vehicle can be driven with either two or four wheels; the most general case

considered in this discussion is when the vehicle is driven with all four wheels at velocities

i\, v2 , v3 and v4 . During the straight line motion, the vehicle behaves, as in the previous

case, with all vk assuming equal values and pointing in the direction of motion of the

vehicle. For vehicles with low width to length ratio (~) during turning maneuvers, the

trajectory of the center of mass can conveniently be approximated by that at the center C of

the steered wheels. There is an instantaneous center O of zero velocity at a distance p from

the inner wheel, i.e., wheel 2, along the axis of non-steered wheels such that the inner and

outer wheel angle <p3 and <p4 satisfy

_ t -1 (a) ({J3 - an P , (3.27)

19

(3.28)

The angle of the center of mass is approximated by

(3.29)

The wheel angles for the non steered wheels are assumed to be zero, i.e., <p1 =

<pz = 0. For a fixed ratio (~)), the steered angles (<p 3 and <p4) can be computed using the

desired heading direction of the vehicle, (f)c, and the equations (2.27)-(2.29) as

<p3 = cot-1 (cot (f}c - 2bJ ,

<p4 = cot-1
(cot (f}c + 2bJ .

(3.30)

(3.31)

The velocities of the steered wheels, i.e., k = 3, 4, for the front wheel steering can be

expressed as

However, the velocities of the non-steered wheels, i.e., for k 1, 2, depend on the

location of the wheel since their angles remain fixed in the direction of the vehicle. The

velocity for wheel 1, which is in the same side as the steered wheel 4, will be

(3.33)

Similarly, wheel 2, which is in the same side as the steered wheel 3, will have a velocity as

(3.34)

3.3.3. All wheel steering general motion

The all wheel steering configuration is a new configuration that steers all wheels of

the vehicle. Such a steering configuration is now making ground in the automobile industry

since it can steer the vehicle with less turning radius as compared to the front wheel

20

steering configuration, and the rear wheels are made to track the front wheels, thereby

avoiding the skidding at their end [58}. The all wheel configuration depends on the dual

Ackerman steering principle as shown in Figure 6.

y

Figure 6: All (Four) wheel steering configuration.

As in the front wheel steering or the fixed straight steering, this configuration too

behaves the same way under the vehicle's straight line motion, i.e. all four wheels drive

with the same velocity in the vehicle heading direction. However, during cornering, all of

the wheels are steered simultaneously as compared to only two wheel steering in the front

wheel steering configuration. In this configuration, the instantaneous centre O of zero

velocity is located at a distance p from the inner wheel, but on the axis of the center of

mass, while the steering angle for the outer and the inner wheels remain equal, respectively,

such as

'Pz = -'f)3 ,

21

(3.35)

(3.36)

where the wheel angle <p1 and <p 2 satisfy the equations as

-1 [a] q,1 = tan Z(p+b) ,
(3.37)

(3.38)

The angle of the center of mass is approximated by

(3.39)

Using the equations (2.37)-(2.39), the wheel steering angle can be correlated to the vehicle

steering angle as

(3.40)

-1 (b) q,2 = cot cot 'PG - ;; • (3.41)

The velocity of the steered wheels, i.e., of all four wheels, can be expressed the same as

was done before in the front wheel steering configuration, such as

(3.42)

for k=l,2, ... ,4.

3.3.4. All wheel steering translation motion (parallel)

If the vehicle is at a very high speed and needs to make a lane change then the

steering configuration described in the previous sub-sections may not work well, in

particular they can produce a rolling effect, which destabilizes the vehicle. In order to

maintain the vehicle stability in such situations the parallel movement of the vehicle, which

can be provided by the parallel steering configuration, is highly preferred. In such a

configuration, all wheels steer at the same angle with respect to the turning angle of the

vehicle center making a parallel shift without inducing any roll in the vehicle. Since all

22

wheels are steered, the vehicle can be made to travel in any direction relative to its axis as

illustrated in Figure 7.

Turning pat
~/
I ,
I I

, -'- \'
(4) (3)

I ,'

y G

(])
X

I ... T..,

I I

: ' , .______.,

/ <pz

Figure 7: Parallel steering configuration.

The common feature of this motion is that all wheels have the same velocity as that

of the center of mass, i.e.,

'fJ1 = 'fJz = <fJ3 = 'fJ4 = <fJG ,

During the motion, the vehicle heading direction does not change, i.e.,

'PG= 0 '

therefore,

The vehicle trajectory can easily be shown as

[X] [Xo] [vk cos 'Pk]
y = Yo + f vk sin 'Pk dt '

23

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

for all k 1,2 .. ,4.

3.3.5. All wheel steering zero radius turning

To turn the vehicle in a cluttered terrain or on a narrow path like tunnel, it is preferred to let

the vehicle turn at the axis passing through its center of gravity. This minimizes the space

required for a successful turn. The maneuver is thus known as the zero radius steering. The

steering configuration for zero radius turning is illustrated in Figure 8 ..

Circular Turning ,
~,,'

' ' ' \
\

L (1)

' \
I

' I
I

(2)

Figure 8: Zero Radius steering configuration.

In this steering basically the center of mass remains stationary while the vehicle

changes direction continuously, as

24

(3.48)

(3.49)

Here all wheels are subjected to velocities and steering angles of equal magnitudes but in

different directions. Diametrically opposite wheels are steered at equal angles but opposite

velocities such as

v4 = -vz ,
where

and

providing the vehicle orientation as

25

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

4. THE EXPERIMENT AL ROBOT PLATFORM

The problem task for implementation of the proposed control approach includes

building a control system hardware that treats the vehicle as a system of particles and test

its performance in various path geometries. The test vehicle used in the work for the

implementation of such kind of control system was a pre-built robotic platform dubbed

BIBOT-1, and the control framework employed was a decentralized control architecture

that allowed each wheel to be controlled independently.

This chapter describes the robot platform that was used in this research. It discusses

the structural details and limitations of the robot and states the constraints and the scope of

this work.

4.1. BIBOT-1 Structure

The BIBOT wheeled robot project is a Mechatronics project in the Department of

Mechanical Engineering at NDSU; it intends to develop flexibly reconfigurable robots that

can be used for research in a variety of terrain conditions. The development of BIBOT-1

robot started fall 2006 with the aim to create a robot that could be operated in slippery

terrains at high speeds. The basic structure of the robot was designed by a team of several

undergraduate students as the part of their senior design project [67]. The final mechanical

structure of the robot consisted of a chassis with an edge to edge length of 3 7 inches and a

width of 10 inches; the wheel to wheel base was 23 inches long and 26 inches wide. The

robotic vehicle had four wheels, each using an independent suspension system. Each wheel

was driven by an in-wheel hub motor coupled with a stepper motor to steer it. This made

the vehicle an all wheel drive, all wheel independent steering system unit as shown in

Figure 9.

26

The first control system for this robot was designed and built by another team of

undergraduate students from the Electrical Engineering Department at NDSU as part of

their design projects [68]. The controller consisted of two microcontrollers: the

PIC I 6F877 A and the PIC 1 0F200. The major function of the PIC l 6F877 A microcontroller

was to read the sensors and drive the DC hub motors, whereas a PIC I 0F200

microcontroller served as the low end controller for generating the grey codes needed in

controlling the stepper motors.

Figure 9: The BIBOT-1 robotic vehicle

In construction, this control system had two sections. The first section was the

vehicle control unit (VCU), which acted as the central controller unit managing the other

parts of the control system. The second section had four units acting as the local control

units, which control the motors on each wheel. These local units were known as the motor

control units (MCU). Potentiometers attached to the steering stepper motors provided the

27

feedback data needed for the steering controller. Although the robot was equipped with

sonar sensors that could be used to detect obstacles, there was no speed feedback

information for both the VCU and the MCU. Figure IO shows the structure of the initial

controller, and the actual control boards for both the VCU and the MCU are shown in

Figure 11 and Figure 12.

Figure 10: Block diagram for the initial controller [68].

The VCU, which was the workhorse of the whole control system, was capable of

reading 16 analog sensors and could provide control commands to four MCUs only; it

provided all motion commands that were implemented by the individual MCUs. This

controller organization provided little or no flexibility in the drive structure of the robot.

Part of the purpose of employing Particle Modeling on a robotic vehicle was not only for

creating independent wheel controllers for each wheel, but also to have the ability to add a

wheel and change the base lengths of the vehicle. With the existing controller it would have

28

been difficult to achieve this. In particular, the addition of wheels would be a complicated

effort for the controller, and the MCUs were not as independent as they should be.

Figure 11: Vehicle Control Unit (VCU) [68).

Figure 12: Motion Control Unit (MCU) [68).

29

Despite the structural limitations, there were also hardware limitations with the

existing controller. The MCUs were capable of driving the DC hub motors at 12 volts DC

only, which was another limitation since it failed to cruise the robot at sufficiently high

speeds by almost 50%: the hub motors are rated at 24Volt DC. Additionally, the stepper

motor driving function of the MCU was not capable of controlling the current flow in the

stepper motor coils. This was not beneficial for the robot especially since adverse operation

conditions could cause high currents to flow through the stepper motor and possibly

damage them. This controller was also unable to provide sufficient holding torque for the

wheels to be kept in their respective positions.

Out of the concerns raised above, this initial controller was deemed incapable of

providing the needed control functions for BIBOT-1.

4.2. Thesis Constraints And Scope Of Work

The work covered in this thesis aimed to develop a new control system for BIBOT-

1 using Particle Modeling approach that could provide the minimal tracking errors and

satisfy the constraints as follows:

I. Robot's speed: It was necessary for the controller to steer the robot at as high

speeds as possible. Robot maneuverability at high speeds was one of the subjects

that would be studied using BIBOT-1. Hence, since the hub motors that drive the

wheels were rated at 24Volts DC, it was important for the new control system to

provide that level of voltage supply to these motors.

2. Scalability: The studies may require the robot to have more wheels than the current

four, especially on the robot mobility over unstable surfaces. As such, it was

30

important for the controller to be able to accommodate any number of robot wheels

and steering as necessary.

3. Performance Reliability and Equipment Safety: The use of stepper motors in

driving the robot may have introduced some unintended constraints. The most

notable constraint was that of being able to firmly hold the wheels in the intended

direction, which was accomplished by holding the stepper motor phases at a steady

voltage. However, this could result in the motor drawing damagingly higher

electrical currents than the rated values. It was necessary for the controller to

provide safety mechanisms that would guard the motor against over currents.

4. Wheel Independence: Another objective of the Particle Modeling was to provide

each wheel with an independent controller. The existing system did not provide that

feature as the control commands for all wheels were developed by a single VCU.

One of the major requirements for the application of the Particle Modeling

approach is the availability of appropriate sensors on the robot to provide all information

about the vehicle motion and the wheel parameters. Unfortunately, BIBOT-l did not have

all of the necessary sensors, such as the proximity sensors for obstacle detection and speed

sensors. Therefore, some of the robot parameters, especially the speed, were assumed to

always be constant. This degraded the quality of the controller since it was not possible to

ensure that the speed remained constant. This is the limitation that the research had to live

with.

31

5. CONTROL SYSTEM DESIGN

The design and development of the control system involved two major tasks. The

first task was to design and develop the hardware, and the second task was to develop the

control system's core software (Firmware). Robotic intelligence was not considered during

this development; however, the core software was built with a platform on which the

intelligence code could be easily added in the future. This chapter discusses how both the

hardware and the core software were developed using the Particle Model kinematic

analysis of the vehicle as presented in Chapter 3.

5.1. Hardware Design

5.1.1. Architecture

Controlling all steering and traction actuators sometimes poses a complex and non­

linear problem. To effectively control them in robotic vehicles, several control algorithms

have been studied and proposed as can be seen in the literature [69-71]. Most of these

algorithms are based on a rigid body model and are known to require a high computational

speed in order to generate the various control signals at a proper time without delay. For

such requirements, different control architectures have been proposed [72]. The first one is

the Centralized control architecture [73] in which there is one central controller that

combines both high level and low level controls. Although the centralized control system is

simple in its architecture, it reduces the speed of the system by limiting the number of

commands it can execute over a particular time interval. Another drawback is its un­

scalability; it is not possible to add or remove any actuator units from the system after it has

been built and is ready to run. Since the complexity of the system increases exponentially

32

with the increase in the actuator units, it is evident that the centralized control architecture

fails when the complexity of the system increases.

Another popular control architecture is the Hierarchical control architecture [74],

[75], which decomposes the large and complex system into small modules that operate

hierarchically from high level to low level control functions. Thus, an application of the

control effort becomes easier and faster as compared to the centralized control system.

However, this architecture also faces some limitations and drawbacks resulting from the

arrangements of the sub modules; to avoid the misinterpretation of the sensory data, it

demands more processing time as the information further increases [76].

Similar to the centralized architecture, another major limitation of the hierarchical

architecture is its inflexibility and in-expandability. As scalable robotic systems become the

order of the day, the need for the control architecture that eliminates these limitations

favors the decentralized or distributed control architecture. In decentralized control

architecture [77-82], the low level control units are resident local to the actuators. Local

drive units are controlled by the local controllers, which get the information from a central

controller to run the system in harmony. The central controller reads the sensors and

provides the required information to move the vehicle in the desired direction. This

information is shared by the lower level control units, which processes it according to their

respective positions in the system and generates appropriate actuation signals, thus, it uses

the concept of parallel computing [76]. Such a system not only reduces time delay in the

information flow and in the generation of the control, but also improves the scalability

factor of the system.

33

In accordance with the performance objectives discussed earlier and the above

mentioned analysis, it was decided to use the decentralized control architecture [83-85] for

this robot. Under the decentralized control architecture, as illustrated in the Figure 13, the

system is broken down into simple controllers, each of which performs specific local tasks

independent of the other controllers, though they may share or change certain control

information through some form of a data communication bus. Typically, each controller

can have its own set of sensors that are local to that controller, and the measured data may

be shared by the other controllers.

INFORMATION POOL

CONTROLLERS

Figure 13: Decentralized control architecture.

On this robot, it was decided to have five such controllers, one of which was

referred to as the Vehicle Body Controller (VBC). This controller was dedicated to

monitoring the motion of the robot body as a whole with the ability to change the

information in the information pool (data bus). This controller would determine the

34

direction, speed and the steering mode of the robot. The remammg controllers were

assigned to the wheels of the robot; one for each wheel, known as a Wheel Control Unit

(WCU). The WCU could read the information from the data bus without making any

changes on it and at the same time continue with its own sensor data to determine the wheel

traction speed and the steering angle. The VBC would use the body sensor data and its

navigation software, which will be the part of the robot intelligence (currently not fully

developed), to determine the robot heading direction, speed and the steering mode. This

information is then broadcasted to the information data bus for all WCUs to read. The

overall arrangement of the controllers is illustrated in Figure 14.

Steering

Sensor

~
w
C

u

Body Sensors J

c:::.------~

Controller
(VBC)

Body Sensors

w
C

u

Figure 14: Structure of the Decentralized control system implemented on the four­
wheel fixed axle vehicle.

35

The information passed to the data bus by the VBC would be influenced by the

physical environment of the robotic system in which it resided as well as the goal of the

system itself. The WCUs would respond by combining the VBC data at the data bus and

their local sensors to develop their local motor control signals, consistent with the desired

robot motion. The processing of the information by the individual WCU would depend on

its particular location on the robot along with the information it received from its respective

sensors.

This control structure has a number of advantages for this system. Although it is

characterized by the fast processing of information with minimal time delay in the flow of

data between the VBC and the WCUs, which is an advantage by itself, the main advantage

is the fact that any number of WCUs can be added without compromising its performance,

i.e., system scalability. These features are consistent with the structural demands of the

Particle Model structure, wherein each particle is assumed to be independent; so having its

own independent controller is highly desirable.

5.1.2. Hardware Planning

Once the control architecture was decided, the next step was to decide how to get

the control process working. There were two things that needed to be considered prior to

designing and building the hardware for these controllers. The first was the drive

electronics, which includes the drives for the traction and the steering control. Recall that

DC hub motors were used for the generation of the traction, whereas stepper motors were

used for steering. The speed of the DC hub motors, which is directly proportional to the

supply voltage, can be controlled either using linear amplifiers or the switching amplifiers

36

[86-88]. Though linear amplifiers tend to be simple in design, they have low efficiency as

compared to switching amplifiers; this can cause an early drain out of the batteries. The

efficiency of the switching amplifiers is nearly 100% if the power switches used in the

driver are properly designed with less energy loss, which can happen in the form of heat

dissipation. The reason for having such high efficiency is that, ideally, when the power

switch is ON, it conducts all of the current without any potential drop across it, and when it

is OFF, there is no current flowing, thus providing no energy loss. The voltage output in the

switching amplifiers is controlled using a sequence of pulses whose DC component is

responsible for driving the motor at that instance. The input pulses can be either Pulse

Width Modulated (PWM) (Figure 15), Pulse density Modulated (PDM) (Figure 16), or

delta sigma modulated (Figure 17) signals. The advantage offered by the switch amplifiers

makes them a clear choice for robot applications, where the battery life needs to be

optimized.

t

Figure 15: SO % Duty Cycle PWM signal.

37

'

~

- . -

t

Figure 16: Pulse Density Modulated signal.

.. ,.. -

~

t

Figure 17: Sigma Delta Modulated signal.

With the drive electronics chosen, the second issue to be considered was the control

section, which generates the various control signals such as timing and sequences of pulses

to operate the drive amplifiers. The control section can be designed and developed by using

either a combination of logic gates and some special purpose chips for information sharing,

or a microcontroller that can perform both tasks of information sharing and the generation

of control signals. Although the use of logic gates eliminates the need for programming as

required in the case of the microcontroller usage, they tend to increase the design

complexity. For example, the process of reading sensors and processing the sensor

information alone may require several components such as comparators, oscillators, flip-

38

flops etc. In order to maintain the simplicity of the control section, a microcontroller based

design was considered. It was also decided that the switching signal required for the

switching driver be a PWM signal, which can easily be generated by any microcontroller.

5.1.3. Hardware Building Blocks

5.1.3.1. Power Electronics

Although not required by the VBC, power electronics was the most important part

of the WCU because it was responsible for driving the traction DC hub motor and the

steering stepper motor. The power electronics modules were made using H-bridge based

driver units [86], [89] for both the DC motor and the stepper motor on the WCU. The

selection of the appropriate drive components for each motor depended on the power

ratings of the motor in question. The traction DC motor has current ratings that vary from

0.8 amps at no load condition to a maximum of 58 amps at stall when operated at a voltage

of 24 volts, whereas the stepper motor is rated with 2.1 amps in bipolar series connection.

