PLANT PHENOLOGICAL RESPONSES TO CLIMATE CHANGE

IN THE NORTHERN GREAT PLAINS

A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

By

Kelsey Liann Dunnell

In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

> Major Department: Biological Sciences Degree: Botany

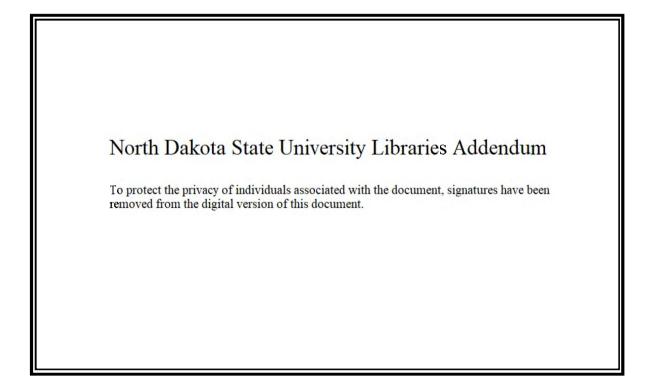
> > April 2010

Fargo, North Dakota

North Dakota State University Graduate School

Title

Plant Phenological Responses to Climate Change


in the Northern Great Plains

By

Kelsey Liann Dunnell

The Supervisory Committee certifies that this *disquisition* complies with North Dakota State University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

ABSTRACT

Dunnell, Kelsey Liann, M.S., Department of Biological Sciences, College of Science and Mathematics, North Dakota State University, April 2010. Plant Phenological Responses to Climate Change in the Northern Great Plains. Major Professor: Dr. Steven Travers.

Climate change has been associated with shifts in phenological events which could be disrupting evolved species relationships. The current first flowering times of plants were compared to historical data in the Red River Valley. This gave insight as to what effects climate change is currently having on species in this area. By merging climate variable data from the same time period it was possible to correlate first flowering dates with climate variables for that specific year. Variation in plant flowering times was analyzed over the century to better understand potential ecological consequences of climate change. First flowering times were found to have shifted since previously recorded. The lengthening growing season in the Red River Valley as a result of climate change has resulted in significant shifts in the timing of plant life cycles. The second study used an experimental approach to test the effects of warming on plant species in the tallgrass prairie. Measuring phenological and species composition responses to the temperature changes showed evidence that increasing air temperatures are leading to earlier flowering. There was also a significant increase in species richness. The results of both studies conclude that climate change has the potential to impact the plant community by shifting phenological responses in the tallgrass prairie in the Northern Great Plains.

iii

ACKNOWLEDGMENTS

I would like to extend my thanks to my committee: Dr. Gary Clambey, Dr. Marinus Otte, and Dr. Adnan Akyüz. I am also grateful to my graduate adviser, Dr. Steven Travers, for all of his help on this thesis. I would also like to acknowledge Matt Cuskelly for all his help collecting data on those nice and not-so-nice days at Bluestem Prairie Preserve.

I am also grateful for ND EPSCoR and The Cross Ranch Fellowship. I would not have been able to do this research without their funding.

I would like to thank my parents, Dan and Nancy, and my husband, Josh, for all their support while I worked towards the completion of my master's degree.

ABSTRACT iii
ACKNOWLEDGMENTSiv
LIST OF TABLESvii
LIST OF FIGURESviii
GENERAL INTRODUCTION 1
PAPER 1. SHIFTS IN FIRST FLOWERING TIMES IN THE NORTHERN GREAT PLAINS FROM 1910 TO 2009
Abstract 3
Introduction 4
Materials and Methods7
Results
Discussion
References Cited 24
PAPER 2. EFFECTS OF EXPERIMENTAL WARMING ON PLANT SPECIES AT BLUESTEM PRAIRIE PRESERVE, MN
Abstract 27
Introduction 27
Materials and Methods 30
Results
Discussion 46
References Cited 48
GENERAL CONCLUSIONS

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

APPENDIX	l	52
APPENDIX	II	56
APPENDIX	III	69
APPENDIX	IV	71
APPENDIX	۷	75

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1.1.	Climate summary during study years	15
2.1.	Timeline for experiment	34
2.2.	Summary of census data results	39
2.3.	By species proportion counts broken down by plot and by treatment	42
2.4.	Species composition indices	44

LIST OF FIGURES

<u>Figure</u>	Page
1.1.	Mean annual temperature (°C) at Fargo, ND12
1.2.	Growing season (number of days between last and first frost) by year13
1.3.	Average annual precipitation (centimeters) at Fargo, ND
1.4.	Number of woody and herbaceous species observed each year by O.A. Stevens from 1910 to 196116
1.5.	Percentage of species out of 178 analyzed by stepwise regression18
1.6.	The z-scores for first flowering dates of species observed in 2007 compared to when they flowered between 1910 and 196119
1.7.	The z-scores for first flowering dates of species observed in 2008 compared to when they flowered between 1910 and 196120
1.8.	The z-scores for first flowering dates of species observed in 2009 compared to when they flowered between 1910 and 196121
2.1.	Map of plots on Bluestem Prairie Preserve
2.2.	Temperature difference (cone minus control) in degrees Celsius by month
2.3.	Census of flowering and fruiting stems for cone and control per week for each plot
2.4.	Census of flowering species for cone and control per week for each plot38
2.5.	Proportion of total intercepts that contained plants rather than bare ground by plot40
2.6.	Species richness per plot45
2.7.	Biomass per plot45

GENERAL INTRODUCTION

The connection between abiotic factors and biological organisms is very important. The role of climate in the biology of species living on the planet is one such interaction between abiotic and biotic elements. Because there is strong evidence that the planet's climate is changing, there is a need for better understanding of the impacts of climate on many species around the world. Changes in climate could have different impacts in different environments and the various species within those environments. There could also be cascading effects on many other species due to the interconnected relationships of species within ecosystems. One way to study the effects of climate change is to look at changes in phenology of these organisms. Phenology is the study of seasonal life cycle events (e.g., plant germination and flowering, migratory bird behavior). Phenology can reflect the relationship between organisms and their abiotic environment. By looking at phenological events and their relationship to climate change, I hope to understand how the tallgrass prairie has changed and may continue to change in the future.

The first study used historical data of first flowering dates from 1910 to 1961 collected by O. A. Stevens and recent observations from 2007 to 2009 to look at changes in first flowering times. The objectives of this study was to 1) analyze O.A. Stevens' data of first flowering times with climate variables to look for trends and relationships, 2) compare the recent first flowering times of plants (2007 to 2009) and historical first flowering times (1910 to 1961), and 3) determine if first flowering times of different species have changed since last century.

The second study was a manipulative experiment to build on what was found in the first study. Passive heating chambers were used to increase the temperature in plots on tallgrass prairie in Minnesota to isolate the influence of increased temperature on plants. The objectives of this study are 1) assess phenological effects of artificially increasing temperature, 2) determine effects of warming on species composition, 3) determine if invasive species will thrive under warmer conditions, and 4) determine if warming will affect productivity.

PAPER 1. SHIFTS IN FIRST FLOWERING TIMES IN THE NORTHERN GREAT PLAINS FROM 1910 TO 2009 Abstract

Climate change is associated with phenological shifts in an increasing number of organisms worldwide. Plants growing in alpine regions and northern latitudes that traditionally have short growing seasons are shifting to earlier phenophase initiation disrupting evolved species relationships. The first flowering times of plants were compared in the Red River Valley region of North Dakota and Minnesota in spring 2007, 2008, and 2009 to first flowering times in 1910 to 1961 using historical data from O.A. Stevens. The goal was to examine what, if any, effects climate change is having on species in the areas straddling the prairie to woodland ecotone near Fargo, ND. The first objective was to determine if plant flowering times had shifted earlier over the century, to better understand potential ecological consequences of climate change. By merging climate variable data from the same time period it was also possible to correlate first flowering dates with climate variables for that specific year. Analyses of correlations among climate variables and phenological shifts yielded insight into mechanisms initiating flowering in this plant community. Also, first flowering times have shifted both earlier and later compared to previous records. The results of this study show that lengthening growing season in the Red River Valley as a result of climate change has resulted in significant shifts in the timing of plant life cycles with potentially important ecological implications.

Introduction

Phenology is the study of seasonal timing of life cycle events (Rathcke and Lacey 1985). In the past few years interest in phenology has grown due to the insight it provides on climate change and the effect climate change is having on the biosphere (Post et al. 2008, Walther et al. 2002, Cleland et al. 2007, Root et al. 2003). The aspect of phenology that is being researched in this study is the timing of first flowering of plants in the Northern Great Plains.

The timing of flowering of plants is potentially very important for the fitness of individuals. Ecological relationships between plants and pollinators or plants and herbivores are dependent on the timing of life cycle events for the interacting species. According to Waser (1979), seed set per flower in ocotillo, *Fouquieria splendens*, is greatest at the time that hummingbirds migrate implying that selection has favored those individuals that synchronize flowering so as to maximize pollinator visitation. In a study conducted by Schemske on *Impatiens pallida*, there is strong evidence that in some populations, early-summer flowering increases fitness relative to later flowering due to increasing levels of herbivory in mid- and late-summer (Schemske 1984).

There are three major physical environmental factors that have been identified as important determinants of flowering onset: photoperiod, temperature, and moisture (Rathcke and Lacey 1985). Photoperiod has been reported to be a major controller of flowering in short-lived herbs, however, most temperate woody species and some perennial herbs flower in response to temperature. Moisture is a major factor in inducing flowering in seasonal tropical forests (Rathcke and Lacey 1985).

The Earth's average temperature has warmed by about 0.6 degrees Celsius over the past hundred years (IPCC 2007). The rate of warming from 1976 onwards has been greater than at any other time in the last 1000 years (Walther et al. 2002). There is strong evidence that this is due to increasing concentrations of greenhouse gases in the atmosphere which trap reflected radiation and cause higher temperatures (IPCC 2007). If atmospheric CO₂ concentrations continue to increase, as they have over the past hundred years, global temperature increase due to the greenhouse effect is predicted to have continuing effects on precipitation patterns, soil moisture, and snow and ice cover (IPCC 2007). One of the effects of increasing air temperatures is an earlier initiation of spring and of spring phenological events.

Regional changes in climate should have a greater impact on ecology than global changes (Walther et al. 2002). Shifts in climate leading to earlier springs in the Northern Great Plains could result in significant changes in local flowering phenology. Studies researching phenological responses to climate change using historical data have shown that many plant species are now flowering earlier than they have in the past (Bradley et al. 1999, Miller-Rushing and Primack 2008). One study in southern Wisconsin has shown that over a 61-year period several phenological events, including flowering times of plant species and arrival times of migrant birds, were shifting to earlier dates in concert with increasing spring temperatures (Bradley et al. 1999). This study also suggested that since the seasonal temperature changes are magnified at higher latitudes and alpine regions, there may be more significant changes in phenological responses in those regions than would be shown in tropical regions (Bradley et al. 1999, Inouye et al. 2002, Inouye et al.

