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ABSTRACT 

Ghosh, Ahana, M.S.,Department of Electrical and Computer Engineering, College of 
Engineering and Architecture, North Dakota State University, May 2010. Joint 
Compression and Encryption. Major Professor: Dr. Rajendra Katti. 

This research work proposes two techniques of joint compression and encryption using 

Shanon Fano Elias coding and Arithmetic coding respectively. The first scheme proposed 

is called Adaptive Shannon-Fano-Elias code where it has been observed that the 

complexity of attacks is exponential in m, where m is the length of the string being 

compressed. Since mis usually very large (> 220
), the security of our scheme is very high. 

The main reason why our scheme's security depends on m is the fact that all attacks require 

the ciphertext to be scanned from left to right. The algorithm proposed does not 

compromise in the compression ratio produced by normal Shannon Fano Elia coding. The 

second scheme proposed uses Arithmetic coding as the compression algorithm as 

Arithmetic coding is one of the optimal compression techniques that can be used in various 

applications. The algorithm proposed is proved to be secure under an assumption that the 

attacker would have access to an algorithm which could decrypt any given message 

without the knowledge of the key. 
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

In the last decade, the explosion of information in our daily lives has made data 

compression an important requirement in communication. Extensive research is done in 

developing algorithms and techniques to solve the problem of storing and transmitting 

large data files. The basic idea of compression is to identify the structure of data and 

represent it in compact form. A number of existing compression algorithms, such as 

Huffman coding, Shannon Fano Elias (SFE) coding, and Arithmetic coding, are used as 

compression techniques in today's multimedia and communication systems. Another factor 

which has gained importance for existing communication systems is security. Compression 

does not assure security; therefore, the compressed messages need to be encrypted before 

sending them to the other end of the communication channel. One of the interesting 

methods of implementing security and compression together is to use any of the existing 

compression algorithms for encryption. The dual use of such compression algorithms saves 

time and effort in embedded multimedia systems [l]. 

Mohtashami presented the cryptographic aspect of Huffman coding in his paper 

[2]. However, if the probability mass function (pmf) of the source is known, Huffman 

coding does not act as one of the efficient encryption algorithms. Another disadvantageous 

factor with Huffman coding is large computations. To overcome such disadvantages, 

methods have been proposed where SFE coding is used for both encryption and decryption 

[3]. Unlike Huffman, coding SFE coding is proven to be secure for the sources whose pmfs 

are known. Another strong compression technique which can be used for encryption is 
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Arithmetic coding. Arithmetic coding uses a model-based paradigm where an encoded 

string can be produced from an input string of symbols and a pre-defined model. This 

encoded string is a compressed version of the input string. There are few limitations 

associated with both SFE and Arithmetic coding. SFE coding does not produce optimum 

compression. On the other hand, Arithmetic coding is one of the strongest compression 

techniques but it involves a lot of computation which requires both time and memory. This 

thesis work addresses the problem of joint compression and encryption. It proposes two 

new methods where SFE and Arithmetic coding are used. The proposed methods are 

cryptographically more secure than the existing standard algorithms. Cryptanalysis of these 

new methods has also been presented in this thesis. Before we provide the details of the 

new methods, a background of the existing compression techniques and their 

advantages/disadvantages in use as an encryption algorithm is discussed. 

In Section 1.2, coding principle and features of Huffman coding are discussed in 

detail. Section 1.3 talks about Shannon Pano Elias Coding, whereas Section 1.4 gives a 

detailed study of Arithmetic Coding. 

1.2. Huffman Coding 

Huffman coding is a technique introduced by David A. Huffman in 1952. 

It is one of the best-known compression techniques, producing optimal compression for 

any given probability distribution. Let a source S be putting out symbols S = s1, s2, ... , sm 

where siE X= {x1,x2, ... ,xn}, Set Xis called the source alphabet. Let us assume that the pmf 

of Xis p(xi) > 0. In Huffman coding, the encoder needs to arrange these probabilities [p(xi) 

s] in ascending order before finding the codeword for each symbol. Ordering of symbols is 

needed at each step while encoding a string of symbols [4]. Huffman codewords are 
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optimal; i.e., no other codeword could have an expected length lower than these 

codewords. The expected length of a code is defined as follows: 

where l(xi) is the length of the codeword of Xi having a probability of p(xt). It can be 

shown that L satisfies H < =L<H + l, where H represents entropy of the source [ 4]. 

One of the disadvantages of Huffman coding is that it involves large computations. 

This may lead to the addition of extra hardware during implementation of Huffman coding. 

Moreover, if Huffman coding is used for encryption, the probability mass function of the 

source must be hidden. This is because, by knowing the probability mass function of the 

source, it is very easy for an attacker to find the Huffman codewords for all the symbols in 

the symbol set. On the other hand, it has been shown in [2] that, if an attacker is not aware 

of the pmf of the source, then a Huffman coded file becomes quite difficult to 

crypatanalyze. However, in most cases like plain English text, the pmf of the source is 

known. Therefore, in spite of having good compression capability, Huffman coding is not 

a very good technique to use for encryption. Suppose we have the following symbols in a 

symbol set. The respective probabilities are tabulated in Table 1. 

Table 1. Symbols showing their respective probabilities 

Symbols Probabilities 

A 0.5 

B 0.2 

C 0.2 

D O.l 
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Using Huffman coding, the following code tree (Figure 1.1) could be drawn where the 

symbols with low probabilities are placed at the bottom of the tree while those of high 

probabilities are on the top. All the left branches of the tree are assigned the bit '0', 

and those on the right are assigned '1 '. Starting from node 1 and tracing the path in 

the code tree, the codewords of the symbols are determined as shown in Table 2. 

Figure 1.1. Code Tree for Huffman coding. 

Table 2. Codeword for the symbols shown in Table 1. 

Symbol Probabilities Codeword 

A 0.5 1 

B 0.2 01 

C 0.2 000 

D 0.1 001 
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1.3. Shannon Fano Elias Coding 

Shannon Fano Elias coding is one of the compression algorithms which has 

stronger encryption capability than Huffman coding. SFE coding does not need to follow 

any particular ordering of symbols to find the codewords. SFE coding was first introduced 

in a 1963 information book by Abramson [ 1]. The construction of SFE coding is based on 

finding the modified cumulative frequency of all symbols in the symbol set. Let us 

consider the source alphabet, X , as defined in Section 1.2. The modified cumulative 

distribution function is defined as 

(1.2) 

F(.) represents the sum of the probabilities of all symbols placed before x; in the ordering 

plus half of the probability of x;. Because the random variable is discrete, the cumulative 

function consists of a step size of p(x;) . F(xi) is actually a real number only expressible by 

an infinite number of bits. Therefore, F(x;) can be rounded off to l(xi) = f logp(~i)l+l bits, 

denoted by lF(xi)foxi)· SFE coding uses lF(xi)foxi) as the codeword for x;. The resulting 

codewords are proven to be prefix-free [2][5]. The expected length, L, of an SFE-encoded 

sequence is defined as 

(1.3) 

It can be shown that L satisfies H + 1 < =L<H + 2, where H represents entropy of the source 

[2]. It is implied from equation (2) that the modified cumulative frequency of x; depends 

on the probabilities of the symbols preceding x; in that particular order of the symbols in 

the symbol set. Therefore, if the order is changed, F(xi) and, subsequently lF(xi)Jirxi), 

would change. Different orderings would result in different codewords for a particular 
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symbol. This implies that the order of the symbols can be used as the key during 

encryption. Cryptanalysis of such an algorithm is shown in [3]. Unlike Huffman coding, 

SFE can be used for a system where pmf of the source is known, but SFE does not produce 

good compression because codewords produced by SFE contains redundant bits. We can 

get rid of such redundant bits by applying the algorithm proposed in [6]. 

In this thesis, we propose a new method of encryption using SFE. Irrespective of 

source pmf, the algorithm assumes the initial distribution to be uniform. After every t 

symbols (where t is a constant), the pmf is changed. Hence, the method is named as 

Adaptive SFE. It is also shown that this t is proportional to m i.e., the length of the 

message, and, therefore, is a very large number. 

Example of SFE Coding 

Let a source alphabet X = { a1, a2, a3}. The probabilities and the corresponding 

modified cumulative frequency are shown in Table 3. The codewords are the binary 

representation of the modified cumulative frequency. F(xi) is found following equation 

(1.2). Therefore, if we have a message, a 1a3a2 , its codeword would be 010011110. 