There was no off the shelf drivers that could provide such tremendous power ratings at a

reasonable rate. It was decided therefore to custom build the drivers for both motors.

a) The DC motor driver

The DC motor driver was designed on the principle of the H-bridge that can be

used as switching amplifiers. The first step in the design process was the selection of

appropriate power transistor switches that could be used in the H-Bridge circuitry. The high

power N-channel MOSFETs, rated for 80 amps maximum at the voltage level of 55 volts,

were selected; these power switches were found to be ideal for the design since they could

not only handle the power requirement of the motor but also provide a reasonable factor of

39

safety in the design. The H-bridge driver circuit was completed by arranging the power

transistor switches in the fashion as shown in Figure 18, where the transistors are labeled as

Q1, Q2, Q3 and Q4• Since, the N-channel MOSFET opens fully only when the gate voltage

is higher than the source voltage, to address the problem of switching the high side

MOSFETs in the H-Bridge circuit, two IR2 l 094 driver chips, which are half bridge drivers,

were used. These driver chips addressed the switching requirement for the N-channel

MOSFETs by setting up appropriate gate voltages on the high side and the low side

MOSFETs in the H-Bridge. This driver chip also induces a programmable dead time in­

between the control signal in order to avoid any accidental opening of two power switches

on the same side of the circuit at same time which would cause a short circuit.

01

02

J

Figure 18: ff-Bridge configuration.

40

The PWM control signals for the H-bridge driver are complementary to each other;

these signals are received by the two IR2 l 094 chips, which convert the signals into the

appropriate MOSFET gate voltages to open and close the power switches. The speed and

the direction of rotation is controlled using a phase locked loop approach, in which a

special case of PWM signal controls both the motor speed and the direction by using a

single variable i.e., the duty cycle of the input PWM signal. In this approach, a duty cycle

of less than 50 % causes the opening of one power transistor, say on the high side, more

than the corresponding low side transistor on the same branch of the bridge, say the left

branch. Since an inverted signal also was fed to the second pair of bridge transistors, it

causes the opening of the low side transistor in the right branch longer than the high side

transistor in the right branch. The average opening of these transistors allows the electric

current to flow from left top to right bottom causing the motor to run in one direction as

shown in Figure I 9. The opposite is also valid i.e., a duty cycle of more than 50 % causes

the motor to reverse its rotation shown in Figure 20. The duty cycle of 50% is the boundary

between two opposite direction rotation of motor; at this value the motor stops, since it

causes opening of either high side transistor switches or the low side transistor switches

only. The speed control function is achieved by using the average time duration for the

opening of the transistors. The greater the difference of the duty cycle from 50%, the

greater will be the speed. In order to stop the motor at any time instance, a break input

signal was also available on the drive. The generation of these control signals will be

discussed in detail later. As usual a tank circuit comprised of two capacitors of different

values laid in parallel was also placed across the power supply line in order to absorb any

41

ripples produced in the supply line. The final circuit for the motor driver is shown in Figure

21.

01 03

Figure 19: Current flow in ff-Bridge when duty cycle< 50%.

Figure 20: Current flow in ff-Bridge when duty cycle > 50%

42

l2 V

5 V

Figure 21: Circuit diagram for DC Hub motor driver.

b) The Stepper Motor Driver

Since, stepper motors have some unique performance requirements that must be

achieved for efficient performance, the design of the stepper motor driver tends to be more

complex. In order to run the stepper motor at high speed with the rated torque, the current

flow in the motor coils plays a significant role. In order to achieve the rated torque, the

motor must be driven at the rated current values. As the speed of the motor increases,

however, the winding inductance and the back electromotive force (E.M.F) generated in the

coils during rotation tend to resist the flow of current by providing less time for the current

grow to the maximum value; hence, the maximum attained current may fail reach the rated

value. This, in effect, decreases the torque provided by the motor. As the speed increases

further, less will be the time for the growth of the current in the motor and the motor cease

to produce torque at all. So in order to maintain the torque at a high speed, a high voltage

43

source is required than rated value that helps to achieve the rated current in the coils at less

time. However, a check on the current flowing in the coils must be provided since at low

speeds the coils can draw more current than rated values from the high voltage source,

which may result in breakdown of the motor. Several solutions are available to address this

problem; however the most popular approach is by using a chopper circuit across the motor

coils [86]. A chopper circuit can be programmed to work at a specific current value and if

the current rises beyond that value it cuts off the power supply and wait till the current in

the coils goes below that value. Fortunately there are some off-the-shelf chips readily

available in the market that serves for this purpose; one of them is the LMD18245 chip.

This chip is a complete half bridge chip that contains power MOSFETs along with the

appropriate circuitry for activating the MOSFETS, and a chopper circuit which can drive

up to 3 amps at 55 volts. With minimum passive components such as resistors and

capacitors, the chip can be used to run a single coil of the stepper motor; a pair is required

to run the stepper motor in bipolar configuration. The chip uses a four bit chopper circuit

that can be programmed, as specified by the manufacturer, using a variable value resistor to

limit the current value from 0-3 amps. Thus, the stepper motor driver was designed and

built using the LMD 18245 chip. Again, the control signal requirement for this drive were

two PWM signals also (discussed in the next section on Firmware development) and a

braking signal. The circuit diagram for the drive can be seen in Figure 22.

5.1.3.2. Microcontrollers

The heart of each of these control units was an array of one or more

microcontrollers that provided the required control signals. A thorough study was

conducted to select appropriate microcontrollers for the developed control system. Among

44

N

" ::, X :'

0 C

0 " . l:

~ ' 0
0 . . .

~ w m ~
S V

U-1

Figure 22: Circuit diagram for Stepper motor driver.

the possible candidates were the PIC and dsPIC family by Microchip, the HCS 12 family by

Freescale, the C200 TM series from Texas Instrumentation and the XE 166 family from

Infineon Technologies. The deciding factors in the selection of a particular microcontroller,

as shown in Table I, included the cost, the processing speed, the communication interface

and the available on board facilities such as analog to digital converters (ADC) and the

Pulse Width Modulation (PWM) modules. After a recursive evaluation of the available

options, the dsPIC33FJMC802 microcontroller made by Microchip [90] was selected for

both the VBC and the WCU; this microcontroller was not only easy to handle, program and

mount on the board, but also provided various levels of security and remappable peripheral

pins, which added further to the flexibility of the designed controllers. Although, the

Freescales's MC9S l 2DP5 l 2 in the 68HCS 12 family, having additional features like large

45

memory, more number of input/output pins [91], was also another best option, they are

rather found to be relatively costlier and are sold in surface mount packaging only, which

was hard to handle in the lab; hence the option was discarded.

Unit Communication Availability

Microcontroller Price Package ADC channels
Dedicated PWM

channel
($)

dsPIC33FJ 6.94 DIP 6xl0b/12b 6
SPIIJ2C/UART Yes

HCS12 10.28 QFP 8xl0b 8
SCI/SPJ/fC Yes

C200 10.20 LQFP 5xl0b
SCI No

7

SPJ/J2CIUART No
XE166 6.68 LQFP 9xl0b -

Table 1: Comparison table for the selection of the microcontroller.

Microchip's dsPC33FJ128MC802 microcontroller is a newly launched chip in

dsPIC33FJ family by the company; it was released in 2008 and is specifically designed for

the motor controls [92]. This chip is a 16 bit high performance microcontroller containing a

digital signal processing (DSP) functionality and a processor capable of 24 bit instruction

word with variable length opcode field. The DSP engine of the dsPIC33FJ128MC802

features a high-speed 17-bit by 17-bit multiplier, a 40-bit arithmetic logic unit (ALU), two

40-bit saturating accumulators and a 40-bit bidirectional barrel shifter capable of shifting

40-bit value up to 16 bits right or left, in a single cycle. Using the on chip Phase-Locked

Loop (PLL), the microcontroller can be programmed to run on its maximum operating

frequency of 40 MHz.

The dsPIC microcontroller alone was not sufficient for providing all kinds of

control signals needed by the system; therefore, another low end and cheap 8 pin

PICI0F206 microcontroller made by the same Microchip company was used along with the

46

dsPIC, for generating the PWM control signals for the stepper motor driver. The chip has

only 33 instructions sets written in assembly language; it is easy to use comprising of only

4 input-output programmable pins.

5.1.3.3. Supporting electronics

The microcontroller and the drive circuits described so far need other supporting

electronics for them to work properly. The supporting electronics for this purpose were: a)

the power supply unit, b) a target board, and c) the optical isolation circuitry for the

inductive load motors.

a) Power Supply Unit

The power supply unit is required to serve as a common power house to supply

various voltage levels to the different parts of the system. The unit is divided in two

sections; one for microcontrollers and other for the motor drives, both having their own

independent power source. To save on space with the possibility for a future increase in

power requirements due to added WCUs, the power supply unit for the controller section

was placed on the VBC board. For the motor drives' power supply unit, a separate circuit

board was designed to handle the high current flow and for the safety requirements of the

system. For the safety purpose, the board has a kill switch, to off the complete power

supply for the motor drives, along with N channel power MOSFET switch's, one for each

WCU, to switch off the unregulated battery power supply to the respective WCU at any

time. The board circuit is illustrated in Figure 23.

47

Figure 23: Circuit diagram for the motor drives' power supply.

The needed voltage supplies ranged from 3.3 volts to 24 volts. The off-the-shelf

variable voltage regulator LM317 [93] chips were used in building voltage regulator units

for producing the required voltage levels of 3.3 V, 5V and 12 V; however the 24 V supply

was unregulated and supplied from the two 12 V batteries connected in series. The 3 .3 V

power supply was required for the control section comprises of microcontrollers, while the

rest of the voltage levels were associated with the motor drives' section. A total of seven

voltage regulators were used on the system, out of which five were used to supply the 3.3

volts to power the controller section for the VBC and the WCUs, one regulator was used

for providing 5 volts to power the isolator circuits (discussed later on) on all WCUs and

one regulator was used for 12 volts to power up the DC motor driver chips on all WCUs.

The LM317 chip is a three terminal positive voltage regulator operating from 3

volts to 40 volts, providing full overload protection capabilities such as current limit,

thermal overload protection and safe area protection. The chips were used in a standard

circuit as shown in Figure 24 providing an output current capability of up to 1.5 amps.

48

dd

Figure 24: Circuit diagram for the voltage regulator

b) Target Board

The next supporting circuit was the target board used for programming the

dsPIC33FJ microcontrollers. The target board is a special interface for connecting the

microcontroller to the programmer. It should be able to provide the power and the

connectivity requirements for the microcontroller, which includes voltage supply, bypass

capacitors at voltage input pins of microcontroller and a 6 pin Ethernet connector jack.

These are needed to power the microcontroller and connect it to the programmer in order to

accept a new program on it. The target board also provides the on board debugging facility

by allowing access to the unused pins of the microcontroller. Along with these

requirements, a set of eight light emitting diodes (LEDs) was also placed on the board to

help in the troubleshooting. The complete assembled board is shown in Figure 25, along

with its circuit diagram shown in Figure 26.

49

Figure 25: Target hoard for dsPIC33l:1.J programming.

Figure 26: Circuit di11gram for target board

c) Optic lsolulion Circuit

Optic isolation was needed in order to reduce on board signal interferences and thus

maintain stability of the controller [86], [94]. While LesLing the DC motor simultaneously

50

with the stepper motor, it was found that when the DC motor was run, it generated some

noise signals that flowed back to the microcontroller and distorted the stepper motor

controller signals, thereby hindering the performance of the stepper motor. So it became

necessary to completely isolate the drive power supply from the control section. An on

board optic isolation circuit was designed and built using phototransistor opto-couplers and

Schmitz trigger buffers. These isolators uses a photo emitter diode and a photo receiver

transistor to have a one way flow of signal without having any physical connectivity in

between the two ends as shown in Figure 27; the Schmitz trigger is required to make the

output signal crisp. The complete on board circuit is shown in Figure 28. On each WCU a

set of five such isolator circuits were used for all control signals of the drives.

i r·,--1----.

NC

PIN 1. ANOCE
'> (:.ATHOl)F
~- NO CONNECTION
4. EMrTTE~
5. COLLECTOR
6.BASE

Figure 27: Internal circuit diagram for optic isolator

51

INPUT _t_ -
f }--1--8:>c--2- OUTPUT

() I RsE

J

Figure 28: Optic isolator circuit used on board.

5.1.4. VBC

The VBC was the only decentralized controller that could read the vehicle body sensors

and update the information on the data bus accordingly. The controller was designed and

built using the building blocks that included a dsPIC33FJ128MC802 microcontroller and a

3.3 volt voltage regulator. The controller had the ability to read six analog sensors and one

serial peripheral interface (SPI) using four wire configuration. At the writing of this thesis,

the VBC had not been connected to any sensor because no appropriate sensors could be

obtained for this purpose in a timely manner. It is hoped that in the future the VBC will

have a three axis accelerometer and an array of sound navigation and ranging (SONAR)

sensors will be connected to enable monitoring the vehicle kinematics and detecting

obstacles in the environment. For that reason, a provision was also provided by identifying

and assigning some free remappable pins of the microcontroller that will be used for

connecting these sensors. This could help to use any useful sensors with different

communication interface like universal asynchronous receiver/transmitter (UART) mode,

etc. The implementation of the VCU design can be seen in Figure 29 and the complete

VBC board is shown in Figure 30.

52

·-· ..
,-.-

BOPY
Sl-:NSOIIS

Rcmappablc Vehicle - Serial

- Body . Peripheral
Uuused Pins -.

Controller
- Interface

~-·
BODY

SE:\SORS

Figure 29: Block diagram showing the VBC design_

Figure 30: Completely assembled VBC

53

5.1.5. wcu

The WCU system is the workhorse controller for the robot as it is responsible for

making the robot do the actual intended movements. There were four such controller units

on this robot, one on each wheel, connected to the common data bus. The WCUs were

designed to operate independently.

Each WCU had a traction DC motor driver and a steering stepper motor driver

along with a common dsPIC33FJ microcontroller for synchronizing the activity of both

drivers and to provide their control signals. Since, the WCU was comprised of these high

power drivers whose control section was highly prone to unwanted disturbances generated

by the DC hub-motors, special care was needed in their design. As discussed earlier, it was

necessary to completely isolate the power section of the drivers from the control section,

and to check any cross talk between the drivers, by using optic isolators.

The on board microcontroller was made to read two analog sensors and one SPI

communication channel that reads the information from the data bus. Of the two analog

sensors, one was for indicating the steering angle and the other was intended for reading

the wheel speed; at this stage the hub motor used on the robot lacks the speed sensors, thus

a provision was made to be able to easily connect this speed sensor to the microcontroller,

once it becomes available. Since the speed sensor could be a wheel encoder, provision was

made to read those encoders and convert the output to analog that could be easily read

through the microcontroller through the analog interface. The controller structure showing

these local sensors is shown in Figure 31; the final WCU circuit board showing component

layout is shown in Figure 32.

54

Sensor
(Turning Angle)

Stepper Motor
Drive

Serial
Peripheral
Interface

Micro
Controller

DC Motor
Drive

Sensor
(Speed)

Figure 31: Block diagram showing the WCU design.

Figure 32: Completely assembled WCU.

55

5.2. Firmware Design

After the electronics circuit boards for the controllers were developed, the next task

was to program the microcontrollers. The development of the proper codes or the firmware

on the microcontroller was needed in order to not only synchronize both drives on the

individual WCU, but to also control the information flow from VBC to the data bus. For

the development of the dsPIC33FJ microcontroller firmware a fully integrated development

environment i.e., MPLAB IDE was provided by the manufacture. This software included

an assembler, compilers and supporting linkers, and library files along with the MPLAB

SIM simulator.

The manufacturer for the dsPIC microcontroller recommended two options for

programming and debugging the firmware: 1) to use a separate programmer and a debugger

and 2) to use an emulator only. The emulator is a kind of device that has both features of a

programmer and a debugger combined as single hardware, and supports a wide range of

microcontrollers. For this project, it was decided to use the MPALB REAL ICE emulator

which was found to offer significant advantages over competitive emulators including low­

cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints,

a ruggedized probe interface and long (up to three meters) interconnection cables.

The development of the firmware for the designed control system included

programming and debugging the codes for the VBC and the WCU microcontrollers. Code

development was modularized with modules for configuration of the microprocessor,

initialization of variables and supporting functions. Structurally these modules tend to be

common for both of the VBC and the WCU controllers but differ in respect to their

variables and functionality.

56

• Microprocessor Configuration: To maximize the application flexibility and reliability,

and minimize costs by making use of minimal external components, it was necessary to

first optimally configure the bits of the microcontroller. The configuration bits on chip

controls the clocking speed, remapping ability of the pins (flexibility), code protection

and code guard security.

• Initialization of variables: Variables were needed to store the sensor data as well as the

processed data; the important data include analog input values of the sensors,

information regarding the speed, steering angle values, and steering modes. They were

also used to provide the certain duration looping of some certain module.

• Initialization of the functions: To ease the coding of the microcontroller, the on chip

program was divided into a number of sub routines defined as functions, which

included initialization of ports for input and output functionality, initialization of the

ADC and the PWM module, remapping of port pins for the SPI module, reading of the

sensors and updating of the variables. The ADC module was programmed to read the

analog signals at a speed of 8 KHz; the module was interrupt driven. The SPI

communication interface was programmed to work at a baud rate of 5 MHz; the three

wire SPI setup was used for this case: one wire for the clock signal, one wire for the

data and the third wire for the handshaking synchronization signal. The SPI was also

interrupt driven. Since, both processes were independent of each other the default

interrupt sequence preferences were used.

5.2.1. The VBC Firmware Development

The key objective of the VBC firmware is to provide the microcontroller on the

VBC with the ability to read the sensors, process the sensor information and feed it to the

57

data bus. Therefore, the program had modules for initializing the microcontroller, reading

the sensors, manipulating the sensor data using the artificial intelligence and feeding the

manipulated data to the information pool.

The microcontroller initialization process included initializing the analog to digital

conversion channels for reading the sensors, and initializing the SPI mode of

communication to feed the information pool with the processed data. Since, at the time of

developing this control system there were no sensors connected to the VBC, some

predefined fixed values were assigned to the sensor variables. Also, in cases where

processing the sensors data needed an Artificial Intelligence, a simple system was created

to mimic an artificial intelligence module. The full artificial intelligence system will be

developed in future. Additionally, there was a small demo code created to help run the

robot using the tethered controller. The flowchart for the VBC firmware can be seen in

Figure 33. The data bus for this system was defined as the SPI module that connects the

VBC microcontroller and all WCUs microcontrollers; the VBC microcontroller was

configured as the master for the SPI communication

5.2.2. The WCU Firmware Development

The WCU firmware was required to provide the microcontroller with the ability to read the

two analog sensors and the vehicle data available in the information pool along with

generating the control signals for the DC motor driver and the stepper motor driver. The

program also was modularized with modules for initializing the microcontroller, reading of

the sensors and the information from the information pool, and for providing the control

signals for the motor drivers as required.