2003). However, in contrast to climate change effects on the phenology of alpine communities, we know little about how climate change is affecting native plants in northern latitudes particularly in the Northern Great Plains. In a study conducted in Concord, Massachusetts using archival data collected by Henry David Thoreau and botanist Alfred Hosmer, Miller-Rushing and Primack found that the first flowering times of local plants species were on average seven days earlier than when observed by Thoreau (Miller-Rushing and Primack 2008). The conclusion was that the timing shifts were due to rising winter and spring temperatures in the area (Miller-Rushing and Primack 2008). These phenological shifts in plant species could have significant ecological consequences. There could be a disruption of relationships between pollinators and plants, and ultimately changes in plant species' reproductive success (Saavedra et al. 2003). There could also be changes in species distribution and abundance (Walther et al. 2002). In some cases increased damage from spring frost is believed to result from earlier flowering (Inouye 2008).

In order to draw conclusions about long term (100 years) shifts in biological events, long-term data sets containing records of phenological events before the changes in climate observed since the 1970s are required. Here the results of a comparative study is presented, building on the historical observations made in the Northern Great Plains by O.A. Stevens, who recorded the first flowering dates of hundreds of plant species from 1910 to 1961 (Travers and Dunnell 2009). If increasing annual temperatures and shifts in the growing season in the Northern Great Plains over the last 100 years (Badh et al. 2009) have not resulted in corresponding biological shifts then we would expect that the first

flowering times of plant species in the area will not have changed. A field survey was conducted to test this null hypothesis. The objectives of this study were to 1) analyze O.A. Stevens' data of first flowering times of local plants with climate variables to look for trends and relationships 2) compare first flowering times of plants between 2007 to 2009 and 1910 to 1961 before temperatures began rising in the area.

Materials and Methods

Climate Measurements

In order to characterize two of the main components of climate in the Northern Great Plains, temperature and precipitation, over the past century, summarized daily climate data was compiled that was collected in Fargo, North Dakota as part of the National Atmospheric and Oceanic Administration (NOAA) National Weather Service (NWS) observing network. The data included daily measures of the maximum and minimum temperature and detectable precipitation from January 1, 1910 to the present. The data collection station was originally located in Moorhead, MN at 46°52'N / 96°44'W and an elevation of 281.9 meters above sea level. However, in March of 1930 the station was moved to the Fargo Hector International Airport at 46°56'N / 96°49'W and an elevation of 274.3 meters above sea level.

The daily mean temperature from these data was calculated by averaging the maximum and minimum from each day. These daily values were then used to calculate monthly and annual averages for each year from 1910 to 2009. In addition, the daily measurements of detectable precipitation were used to calculate monthly and yearly averages of precipitation over the same time period.

Flowering Phenology from 1910 to 1961

In order to estimate the first flowering dates of plants in the Northern Great Plains the hand-written notes of O.A. Stevens, an experienced botanist and author of the Handbook of North Dakota Plants (1963), were examined and digitized. O. A. Stevens observed the flowering phenology of plants in the Red River Valley area near Fargo, ND and Moorhead, MN from 1910 to 1961 (Travers and Dunnell 2009, Stevens 1961). Each year during the growing season (March to September) he recorded the first flowering date and the species name for plants throughout North Dakota and western Minnesota but concentrated within 20 miles of the Fargo/Moorhead area. Stevens' notebooks are stored in the North Dakota State University library archives

(http://library.ndsu.edu/archives/collections-university-archives/records-papers).

Stevens' hand-written notes of first flowering dates were transcribed for a total of 753 plant species that were observed predominantly in Fargo, ND and in a 5,821 acre section of native tall-grass prairie fifteen miles east of Fargo, ND (Bluestem Prairie Preserve, Clay County, MN). This section of prairie has been managed by the Nature Conservancy since 1975 (prior to that it was uncultivated) and has a rich flora of native species. The scientific name of the species and the date of flowering were recorded into an Excel spreadsheet. Only observations of first flowering time were transcribed, and did not include any observation marked as "not first flowering." Because Stevens used plant names that in some cases have changed due to taxonomic revision, I identified current and past synonyms of both common and scientific names for the species listed in his notes by matching original and recent nomenclature with the USDA NRCS Plants Database

(plants.usda.gov). Synonyms were included in the database (Travers and Dunnell 2009). The dates of first flowering were converted to Julian date, or day since the beginning of each year, by subtracting the numerical conversion of flowering date from the value of January 1 in the pertinent year to standardize the data for year to year comparisons. The transcribed observations began March 18, 1910 and continued through September 10, 1961. The complete dataset is archived online and available at Ecological Archives (http://esapubs.org/archive; see Travers and Dunnell 2009).

In order to examine the relationships between climate variables (i.e. temperature and precipitation) and the timing of first flowering of plant species over the 50 year period between 1911 and 1961 a separate stepwise regression analyses was conducted on the first flowering data for each species. In order to minimize disproportionate influence of outlying values, only data from 1911 to 1961 were included in this regression analysis (1910 was not included). In each analysis the Julian date of first flowering each year was the dependent variable and six climate variables plus year were the independent variables. The independent variables include: mean daily temperature averaged within February, March, April, and May; snowfall (inches during previous winter); last freeze date in spring (Julian day of last minimum temperature of 0°C); and year. All stepwise regression analyses used the forward format and were conducted using SAS (SAS Institute, Cary, NC, USA). Stepwise regressions were only conducted on those species that had been observed a minimum of 10 years for a total of 178 species. The order of predictive ability of the independent variables was determined for those variables with p-values less than 0.05 based on decreasing magnitude of their partial R² values.

Flowering Phenology from 2007 to 2009

In order to assess first flowering times of plants between 2007 and 2009, the species in flower were observed and recorded at two primary locations in the Red River Valley region near Fargo, ND. The first flowering dates of plants were identified from April 16, 2008 until August 21, 2008 at Bluestem Prairie Preserve and the Sheyenne National Grassland. The Sheyenne National Grassland is comprised of 70,180 acres of mixed grass prairie in Ransom County and Richland County in North Dakota. Herbaceous and woody plants in flower were recorded at Bluestem Prairie Preserve approximately twice a week and at the Sheyenne National Grassland approximately once a week during the observation period of 2008. In 2009, the same census methodology was implemented from April 17 to August 30. In addition to our own observations, data collected from another botanist, Dale Rheder, was analyzed, who recorded the first flowering dates of plants in Bluestem Prairie Preserve on a weekly basis from April 1 to August 30 in 2007. I am confident that the data from 2007 are accurate based on corroboration between my data and Dale Rheder's observations in 2008 and 2009.

The null hypothesis was tested that climate change has had no impact on the flowering phenology of plants in the Northern Great Plains by determining if the Julian dates of first flowering times for species in 2007, 2008, and 2009 are statistically indistinguishable from the mean flowering times of the same species between 1910 and 1961. The z-scores were calculated of each flowering time in 2007, 2008, and 2009 based on the mean and standard deviation of flowering times for the same species between 1910 and 1961. The quantity "z" represents the distance between the raw score and the

population mean in units of the standard deviation. Here, the population mean and standard deviation were derived from the first flowering time data for 1910 to 1961. A negative value for the z-score indicates that the flowering date of a given species for 2007, 2008 or 2009 was earlier than the mean between 1910 and 1961; a positive z-score indicates the flowering time was later than the mean. A z-score above 2 or below -2 indicates a flowering time divergent from over 95% of the flowering times observed between 1910 and 1961.

Results

Climate Measurements

Daily measures of air temperature indicate that average annual temperatures in Fargo have increased over the years between 1900 and 2007 (Figure 1.1). In particular the scatter plot indicates an upswing in average temperature since the 1970s that is commensurate with global air temperature trends (IPCC 2007). The average annual temperature within the first nine years of this time period (1900 and 1909) was three degrees (Fahrenheit) lower than in the last nine years (1998 and 2007). Monthly averages of air temperature over the same time period indicate that temperature increases in February and May are statistically significant (Feb: b=0.05*, R²=0.06; March: b=0.01ns, R²=0.005; April: b=0.01ns, R²=0.01; May: b=0.03*, R²=0.04; * indicates p<0.05).

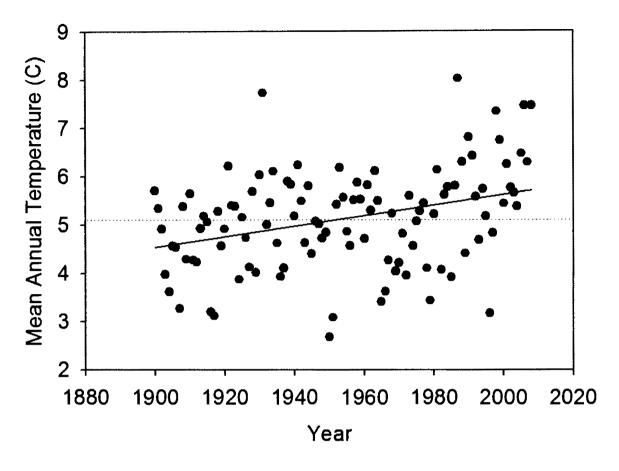


Figure 1.1. Mean annual temperature (°C) at Fargo, ND. The dotted line represents the grand mean annual temperature from 1900 to 2008. The solid line is the linear best-fit regression line (Y=6.3+0.02X, P<0.01, D=106, R=0.09).

In concordance with the increasing annual air temperature and spring air temperatures, the growing season in Fargo has increased in length over the last 100 years (Figure 1.2). The ten year average of the number of days between the last and first frost (\leq 32 °F) of spring increased from 132 days to 154 days over the period 1910 to 2007. In particular, the growing season increased dramatically after 1970. This pattern has been seen throughout North Dakota (Bahd et al. 2009).

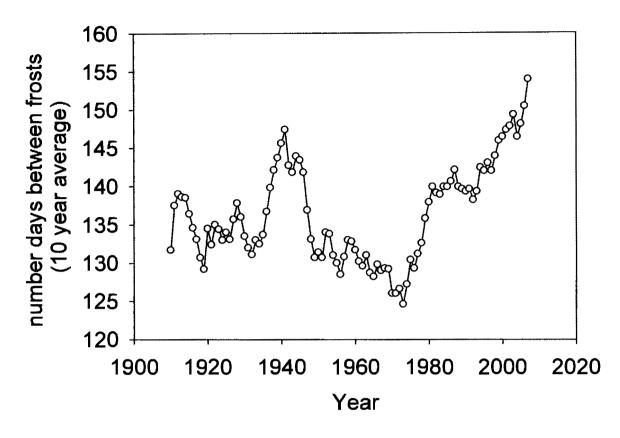


Figure 1.2. Growing season (number of days between last and first frost) by year. Values are averaged over the previous ten years starting in 1910.

Annual precipitation in the Fargo area varied considerably between 1900 and 2007 (Figure 1.3.) Quadratic regression analysis indicates that during the middle of the last century, average precipitation decreased. However, since the 1970s annual precipitation has increased back up to levels seen in the early 1900s. Seventeen percent of the variance in annual precipitation is explained by a parabolic model.

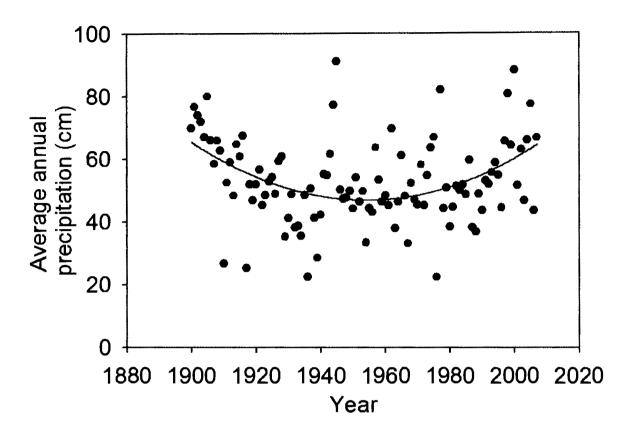


Figure 1.3. Average annual precipitation (centimeters) at Fargo, ND. The solid line is the quadratic best-fit regression line (Y=9552-9.8X+0.002X², P <0.01, DF=108, R²=0.17).