Table 3. Symbols showing their probabilities and the modified cumulative frequency along 
with codeword 

Symbol p(x1) lF (xi) foxi) Codeword 

a1 0.3 0.3 010 

a2 0.5 0.55 10 

a3 0.2 0.9 0111 
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1.4. Arithmetic Coding 

Arithmetic coding is one of the well-known compression techniques, an effective 

mechanism for removing redundancy in the encoded data. Unlike other compression 

algorithms, it encodes the string of symbols, i.e., the message, instead of encoding each 

symbol in the symbol set. Arithmetic coding uses a range of values to uniquely represent 

any sequence of symbols. The range is proportional to the probabilities of the sequence of 

the symbols. So, even if the pmf of the source is unknown Arithmetic coding can produce 

a unique mechanism to code the messages given out by the source. [7]. 

Example of Arithmetic Coding 

The range used in Arithmetic coding is (0, 1], where "(" denotes the closed interval 

and"]" represents the open interval. Therefore, any sequence is mapped to a range in the 

[0, 1) line. Let a source alphabet be X = { a1, a2, a3 }. Now, suppose we have a source 

outputting symbols from the set, and each symbol output is independent from the others. 

Let the probability of occurrence of a 1 be p(a1) = 0.5, that of a2 be 0.3, and that of a3 be 

0.2. The range (0, 1] is divided in the ratio of the probabilities as shown in Figure 1.2. 

a3 1.0 

0.8 
a2 

0.5 

a1 r- 0 

0 

Figure 1.2. Symbols showing its distribution in (0, 1] line in ratio of their probabilities. 
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The output bits given by the encoder follow the pattern shown in Figure 1.3. The figure 

shows that, if a selected range lies below 0.5 in the (0, 1] line, the encoder outputs 0, 

whereas if it is above 0.5, it outputs 1. Similarly, the range (0.5,1] and (0,0.5] can be 

divided and subdivided, and the process can continue till the entire message is encoded by 

the encoder. Figure 1.3 illustrates such division and subdivision as well as the 

corresponding output bits[7]. 

1.0 

0.875 

0.75 

0.625 

0.5 -

0.375 

0.25 

0.125 

0.0 0 

II 

10 

01 

00 

Ill 

110 

101 

100 

Oil 

010 

001 

000 

Figure 1.3. Representation of model showing the output bits. 

Let us consider the above example where we have a symbol set containing three 

symbols: a,, a2, and a3_ From Figure 1.2, we know that each range uniquely represents the 

respective symbol. Therefore, the (0, 1] line is divided in the ratio of the probabilities of the 

symbols, i.e., 5:3:2. Symbol a1 is represented by the range [0,0.5). Similarly, a2 is 

represented as [0.5,0.8) and a3 as [0.8,1). Now, if a message, a1aJ{l.2, needs to be encoded, 

the encoder would scan the first symbol which is a 1 in this case. The range in which the 

message would fall is [0,0.5). Referring to Figure 1.3, we know the encoder would output a 
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bit 0. The selected range is again subdivided into the ratio of the probabilities of the source 

symbols. Figure 1.4 shows the changed model with the new ranges in it. Because the next 

symbol in the message is a3, the selected range becomes (0.4,0.5] as shown in Figure 1.4. 

The new range lies above 0.25; therefore, the encoder would output a bit 1; it is also above 

0.375; therefore, another bit 1 is given out by the encoder. The new interval [0.4,0.5) is 

again divided, and the final range becomes [0.45,0.47) (as shown in Figure 1.5). The 

corresponding code becomes O 111. Therefore, the codeword for the message becomes 

0111. 

0.5 

a1a3 
0.4}L+ 

1 c:=========:::::::=-+ 0.375 

a1a2 
0.25 

0 a1a1 

0 
0 

Figure 1.4. Arrangement of symbols 
after the second symbol is given out by 
the source. 

0.5 

a1a3 a3 

11 

a1a3 a2 

0.45 
1 

::::::::=,.- 0.4375 

a1a3 a1 

0.4 

Figure 1.5. Arrangement of symbols 
after the third symbol is given out by 
the source. 

There are basically two models of Arithmetic coding: Fixed model and Adaptive 

model. The above example shows the fixed-model Arithmetic coding technique. The fixed 

model is applied for cases where the source pmf is known to the encoder and decoder. On 

the other hand, the adaptive model assumes the initial distribution to be uniform. After 

encoding each symbol, the adaptive encoder updates its distribution. More frequent 
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symbols have their probabilities increased while the others have their probabilities 

decreased. 

Let us perform Adaptive Arithmetic coding on the above example. We have a 

symbol set, X = { a1, a2, a3 }, where we do not know the distribution of the source, so we 

start with a uniform distribution. This implies that each symbol would have a probability of 

0.33, i.e., p(a1)=p(a2)=p(a3)=0.33. After encoding each symbol, the probabilities would 

be updated using the Laplace formula stated in equation (4). 

(Fj+l) 

If=1(Fj+l) 
(1.4) 

where Fi is the number of occurrence of symbol i and n is the number of symbols 

in the symbol set. 

Let us assume the same message, a 1aJ(l,2, is given out by the source. If we redraw 

Figure 1.2, it would be as follows (Figure 1.6). Therefore, the output bit would be 0 as the 

selected range lies below the 0.5 line. 

1.0 

0.66 

0 

0 

Fig 1.6 Arrangement of the symbols in ratio of their probabilities in (0,1] line. 

After the encoding, the probabilities of each symbol are updated using the formula 

in equation (4). So far, the number of occurrences of a 1 is 1 in the message, which means 
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F01 =1, and so far, the number of symbols that occurred is also 1. Putting it into equation 

(4), we get p(ao= ~:~ =0.5. Similarly, for the symbol a2, the probability becomes p(a2>= 

O+l = 0.25, and that of a3 is 0.25, too. Therefore, it can be observed that, since a1 has 
1+3 

already occurred in the message, its probability is increasing while that of other symbols is 

decreasing. The new ratio of probabilities for the symbols becomes 2: 1: 1, and the selected 

range from Figure 1.6 would be divided into this ratio as in Figure 1.7. 

0.33 

1 c::=======:::::::=-+ 

}L+ 
0.2475 

No Output 

0.165 

0 

0 

Figure 1.7. Arrangement of symbols after the second symbol is given out by the 
source. 

The selected range (0.2475,0.33] does not lie completely under 0.25 or above 0.25, 

so the encoder is not able to decide on the bit; therefore, it does not output any bit. The 

probabilities of the symbols are updated, and the new probabilities become p(a1)= 0.4, 

p(a2)= 0.2, and p(a3)= 0.4. The selected range is subdivided in the new ratio of probabilities. 

The encoder reads the next symbol given in the message, and because it is a2, the selected 

range becomes (0.2805,0.3135]. The selected range lies above 0.25, so 1 is output by 

encoder, and also, it lies below 0.375, so it gives out O as shown in figure 1.8.Therefore, 

the code becomes 010, which is different than Normal Arithmetic coding. 
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0.33 

0.3135 
0.3125 

~ 10 

0.2475 

Figure 1.8. Showing the final range of the codeword for the message a1a3 a2 

Here, we discuss a few advantages and disadvantages of Arithmetic coding. A few 

salient features of Arithmetic coding are as follows. 

i) Uniqueness of representation: The codeword produced by Arithmetic 

coding is actually unique as, in Arithmetic coding, the entire message is 

encoded instead of finding the codeword for each symbol. 

ii) Optimum compression: Arithmetic coding produces optimum compression 

compared to other compression techniques. 

iii) Dynamic sources: Arithmetic coding can deal with dynamic sources with 

ease, i.e., the cases where the distribution of sources is not known. Adaptive 

Arithmetic coding does not need the source distribution. It updates its 

model during the encoding process, depending on the nature of the message. 

iv) Separation of coding and source modeling: In Arithmetic coding, there is a 

clear separation between the source modeling and coding. We have already 

discussed that there can be two types of model in arithmetic coding, fixed 

model and adaptive model. A user can choose the model according to his 
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needs. The coding principle remams the same whatever be the source 

model. This facilitates dealing with complex models at ease. 

Drawbacks of Arithmetic Coding 

There are drawbacks for Arithmetic coding~ 

i) One of the main drawbacks in Arithmetic coding is its slow operation. 