58

Initialization
of

Microcontroller

Read
Sensors

Navigation
System

I
/ Feed

Information

. Pool
, ,., ,-/

Figure 33: Flowchart for the VBC.

The coding started with the initialization of the microcontroller to generate the

PWM signals, read the analog sensors and the information from information pool using SPI

mode of communication. The controls for the DC motor drive and the stepper motor drive

require the PWM signals and the two digital output signals for the brake control on each

drive. For controlling of the drives one PWM signal was needed for the DC motor drive

and two PWM signals for the stepper motor. The DC motor PWM signals were generated

directly by the dsPIC33FJ, while those for the stepper motor were generated by using a

small sized PIC10F206 microcontroller, which was controlled by the dsPIC33FJ. The

PIC10F206 chip had two inputs from the dsPIC33FJ: one to select the motor direction and

59

other to select the motor speed. The stepper motor was run using half stepping approach to

maximize the resulting torque and efficiency; it also improved the holding torque of the

motor and decreased the stepping angle. The PWM pattern for the motor half stepping

forms cycles of two bit gray code as shown in Table 2.

Stepper Motor Coils Electric

-
B B Angle A A

I 0 0 0 0

1 0 l 0 45

0 0 l 0 90

0 1 1 0 135

0 1 0 0 180

0 1 0 1 225

0 0 0 1 270

1 0 0 1 315

Table 2: Gray code for half wave stepping mode of the stepper motor.

The ADC module was used to read two analog signals one for the turning angle

analog sensor and other for the speed. While to connect to the data bus, the microcontroller

was programmed as the Slave using the SPI module. At the time, since there were no speed

sensors on board, but for the future consideration provision was made in the coding also to

read those sensors as analog input. To calibrate the speed of the motors and to program the

microcontroller accordingly, an external sensor was used, thus providing a fixed speed

control for the traction of the robot. The flow chart for the WCU firmware can be seen in

Figure 34.

60

,, Initialization l
of i

Microcontroller I
~ :) i
(\

\

! Read Data
from

l
Information

Pool

'-._

I ~--

l
/,,,-'"-

Read Local

Sensors

+
Control DC Hub
motor Drive and
Stepper motor

Drive

Figure 34: Flowchart for the WCU.

\

5.3. Some Lessons Learned From This Effort

The design and development of the power drives and their synchronization on board

went through number of trials because of performance problems that resulted from the

design itself. The first major problem that was tackled in this process was caused by

insufficient opening of the power transistor switches and the second one was due to the

presence of crosstalk between the two high power drives designed on board.

61

5.3.1. Power Transistor Switches

The N-channel MOSFETs power switches require gate voltages of 2-10 volts in

reference to the source voltage in order to fully open. When the high side power transistor

is ON, the source voltage becomes the supply voltage, i.e., 24 volts, so to keep the switch

ON, the gate must be held at a voltage of about 34 volts, which could not be provided by

the normal PWM signals.

A number of solutions were available for this problem, which included the floating

supply gate drive, the transformer coupled drive, the charge pump drive and the bootstrap

circuit [95]. In the floating supply gate drive approach, an isolation circuit powered with a

separate power supply is used to provide the switching action to the high side power

transistors. The transformer coupled drive uses a high frequency gate transformer with dual

secondary winding to control the switching action on both the high and the low side power

transistor switches. One of the dual winding on the secondary side of the transformer is

connected to the high side transistor, whereas, the second winding is connected to the low

side transistor. The charge pump drive circuit uses capacitors to store charge which

eventually does voltage multiplication and provide it during the switching gate of the high

side transistor. Normally, the charge pump tends to use fewer components than the floating

supply gate drive in providing the switching action. The bootstrap circuit uses a single

capacitor that charges and discharges in order to provide the required voltage for the

opening of the high side transistor. These available solutions with their features are

summarized in Table 3.

62

High Side Gate driver solution for N-Channel MOSFET

Cost Impact of isolated supply IS significant. The

Floating Supply Gate Drive components required tend to be relatively expenses with

limited bandwidth and noise sensitive.

Transformer Coupled Drive Limited switching performance

Turn ON time tend to be long for switching application.
Charge Pump Drive

Inefficiency in voltage multiplication.

Bootstrap Drive
Simple and inexpensive. Uses capacitor to provide high
side voltage.

Table 3: High side gate driver solutions for N-Channel MOSFET.

After analyzing these methods, it was decided to use the bootstrap circuit [96]

especially due to its advantage of being simple and inexpensive. Its typical structure is

shown in Figure 3 5. The power supply V 8s for the high side transistor switch is kept

floating. When the low side goes ON and the high side goes OFF, it also completes the

loop for the V DD to be connected to the ground, thereby charging the bootstrap capacitor

through the bootstrap resistor 'RsooT' and the bootstrap diode 'Dsom' in series. When the

high side turns ON and the low side turns OFF, the bootstrap capacitor discharges through

the Vs and Vs loop, generating additional voltage on top of V DD enough to fully open the

high side transistor gate. Since, a diode is placed in between the power supply V DD and the

capacitor in reversed bias, when the bootstrap capacitor is discharged, it blocks the charge

from flowing through V DD.

