
JOINT COMPRESSION AND ENCRYPTION

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

AhanaGhosh

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

May 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

JOINT COMPRESSION AND ENCRYPTION

By

Ahana Ghosh

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this docmnent.

(/ V

ABSTRACT

Ghosh, Ahana, M.S.,Department of Electrical and Computer Engineering, College of
Engineering and Architecture, North Dakota State University, May 2010. Joint
Compression and Encryption. Major Professor: Dr. Rajendra Katti.

This research work proposes two techniques of joint compression and encryption using

Shanon Fano Elias coding and Arithmetic coding respectively. The first scheme proposed

is called Adaptive Shannon-Fano-Elias code where it has been observed that the

complexity of attacks is exponential in m, where m is the length of the string being

compressed. Since mis usually very large (> 220
), the security of our scheme is very high.

The main reason why our scheme's security depends on m is the fact that all attacks require

the ciphertext to be scanned from left to right. The algorithm proposed does not

compromise in the compression ratio produced by normal Shannon Fano Elia coding. The

second scheme proposed uses Arithmetic coding as the compression algorithm as

Arithmetic coding is one of the optimal compression techniques that can be used in various

applications. The algorithm proposed is proved to be secure under an assumption that the

attacker would have access to an algorithm which could decrypt any given message

without the knowledge of the key.

iii

TABLE OF CONTENTS

ABSTRACT .. .iii

LIST OF TABLES ... V

LIST OF FIGURES ... vi

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. JOINT COMPRESSION AND

ENCRYPTION .. 14

CHAPTER 3. SECURITY USING
SHANNON FANO ELIAS CODING .. 19

CHAPTER 4. SECURITY USING MODIFIED
ARITHMETIC CODING .. 31

CHAPTER 5. CONCLUSION .. 50

REFERENCES ... 52

iv

LIST OF TABLES

Table

1. Symbols showing their respective probabilities 3

2. Codeword for the symbols shown in Table 1.4

3. Symbols showing their probabilities and the modified
cumulative frequency along with codeword 6

4. Codewords for different orderings .. 23

5. Compression percentage for various SFE methods 26

6. Attack on string 010010 .. 29

V

LIST OF FIGURES

Figure

1.1 Code Tree for Huffman coding .. 4

1.2. Symbols showing its distribution in (0,1] line in ratio of their
probabilities .. 7

1.3. Representation of model showing the output bits.................... 8

1.4. Arrangement of symbols after the second symbol
is given out by the source ... 9

1.5.Arrangement of symbols after the third symbol is given out by the
source ... 9

1.6. Arrangement of the symbols in ratio of their probabilities in
(0,1] line ... 10

1.7 .Arrangement of symbols after the second symbol is given
out by the source.. 11

1.8. Showing the final range of the codeword for
the message a1a3 a2 .•.•• •• • • . . •• • •• • •• • . • • .• • •• • • • • •• • •• • •• • •• • . . • •• • •• • •• . .• 12

4.1.Two possible orders of the symbols.. 32

4.2. Arrangement of the symbols in (0, 1] line.............................. 33

4.3. Representation of the output bits in the model..34

4.4. Representation of the symbols in the range (0,1] in
ratio of their probabilities... 35

4.5. Representation of the symbols in the
range (0.5,1] in ratio of the probabilities............................... 36

VI

LIST OF FIGURES continued

Figure Page

4.6. Representation of the symbols in the range (0.665,1]
in ratio of their probabilities .. 36

4.7. Representation of the symbols in the
range (0.665,0.74875] in ratio of their probabilities 37

4.8. Representation of the symbols in the range (0.665,0.71525]
in ratio of their probabilities .. 38

4.9. Representation of the symbols in the range
(0.698165,0.71525] in ratio of their probabilities 38

4.10. Representation of the symbols in the
range (0,1] in ratio of their probabilities............................. 41

4.11. Representation of the symbols in the
range (0.5,1] in ratio of their probabilities 41

4.12. Representation of the symbols in the range
(0.665,1] in ratio of their probabilities 42

4.13. Representation of the symbols in the range
(0.665,0.74875] in ratio of their probabilities 43

4.14. Representation of the symbols in the range
(0.665,0.71525] in ratio of their probabilities44

4.15. Representation of the symbols in the range
(0.698165,0.71525] in ratio of their probabilities44

Vil

CHAPTER 1. INTRODUCTION

1.1. Introduction

In the last decade, the explosion of information in our daily lives has made data

compression an important requirement in communication. Extensive research is done in

developing algorithms and techniques to solve the problem of storing and transmitting

large data files. The basic idea of compression is to identify the structure of data and

represent it in compact form. A number of existing compression algorithms, such as

Huffman coding, Shannon Fano Elias (SFE) coding, and Arithmetic coding, are used as

compression techniques in today's multimedia and communication systems. Another factor

which has gained importance for existing communication systems is security. Compression

does not assure security; therefore, the compressed messages need to be encrypted before

sending them to the other end of the communication channel. One of the interesting

methods of implementing security and compression together is to use any of the existing

compression algorithms for encryption. The dual use of such compression algorithms saves

time and effort in embedded multimedia systems [l].

Mohtashami presented the cryptographic aspect of Huffman coding in his paper

[2]. However, if the probability mass function (pmf) of the source is known, Huffman

coding does not act as one of the efficient encryption algorithms. Another disadvantageous

factor with Huffman coding is large computations. To overcome such disadvantages,

methods have been proposed where SFE coding is used for both encryption and decryption

[3]. Unlike Huffman, coding SFE coding is proven to be secure for the sources whose pmfs

are known. Another strong compression technique which can be used for encryption is

1

Arithmetic coding. Arithmetic coding uses a model-based paradigm where an encoded

string can be produced from an input string of symbols and a pre-defined model. This

encoded string is a compressed version of the input string. There are few limitations

associated with both SFE and Arithmetic coding. SFE coding does not produce optimum

compression. On the other hand, Arithmetic coding is one of the strongest compression

techniques but it involves a lot of computation which requires both time and memory. This

thesis work addresses the problem of joint compression and encryption. It proposes two

new methods where SFE and Arithmetic coding are used. The proposed methods are

cryptographically more secure than the existing standard algorithms. Cryptanalysis of these

new methods has also been presented in this thesis. Before we provide the details of the

new methods, a background of the existing compression techniques and their

advantages/disadvantages in use as an encryption algorithm is discussed.

In Section 1.2, coding principle and features of Huffman coding are discussed in

detail. Section 1.3 talks about Shannon Pano Elias Coding, whereas Section 1.4 gives a

detailed study of Arithmetic Coding.

1.2. Huffman Coding

Huffman coding is a technique introduced by David A. Huffman in 1952.

It is one of the best-known compression techniques, producing optimal compression for

any given probability distribution. Let a source S be putting out symbols S = s1, s2, ... , sm

where siE X= {x1,x2, ... ,xn}, Set Xis called the source alphabet. Let us assume that the pmf

of Xis p(xi) > 0. In Huffman coding, the encoder needs to arrange these probabilities [p(xi)

s] in ascending order before finding the codeword for each symbol. Ordering of symbols is

needed at each step while encoding a string of symbols [4]. Huffman codewords are
2

optimal; i.e., no other codeword could have an expected length lower than these

codewords. The expected length of a code is defined as follows:

where l(xi) is the length of the codeword of Xi having a probability of p(xt). It can be

shown that L satisfies H < =L<H + l, where H represents entropy of the source [4].

One of the disadvantages of Huffman coding is that it involves large computations.

This may lead to the addition of extra hardware during implementation of Huffman coding.

Moreover, if Huffman coding is used for encryption, the probability mass function of the

source must be hidden. This is because, by knowing the probability mass function of the

source, it is very easy for an attacker to find the Huffman codewords for all the symbols in

the symbol set. On the other hand, it has been shown in [2] that, if an attacker is not aware

of the pmf of the source, then a Huffman coded file becomes quite difficult to

crypatanalyze. However, in most cases like plain English text, the pmf of the source is

known. Therefore, in spite of having good compression capability, Huffman coding is not

a very good technique to use for encryption. Suppose we have the following symbols in a

symbol set. The respective probabilities are tabulated in Table 1.

Table 1. Symbols showing their respective probabilities

Symbols Probabilities

A 0.5

B 0.2

C 0.2

D O.l

3

Using Huffman coding, the following code tree (Figure 1.1) could be drawn where the

symbols with low probabilities are placed at the bottom of the tree while those of high

probabilities are on the top. All the left branches of the tree are assigned the bit '0',

and those on the right are assigned '1 '. Starting from node 1 and tracing the path in

the code tree, the codewords of the symbols are determined as shown in Table 2.

Figure 1.1. Code Tree for Huffman coding.

Table 2. Codeword for the symbols shown in Table 1.