The three contemporary years during which first flowering dates were observed for plants in the Red River Valley varied considerably in temperature and precipitation patterns (Table 1.1). The first year of the study, 2007, was warmer on average than the next two years. In contrast 2008 and 2009 were more typical of the period between 1910 and 1961.

Year(s)	Mean Air Temperature					Annual Precipitation	Winter Snowfall
	Annual	February	March	April	May		
1910-1961	2.68 - 7.73,	-21.686.07,	-9.16 - 4.94,	0.76 - 10.84,	8.24 - 17.58,	22.54 - 91.14,	23.62 - 209.04,
(Range, Mean)	5.00	-14.28	-3.63	5.82	12.87	29.21	90.88
2007(Mean + SE)	6.29 + 0.74	-14.18 + 1.78	-0.23 + 1.24	6.03 + 1.62	15.76 + 0.74	66.6	129.8
2008	4.43 + 0.73	-13.65 + 1.22	-5.13 + 1.19	4.97 + 0.65	12.14 + 0.73	77.7	188.5
2009	4.62 + 0.71	-11.36 + 1.32	-4.42 + 1.41	5.52 + 0.94	12.09 + 0.74	63.2	176.5

Table 1.1. Climate summary during study years. Mean air temperature (°Celsius), annual precipitation (cm), and total winter snowfall (cm) for 1910-1961, 2007, 2008, and 2009.

Flowering Phenology from 1910 to 1961

There were a total of 753 plant species observed by O.A. Stevens and recorded in the database of observations from 1910 to 1961 (Travers and Dunnell 2009). Not all of these species were observed every year. O.A. Stevens observed between 17 and 309 species per year (Figure 1.4). On average 88 species were observed per year. Species included in the analysis presented here include 631 herbaceous and 122 woody species.

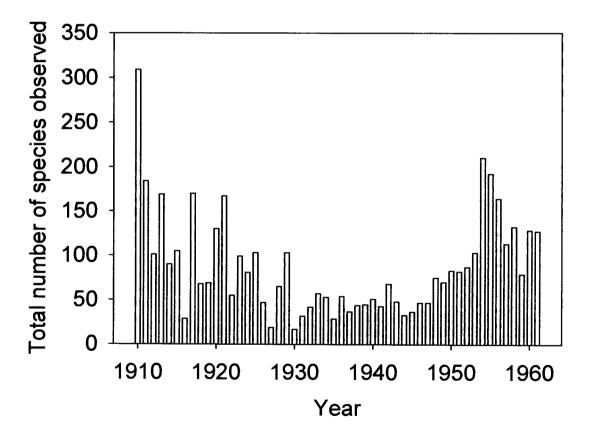


Figure 1.4. Number of woody and herbaceous species observed each year by O.A. Stevens from 1910 to 1961.

O.A. Stevens' first flowering dates range from 3/18/1910 to 9/10/1961. The earliest flowering date observed in a specific year was March 18 and the latest flowering date observed was September 23.

To explain the variation in first flowering times from 1910 to 1961, a stepwise regression was conducted. As a result of only including species with ten or more observation years in regression analysis, a total of 178 species were analyzed individually using the forward approach to stepwise model building. Different species had different numbers of significant predictors of flowering time according to an alpha level of 0.05 in the model. There were a total of 20 species that had three top predictors with a p-value of less than 0.05. A total of 55 species had two top predictors. There were 63 species that had one top predictor. 40 species had no top predictor with a p-value of less than 0.05 (Appendix 1). The overall R² values range from 0.0041 to 0.9943 depending on the species. The specific predictor of first flowering depends on the species, but the predictor that explained the greatest variation in first flowering time was most commonly the average temperature in April followed by May as the next most common predictor (Figure 1.5).



Figure 1.5. Percentage of species out of 178 analyzed by stepwise regression. Each of the possible independent variables as the leading predictor. The slope of the relationship between the predictor and first flowering date could be either positive or negative.

Flowering Phenology from 2007 to 2009

In 2007, 2008, and 2009, a total of 60, 170, and 166 species, respectively, were observed in the Red River Valley region of Minnesota and North Dakota. However, not all species observed in these three years were previously observed by O.A. Stevens. In 2007, six species out of the 41 total (15%) also observed previously by O.A. Stevens had a zscore of less than -2.0 (Figure 1.6). These species included *Rosa arkansana, Pedicularis canadensis, Pediomelum esculentum, Echinacea purpurea, Liatris aspera,* and *Penstemon gracilis*. Most of the species with low z-scores are plants that flower relatively early in the growing season. The one species, *Parnassia palustris*, out of 41 (2%) with a z-score more than 2.0, which flowered later than in O.A. Stevens' data, is one that flowers in the second half of the growing season. The mean z-score in 2007 was -0.98.

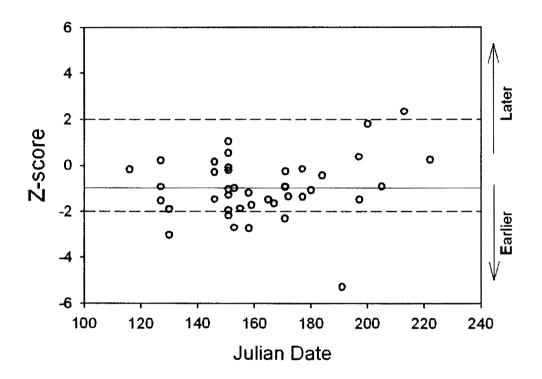


Figure 1.6. The z-scores for first flowering dates of species observed in 2007 compared to when they flowered between 1910 and 1961. The dotted lines indicate standard deviation limits of 2 or -2. The solid line indicates the average z-score for 2007.

In 2008 one species (*Panicum virgatum*) out of 100 flowered early enough to have a z-score of less than -2.0 (Figure 1.7). However, seven species (7%) flowered later than observed by Stevens, with a z-score of more than 2.0. These species were *Shepherdia argentea*, *Rudbeckia hirta*, *Asclepias ovalifolia*, *Echinacea angustifolia*, *Catalpa speciosa*, *Psoralea argophylla*, and *Calylophus serrulatus*. The mean z-score in 2008 was 0.69.

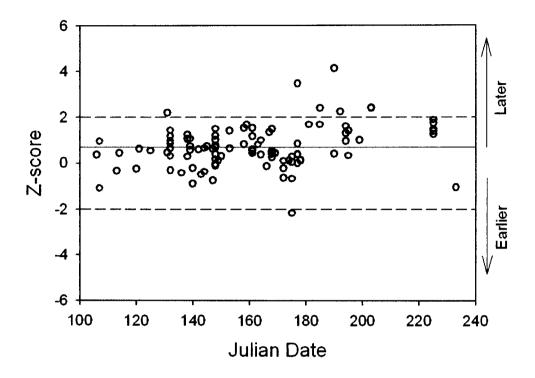


Figure 1.7. The z-scores for first flowering dates of species observed in 2008 compared to when they flowered between 1910 and 1961. The dotted lines indicate standard deviation limits of 2 or -2. The solid line indicates the average z-score for 2008.

The 2009 observations show that five out of 96 species (5.2%) flowered relatively

late, with a z-score of more than 2.0 (Figure 1.8). These species were Lactuca pulchella,

Viola pubescens var. pubescens, Rudbeckia hirta, Echinacea angustifolia, and Lobelia

spicata. The average z-score in 2009 was 0.46.

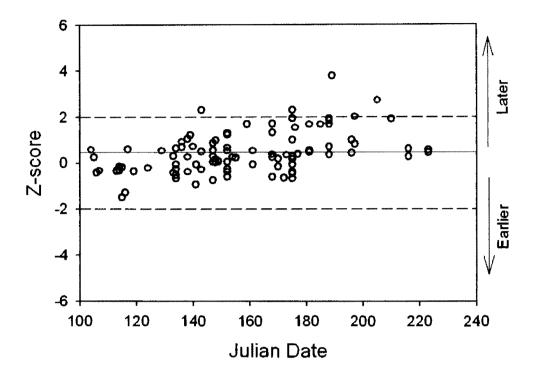


Figure 1.8. The z-scores for first flowering dates of species observed in 2009 compared to when they flowered between 1910 and 1961. The dotted lines indicate standard deviation limits of 2 or -2. The solid line indicates the average z-score for 2009.

Discussion

The results showed evidence for disrupted phenological patterns for flowering plants in 2007 to 2009 relative to the patterns in the same species in the same location prior to climate change. Seventeen, eight, and five percent of the species observed in 2007, 2008, and 2009 respectively flowered either earlier or later than from 1910 to 1961. Correspondingly the average annual temperature was warmest in 2007. The temperature in 2008 and 2009 were more typical of the first half of the last century. Earlier flowering and spring green-up has been found to occur for some plant species in other studies (Miller-Rushing and Primack 2008, Bradley et al. 1999, Menzel et al. 2006, Root et al. 2003). In the three years analyzed here flowering time was earlier than expected in only one of them. Later flowering by species relative to the previous century is unreported to our knowledge.

The data from this study do not support the null hypothesis that flowering times of plant species have not changed, rather they are consistent with the hypothesis that phenological shifts in flowering are due to changes in air temperature and growing season length in the Northern Great Plains. Climate data indicate that regional air temperatures have increased since the middle of the 1970s resulting in earlier springs, later falls, and increased growing season. Because regression analysis indicates that spring temperatures, particularly April and May temperatures, are important in determining first flowering times we would expect flowering times to be earlier in warmer years since the 1970s. It is unknown when these plant species flowered in the intervening years during the recent climate warming but our data indicate that in one relatively warm spring, 2007, there were species that flowered earlier than during Stevens' observations (Figure 1.6). Warmer spring temperatures could explain the earlier first flowering times in 2007, which had a very warm spring. In that year 15% of the species flowered early relative to the last century. There is no first flowering data from 1990 to 2006 during which there was an upswing in temperatures, but it is possible that plants flowered early at that time as well.

In all three years, but particularly 2008 and 2009, there were plant species that flowered later than expected based on Stevens' data (with a z-score of more than 2.0). The average annual temperatures in the later two years were not significantly colder than during Stevens' time. A possible explanation is that in the presence of longer growing

seasons, including a delayed killing frost in the fall, selection against late flowering has been relaxed. In the early part of the last century those individuals that would have been killed before seeds were fully matured would survive today. Moreover, by flowering and fruiting later, the late flowering plant species may avoid competition for pollinators and resources with earlier flowering species.

There are many implications of shifting phenology. Schemske (1977) found there are reproductive benefits, such as high seed set, for flowering at the right time presumably because synchronizing flowering to match pollinator abundances or avoid herbivores can increase fitness. Shifts in first flowering time have led to more frost damage due to earlier initiation of flowering (Inouye 2008). Willis et al. (2008) found evidence for differences among plant families in their tendency to track changes in climate over time and corresponding differences among families in extinction rates. In our study there was little evidence of some families of plants tracking climate change better than others, however, additional years of observation will be informative.