There are too many calculations taking place while encoding or decoding a 

process, thereby increasing the processing time. 

ii) One more problem of Arithmetic coding is that it is sensitive to error. A few 

bits of error may result in a completely different sequence. There are a few 

error-correcting techniques introduced to overcome this problem. 
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CHAPTER 2. JOINT COMPRESSION AND ENCRYPTION 

In this era of information technology, exchange of information plays an important 

role in different businesses like online banking, online trade, and multimedia. These data 

are generally confidential and should be protected from eavesdroppers. Besides, the data 

need to be reduced in size to minimize the cost of transmission in terms of speed and time. 

Therefore, joint encryption and compression have gained much importance. Moreover, 

compressions also help to decrease the redundancy in the plaintext which makes the data 

more resistant to statistical method of cryptanalysis. Joint compression and encryption 

have also acquired increasingly important roles in medical-, commercial-, and government

related computing. Other applications where encryption is used for authentication and 

copyright protections are digital watermarking and wireless transaction. 

2.1. Review of Present Techniques 

In need of higher security and an exchange of a large amount of data, a lot of 

research work is going on to develop algorithms which could perform compression and 

encryption together. A few of them end up compromising the compression ratio while the 

other schemes turn out to be complex and increase transmission delay. A brief discussion 

of this research work is presented in this section. 

In 1994, Finnila [8] showed an innovative technique to implement joint 

compression and encryption. In this paper, a fixed-library Autosophy tree network data 

compression has been combined with encryption using the library as the code key. As 

stated in the paper, the word "Autosophy" is formed from the Greek words "autos" (self) 

and "Sophia" (knowledge or wisdom) and can be translated as self learning or self 

knowledge. Here, algorithms are developed for self-assembling data networks in electronic 
14 



memories where all new information is learned from the little informations known.Each 

serial tree network starts with a seed word which could identify the serial tree network. 

Each memory word consists of two parts; the gate and the pointers. The gate consists of 

the data while the pointers contains the address of the previous node. During encryption, 

the serial network matches the characters in words and supplies the identified word or part 

of the word. The method here provides a fixed library compression which includes 

encryption, too. The applications of the method include the public telephone system and 

news reporting for a national weekly magazine which does not want its competitor to see 

its future stories. After reviewing this particular paper, it has been observed that, for better 

data security, frequent changes of a library need to be done; these changes may be difficult 

and not cost effective for maintenance. 

Pseudo random numbers can be effectively used in cryptography. In [9], we came 

across a few approaches where pseudo random shuffle is used in Huffman coding or 

Arithmetic coding. In the case of Arithmetic coding, pseudo random shuffle is used to 

shuffle the interval table for Arithmetic coding before performing the compression. The 

idea behind Lempel-Ziv compression is to replace a group of consecutive characters with 

an index in the dictionary [10]. The algorithm [9] first initializes a pseudo random number 

generator with the encryption key. It shuffles the initial values and performs Lempel-Ziv 

compression. In spite of using a pseudo random shuffle and instilling some randomness in 

the method, it is not a very strong encryption technique. 

There are other efficient multimedia encryption techniques using entropy codec 

design as discussed in paper [ 11]. The method described in [ 11] needs to generate and store 

a very huge number of statistical tables to achieve security. A codeword is selected 
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randomly from these large numbers of statistical tables. Such a statistical table grows with 

the number of symbols, making it unsuitable for compressing and encrypting a very large 

symbol set. 

In April 2006, a new method of compression and encryption scheme using variable 

model Arithmetic coding and a coupled chaotic system was presented. The work 

incorporated recent results of the chaos theory, which were proved to be cryptographically 

secure. An idea has been proposed which develops an encryption technique with the use of 

a Couple Chaotic System (CCS) Pseudorandom Bit Generator (PRBG) for the generation 

of a bit string. CCS is used to generate random numbers, and the statistical model of 

Arithmetic coding is changed according to the random number. Chaotic maps are utilized 

to initialize the PRBG. Every time the model tries to encode a symbol, it permutes the 

distribution in a complex manner which introduces delay and uses memory space. Though 

the scheme produces a compression between 67.5% and 70.5%, it is not viable for large 

messages due to the delay and large computation cost. Moreover, the chaotic system is 

quite complex with a high implementation cost that may restrict wide usage[12]. The 

security claim of the system does not provide any mathematical proof. It is purely 

experimental. 

There have been other approaches of attaining joint compression and encryption 

using Arithmetic coding. One of them uses splitting of the intervals with permutations at 

both input and output (13)[ 14]. The paper proposes a coding technique which has very 

strong encryption capabilities at the expense of efficiency. Security of Arithmetic coding is 

widely studied and attacks have also been proposed to comment on its cryptographic 

capabilities [15]. 
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Joint compression and encryption is widely used in JPEG 2000. In [16] and [17] we 

come across efficient algorithms of compressing JPEG 2000 without compromising 

compression ratio. Research shows that one of the areas where joint compression and 

encryption is applied widely is Multimedia and video encryption [18]. In these types of 

encryptions, compression algorithms like Huffman coding and Arithmetic coding are used. 

Recent research also shows cryptanalysis of techniques used in MPEG video encryption 

and methods to improve its encryption mechanisms. Encryption with Multimedia 

compression at a low computational cost has been proposed in paper [19][20][21]. 

Huffman coding and QM coder are used to build such encryption schemes which also 

prove to have good compression capabilities. 

The approaches used for encryption of textual data may not be suitable for 

multimedia data because, in most natural images, the values of neighboring pixels are 

strongly related. A new approach has been presented in a recent research where a new 

permutation technique is introduced based on a combination of image permutation and 

encryption algorithm named after RijnDael. Dividing the original image into a 4 pixel X 4 

pixel block, then applying permutation in these blocks, and encrypting using the RijnDael 

algorithm, plain images can be encrypted. Joint compression and encryption is also applied 

to sensor networks where AES is used as one the encryption schemes [22]. 

One of the well-known compression techniques, Shannon Fano Elias coding, can 

be used as a good encryption technique in different applications like multimedia and 

communication systems. Such a technique is observed in [5] where SFE is utilized for an 

encryption algorithm using the order of the source symbols as the key. As discussed in 
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Section 1.3, we know that SFE codewords depend on the order of the source symbols in 

the symbol set. Different orders produce different codeword sets. Therefore, before 

transmission, a particular order is picked up and exchanged between the sender and the 

receiver. Encoding and decoding is done using the same order. Cryptanalysis of the 

algorithm presented in the same paper suggests that, for an attacker to find the right order 

(i.e., the key), he needs to have all the candidate codeword sets in his hand. By candidate 

codeword set, we mean codeword sets for all the orders of the symbol possible. For 

example, for a codeword set of n symbols, the number of candidate codeword sets would 

be nl. The attacker needs to scan the encoded string from left to right and then apply the 

process of enumeration to find the right order. For a large value of n, it is quite difficult for 

an attacker to find n! codeword sets. On the other hand, for a small symbol set, an attacker 

can easily find the right key. Here lies the disadvantage of this method. The work which is 

done in the thesis has overcome the disadvantage of the mentioned algorithm. The 

technique which the cryptanalyst of [5] follows cannot break the algorithm described in 

Chapter 3. The reasons are discussed in the next chapter. 
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CHAPTER 3. SECURITY USING SHANNON 

PANO ELIAS CODING 

3 .1. Introduction to SFE Encoding 

The use of Shannon Fano Elias (SFE) code for encryption can be applied in 

multimedia and communication systems. The advantage of an SFE codeword is that it 

depends on the order in which the symbols are arranged in the codeword set and does not 

matter if the probability mass functions of the symbols are known to everyone. Such an 

advantage proves to be fruitful in cases like compression of English text where the pmf) of 

the source symbols are known. SFE codes rely on ordering the source symbols for 

obtaining codewords. Different orders result in different codeword sets, thus enabling the 

usage of ordering as the key for encryption. Let us assume that a source is putting out a 

string of symbols, S = s1, s2, .. ,,sm, where s1E X ={ x1. x2,, .. . , Xn), Set Xis called the source 

alphabet. The pmf of Xis p(xi) > 0. An ordering of alphabet Xis a permutation of the 

symbols {x1, X21• •• ,xn}, The construction of SFE is based on finding the modified 

cumulative frequency of all the symbols in the symbol set. The modified cumulative 

distribution function is defined as 

(3.1) 

F(.) represents the sum of probabilities of all symbols placed before x1 in the ordering 

plus half of the probability of Xi. Because the random variable is discrete, the cumulative 

function consists of step size of p(xi) . Therefore, we can determine x1 from F(x1). In 

general, F(xi) is a real number only expressible by an infinite number of bits. Therefore, 
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F(x1) is rounded to /(xi) = r logp(:i)l+r bits, denoted by LF(xJlt(xi)· SFE coding uses 

LF(xafoxo as the codeword for x1• The resulting codewords are proven to be prefix-free [4]. 