Symbol Probabilities Codeword

A 0.5 1

B 0.2 01

C 0.2 000

D 0.1 001

4

1.3. Shannon Fano Elias Coding

Shannon Fano Elias coding is one of the compression algorithms which has

stronger encryption capability than Huffman coding. SFE coding does not need to follow

any particular ordering of symbols to find the codewords. SFE coding was first introduced

in a 1963 information book by Abramson [1]. The construction of SFE coding is based on

finding the modified cumulative frequency of all symbols in the symbol set. Let us

consider the source alphabet, X , as defined in Section 1.2. The modified cumulative

distribution function is defined as

(1.2)

F(.) represents the sum of the probabilities of all symbols placed before x; in the ordering

plus half of the probability of x;. Because the random variable is discrete, the cumulative

function consists of a step size of p(x;) . F(xi) is actually a real number only expressible by

an infinite number of bits. Therefore, F(x;) can be rounded off to l(xi) = f logp(~i)l+l bits,

denoted by lF(xi)foxi)· SFE coding uses lF(xi)foxi) as the codeword for x;. The resulting

codewords are proven to be prefix-free [2][5]. The expected length, L, of an SFE-encoded

sequence is defined as

(1.3)

It can be shown that L satisfies H + 1 < =L<H + 2, where H represents entropy of the source

[2]. It is implied from equation (2) that the modified cumulative frequency of x; depends

on the probabilities of the symbols preceding x; in that particular order of the symbols in

the symbol set. Therefore, if the order is changed, F(xi) and, subsequently lF(xi)Jirxi),

would change. Different orderings would result in different codewords for a particular

5

symbol. This implies that the order of the symbols can be used as the key during

encryption. Cryptanalysis of such an algorithm is shown in [3]. Unlike Huffman coding,

SFE can be used for a system where pmf of the source is known, but SFE does not produce

good compression because codewords produced by SFE contains redundant bits. We can

get rid of such redundant bits by applying the algorithm proposed in [6].

In this thesis, we propose a new method of encryption using SFE. Irrespective of

source pmf, the algorithm assumes the initial distribution to be uniform. After every t

symbols (where t is a constant), the pmf is changed. Hence, the method is named as

Adaptive SFE. It is also shown that this t is proportional to m i.e., the length of the

message, and, therefore, is a very large number.

Example of SFE Coding

Let a source alphabet X = { a1, a2, a3}. The probabilities and the corresponding

modified cumulative frequency are shown in Table 3. The codewords are the binary

representation of the modified cumulative frequency. F(xi) is found following equation

(1.2). Therefore, if we have a message, a 1a3a2 , its codeword would be 010011110.

Table 3. Symbols showing their probabilities and the modified cumulative frequency along
with codeword

Symbol p(x1) lF (xi) foxi) Codeword

a1 0.3 0.3 010

a2 0.5 0.55 10

a3 0.2 0.9 0111

6

1.4. Arithmetic Coding

Arithmetic coding is one of the well-known compression techniques, an effective

mechanism for removing redundancy in the encoded data. Unlike other compression

algorithms, it encodes the string of symbols, i.e., the message, instead of encoding each

symbol in the symbol set. Arithmetic coding uses a range of values to uniquely represent

any sequence of symbols. The range is proportional to the probabilities of the sequence of

the symbols. So, even if the pmf of the source is unknown Arithmetic coding can produce

a unique mechanism to code the messages given out by the source. [7].

Example of Arithmetic Coding

The range used in Arithmetic coding is (0, 1], where "(" denotes the closed interval

and"]" represents the open interval. Therefore, any sequence is mapped to a range in the

[0, 1) line. Let a source alphabet be X = { a1, a2, a3 }. Now, suppose we have a source

outputting symbols from the set, and each symbol output is independent from the others.

Let the probability of occurrence of a 1 be p(a1) = 0.5, that of a2 be 0.3, and that of a3 be

0.2. The range (0, 1] is divided in the ratio of the probabilities as shown in Figure 1.2.

a3 1.0

0.8
a2

0.5

a1 r- 0

0

Figure 1.2. Symbols showing its distribution in (0, 1] line in ratio of their probabilities.

7

The output bits given by the encoder follow the pattern shown in Figure 1.3. The figure

shows that, if a selected range lies below 0.5 in the (0, 1] line, the encoder outputs 0,

whereas if it is above 0.5, it outputs 1. Similarly, the range (0.5,1] and (0,0.5] can be

divided and subdivided, and the process can continue till the entire message is encoded by

the encoder. Figure 1.3 illustrates such division and subdivision as well as the

corresponding output bits[7].

1.0

0.875

0.75

0.625

0.5 -

0.375

0.25

0.125

0.0 0

II

10

01

00

Ill

110

101

100

Oil

010

001

000

Figure 1.3. Representation of model showing the output bits.

Let us consider the above example where we have a symbol set containing three

symbols: a,, a2, and a3_ From Figure 1.2, we know that each range uniquely represents the

respective symbol. Therefore, the (0, 1] line is divided in the ratio of the probabilities of the

symbols, i.e., 5:3:2. Symbol a1 is represented by the range [0,0.5). Similarly, a2 is

represented as [0.5,0.8) and a3 as [0.8,1). Now, if a message, a1aJ{l.2, needs to be encoded,

the encoder would scan the first symbol which is a 1 in this case. The range in which the

message would fall is [0,0.5). Referring to Figure 1.3, we know the encoder would output a

8

bit 0. The selected range is again subdivided into the ratio of the probabilities of the source

symbols. Figure 1.4 shows the changed model with the new ranges in it. Because the next

symbol in the message is a3, the selected range becomes (0.4,0.5] as shown in Figure 1.4.

The new range lies above 0.25; therefore, the encoder would output a bit 1; it is also above

0.375; therefore, another bit 1 is given out by the encoder. The new interval [0.4,0.5) is

again divided, and the final range becomes [0.45,0.47) (as shown in Figure 1.5). The

corresponding code becomes O 111. Therefore, the codeword for the message becomes

0111.

0.5

a1a3
0.4}L+

1 c:=========:::::::=-+ 0.375

a1a2
0.25

0 a1a1

0
0

Figure 1.4. Arrangement of symbols
after the second symbol is given out by
the source.

0.5

a1a3 a3

11

a1a3 a2

0.45
1

::::::::=,.- 0.4375

a1a3 a1

0.4

Figure 1.5. Arrangement of symbols
after the third symbol is given out by
the source.

There are basically two models of Arithmetic coding: Fixed model and Adaptive

model. The above example shows the fixed-model Arithmetic coding technique. The fixed

model is applied for cases where the source pmf is known to the encoder and decoder. On

the other hand, the adaptive model assumes the initial distribution to be uniform. After

encoding each symbol, the adaptive encoder updates its distribution. More frequent

9

symbols have their probabilities increased while the others have their probabilities

decreased.

Let us perform Adaptive Arithmetic coding on the above example. We have a

symbol set, X = { a1, a2, a3 }, where we do not know the distribution of the source, so we

start with a uniform distribution. This implies that each symbol would have a probability of

0.33, i.e., p(a1)=p(a2)=p(a3)=0.33. After encoding each symbol, the probabilities would

be updated using the Laplace formula stated in equation (4).

(Fj+l)

If=1(Fj+l)
(1.4)

where Fi is the number of occurrence of symbol i and n is the number of symbols

in the symbol set.

Let us assume the same message, a 1aJ(l,2, is given out by the source. If we redraw

Figure 1.2, it would be as follows (Figure 1.6). Therefore, the output bit would be 0 as the

selected range lies below the 0.5 line.

1.0

0.66

0

0

Fig 1.6 Arrangement of the symbols in ratio of their probabilities in (0,1] line.

After the encoding, the probabilities of each symbol are updated using the formula

in equation (4). So far, the number of occurrences of a 1 is 1 in the message, which means

10

F01 =1, and so far, the number of symbols that occurred is also 1. Putting it into equation

(4), we get p(ao= ~:~ =0.5. Similarly, for the symbol a2, the probability becomes p(a2>=

O+l = 0.25, and that of a3 is 0.25, too. Therefore, it can be observed that, since a1 has
1+3

already occurred in the message, its probability is increasing while that of other symbols is

decreasing. The new ratio of probabilities for the symbols becomes 2: 1: 1, and the selected

range from Figure 1.6 would be divided into this ratio as in Figure 1.7.

0.33

1 c::=======:::::::=-+

}L+
0.2475

No Output

0.165

0

0

Figure 1.7. Arrangement of symbols after the second symbol is given out by the
source.

The selected range (0.2475,0.33] does not lie completely under 0.25 or above 0.25,

so the encoder is not able to decide on the bit; therefore, it does not output any bit. The

probabilities of the symbols are updated, and the new probabilities become p(a1)= 0.4,

p(a2)= 0.2, and p(a3)= 0.4. The selected range is subdivided in the new ratio of probabilities.

The encoder reads the next symbol given in the message, and because it is a2, the selected

range becomes (0.2805,0.3135]. The selected range lies above 0.25, so 1 is output by

encoder, and also, it lies below 0.375, so it gives out O as shown in figure 1.8.Therefore,

the code becomes 010, which is different than Normal Arithmetic coding.