Regardless of whether flowering times have shifted earlier or later with the changing climate there is the potential for pollination or other ecological relationships (e.g., herbivory, disease) to be disrupted from an optimal synchronization. Longer growing seasons may also have allowed competitor plant species (e.g., invasive species) and disease agents with previously southern distributions to shift their ranges north (Walther et al. 2002) so that they now interact with plants in the Red River Valley. Flowering and fruiting earlier or later could impact these types of ecological relationships as well. This study does not have data regarding these ecological relationships. However, it does

provide the first step in indicating which species may be more at risk of cascading ecological effects of climate change.

References Cited

- Badh, A., A. Akyuz, G. Vocke, and B. Mullins (2009). "Impact of Climate Change on the Growing Seasons in Select Cities of North Dakota, United States of America" The International Journal of Climate Change: Impacts and Responses 1(1)
- Bradley, N., A. Leopold, J. Ross, W. Huffaker (1999). "Phenological changes reflect climate change in Wisconsin." *Proceedings of the National Academy of Sciences* **96**: 9701-9704.
- Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz (2007). "Shifting plant phenology in response to global change." *Trends in Ecology and Evolution* **22**: 357-365.
- Inouye. D. W. (2008) "Effects of Climate Change on Phenology, Frost Damage, and Floral Abundance of Montane Wildflowers." *Ecology* **89**(2): 353-362
- Inouye, D. W., M. A. Morales, G. J. Dodge (2002). "Variation in timing and abundance of flowering by *Delphinium barbeyi* Huth (Ranunculaceae): the roles of snowpack, frost, and La Nina, in the context of climate change." *Oecologia* **130**: 543-550.
- Inouye, D. W., F. Saavedra, W. Lee-Yang. (2003). "Environmental influences on the phenology and abundance of flowering by *Androsace septentrionalis* (Primulaceae)." *American Journal of Botany* **90**: 905-910.

- IPCC (2007) "Climate Change 2007- Synthesis Report. Contribution of working groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change." Cambridge University Press, Cambridge, 944pp.
- Miller-Rushing, A. and R. Primack (2008). "Global warming and flowering times in Thoreau's Concord: a community perspective." *Ecology* **89**: 332-341.
- Rathcke B. and E. P. Lacey (1985). "Phenological Patterns of Terrestrial Plants." Annual Review of Ecology and Systematics **16**: 179-214
- Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, J. A. Pounds (2003). "Fingerprints of global warming on wild animals and plants." *Nature* **421**: 57-60.
- Saavedra, F., D.W. Inouye, M.V. Price, and J. Harte. (2003) "Changes in flowering and abundance of *Delphinium nuttallianum* (Ranunculaceae) in response to a subalpine climate warming experiment." *Global Change Biology* **9**: 885-94.
- Schemske, D. W. 1984. "Population structure and local selection in *Impatiens pallida* (Balsaminaceae), a selfing annual." *Evolution* **38**: 817-832
- Stevens, O. A. (1961). "Plants of Fargo, North Dakota." *American Midland Naturalist* **66**: 171-177
- Travers, S.E. and K.L. Dunnell. 2009. "First-flowering dates of plants in the Northern Great Plains." *Ecological Archives* **90**.
- Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. (2002). "Ecological responses to recent climate change." *Nature* **416**(6879): 389-395.

Waser, N. M. 1979. Pollinator availability as a determinant of flowering time in Ocotillo (*Fouquieria splendens*). *Oecologia* **39**: 107-21

Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, C. C.Davis (2008). "Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change."
 Proceedings of the National Academy of Sciences of the United States of America 105(44): 17029-17033

PAPER 2. EFFECTS OF EXPERIMENTAL WARMING ON PLANT SPECIES AT BLUESTEM PRAIRIE PRESERVE, MN

Abstract

Studies of biological responses to increased air temperatures associated with climate change have found earlier initiation of phenological events, but most of these studies have been correlative. There is a need for manipulative studies to isolate and test the effects of a single variable on phenological patterns. To manipulate air temperature in a pattern consistent with climate change a heating experiment using passive heating chambers was conducted in Bluestem Prairie Preserve in Minnesota. The phenological and species composition responses to the temperature changes of tallgrass prairie plant species were measured. Increased temperatures showed increases in first flowering and maximum flowering and significantly increased species richness. Climate change has the potential to impact the plant community by shifting the flowering phenology of plants and by changing the species composition of the prairie.

Introduction

The Earth's average temperature has warmed by about 0.6 degrees Celsius over the past hundred years. The rate of warming from 1976 onwards has been greater than at any other time in the last 1000 years (Walther et al. 2002). Increases in temperature have the potential to have significant effects on the biosphere. Shifts in temperature could have significant local effects as well. Shifts leading to earlier springs in the Northern Great Plains could result in significant changes in local flowering phenology. In Fargo, increases

in temperature since 1976 have led to longer growing seasons (Badh et al. 2009) (Figure 1.2).

Studies looking at phenological responses to current climate change have shown that many plant species are now flowering earlier than they have in the past (Bradley et al. 1999, Miller-Rushing and Primack 2008). One study in southern Wisconsin found that over a 61-year period several phenological events, including flowering times of plant species and arrival times of migrant birds, were shifting to earlier dates along with increasing spring temperatures (Bradley et al 1999). In Concord, Massachusetts a study using archival data collected by Henry David Thoreau and botanist Alfred Hosmer, found that the first flowering times of local plants species were on average seven days earlier than when observed by Thoreau. The conclusion was that the timing shifts were due to rising winter and spring temperatures in the area (Miller-Rushing and Primack 2008). In the first study the results showed significant shifts in flowering times in some plant species, with some flowering times shifting earlier and some later in the Northern Great Plains. These shifts in phenological events are based on correlative studies where biological shifts are compared with changes in temperatures. A correlative approach cannot distinguish between the effects of increased temperature due to climate change and corresponding changes in other environmental characteristics (e.g., precipitation, humidity, land use). There is a need for experimental studies that can demonstrate what happens when only one variable, temperature, is increased.

Only a few other manipulative experiments have been conducted to study effects of increasing temperature using passive heating chambers on plant species in the

Northern Great Plains. There have been studies using open top chambers to study the effects of increases of CO₂ on plant species (Rogers 1983, Leadley and Drake 1993). In one study in a subalpine meadow in the Colorado Rocky Mountains they found that warming, using electrical heaters suspended 2 meters aboveground, had negative effects on flower production in certain plants, which may have cascading effects on the fitness of their pollinators (Saavedra et al. 2003). In a study using passive heating chambers, warming had also shown to cause an overall decline in biodiversity in the tundra (Walker et al. 2006). Another manipulative study assessed sensitivity of Andropogon gerardii and Sorghastrum nutans to variation in temperature and precipitation that was altered in a manner consistent with predictions of future climate for the study region. They found that S. nutans was more responsive than A. gerardii to the stress caused by alterations in water and temperature (Nippert et al. 2009.) These studies show effects that may occur in the future due to climate change. It is important to see what effects will occur on the tallgrass prairie. I was interested in experimentally manipulating temperature in order to isolate the effect of shifts in temperature on plant biotic responses

The four questions of this experiment that will be important to answer are 1) Is phenology affected by warming?, 2) Will warming affect species composition?, 3) Will invasive species thrive under warmer conditions?, and 4) Will warmer temperatures affect productivity? This experiment was conducted in the Northern Great Plains on tallgrass prairie which has a short growing season. This habitat has not been studied in great detail and may show unique changes when warmed.

Materials and Methods

To manipulate air temperature in a pattern consistent with climate change a heating experiment in Bluestem Prairie Preserve (15 miles east of Fargo, ND, Clay County, MN) was conducted through the use of a passive heating chamber. I was interested in the phenological and ecological responses to those temperature changes of tallgrass prairie plants. The experiment was conducted on seven 25x25 meter plots. Starting on April 15, 2009, a single heating chamber (cone) was placed on each plot. A heating chamber (cone) is an open-top enclosure made of Sun-Lite HP (0.040 inch thick), a fiberglass material specially designed for solar applications. The cone has a basal diameter of 1.48 meters and a height of 40 centimeters. The design from "Temperature Enhancement Experiments" by Giles M. Marion was followed for this experiment (Marion 1996). The cone acts as both a solar trap and as a windshield to effectively raise temperatures inside the cone without interfering with precipitation reaching the ground. In addition, a control circle of the same basal diameter in each plot was established. A control is a circle of string of the same diameter as the cone that was placed approximately 6 meters to the direct east or west of the cone. A coin toss was used to determine which treatment was on the east or west position. On April 20, 2009 a HOBO thermometer was placed above ground in the center of each circle (cone and control) in each plot to measure hourly temperature. Leaf litter was placed over the thermometers to negate the effects of the sun shining directly on the thermometers. There were a total of seven plots with one cone and one control in each. The plots were arranged on Bluestem Prairie Preserve to include a variety of different plant communities (Figure 2.1).

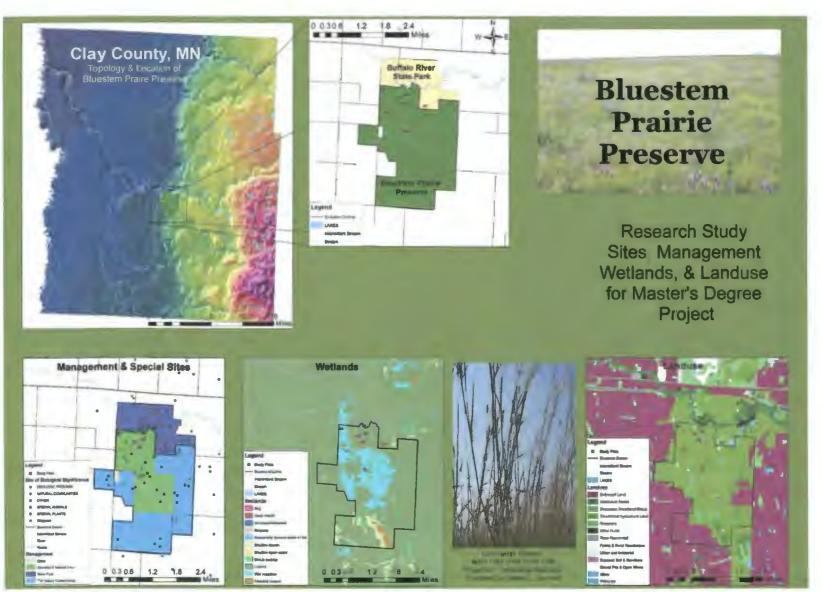


Figure 2.1. Map of plots on Bluestem Prairie Preserve. Map created using ArcGIS. Map data from MN DNR.