63

Voe

'")COM

I

DC SUPPLY

RG2

•

Q1

Q2

----►

~~~~7 

Figure 35: Bootstrap circuit diagram (95). 

The selection of an appropriate capacitor (C800r) for efficient performance of the 

bootstrap circuit depends on a number of factors, which include the gate charge on the 

power transistor used (Qgatc), the drop down voltage across the bootstrap diode (V r), the 

supply voltage of gate driver (V 0 0 ), the minimum gate source voltage (V GSMIN) required to 

fully open the gate, and the current leakage in the circuit (IL), If QroTAL is the sum of the 

desired gate charge and the charge that will be lost in during the switching of the gate i.e., 

QToT AL = Qgate + h * toN , (5.1) 

where toN is the high side switch ON time, 

and Li V BOOT is the difference between the driver supply V DD and the minimum voltage 

(V GSMIN ) required to open the gate along with the drop down voltage across the bootstrap 

diode i.e., 

Li VsooT = Voo - Vr- V GSMIN , (5.2) 

then the value for bootstrap capacitor can be calculated as: 

64 



C 
_ QTOTAL 

BOOT ___ • 
l:,VBOOT 

(5.3) 

During the circuit testing, it was found that even with an appropriate value of the 

bootstrap capacitor, its relative placement on the printed circuit board, length of connecting 

conductors, and the diode's recovery time could make the bootstrap circuit fail. If the 

capacitor is placed at some distance from the high side power supply, it may fail to provide 

the needed charge, therefore failing to open the gate. The reason was found to be due to the 

effects of the induced resistance between the capacitor and the driver chip, which forces the 

capacitor to discharge fast, without reaching to the specified voltage level. Similarly, when 

the capacitor was placed at some distance from the bootstrap diode, it resulted in loss of the 

capacitor charge due to voltage drop across the length of the conductor. Other problems 

were related to the geometry of conductors; if the on the board conductors are not straight 

enough, run in loops, it may induces some parasitic inductance in the circuit which can 

cause unwanted inductive effects in the circuit. Thus, to have an effective bootstrap circuit, 

the placements of the bootstrap capacitor and the diode are critical; normally the two 

components should be in a close vicinity of the high side power supply connected using 

straight and short conductors. 

5.3.2. Cross talk in the Power drives 

The problem of existence of crosstalk between the two motor drives on the WCU 

resulted in abnormal behavior of the motors, especially the stepper motor. It was observed 

that when the stepper motor ran alone, there was no considerable noise and the control 

signals were as anticipated as shown in Figure 36 and Figure 37. In these figures, the blue 

line was the braking signal which, when pulled HIGH, stops the motor; the other two 

signals were the PWM drive signals to provide the driving sequence for the stepper motor. 

65 



- I I EDGE f 

:::::: 51.) 

Figure 36: Control signals for the Stepper motor drive when in motion. 

When the DC hub motor ran, it generated severe noise that distorted its control 

signals as shown in Figure 38. The yellow signal was the braking signal for stopping the 

motor when pulled LOW and the blue signal was the PWM signal to drive the motor. The 

distortion in the signals indicated that the noise coming from the DC hub motor was 

flowing back to the control side. 

- I I EDGE f 

Figure 37: Control signals for the Stepper motor drive when brake applied. 

66 



I I EDGE f 

Figure 38: Noise in the DC motor drive signals. 

When both, the DC hub motor and the stepper motor were driven, the nmse 

generated by the DC motor severely affected the stepper motor control signals and 

destabilized the stepper motor drive as shown in Figure 39. The figure shows the control 

signals for the stepper motor drive when the DC Hub motor was running; the stepper motor 

braking signal was applied but, due to noise flowing back from the DC Hub motor to the 

controls section, the break signal output alternated between LOW and HIGH values 

causing the stepper motor to run despite the braking signal; this noise was stochastic in 

nature, hence the stepper motor response was very erratic. Interestingly, it was found that 

by testing the WCU prototype using the spiral cage DC motor instead of the of the DC hub 

motor, less noise was generated. This indicated that the Hub motors have a tendency to 

generate more noise than normal since, the inner coils were completely isolated to the 

ground. Any distortion therefore, flowed back into the circuit instead of going back to the 

ground. 

67 



- I I EDGE J 
CH3 :::: 5l) 

Figure 39: Destabilized control signals for the Stepper motor drive. 

Numerous elements can contribute to crosstalk in a circuit; these include the wire 

inductance, presence of internal noise within the circuit itself, and induction of noise from 

the externally connected components. Similarly, many solutions are possible, but probably 

the simplest solution is to keep the wires short or to use proper ground and power planes at 

both sides of the PCB in order to reduce the parasitic inductances. The other solution is to 

use the bypass capacitors [86], which dampen the noise strength on the board. These 

solutions work well with low strength noises; however, if the noise level is considerably 

high, then complete isolation of the noise generating side from the side affected by that 

noise must be done by completely isolating both supply voltages and grounds from the two 

sides. 

To address the WCU crosstalk problem, several methods were investigated. The 

first method was by grounding the DC motor using bypass capacitors. This approach was 

not feasible, since the hub motors have hidden inner motor that could not be reached for 

grounding through the bypass capacitors. The second approach was to isolate the drive 

68 



power from the control section using the opto-isolator chips. In this approach, the diode 

side of the opto-isolator chip was connected to the control side and the transistor side was 

connected to the drive side using the 5 volts voltage regulator. The isolation of power only 

was ineffective, although the intensity of the noise was lowered down; the cross talk was 

still present. It was found later that the noise from the DC motor was flowing back to the 

power source through both the power side and the ground side, therefore by isolating the 

power side only did not eliminate the noise that reached the control side through the 

common grounding. Finally, a complete isolation of the drive, which included isolating 

both the ground and the power sides between the motor drives and the controller, was done. 

This approach introduced a separate low voltage power supply to drive the voltage 

regulator for the control section. Two I 0.5 volts 600 m Amps toy batteries, connected in 

parallel, were used for this purpose. This, along with appropriate grounding and powering 

of both sides of the PCB using the ground and the power planes, eliminated most of the 

noise. 

69 



6. EXPERIMENTAL RESULTS 

After designing the proposed control system for BIBOT-1, the robot was made to 

track the desired path to check for the effectiveness and the feasibility of the approach. 

Although BIBOT-1 can have five steering modes as discussed in Chapter 3, only four 

modes were tested: 1) the front wheel steering, 2) the all wheel steering, 3) the parallel 

steering and 4) the zero radius turn steering. The straight run steering was not tested due to 

the lack of appropriate speed sensors as mentioned previously. This chapter discusses the 

results of these experimental runs. 

In all test cases, the VBC was preprogrammed to provide the vehicle movement 

information, i.e., the turning angle (<pc), the speed (vc) and the steering mode. The steering 

modes were coded in the VBC using binary codes as shown in Table 4. Although, this 

information is intended to be generated by the robot itself while tracking the path using the 

robot's navigation system, at the time of this experimentation, the navigation system for the 

BIBOT-1 was not fully developed. On the other side, each WCU was pre-programmed to 

independently react to the information provided by the VBC on the data bus depending on 

its own position on the robot; different wheels had different reactions. 

To track the robot path during the experimental runs, the robot was made to move on a 

gridded floor of 6x6 in2 grid size using a marker attached at the robot's center of mass. The 

path tracked by the robot was graphed in an excel file using the x-y coordinates marked on 

the gridded floor. The paths that were perceived to be simple, were tested with three runs, 

while those that were perceived to be relatively complex were tested with up to five runs so 

as to have a better estimate for the performance measure of the control system with 95% of 

confidence. The experimental results obtained along with the desired paths are shown in 

70 



Figures 40-46. In all experimental runs the straight run speed of the robot was kept constant 

at 21 inch/sec. The desired path was plotted using the standard kinematic relationships 

between the speed, time and distance covered. 

Binary Code Steering Mode 

0000 Fixed Straight Steering 

00010 Front Wheel Steering 

0100 All Wheel Steering 

1000 Zero Radius Tum Steering 

1100 Parallel Steering 

Table 4: Binary codes for the selection of steering mode. 

The performance measure of the robot was based on R.M.S. error of the robot 

deviation from the desired path, which was defined as, 

E= 
tr J0 [/(x,y)-f a(Xa,Ya)l2dt 

tr (6.1) 

where t1 is the total time duration of the desired path, f(x,y) is the desired path 

coordinate, while fa (xa, Ya) is the actual path coordinate tracked by the robot. However the 

error was generally computed as, 

E= 
n 

(6.2) 

71 



where (x - Xa) and (y - Ya) are the x and the y axis deviations from the desired path, 

respectively and n is the number of sample points. The less the value of E, the better is the 

performance. 

The robot was tested on two types of paths: the U-turn path sho'wn in Figures 40-42 

and the zigzag motion shown in Figures 43-46. In the U-turn path the robot was tested for 

the front wheel steering, all wheel steering and the zero radius all wheel steering. For both, 

the front wheel steering and the all wheel steering, the robot was first made to follow a 

straight path for a distance of 174 inches followed by a right turn of 30°. The front wheel 

steering had to complete the turn over a distance of 160 inches, while the all wheel steering 

had to complete the turn over a distance of 63 inches. After completing the right turn, the 

robot followed another straight line path of 174 inches before completing the U-turn 

mission. The path tracking results for the U-turn motion under the front wheel steering are 

shown in Figure 40, while those for the all wheel steering are shown in Figure 41. As seen 

from these results, the robot was able to successfully track the paths with the minimal 

errors. The tracking error E was found to be 11. 15 + 6.53 inches for the front wheel 

steering and 2.82 0.35 inches for the all wheel steering. These errors may be caused by 

the lack of the speed sensors and the assumption that the surface provides no slip, among 

other possible reasons. It was assumed that the surface on which the robot was tested was 

not polished enough, providing no slip condition, which could have resulted in the stated 

error. 

The zero radius turning steering had a straight path of 132 inches followed by 

another straight path of the same length on the return run. Since the zero radius turn 

steering had a fixed steering angle governed by the vehicle geometry, all that needed was a 

72 



specification of the final turning angle, which in this case was 180° defined by the turning 

speed vk and the time taken to complete the turn. The result obtained for this motion is 

shown in Figure 42. Again, the robot tracked the desired path successfully with a tracking 

error of only 1.73 + 1.43 inches for the zero radius turn steering. In the steering 

configuration, there was a sudden change in the rotational direction of the rear wheels 

during the turning, which caused some slip in the vehicle motion. This, along with the lack 

of speed sensors and the low friction surface, could be the possible reasons of error in the 

experimental run. 

In the zigzag paths, the robot was tested on two forms of zigzag motions: the zigzag 

path defined by straight line segments and the zigzag path defined by continuously 

changing directions. The robot path under the front wheel steering mode for the simple 

zigzag path with straight line segments is shown in Figure 43, and that of the corresponding 

all wheel steering parallel motion is shown in Figure 44. This path was made of three 

straight line segments of 66 inches, 54 inches and 30 inches, separated by a left and right 

tum of steering angle of 23° in both cases. Again the robot was able to successfully track 

the desired path with small tracking errors E of 5.78 1.72 inches for the front wheel 

steering and 6.12 ± 0.86 inches for the all wheel steering parallel tum. The error in the 

experimental run was again accounted for due to the surface condition and lack of speed 

sensors as discussed previously. 

73 



"' iii 
·- QI )( .c 
<( u 

I C: 
> ·-

240 

210 

180 

150 

120 

90 

60 , 

30 

0 

0 30 60 

X-Axis 

(inches) 

90 120 

Figure 40: U-Turn in the Front wheel steering mode. 

74 

150 



-­VI VI 
·- QI X .C 
<( u 

I C 
> ·--

180 

150 

120 

90 

60 

30 

0 

0 30 60 

X-Axis 
(inches) 

90 120 

Figure 41: U-Turn in the All wheel steering mode. 

75 



Ill -;;; 
·- QI X .C 
<{ u 

' C 
> ·-

150 

120 

90 

60 

30 

0 

0 

- Experimental 

- Theoretical 
L---------,---_, I 

30 

I 
I 

X-Axis 
(inches) 

60 90 

Figure 42: U-Turn in the Zero radius turning mode. 

76 



-"' "' ·- QI )( ..c 
<( u 

' C > :.:. 

210 

180 

150 

120 

90 

60 

30 

0 

0 30 60 

X-Axis 
(inches) 

90 120 150 

Figure 43: Zigzag motion in the Front wheel steering mode. 

77 



"' iii 
·- QI X .C 
<t u 

' C: 
► ·-

270 

240 

210 

180 

150 

120 

90 

60 

30 

0 

0 

.-Experimental 

- - - Theoretical 

30 60 

X-Axis 

(inches) 

I 
I 

g 
4 

: 8 
i 
a 
$ 
& 
8 
I 
D 
1 
I 
t 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

90 120 

Figure 44: Zigzag motion in the Parallel steering mode. 

78 



For the continuous zigzag path, the robot directional angle was continuously 

changed from 23° to -23° with a separation of a straight line segment of 21 inches. The 

result for the front wheel steering is shown in Figure 45 and for the all wheel steering is 

shown in Figure 46. Again, the robot was able to successfully track the desired path. The 

tracking error E computed for the front wheel steering was 10.89 + 4.99 inches and for the 

all wheel steering was 34.49 5.87 inches, which was relatively high as compared to 

others. The reason for the high level of tracking error can be attributed due to the 

accumulation of the localization error. Since the robotic vehicle lacks the appropriate speed 

sensors, it is possible that at repeated turns, the exact speed may have been either higher or 

lower than the expected speed, hence introducing localization errors that kept accumulating 

over the duration of the test. 

The results obtained on tracking various paths as discussed above confirm the 

feasibility of the Particle Model approach for robotic vehicles. Although the experimental 

robot platform lacked the necessary sensors, it was still able to steer itself and follow the 

desired paths with little tracking errors. 

These path tracking results are comparable to those obtained by other research 

efforts [97-99]. For example, [97] used a model predictive controller on a generic car robot 

model treated as a rigid body. The robot was made to track zigzag path geometries similar 

to the one shown Figure 44, and ADAMS simulation results showed path tracking R.M.S. 

errors that ranged from 9.824 inches to 26 inches, which are in the same range as those 

obtained in this thesis. 

Based on these results, it is possible to control and drive a robot by using a Particle 

Model approach. Although these experimental results were limited to 2 DOF controls, the 

79 



flexibility of the Particle Model approach, which allow up to 5 DOF, makes it more 

appealing for complex robot maneuvers. Further tests are highly recommended on vehicles 

with adjustable axles to study the performance of this approach in all 5 DOF. 

300 

270 

240 

210 

180 

Ill-;;; 
·- QI 

~ '5 150 
' C 

> ·-

120 

90 

60 

30 

0 

0 

-Experimen 
tal 

30 60 

X-Axis 

(inches) 

90 120 

Figure 45: Zigzag motion in the Front wheel steering mode. 

80 



"'vi 
·- <II >< .c 
<( u 

> ·= -

180 

150 

120 

90 

60 

30 

0 

0 

Experimental 

30 60 90 

X-Axis 
(inches) 

120 150 

Figure 46: Zigzag motion in the All wheel steering mode. 

81 

180 



7. SUMMARY AND CONCLUSIONS 

This thesis has presented the initial results. showing the applicability of the Particle 

Model approach in developing robot controllers. Although the approach assumes that the 

robot wheels arc on adjustable axles such that the wheel position is variable with respect to 

the center of gravity of the robot. this research used an existing fixed axle robot, so the 