11

0.33

0.3135
0.3125

~ 10

0.2475

Figure 1.8. Showing the final range of the codeword for the message a1a3 a2

Here, we discuss a few advantages and disadvantages of Arithmetic coding. A few

salient features of Arithmetic coding are as follows.

i) Uniqueness of representation: The codeword produced by Arithmetic

coding is actually unique as, in Arithmetic coding, the entire message is

encoded instead of finding the codeword for each symbol.

ii) Optimum compression: Arithmetic coding produces optimum compression

compared to other compression techniques.

iii) Dynamic sources: Arithmetic coding can deal with dynamic sources with

ease, i.e., the cases where the distribution of sources is not known. Adaptive

Arithmetic coding does not need the source distribution. It updates its

model during the encoding process, depending on the nature of the message.

iv) Separation of coding and source modeling: In Arithmetic coding, there is a

clear separation between the source modeling and coding. We have already

discussed that there can be two types of model in arithmetic coding, fixed

model and adaptive model. A user can choose the model according to his

12

needs. The coding principle remams the same whatever be the source

model. This facilitates dealing with complex models at ease.

Drawbacks of Arithmetic Coding

There are drawbacks for Arithmetic coding~

i) One of the main drawbacks in Arithmetic coding is its slow operation.

There are too many calculations taking place while encoding or decoding a

process, thereby increasing the processing time.

ii) One more problem of Arithmetic coding is that it is sensitive to error. A few

bits of error may result in a completely different sequence. There are a few

error-correcting techniques introduced to overcome this problem.

13

CHAPTER 2. JOINT COMPRESSION AND ENCRYPTION

In this era of information technology, exchange of information plays an important

role in different businesses like online banking, online trade, and multimedia. These data

are generally confidential and should be protected from eavesdroppers. Besides, the data

need to be reduced in size to minimize the cost of transmission in terms of speed and time.

Therefore, joint encryption and compression have gained much importance. Moreover,

compressions also help to decrease the redundancy in the plaintext which makes the data

more resistant to statistical method of cryptanalysis. Joint compression and encryption

have also acquired increasingly important roles in medical-, commercial-, and government

related computing. Other applications where encryption is used for authentication and

copyright protections are digital watermarking and wireless transaction.

2.1. Review of Present Techniques

In need of higher security and an exchange of a large amount of data, a lot of

research work is going on to develop algorithms which could perform compression and

encryption together. A few of them end up compromising the compression ratio while the

other schemes turn out to be complex and increase transmission delay. A brief discussion

of this research work is presented in this section.

In 1994, Finnila [8] showed an innovative technique to implement joint

compression and encryption. In this paper, a fixed-library Autosophy tree network data

compression has been combined with encryption using the library as the code key. As

stated in the paper, the word "Autosophy" is formed from the Greek words "autos" (self)

and "Sophia" (knowledge or wisdom) and can be translated as self learning or self

knowledge. Here, algorithms are developed for self-assembling data networks in electronic
14

memories where all new information is learned from the little informations known.Each

serial tree network starts with a seed word which could identify the serial tree network.

Each memory word consists of two parts; the gate and the pointers. The gate consists of

the data while the pointers contains the address of the previous node. During encryption,

the serial network matches the characters in words and supplies the identified word or part

of the word. The method here provides a fixed library compression which includes

encryption, too. The applications of the method include the public telephone system and

news reporting for a national weekly magazine which does not want its competitor to see

its future stories. After reviewing this particular paper, it has been observed that, for better

data security, frequent changes of a library need to be done; these changes may be difficult

and not cost effective for maintenance.

Pseudo random numbers can be effectively used in cryptography. In [9], we came

across a few approaches where pseudo random shuffle is used in Huffman coding or

Arithmetic coding. In the case of Arithmetic coding, pseudo random shuffle is used to

shuffle the interval table for Arithmetic coding before performing the compression. The

idea behind Lempel-Ziv compression is to replace a group of consecutive characters with

an index in the dictionary [10]. The algorithm [9] first initializes a pseudo random number

generator with the encryption key. It shuffles the initial values and performs Lempel-Ziv

compression. In spite of using a pseudo random shuffle and instilling some randomness in

the method, it is not a very strong encryption technique.

There are other efficient multimedia encryption techniques using entropy codec

design as discussed in paper [11]. The method described in [11] needs to generate and store

a very huge number of statistical tables to achieve security. A codeword is selected

15

randomly from these large numbers of statistical tables. Such a statistical table grows with

the number of symbols, making it unsuitable for compressing and encrypting a very large

symbol set.

In April 2006, a new method of compression and encryption scheme using variable

model Arithmetic coding and a coupled chaotic system was presented. The work

incorporated recent results of the chaos theory, which were proved to be cryptographically

secure. An idea has been proposed which develops an encryption technique with the use of

a Couple Chaotic System (CCS) Pseudorandom Bit Generator (PRBG) for the generation

of a bit string. CCS is used to generate random numbers, and the statistical model of

Arithmetic coding is changed according to the random number. Chaotic maps are utilized

to initialize the PRBG. Every time the model tries to encode a symbol, it permutes the

distribution in a complex manner which introduces delay and uses memory space. Though

the scheme produces a compression between 67.5% and 70.5%, it is not viable for large

messages due to the delay and large computation cost. Moreover, the chaotic system is

quite complex with a high implementation cost that may restrict wide usage[12]. The

security claim of the system does not provide any mathematical proof. It is purely

experimental.

There have been other approaches of attaining joint compression and encryption

using Arithmetic coding. One of them uses splitting of the intervals with permutations at

both input and output (13)[14]. The paper proposes a coding technique which has very

strong encryption capabilities at the expense of efficiency. Security of Arithmetic coding is

widely studied and attacks have also been proposed to comment on its cryptographic

capabilities [15].

16

Joint compression and encryption is widely used in JPEG 2000. In [16] and [17] we

come across efficient algorithms of compressing JPEG 2000 without compromising

compression ratio. Research shows that one of the areas where joint compression and

encryption is applied widely is Multimedia and video encryption [18]. In these types of

encryptions, compression algorithms like Huffman coding and Arithmetic coding are used.

Recent research also shows cryptanalysis of techniques used in MPEG video encryption

and methods to improve its encryption mechanisms. Encryption with Multimedia

compression at a low computational cost has been proposed in paper [19][20][21].

Huffman coding and QM coder are used to build such encryption schemes which also

prove to have good compression capabilities.

The approaches used for encryption of textual data may not be suitable for

multimedia data because, in most natural images, the values of neighboring pixels are

strongly related. A new approach has been presented in a recent research where a new

permutation technique is introduced based on a combination of image permutation and

encryption algorithm named after RijnDael. Dividing the original image into a 4 pixel X 4

pixel block, then applying permutation in these blocks, and encrypting using the RijnDael

algorithm, plain images can be encrypted. Joint compression and encryption is also applied

to sensor networks where AES is used as one the encryption schemes [22].

One of the well-known compression techniques, Shannon Fano Elias coding, can

be used as a good encryption technique in different applications like multimedia and

communication systems. Such a technique is observed in [5] where SFE is utilized for an

encryption algorithm using the order of the source symbols as the key. As discussed in

17

Section 1.3, we know that SFE codewords depend on the order of the source symbols in

the symbol set. Different orders produce different codeword sets. Therefore, before

transmission, a particular order is picked up and exchanged between the sender and the

receiver. Encoding and decoding is done using the same order. Cryptanalysis of the

algorithm presented in the same paper suggests that, for an attacker to find the right order

(i.e., the key), he needs to have all the candidate codeword sets in his hand. By candidate

codeword set, we mean codeword sets for all the orders of the symbol possible. For

example, for a codeword set of n symbols, the number of candidate codeword sets would

be nl. The attacker needs to scan the encoded string from left to right and then apply the

process of enumeration to find the right order. For a large value of n, it is quite difficult for

an attacker to find n! codeword sets. On the other hand, for a small symbol set, an attacker

can easily find the right key. Here lies the disadvantage of this method. The work which is

done in the thesis has overcome the disadvantage of the mentioned algorithm. The

technique which the cryptanalyst of [5] follows cannot break the algorithm described in

Chapter 3. The reasons are discussed in the next chapter.