The expected length, L, of an SFE-encoded sequence is defined as 

(3.2) 

It can be shown that L satisfies H + 1 < =L<H + 2, where H represents entropy of the source 

[4]. In [5] redundant bits were removed from SFE codewords to make them shorter and, 

hence, reduce L. 

It is implied from the above discussion that, because F(x1) depends on the position 

of the symbol x1 in a particular ordering, different orderings would lead to different values 

of F(x1) and, hence, different codeword for each x1• For a symbol set of n, there could be n! 

possible orderings. Therefore, if an ordering is picked as a key, then SFE could be used for 

encryption [5]. Cryptanalysis of such an approach has shown that SFE encoding has time 

complexity, 0 (n! xnn 
1 

. ). This turns out to be small if the alphabet size, n, is small. For 
i=l p(Xl) 

a small n, it is possible to find all n! codeword sets. A technique has also been proposed in 

[5] which could break the SFE code if codeword sets are available to the attacker. 

3.2. Adaptive SFE Code 

The thesis proposes a new approach which makes it difficult for an attacker even 

when there is a small n. The new method is called Adaptive SFE as it changes the pmf 

each time t symbols are output by the source. Initially, the pmf is assumed to be uniform, 

that is, p(x1)=lln. The SFE codewords obtained with this distribution are used to encode 

symbols s1 through s1• The pmf p(xi) is updated according to the Laplace rule [7] as 

follows. Let the number of times x1 occurs in the sequence received so far be Fi. The 
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. (F·+l) 
updated value of p(x;) 1s n 

1 
_ )' These updated values are then used to encode the next t 

Li=/Fi+l 

symbols output by the source. The pmf is, therefore, updated m/t times during compression 

of a file with m symbols. Adaptive SFE also uses two of the orderings (i.e., two 

permutations on {x1, x2, ••• ,xn}) as the key, Ko and K1, while encoding each symbol, s;. 

Therefore, the SFE code of symbols; depends on the ordering of Kbi' where b; is the /h bit 

output by a secure pseudorandom bit sequence generator (PRBG). Cryptanalysis of this 

new adaptive SFE with two orderings has a time complexity of O(t(n!)2
). It is also 

observed that tis proportional tom, the length of the string of symbols being compressed, 

and, therefore, is a very large number (t>500). Our experiments on English text sources 

show that the compression is the same for values of t between 1 and m/10. Since 

m>>l0,000, we conclude that ~ur new method is superior in terms of security (time 

complexity of 0(2 1000(n!)2)) without sacrificing compression. 

3.3. Construction of Adaptive SFE Code 

The SFE encoder requires a pmf D over the alphabet and an ordering in order to 

find the codeword for symbol s; output by the information source. The adaptive SFE 

algorithm follows the standard SFE encoding with some changes to it. 

i) The algorithm, at first, selects two orderings, Ko and K1, at random from the 

set of all n! permutations of {x1.x2 .••• ,xn}. Based on the output of the 

pseudorandom bit sequence generator, one of these orderings is used to 

obtain SFE codewords for a given pmf D. 

ii) The initial pmf D is the uniform distribution, p(xi}=lln. Every t symbols, the 

(Fi+l) 
pmf D is updated according to Laplace's rule as follows: p( ?u) = If=iCFi+i)' 
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where Fi is the number of occurrences of x; in the sequence received so far. 

If the total number of symbols in the file being compressed ism, the pmf is 

updated m/t times. These changes lead to the following encoding algorithm 

(Algorithm 1). 

Algorithml:- Encoding for the new Adaptive SFE technique 

Input: - File to be compressed containing symbols S = s1,s2, ... ,sm, where 
s; EX ={x1,xz, ... ,xn}. PRBG seed, orderings Ko, K1 chosen at random, and integer t. 

Output:- The compressed binary file. 

• j = 1, initial distribution Dis uniform, p(xi) = Jin, 1::Si::Sn 
while j :s; m do 

• Generate next pseudo-random bit b using the PRBG. 
• Read symbol Sj from the input file and find its position in the ordering Kh-
• Using Kh and current pmf D find the SFE codeword for s i· Append this 

codeword to the output file. 
• If j = kt for some integer k then update pmf D according to Laplace's Rule. 
• j=j+l 

end while 

Encoding Example 

The above algorithm is explained via the following example. A source 1s 

considered with alphabet set {x1, x2, x3 } = {A, B, C}. Initially, pmf D is 

p(A)=p(B)=p(C)=0.33(approximately). The codewords, C(xi), using the SFE method for 

the six orderings are shown in Table 4. For this example, let us assume that the PRBG 

generates the following pseudorandom bits: 1100. Let the two orderings chosen at random 

be Ko= ACB and K 1=ABC, and let t=l. (The pmf Dis updated after each symbol is read 

from the file to be compressed.) Let the file to be compressed consist of the symbols ( s1, s2, 

s3) = B, A, C. 
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Table 4. Codewords for different orderings 

Ordering C(A) C(B) C(C) 

ABC 00 01 11 

BAC 01 00 11 

ACB 00 11 01 

BCA 11 00 01 

CAB 01 11 00 

CBA 11 01 00 

Encoding proceeds as follows. 

i) The first PRBG bit is 1; therefore, the ordering is K1 = ABC. The initial pmf 

Dis uniform. From Table 4, the codeword for s1 =Bis C(B) =01. 

ii) The next PRBG bit is 1. Therefore, the key is K 1 = ABC. Because the first 

symbol received was B and t=l, we update distribution D to p(A)=0.25, 

p(B)=0.5, and p(C)=0.25. Using SFE, the new codewords are C(A) = 00, 

C(B) = 10, and C(C) =10. Therefore, the codeword for s2 =A is 00. 

iii) The next PRBG bit is 0; therefore, the key is Ko = ACB. Because the first 

two symbols received were BA and t =1, we update distribution D to p(A) = 

0.4, p(B) =0.4 and p(C) = 0.2. Using SFE, the new codewords are C(A) = 

00, C(B) = 11, and C(C) = 10. Therefore, the codeword for s3 = C is 10. 
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The output of the encoder is, therefore, C(BAC) = 010010. Decoding can be performed by 

reversing the encoding process and is given in Algorithm 2. The decoding algorithm also 

has two changes as mentioned in the encoding algorithm. 

Algorithm 2: Decoding for the new Adaptive SFE technique 

Input: Compressed binary file with bits (B1, B2, ... , Br). PRBG seed, orderings 

Ko, K1, 
and integer t. 

Output: The uncompressed file with symbols S =s1, s2, ... , Sm. 

• j = 1, initial distribution Dis uniform,p(xiJ = Jin, l:5i:5n 

• The current bit being scanned is B 1• 

while j:5 r do 
• Generate next pseudo-random bit busing the PRBG. 
• Scan the compressed binary file from left to right. Assume the bits 

(B 1,B2, .. .. , B1) have already been decoded. Starting from the 

current bit being scanned, B1, find the minimum number of bits, q, such that, 

0.B1+1B1+2 ..... Bj+q :5 0.B1+1B1+2 ..... Bj+q + 2•q for exactly one Xi, 

• Append this symbol Xi to the output file. 
• If the number of symbols output so far is kt for some integer k then 

update pmf D according to Laplace's Rule. 
■ j =j + q 

end while 

Decoding Example 

Following Algorithm 2, decoding of the first symbol is described below for when 

the received sequence is 010010 and the pseudo random bit sequence is 1100. 

i) The initial pmf is p(A) = p(B) = p(C) = 0.33(approximately). Because the 

first pseudo-random bit is 1, the ordering is K 1 = ABC. The modified 

cumulative frequencies are f(A) = 0.167, F(B) = 0.497, and f(C)= 0.827. 

ii) After reading the first bit 0 in the received sequence, both symbols A and B 

satisfy 0.02 ::5 F (A or B) ::50.h. (A subscript of 2 indicates a binary 
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number.) Since there is no unique symbol that satisfies the inequality, the 

next bit is read. 

iii) Now the sequence read so far is 01, and the following condition is satisfied 

by exactly one symbol, namely B, 0.0h :5 F(B) < 0.12. Therefore, the 

decoder outputs B. 

iv) The new pmf is computed as (p(A) =0.25, p(B)= 0.5 p(C) =0.25), and the 

decoding steps are repeated. 