method was not fully tested as it would have required. After treating wheels as a team or 

particles. decentralized control architecture was applied and each wheel had its own 

controller independent of other wheels. The robot was loaded with four steering modes. and 

the performances of these modes were compared under similar path geometries. 

The experimental results on this fixed axle vehicle have shown that the Particle 

Model approach works and based on the results of i 9TI. this approach compares well with 

the standard solid modeling approach. This proves that it is feasible to use this approach on 

wheeled robotic vehicles. To apply this approach. a decentralized control structure must be 

adopted with each wheel controlled independently. The next task should be to go ahead and 

test the proposed approach on more complex vehicles with adjustable axles. For the 

accounted errors it is thought that some of these tracking errors were caused by the inherent 

robot localization errors. which were caused by the lack of speed sensors. and were not 

related to the controllers themselves. The assumption of no slip. the smooth surface and a 

constant battery supply could also have introduced performance errors. 

The Particle Model Control approach shows a promising future use for the path 

tracking problem of robots on unstable surfaces. Still further future experiments need to he 

done using the control approach on robotic systems equipped with all appropriate sensors 

and adjustable axles, on a variety of terrains such as snowy, sandy. and icy terrains. 

82 



REFERENCES 

[1]. Press information by International Federation of Robotics, October 2007 [Online: 

February 4, 2010], Available at: 

http://www.worldrobotics.org/modules.php?name=News&file=article&sid=3 

[2]. E. Garcia, M. A. Jimenez, P. G. D. Santos, M. Armada, The Evolution of Robotics 

Research, IEEE Robotics and Automation Magazine, vol. 14, issue 1, pp. 90-103, 

March 2007. 

[3]. S.Y. Nof., Book: Handbook of Industrial Robotics, volume 1, John Wiley and 

Sons, 1999. 

[4]. S. Dunkerley, M. J. Adams, A general robot control system for automatic chemical 

analysis, Laboratory Automation and Information Management, vol. 33, issue 2, pp. 

93-105, December 1997. 

[5]. S. Tansey, 0. Holland, A system for automated mail portering using multiple 

mobile robots, Proc. IEEE 8th International Conference on Advanced Robotics, 

1997, pp. 27-32, July 1997. 

[6]. J. Trevelyan, Redefining Robotics for the New Millennium, The International 

Journal of Robotics Research, vol. 18, pp. 1211-1223, December 1999. 

[7]. I.F. of Robotics, "Service Robots", 2010 [Online], Available: 

http://www. ifr. org/ service-robots/products/ 

[8]. S.D. Pippo, G. Colombina, R. Boumans, P. Putz, Future potential applications of 

robotics for the International Space Station, Robotics and Autonomous Systems, 

vol. 23, issue 1-2, pp. 37-43, March 1998. 

83 



[9]. W. Korb, R. Marmulla, J. Raczkowsky, J. Milhling, S. Hassfeld, Robots in the 

operating theatre-chances and challenges, International Journal of Oral 

Maxillofacial Surgery, vol. 33, issue 8, pp. 721-732, December 2004. 

[10]. I. Ulrich, F. Mondada, J.-D. Nicoud, Autonomous vacuum cleaner, Robotics and 

Autonomous Systems, vol. 19, issues 3-4, pp. 232-245, March 1997. 

[ 11]. K. Tanie, Humanoid robot and its application possibility, Proc. IEEE International 

Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 

2003. 

[12]. P. Gupta, V. Tirth, R.K. Srivastava, Futuristic Humanoid Robots: An Overview, 

First International Conference on Industrial and Information systems, 2006. 

[13]. J.-K. Yoo, B.-J. Lee, J.-H. Kim, Recent progress and developments of the 

humanoids robot HanSaRam, Robotics and Autonomous Systems, vol. 57, issue 10, 

pp. 973-981, October 2009. 

[14]. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The development of Honda 

Humanoid Robot, Proc. IEEE International Conference on Robotics and 

Automation, Leuven, Belgium, May 1998. 

[15]. R.M. Mahoney, Robotic Products for Rehabilitation: Status and Strategy, Proc. 

International Conference on Rehabilitation Robotics, 1997. 

[16]. QinetiQ's firefighting robots, 2010 [Online: February 4, 2010], Available at: 

http://www.qinetiq.com/home/newsroom/news releases homepage/2007 /4th quart 

er/fire rovs.html 

[17]. D.B. Camarillo, T.M. Krummel, J.K Salisbury, Robotic technology in surgery: 

past, present and future, The American Journal of Surgery, 188: 2S - 15S, 2004. 

84 



[18]. A. D. Santis, B. Siciliano, A.O. Luca, A. Bicchi, An atlas of physical human­

robot interaction, Mechanism and Machine Theory, vol. 43, issue 3, pp. 253-270, 

March 2008. 

[19]. H.H. Lund, Adaptive Robotics in the Entertainment Industry, Proc. IEEE 

International Symposium on Computational Intelligence in Robotics and 

Automation, IEEE Press 2003. 

[20]. R.D. Schraft, G. Schmierer, Book: Service Robots, A K Peters, Ltd. 2000. 

[21 ]. R. Siegwart, I. R. Nourbakhsh, Book: Introduction to Autonomous Mobile 

Robots, MIT Press 2004. 

[22]. J. R. Matijevic, J. Crisp, D. B. Bickler and rest of Rover Team, Characterization 

of the Martian Surface Deposits by the Mars Pathfinder Rover, Sojourner, 

Science Magazine, vol. 278, pp.1765-1768, December 1997. 

[23]. S. M. Phail, Autosub6000: A Deep Diving Long Range AUV, Journal of Bionic 

Engineering, vol. 6, issue 1, pp. 55- 62, March 2009. 

[24]. S.H.H. Young, Gallery of USAF Weapons, Air Force Magazine. May 2008. 

[25]. T. Fong, C. Thorpe, Vehicle Teleoperation Interfaces, Autonomous Robots, vol. 

11, issue 1, pp. 9- 18, July 200 I. 

[26]. D.W. Gage, UGV HISTORY 101: A Brief History of Unmanned Ground Vehicle 

(UGV) Development Efforts, Unmanned Systems Magazine, vol. 13, issue 3, 1995. 

[27]. W.A. Moir, Patent: Differential Gearing for Automobile Driving Axles, Serial no. 

438313, February 1922. 

85 



[28]. J.Y. Wong, C.F. Chiang, A General theory for skid steering of tracked vehicles on 

firm ground, Proc. of the Institution of Mechanical Engineers, Part D: Journal of 

Automobile Engineering, vol. 215, issue 3, pp. 343-355, 2001. 

[29]. F. Large, S. Sekhavat, C. Laugier, E. Gauthier, Towards robust sensor-based 

maneuvers for a car-like vehicle, Proc. IEEE International Conference on Robotics 

and Automation, vol. 4, pp. 3765-3770, April 2000. 

[30]. M.A. Sotelo, Lateral Control Strategy for Autonomous Steering of Ackerman­

Like Vehicles, Robotics and Autonomous Systems, vol. 45, issue 34, pp. 223-233, 

December 2003. 

[31]. A. Lacaze, K. Murphy, M. D-Giorno, Autonomous Mobility for the DEMO llI 

Experimental Unmanned Vehicles, Proc. AUVSI 2002, Orlando, Florida, pp. 8- 12, 

July 2002. 

[32]. A. Stentz, Optimal and Efficient Path Planning for Partially-Known 

Environments, Proc. of IEEE International Conference on Robotics and 

Automation, May 1994. 

[33]. 0. Hachour, Path planning of Autonomous Mobile Robot, International Journal of 

Systems Application, Engineering and Development, vol. 2, issue 4, 2008. 

[34]. A. Lazaro, I. Serrano, J.P. Oria, Ultrasonic circular inspection of object 

recognition with sensor-based integration, Sensors and Actuators A: Physical, vol. 

77, issue 1, pp. 1-8, September 1999. 

[35]. F. Castelli, An Integrated Tactile-Thermal Robot Sensor with Capacitive Tactile 

Array, IEEE Transactions on Industry Applications, vol. 38, issue 1, pp. 85-90, 

2002. 

86 



(36]. M. Kam, X. Zhu, P. Kalata, Sensor fusion for mobile robot navigation, Proc. 

IEEE, vol. 85, pp. 108-119, 1997. 

[37]. R. Jarvis, Intelligent Robotics: Past, Present and Future, International Journal of 

Computer Science and Applications, vol. 5, issue 3, pp. 23-35, 2008. 

[38]. Defense Advanced Research Projects Agency (DARPA) Closed and Open 

Solicitations [Online: June 20, 201 O], Available at: 

http://www.darpa.mil/openclosedsolicitations.html 

[39]. NASA Jet Propulsion Laboratory Mobility and Robotic Systems, Section 347 

[Online: June 20, 2010], Available at: 

http://www-robotics.jpl.nasa.gov/ 

[40]. J.Y. Wong, Book: Theory of Ground Vehicles, John Wiley & Sons, Inc., New 

York, Third Edition, 2001. 

[41]. H. Leiber, All-Wheel Drive Automotive Vehicle Traction Control System, US 

Patent Number 4589511, May 1986, Robert Bosch GmBH, Stuttgart, FRG. 

(42]. H.W. Bleckmann, H. Fennel, J. Graber, and W.W. Seibert, Traction Control 

System with Teves ABS Mark II, SAE Technical Papers, 1986, paper No. 860506. 

[43]. Y.A. Ghoneim and Y-K. Chin, Vehicle Traction Control System, US Patent 

Number 5025882, June 1991, General Motors Corporation, USA. 

[44]. Y. Hori and Y. Toyoda, Traction Control of Electric Vehicle: Basic Experimental 

Results Using the Tes EV "UOT Electric March", IEEE Transactions on Industry 

Applications, vol. 35, issue 5, pp. 1131-1138, 1998. 

87 



[45]. H. Lee and M. Tomizuka, Adaptive Vehicle Traction Force Control For 

Intelligent Vehicle Highway Systems (IVHSs), IEEE Transaction on Industrial 

Electronics, vol. 50, issue I, pp. 37-47, February 2003. 

[46]. Hertz, J. Hilton , D. Johnson, Analysis of the Crash Experience of Vehicles 

Equipped with Anti lock Braking Systems (ABS), Proc. of I 5th ESV Conference, 

number 96-S9-O-03, pp. I 392-1395, 1996. 

[47]. C. Farmer, New Evidence Concerning Fatal Crashes of Passenger Vehicles Before 

and After Adding Antilock Braking System, Accident Analysis and Prevention, vol. 

33, pp. 361-369, 2001. 

[48]. J. Benton, Prius Shuts Down in the Snow, Reader Complains, Consumer News, 

January 2007 [Online: June 23, 2010], Available at: 

www.consumeraffairs.com/news04/2007 /0 l /prius snowbound html. 

[ 49]. B.C. Bessel ink, J.H. Fielke, Improving Tractive Efficiency By Integrating the 

Steering and Drive Systems of Four-Wheeled Vehicles, In Proc. of 2003 ASAE 

Annual International Meeting, Las Vegas, Nevada, USA, pp. 27-30, July 2003. 

[50]. J. Gray, The Mechanism of Locomotion in Snakes, Journal of Experimental 

Biology, vol. 23, issue 2, pp. 101-123, December 1946. 

[51]. B.C. Jayne, Kinematics of Terrestrial Snake Locomotion, Copeia, vol. 4, pp. 915-

927, December 1986. 

[52]. N. Sarkar, X. Yun and V. Kumar, Control of mechanical systems with rolling 

contacts: Applications to mobile robots, International Journal of Robotics Research, 

vol. 13, issue I, pp. 55-69, February 1994. 

[53]. H. Baruk, Book: Analytical Dynamics, McGraw Hill, 1999. 

88 



[54]. K. Kozlowski, D. Pazderski, Modeling and Control of a 4-Wheel Skid Steering 

Mobile Robot, International Journal of Applied Mathematics and Computer 

Science, vol. 14, issue 4, pp. 477-496, 2004. 

[55]. L. Caraccilo, A.D. Luca, S. Iannitti, Trajectory Tracking Control of a Four-Wheel 

Differentially Driven Mobile Robot, Proc. IEEE International Conference on 

Robotics and Automation, Detroit, Michigan, May 1999. 

[56]. R.E. Colyer, J.T. Economou, Soft modeling and fuzzy logic control of wheeled 

skid-steer electric vehicles with steering prioritization, International Journal of 

Approximate Reasoning, vol. 22, pp. 31-52, February 1999. 

[57]. A. Bemporad, A.D. Luca, G. Oriolo, Local incremental planning for a car-like 

robot navigation among obstacles. Proc. IEEE International Conference of Robotic 

Automation, vol. 2, pp. 1205-1211, April 1996. 

[58]. J. Gutierrez, D. Apostolopoulos, J.L. Gordillo, Numerical comparison of steering 

geometries for robotic vehicles by modeling positioning error, Autonomous Robot, 

vol. 23, issue 2, pp. 147-159, August 2007. 

[59]. A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and 

herds, Advances in Biophysics, vol. 22, pp. 1-94, 1986. 

[60]. Herbert G. Tanner, Ali Jadbabaie, George J. Pappas, Stable flocking of mobile 

agents, part ii: Dynamic topology, In IEEE Conference on Decision and Control, 

pp.2016-2021,2003. 

[61]. Herbert G. Tanner, Ali Jadbabaie, George J. Pappas, Flocking in teams of 

nonholonomic agents, In M. Thoma and M. Morari, editors, Cooperative Control, 

vol. 309 of Lecture Notes in Control and Information Sciences, pp. 458-460. 

Springer, 2004. 

89 



[62]. H. Yamaguchi, A cooperative hunting behavior by multiple nonholonomic mobile 

robots. In IEEE International Conference on Systems, Man, and Cybernetics, 1998, 

vol. 4, pp. 3347 -3352, 1998. 

[63]. T. Koishi T. Murakami, An approach to cooperative control for formation flight of 

multiple autonomous helicopters, In 35th Annual Conference of IEEE Industrial 

Electronics, IECON '09, pp. 1456-1461, 2009. 

[64]. ZhiDong Wang, Y. Hirata, K. Kosuge, Control a rigid cagmg formation for 

cooperative object transportation by multiple mobile robots, In Proc. IEEE 

International Conference on Robotics and Automation, ICRA '04, 2004, vol. 2, pp. 

1580 - 1585, April 2004. 

[65]. J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer with 

local search, In IEEE Congress on Evolutionary Computation, 2005, vol. l, pp. 522 

-528, 2005. 

[66]. N.M. Kwok, V.T. Ngo, Q.N. Ha, PSO-Based Cooperative Control of Multiple 

Mobile Robots in Parameter-Tuned Formations, In IEEE International Conference 

on Automation Science and Engineering, CASE 2007, pp. 332 -337, 2007. 

[67]. John Ehlen, Dan Henderson, Luke Scchraw, Kevin Watson, Chad Nelson, and 

Shafa Wala, "Design of an AWD A WS Autonomous Vehicle (unpublished)". 

Senior Design Project, Department of Mechanical Engineering, NDSU, 2006-2008. 

[68]. Vikramjeet Singh, Aaron Vander Vorst, Aaron Zuther, Ben Hest, "AWD AWS 

Autonomous Robotic Vehicle (unpublished)". Senior Design Project, Department 

of Electrical/Mechanical Engineering, NDSU, 2007-2008. 

90 



[69]. M. J.- Kharaajoo, F. Besharati, Sliding Mode Traction Control of an Electric 

Vehicle with Four Separate Wheel Drives, Proc. IEEE Conference on Emerging 

Technologies and Factory Automation, ETFA, vol. 2, pp. 291-296, September 

2003. 

[70]. S.-I. Sakai, H. Sado, Y Hori, Motion Control in an Electric Vehicle with Four 

Independently Driven In-Wheel Motors, IEEE/ ASME Transactions on 

Mechatronics, vol. 4, no. 1, March 1999. 

[71]. R.E. Colyer, J.T. Economou, Soft modeling and fuzzy logic control of wheeled 

skid-steer electric vehicles with steering prioritization, Int. Journal of Approximate 

Reasoning, vol. 22, issues 1-2, pp. 31-52, September October 1999. 

[72]. J. Lunze, Book: Feedback Control of Large-Scale Systems, Prentice Hall, New 

York, 1992. 

[73]. Y. Li, M. Cantoni, E. Weyer, Design of a Centralized Controller for an Irrigation 

Channel using Hoo Loop-shaping, Proc. UKACC Control Conference, University of 

Bath, U.K., September 2004. 

[74]. J.S. Albus, A.J. Barbera, R.N. Nagel, Theory and Practice of Hierarchical Control, 

Proc. Twenty Third IEEE Computer Society International Conference, pp. 18-25, 

September 1981. 

[75]. D.H. Shim, H.J. Kim, S. Sastry, Hierarchical Control System Synthesis for 

Rotorcraft Based Unmanned Aerial Vehicles, American Institute of Aeronautics & 

Astronautics, Proc. AIAA Conference on Guidance, Navigation and Control, 

August 2000. 

91 



[76]. H. Hu, M. Brady, A parallel processing architecture for sensor-based control of 

intelligent mobile robots, Robotics and Autonomous Systems, vol. 17, issue 4, pp. 

235-257, June 1996. 

[77]. L. Bakule, Decentralized Control: An overview, Annual Reviews in Control, vol. 

32, pp. 87-98, May 2008. 

[78]. D.D. Siljak, Decentralized Control and Computations: Status and Prospects, 

Annual Reviews in Control, vol. 20, pp. 131-141, 1996. 

[79]. J.P. Lynch, K.H. Law, Decentralized Control Techniques for Large-Scale Civil 

Structural Systems, Proc. 20th International Modal Analysis Conference, Los 

Angeles, CA, February 2002. 

[80]. S.-J. Park, K.-H. Cho, Decentralized supervisory control of discrete event systems 

with communication delays based on conjunctive and permissive decision 

structures, Automatica, vol. 43, issue 4, pp. 738-743, April 2007. 

[81]. R. Donner, Emergence of Synchronization in Transportation Networks with 

Biologically Inspired Decentralized Control, Book: Recent Advances in Nonlinear 

Dynamics and Synchronization - Theory and Applications, Springer, pp. 23 7-275, 

September 2009. 

[82]. V.A. Ugrinovskii, LR. Petersen, A.V. Savkin, E.Y. Ugrinovskaya, Decentralized 

state-feedback stabilization and robust control of uncertain large scale systems with 

integrally constrained interconnections, Systems and Control Letters, vol. 40, issue 

2, pp. I 07-119, June 2000. 

[83].E. A. Parsheva, AM. Tsykunov, Adaptive Decentralized Control of Multivariable 

Objects, Automation and Remote Control, vol. 62, pp. 290-303, February 2001. 

92 



[84]. D.D. Silijak, Decentralized Control and Computations: Status and Prospects, 

International Federation of Automatic Control, vol. 20, pp. 131-141, 1997. 

[85]. J. Haibo, C. Hongzhi, J.F. Dorsey, Q. Zhihua, Toward a globally robust 

decentralized control for large-scale power systems, IEEE Transactions on Control 

Systems Technology, vol. 5, pp. 309- 319, 1997. 

[86]. W. Shepherd, L. N. Hulley, D.T.W. Liang, Book: Power Electronics and Motor 

Control, Cambridge University Press, 1995. 

[87]. D. K. Lindner, M. Zhu, N. Vujic, D.J. Leo, Comparison of linear and Switching 

Drive amplifiers for Piezoelectric Actuators, American Institute of Aeronautics and 

Astronautics, 2002. 

[88]. J. Honda, J. Adams, Application Note: Class D Audio Amplifier Basics, 

International Rectifier. 

[89]. A. Smaili, F. Mrad, Book: Applied Mechatronics, Oxford University Press, 2008. 

[90]. T. Wilmshurst, Book: Designing Embedded Systems with PIC Microcontrollers 