18

CHAPTER 3. SECURITY USING SHANNON

PANO ELIAS CODING

3 .1. Introduction to SFE Encoding

The use of Shannon Fano Elias (SFE) code for encryption can be applied in

multimedia and communication systems. The advantage of an SFE codeword is that it

depends on the order in which the symbols are arranged in the codeword set and does not

matter if the probability mass functions of the symbols are known to everyone. Such an

advantage proves to be fruitful in cases like compression of English text where the pmf) of

the source symbols are known. SFE codes rely on ordering the source symbols for

obtaining codewords. Different orders result in different codeword sets, thus enabling the

usage of ordering as the key for encryption. Let us assume that a source is putting out a

string of symbols, S = s1, s2, .. ,,sm, where s1E X ={ x1. x2,, .. . , Xn), Set Xis called the source

alphabet. The pmf of Xis p(xi) > 0. An ordering of alphabet Xis a permutation of the

symbols {x1, X21• •• ,xn}, The construction of SFE is based on finding the modified

cumulative frequency of all the symbols in the symbol set. The modified cumulative

distribution function is defined as

(3.1)

F(.) represents the sum of probabilities of all symbols placed before x1 in the ordering

plus half of the probability of Xi. Because the random variable is discrete, the cumulative

function consists of step size of p(xi) . Therefore, we can determine x1 from F(x1). In

general, F(xi) is a real number only expressible by an infinite number of bits. Therefore,

19

F(x1) is rounded to /(xi) = r logp(:i)l+r bits, denoted by LF(xJlt(xi)· SFE coding uses

LF(xafoxo as the codeword for x1• The resulting codewords are proven to be prefix-free [4].

The expected length, L, of an SFE-encoded sequence is defined as

(3.2)

It can be shown that L satisfies H + 1 < =L<H + 2, where H represents entropy of the source

[4]. In [5] redundant bits were removed from SFE codewords to make them shorter and,

hence, reduce L.

It is implied from the above discussion that, because F(x1) depends on the position

of the symbol x1 in a particular ordering, different orderings would lead to different values

of F(x1) and, hence, different codeword for each x1• For a symbol set of n, there could be n!

possible orderings. Therefore, if an ordering is picked as a key, then SFE could be used for

encryption [5]. Cryptanalysis of such an approach has shown that SFE encoding has time

complexity, 0 (n! xnn
1

.). This turns out to be small if the alphabet size, n, is small. For
i=l p(Xl)

a small n, it is possible to find all n! codeword sets. A technique has also been proposed in

[5] which could break the SFE code if codeword sets are available to the attacker.

3.2. Adaptive SFE Code

The thesis proposes a new approach which makes it difficult for an attacker even

when there is a small n. The new method is called Adaptive SFE as it changes the pmf

each time t symbols are output by the source. Initially, the pmf is assumed to be uniform,

that is, p(x1)=lln. The SFE codewords obtained with this distribution are used to encode

symbols s1 through s1• The pmf p(xi) is updated according to the Laplace rule [7] as

follows. Let the number of times x1 occurs in the sequence received so far be Fi. The

20

. (F·+l)
updated value of p(x;) 1s n

1
_)' These updated values are then used to encode the next t

Li=/Fi+l

symbols output by the source. The pmf is, therefore, updated m/t times during compression

of a file with m symbols. Adaptive SFE also uses two of the orderings (i.e., two

permutations on {x1, x2, ••• ,xn}) as the key, Ko and K1, while encoding each symbol, s;.

Therefore, the SFE code of symbols; depends on the ordering of Kbi' where b; is the /h bit

output by a secure pseudorandom bit sequence generator (PRBG). Cryptanalysis of this

new adaptive SFE with two orderings has a time complexity of O(t(n!)2
). It is also

observed that tis proportional tom, the length of the string of symbols being compressed,

and, therefore, is a very large number (t>500). Our experiments on English text sources

show that the compression is the same for values of t between 1 and m/10. Since

m>>l0,000, we conclude that ~ur new method is superior in terms of security (time

complexity of 0(2 1000(n!)2)) without sacrificing compression.

3.3. Construction of Adaptive SFE Code

The SFE encoder requires a pmf D over the alphabet and an ordering in order to

find the codeword for symbol s; output by the information source. The adaptive SFE

algorithm follows the standard SFE encoding with some changes to it.

i) The algorithm, at first, selects two orderings, Ko and K1, at random from the

set of all n! permutations of {x1.x2 .••• ,xn}. Based on the output of the

pseudorandom bit sequence generator, one of these orderings is used to

obtain SFE codewords for a given pmf D.

ii) The initial pmf D is the uniform distribution, p(xi}=lln. Every t symbols, the

(Fi+l)
pmf D is updated according to Laplace's rule as follows: p(?u) = If=iCFi+i)'

21

where Fi is the number of occurrences of x; in the sequence received so far.

If the total number of symbols in the file being compressed ism, the pmf is

updated m/t times. These changes lead to the following encoding algorithm

(Algorithm 1).

Algorithml:- Encoding for the new Adaptive SFE technique

Input: - File to be compressed containing symbols S = s1,s2, ... ,sm, where
s; EX ={x1,xz, ... ,xn}. PRBG seed, orderings Ko, K1 chosen at random, and integer t.

Output:- The compressed binary file.

• j = 1, initial distribution Dis uniform, p(xi) = Jin, 1::Si::Sn
while j :s; m do

• Generate next pseudo-random bit b using the PRBG.
• Read symbol Sj from the input file and find its position in the ordering Kh-
• Using Kh and current pmf D find the SFE codeword for s i· Append this

codeword to the output file.
• If j = kt for some integer k then update pmf D according to Laplace's Rule.
• j=j+l

end while

Encoding Example

The above algorithm is explained via the following example. A source 1s

considered with alphabet set {x1, x2, x3 } = {A, B, C}. Initially, pmf D is

p(A)=p(B)=p(C)=0.33(approximately). The codewords, C(xi), using the SFE method for

the six orderings are shown in Table 4. For this example, let us assume that the PRBG

generates the following pseudorandom bits: 1100. Let the two orderings chosen at random

be Ko= ACB and K 1=ABC, and let t=l. (The pmf Dis updated after each symbol is read

from the file to be compressed.) Let the file to be compressed consist of the symbols (s1, s2,

s3) = B, A, C.

22

Table 4. Codewords for different orderings

Ordering C(A) C(B) C(C)

ABC 00 01 11

BAC 01 00 11

ACB 00 11 01

BCA 11 00 01

CAB 01 11 00

CBA 11 01 00

Encoding proceeds as follows.

i) The first PRBG bit is 1; therefore, the ordering is K1 = ABC. The initial pmf

Dis uniform. From Table 4, the codeword for s1 =Bis C(B) =01.

ii) The next PRBG bit is 1. Therefore, the key is K 1 = ABC. Because the first

symbol received was B and t=l, we update distribution D to p(A)=0.25,

p(B)=0.5, and p(C)=0.25. Using SFE, the new codewords are C(A) = 00,

C(B) = 10, and C(C) =10. Therefore, the codeword for s2 =A is 00.

iii) The next PRBG bit is 0; therefore, the key is Ko = ACB. Because the first

two symbols received were BA and t =1, we update distribution D to p(A) =

0.4, p(B) =0.4 and p(C) = 0.2. Using SFE, the new codewords are C(A) =

00, C(B) = 11, and C(C) = 10. Therefore, the codeword for s3 = C is 10.

23

The output of the encoder is, therefore, C(BAC) = 010010. Decoding can be performed by

reversing the encoding process and is given in Algorithm 2. The decoding algorithm also

has two changes as mentioned in the encoding algorithm.

Algorithm 2: Decoding for the new Adaptive SFE technique

Input: Compressed binary file with bits (B1, B2, ... , Br). PRBG seed, orderings

Ko, K1,
and integer t.

Output: The uncompressed file with symbols S =s1, s2, ... , Sm.

• j = 1, initial distribution Dis uniform,p(xiJ = Jin, l:5i:5n

• The current bit being scanned is B 1•

while j:5 r do
• Generate next pseudo-random bit busing the PRBG.
• Scan the compressed binary file from left to right. Assume the bits

(B 1,B2, , B1) have already been decoded. Starting from the

current bit being scanned, B1, find the minimum number of bits, q, such that,

0.B1+1B1+2 Bj+q :5 0.B1+1B1+2 Bj+q + 2•q for exactly one Xi,

• Append this symbol Xi to the output file.
• If the number of symbols output so far is kt for some integer k then

update pmf D according to Laplace's Rule.
■ j =j + q

end while

Decoding Example

Following Algorithm 2, decoding of the first symbol is described below for when

the received sequence is 010010 and the pseudo random bit sequence is 1100.

i) The initial pmf is p(A) = p(B) = p(C) = 0.33(approximately). Because the

first pseudo-random bit is 1, the ordering is K 1 = ABC. The modified

cumulative frequencies are f(A) = 0.167, F(B) = 0.497, and f(C)= 0.827.

ii) After reading the first bit 0 in the received sequence, both symbols A and B

satisfy 0.02 ::5 F (A or B) ::50.h. (A subscript of 2 indicates a binary

24

number.) Since there is no unique symbol that satisfies the inequality, the

next bit is read.

iii) Now the sequence read so far is 01, and the following condition is satisfied

by exactly one symbol, namely B, 0.0h :5 F(B) < 0.12. Therefore, the

decoder outputs B.

iv) The new pmf is computed as (p(A) =0.25, p(B)= 0.5 p(C) =0.25), and the

decoding steps are repeated.