The complexity of the encoding algorithm is obtained based on the number of 

times new probabilities are computed. When a new pmf is updated, n new probabilities are 

computed. In our algorithm, the probabilities are, therefore, computed nm/t times. The non

adaptive SFE method, on the other hand, computes the cumulative probabilities only n 

times in the beginning of the algorithm. However, the non-adaptive SFE method has the 

drawback of not being able to compress information sequences with unknown pmf. 

3.4. Compression Capabilities of Adaptive SFE 

The new adaptive SFE compression method has been applied on English text files 

of varying sizes. In each case, a non-adaptive SFE compression, an adaptive SFE 

compression with t = 1, and an adaptive SFE compression with t = tmax has been 

performed. It has been noted that, when t = 1, the pmf Dis updated every time a symbol is 

read from the text file. It has also been found that the maximum value of t that results in a 

compression percentage is the same as that when t = 1. We call this value t=tmax• Values of 

t greater than 1000 have not been tried. The results are given in Table 5. 
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Table 5. Compression percentage for various SFE methods 

Input File Size % Compression 

Non-Adaptive Adaptive ( t= 1) Adaptive (tmax) 

968,789 44 42.2 42.2,(1000) 

6,313 43.8 42 42,(650) 

9,715 44 43 43,(500) 

2,500 55 71 71,(100) 

In Table 5, the compression percentage is calculated as follows: 

Original size in bits-Compresses size in bits X lOO f It has been noted that the original size o 
Original size in bits • 

the file in bits is found by assuming that each alphabet in the English language requires 5 

bits. In all cases, tmax= m/10, where m is the number of symbols in the text files being 

compressed. Compared to the non-adaptive SFE method, the adaptive SFE method has a 

loss of compression of about 1 to 2%. However, the adaptive method has the advantage of 

being able to compress sources with unknown pmfs. The bottom entry in Table 5 is a text 

file with 2500 English alphabets of unknown distribution. The proposed method 

outperforms the non-adaptive method by 16%. Table 5 shows that the value of tmax is large 

if the input file size is greater than 10,000 symbols. In the next section, we will see that the 

time complexity of a cryptanalysis on the adaptive SFE is proportional to ztmax . 

3.5. Cryptanalysis of the Adaptive SFE method 

The cryptanalysis algorithm has as input a binary file that is the output of our adaptive SFE 

encoding algorithm (Algorithm 1). The cryptanalysis has to proceed by examining this file 
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from left to right. After a guess on the pair of orderings has been made, a symbol can be 

obtained using the decoding algorithm. Because the initial probability is uniform, the 

codeword sets are permutations of the same codewords for any ordering (for an example 

refer to Table 4). Thus, as long as the pmf is uniform and the PRBG unknown, in each 

step, the attacker has to perform decoding for both orderings Ko and K,. The attacker, 

therefore, computes 2r possible decodings for the first t symbols she outputs. At this point, 

she changes the pmf, D for each one of these 21 decodings and continues the process. If the 

new pmf is skewed (away from uniform), then the chances that the bits being read from the 

input file do not match any codeword (This happens if the wrong ordering is chosen.) are 

high. If this happens, we eliminate such an ordering and start all over again with a new 

choice for the pair of orderings. The number of choices for the pair of orderings is n!(n;-i), 

where n is the size of the alphabet. This cryptanalysis is described in Algorithm 3. 

Algorithm 3: An attack for our new Adaptive SFE technique 

Input: Compressed binary file with bits (B1,B2, .•••• , Br), Integer t. 
Output: The uncompressed file with symbols S =s 1, s2, ...... , Sm.Let set G contain 

every possible decoding of the input file observed so far. Set G = 0. 
Initial pmf D is uniform, p( Xi) = 1/n; 1 :S i ~ n. 
1) Choose a new pair of orderings (Ko,K1). For every dE G, obtain pmf D 

(using Laplace's rule). Obtain SFE codeword tables for K0 and K1 using pmf D. 
2) For every dE G, do the following. Do decoding until the next t symbols are 
output. Let dl,d2, ..... ,elk, (k :St) be decoded starting with d. G = (G/{ d}) u { dldl, 
dld2, .... dldk}, where dldi denotes the concatenation of d and di. If there exists a d 
with k = 0, then remove it from set A. 
3) If the number of decodings (k) for every dE G is 0, then the current choice of 
(Ko, K1) is invalid. Go to step 1. 

4) If IGI > 1 and the input file has not been completely read, go to step 2. 
S) If IGI > 1 and the input file has been completely read, then the attack is 
complete, and G contains all possible decodings of the input file. 
6) If !GI= 1 and the entire input file has been decoded, we have success, and set G 
contains the correct decoding. 
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Algorithm 3 is illustrated by mounting an attack on the example of the previous 

section. Suppose the attacker received the bit sequence 010010. Because there are only 

three symbols, the initial uniform distribution, D, is p(A) = p(B) = p(C) = 

ll3=0.33(approx). The codeword sets for every possible ordering of A, B, and C was 

found in Table 4. The pseudorandom sequence used in the encoding is unknown to the 

attacker. Initially, G =0. It is assumed that the attacker chooses orderings (Ko, K1) = (ABC, 

BAC). The pmf D = (p(A), p(B),p(C)) = (0.33, 0.33, 0.33). Lett= 1. Using ABC as the 

order of the symbols, 01 is decoded as B, and using BAC ordering, 01 is decoded as A. 

Thus, G = {B,A}. If BE G is considered, then the next two bits, 00, are decoded as A 

assuming the order as ABC but if we assume the order to be BAC then the decoding would 

not have been possible . Thus, set G becomes G = {BA.A}. Similarly if A E G is 

considered, then 00 cannot be decoded assuming the order as ABC but if we assume the 

order to be BAC then 00 is decoded as B. Thus, G = { BA,AB}. After decoding the next 

two bits, 10, set G becomes, G = {BAB, BAA, ABB, ABA}. This process is shown in Table 

6. It is noted that the SFE codewords used correspond to the enhanced or shortened 

codewords from [9,10]. At each step of the attack, both orderings Ko and K1 have to be 

tried. This has to be repeated for all n!(n!-l) possible pairs of orderings. Thus, the 
2 

complexity of the attack is 2m n!(;!-l), where m is the size of the file being compressed 

and n is the number of symbols in the alphabet set. From Table 6, it is noticed that, for 

some orderings, the decoding ends earlier than others. It is guaranteed that all decodings 

are alive for the first t steps because the initial pmf is uniform. Thus, the minimum 

complexity of the attack is zt n!(n!-l) If we assume that t?::. m/10, then the minimum 
2 
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complexity is 2m1io n!(n!-i)_ Thus, it is impossible to mount an attack on the adaptive SFE 
2 

method. Even if the attacker were successful, she only finds Ko and Ki, and still will not be 

able to decode any other file because she does not know the pseudorandom bit sequence. 

Table 6. Attack on string 010010 

Bits Key Output Bits Read Key Output Bits Read Key Output 

Read 

ABC B 

00 ABC A 10 BAC A 

01 ABC B ABC --

00 BAC -- BAC --

ABC --

00 ABC -- BAC --

01 BAC A ABC B 

00 BAC B 10 BAC A 

One of the main reasons for obtaining this improvement is the fact that the adaptive 

method has forced the attacker to decode from left to right, whereas previous non-adaptive 

methods could look for a codeword in the entire file being decoded. Note that the PRBG 

bits are only used to select one of the orderings, Ko or K1• Thus, it is hard for the attacker to 

find the PRBG bits even if many plaintext-ciphertext pairs are known. This enables the use 

of weaker pseudo-random sequence generators. 
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3.6. Conclusion 

Thus, it can be concluded that the new adaptive SFE compression algorithm can 

also be used for encryption. The new algorithm uses the following two new concepts to 

improve security: 

i) It uses two orderings, Ko and K1, one of which is chosen for the 

compression based on the output of a pseudorandom bit sequence generator. 

ii) The probability mass function, D, used in the encoding is updated every t 

steps according to the frequency of symbols observed so far. 

iii) The compression properties of the new algorithm are virtually the same as 

the simple SFE compression algorithm. However, the complexity of the 

attack increases dramatically to zm!lo n!(n!-l), where m is the size of the file 
2 

being compressed and n is the number of symbols in the alphabet set. The 

new adaptive SFE method requires probabilities to be computed nm/t 

times during a compression. This minor increase in computation allows the 

method to compress sources with unknown probability mass functions. 
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CHAPTER 4. SECURITY USING MODIFIED 
ARITHMETIC CODING 

4.1 Introduction 

Arithmetic coding is one of the strongest compression techniques used in various 

applications like image compression of jpeg files. We learned from Section 1.4 that 

Arithmetic coding is the binary representation of a range of real numbers between O and 1. 