Each plot was visited at least once a week and the number of stems in bud, the number of stems in flower, and the number of stems with fruits were recorded for each species in both circles (Table 2.1). The weekly visits were repeated from May 1, 2009 to August 24, 2009 for a total of 19 weeks of censusing stem and species numbers. At the end of the growing season, the percent cover by individual plant species was also determined in each of the two circles per plot. The percent cover of plot 1 was measured 9/30/2009, plot 2 on 9/23/2009, plot 3 on 8/29/2009, plot 4 on 9/16/2009, plot 5 on 8/18/2009, plot 6 on 8/24/2009, and plot 7 on 8/25/2009. In order to estimate the per species percent cover, a 1.5 square meter frame of PVC pipe was used with an internal grid made of fishing line rows and columns spaced 10 cm apart. As a result of this configuration there were 225 total intercepts where the fishing lines crossed in the grid. The species of plant present was recorded at each intercept point by suspending the grid above the experimental circles, lowering a metal stake from each intercept point and recording the species of plant the stake touches. Data were only taken from each intercept that fell within the circle. The total proportion of vegetation per circle was calculated by dividing the number of intercepts that touched a live plant versus bare ground by the number of total intercepts sampled. The percent cover of each species per plot and treatment was calculated by dividing the number of intercepts of that species by the total number of vegetative intercepts. These data were used to estimate Simpson's Diversity Index according to the following formula:

$$D = \frac{1}{\sum_{i=1}^{s} p_i^2}$$

where p = the proportion of each plant species cover and s = the number of species discovered per circle. I also calculated species richness per circle (i.e. the number of species), the percent shared species between the two circles per plot, and an estimate of species evenness according to the following equation:

$$E_{p} = \frac{D}{D_{\max}} = \frac{1}{\sum_{i=1}^{S} p_{i}^{2}} \times \frac{1}{S}$$

The standing biomass was measured by cutting all vegetation in each circle at ground level at the end of the summer and air drying it in paper bags. Above ground vegetation was collected from plot 1, 2, 5, 6, and 7 on 10/12/2009, and from plot 3 and 4 on 10/15/2009. The paper bags full of vegetation were stored in a walk-in forced air drying oven for approximately a week. They were then weighed with and without the vegetation to calculate the standing biomass of each circle.

Table 2.1. Timeline for experiment

	20	09																												
Month	AP	RIL			м	AY			υL	NE				JU	LY			AL	IGU	ST			SE	PTE	MB	ER	00	то	BER	
Week	1	2	3	4	1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3	4
Setup cones																														
Installed HOBOs																														
Census plants in treatments					o	o	٥	٥	o	0	0	0	o	0	0	0	0	٥	٥	٥	0	٥	٥							
Species ID per plot					0	0	0	0	0	0	0	•	0	٥	٥	٥	o	0	٥	o	o	0	٥							
Estimate percent cover					l																									
Estimate standing biomass								1																						
Breakdown cones																														

Results

The temperature difference between the treatments showed that on average the cones were warmer than the controls, especially in the spring (Figure 2.2). In the first month of the experiment the air temperature in the cones was an average of 3 degrees warmer than in the controls. The decrease in temperature in later months may be due to the increase in plant cover in the treatments. The variation between plots is most likely due to the variation in plant communities and habitat. Plot 3 and 4 were the wettest sites with standing water for much of the experiment and showed the lowest dip in temperature. The control treatment in plot 1 was mowed in August, so the temperature data could not be collected and was lost after May.

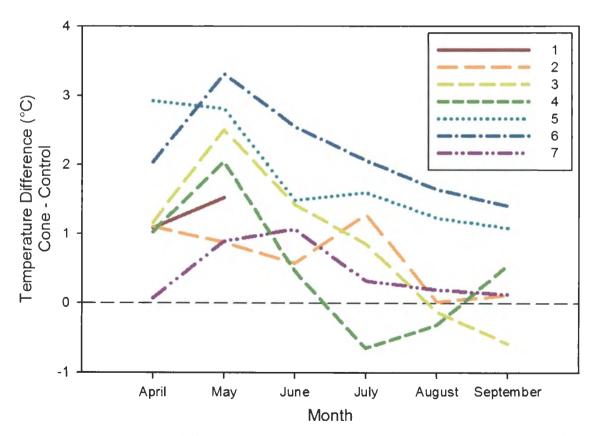
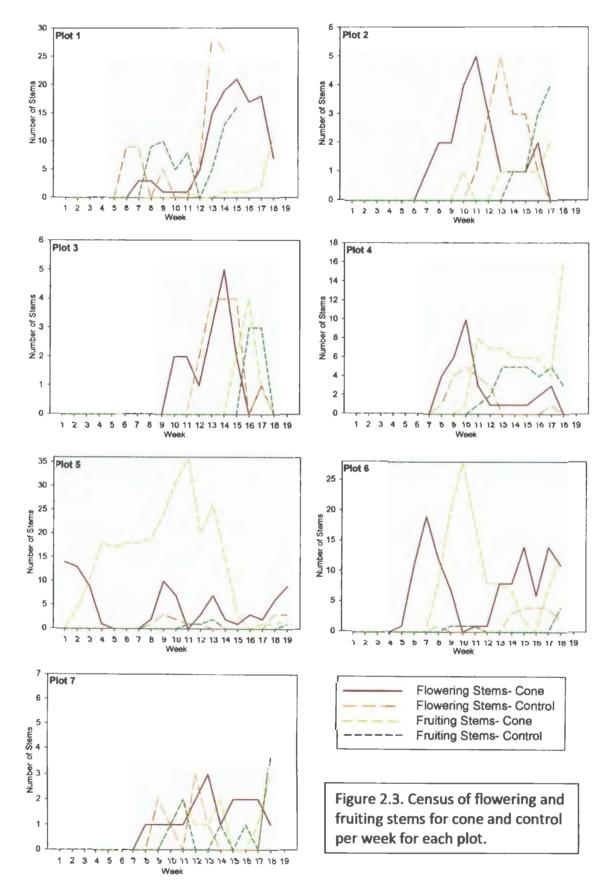
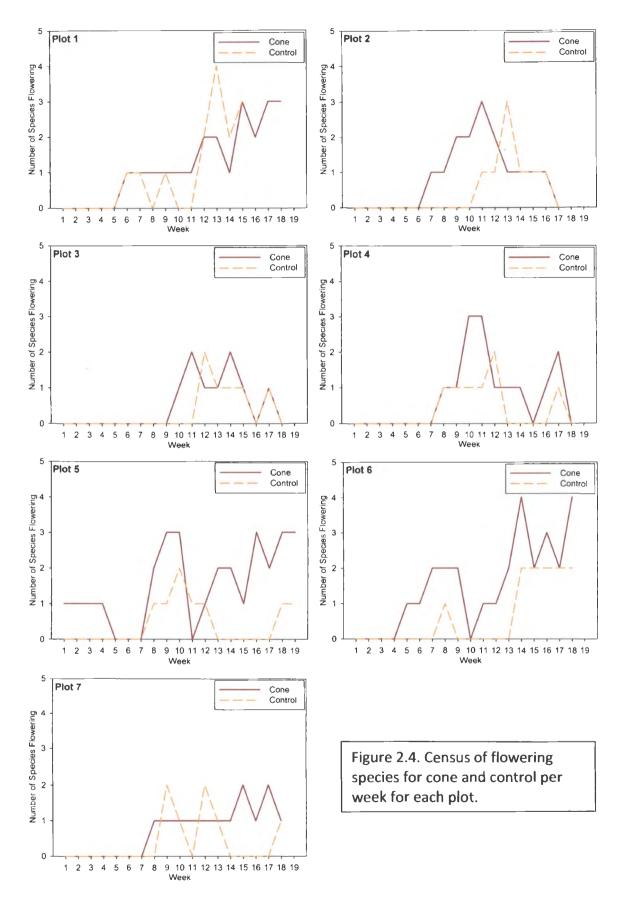




Figure 2.2. Temperature difference (cone minus control) in degrees Celsius by month. Each line represents a separate plot containing cone and control treatments.

The weekly census data indicate that there were differences between cone and control treatments over the course of the experiment (Figure 2.3). In most plots, plants had earlier first flowering and earlier maximum flowering peaks in the cone treatment than in controls. The first fruiting and peak fruiting also occurred earlier in the cones than in the controls. The maximum fruiting peak was greater in the cone than the control for four of the seven plots. In addition, the first flowering and peak in number of flowering species occurred earlier in the cones (Figure 2.4). The average week of first flowering occurred significantly earlier in the cone treatments than in the control treatments, using the Wilcoxon signed-rank test and an alpha of 0.05 (Table 2.2).

		of first vering		f max # of ng stems		flowering ems	t	of fruiting ems	Max # of flowerir species	
Plot	Cone	Control	Cone	Control	Cone	Control	Cone	Control	Cone	Control
1	7	6	15	13	21	29	11	16	3	4
2	7	11	11	13	5	5	2	4	3	3
3	10	12	14	13	5	4	4	3	2	2
4	8	8	10	10	10	5	16	5	3	2
5	1	8	1	9	14	3	36	2	3	2
6	5	8	7	15	19	4	28	4	4	2
7	8	9	13	18	3	4	3	4	2	2
mean	6.571	8.857	10.143	13.000	11.000	7.714	14.286	5.42 9	2.857	2.429
	W = -18	P < 0.05	W = -14	P > 0.05	W = 10	P > 0.05	W = 11	P > 0.05	W = 6	P > 0.05

Table 2.2. Summary of census data results.

At the end of the experiment the proportion of vegetation cover, percent cover by species, species richness, and standing biomass were assessed at a single time point. There were no significant differences in the vegetative cover of cone circles versus control circles (Figure 2.5).



Figure 2.5. Proportion of total intercepts that contained plants rather than bare ground by plot.

The species proportion counts showed variations in the number of species within each plot and each treatment (Table 2.3). The total number of species in the cone and control treatments ranged from five to 17. There were clear dominant species in each treatment. The species with the highest proportion cover was always greater than 20 percent of the total cover and was as high as 75 percent depending on plot and treatment. Moreover, species evenness estimates were relatively low indicating some species were much more common overall than other species. As is typical of the tallgrass prairie, all plots were dominated by grass species with the exception of plot 6 control. The most dominant species overall included *Andropogon gerardii, Poa pratensis, Bouteloua gracilis, Dichanthelium wilcoxianum*, and *Sorghastrum nutans*. Although an invasive species, Kentucky bluegrass, *Poa pratensis,* was the dominant in a number of plots it did not seem to respond to warming in a consistent pattern. However, species richness was on average higher in the cone treatments than in controls (Figure 2.6). There were no significant differences in biomass between treatments (Figure 2.7).

PLOT:		1		2		3		4		5	(6		7
Species	Cone	Control												
Allium stellatum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.000	0.000
Ambrosia psilostachya	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.019	0.000	0.000
Amorpha canescens	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.031	0.041	0.000	0.000	0.000	0.000
Andropogon gerardii	0.104	0.264	0.288	0.181	0.364	0.276	0.139	0.000	0.000	0.000	0.000	0.000	0.128	0.000
Anenome patens	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.038	0.041	0.000	0.000	0.000	0.000
Apocynum cannabinum	0.000	0.000	0.031	0.031	0.023	0.019	0.055	0.006	0.000	0.000	0.000	0.000	0.000	0.000
Asclepias incarnata	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Asclepias syriaca	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013
Asclepias viridiflora	0.000	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bouteloua gracilis	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.652	0.000	0.233	0.184
Calamagrostis stricta	0.000	0.000	0.006	0.013	0.000	0.000	0.030	0.148	0.000	0.000	0.000	0.000	0.000	0.000
Calylophus serrulatus	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carex spp.	0.000	0.000	0.006	0.075	0.000	0.114	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cirsium flodmanii	0.052	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.000
Crepis runcinata	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000
Dalea purpurea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.035	0.039
Dichanthelium wilcoxianum	0.000	0.000	0.194	0.200	0.038	0.048	0.018	0.452	0.038	0.041	0.148	0.288	0.070	0.000
Echinacea angustifolia	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.000	0.000	0.000
Equisetum spp.	0.060	0.016	0.038	0.006	0.000	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Eragrostis spectabilis	0.000	0.000	0.000	0.000	0.015	0.038	0.000	0.000	0.023	0.008	0.009	0.135	0.000	0.000
Erigeron strigosus	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.000
Helianthus pauciflorus ssp. p														
auciflorus	0.015	0.000	0.000	0.000	0.000	0.000	0.000		0.107	0.041	0.000	0.000	0.000	
Helianthus maximiliani	0.000	0.000	0.019	0.019	0.083	0.000	0.085	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heterotheca villosa var. villosa	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.043	0.029	0.000	0.000

Table 2.3. By species proportion counts broken down by plot and by treatment. Yellow highlighted species are non-native. Dark blue is the dominant species and light blue includes the 2nd and 3rd most dominant species in treatment.