(Second Edition), 2009. 

[91]. Freescale Semiconductor, Motorola Semiconductor Technical Data MC9S 12D­

Family, 2002. 

[92]. Microchip, dsPIC33FJ128MCX02/X04 - High-Performance, 16-bit Digital Signal 

Controllers, 2009. 

[93]. J. D. Spencer, D. E. Pippenger, Book: The Voltage regulator handbook, Texas 

Instruments, 1977. 

[94]. R. C. Dorf, Book: Sensors, nanoscience, biomedical engineering, and instruments, 

CRC Press, 2006. 

93 



[95]. Application Note AN-6076: Design and Application Guide of Bootstrap Circuit 

for High-Voltage Gate-Driver IC, Fairchild Semiconductor Corporation, 2008. 

[96]. J. C. Gracia, J. A. M-Nelson, S. Nooshabadi, A Single Capacitor Bootstrapped 

Power Efficient CMOS Driver, Symposium on Circuits and Systems, 2005, 48th 

Midwest, Covington. 

[97]. S.C. Peters, K. Iagnemma, Mobile robot path tracking of aggressive maneuvers on 

sloped terrain, Proc. IEEE International Conference on Intelligent Robots and 

Systems, France, September, 2008. 

[98]. E. Maalouf, M. Saad, H. Saliah, A higher level path tracking controller for a four­

wheel differentially driven steered mobile robot, Robotics and Autonomous 

Systems, vol. 54, pp. 23-33, November 2005. 

[99]. C. Gao, Y. Su, H. Ma, Agricultural Robot Path Tracking Based on Predictable 

Path, Proc. IEEE International Conference on Networking and Digital Society, 

2010. 

94 



APPENDIX A 

Circuit Diagrams 

Figure 1: Schematics for the VBC 

95 



HIRU.• QISTN, Lpl 

' I 

.t._L--¾:====::;-t, 

-~ -:I:. 

N¥, ttMt f' WtPW Pll1 RlilTJZI 

Figure 2: Schematics for the WCU. 

96 



z 
0 
I 

~ .. 
u ,, 
"' , 
:: 
V 

Q 
I 

~ ., 
a 
A 

" 

·J· 1n >r 

l 
(1.)0 
,, () .. 
TI :z 
" <J 
m ,. , n 

-, 
_.s;, 

" IJ) 

u ., , l'I 

"" <,,J 

, .. 
r, 

a 
~ 

SP l 110DULE 

> ,. 
::, ::, 
Cl CO 

0 <J 
UJ IU 

..J ::, 
,, n 
C: C: 

;Q(/; p rnr 
,: 

r1~1-' I l::-1.~t-.J 1 /HN('.~WJ / 
Dor::: 

~ 
),.J 't' >1 -".Y J -... \"I 

- ~' ILIF 

1 L'-,1 

0 

; 
.... 
"Tl 

□ Ill ,-, :, 

" :!: " V r> ... 
C 

.. 
-, 

,, () 

;z: r> 

' r> 

"" 

onn 
',r, ► .J 

r<n T 

P9 

::JJ 
a, 

Figure 3: Schematics for the Control Section ( dsPIC33F J) of the WCU. 

97 



C 
0 

() 

Q) 

L 

Cl 

L 

0 

z:: 0 :::;:: 
~ Q_ 

L 
L 

Ill 
Q) 

0. 
0. 

Q. 
D. 

Q) 
Ill~ 
~ I 

(/) □ (f) 

z 

I 11 Cl 

LL 
G 

LL lJ) u 
~ r-J 

..... u (L 

Q 

u 

> 
"" 
"" z 

0 

N u 

= (L 

3 
0.. 

L 
Q) 

Q. 

Q. 
Q) 
...., 
Ul 

Figure 4: Schematics for the Stepper Motor Control PWM generation using PIClOF. 

98 



0 
I: 

.;:J 

,.. 
"' ~ ... 
N 
a: 

" ~ 
IL 

NSI.S. 
L(llf'l 
1-1-i'l 

mo 
I-

0 
LI u 
u 
;, 

,s, 
e:11'1 

--1.:!ll'.j 
LI-Ci 

J:Qt" 
/" ' \ 

1 tj 

ti~ . ;;-: 

~N c:: 

c-
,c 
I 

➔ 
Q-

<!: 

(, 
a; 

ii'. 
C 
f-

;;,, C 
L. 

C 
C 

:;, 
ift > > 

Ll 
{JI 

... 
..,. ::-

!l, 
w .... 

~ •'l 
a: 

9 
0 

I-

C· 
..J 

"' a: 

"' !:-I'-

,. <!l 

" ;. ft. 

,:) 
..J 

,1' 

,,j. ,,., 
w 

•'l 
a: 

£ 
◊ 

<.. 

l! 1f 

0 

C 

;;i~ -~ 

Figure 5: Schematics for the DC Hub motor H-Bridge Circuitry. 

99 



" C 

• C 
C • 
t: 

u .( ... - It 

0:xOQ~ 
{; ti 

GI 

"' "' ...I ... 
0 
I 

l< ~ Ir 
-ll!S-LLi;,;:;cu-~~<"' 
6 e; L.! Oi a: UC C:::, C 

:,. 

" 

/ / 
/ / -,,-------------------- / 

/ ----,!-------------------~ 

! -+ , .. 
C • • 6 

u 

• C 
C • .J: 

" 

, 
a 

' J ., 

~ 2 < 
f, ~ l-
o. "' :, 
- " Q .., ;,-,., 
" <, 

Figure 6: Schematics for speed encoder. 

100 

,0 



APPENDIXB 

Board Designs 

1. VBC 

-

7 

Figure 1: Top Copper. 

101 



Figure 2: Bottom Copper. 

102 



2. wcu 

,, 

+l~ 
' J ~ ~ 

.\_,• 

I 

103 



Figure 4: Bottom Copper. 

104 



3. Target Board 

Figure 5: Top Copper. 

Figure 6: Bottom Copper. 

105 



4. Power Module 

,,,.i 

J 
' 1 ......... li-~ll 

ll 

c=J}-

I 

" 

:'1 

'" 

,,,, ' 

Figure 7: Top Copper. 

106 



Figure 8: Bottom Copper 

107 



APPENDIXC 

Firmware Codes 

1. wcu 

a. PWMsetup 

File Name: pwmDrvl.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "pwmDrvl.h" 
void initPwml(void) 
{ 

II Free running mode PlTCONbits.PTMOD = 0b00; 
PlTCONbits.PTCKPS= 0b00; 
PlTCONbits.PTOPS= 0b00; 
PlTCONbits.PTSIDL= 0; 
PlTPER= 999; 
PWM1CON1bits.PMOD2 0; 
PWMlCONl 0; 

II input clock period= 1 Tcy 
II Output post scale is 1:1 
II Runs in idle mode 
II Pwm frequency of 40 Khz 

II Pwml pair 2 is in independent mode 

PWMlCONlbits.PEN2H 1· 
' II Pwm1H2 pin is set active 

PWM1CON2bits.IUE = l; 
PlDTCONlbits.DTAPS = 0b00; 
PlDTCONlbits.DTBPS = 0b00; 
PlDTCONlbits.DTA 0; 
PlDTCONlbits.DTB = 20; 

II Immediate updates for PWM 
II Dead time for unit A is Tcy 
II Dead time for unit B is Tcy 
II Dead time for unit A is IO I 

II Dead time for unit B is IO I 

PlDTCON2bits.DTSlA 0; 
II Dead time for the PWMlLl active is provided by unit A 
PlDTCON2bits.DTS1I 0; 
II Dead time for the PWMlLl inactive signal is provided by unit A 
PlDTCON2bits.DTS2A 1; 
II Dead time for the PWM1H2 active signal is provided by unit B 
PlDTCON2bits.DTS2I = 0; 
II Dead time for the PWM1H2 inactive signal is provided by unit A 
PlOVDCONbits.POVDlL = l; 
II Output on PWMlLl is controlled by the PWM generator 
PlOVDCONbits.POVD2H = l; 
// Output on PWM1H2 is controlled by the PWM generator 
P1DC2 = 1023; II Duty cycle of PWM1H2 
PWM2CON1 = 0; 
PlTCONbits.PTEN= 1; 

108 

II PWM module is ON 



b. Analog to Digital Conversion (ADC) setup 

File Name: adcDrvl.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "adcDrvl.h" 
#include "tglPin.h" 

#define SAMP BUFF SIZE 2 II -
#define NUM CHS2SCAN 2 II 

void initAdcl(void) 

ADlCONlbits.FORM = O; 

Size of the input buffer per analog input 
Number of channels enabled for channel scan 

II Data Output Format: Integer 
ADlCONlbits.SSRC = 2; 
II Sample Clock Source: GP Timer starts conversion 
ADlCONlbits.ASAM = l; 
II ADC Sample Control: Sampling begins immediately after conversion 
AD1CON1bits.AD12B = O; 
II 10-bit ADC operation 
AD1CON2bits.CSCNA = l; 
II Scan Input Selections for CHO+ during Sample A bit 
AD1CON2bits.CHPS = O; 
II Converts CHO 
AD1CON3bits.ADRC = O; 
II ADC Clock is derived from Systems Clock 
AD1CON3bits.ADCS = 63; 
II ADC Conversion Clock Tad=Tcy*(ADCS+l)= (ll40M)*64 l.6us 
(625Khz) 
II ADC Conversion Time for 10-bit Tc=l2*Tad 19.2us 
AD1CON2bits.SMPI = (NUM CHS2SCAN-1); 
II 2 ADC Channel is scanned 
IIADlCSSHIADlCSSL: AID Input Scan Selection Register 
ADlCSSLbits.CSSO=l; II Enable ANO for channel scan 
ADlCSSLbits.CSSl=l; II Enable ANl for channel scan 
IIADlPCFGHIADlPCFGL: Port Configuration Register 
ADlPCFGL=OxFFFF; 
ADlPCFGLbits.PCFGO 
ADlPCFGLbits.PCFGl 

0; 
0; 

IFSObits.ADlIF = O; 
IECObits.ADlIE = l; 
ADlCONlbits.ADON = l; 

tglPininit(); 

II ANO as Analog Input 
II ANl as Analog Input 

II Clear the AID interrupt flag bit 
II Enable AID interrupt 

II Turn on the AID converter 

I*=============================================================== 
Timer 3 is setup to time-out every 125 microseconds (BKhz Rate). As a 
result, the module will stop sampling and trigger a conversion on every 
Timer3 time-out, i.e., Ts=125us. 
===============================================================*I 
void initTmr3 () 

109 



} 

TMR3 = 0x0000; 
PR3 = 4999; 
IFS0bits.T3IF 
IEC0bits.T3IE 
//Start Timer 3 
T3CONbits.TON 

0; 
0; 

l· 
' 

/*=============================================================== 
ADC INTERRUPT SERVICE ROUTINE 
=======-====--=================================================*/ 
int ain0Buff[SAMP_BUFF_SIZE]; 
int ainlBuff[SAMP_BUFF SIZE]; 
int scanCounter=0; 
int sampleCounter=0; 

void attribute ((interrupt, no auto_psv)) _ADClinterrupt(void) 

switch (scanCounter) 
{ 

case 0: 
ain0Buff[sampleCounter]=ADClBUF0; 
break; 

case 1: 
ainlBuff[sampleCounter]=ADClBUF0; 
break; 

default: 
break; 

scanCounter++; 
if(scanCounter==NUM CHS2SCAN) 
{ -

scanCounter=0; 
sampleCounter++; 

if(sampleCounter==SAMP BUFF SIZE) 
sampleCounter=0; 

tglPin (); 
IFS0bits.ADlIF 0; 

// Toggle RA6 
// Clear the ADCl Interrupt Flag 

110 



c. Remappable Pin Configuration 

File Name: rplnit.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "rpinit.h" 
void initRP(void) 
{ 
//REMAPPABLE PINS CONFIGURATION 
//Unlock the registers 
_builtin_write_OSCCONL(OSCCON & ~(1<<6)); 

//Configure SPil Port for SLAVE mode 
ADlPCFGL=0x00FF; 
//analogue pins configured as digital IO 
RPINR20=0x0002; 
//SCKl Input is associated to pin RP00 and SDil input is associated to 
pin RP02 (pin 5 of the dsPIC) 
RPINR21=0x0003; 
// SSl IS ASSOCIATED WITH RP03 
//Lock the registers 

builtin_write OSCCONL(OSCCON (1<<6)); 

111 



d. Serial Peripheral Interface (SP/) setup 

File Name: spiDrvl.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
void initSPI(void) 

//SPil configuration 
IFS0bits.SPilIF=0; 
IEC0bits.SPilIE=0; 
SPilCONl = 0x051A; 

//make sure the SPI interrupt flag is cleared 
// Interrupt disabled 

/*configure SPil module as Slave, CKP=0, CKE=l, SMP=l, first 4:1 
and secondary prescaler are set to 2:1 therefore SCLK frequency is 5MHz, 
idle state for clock is low, SCKx and SDOx controlled by the SPI module*/ 

SPilCONlbits.SSEN l· 
' 

SPilCONlbits.DISSDO = l; 
SPilSTATbits.SPIROV = 0; 

// SSl PIN INPUT ENABLED 
// DIABLING SDOl PIN 

//make sure the overflow flag is cleared 
SPilSTAT = 0x8000; //enable SPil module 
IFS0bits.SPilIF=0; 
//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=l; // Interrupt enabled 

112 



e. Input/ Output Pins setup 

File Name: iolnit.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "ioinit.h" 
void initIO(void) 

(MOSI) 

// SETTING TRISx REGISTER FOR OUTPUT 
TRISAbits.TRISA4 0; 
TRISBbits.TRISB4 0; 
TRISBbits.TRISB5=0; 
TRISBbits.TRISB6 0; 
TRISBbits.TRISB7=0; 
TRISBbits.TRISBB=0; 
TRISBbits.TRISB9=0; 
TRISBbits.TRISBl0=0; 
TRISBbits.TRISBll=0; 
TRISBbits.TRISB13=0; 
TRISBbits.TRISB14=0; 

//SETTING TRISx REIGISTERS FOR INPUT 
TRISBbits.TRISB0 l; //pin RB0/RP0 is configured as input for elk 
TRISBbits.TRISB2 l; //pin RB2/RP2 is configured as input for data 

TRISBbits.TRISBl=l; 
TRISBbits.TRISB3=1; 

// Initializing the 
PORTAbits.RA4=0; 
PORTBbits.RB3=0; 
PORTBbits.RB4=0; 
PORTBbits.RB5=0; 
PORTBbits.RB6=0; 
PORTBbits.RB7=0; 
PORTBbits.RBB=0; 
PORTBbits.RB9=0; 
PORTBbits.RBl0=0; 
PORTBbits.RB13=0; 
PORTBbits.RB14=0; 

// pin RBl/RPl is configured as an ON/OFF 
// S81 input 

Port Values 

113 



f. Module: Front Left 

File Name: main FROl.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "rnath.h" 
#include "delay.h" 
#include "adcDrvl.h" 
#include "ioinit.h" 
#include "pwmDrvl.h" 
#include "spiDrvl.h" 
#include "rpinit.h" 

FGS(GWRP OFF & GCP_OFF); 
FOSCSEL(FNOSC_FRC); 

_FOSC(FCKSM_CSECMD & IOLlWAY OFF & OSCIOFNC OFF & POSCMD_HS); 
_FWDT(FWDTEN_OFF); 
_FPOR(PWMPIN_OFF & HPOL ON & LPOL_ON) 

int pot reading=0; II for potentiometer reading 
int angle=0; II desired steering angle 
int II desired speed 
int II desired mode 
int encoder=0; II for the encoder 
int dir=0; II steering direction 
int read=0; II information from the central 
int acc26; II width of the base 
int b=23; II length of the base 
signed int varl=0; 

controller 

II for the difference in the desired and the actuall steering angle 

void ((interrupt, no_auto_psv)) _SPilinterrupt(void) 
II interrupt setup for the Serial communication 
{ 

} 

read SPilBUF; 
Update_Values(read); 
IFS0bits.SPilIF = 0; II Clear the SPil Interrupt 

void Direction(unsigned int xl, unsigned int yl) 
I I To determine the PWM duty for the desired speed in the desired 
direction, where xl speed, 
yl = encoder value 
{ 

switch ( xl ) 
{ 

case 0x0000: 

break; 

PORTBbits.RB9 0; 
PlDC2 0; 

case 0x0400: 
PlDC2 375; 
PORTBbits.RB9 l; 

break; 

114 



case 0x0800: 
PlDC2 = 580; 
PORTBbits.RB9 = l; 

break; 
case 0x0C00: 

PORTBbits.RB9 l; 
PlDC2 = 790; 

break; 
case 0xlO00: 

PlDC2 1325 ; 
PORTBbits.RB9 

break; 
case 0xl400: 

PlDC2 1460 ; 
PORTBbits.RB9 

break; 
case Oxl800: 

PlDC2 = 1660 ; 
PORTBbits. RB9 

break; 
default: 

l; 

l; 

PORTBbits.RB9 0; 
PlDC2 O; 

break; 

void Do_Steering (unsigned int x, unsigned int y) 
// To do the desired steering, where x pot_reading, y 
steering angle 
{ 

PORTBbits.RB6 
varl = (x - y); 
if (varl < 5) 

l · I 

{ 
0; 
1; 

PORTBbits.RB6 
PORTBbits.RBS = 
//PORTBbits.RBS 
PORTAbits.RA4 = O; 

else if ( varl >= 5 
{ 

} 
else 
{ 

} 

PORTBbits.RB6 
PORTAbits.RA4 
PORTBbits.RBB 

PORTBbits.RB6 

O; 
l; 

0; 

l; 

//PORTBbits.RB6 

STEERING SPEED CONTROL 
//PORTAbits.RA4 

void ( unsigned int x2) 
// For the straight run, where X2= pot_reading 
{ 

Do Steering(x2,512); 
} 

Break 

Left/Right 

void Steering2(unsigned int x3, unsigned int y3, unsigned int z3) 

115 

required 



/ I For Front and all wheel 
pot_reading, z3= direction 
{ 

if (z3==1} 
{ 
if (mode== 0x4000) 
{ 

steering where, x3 steering_angle, 
(front or rear wheel) 

x3= (512 ( (1. 5708- (atan ( (a/b} + (1/tan ( (512 x3) *0. 004602)}))) *217. 299) l; 
} 

else if ( mode 0x2000) 
{ 

y3= 

x3= ( 512 - ( ( 1. 5 7 0 8- ( a tan ( ( a/ ( 2 *b) ) + ( 1 / tan ( ( 512 -x3) * 0 . 0 0 4 602) ) ) ) ) * 21 7 . 2 9 9 l ) ; 
} 
} 
else if(z3= 0) 
{ 

if (mode==0x4000) 
{ 

x3 ( ( (1. 5708- (a tan( (1/tan( (x3-512) *0. 004602)) (a/b)))) *217. 299) +512); 
} 
else if (mode==0x2000) 
{ 

x3=(((1.5708-(atan((l/tan((x3 512)*0.004602) )-(a/(2*b)))))*217.299)+512); 
} 

} 
Do_Steering(y3,x3); 

void Steering3( unsigned int x4, unsigned int y4) 
//For parallel steering, where x4 steering_angle, y4= pot_reading 
{ 

Do_Steering(y4,x4); 

void Steering4 
// For Zero 
pot reading 
{ -

(unsigned int y5) 
radius turn steering 

unsigned int x5; 
x5 (512 - (0.72425*217.3)); 
Do_Steering(y5, x5); 

void Update_Values(unsigned int x5} 

where x5= steering_angle, y5= 

// Update the variables such as speed, mode and steering angle from the 
data obtained from the data bus 
{ 

mode 
steering angle 
speed 

= ( x5 & 0xE000); 
( x5 & 0x03FF); 

= ( x5 & 0xlC00 ) ; 

void Wheel_Flip (unsigned int x6) 
/ / Call the required steering function depending on the direction of 
movement and the mode selected, where x6 speed 

if x6 >= 0 && x6 < 3072) 
{ 

switch (mode) 
{ 

case 0x0000: 

116 



} 

Steeringl( pot_reading); 
II straight run steering called 

break; 
case Ox2000: 

break; 

Steering2 ( steering_angle, pot_reading, dir); 
II Front wheel steering called 

case Ox4000: 

break; 

Steering2 ( steering_angle, pot_reading, dir); 
II All wheel steering called 

case OxBOOO: 
Steering4(pot reading); 
II Zero radius turn steering called 

break; 
case OxCOOO: 

break; 

Steering3 steering_angle, pot reading); 
II Parallel steering called 

default: 
Steeringl( pot reading); 
II Default steering i.e., straight run 

break; 

else if ( x6 >= 4096 && x6 <= 6144) 
{ 

} 

switch (mode) 

case OxOOOO: 
Steeringl( pot_reading); 

break; 
case Ox2000: 

Steeringl( pot_reading); 
break; 
case Ox4000: 

Steering2 steering angle, pot_reading, dir); 
break; 
case OxBOOO: 

Steering4(pot reading); 
break; 
case OxCOOO: 

Steering3 ( steering_angle, pot_reading); 
break; 
default: 

Steeringl( pot reading); 
break; 

else if ( x6 > 3072 && x6 < 4096) II default steering called 
{ 

switch mode 

case OxOOOO: 
Steeringl( pot reading); 

break; 
case Ox2000: 

117 



Steeringl( pot_reading); 
break; 
case 0x4000: 

Steeringl( pot_reading ); 
break; 
case 0x8000: 

Steeringl( pot_reading); 
break; 
case 0xC000: 

Steeringl( pot_reading l; 
break; 
default: 

Steeringl( pot_reading); 
break; 

void Steering_Direction(int x7) 
// To determine the steering direction i.e., either left or right where, 
x7 = steering_angle 
{ 

if (steering_angle >= 0 && steering_angle < 512) 
{ 

dir = l; 
} 
else 
{ 

dir=0; 

} 
int main (void) // Main function 

int temp; // temporary variable to read the SPlBUF 
/* Configure Oscillator to operate the device at 40Mhz 

FOSC= Fin*M/(Nl*N2), Fcy=Fosc/2 
Fosc= 20M*40/(2*4)=80Mhz for BM 

PLLFBD=30; 
CLKDIVbits.PLLPOST=0; 
CLKDIVbits.PLLPRE=2; 

input clock*/ 
II M=32 
II Nl=2 
II N2=4 

II clock switch to incorporate PLL 
_builtin_write_OSCCONH(0x03); // Initiate Clock Switch to Primary 

// Oscillator with PLL (NOSC=0b0ll) 
_builtin_write_OSCCONL(0x0l); // Start clock switching 
while (OSCCONbits.COSC != 0b0ll); // Wait for Clock switch to occur 

// Wait for PLL to lock 
while(OSCCONbits.LOCK!=l) {}; 

// Peripheral Initialisation 
initRP(); 
initAdcl(); 
initTmr3(); 
initPwml(); 
initIO () ; 
initSPI(); 
read= 0; 
temp SPilBUF; 
while(ll 

//Initialize Remappable Peripheral Pins 
//Initialize ADC module 
//Initialize TIMER 3 for ADC conversion 
// Initialize PWM module 
// Initialize Input/output pins 
// Initialize SPI module 

118 



pot_reading = ( ain0Buff[0]+ain0Buff[l]) / 2; 
encoder = ( ainlBuff[0]+ainlBuff[l]) / 2; 
Direction ( speed, encoder); 
Steering_Direction(steering_angle); 
Wheel_Flip(speed); 
if(PORTBbits.RB3==1) 
{ 

//disable SPil module 
temp=SPilBUF; 
SPilSTAT = 0x0000; 
IFS0bits.SPilIF=0; 
//make sure the SPI 
IEC0bits.SPilIE=0; 

interrupt flag is cleared 

return (0); 

SPI1STAT=0x8000; 
SPilSTATbits.SPIROV=0; 
IFS0bits.SPilIF=0; 

// Interrupt disabled 

//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=l; // Interrupt enabled 

119 



g. Module: Front Right 

File Name: mam FR02.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "math.h" 
#include "delay.h" 
#include "adcDrvl.h" 
#include "ioinit.h" 
#include "pwmDrvl.h" 
#include "spiDrvl.h" 
#include "rpinit.h" 

FGS(GWRP_OFF & GCP OFF); 
FOSCSEL(FNOSC_FRC); 
FOSC(FCKSM_CSECMD & IOLlWAY OFF & OSCIOFNC OFF & POSCMD_HS); 
FWDT(FWDTEN_OFF); 
FPOR(PWMPIN_OFF & HPOL ON & LPOL ON) 

int pot_reading=0; 
int steering angle=0; 
int speed=0; 
int mode=0; 
int encoder=0; 
int dir=0; 
int read=0; 
int a=26; 
int b=23; 
signed int varl=0; 