This range is determined by dividing and subdividing the [0,1) line with respect to the 

probabilities of the symbols in the symbol set. Section 1.4 talked about two models of 

Arithmetic coding, fixed and adaptive models. The fixed model of Arithmetic coding 

utilizes the source distribution for encoding and decoding process. On the other hand, the 

Adaptive model proceeds by assuming the initial distribution to be uniform. It updates the 

distribution after encoding each symbol in the message. The probabilities of the symbols 

are updated based on the Laplace rule which states the updated probability of the symbol to 

be ~)Frl) )' where Fi is the number of occurrences of symbol i and n is the number of 
i=l F1+l 

symbols in the symbol set. The idea behind it is that the probability of the symbol increases 

if it occurs more frequently in the message while those which occur less have less 

probability. 

4.2. Construction of Modified Arithmetic Coding 

This research work has utilized Adaptive Arithmetic coding for encryption. 

Adaptive Arithmetic coding has been modified, and a new algorithm has been proposed, 

hence the name is Modified Arithmetic Coding. In this section, we discuss the construction 

of Modified Arithmetic Coding, taking into consideration a symbol set containing two 
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symbols. The same algorithm can be extended to a larger symbol set with a slight 

modification. Modified Arithmetic Coding follows the standard Adaptive Arithmetic 

coding as discussed in Section 1.4 with the following changes in it: 

i) Our symbol set has two symbols; therefore, there are two possible ways by which 

we can divide the range [0,1) as shown in Figure 4.1. Modified Arithmetic Coding 

uses the seed of a secure pseudorandom bit generator (PRBG) for its encryption. 

ii) The seed is used to generate a pseudo random bit, and based on this bit, the order of 

the symbol is determined. For example, if the pseudo random bit is 0, then the 

order would be as shown in Figure 4.la, and if the bit is 1, then the order is shown 

in Figure 4.lb. 

(a) (b) 

Figure 4.1. Two possible orders of the symbols. 

iii) A constant, k, is also defined and determines the number of bits that need to be 

output before the order of the symbols is changed. For example, if k is 5, then the 

encoder would encode the message with a particular order and continue doing so 

till 5 bits are given out as output by the encoder. 

iv) Both k and the seed of PRBG act as the key for this encryption method. 

The above changes lead to the following encoding algorithm. 
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Algorithm 4. Encoding for the Modified Arithmetic Coding 

Input: File to be compressed containing symbols S = s1,s2, ... ,sm, where 
Si EX = { 0, 1}. PRBG seed, and a constant k 
Output: The compressed binary file. 

• j = 1, initial distribution Dis uniform, p(xi) = Jin, l$;i$;n. Here, n=2. 

• Generate the next pseudorandom bit b using the PRBG. 

while j ==:; m do 
■ Read symbols; from the input file, and find its position in the ordering Kb. 
■ Using Kh output, the bit(s) corresponding to [0,1] line like Arithmetic coding. 
■ Update the probabilities using the Laplace formula. Append this codeword 

to the output file. 
■ If j ==k, 

generate the next pseudo-random bit busing the PRBG. 
■ j=j+l 

end while 

Encoding Example 

Let us consider a source with a symbol set [ Q_, l]. The source gives a string of 

binary bits which is encoded using Modified Adaptive Arithmetic Coding. The bits given 

by the source are assumed to be 11 Q l Q Q in this example. Let us also assume that the 

first three bits of PRBG are 101. The two possible orders in which the symbols can be 

arranged are as follows in figure 4.2(a) and 4.2(b): 

1.0 
1.0 

_Q 

l 

0.5 
0.5 

_Q J. 

0.0 0.0 

(a) (b) 

Fig4.2. Arrangement of the symbols in (0, 1] line. 
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We take into assumption that, if a pseudo random bit is 1, the input symbols should be 

arranged according to order 4.2(a), whereas when a pseudo random bit is 0, they should be 

arranged according to order 4.2(b ). Figure 4.3 shows the representation of output bits in 

Arithmetic model. 

1.0 

0.875 Ill 

0.75 II 

_______ Y--___ C::i ========:::::::=-
0.625 

0.5 
~ 

0.375 
011 

0.25 01 

0.125 001 

0.0 0 

(a) 

0.7109375 

1011010 
0.70898435 

0.70703125 

0.703125 

(c) 

Fig 4.3 Representation of the output bits in the model. 
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0.71875 

0.710937t 

0.703125 

10111 

1011011 

101101 

0.6875 

(b) 

101101011 

101101011 

10110101 



Encoding proceeds as follows: 

i) The initial distribution is uniform, i.e., p(Q)=p(l)=>0.5. The first PRBG bit 

is 1, so the order should be 4.2(a). The orders of the symbol arranged in a 

(0,1] line in the ratio of their probabilities would be as follows in fig 4.4. 

1.0 

l 
1 

0.5 

_Q 

0.0 

Fig 4.4.Representation of the symbols in the range (0, 1] in ratio of their 
probabilities. 

Since the first bit given by the source is 1, the selected range would be 

(0.5,1], and because the range lies completely above 0.5, the output binary 

bit should be 1 (referring to Figure 1.3 of Chapter 1). 

ii) We update the probabilities following the Laplace formula, and the new 

probabilities are p(Q)= 0.33, p(l) = 0.66. The selected range (0.5,1] is 

divided into the ratio of the probabilities of the symbols as shown in Figure 

4.5. 
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1.0 

l ,___,..1111 No output 

0.665 

_Q 

0.5 

Fig 4.5.Representation of the symbols in the range (0.5, 1] in ratio of the probabilities. 

iii) The next bit given by the source is 1, so the selected range becomes 

(0.665,1], and because this range does not completely lie above 0.75 or 

below 0.75, the encoder is not able to decide the output bit and proceeds to 

read the next bit given by the source. 

iv) The updated probabilities in this step become p(Q)= 0.25, p(l) = 0.75, 

which leads to the following model (Figure 4.6). 

v) Since the next bit in the message is 0, the selected range becomes (0.665, 

0.74875], and this range lies completely below 0.75; therefore, the encoder 

outputs a bit 0, and also because it lies completely above 0.625, it outputs a 

bit 1 simultaneously. 

LO 

l 

0.75 0.74875 

_Q }= .. 01 

0.665 

Figure 4.6. Representation of the symbols in the range (0.665, 1] in ratio of their 
probabilities. 
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In this example, we assumed that k=3 which means that, after encoding every three 

symbols, the encoder would check the next bit of PRBG output and switch the 

order accordingly. As the first bit of PRBG was 1, the order followed so far was as 

per Figure 4.2(a). At this point, the encoder checks the next output of PRBG and 

finds that to be 0, which means the order should be switched and be as per Figure 

4.2 (b). (i.e., the symbol .L should be below and symbol Q_ should be above.) From 

step 4), we know that the selected range was (0.665,0.74875], and the updated 

probabilities become p(Q)= 0.4, p(l) = 0.6. Figure 4.7 shows the division of the 

range in the ratio of their probabilities and also the new order. 

0.6875 

Q 

_l 

0.74875 

0.71525 

0.665 

No Output 
► 

Figure 4.7. Representation of the symbols in the range (0.665,0.74875] in ratio 
of their probabilities. 

The selected range is (0.665, 0.71525] as the next bit in the message is 1- The 

encoder is not able to output any bit because the range does not completely lie 

above or below 0.6875. Following the same rule, the probabilities are updated, and 

the selected range is divided. Figures 4.8 and 4.9 show the next two steps of 

encoding the next two symbols 
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0.71525 

Q 

0.6875 0.698165 

_l 

0.665 

Fig 4.8. Representation of the symbols in the range (0.665,0.71525] in ratio of their 
probabilities. 

0.71875 ~ 
I 

0.71525 

101101 
101101010 ...... 