The complexity of the encoding algorithm is obtained based on the number of

times new probabilities are computed. When a new pmf is updated, n new probabilities are

computed. In our algorithm, the probabilities are, therefore, computed nm/t times. The non

adaptive SFE method, on the other hand, computes the cumulative probabilities only n

times in the beginning of the algorithm. However, the non-adaptive SFE method has the

drawback of not being able to compress information sequences with unknown pmf.

3.4. Compression Capabilities of Adaptive SFE

The new adaptive SFE compression method has been applied on English text files

of varying sizes. In each case, a non-adaptive SFE compression, an adaptive SFE

compression with t = 1, and an adaptive SFE compression with t = tmax has been

performed. It has been noted that, when t = 1, the pmf Dis updated every time a symbol is

read from the text file. It has also been found that the maximum value of t that results in a

compression percentage is the same as that when t = 1. We call this value t=tmax• Values of

t greater than 1000 have not been tried. The results are given in Table 5.

25

Table 5. Compression percentage for various SFE methods

Input File Size % Compression

Non-Adaptive Adaptive (t= 1) Adaptive (tmax)

968,789 44 42.2 42.2,(1000)

6,313 43.8 42 42,(650)

9,715 44 43 43,(500)

2,500 55 71 71,(100)

In Table 5, the compression percentage is calculated as follows:

Original size in bits-Compresses size in bits X lOO f It has been noted that the original size o
Original size in bits •

the file in bits is found by assuming that each alphabet in the English language requires 5

bits. In all cases, tmax= m/10, where m is the number of symbols in the text files being

compressed. Compared to the non-adaptive SFE method, the adaptive SFE method has a

loss of compression of about 1 to 2%. However, the adaptive method has the advantage of

being able to compress sources with unknown pmfs. The bottom entry in Table 5 is a text

file with 2500 English alphabets of unknown distribution. The proposed method

outperforms the non-adaptive method by 16%. Table 5 shows that the value of tmax is large

if the input file size is greater than 10,000 symbols. In the next section, we will see that the

time complexity of a cryptanalysis on the adaptive SFE is proportional to ztmax .

3.5. Cryptanalysis of the Adaptive SFE method

The cryptanalysis algorithm has as input a binary file that is the output of our adaptive SFE

encoding algorithm (Algorithm 1). The cryptanalysis has to proceed by examining this file

26

from left to right. After a guess on the pair of orderings has been made, a symbol can be

obtained using the decoding algorithm. Because the initial probability is uniform, the

codeword sets are permutations of the same codewords for any ordering (for an example

refer to Table 4). Thus, as long as the pmf is uniform and the PRBG unknown, in each

step, the attacker has to perform decoding for both orderings Ko and K,. The attacker,

therefore, computes 2r possible decodings for the first t symbols she outputs. At this point,

she changes the pmf, D for each one of these 21 decodings and continues the process. If the

new pmf is skewed (away from uniform), then the chances that the bits being read from the

input file do not match any codeword (This happens if the wrong ordering is chosen.) are

high. If this happens, we eliminate such an ordering and start all over again with a new

choice for the pair of orderings. The number of choices for the pair of orderings is n!(n;-i),

where n is the size of the alphabet. This cryptanalysis is described in Algorithm 3.

Algorithm 3: An attack for our new Adaptive SFE technique

Input: Compressed binary file with bits (B1,B2, .•••• , Br), Integer t.
Output: The uncompressed file with symbols S =s 1, s2, , Sm.Let set G contain

every possible decoding of the input file observed so far. Set G = 0.
Initial pmf D is uniform, p(Xi) = 1/n; 1 :S i ~ n.
1) Choose a new pair of orderings (Ko,K1). For every dE G, obtain pmf D

(using Laplace's rule). Obtain SFE codeword tables for K0 and K1 using pmf D.
2) For every dE G, do the following. Do decoding until the next t symbols are
output. Let dl,d2, ,elk, (k :St) be decoded starting with d. G = (G/{ d}) u { dldl,
dld2, dldk}, where dldi denotes the concatenation of d and di. If there exists a d
with k = 0, then remove it from set A.
3) If the number of decodings (k) for every dE G is 0, then the current choice of
(Ko, K1) is invalid. Go to step 1.

4) If IGI > 1 and the input file has not been completely read, go to step 2.
S) If IGI > 1 and the input file has been completely read, then the attack is
complete, and G contains all possible decodings of the input file.
6) If !GI= 1 and the entire input file has been decoded, we have success, and set G
contains the correct decoding.

27

Algorithm 3 is illustrated by mounting an attack on the example of the previous

section. Suppose the attacker received the bit sequence 010010. Because there are only

three symbols, the initial uniform distribution, D, is p(A) = p(B) = p(C) =

ll3=0.33(approx). The codeword sets for every possible ordering of A, B, and C was

found in Table 4. The pseudorandom sequence used in the encoding is unknown to the

attacker. Initially, G =0. It is assumed that the attacker chooses orderings (Ko, K1) = (ABC,

BAC). The pmf D = (p(A), p(B),p(C)) = (0.33, 0.33, 0.33). Lett= 1. Using ABC as the

order of the symbols, 01 is decoded as B, and using BAC ordering, 01 is decoded as A.

Thus, G = {B,A}. If BE G is considered, then the next two bits, 00, are decoded as A

assuming the order as ABC but if we assume the order to be BAC then the decoding would

not have been possible . Thus, set G becomes G = {BA.A}. Similarly if A E G is

considered, then 00 cannot be decoded assuming the order as ABC but if we assume the

order to be BAC then 00 is decoded as B. Thus, G = { BA,AB}. After decoding the next

two bits, 10, set G becomes, G = {BAB, BAA, ABB, ABA}. This process is shown in Table

6. It is noted that the SFE codewords used correspond to the enhanced or shortened

codewords from [9,10]. At each step of the attack, both orderings Ko and K1 have to be

tried. This has to be repeated for all n!(n!-l) possible pairs of orderings. Thus, the
2

complexity of the attack is 2m n!(;!-l), where m is the size of the file being compressed

and n is the number of symbols in the alphabet set. From Table 6, it is noticed that, for

some orderings, the decoding ends earlier than others. It is guaranteed that all decodings

are alive for the first t steps because the initial pmf is uniform. Thus, the minimum

complexity of the attack is zt n!(n!-l) If we assume that t?::. m/10, then the minimum
2

28

complexity is 2m1io n!(n!-i)_ Thus, it is impossible to mount an attack on the adaptive SFE
2

method. Even if the attacker were successful, she only finds Ko and Ki, and still will not be

able to decode any other file because she does not know the pseudorandom bit sequence.

Table 6. Attack on string 010010

Bits Key Output Bits Read Key Output Bits Read Key Output

Read

ABC B

00 ABC A 10 BAC A

01 ABC B ABC --

00 BAC -- BAC --

ABC --

00 ABC -- BAC --

01 BAC A ABC B

00 BAC B 10 BAC A

One of the main reasons for obtaining this improvement is the fact that the adaptive

method has forced the attacker to decode from left to right, whereas previous non-adaptive

methods could look for a codeword in the entire file being decoded. Note that the PRBG

bits are only used to select one of the orderings, Ko or K1• Thus, it is hard for the attacker to

find the PRBG bits even if many plaintext-ciphertext pairs are known. This enables the use

of weaker pseudo-random sequence generators.

29

3.6. Conclusion

Thus, it can be concluded that the new adaptive SFE compression algorithm can

also be used for encryption. The new algorithm uses the following two new concepts to

improve security:

i) It uses two orderings, Ko and K1, one of which is chosen for the

compression based on the output of a pseudorandom bit sequence generator.

ii) The probability mass function, D, used in the encoding is updated every t

steps according to the frequency of symbols observed so far.

iii) The compression properties of the new algorithm are virtually the same as

the simple SFE compression algorithm. However, the complexity of the

attack increases dramatically to zm!lo n!(n!-l), where m is the size of the file
2

being compressed and n is the number of symbols in the alphabet set. The

new adaptive SFE method requires probabilities to be computed nm/t

times during a compression. This minor increase in computation allows the

method to compress sources with unknown probability mass functions.

30

CHAPTER 4. SECURITY USING MODIFIED
ARITHMETIC CODING

4.1 Introduction

Arithmetic coding is one of the strongest compression techniques used in various

applications like image compression of jpeg files. We learned from Section 1.4 that

Arithmetic coding is the binary representation of a range of real numbers between O and 1.

This range is determined by dividing and subdividing the [0,1) line with respect to the

probabilities of the symbols in the symbol set. Section 1.4 talked about two models of

Arithmetic coding, fixed and adaptive models. The fixed model of Arithmetic coding

utilizes the source distribution for encoding and decoding process. On the other hand, the

Adaptive model proceeds by assuming the initial distribution to be uniform. It updates the

distribution after encoding each symbol in the message. The probabilities of the symbols

are updated based on the Laplace rule which states the updated probability of the symbol to

be ~)Frl))' where Fi is the number of occurrences of symbol i and n is the number of
i=l F1+l

symbols in the symbol set. The idea behind it is that the probability of the symbol increases

if it occurs more frequently in the message while those which occur less have less

probability.