II for potentiometer reading 
II desired steering angle 
II desired speed 
II desired mode 
II for the speed encoder 
II steering direction 
II information from the central controller 
II width of the base 
II length of the base 

II for the difference in the desired and the actual steering angle 
void attribute ((interrupt, no_auto_psv)) SPilinterrupt(void) 
II interrupt setup for the Serial Communication 
{ 

read= SPilBUF; 
Update_Values(read); 
IFS0bits.SPilIF = 0; II Clear the SPil Interrupt Flag 

void Direction(unsigned int xl, unsigned int yl ) 
I I To determine the PWM duty for the desired speed in the desired 
direction, where xl = speed, 
yl encoder value 
{ 

if mode== 0xS000) 
{ 

switch ( xl) 

case 0x0000: 

break; 

PORTBbits.RB9 0; 
P1DC2 = 0; 

case 0xlS00: 
P1DC2 = 13 0; 

120 



else 

PORTBbits.RB9 l; 
break; 
case 0x1400: 

P1DC2 = 450; 
PORTBbits.RB9 

break; 
case 0xl000: 

PORTBbits.RB9 
P1DC2 = 720; 

break; 
case 0x0C00: 

P1DC2 1260 ; 
PORTBbits.RB9 

break; 
case 0x0B00: 

P1DC2 = 1390 ; 
PORTBbits.RB9 

break; 
case 0x0400: 

P1DC2 = 1700 ; 
PORTBbits.RB9 

break; 
default: 

1· I 

1 · I 

1; 

1; 

1· I 

PORTBbits.RB9 0; 
P1DC2 0; 

break; 

switch ( xl ) 
{ 

case 0x0000: 
PORTBbits.RB9 0; 
P1DC2 = 0; 

break; 
case 0x0400: 

P1DC2 130; 
PORTBbits.RB9 1; 

break; 
case 0x0B00: 

P1DC2 450; 
PORTBbits.RB9 l; 

break; 
case 0x0C00: 

break; 

PORTBbits.RB9 
P1DC2 = 720; 

case 0xl000: 

1· 
' 

P1DC2 = 1260 ; 
PORTBbits.RB9 = 1; 

break; 
case 0x1400: 

P1DC2 1390 ; 
PORTBbits.RB9 l; 

break; 
case 0x1800: 

121 



PlDC2 1700 ; 
PORTBbits.RB9 

break; 
default: 

PORTBbits.RB9 
PlDC2 = 0; 

break; 

l· I 

0; 

void Do Steering (unsigned int x, unsigned int y) 
I/ To do the desired steering, where x pot_reading, y 
steering angle 
{ 

PORTBbits.RB6 l; 
varl = (x y) ; 
if (varl <= 5) 
{ 

PORTBbits.RB8 0; 

PORTBbits.RB6 0; 
//PORTBbits.RB6 = Break 

//PORTBbits.RB8 = STEERING SPEED CONTROL 
PORTAbits.RA4 0; /IPORTBbits.RA4 Left/Right 

else if ( varl >= 5 

} 
else 
{ 

PORTBbits.RB8 
PORTAbits.RA4 
PORTBbits.RB6 

l · ' 
l; 
O; 

PORTBbits.RB6 l; 

void Steeringl( unsigned int x2) 
II For the straight run, where X2= pot_reading 
{ 

Do_Steering(x2,512); 

void Steering2(unsigned int x3, unsigned int y3, unsigned int z3) 
II For Front and all wheel steering where, x3 steering_angle, y3 
pot reading, z3= direction ( front or rear wheel) 
{ -

if(z3 1) 
{ 

if (mode== 0x4000) 
{ 

required 

x3 (((1.5708-(atan((alb) + (lltan((x3-512)*0.004602))) ))*217.299)+512); 
} 
else if (mode== 0x2000) 
{ 

x3=(((1.5708 (atan((a/(2*b))+(l/tan((x3 512)*0.004602) ))))*217.299)+512); 
} 

else if(z3 0) 
{ 

if (mode= 0x4000) 

122 



{ 
x3=512-((l.5708-(atan((l/tan( (512-x3)*0.004602))-(a/b))))*217.299); 

} 
else if (mode==0x2000) 
{ 

x3=512-((l.5708- (atan((l/tan((512-x3)*0.004602))- (a/(2*b)))))*217.299); 
} 

Do_Steering(y3,x3); 

void Steering3( unsigned int x4, unsigned int y4) 
//For parallel steering, where x4= steering angle, y4= pot reading 
{ 

Do_Steering(y4,x4); 

void Steering4 (unsigned int y5) 
// For Zero radius turn steering where x5= 
pot reading 
{ -

unsigned int x5; 
x5 = (512 + (0.72425*217.3)); 
Do_Steering(y5, x5); 

void Update_Values(unsigned int x5) 

steering angle, y5= 

// Update the variables such as speed, mode and steering angle from the 
data obtained from the data bus 
{ 

mode 
steering angle 
speed 

x5 & 0xE000 ) ; 
x5 & 0x03FF l; 

(x5 & 0xlC00) ; 

void Wheel_Flip (unsigned int x6) 
I I Call the required steering function depending on the direction of 
movement and the mode selected, where x6 = speed 

if x6 >= 0 && x6 <= 3072) 
{ 

switch (model 

case 0x0000: 
Steeringl( pot reading); 
// straight run steering called 

break; 
case 0x2000: 

break; 

Steering2 ( steering angle, pot reading, dir l; 
// Front wheel steering called -

case 0x4000: 

break; 

Steering2 ( steering_angle, pot_reading, dir); 
// All wheel steering called 

case 0x8000: 
Steering4(pot reading); 
// Zero radius turn steering called 

break; 
case 0xC000: 

123 



Steering3 ( steering_angle, pot reading); 
// Parallel steering called 

break; 
default: 

Steeringl( pot reading); 
// Default steering i.e., straight run 

break; 

else if ( x6 >= 4096 && x6 <= 6144) 

switch (mode) 

case 0x0000: 
Steeringl( pot reading); 

break; 
case 0x2000: 

Steeringl( pot reading); 
break; 
case 0x4000: 

Steering2 steering angle, pot reading, dir); 
break; 
case 0xB000: 

Steering4(pot_reading); 
break; 
case 0xC000: 

Steering3 
break; 
default: 

steering_angle, pot reading); 

Steeringl( pot reading); 
break; 

else if ( x6 > 3072 && x6 < 4096) // default steering called 

switch mode 

case 0x0000: 
Steeringl( pot reading 

break; 
case 0x2000: 

Steeringl( pot reading 
break; 
case 0x4000: 

Steeringl( pot reading 
break; 
case 0xB000: 

Steeringl(pot_reading); 
break; 
case 0xC000: 

) ; 

) ; 

) ; 

Steeringl( pot_reading); 
break; 
default: 

Steeringl( pot reading); 
break; 

124 



void Steering_Direction(int x7) 
// To determine the steering direction i.e., either left or right where, 
x7 steering_angle 
{ 

if (steering_angle >= 0 && steering_angle <= 512) 
{ 

dir =0; 
} 
else 
{ 

dir=l; 
} 

int main (void) // Main function 
{ 

int temp; // temporary variable to read the SPlBUF 

/* Configure Oscillator to operate the device at 40Mhz 
Fosc= Fin*M/(Nl*N2), Fcy=Fosc/2 
FOSC= 20M*40/(2*4)=80Mhz for 8M 

PLLFBD=30; 
input clock*/ 
// M=32 

CLKDIVbits.PLLPOST=0; 
CLKDIVbits.PLLPRE=2; 

// clock switch to incorporate PLL 

// Nl=2 
// N2=4 

ltin_write __ OSCCONH(0x03); // Initiate Clock Switch to Primary 
// Oscillator with PLL (NOSC=0b0ll) 

_builtin_write_OSCCONL(0x0l); // Start clock switching 
while (OSCCONbits.COSC != 0b0ll); // Wait for Clock switch to occur 

// Wait for PLL to lock 
while(OSCCONbits.LOCK!=l) {}; 

// Peripheral Initialisation 
initRP(); // Initialize Remappable Peripheral Pins 
initAdcl () ; 
initTmr3(); 

// Initialize ADC module 

initPwml () ; 
initIO (); 
initSPI(); 

read= 0; 
temp= SPilBUF; 
while (1) 
{ 

II 
II 
II 
II 

Initialize 
Initialize 
Initialize 
Initialize 

TIMER 3 for ADC conversion 
PWM module 
Input/output pins 
SPI module 

= ( ain0Buff[0]+ain0Buff[l]) / 2; 
encoder = ( ainlBuff[0]+ainlBuff[l]) / 2; 
Direction speed, encoder); 
Steering_Direction(steering_angle); 
Wheel Flip(speed); 
if(PORTBbits.RB3 1) 
{ 

//disable SPil module 
temp=SPilBUF; 
SPilSTAT 0x0000; 
IFS0bits.SPilIF=0; 
//make sure the SPI 
IEC0bits.SPilIE=0; 
SPI1STAT=0x8000; 

interrupt flag is cleared 
// Interrupt disabled 

125 



return (0); 

SPilSTATbits.SPIROV=0; 
IFS0bits.SPilIF=0; 
//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=l; // Interrupt enabled 

126 



Ii. Module: Rear Left 

File Name: mam FR03.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "math.h" 
#include 11 delay.h 11 

#include "adcDrvl.h" 
#include "ioinit.h" 
#include "pwmDrvl.h" 
#include 0 spiDrvl.h" 
#include 0 rpinit.h" 

(GWRP_OFF & GCP_OFF}; 
FOSCSEL(FNOSC_FRC); 
FOSC(FCKSM_CSECMD & IOLlWAY & OSCIOFNC OFF & POSCMD_HS}; 
FWDT(FWDTEN_OFF); 
FPOR(PWMPIN_OFF & HPOL ON & LPOL_ON) 

int 
int 
int 
int 

pot_reading=0; 
steering_angle=0; 
speed=0; 
mode=0; 

int encoder"'0; 
int dir=0; 
int read=0; 
int a=26; 
int b=23; 
signed int varl=0; 

II for potentiometer reading 
II desired steering 
II desired speed 
II desired mode 
II for the speed encoder 
II steering direction 
II information from the central controller 
II width of the base 
II length of the base 

II for the difference in the desired and the actual steering angle 
void _attribute_((interrupt, no_auto_psv}) _SPilinterrupt(void) 
II interrupt setup for the Serial communication 
{ 

read= SPilBUF; 
Update_Values(read}; 
IFS0bits.SPilIF 0; II Clear the SPil Interrupt Flag 

void Direction{unsigned int xl, unsigned int yl) 
I/ To determine the PWM duty for the desired speed in the desired 
direction, where xl = speed, yl = encoder value 
{ 

switch { xl ) 
{ 

case 0x0000: 
PORTBbits.RB9 0; 
P1DC2 = 0; 

break; 
case 0x0400: 

P1DC2 320; 
PORTBbits.RB9 1; 

break; 
case 0x0800: 

127 



P1DC2 = 530; 
PORTBbits.RB9 l; 

break; 
case 0x0C00: 

PORTBbits.RB9 
P1DC2 = 645; 

break; 
case 0xl000: 

P1DC2 = 1200 ; 
PORTBbits.RB9 

break; 
case 0x1400: 

break; 

P1DC2 = 1420 ; 
PORTBbits.RB9 

case 0x1800: 

1; 

1; 

1· I 

P1DC2 = 1610 ; 
PORTBbits.RB9 1; 

break; 
default: 

break; 

PORTBbits.RB9 0; 
P1DC2 = 0; 

void Do_Steering (unsigned int x, unsigned int y) 
I I To do the desired steering, where x pot_reading, y 
steering angle 
{ 

PORTBbits.RB6 
varl = (x - y) ; 
if (varl < -5) 
{ 

1· I 

required 

PORTBbits.RBB 1; // PORTBbits.RB6 = Break 
PORTBbits.RB6 = 0; // PORTBbits.RBB = Steering Speed Control 
PORTAbits.RA4 0; // PORTAbits.RA4 = Left/Right 

else if ( varl >= 5 

else 
{ 

} 

PORTBbits.RB8 
PORTAbits.RA4 
PORTBbits.RB6 

PORTBbits.RB6 

O· I 
1· I 

O· I 

1; 

void Steeringl( unsigned int x2) 
// For the straight run, where X2= pot_reading 
{ 

Do_Steering(x2,512); 

void Steering2(unsigned int x3, unsigned int , unsigned int z3) 
// For Front and all wheel steering where, x3= steering_angle, y3= 
pot_reading, z3= direction ( front or rear wheel) 

128 



if(z3==1) 
{ 

if (mode== 0x4000) 
{ 

x3 512-((1.5708-(atan((l/tan((x3-512)*0.004602) )-(a/b))))*217.299); 
} 
else if (mode== 0x2000) 
{ 

x3=((1.5708-(atan((a/(2*b)) + (1/tan((x3-512)*0.004602)))) )*217.299)+512; 
} 

else if(z3==0) 

if (mode==0x4000) 
{ 

x3=512+((1.5708-(atan((a/b)+(l/tan( (512-x3)*0.004602) ))))*217.299); 
} 
else if (mode==0x2000) 
{ 

x3=512-( (1.5708-(atan((l/tan((512-x3)*0.004602))-(a/(2*b)))))*217.299); 
} 

Do Steering(y3,x3); 

void Steering3( unsigned int x4, unsigned int y4) 
//For parallel steering, where x4= steering angle, y4= pot reading 
{ 

Do_Steering(y4,x4); 

void Steering4 
// For Zero 
pot_reading 

(unsigned int y5) 
radius turn steering 

{ 
unsigned int x5; 
x5 = (512 + (0.72425*217.3)); 
Do Steering(y5, x5); 

void Update_Values(unsigned int x5) 

where x5= steering_angle, y5= 

// Update the variables such as speed, mode and steering angle from the 
data obtained from the data bus 
{ 

mode 
steering angle 
speed 

x5 & 0xE000 ) ; 
x5 & 0x03FF); 
x5 & 0xlC00 ) ; 

void Wheel Flip (unsigned int x6) 
I I Call the required steering function depending on the direction of 
movement and the mode selected, where x6 = speed 

if x6 >= 4096 && x6 <= 6144) 
{ 

switch (mode) 
{ 

case 0x0000: 
Steeringl( pot_reading); 
// straight run steering called 

129 



break; 
case 0x2000: 

break; 

Steering2 ( steering_angle, pot_reading, dir); 
II Front wheel steering called 

case 0x4000: 

break; 

Steering2 ( steering_angle, pot_reading, dir); 
II All wheel steering called 

case 0x8000: 
Steering4(pot_reading); 
II Zero radius turn steering called 

break; 
case 0xC000: 

break; 

Steering3 steering_angle, pot reading); 
II Parallel steering called 

default: 
Steeringl( pot reading); 
II Default steering i.e., straight run 

break; 

else if ( x6 >= 0 && x6 <= 3072) 

switch (mode) 

case 0x0000: 
Steeringl( pot reading); 

break; 
case 0x2000: 

Steeringl( pot reading); 
break; 
case 0x4000: 

Steering2 steering_angle, pot reading, dir); 
break; 
case 0x8000: 

Steering4(pot_reading); 
break; 
case 0xC000: 

Steering3 
break; 
default: 

steering angle, pot reading); 

Steeringl( pot_reading); 
break; 

else if ( x6 > 3072 && x6 < 4096) II default steering called 
{ 

switch 
{ 

mode 

case 0x0000: 
Steeringl( pot reading); 

break; 
case 0x2000: 

Steeringl( pot reading); 
break; 

130 



case 0x4000: 
Steeringl( pot_reading); 

break; 
case 0x8000: 

Steeringl(pot reading); 
break; 
case 0xC000: 

Steeringl( pot_reading); 
break; 
default: 

Steeringl( pot reading); 
break; 

void Steering Direction(int x7) 
// To determine the steering direction i.e., either left or right where, 
x7 steering angle 

if (steering_angle >= 0 && steering angle<= 512) 

dir =0; 

else 

dir=l; 

int main (void) // Main function 
{ 

int temp; // temporary variable to read the SPlBUF 
/* Configure Oscillator to operate the device at 40Mhz 

Fosc= Fin*M/(Nl*N2), Fcy=Fosc/2 
Fosc= 20M*40/(2*4)=80Mhz for BM 

PLLFBD=30; 
CLKDIVbits.PLLPOST=0; 
CLKDIVbits.PLLPRE=2; 

// clock switch to incorporate PLL 

input clock*/ 
// M=32 
// Nl=2 
II N2=4 

_builtin_write_OSCCONH(0x03); // Initiate Clock Switch to Primary 
// Oscillator with PLL (NOSC=0b0ll) 

_builtin_write_OSCCONL(0x0l); // Start clock switching 
while (OSCCONbits.COSC != 0b0ll); // Wait for Clock switch to occur 

// Wait for PLL to lock 
while(OSCCONbits.LOCK!=l) {}; 

// Peripheral Initialisation 
initRP(); 
initAdcl(); 
initTmr3(); 
initPwml(); 
initIO (); 
initSPI(); 
read= 0; 
temp= SPilBUF; 
while(l) 
{ 

pot reading 

// Initialize Remappable Peripheral Pins 
// Initialize ADC module 
II 
II 
II 
II 

Initialize 
Initialize 
Initialize 
Initialize 

TIMER 3 for ADC conversion 
PWM module 
Input/output pins 
SPI module 

ain0Buff[0]+ain0Buff[l]) / 2; 

131 



} 

encoder = ( ainlBuff[0]+ainlBuff [1]) / 2; 
Direction speed, encoder); 
Steering_Direction(steering_angle); 
Wheel_Flip(speed); 
if(PORTBbits.RB3= 1) 
{ 

temp=SPilBUF; 
SPilSTAT = 0x0000; //disable SPil module 
IFS0bits.SPilIF=0; 

//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=0; // Interrupt disabled 
SPI1STAT=0x8000; 
SPilSTATbits.SPIROV=0; 
IFS0bits.SPilIF=0; 

//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=l; // Interrupt enabled 

return (0); 

132 



i. Module: Rear Right 

File Name: main FR04.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
#include "math.h" 
#include "delay.h" 
#include "adcDrvl.h" 
#include "ioinit.h" 
#include "pwmDrvl.h" 
#include "spiDrvl.h" 
#include "rpinit.h" 

FGS(GWRP_OFF & GCP OFF); 
FOSCSEL(FNOSC_FRC); 
FOSC(FCKSM_CSECMD & IOLlWAY OFF & OSCIOFNC OFF & POSCMD_HS); 
FWDT(FWDTEN_OFF); 
FPOR(PWMPIN_OFF & HPOL ON & LPOL_ON) 

int pot_reading=0; 
int steering_angle=0; 
int speed=0; 
int mode=0; 
int encoder=0; 
int dir=0; 
int read=0; 
int a=26; 
int b=23; 
signed int varl=0; 

II 
II 
II 
II 
II 
II 
II 
II 
II 

for potentiometer reading 
desired steering angle 
desired speed 
desired mode 
for the speed encoder 
steering direction 
information from the central 
width of the base 
length of the base 

controller 

II for the difference in the desired and the actual steering angle 
void _attribute_((interrupt, no_auto_psv)) SPilinterrupt(void) 
II interrupt setup for the Serial communication 
{ 

read SPilBUF; 
Update_Values(read); 
IFS0bits.SPilIF O; II Clear the SPil Interrupt Flag 

void Direction(unsigned int xl, unsigned int yl) 
II To determine the PWM duty for the desired speed in the desired 
direction, where xl speed, yl = encoder value 
{ 

if (mode = OxB000) 
{ 

switch ( xl ) 
{ 

case 0x0000: 

break; 

PORTBbits.RB9 0; 
PlDC2 0; 

case OxlB00: 
PlDC2 = 285; 
PORTBbits.RB9 l; 

133 



else 
{ 

break; 
case 0xl400: 

PlDC2 = 530; 
PORTBbits.RB9 l; 

break; 
case 0xl000: 

break; 

PORTBbits.RB9 
PlDC2 = 800; 

case OxOC00: 

break; 

PlDC2 1330 ; 
PORTBbits.RB9 

case 0x0800: 

l· 
' 

PlDC2 = 1420 ; 
PORTBbits.RB9 l; 

break; 
case 0.x:0400: 

PlDC2 = 1610 ; 
PORTBbits.RB9 l; 

break; 
default: 

break; 

PORTBbits.RB9 0; 
PlDC2 0; 

switch ( xl ) 
{ 

case 0X0OO0: 
PORTBbits.RB9 
PlDC2 = O; 

break; 
case 0x0400: 

PlDC2 285; 
PORTBbits.RB9 

break; 
case Ox0800: 

break; 

PlDC2 530; 
PORTBbits.RB9 

case Ox0C0O: 

0; 

l · ' 

l· 
' 

PORTBbits.RB9 l; 
PlDC2 = 800; 

break; 
case 0xlO00: 

PlDC2 = 1330 ; 
PORTBbits.RB9 

break; 
case 0xl400: 

PlDC2 1420 ; 
PORTBbits.RB9 l; 

break; 
case 0xl800: 

PlDC2 = 1610 ; 

134 



PORTBbits.RB9 
break; 
default: 

l · , 

PORTBbits.RB9 0; 
PlDC2 = 0; 

break; 

void Do_Steering (unsigned int x, unsigned int y) 
/ / To do the desired steering, where x pot reading, y 
steering angle 
{ 

PORTBbits.RB6 
varl = (x - y) ; 
if (varl <= -5) 
{ 

l· , 

0; //PORTBbits.RB6 = Break 

required 

PORTBbits.RB6 
PORTBbits.RBB 
PORTAbits.RA4 

0; //PORTBbits.RBB = STEERING SPEED CONTROL 

else if ( varl >= 5 

else 

PORTBbits.RBB 
PORTAbits.RA4 
PORTBbits.RB6 

PORTBbits.RB6 

0; //PORTAbits.RA4 = Left/Right 

l · , 
l · , 
0. , 

l· , 

void Steeringl( unsigned int x2) 
// For the straight run, where X2= pot_reading 
{ 

Do_Steering(x2,512); 
} 
void Steering2(unsigned int x3, unsigned int y3, unsigned int z3) 
// For Front and all wheel steering where, x3= steering angle, y3= 

pot reading, z3= direction ( front or rear wheel) 
{ -

if (z3==1) 
{ 

if (mode== 0x4000) 
{ 

x3 512+((1.5708-(atan((l/tan((512-x3)*0.004602))-(a/b))))*217.299); 
} 
else if (mode== 0x2000) 
{ 

x3=512-((l.5708- (atan( (a/(2*b)) + (1/tan((512-x3)*0.004602)) )))*217.299); 
} 

else if(z3==0) 

if (mode==0x4000) 
{ 

135 



x3 512-((1.5708-(atan((a/b) + (1/tan((x3 512)*0.004602)))))*217.299); 
} 
else if (mode==0x2000) 
{ 

x 3 = ( ( 1 . 5 7 o 8 - ( at an { ( 1 / tan ( ( x 3 - 512 ) * 0 . 0 0 4 6 0 2 ) ) - ( a/ ( 2 * b ) ) ) ) ) * 21 7 . 2 9 9 ) + 5 12 ; 
} 

Do_Steering{y3,x3); 

void Steering3( unsigned 
//For parallel steering, 

int x4, unsigned int y4) 
where x4= steering_angle, y4= pot reading 

{ 
Do_Steering(y4,x4); 

} 
void Steering4 (unsigned int y5) 
// For Zero radius turn steering where x5= steering_angle, y5= 
pot reading 
{ -

unsigned int x5; 
x5 (512 - {0.72425*217.3)); 
Do_Steering(y5, x5); 

void Update_Values(unsigned int x5) 
// Update the variables such as speed, mode and steering angle from the 
data obtained from the data bus 
{ 

mode 
steering_angle 
speed 

x5 & OxEOOO ); 
x5 & OX03FF); 
x5 & OxlCOO ) ; 

void Wheel_Flip (unsigned int x6) 