Q 
► I 

0.70823845 

0.703125 ~ 
_l 

0.698165 

I 

0.6875 c::::==========::::::::,.-' 

Fig 4.9. Representation of the symbols in the range (0.698165,0.71525] in ratio 
of their probabilities. 
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vi) The final range is (0.70823845, 0.71525], but this does not conclude our 

encoding process. Here comes an interesting part of encoding. The binary 

bits given by the encoder so far are 101101, but this string of binary bits 

does not uniquely represent the final interval we have obtained. Referring to 

Figure 4.3(c) we can see 101101 represents the range (0.703125, 0.71875]. 

Our final range lies completely within this above range, but we need to find 

a unique binary representation of the final range or its subset; that would be 

our codeword. Since the number 0.70823845 does not convert to a binary 

numbers with terminating bits, it is not possible to represent the range 

(0.70823845, 0.71525] with a binary string that has terminating bits. 

Therefore, as discussed in Chapter 1, we would find the biggest range that 

completely lies within the final range and can be represented by a binary 

string of terminating bits. From Figure 4.3(c), we see that the range 

(0.708984375,0.7109375] lies completely within the final range 

(0.70823845, 0.71525]. The binary representation of the range 

(0.708984375,0.7109375] is 101101011, and this is our final codeword for 

the message 11 Q 1 Q Q sent to the encoder by the source. The decoding 

algorithm (Algorithm 5) for Modified Arithmetic coding is as 

follows. 
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Algorithm 5: Decoding for the Modified Arithmetic Coding 

Input: File to be decoded containing symbols C =c1,c2, .. ,,en, where 
c; EX = { 0, 1}; PRBG seed; and a constant, k 

■ Output: The compressed binary file. 
• j = l, initial distribution, D, is uniform, p(x;) = Jin, l::Si'.'.Sn. Here n=2. 

• Generate the next pseudo-random bit busing the PRBG. 
whilej ::Sn do 

If t==k 

end if 

Using kh, find the model to follow. 
Read a bit, CJ, from th~ ingut file, and find the range where 
the message would lie. 
If any symbol can be identified clearly from that range 

Append that to th_e_o!!tP!!tJile. 
t=t+l 
Update the probabilities using the Laplace formula. 

Else Proceed to read the next bit, CJ. 

Generate the next pseudo-random bit busing the PRBG. 
t=O;j = j + 1 

end while 

Decoding Example 

Let us take the same example as encoding, and we assume that the decoder has the 

bits 101101011 as input. The initial assumptions about the ordering and symbol set are the 

same as that of the encoding example. Initial probabilities of the two codewords are 

uniform, i.e., 0.5 each. Decoding proceeds as follows: 

i) The first bit of PRBG is 1, so the order to be followed is as per Figure 4.2(a). The 

first bit of the codeword is observed to be 1, so the decoder knows the range of the 

message would lie above 0.5, and (0.5,1] is the selected range as shown in Figure 

4.10. This range implies the input would be 1-
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1.0 

l 
l 

0.5 

_Q 

0.0 

Fig4.10. Representation of the symbols in the range (0,1] in ratio of their 
probabilities. 

While decoding every time, the decoder would divide the selected range in half and 

consider the lower half to be 0 and the upper half to be 1. For example, the range 

(0,1] is divided, and any range below 0.5 is considered to be O while that on the 

upper half is considered to be 1. Because the first bit encountered by the decoder is 

1, the decoder would know that the range in which the message would lie should be 

(0.5,1]. This range corresponds to the symbol .L. so it outputs 1. 

ii) At the next stage, the probabilities of the input gets updated using the Laplace 

formula, and becomes p(l) = 0.66 and p(Q) =0.33. The selected range is divided 

into the ratio of their probabilities leading to Figure 4.11 

1.0 

l 

0.665 

J2 

0.5 

0.6$75 

0.625 

0.75 

► l 

Fig4.1 l. Representation of the symbols in the range (0.5,1] in ratio of their 
probabilities. 
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The range (0.5,1] is again divided in half, and any range below 0.75 would be 0 and 

above would be 1. The next bit in the codeword is 0 which implies that the message 

would lie in the range (0.5.0.75], but the ranges of 0 and 1 are (0.5,0.665] and 

(0.665,1], respectively, so the range (0.5,0.75] does not lead us to any symbol. 

Therefore, the decoder proceeds and reads the next bit in the codeword. The next bit is 

1 which implies the range in which the message lies would be (0.625,0.75]. Even this 

range does not facilitate a guess for the next symbol as it does not completely lie in any 

of the ranges. The next bit read by the decoder is 1 which implies that the range in 

which the message lies would be (0.6875,0.75]. From Figure 4.11, we can see that 

this range is a part of the actual range (0.665, 1] which implies the second symbol 

given by the decoder would 1-

iii) The probabilities of the symbols get updated after a symbol is output by the 

decoder. The updated probabilities are p(l) = 0.75 and p(Q) =0.25. Because the last 

symbol was l.. we would divide the range (0.665, 1] in the ratio of the updated 

probabilities. This leads to Figure 4.12 The next bit is 0, meaning that the message 

would lie below 0.71875; i.e., the range would be (0.6875,0.71875]. From Figure 

4.12 we can clearly say that the range mentioned corresponds to the symbol 0. 
1.0 

l 

0.74875 -
0.71875 

- 0.6875 
Q 0.665 

Fig 4.12. Representation of the symbols in the range (0.665,1] in ratio of their 
probabilities. 
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iv) We know that our key, k, is equal to 3 in this example. This means that, after every 

3 symbols, the order of the symbols in the range should switch depending on the 

PRBG bit output. Because 3 symbols have been decoded, it is time to switch the 

order. The next PRBG bit is 0, so the order should be according to Figure 4.2(b) 

The arrangement of the symbols in the new range (0.665,0.74875] is as follows. 

We already know from the previous step that the message lies in the range 

(0.6875,0.71875]. Now, we divide this range and consider the next bit. The next 

bit is 1, so the range should be above 0.703125, i.e., (0.703125,0.71875]. This does 

not help the decoder to emit a symbol, so it divides this range again and reads the 

next bit available to it. The next bit is 0, so the range should be on the lower half of 

0.7109375. From Figure 4.13 it can be clearly stated that the range (0.703125, 

0.7109375] shows the next symbol to be L 

Q 

0.71525 

J. 

0.74875 

0.71875 

0.7109375 
- J,...._-----•~ l 
I-======:!=== 0.703125 

0.6875 

0.665 

Fig4.13. Representation of the symbols in the range (0.665,.74875] in ratio of their 
probabilities. 

Updating the probabilities and reading the next two bits available to the decoder, 
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the next symbols are found as described in Figures 4.13 and 4.14. From the previous step, 

we know that the range in which the message would lie is (0.703125,0.7109375]. After we 

divide the range (0.665, 0.71525] into a ratio of the probabilities of the symbols, the 

decoder immediately gives a symbol as the range in Figure 4.14 clearly shows that the 

next symbol would be Q . 

0.71525 

Q 
17109375 

-<~==::::;J;t:::::::::J 
... Q 

0.698165 
0.703125 

J_ 

0.665 

Fig4.14. Representation of the symbols in the range (0.665,.71525] in ratio of 
their probabilities. 

vi) The probabilities are updated, and the next bit scanned by the decoder is 1. Figure 

4.15 shows how the decoder determines the next symbol. 

0.71525 

0.7109375 

Q 

Q 
0.70823845 

0.70703125 

l 

0.703125 

0.698165 

Fig4.15. Representation of the symbols in the range (0.698165,.71525] in ratio of 
their probabilities. 
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4.3. Cryptanalysis of Modified Arithmetic Coding 

The algorithm proposed in the previous section has used an output of a secure 

PRBG as its key. A pseudorandom bit generator is considered to be secure if it satisfies the 

next bit test which is one of the fundamental tests of pseudorandornness. The next bit test 

states that, given the first k bits of a random sequence, there is no polynomial time 

algorithm that can predict the (k+ l)th bit with a probability of success higher than 50%. 

The main objective of this section of the chapter is to prove the security of the proposed 

method. We do so by a method of contradiction. 