4.2. Construction of Modified Arithmetic Coding

This research work has utilized Adaptive Arithmetic coding for encryption.

Adaptive Arithmetic coding has been modified, and a new algorithm has been proposed,

hence the name is Modified Arithmetic Coding. In this section, we discuss the construction

of Modified Arithmetic Coding, taking into consideration a symbol set containing two

31

symbols. The same algorithm can be extended to a larger symbol set with a slight

modification. Modified Arithmetic Coding follows the standard Adaptive Arithmetic

coding as discussed in Section 1.4 with the following changes in it:

i) Our symbol set has two symbols; therefore, there are two possible ways by which

we can divide the range [0,1) as shown in Figure 4.1. Modified Arithmetic Coding

uses the seed of a secure pseudorandom bit generator (PRBG) for its encryption.

ii) The seed is used to generate a pseudo random bit, and based on this bit, the order of

the symbol is determined. For example, if the pseudo random bit is 0, then the

order would be as shown in Figure 4.la, and if the bit is 1, then the order is shown

in Figure 4.lb.

(a) (b)

Figure 4.1. Two possible orders of the symbols.

iii) A constant, k, is also defined and determines the number of bits that need to be

output before the order of the symbols is changed. For example, if k is 5, then the

encoder would encode the message with a particular order and continue doing so

till 5 bits are given out as output by the encoder.

iv) Both k and the seed of PRBG act as the key for this encryption method.

The above changes lead to the following encoding algorithm.

32

Algorithm 4. Encoding for the Modified Arithmetic Coding

Input: File to be compressed containing symbols S = s1,s2, ... ,sm, where
Si EX = { 0, 1}. PRBG seed, and a constant k
Output: The compressed binary file.

• j = 1, initial distribution Dis uniform, p(xi) = Jin, l$;i$;n. Here, n=2.

• Generate the next pseudorandom bit b using the PRBG.

while j ==:; m do
■ Read symbols; from the input file, and find its position in the ordering Kb.
■ Using Kh output, the bit(s) corresponding to [0,1] line like Arithmetic coding.
■ Update the probabilities using the Laplace formula. Append this codeword

to the output file.
■ If j ==k,

generate the next pseudo-random bit busing the PRBG.
■ j=j+l

end while

Encoding Example

Let us consider a source with a symbol set [Q_, l]. The source gives a string of

binary bits which is encoded using Modified Adaptive Arithmetic Coding. The bits given

by the source are assumed to be 11 Q l Q Q in this example. Let us also assume that the

first three bits of PRBG are 101. The two possible orders in which the symbols can be

arranged are as follows in figure 4.2(a) and 4.2(b):

1.0
1.0

_Q

l

0.5
0.5

_Q J.

0.0 0.0

(a) (b)

Fig4.2. Arrangement of the symbols in (0, 1] line.

33

We take into assumption that, if a pseudo random bit is 1, the input symbols should be

arranged according to order 4.2(a), whereas when a pseudo random bit is 0, they should be

arranged according to order 4.2(b). Figure 4.3 shows the representation of output bits in

Arithmetic model.

1.0

0.875 Ill

0.75 II

_______ Y--___ C::i ========:::::::=-
0.625

0.5
~

0.375
011

0.25 01

0.125 001

0.0 0

(a)

0.7109375

1011010
0.70898435

0.70703125

0.703125

(c)

Fig 4.3 Representation of the output bits in the model.

34

0.75

0.71875

0.710937t

0.703125

10111

1011011

101101

0.6875

(b)

101101011

101101011

10110101

Encoding proceeds as follows:

i) The initial distribution is uniform, i.e., p(Q)=p(l)=>0.5. The first PRBG bit

is 1, so the order should be 4.2(a). The orders of the symbol arranged in a

(0,1] line in the ratio of their probabilities would be as follows in fig 4.4.

1.0

l
1

0.5

_Q

0.0

Fig 4.4.Representation of the symbols in the range (0, 1] in ratio of their
probabilities.

Since the first bit given by the source is 1, the selected range would be

(0.5,1], and because the range lies completely above 0.5, the output binary

bit should be 1 (referring to Figure 1.3 of Chapter 1).

ii) We update the probabilities following the Laplace formula, and the new

probabilities are p(Q)= 0.33, p(l) = 0.66. The selected range (0.5,1] is

divided into the ratio of the probabilities of the symbols as shown in Figure

4.5.

35

1.0

l ,___,..1111 No output

0.665

_Q

0.5

Fig 4.5.Representation of the symbols in the range (0.5, 1] in ratio of the probabilities.

iii) The next bit given by the source is 1, so the selected range becomes

(0.665,1], and because this range does not completely lie above 0.75 or

below 0.75, the encoder is not able to decide the output bit and proceeds to

read the next bit given by the source.

iv) The updated probabilities in this step become p(Q)= 0.25, p(l) = 0.75,

which leads to the following model (Figure 4.6).

v) Since the next bit in the message is 0, the selected range becomes (0.665,

0.74875], and this range lies completely below 0.75; therefore, the encoder

outputs a bit 0, and also because it lies completely above 0.625, it outputs a

bit 1 simultaneously.

LO

l

0.75 0.74875

_Q }= .. 01

0.665

Figure 4.6. Representation of the symbols in the range (0.665, 1] in ratio of their
probabilities.

36

In this example, we assumed that k=3 which means that, after encoding every three

symbols, the encoder would check the next bit of PRBG output and switch the

order accordingly. As the first bit of PRBG was 1, the order followed so far was as

per Figure 4.2(a). At this point, the encoder checks the next output of PRBG and

finds that to be 0, which means the order should be switched and be as per Figure

4.2 (b). (i.e., the symbol .L should be below and symbol Q_ should be above.) From

step 4), we know that the selected range was (0.665,0.74875], and the updated

probabilities become p(Q)= 0.4, p(l) = 0.6. Figure 4.7 shows the division of the

range in the ratio of their probabilities and also the new order.

0.6875

Q

_l

0.74875

0.71525

0.665

No Output
►

Figure 4.7. Representation of the symbols in the range (0.665,0.74875] in ratio
of their probabilities.

The selected range is (0.665, 0.71525] as the next bit in the message is 1- The

encoder is not able to output any bit because the range does not completely lie

above or below 0.6875. Following the same rule, the probabilities are updated, and

the selected range is divided. Figures 4.8 and 4.9 show the next two steps of

encoding the next two symbols

37

0.71525

Q

0.6875 0.698165

_l

0.665

Fig 4.8. Representation of the symbols in the range (0.665,0.71525] in ratio of their
probabilities.

0.71875 ~
I

0.71525

101101
101101010

Q
► I

0.70823845

0.703125 ~
_l

0.698165

I

0.6875 c::::==========::::::::,.-'

Fig 4.9. Representation of the symbols in the range (0.698165,0.71525] in ratio
of their probabilities.

38

vi) The final range is (0.70823845, 0.71525], but this does not conclude our

encoding process. Here comes an interesting part of encoding. The binary

bits given by the encoder so far are 101101, but this string of binary bits

does not uniquely represent the final interval we have obtained. Referring to

Figure 4.3(c) we can see 101101 represents the range (0.703125, 0.71875].

Our final range lies completely within this above range, but we need to find

a unique binary representation of the final range or its subset; that would be

our codeword. Since the number 0.70823845 does not convert to a binary

numbers with terminating bits, it is not possible to represent the range

(0.70823845, 0.71525] with a binary string that has terminating bits.

Therefore, as discussed in Chapter 1, we would find the biggest range that

completely lies within the final range and can be represented by a binary

string of terminating bits. From Figure 4.3(c), we see that the range

(0.708984375,0.7109375] lies completely within the final range

(0.70823845, 0.71525]. The binary representation of the range

(0.708984375,0.7109375] is 101101011, and this is our final codeword for

the message 11 Q 1 Q Q sent to the encoder by the source. The decoding

algorithm (Algorithm 5) for Modified Arithmetic coding is as

follows.

39

Algorithm 5: Decoding for the Modified Arithmetic Coding

Input: File to be decoded containing symbols C =c1,c2, .. ,,en, where
c; EX = { 0, 1}; PRBG seed; and a constant, k

■ Output: The compressed binary file.
• j = l, initial distribution, D, is uniform, p(x;) = Jin, l::Si'.'.Sn. Here n=2.

• Generate the next pseudo-random bit busing the PRBG.
whilej ::Sn do

If t==k

end if

Using kh, find the model to follow.
Read a bit, CJ, from th~ ingut file, and find the range where
the message would lie.
If any symbol can be identified clearly from that range

Append that to th_e_o!!tP!!tJile.
t=t+l
Update the probabilities using the Laplace formula.

Else Proceed to read the next bit, CJ.