Table 2.3. (continued)

Tuble 2.5. (continued)														
Liatris punctata	0.000	0.000	0.000	0.000	0.008	0.000	0.012	0.000	0.008	0.000	0.000	0.000	0.000	0.000
Linum sulcatum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.010	0.000	0.000
Lithospermum canescens	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.000	0.000	0.000	0.000
Melilotus officinalis	0.037	0.039	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000
Oligoneuron rigidum var.														
rigidum	0.037	0.062	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Packera plattensis	0.000	0.000	0.019	0.050	0.030	0.162	0.000	0.000	0.031	0.024	0.000	0.000	0.000	0.000
Phalaris arundinacea	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Physalis virginiana	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.013
Poa pratensis	0.627	0.535	0.181	0.231	0.167	0.210	0.255	0.200	0.573	0.366	0.000	0.000	0.000	0.000
Polygala verticillata	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000
Pycnanthemum virginianum	0.000	0.000	0.025	0.063	0.030	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ratibida columnifera	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.029	0.000	0.000
Rosa arkansana	0.000	0.000	0.000	0.031	0.083	0.105	0.000	0.000	0.000	0.000	0.000	0.025	0.000	0.000
Schizachyrium scoparium	0.067	0.054	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.309	0.000	0.010	0.000	0.000
Solidago canadensis	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Solidago missouriensis	0.000	0.000	0.000	0.000	0.030	0.000	0.000	0.000	0.069	0.000	0.000	0.000	0.000	0.000
Sorghastrum nutans	0.000	0.000	0.031	0.000	0.000	0.000	0.194	0.032	0.000	0.000	0.000	0.000	0.523	0.750
Sisyrinchium montanum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.009	0.000	0.000	0.000
Symphyotrichum ericoides	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.015	0.000	0.005	0.000	0.000	0.000
var. ericoides	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.006	0.038	0.057	0.087	0.010	0.000	0.000
Symphyotrichum ericoides				1										
var. <i>pansum</i>	0.000	0.000	0.000	0.000	0.000	0.000	0.067	0.000	0.000	0.000	0.000	0.452	0.000	0.000
Thalictrum dasycarpum	0.000	0.000	0.013	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Viola nephrophylla	0.000	0.008	0.000	0.000	0.000	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zizia spp.	0.000	0.000	0.081	0.069	0.129	0.019	0.097	0.135	0.000	0.000	0.000	0.000	0.000	0.000

Table 2.4. Sp	pecies compo	sition indice	≥s.

Plot		1		2		3		4		5		5		7
	Cone	Control												
Simpsons Diversity Index	2.394	2.742	5.998	6.852	5.116	5.715	6.757	3.499	2.847	4.123	2.185	3.244	2.853	1.671
Equitability	0.299	0.343	0.353	0.457	0.426	0.572	0.483	0.437	0.190	0.344	0.218	0.324	0.476	0.334
Species Richness	8	8	17	15	12	10	14	8	15	12	10	10	6	5
Number Shared Species	7	7	13	13	9	9	7	7	9	9	6	6	3	3
Proportion Shared Species	0.875	0.875	0.765	0.867	0.750	0.900	0.500	0.875	0.600	0.750	0.600	0.600	0.500	0.600

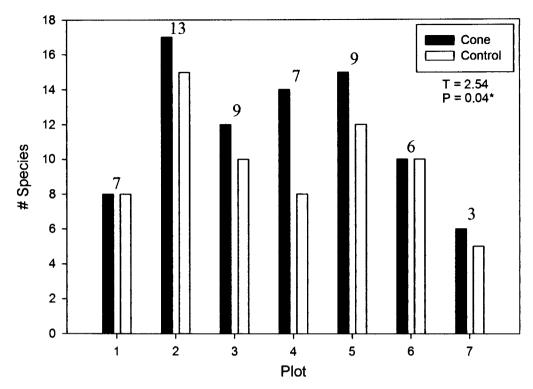


Figure 2.6. Species richness per plot.

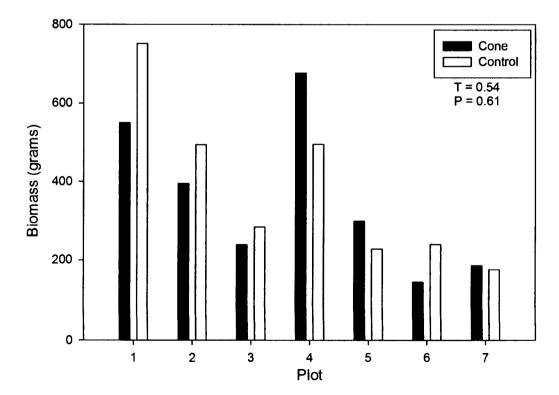


Figure 2.7. Biomass per plot.

Discussion

The results of this experiment indicate that the flowering phenology of multiple flowering plant species is affected by warming. The mean first flowering and maximum flowering occurred earlier in the cone than control treatments. Warming affected the seven plots differently. The differences in the responses to the warmed treatment are most likely due to the differences in habitat and plant communities in each plot.

Warming also affected the final species composition at the end of the summer. Significantly higher species were found in the cone treatments than control. It is unclear if these differences in species richness were manifested early on in the experiment since we only estimated percent cover at the end of the summer. However, there is an indication that at least in some plots there were more species flowering in cones than in controls after the experiment was half over. In three of the seven plots the number of species flowering in the cone circle exceeded the maximum number in the control circle as early as the tenth week (Figure 2.3). The mechanism of increased species richness under warmer conditions is not clear. Based on the percent cover data there is no evidence for a complete shift of species from one treatment to another. Rather the same species seem to be in both treatments, however, a few additional ones are present in the cones at the end of the summer. The prediction from this study is that the degree to which warming can change tallgrass prairie composition will vary from habitat to habitat. A wetter site could have much different changes than a drier site. Additional years of observation will be informative regarding warming effects on species composition.

There is little evidence from this single year experiment that invasive species will thrive under warming conditions in the tallgrass prairie. Two invasive species were identified within the plots. *Poa pratensis* is already a dominant species in both treatments in five of seven plots. Other studies have found that invasive species are increasing in population size in concert with increasing temperatures (Willis et al. 2010) suggesting that this may be a long term response that we could not detect.

Productivity, as measured by standing biomass at the end of the experiment, was not significantly affected by increased temperature. Productivity could have been affected earlier in the growing season particularly when there were clear differences in temperature between the cone and control treatments. The pattern of earlier flowering and fruiting as well as higher levels of fruit production in cones throughout the season imply that early productivity differences ultimately decreased towards the end of the growing season.

A study by Post et al. in 2008 showed that over a two-year period of warming at a low-artic site, aggregate life history events shifted. My experiment used the same ITEX cone design and showed similar results. In their experiment they looked at emergence, flower bud set, blooming, and fruit set. They found the mean aggregate life history of each species from those phenological events and compared them between warmed and control treatments. They found that some species were more affected by warming than others, but overall there was a shift to earlier occurrence of these events (Post et al. 2008).

Since my experiment only showed general trends of earlier flowering and fruiting, a longer study period may show greater shifts in phenological events.

There are many implications of climatic warming. Invasive species could survive better under warming conditions since the results of our experiment shows that warmer conditions lead to higher species richness and some of those species could be invasive. Higher species richness could be the result of more species germinating and surviving. This study indicates that there is the potential for disruption in ecological relationships by species that do or do not shift phenological patterns with increasing temperatures. The extent to which the composition and nature of the tallgrass prairie has been shaped by well-timed phenological responses in the past will ultimately determine how climate change shapes the tallgrass prairie in the future.

References Cited

- Bradley, N., A. Leopold, J. Ross, W. Huffaker (1999). "Phenological changes reflect climate change in Wisconsin." *Proceedings of the National Academy of Sciences* **96**: 9701-9704.
- Leadley, P. W. and B. G. Drake (1993) "Open top chambers for exposing plant canopies to elevated CO₂ concentration and for measuring net gas exchange." *Vegetatio* **104/105**: 3-15
- Marion G. M. 1996. Temperature enhancement experiments. pp 17-22 *in* U. Molau, P. Molgaard (Eds), <u>International Tundra Experiment: ITEX Manual</u>. Danish Polar Center, Copenhagen.

- Miller-Rushing, A. and R. Primack (2008). "Global warming and flowering times in Thoreau's Concord: a community perspective." *Ecology* **89**: 332-341.
- Nippert, J. B., P. A. Fay, J. D. Carlisle, A. K. Knapp, and M. D. Smith (2009) "Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes." *Acta Oecologica* **35**: 400-408
- Post E.S., C. Pedersen, C.C. Wilmers, and M.C. Forchhammer (2008). "Phenological Sequences Reveal Aggregate Life History Response to Climatic Warming." *Ecology* **82**: 363-370
- Rogers H.H., W. W. Heck, A. S. Heagle (1983) "A field technique for the study of plant responses to elevated carbon dioxide concentrations." *Journal of the Air Pollution Control Association* **33**: 42-44.
- Saavedra, F., D.W. Inouye, M.V. Price, and J. Harte. (2003) "Changes in flowering and abundance of *Delphinium nuttallianum* (Ranunculaceae) in response to a subalpine climate warming experiment." *Global Change Biology* **9**: 885-94.
- Walker, M. D., C. H. Wahren, R. D. Hollister, G. H. R. Henry, L. E. Ahlquist, J. M. Alatalo, M.
 S. Bret-Harte, M. P. Calef, T. V. Callaghan, A. B. Carroll, H. E. Epsteinj, I. S.
 Jónsdóttirk, J. A. Kleinl, B. Magnússonm, U. Molaug, S. F. Oberbauerf, S. P. Rewan,
 C. H. Robinsono, G. R. Shaverp, K. N. Sudingq, C. C. Thompsonr, A. Tolvanens, Ø.
 Totlandt, P. L. Turneru, C. E. Tweediev, P. J. Webberw, and P. A. Wookeyx. (2006)
 "Plant community responses to experimental warming across the tundra biome." *Proceedings of the National Academy of Sciences* 103(5): 1342-1346

- Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. (2002). "Ecological responses to recent climate change." *Nature* **416**(6879): 389-395.
- Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, C. C.Davis (2008). "Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change."
 Proceedings of the National Academy of Sciences of the United States of America 105(44): 17029-17033

GENERAL CONCLUSIONS

The results of these two studies imply that as the planet has warmed and continues to warm we can expect changes in the phenology of tallgrass prairie plants, which could change many aspects of that ecosystem. The first study provides correlative evidence that increasing air temperatures since the late 1970s have led to earlier springs and earlier flowering in some years. There is also evidence that some plant species are flowering later than ever as a result of the lengthening growing season. In addition, year to year variation from 1910 to 1961 in spring temperature, specifically April temperature, was correlated with the timing of first flower in plant species in the Northern Great Plains. There was little statistical evidence that precipitation changes, including rainfall and previous winter's snowfall, over the same period were correlated with first flowering time. The second study provides experimental evidence that increasing air temperatures are leading to earlier flowering. The prediction from these two studies is that as temperatures continue to rise plant communities in the Northern Great Plains will not retain the same phenological patterns. The consequences of these shifts in phenology will depend on the importance of the timing of life history events for the successful reproduction and survival of native species.