Let us assume that the new modified Arithmetic coding proposed is not secure. Let 

us assume the attacker has in hand an algorithm, A, which can produce the corresponding 

message (without the knowledge of the key) given an encoded string as input with a 

success probability of ¼E, where E is very small. The attacker has access to the oracle, A, 
2 

and an encoded string, C. The attacker is also able to get hold of a few bits of the output of 

the same PRBG which the encoder used during encoding. Let the encoded sequence be 

C=c1c2c3 .... cncn+1 ... cn+k, where Ci denotes the binary bits of the string. Let B=b1b2 ... b, be 

the first l bits of a secure PRBG. Suppose X = x1x2 ••• Xr.,.Xm be a message available to an 

attacker and an assumption is made that t=kl. We know after every k symbols the 

encoder would switch the order of the symbols depending on the PRBG bit. Since t=kl, 

this implies that to encode t symbols of the message X, l bits of B would be needed. The 

binary bit in B detennines which order of symbols (4.2(a) or 4.2(b)) follows. Suppose 

feeding the first C and using the l bits of B in the algorithm A the attacker gets the 

message as X = x 1x2 ••• Xt • Algortihm 6 is developed using Algorithm A 
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Algorithm 6. Algorithm showing an attack on Modified Arithmetic coding 

Assumption: The attacker knows the quantity, k. PRBG is secure. 
[nput: Compressed sequence C = c,c2c3 ... ,CnCn+l·••cn+k• 

• Sequence B containing the first l bits of the PRBG. B =b1b2 ... b1. 

• oracle of Algorithm A. 

Output: The ( l + 1 )th bit of B. 
• Call A(C), and get the output as X = x1x2 ... xm, where m>n+k. Xis the message 

corresponding to C. Here, we assume that the first n bits of C are decoded using 
the first l bits of B to give supposed t bits of X, but the next bits of B are not 
known to the attacker. t=kl 

• Let us just pick the first n bits of C to get C1 =c1c2c3 •• ,.cn and feed it to Algorithm 
A. Let the output be X1= x1x2 ... x 1 • Since t=kl, C1 is decoded using l bits of B. 

• Because t=kl, therefore, at this point, there should be a switch in the order 
depending on the P. 

• Let us build a sequence, B '= b 1b2 ... bw. which means the ( l + l)th bit of B' is 0. 

• Call decoder D(C,B'), and get messageX'. This implies that the decoder 
used the order O [i.e., (ii) of Figure 1] for decoding bits Cn+I .. ,Cn+k• 

• Let B" = b1b2 ... b11 which means the (l+l)th bit of B" is O.Call decoder 
D( C.B' '), and get message X' '. This implies that the decoder used the 

order 1 [i.e., Figure 4.2(a)] for decoding bits Cn+ 1, .. Cn+k• 

• If X==X', then the next bit of Bis O; else if X==x", then the next bit is J. 

We observe in Algorithm 6 that after decoding the first t symbols the attacker does not 

have any pseudorandom bit left and therefore is not able to guess which order to use for 

decoding the next few bits of the codeword. He builds up two bit string B' and B'' as 

shown in the algorithm. Using the next bit of B' and B" he decodes the rest of the 

message. He gets two messages X' and X". Now, comparing these two messages with the 

actual message from the output of Algorithm A the attacker is able to guess which bit 

string B' or B'' is used. This makes it possible to guess the next bit of the PRBG output. 
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Therefore, we could see that Algorithm 6 is able to produce the next bit of the PRBG. The 

success probability of A to produce the right message, taking C as input, is ½+e . Given the 

encoded sequence and the key as input, decoder D would produce the correct message with 

a success probability of 1. Because A and D are independent of each other, the success 

probability of Algorithm 6 to produce the (l+l)th bit is ( ½+e). 2:+e. This proves that 
2 

PRBG Bis failing Next bit test and is not secure. We assumed the PRBG to be secure so it 

should not fail next bit test i.e. there is no polynomial time algorithm which could produce 

the (l+ 1 )th bit of PRBG knowing sequence B with a success probability more than ½ . 

Therefore, there is no such algorithm as Algorithm 6. Since Algorithm 6 is built with the 

assumption that there exists an algorithm, A, it can be further concluded that there does not 

exist any algorithm, A, which is able to decode the sequence encoded by Modified 

Arithmetic Coding without knowledge of the key .. Hence, Modified Arithmetic Coding is 

secure. The attack developed in Algorithm 6 takes into account that the attacker is aware of 

the value k but not the seed of the PRBG. Even knowing the key k the attacker has very 

low success probability of breaking the codeword. Therefore we can conclude If an 

attacker is not aware of the key k Algorithm 6 becomes more complex thereby adding 

more security to the encoding and decoding techniques. 

Example of an attack 

Let us take the above decoding example in section 4.2 to see how the attacking 

algorithm works. As we assumed that there exist an algorithm A which would output the 

message with a success probability of 2+€ taking as input just an encoded string. We take 
2 
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the example shown in section 4.2 . Let us input the codeword C = 101101011 in the 

algorithm A and gets the message X_= 11 Q l Q 0. 

Let us follow the Algortihm 6 to attack the encoding process. The first bit of the 

PRBG is 1. We assumed the attacker knows that bit which means B = 1 and therefore l=l. 

Since k=3 and J and we know t = kl, this leads to the fact that t=3. From decoding 

example in section 4.2 we know that to output the first 3 bits of the message the decoder 

would need first 5 bits from the encoded message . This means for this example n= 5 and 

C1=10110 , X1 = 11 Q and D(C1,B) = X1 • At this point since three symbols are already 

decoded by the decoder so, now it's the time to read the next bit of PRBG and decide on 

the order of the symbols in a range. But the next bit of the PRBG is unknown to attacker. 

So , the attacker guesses the next bit of the PRBG output and builds up two possible bit 

strings B'=ll and B"=IO. The attacker calls the decoder once again and feeds the whole 

message with these new B' and B" respectively. D(C,B')=X' and D(C,B")=X" where 

X'= 11 Q l Q l and X" = 11 Q l Q 0. Comparing X' and X" with X we find that X=X" 

and so the PRBG bit used should be B'' which means the next bit of the PRBG would be 0. 

Thus the attacker is able to guess the next bit of the PRBG successfully. This shows we are 

able to build an algorithm which could make the secure PRBG fail the next bit test. 

However this conclusion does not stand as we know that the pseudorandom bit generator 

taken into account in this example is secure , so there cannot be any algorithm as 

Algorithm 6. Since Algorithm 6 is built with the assumption that there exists an algorithm, 

A, it can be further concluded that there does not exist any algorithm, A, which is able to 

decode the sequence encoded by Modified Arithmetic Coding without knowledge of the 

key. Hence, Modified Arithmetic Coding is secure. 
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Thus it is proved under the assumption that if there exist an algorithm A and 

attacker has access to it then the proposed Modified Arithmetic coding is secure. 
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CHAPTER 5. CONCLUSION 

Thus, it can be concluded that the two proposed compression algorithms, Adaptive 

SFE and Modified Arithmetic Coding, can also be used for encryption. The two algorithms 

are developed incorporating little pseudorandornness in the algorithm. These 

pseudorandornness facilitated to use the compression algorithms for encryption too. 

Following is a summary of the new Adaptive SFE. 

i) Adaptive SFE uses two orderings, Ko and K1, one of which is chosen for the 

compression based on the output of a pseudorandom bit sequence generator. 

ii) The probability mass function, D, used in the encoding is updated every t steps 

according to the frequency of symbols observed so far. 

The compression properties of the new algorithm are virtually the same as the 

simple SFE compression algorithm. However, the complexity of the attack 

increases dramatically to 2m/10 n!(n!-l), where m is the size of the file being 
2 

compressed and n is the number of symbols in the alphabet set. The new adaptive 

SFE method requires probabilities to be computed nmlt times during a 

compression. This minor increase in computation allows the method to compress 

sources with unknown probability mass functions. 

The attacking algorithm becomes quite complex for Adaptive SFE keeping the 

compression ratio almost similar to Normal SFE. Similarly, Modified Arithmetic Coding 

also uses the same Arithmetic coding technique, thereby not affecting its compression 
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capabilities. However, Modified Arithmetic Coding has security incorporated in it which 

makes it a very useful compression technique over simple Adaptive Arithmetic coding. 

This thesis also leaves scope for few future work like the Arithmetic coding could 

be made more secure so that it can withstand other strong attacks like chosen plaintext , 

Known plaintext etc. Moreover the examples and algorithms for Modified Arithmetic 

coding are described taken into account a binary symbol set, future research work could be 

extend the same algorithm to M- ary symbol set and study the security and compression 

capabilities of the same. 
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