Generate the next pseudo-random bit busing the PRBG.
t=O;j = j + 1

end while

Decoding Example

Let us take the same example as encoding, and we assume that the decoder has the

bits 101101011 as input. The initial assumptions about the ordering and symbol set are the

same as that of the encoding example. Initial probabilities of the two codewords are

uniform, i.e., 0.5 each. Decoding proceeds as follows:

i) The first bit of PRBG is 1, so the order to be followed is as per Figure 4.2(a). The

first bit of the codeword is observed to be 1, so the decoder knows the range of the

message would lie above 0.5, and (0.5,1] is the selected range as shown in Figure

4.10. This range implies the input would be 1-

40

1.0

l
l

0.5

_Q

0.0

Fig4.10. Representation of the symbols in the range (0,1] in ratio of their
probabilities.

While decoding every time, the decoder would divide the selected range in half and

consider the lower half to be 0 and the upper half to be 1. For example, the range

(0,1] is divided, and any range below 0.5 is considered to be O while that on the

upper half is considered to be 1. Because the first bit encountered by the decoder is

1, the decoder would know that the range in which the message would lie should be

(0.5,1]. This range corresponds to the symbol .L. so it outputs 1.

ii) At the next stage, the probabilities of the input gets updated using the Laplace

formula, and becomes p(l) = 0.66 and p(Q) =0.33. The selected range is divided

into the ratio of their probabilities leading to Figure 4.11

1.0

l

0.665

J2

0.5

0.6$75

0.625

0.75

► l

Fig4.1 l. Representation of the symbols in the range (0.5,1] in ratio of their
probabilities.

41

The range (0.5,1] is again divided in half, and any range below 0.75 would be 0 and

above would be 1. The next bit in the codeword is 0 which implies that the message

would lie in the range (0.5.0.75], but the ranges of 0 and 1 are (0.5,0.665] and

(0.665,1], respectively, so the range (0.5,0.75] does not lead us to any symbol.

Therefore, the decoder proceeds and reads the next bit in the codeword. The next bit is

1 which implies the range in which the message lies would be (0.625,0.75]. Even this

range does not facilitate a guess for the next symbol as it does not completely lie in any

of the ranges. The next bit read by the decoder is 1 which implies that the range in

which the message lies would be (0.6875,0.75]. From Figure 4.11, we can see that

this range is a part of the actual range (0.665, 1] which implies the second symbol

given by the decoder would 1-

iii) The probabilities of the symbols get updated after a symbol is output by the

decoder. The updated probabilities are p(l) = 0.75 and p(Q) =0.25. Because the last

symbol was l.. we would divide the range (0.665, 1] in the ratio of the updated

probabilities. This leads to Figure 4.12 The next bit is 0, meaning that the message

would lie below 0.71875; i.e., the range would be (0.6875,0.71875]. From Figure

4.12 we can clearly say that the range mentioned corresponds to the symbol 0.
1.0

l

0.74875 -
0.71875

- 0.6875
Q 0.665

Fig 4.12. Representation of the symbols in the range (0.665,1] in ratio of their
probabilities.

42

iv) We know that our key, k, is equal to 3 in this example. This means that, after every

3 symbols, the order of the symbols in the range should switch depending on the

PRBG bit output. Because 3 symbols have been decoded, it is time to switch the

order. The next PRBG bit is 0, so the order should be according to Figure 4.2(b)

The arrangement of the symbols in the new range (0.665,0.74875] is as follows.

We already know from the previous step that the message lies in the range

(0.6875,0.71875]. Now, we divide this range and consider the next bit. The next

bit is 1, so the range should be above 0.703125, i.e., (0.703125,0.71875]. This does

not help the decoder to emit a symbol, so it divides this range again and reads the

next bit available to it. The next bit is 0, so the range should be on the lower half of

0.7109375. From Figure 4.13 it can be clearly stated that the range (0.703125,

0.7109375] shows the next symbol to be L

Q

0.71525

J.

0.74875

0.71875

0.7109375
- J,...._-----•~ l
I-======:!=== 0.703125

0.6875

0.665

Fig4.13. Representation of the symbols in the range (0.665,.74875] in ratio of their
probabilities.

Updating the probabilities and reading the next two bits available to the decoder,

43

the next symbols are found as described in Figures 4.13 and 4.14. From the previous step,

we know that the range in which the message would lie is (0.703125,0.7109375]. After we

divide the range (0.665, 0.71525] into a ratio of the probabilities of the symbols, the

decoder immediately gives a symbol as the range in Figure 4.14 clearly shows that the

next symbol would be Q .

0.71525

Q
17109375

-<~==::::;J;t:::::::::J
... Q

0.698165
0.703125

J_

0.665

Fig4.14. Representation of the symbols in the range (0.665,.71525] in ratio of
their probabilities.

vi) The probabilities are updated, and the next bit scanned by the decoder is 1. Figure

4.15 shows how the decoder determines the next symbol.

0.71525

0.7109375

Q

Q
0.70823845

0.70703125

l

0.703125

0.698165

Fig4.15. Representation of the symbols in the range (0.698165,.71525] in ratio of
their probabilities.

44

4.3. Cryptanalysis of Modified Arithmetic Coding

The algorithm proposed in the previous section has used an output of a secure

PRBG as its key. A pseudorandom bit generator is considered to be secure if it satisfies the

next bit test which is one of the fundamental tests of pseudorandornness. The next bit test

states that, given the first k bits of a random sequence, there is no polynomial time

algorithm that can predict the (k+ l)th bit with a probability of success higher than 50%.

The main objective of this section of the chapter is to prove the security of the proposed

method. We do so by a method of contradiction.

Let us assume that the new modified Arithmetic coding proposed is not secure. Let

us assume the attacker has in hand an algorithm, A, which can produce the corresponding

message (without the knowledge of the key) given an encoded string as input with a

success probability of ¼E, where E is very small. The attacker has access to the oracle, A,
2

and an encoded string, C. The attacker is also able to get hold of a few bits of the output of

the same PRBG which the encoder used during encoding. Let the encoded sequence be

C=c1c2c3 cncn+1 ... cn+k, where Ci denotes the binary bits of the string. Let B=b1b2 ... b, be

the first l bits of a secure PRBG. Suppose X = x1x2 ••• Xr.,.Xm be a message available to an

attacker and an assumption is made that t=kl. We know after every k symbols the

encoder would switch the order of the symbols depending on the PRBG bit. Since t=kl,

this implies that to encode t symbols of the message X, l bits of B would be needed. The

binary bit in B detennines which order of symbols (4.2(a) or 4.2(b)) follows. Suppose

feeding the first C and using the l bits of B in the algorithm A the attacker gets the

message as X = x 1x2 ••• Xt • Algortihm 6 is developed using Algorithm A

45

Algorithm 6. Algorithm showing an attack on Modified Arithmetic coding

Assumption: The attacker knows the quantity, k. PRBG is secure.
[nput: Compressed sequence C = c,c2c3 ... ,CnCn+l·••cn+k•

• Sequence B containing the first l bits of the PRBG. B =b1b2 ... b1.

• oracle of Algorithm A.

Output: The (l + 1)th bit of B.
• Call A(C), and get the output as X = x1x2 ... xm, where m>n+k. Xis the message

corresponding to C. Here, we assume that the first n bits of C are decoded using
the first l bits of B to give supposed t bits of X, but the next bits of B are not
known to the attacker. t=kl

• Let us just pick the first n bits of C to get C1 =c1c2c3 •• ,.cn and feed it to Algorithm
A. Let the output be X1= x1x2 ... x 1 • Since t=kl, C1 is decoded using l bits of B.

• Because t=kl, therefore, at this point, there should be a switch in the order
depending on the P.

• Let us build a sequence, B '= b 1b2 ... bw. which means the (l + l)th bit of B' is 0.

• Call decoder D(C,B'), and get messageX'. This implies that the decoder
used the order O [i.e., (ii) of Figure 1] for decoding bits Cn+I .. ,Cn+k•

• Let B" = b1b2 ... b11 which means the (l+l)th bit of B" is O.Call decoder
D(C.B' '), and get message X' '. This implies that the decoder used the

order 1 [i.e., Figure 4.2(a)] for decoding bits Cn+ 1, .. Cn+k•

• If X==X', then the next bit of Bis O; else if X==x", then the next bit is J.

We observe in Algorithm 6 that after decoding the first t symbols the attacker does not

have any pseudorandom bit left and therefore is not able to guess which order to use for

decoding the next few bits of the codeword. He builds up two bit string B' and B'' as

shown in the algorithm. Using the next bit of B' and B" he decodes the rest of the

message. He gets two messages X' and X". Now, comparing these two messages with the

actual message from the output of Algorithm A the attacker is able to guess which bit

string B' or B'' is used. This makes it possible to guess the next bit of the PRBG output.
46

Therefore, we could see that Algorithm 6 is able to produce the next bit of the PRBG. The

success probability of A to produce the right message, taking C as input, is ½+e . Given the

encoded sequence and the key as input, decoder D would produce the correct message with

a success probability of 1. Because A and D are independent of each other, the success

probability of Algorithm 6 to produce the (l+l)th bit is (½+e). 2:+e. This proves that
2

PRBG Bis failing Next bit test and is not secure. We assumed the PRBG to be secure so it

should not fail next bit test i.e. there is no polynomial time algorithm which could produce

the (l+ 1)th bit of PRBG knowing sequence B with a success probability more than ½ .