	<u> </u>	Z-score		Z-score		Z-score
Scientific Name	2007	2007	2008	2008	2009	2009
Acer ginnala					152	0.67
Acer negundo			121	0.61	114	-0.16
Acer saccharinum			107	0.95	104	0.58
Achillea millefolium	155	-1.87	168	0.24	168	0.24
Actaea rubra			148	1.19		
Agoseris glauca			161	0.42		
Allium stellatum	205	-0.91	225	1.26	216	0.28
Allium textile					152	1.31
Amelanchier alnifolia			139	1.06	136	0.68
Amorpha canescens	177	-1.37	194	1.31	188	0.36
Andropogon gerardii			225	1.74		
Androsace occidentalis			120	-0.26	119	-0.36
Anemone canadensis	151	-1.03	161	0.53		
Anemone cylindrica			174	0.12	175	0.27
Apocynum cannabinum			177	0.38	177	0.38
Aquilegia canadensis					143	-0.29
Artemisia biennis			233	-1.06		
Asclepias ovalifolia			185	2.39	175	1.00
Asclepias syriaca			185	1.68	185	1.68
Berteroa incana					155	0.23
Betula papyrifera					116	-1.28
Caltha palustris	127	0.22	132	0.96	124	-0,22
Calylophus serrulatus			203	2.42	181	0.55
Campanula rapunculoides			172	-0.64		
Campanula rotundifolia	159	-1.72			175	-0.39
Capsella bursapastoris			107	-1.09		
Castilleja sessiliflora	151	-0.09	158	0.82	152	0.04
Catalpa speciosa			192	2.23	188	1.70
Cerastium arvense			132	-0.32	134	-0.07
Chrysopsis villosa					175	-0.68
Cicuta maculata	177	-0.15			188	1.85
Comandra umbellata			148	0.38	147	0.28
Conringia orientalis			153	0.64		
Convolvulus arvensis			177	0.37	188	1.94
Corylus americana			106	0.35	105	0.24
Crataegus chrysocarpa			148	0.76		
Cypripedium candidum	151	-0.22	147	-0.75	147	~0.75
Dalea candida			195	0.33	196	0.42
Dalea purpurea			199	1.01	197	0.81
Delphinium carolinianum ssp. virescens	165	-1.48	178	0.14	181	0.51

APPENDIX I

Descurainia pinnata			140	-0.89		
Echinacea purpurea	171	-2.31	190	4,14	189	3.80
Erigeron philadelphicus			161	0.59		
Erysimum asperum			148	-0.05		
Fragaria virginiana			132	1.17		
Fraxinus lanceolata					115	-1.49
Fraxinus pennsylvanica			131	0.45		
Gaillardia aristata	158	-1.20	175	0.28	170	-0.16
Galium aparine			148	-0.11	149	0.07
Galium boreale			168	1.48		
Gaura coccinea	151	-1.29	166	-0.13	170	0.18
Helianthus maximiliani	197	-1.48	100			
Heracleum maximum					176	1.54
Hesperis matronalis			150	0.29	148	0.02
Heterotheca villosa var. villosa			175	-0.68		
Heuchera richardsonii			168	0.52	152	-0.60
Hydrophyllum virginianum			148	0.17	148	0.17
Hypoxis hirsuta	146	-0.30	149	0.12	152	0.53
Juglans nigra			159	1.66		
Koeleria macrantha					173	0.35
Lactuca pulchella					205	2.73
Liatris aspera	191	-5.29	225	1.47		
Liatris punctata			225	1.89		
Liatris pycnostachya					210	1.91
Lilium philadelphicum	171	-0.90	181	1.68	181	1.68
Lithospermum canescens	127	-1.54	136	-0.42	134	-0.67
Lithospermum incisum			148	1.00	147	0.86
Lobelia spicata					197	2.02
Lonicera tatarica					148	0.97
Lygodesmia juncea			194	0.96		
Maianthemum stellatum					134	-0.53
Malus sylvestris			139	0.57	al i a la an à fhan ann san Annair an Annairte	
Melilotus officinalis					168	1.33
Medicago lupulina			164	0.36		
Oenothera biennis	197	0.37				
Oenothera nuttallij	200	1.81	195	1.41		
Oenothera serrulata			175	0.04		
Oligoneuron rigidum					223	0.45
Onosmodium occidentale			178	0.11	175	-0.07
Osmorhiza longistylis			161	1.17		
Ostrya virginiana					133	0.28
Oxalis stricta			164	0.99	152	-0.38
Oxalis violacea	130	-1.90	140	-0.23	141	-0.06
Oxytropis lambertii					152	-0.28

Packera plattensis	1		153	1.41	152	1.23
Panicum virgatum			175	-2.17		
Parnassia palustris	213	2.34		2.17		
Pedicularis canadensis	130	-3.02	144	-0.38	141	-0.94
Pediomelum argophyllum	150	- <u>3.02</u> -1.65	744	-0.58	141	0.54
Pediomelum esculentum	158	-2.73	172	0.10		
Penstemon albidus	138	-1.48	167	1.34	161	0.54
	140	-2.19	107	-0.23	161	-0.60
Penstemon gracilis	151	-1.93	1/2	-0.23	168	0.37
Penstemon grandiflorus			109	0.37	108	0.57
Petalostemum candidum	180	-1.08				
Petalostemum purpurea	184	-0.44		0.25	112	0.25
Populus deltoides			113	-0.35	113	-0.35
Populus tremuloides	<u> </u>				106	-0.42
Potentilla arguta			177	0.00	181	0.47
Prunus americana			138	1.05	138	1.05
Prunus triloba	1				140	0.72
Psoralea argophylla	_		203	2.40	188	0.71
Ranunculus abortivus			132	0.64	139	1.20
Ranunculus rhomboideus	116	-0.17	125	0.53	114	-0.32
Ratibida columnifera	172	-1.35	190	0.42	196	1.00
Rhus glabra	_		194	1.61		
Ribes americanum			139	0.74		
Ribes missouriense			138	0.28	133	-0.43
Ribes rubrum			138	1.24	136	0.93
Rosa arkansana	153	-2.69	168	0.47	175	1.94
Rudbeckia hirta			177	3.46	175	2.31
Sanguinaria canadensis					115	-0.18
Scrophularia Ianceolata			169	0.44	161	-0.06
Senecio plattensis	146	0.16	_			
Shepherdia argentea			131	2.19	117	0.59
Sisyrinchium angustifolium	151	1.05	147	0.61	138	-0.38
Smilacina stellata			142	0.59		
Smilax herbacea					154	0.26
Solidago canadensis	1				223	0.57
Solidago missouriensis			225	1.39	216	0.61
Solidago rigida	222	0.24				
Symphoricarpos occidentalis					175	-0.46
Thalictrum dasycarpum	171	-0.25			175	0.15
Thlaspi arvense			132	1.43		
Tragopogon dubius	153	-0.98	163	0.81	168	1.71
Trillian cernuum			145	0.73	143	0.50
Ulmus americana	1		114	0.43	107	-0.34
Uvularia grandifolia	-		132	0.31	134	0.64
Viburnum lentago	1		158	1.53	159	1.69

Vicia americana			161	1.54		
Viola papilionacea					129	0.54
Viola pedatifida	127	-0.93	144	0.65	134	-0.28
Viola pubescens var. pubescens			132	0.84	143	2.31
Zanthoxylum americanum			148	1.50	138	0.26
Zigadenus elegans	171	-0.94	177	0.84	172	-0.64
Zizia aptera			148	0.68	147	0.55
Zizia aurea	151	0.55	143	-0.49	147	0.03

APPENDIX II

	Years	Mean 1st		Partial		
Species	sampled	flower time	Top predictors	R2	P-value	Equation
Taraxacum officinale	48	128	April temp	0.730	<0.0001	y=-1.23x+101.29
			May temp	0.030	0.031	y=-0.29x+101.29
	1					
Ellisia nyctelea	39	140	April temp	0.431	<0.0001	
			May temp	0.133	0.002	
Thlaspi arvense	34	111	April temp	0.216	0.006	γ=-2.33x+861.14
			Year	0.336	0.013	y=-0.34x+861.14
			March temp	0.518	0.025	γ=-1.21x+861.14
Hydrophyllum virginianum	32	147	May temp	0.394	0.000	y=-1.05x+334.72
			April temp	0.379	<.0001	y=-0.91x+334.72
Chrysanthemum uliginosum	32	255	None P < 0.05			
		r				
Actaea rubra	25	141	May temp	0.537	<0.0001	y=-1.15x+399.54
			April temp	0.649	0.015	y=-0.42x+399.54
Melilotus officinalis	22	159	April temp	0.289	0.010	y=-0.76x+567.16
			Year	0.272	0.003	y=-0.17x+567.16
			May temp	0.160	0.005	γ=-0.77x+567.16
Stellaria media	23	158	None P < 0.05			
Zizia aurea	21	147	Year	0.287	0.012	y=0.17x-109.20
	ļ		May temp	0.219	0.011	y=-0.86x-109.20
			April temp	0.149	0.015	y=-0.53x-109.20
Androsace occidentalis	21	122	April temp	0.793	<0.0001	y=-1.65x+225.91
······						
Sonchus arvensis	22	182	May temp	0.306	0.008	γ=-0.94x+556.55
	 					
Veronica peregrina	21	139	April temp	0.376	0.003	y=-1.01x+654.76
			year	0.150	0.028	γ=-0.25x+654.76
Vicia americana	21	150	May temp	0.370	0.003	γ=-1.45x+274.11
			April temp	0.151	0.028	y=-0.78x+274.11
· · · · · · · · · · · · · · · · · · ·			l			

		year	0.200	0.013	y=-0.17x+529.21
				0.015	y=-0.17x+529.21
18	155	May temp	0.465	0.002	y=-1.35x+650.38
		year	0.156	0.025	
		April temp	0.162	0.006	
17	225	April temp	0.486	0.002	y=-0.94x+341.89
16	150	April temp	0.354	0.015	y=-0.50x+297.43
		May temp	0.273	0.009	y=-1.72x+297.43
16	148	Last day 32	0.326	0.010	y=0.59x+141.98
10	140		0.520	0.010	y 0.55x.11155
17	724	April tomp	0 120	0.000	y=-0.73x+2715.63
1/	2.54				y=-0.57x+2715.63
					y=-0.29x+2715.63
16	158				y=-0.65x+324.99
10	1,3		0.331	0.010	y=-0.03x+324.55
15	141	None P < 0.05			
15	154	May temp	0.407	0.011	y=-1.46x+692.00
15	149	April temp	0.418	0.009	y=-0.93x+386.79
		May temp	0.170	0.046	y=-0.88x+386.79
15	211	None P < 0.05			
15	220				
12	229	NUTIE P < 0.05			
15	150	Last day 32	0.349	0.020	y=0.92x-28.03
15	147	April temp	0.302	0.034	y=-2.07x+652.60
	16 16 17 16 17 17 15	16 150 16 150 16 148 17 234 17 234 17 234 16 158 15 141 15 141 15 141 15 144 15 141 15 141 15 141 15 154 15 149 15 211 15 211 15 229 15 150 15 150	April temp 17 225 April temp 17 225 April temp 16 150 April temp 16 150 April temp 16 150 April temp 16 148 Last day 32 16 148 Last day 32 17 234 April temp 17 234 April temp 18 15 Snowfall 16 158 April temp 16 158 April temp 16 158 April temp 15 141 None P < 0.05	April temp 0.162 17 225 April temp 0.486 17 225 April temp 0.486 16 150 April temp 0.354 16 150 April temp 0.354 16 148 Last day 32 0.326 16 148 Last day 32 0.326 17 234 April temp 0.130 17 234 April temp 0.130 17 234 April temp 0.351 16 158 April temp 0.351 16 158 April temp 0.351 15 141 None P < 0.05	April temp 0.162 0.006 17 225 April temp 0.486 0.002 16 150 April temp 0.354 0.015 16 150 April temp 0.354 0.015 16 150 April temp 0.273 0.009 16 148 Last day 32 0.326 0.010 17 234 April temp 0.130 0.009 17 234 April temp 0.130 0.009 17 234 April temp 0.130 0.009 16 158 April temp 0.351 0.016 16 158 April temp 0.351 0.016 15 141 None P < 0.05