I I Call the required steering function depending on the direction of 
movement and the mode selected, where x6 = speed 

if x6 >= 4096 && x6 <= 6144) 
{ 

switch (mode) 
{ 

case OxOOOO: 
Steeringl ( pot __ reading ) ; 
// straight run called 

break; 
case Ox2000: 

Steering2 ( steering_angle, pot_reading, dir); 
// Front wheel steering called 

break; 
case Ox4000: 

Steering2 ( steering_angle, pot_reading, dir); 
// All wheel steering called 

break; 
case Ox8000: 

Steering4(pot_reading); 
// Zero radius turn 

break; 
case OxCOOO: 

136 

called 



} 

break; 

Steering3 ( steering_angle, pot_reading); 
// Parallel steering called 

default: 
Steeringl( pot reading); 
// Default steering i.e., straight run 

break; 

else if ( x6 >= 0 && x6 <= 3072) 
{ 

} 

switch (mode) 

case 0x0000: 
Steeringl( pot reading); 

break; 
case 0x2000: 

Steeringl( pot_reading); 
break; 
case 0x4000: 

Steering2 
break; 
case 0xB000: 

steering angle, pot reading, dir); 

Steering4(pot_reading); 
break; 
case 0xC000: 

Steering3 
break; 
default: 

steering angle, pot reading); 

Steeringl( pot reading); 
break; 

else if ( x6 > 3072 && x6 < 4096) // default steering called 
{ 

switch mode 

case 0x0000: 
Steeringl( pot_reading); 

break; 
case 0x2000: 

Steeringl( pot_reading); 
break; 
case 0x4000: 

Steeringl( pot_reading); 
break; 
case 0xB000: 

Steeringl(pot_reading); 
break; 
case 0xC000: 

Steeringl( pot reading); 
break; 
default: 

Steeringl( pot reading); 
break; 

137 



} 
void Steering_Direction(int x7) 
// To determine the steering direction i.e., either left or right where, 
x7 steering_angle 
{ 

if (steering_angle >= 0 && steering_angle <= 512) 
{ 

dir = l; 
} 
else 
{ 

dir=0; 

int main (void) // Main function 
{ 

int temp; // temporary variable to read the SPlBUF 

/* Configure Oscillator to operate the device at 40Mhz 
Fosc= Fin*M/{Nl*N2), Fcy=Fosc/2 
Fosc= 20M*40/(2*4)=80Mhz for 8M 

PLLFBD=30; 
CLKDIVbits.PLLPOST=0; 
CLKDIVbits.PLLPRE=2; 

input clock*/ 
// M=32 
II Nl=2 
II N2=4 

// clock switch to nYnnr~ PLL 
_builtin_write_OSCCONH(0x03); // Initiate Clock Switch to Primary 

// Oscillator with PLL (NOSC=0b0ll) 
_builtin_write_OSCCONL(0x0l); // Start clock switching 
while (OSCCONbits.COSC != 0b0ll); // Wait for Clock switch to occur 

// Wait for PLL to lock 
while(OSCCONbits.LOCK!=l) {}; 

// Peripheral Initialization 
initRP(); // Initialize Remappable Peripheral Pins 
initAdcl(); // Initialize ADC module 
initTmr3 () ; 
initPwml(); 
initIO(); 
initSPI(); 

read= 0; 
temp= SPilBUF; 
while(l) 
{ 

II 
II 
II 
II 

Initialize 
Initialize 
Initialize 
Initialize 

TIMER 3 for ADC conversion 
PWM module 
Input/output pins 
SPI module 

pot_reading = ( ain0Buff[0]+ain0Buff[l]) / 2; 
encoder = ( ainlBuff[0]+ainlBuff[l]) / 2; 
Direction ( speed, encoder); 
Steering_Direction( angle); 
Wheel_Flip(speed); 
if(PORTBbits.RB3 1) 
{ 

lBUF; 
SPilSTAT = 0x0000; 
IFS0bits.SPilIF=0; 

//make sure the SPI 
IEC0bits.SPilIE=0; 

138 

//disable SPil module 

flag is cleared 
// Interrupt disabled 



return (0); 

SPilSTAT=0xB000; 
SPilSTATbits.SPIROV=0; 
IFSObits.SPilIF=0; 

//make sure the SPI interrupt flag is cleared 
IEC0bits.SPilIE=l; // Interrupt enabled 

139 



j. PWM setup for Stepper Motor Control in Pf Cl 0 

File name: PWM.asm 

************************************************************************* 

list p=l0F206 
#include <pl0F206.inc> 

CONFIG MCLRE OFF & 

list directive to define processor 
processor specific variable definitions 

CP OFF & WDT OFF 
/*** VARIABLE DEFINITIONS****/ 
tempo EQU 0xl0 
templ EQU 0xll 
temp2 EQU 0xl2 
#DEFINE ON GPIO,l 
#DEFINE DIR GPIO,3 
#DEFINE PWMl GPIO,0 
#DEFINE PWM2 GPIO,2 

ORG 0xlFF ; processor reset vector 
; Internal RC calibration 
; as a movlw k, where the 

value is placed at location 0xlFF by Microchip 
k is a literal value. 

ORG 0x000 coding begins here 
MOVWF OSCCAL 
GOTO start 

update register with factory cal value 

bigdelay MOVLW 0x05 
MOVWF templ 

bigdelay_l0 MOVLW 0xFF 
MOVWF temp0 

bigdelay_ll DECFSZ temp0,l 

start 

Repeat 

LOOPl 

GOTO bigdelay_ll 
DECFSZ templ,l 
GOTO bigdelay_l0 
RETLW 0 

BCF CMCON0,3 
MOVLW 0x0A 
TRIS GPIO 
MOVLW 0x00 
OPTION 
BSF ON 
BSF DIR 
BCF PWMl 
BCF PWM2 

BTFSS ON 
GOTO Repeat 
BTFSS DIR 
GOTO LOOPl 
BTFSS ON 
GOTO Repeat 
GOTO LOOP2 

MOVLW 0x04 
MOVWF temp2 

Comparator OFF 
Set GPIO 0,2 as an output 

140 



LOOPll 
BSF PWMl 
BSF PWM2 
CALL bigdelay 
BSF PWMl 
BCF PWM2 
CALL bigdelay 
BCF PWMl 
BCF PWM2 
CALL bigdelay 
BCF PWMl 
BSF PWM2 
CALL bigdelay 
BTFSS ON 
GOTO LOOP3 
BTFSS DIR 
GOTO LOOPll 
GOTO Repeat 

LOOP2 
MOVLW Ox04 
MOVWF temp2 

LOOP22 
BSF PWM2 
BSF PWMl 
CALL bigdelay 
BSF PWM2 
BCF PWMl 
CALL bigdelay 
BCF PWM2 
BCF PWMl 
CALL bigdelay 
BCF PWM2 
BSF PWMl 
CALL bigdelay 
BTFSS ON 
GOTO LOOP4 
BTFSC DIR 
GOTO LOOP22 
GOTO Repeat 

LOOP3 
DECFSZ temp2,l 
GOTO LOOPll 
GOTO Repeat 

LOOP4 
DECFSZ temp2,l 
GOTO LOOP22 
GOTO Repeat 
RETLW 0 
END directive 'end of program' 

141 



2. VBC 

File Name: Central testrun.c 

************************************************************************* 

#include "p33FJ128MC802.h" 
FGS(GWRP_OFF & GCP_OFF); 
FOSCSEL(FNOSC_FRC); 
FOSC(FCKSM CSECMD & IOLlWAY OFF & OSCIOFNC OFF & POSCMD HS); 
FWDT(FWDTEN_OFF); 
FPOR(PWMPIN OFF & HPOL ON & LPOL_ON) 

int send=0; 
int READ; 
int cycle=0; 
II variable 
repetitive), 
int i=0; 
int j=0; 
int k=0; 

to determine 
to be used 

int selection; 
int PORTBl; 
int speed=0; 
int steering=512; 
int mode=0; 

II to send the data via SPI 
II To read from the SPlBUF 

the number of steering 

II counter variable 
II counter variable 
II counter variable 

turns 

II to select the mode of steering 
II to read the PortB 
II speed 
II steering 
II mode 

void Update_data( 
I I To update the 

int x, int y, int z) 

data on the data bus, where x= speed, y 
angle, z = mode 
{ 

send= x+y+z; 

void FWS U (int xl, int yl) 

mode= xl; 

(might be 

steering 

speed= yl; 
for(i=B000;i>=0;i--) II delay function 
{ 

for ( j = 5 0 0 0; j > 0; j - - ) ; 

SPilBUF = 0; 
PORTBbits.RB3 = 0; 
while (SPilSTATbits.SPITBF); 
i=4400; 
while (1) 

for (;i>0;i--) 
{ 

for (j=20;j>0;j--) 

II make wheels straight 
II starts transmission 

II inner module 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 
SPilSTAT= 0x0000; 

142 



for(k=500;k>0;k--); 
SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0xB000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update_data(speed,0,0); 
// First motion statement 

break; 
case 1: 

Update_data(speed,400,mode); 
// second motion statement 

break; 
case 2: 

Update data(speed,0,0); 
// third motion statement 

break; 
case 3: 

Update data(0,0,0); 
// final stop 

break; 
case 4: 

while (1); 
break; 

SPilBUF = send; 
PORTBbits.RB3 = 0; // starts transmission 
while (SPilSTATbits.SPITBF); 

cycle=cycle+l; 
switch (cycle) 
{ 

case 1: 
i=4800; 

break; 
case 2: 

i=4400; 
break; 
case 3: 

i=l00; 
break; 
default: 

i=l; 
j =1; 

break; 

void FWS_Zigzag (int x2, int y2) 

mode= x2; 
speed= y2; 
for(i=B000;i>=0;i--) 
{ 

for(j=5000;j>0;j--); 

// delay function 

143 



SPilBUF = O; 
PORTBbits.RB3 = 0; 

// make wheels straight 
// starts transmission 

while (SPilSTATbits.SPITBF}; 
i=480; 
while (1) 
{ 

for (;i>0;i -) 

for (j=20;j>0;j--} //inner module 
{ 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ SPilBUF; 
SPilSTAT= 0x00O0; 
for(k=500;k>0;k--); 
SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0x8000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update_data(speed,0,0); 
// First motion statement 

break; 
case 1: 

Update_data( ,600,mode); 
// second motion statement 

break; 
case 2: 

Update_data(speed,0,0); 
// third motion statement 

break; 
case 3: 

Update_data(speed,424,mode); 
// fourth motion statement 

break; 
case 4: 

Update_data(speed,0,0); 
// fifth motion statement 

break; 
case 5: 

Update_data(speed,600,mode); 
// sixth motion statement 

break; 
case 6: 

Update_data(speed,424,mode); 
// seventh motion statement 

break; 
case 7: 

Update_data(0,0,0); 
I I final stop 

break; 
case 8: 

while (1); 
break; 

144 



SPilBUF = send; 
PORTBbits.RB3=0; II starts transmission 
while (SPilSTATbits.SPITBF); 

cycle=cycle+l; 
switch (cycle) 
{ 

case 1: 
i=l900; 

break; 
case 2: 

i=480; 
break; 
case 3: 

i=2700; 
break; 
case 4: 

i=480; 
break; 
case 5: 

i=2700; 
break; 
case 6: 

i=760; 
break; 
case 7: 

i=l00; 
break; 
default: 

i=l; 
j=l; 

break; 

void FWS S (int x3, int y3) 

mode= x3; 
speed= y3; 
for(i=S000;i>=0;i--) 
{ 

for(j=5000;j>0;j--); 
} 

II delay function 

SPilBUF = O; 
PORTBbits.RB3 = 0; 

II make wheels straight 
II starts transmission 

while (SPilSTATbits.SPITBF); 
i=l750; 
while (1) 

for (;i>0;i--) 
{ 

for (j=20;j>0;j--) 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 

145 



} 

SPilSTAT= 0x0000; 
for(k=500;k>0;k- ) ; 
SPilSTATbits.SPIROV 0. , 
//make sure the overflow is cleared 
SPilSTAT Ox8000; //enable SPil module 
switch( ) 
{ 

case 0: 
Update_data(speed,0,0); 
// First motion statement 

break; 
case 1: 

Update_data(speed,600,mode); 
// second motion statement 

break; 
case 2: 

Update_data(speed,0,0); 
// third motion statement 

break; 
case 3: 

Update_data(speed,424,mode); 
// fourth motion statement 

break; 
case 4: 

Update_data(speed,0,0); 
// fifth motion statement 

break; 
case 5: 

Update data(0,0,0); 
// final stop 

break; 
case 6: 

while (1); 
break; 

SPilBUF send; 
PORTBbits.RB3=0; // starts transmission 
while (SPilSTATbits.SPITBF); 

cycle=cycle+l; 
switch (cycle) 
{ 

case 1: 
i=1450; 

break; 
case 2: 

i=1330; 
break; 
case 3: 

i 1450; 
break; 
case 4: 

i=860; 
break; 
case 5: 

i=lO0; 

146 



break; 
default: 

i=l; 
j=l; 

break; 

void AWS U (int x4, int y4) 

mode= x4; 
speed= y4; 
for(i=S000;i>=0;i--) // delay function 
{ 

for(j=S000;j>0;j--); 
} 
SPilBUF = O; 
PORTBbits.RB3 = 0; 

// make wheels straight 
II starts transmission 

while (SPilSTATbits.SPITBF); 
i=4400; 
while (1) 
{ 

for (;i>0;i--) 

for (j=20;j>0;j--) 
{ 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 
SPilSTAT= 0x0000; 

for(k=S00;k>0;k--); 

SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0x8000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update_data(speed,0,0); 
// First motion statement 

break; 
case 1: 

Update_data(speed,400,mode); 
// second motion statement 

break; 
case 2: 

Update_data(speed,0,0); 
// third motion statement 

break; 
case 3: 

Update data(0,0,0); 
// final stop 

break; 
case 4: 

while (1); 
break; 

147 



SPilBUF = send; 
PORTBbits.RB3 = 0; // starts transmission 
while (SPilSTATbits.SPITBF); 

cycle=cycle+l; 
switch (cycle) 
{ 

case 1: 
i=2700; 

break; 
case 2: 

i=4400; 
break; 
case 3: 

i=l00; 
break; 
default: 

i=l; 
j =l; 

break; 

void AWS Zigzag(int x5, int y5) 

mode= x5; 
speed= y5; 
for(i=B000;i>=0;i--) // delay function 
{ 

for(j=5000;j>0;j--); 
} 
SPilBUF = O; 
PORTBbits.RB3 = 0; 

// make wheels straight 
// starts transmission 

while (SPilSTATbits.SPITBF); 
i=480; 
while (1) 

for (;i>0;i--) 

for (j=20;j>0;j--) 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 
SPilSTAT= 0x0000; 
for(k=500;k>0;k--); 
SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0x8000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update data(speed,0,0); 
// First motion statement 

break; 

148 



case 1: 
Update data(speed,600,mode); 
II second motion statement 

break; 
case 2: 

Update_data(speed,0,0); 
II third motion statement 

break; 
case 3: 

Update_data(speed,424,mode); 
II fourth motion statement 

break; 
case 4: 

Update_data(speed,0,0); 
II fifth motion statement 

break; 
case 5: 

Update data(speed,600,mode); 
II sixth motion statement 

break; 
case 6: 

Update (speed,424,mode); 
II seventh motion statement 

break; 
case 7: 

Update_data( ,600,mode); 
II motion statement 

break; 
case 8: 

Update_data(speed,0,0); 
II ninth motion statement 

break; 
case 9: 

Update_data(0,0,0); 
I I final stop 

break; 
case 10: 

while (1); 

break; 

SPilBUF = send; 
PORTBbits.RB3 O; II starts transmission 
while (SPilSTATbits.SPITBF); 

cycle,,,cycle+l; 
switch (cycle) 
{ 

case 1: 
i=l200; 

break; 
case 2: 

i=480; 
break; 
case 3: 

i=l200; 
break; 

149 



case 4: 
i=480; 

break; 
case 5: 

i=l200; 
break; 
case 6: 

i=l200; 
break; 
case 7: 

i=l200; 
break; 
case 8: 

i=480; 
break; 
case 9: 

i=l00; 
break; 
default: 

i=l; 
j=l; 

break; 

void Parallel (int x6, int y6) 

mode= x6; 
speed= y6; 
for(i=B000;i>=0;i--) // delay function 
{ 

for(j=5000;j>0;j--); 

SPilBUF = O; 
PORTBbits.RB3 = 0; 

// make wheels straight 
// starts transmission 

while (SPilSTATbits.SPITBF); 
i=l750; 
while (1) 
{ 

for (;i>0;i--) 

for ( j = 2 0; j > 0; j - - ) 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 
SPilSTAT= 0x0000; 
for(k=500;k>0;k--); 
SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0xB000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update data(speed,0,0); 
// First motion statement 

break; 

150 



} 

case 1: 
Update_data(speed,600,mode); 
II second motion statement 

break; 
case 2: 

Update_data(speed,0,0); 
II third motion statement 

break; 
case 3: 

Update data(speed,424,mode); 
II fourth motion statement 

break; 
case 4: 

Update_data(speed,0,0); 
II fifth motion statement 

break; 
case 5: 

Update data(0,0,0); 
II final stop 

break; 
case 6: 

while(l); 
break; 

SPilBUF = send; 
PORTBbits.RB3 = 0; II starts transmission 
while (SPilSTATbits.SPITBF); 

cycle=cycle+l; 
switch (cycle) 
{ 

case 1: 

i=l450; 
break; 
case 2: 

i=l330; 
break; 
case 3: 

i=l450; 
break; 
case 4: 

i=860; 
break; 
case 5: 

i=l00; 
break; 
default: 

i=l; 
j=l; 

break; 

void ZRT (int x7, int y7) 
{ 

mode= x7; 

151 



speed= y7; 
for(i=B000;i>=0;i--) // delay function 
{ 

for(j=5000;j>0;j--); 

SPilBUF = O; 
PORTBbits.RB3 = 0; 

// make wheels straight 
// starts transmission 

while (SPilSTATbits.SPITBF); 
i=3300; 
while (1) 

for (;i>0;i--) 

for (j=20;j>0;j--) 

while (!SPilSTATbits.SPIRBF); 
PORTBbits.RB3=1; 
READ= SPilBUF; 
SPilSTAT= 0x0000; 
for(k=500;k>0;k--); 
SPilSTATbits.SPIROV = 0; 
//make sure the overflow flag is cleared 
SPilSTAT = 0xB000; //enable SPil module 
switch(cycle) 
{ 

case 0: 
Update_data(speed,0,0); 
// First motion statement 

break; 
case 1: 

Update data(0,0,0); 
// second motion statement 

break; 
case 2: 

Update_data(speed,0,mode); 
// third motion statement 

break; 
case 3: 

Update data(0,0,0); 
// fourth motion statement 

break; 
case 4: 

Update_data(speed,0,0); 
// fifth motion statement 

break; 
case 5: 

Update data(0,0,0); 
// final stop 

break; 
case 6: 

while(l); 
break; 

SPilBUF = send; 
PORTBbits.RB3 = 0; // starts transmission 
while (SPilSTATbits.SPITBF); 

152 



} 
eye 
switch (cycle) 

int main (void) 
{ 

case 1: 
i=l00; 

break; 
case 2: 

i=l900; 
break; 
case 3: 

i=500; 
break; 
case 4: 

i=3300; 
break; 
case 5: 

i=l00; 
break; 
default: 

i=l; 
j=l; 

break; 

// Main function 

/* Configure Oscillator to operate the device at 40Mhz 
Fosc= Fin*M/(Nl*N2), Fcy=Fosc/2 
Fosc= 20M*40/(2*4)=80Mhz for SM 

PLLFBD=30; 
input clock*/ 
// M=32 

CLKDIVbits.PLLPOST=0; 
CLKDIVbits.PLLPRE=2; 

// Nl=2 
// N2=4 

// clock switch to incorporate PLL 
builtin write_OSCCONH(0x03) ;// 

II 
__ builtin_write_OSCCONL(0x0l); 
while (OSCCONbits.COSC != 0b0ll); 

while(OSCCONbits.LOCKl=l) {}; 
// REMAPPABLE PINS CONFIGURATION 
//Unlock the 

buil OSCCONL(0x20); 
//Configure SPil Port for MASTER mode 

Initiate Clock Switch to Primary 
Oscillator with PLL (NOSC=0b0ll) 

// Start clock switching 
// Wait for Clock switch to occur 

// Wait for PLL to lock 

RPINR20 = 0x00lF; // SDil input is associated to Vss. 
RPOR0 = 0x0008; 

//remappable pin RP00 3 of the dsPIC) is associated to SCK 
RPORl = 0x0907; //RP02 and RP03 are output 

//Lock the registers OSCCON I (1<<6); 
builtin write_OSCCONL(0x40); 

// Configuring input/output ports 
TRISBbits.TRISB0 0; //pin RB0/RP0 is configured as output for elk 
TRISBbits.TRISB2 0; 
//pin RB2/RP2 is configured as output for data (MOSI) 
TRISBbits.TRISBl = 0; 
// pin RBl is configured as an output (ON/OFF) 

153 



TRISBbits.TRISB3 = 0; 
TRISBbits.TRISB12 l; 
TRISBbits.TRISB13 
TRISBbits.TRISB14 
TRISBbits.TRISBlS 
PORTBbits.RB3=1; 
PORTBbits.RBl=0; 

l; 
1; 

1; 

II 
II 
II 
II 
II 

SSl output 
Motion select bit 0 (Reverse/Forward) 
Mode select bit 0 
Mode select bit 1 
Mode select bit 2 

//SPil configuration 
IFS0bits.SPilIF 
IEC0bits.SPilIE 

O; //make sure the SPil interrupt flag is cleared 
0; // Interrupt disabled 

SPilCONl = 0x053A; 
/*configure SPil module as Master, CKP=l, CKE=0, SMP=l, first 4:1 
and secondary prescaler are set to 2:1 therefore SCLK frequency is 
5MHz, idle state for clock is low, SCKx and SDOx controlled by the 
SPI module*/ 

SPilSTATbits.SPIROV= 0; //make sure the overflow is cleared 
SPilSTAT 0xB0O0; //enable SPil module 
READ SPilBUF; 
PORTBl=PORTB; 
selection= (PORTBl & 0xF000); 
switch (selection) // this is for selection of mode 
{ 

case 0x0000: 
FWS_U(0x2000, 0xC0O0); 
// U-Turn in Front Wheel Steering 

break; 
case 0x2000: 

FWS_Zigzag(Ox2000, 0xC000); 
// Zigzag (Continuous) turn in Front Wheel Steering 

break; 
case 0x4000: 

FWS_S (Ox2000, 0xC000); 
// Zigzag Turn in Front Wheel Steering 

break; 
case 0xB0OO: 

AWS_U(0x4000, 0xC000); 
// U-Turn in All Wheel Steering 

break; 
case 0xl000: 

AWS_Zigzag( 0x4000, 0xC000); 
// Zigzag (Continuous) turn in All Wheel Steering 

break; 
case Ox3000: 

Parallel (Oxcooo, oxcooo); 
II Zigzag Turn in Parallel Steering 

break; 
case 0xS0O0: 

ZRT (0x0000, OxC000); 
// U-Turn in Zero Radius Turn Steering 

break; 

return (0); 

154 