Therefore, there is no such algorithm as Algorithm 6. Since Algorithm 6 is built with the

assumption that there exists an algorithm, A, it can be further concluded that there does not

exist any algorithm, A, which is able to decode the sequence encoded by Modified

Arithmetic Coding without knowledge of the key .. Hence, Modified Arithmetic Coding is

secure. The attack developed in Algorithm 6 takes into account that the attacker is aware of

the value k but not the seed of the PRBG. Even knowing the key k the attacker has very

low success probability of breaking the codeword. Therefore we can conclude If an

attacker is not aware of the key k Algorithm 6 becomes more complex thereby adding

more security to the encoding and decoding techniques.

Example of an attack

Let us take the above decoding example in section 4.2 to see how the attacking

algorithm works. As we assumed that there exist an algorithm A which would output the

message with a success probability of 2+€ taking as input just an encoded string. We take
2

47

the example shown in section 4.2 . Let us input the codeword C = 101101011 in the

algorithm A and gets the message X_= 11 Q l Q 0.

Let us follow the Algortihm 6 to attack the encoding process. The first bit of the

PRBG is 1. We assumed the attacker knows that bit which means B = 1 and therefore l=l.

Since k=3 and J and we know t = kl, this leads to the fact that t=3. From decoding

example in section 4.2 we know that to output the first 3 bits of the message the decoder

would need first 5 bits from the encoded message . This means for this example n= 5 and

C1=10110 , X1 = 11 Q and D(C1,B) = X1 • At this point since three symbols are already

decoded by the decoder so, now it's the time to read the next bit of PRBG and decide on

the order of the symbols in a range. But the next bit of the PRBG is unknown to attacker.

So , the attacker guesses the next bit of the PRBG output and builds up two possible bit

strings B'=ll and B"=IO. The attacker calls the decoder once again and feeds the whole

message with these new B' and B" respectively. D(C,B')=X' and D(C,B")=X" where

X'= 11 Q l Q l and X" = 11 Q l Q 0. Comparing X' and X" with X we find that X=X"

and so the PRBG bit used should be B'' which means the next bit of the PRBG would be 0.

Thus the attacker is able to guess the next bit of the PRBG successfully. This shows we are

able to build an algorithm which could make the secure PRBG fail the next bit test.

However this conclusion does not stand as we know that the pseudorandom bit generator

taken into account in this example is secure , so there cannot be any algorithm as

Algorithm 6. Since Algorithm 6 is built with the assumption that there exists an algorithm,

A, it can be further concluded that there does not exist any algorithm, A, which is able to

decode the sequence encoded by Modified Arithmetic Coding without knowledge of the

key. Hence, Modified Arithmetic Coding is secure.

48

Thus it is proved under the assumption that if there exist an algorithm A and

attacker has access to it then the proposed Modified Arithmetic coding is secure.

49

CHAPTER 5. CONCLUSION

Thus, it can be concluded that the two proposed compression algorithms, Adaptive

SFE and Modified Arithmetic Coding, can also be used for encryption. The two algorithms

are developed incorporating little pseudorandornness in the algorithm. These

pseudorandornness facilitated to use the compression algorithms for encryption too.

Following is a summary of the new Adaptive SFE.

i) Adaptive SFE uses two orderings, Ko and K1, one of which is chosen for the

compression based on the output of a pseudorandom bit sequence generator.

ii) The probability mass function, D, used in the encoding is updated every t steps

according to the frequency of symbols observed so far.

The compression properties of the new algorithm are virtually the same as the

simple SFE compression algorithm. However, the complexity of the attack

increases dramatically to 2m/10 n!(n!-l), where m is the size of the file being
2

compressed and n is the number of symbols in the alphabet set. The new adaptive

SFE method requires probabilities to be computed nmlt times during a

compression. This minor increase in computation allows the method to compress

sources with unknown probability mass functions.

The attacking algorithm becomes quite complex for Adaptive SFE keeping the

compression ratio almost similar to Normal SFE. Similarly, Modified Arithmetic Coding

also uses the same Arithmetic coding technique, thereby not affecting its compression

50

capabilities. However, Modified Arithmetic Coding has security incorporated in it which

makes it a very useful compression technique over simple Adaptive Arithmetic coding.

This thesis also leaves scope for few future work like the Arithmetic coding could

be made more secure so that it can withstand other strong attacks like chosen plaintext ,

Known plaintext etc. Moreover the examples and algorithms for Modified Arithmetic

coding are described taken into account a binary symbol set, future research work could be

extend the same algorithm to M- ary symbol set and study the security and compression

capabilities of the same.

51

REFERENCES

[I] C. -P. Wu and C.-C. J .Kuo," Design of integrated multimedia compression and encryption

schemes," IEEE Trans. Multimedia, vol. 7, no. 5, pp. 828-839, Oct 2005.

[2] D. W. Gillman, M. Mohtashemi, and R. L. Rivest, "On breaking a Huffman code,"

IEEE Trans. Inform. Theory, vol. 42, no. 3, pp. 972-976, May 1996.

[31 X. Ruan and R. S. Katti, "A new source coding scheme with small expected length and its

application to simple data encryption," IEEE Transaction on Computers, vol 55, Issue 10,

pp. 1300-1305, Oct. 2006.

[4] Thomas M. Cover and Joy A. Thomas, "Elements of Information Theory", John Wiley

& Sons, 1991.

[5] J.Katz and Y.Lindell, Introduction to Modern Cryptography, Chapman & Hall/CRC, 2008.

[6] Xiaoyu Ruan and Rajendra Katti, "Using Improved Shannon-Pano-Elias Codes for Data

Encryption," 2006 International Symposium on Information Theory, pp 1249-1252.

[7] D.J.C Mackay,"Information Theory, Inference and LeamingAlgorithms," Cambridge

University Press,2003.

[8] C. Finnila, "Combining data compression and encryption" in WESCON/94,

"Idea/Microelectronics" Conf Rec., Anaheim, CA, pp-404-409, Sep. 27-29, 1994.

[9] C.-E Wang,"Simultaneous data compression and encryption" Code Breakers Journal vol 2

no 3 2005.

[IO] J. Ziv and A. Lempe!, "A universal algorithm for sequential data compression," IEEE

Trans. Information Theory, vol 23, issue 3, pp. 337-343, May I 977.

[11] C-P. Wu and C. Kuo, "Efficient multimedia encryption via entropy codec design,"

Proceedings of SPIE, vol.4314, Jan. 2001.

[12] Ranjan Bose and Saumitr Pathak, "A Novel Compression and Encryption Scheme Using

Variable Model Arithmetic Coding and Coupled Chaotic System" IEEE Trans on Circuits

and Systems, vol. 53 no. 4 April 2006.

[13] J.Wen, H.Kim and J.D Villasenor, "Binary arithmetic coding with key-based interval

splitting," IEEE Signal Process.Lett., vol. 13, no.2, pp. 69-72,Feb 2006.

[14] H.Kim, J.Wen and J.D. Villasenor, "Secure Arithmetic coding," IEEE Trans. Signal

Processing, vol.555, no. 5, pp. 2263-2272, May 2007.

52

[15] J.G. Clearly, S.A.Irvine, and I. Rinsma-Melchert, "On the insecurity of arithmetic coding,"

Comput. Security, vol. 14, pp. 167-180, 1995.

[16] M. Grangetto, E. Magli, and G. Olmo, "Multimedia selective encryption by means of

randomized arithmetic coding," IEEE Trans. on Multimedia, vol 8. no. 5, Feb. 2006.

[17] M. Grangetto, A. Grosso, and E. Magli, "Selective encryption of jpeg 2000 images by

means of randomized arithmetic coding".

[18] R. Norcean and A.Uhl, "Selective encryption of the JPEG2000 bitstream," Lecture Notes in

Computer Science, 2828, 2003, pp. 194-204.

(19] C.Shi and B.Bhargava, "A fast MPEG video encryption algortithm," in Proc.6th

International Multimedia Conference, Bristol,U.K.,Sept. 12-16, 1998.

[20] C.Shi, S.-Y. Wang and B.Bhargava, "MPEG video encryption in real time using secret key

cryptography," in 1999 Int. Conf Parallel and Distributed Processing Techniques and

Applications(PDPTA '99), Las Vegas, NV, Jun-July 28-1,1999.

[21] L.Tang, "Methods of encrypting and decrypting MPEG video data efficiently," Proc. 4th

ACM Int. Multimedia Conj., Boston, MA Nov. 18-21, 1996, pp. 219-230.

[22] M.A. Haleem, C. N. Mathur, and K. P. Subhalaksmi, "Joint distributed compression and

encryption of co related data in sensor networks,"MILCOM, 2006.

53