Sanguinaria canadensis	16	117	April temp	0.500	0.003	y=-1.26x+189.18
Sangumana canadensis			March temp	0.155	0.039	y=-0.34x+189.18
	1					
Viola rugulosa	15	123	April temp	0.458	0.006	y=-1.16x+367.10
Capsella bursa-pastoris	15	119	Last 32 low	0.347	0.027	y=0.69x-215.20
			April temp	0.261	0.020	y=-1.29x-215.20
-						4.40
Carex pennsylvanica	14	121	April temp	0.596	0.001	y≖-1.19x+211.68
Convolvulus repens	14	168	April temp	0.307	0.022	y=-0.85x-141.69
						,
Heliopsis helianthoides	14	178	None P < 0.05			
					_	
Medicago sativa	14	160	April temp	0.464	0.007	y=-1.15x+55.97
······································						
Apocynum hypericifolium	13	174	None P < 0.05			
Aquilegia canadensis	13	145	May temp	0.589	0.002	y=-1.85x+311.83
Aralia nudicaulis	14	150	May temp	0.497	0.005	y=-2.04x-49.44
Lactuca scariola	13	198	None P < 0.05			
	13	198	None r < 0.05			
Lysmachia ciliata	13	186	Year	0.311	0.048	y=0.25x-201.08
Ranunculus rhomboideus	13	118	Year	0.476	0.009	y=0.29x-396.71
						· · · · · · · · · · · · · · · · · · ·
	10	173	Maytema	0.462	0.015	v= 1 27w 240 F7
Agropyron repens	12	172	May temp	0.463	0.015	y=-1.37x+340.57
	1	L	1		L	1

Ambrosia trifida	12	197	April temp	0.344	0.045	y=-1.54x+235.12
			, princettip	0.0.11		y=1.18x+235.12
			1			,
Anemone canadensis	12	158	May temp	0.348	0.043	y=-1.96x+277.27
						-
Astragalus hypoglottis	12	142	April temp	0.432	0.020	y=-1.35x-67.97
Chenopodium strictum	13	229	Feb temp	0.564	0.003	y=-0.32x+199.92
Calium baraala	17	160		0.452	0.016	
Galium boreale	12	160	May temp April temp	0.453	0.016	γ=-1.17x+249.54 γ=-0.44x+249.54
			Feb temp	0.102	0.013	y=-0.28x+249.54
Lappula redowski	12	148	None P < 0.05	0.102	0.015	y 0.20x 2 15.5 1
		110				
Melilotis alba	12	172	Last day 32	0.713	0.001	y=0.45x+483.03
Oenothera biennis	12	194	None P < 0.05			
0	40					
Oxalis europea	13	158	April temp	0.326	0.042	y=-2.08x+1064.95
· · · · · · · · · · · · · · · · · · ·						
Polygonatum commutatum	12	167	May temp	0.538	0.007	y=-1.01x+273.75
r orygonatam commutatam		107	Last day 32	0.195	0.031	y=-0.37x+273.75
						,
Potentilla norvegica	12	171	Year	0.616	0.003	y=0.31x-437.12
Rumex mexicanus	12	158	None P < 0.05			
Calidana						
Solidago canadensis	12	218	May temp	0.378	0.033	y=-0.30x+333.32
Boltonia latisquama	11	216	None P < 0.05			
		210				
						······································
Cerastium arvense	11	135	April temp	0.561	0.008	y=-0.82x+845.52
			May temp	0.220	0.022	y=-2.07x+845.52
					1	

11	185	May temp	0.421	0.031	y=-1.39x+816.41
11	196	None P < 0.05			
	190				
11	205	None P < 0.05			
11	153	May temp	0.587	0.006	y=-2.21x-6.02
11	170	Snowfall	0.358	0.040	y=-0.51x+314.65
12	130	April temp	0.825	<.0001	y=-1.26x+219.57
		Snowfall	0.059	0.042	y=-0.21x+219.57
12	137	April temp	0.648	0.002	y=-1.10x+450.30
11	175	None P < 0.05			
11	182	None P < 0.05			
11	208	February temp	0.481	0.018	y=0.40x+650.76
11	153	Snowfall	0.367	0.048	y=-0.23x+447.47
10	170	Snowfall	0.299	0.028	y=-0.36x-149.55 y=0.24x-149.55
	420		0.420	0.041	y=0.24x-149.55
10	139	None P < 0.05		~~~~~	
10	171	May temp	0.613	0.007	y=-1.58x+893.65
10	147	Feb temp	0.314	0.029	y=-2.02x+377.94
	11 11 11 11 11 11 11 11 11 12 12 11 12 11 12 11 12 11 10 10 10 10	11 196 11 196 11 205 11 205 11 153 11 153 11 170 11 170 11 170 11 170 12 130 12 130 11 175 11 175 11 175 11 175 11 182 11 182 11 182 11 153 11 153 11 153 10 170 10 139 10 171	11 196 None P < 0.05	11 196 None P < 0.05	Image: second

Helianthus petiolaris	10	185	Last 32 low	0.198	0.016	y=-0.79x+186.96
Hesperis matronalis	11	148	April temp	0.732	0.001	y=-0.64x+1248.58
					×.	
Lactuca pulchella	10	185	None P < 0.05			
Lathyrus venosus	10	165	None P < 0.05			
Ranunculus sceleratus	11	150	May temp	0.534	0.011	y=-1.06x+220.51
			Feb temp	0.215	0.031	y=0.36x+220.51
Senecio plattensis	10	145	March temp	0.258	0.017	y=-0.79x+876.16
Sisyrinchium angustifolium	10	141	Snowfall April temp	0.406 0.331	0.048 0.021	y=-0.53x+203.47 y=-1.88x+203.47
Smilacina stellata	10	138	Feb temp	0.382	0.000	y=-0.73x+293.51
			Last 32 low Year	0.550 0.026	0.014 0.028	y=-0.27x+293.51 y=-0.05x+293.51
Solidago rigida	10	221	None P < 0.05			
Amaranthus retroflexus	9	185	None P < 0.05			
Arenaria lateriflora	9	144	April temp	0.689	0.006	y=-1.04x-28.21
Cardaria draba	10	157	None P < 0.05			
Cirsium undulatum	9	185	None P < 0.05			
Euphorbia serpyllifolia	9	162	Last 32 low	0.179	0.004	y=0.62x+4.36
			May temp	0.695	0.005	γ=-1.07x+4.36
Hesperis matronalis	11	148	April temp	0.730	0.001	
••••						

Delphinium virescens	9	177	None P < 0.05			
Gaura coccinea	10	168	April temp	0.004	0.016	y=0.30x-541.60
			Year	0.031	0.019	y=0.21x-541.60
		·········	Feb temp	0.195	0.022	y=-0.52x-541.60
Hackelia americana	9	164	March temp	0.274	0.020	y=-2.34x-651.81
			May temp	0.561	0.020	y=-1.63x-651.81
·····			Feb temp	0.057	0.033	y=-0.33x-651.81
Hierochloa odorata	9	133	April temp	0.778	0.002	y≕-5.35x-1862.05
Polygonum aviculare	9	162	Feb temp	0.411	0.006	y=-1.04x+368.74
Portulaca oleracea	9	188	None P < 0.05			
	1					
Ranunculus abortivus	9	124	Snowfall	0.143	0.036	y=-0.73x-757.23
			March temp	0.454	0.047	y=-0.66x-757.23
						,
Sisymbrium altissimum	9	157	April temp	0.319	0.011	y=-1.99x+946.55
			May temp	0.535	0.025	
Smilax herbacea	9	152	May temp	0.491	0.036	y=-3.54x-1097.46
Stachys palustris	9	180	May temp	0.604	0.014	y=-3.60x+1263.57
Tradescantia bracteata	9	150	None P < 0.05			
Vernonia fasciculata	9	206	None P < 0.05			
Lithospermum canescens	6	139	None P < 0.05			
Cypripedium candidum	3	153	Year	0.994	0.048	y=0.62x-1065.46
Corylus americana		103	None P < 0.05			
······	<u> </u>			l	L	1

Acer saccharinum	50	99	March temp	0.473	<.0001	y=-0.87x+126.24
			April temp	0.138	0.000	y=-0.71x+126.2
······································			1			
Sheperdia argentea	43	112	April temp	0.479	<.0001	y=-1.22x+99.14
			March temp	0.222	<.0001	y=-0.68x+99.14
Ulmus americana	48	110	April temp	0.504	<.0001	y=-1.33x+180.30
	1		March temp	0.171	<.0001	y=-0.60x+180.30
Populus tremuloides	16	111	April temp	0.552	0.001	y=-1.41x+214.06
			March temp	0.254	0.001	y=-0.76x+214.06
Populus deltoides	41	116	April temp	0.695	<.0001	y=-1.47x+273.25
			March temp	0.076	0.001	y=-0.45x+273.25
Acer negundo	46	115	April temp	0.553	<.0001	y=-1.44x+192.40
			March temp	0.146	<.0001	y=-0.59x+192.40
Shepherdia argentea	43	112	April temp	0.479	<.0001	y=-1.22x+99.14
			March temp	0.222	<.0001	y=-0.68x+99.14
Salix discolor	9	111	April temp	0.589	0.016	y=-1.85x+259.08
Salix cordata	12	112	April temp	0.734	0.000	y=-1.64x-50.20
Juniperus virginiana	25	119	April temp	0.580	<.0001	y=-1.26x+316.23
			March temp	0.078	0.035	y=-0.42x+316.23
Juniperus scopulorum	36	129	April temp	0.305	0.001	y=-0.71x+43.78
			May temp	0.135	0.008	y=-0.74x+43.78
Salix vitellina	23	127	April temp	0.753	<.0001	y=-1.40x+242.12
			May temp	0.095	0.001	y=-0.81x+242.12
Celtis occidentalis	26	127	April temp	0.735	<.0001	y=-1.37x+424.21
			March temp	0.063	0.013	y=-0.55x+424.21
A			May temp	0.046	0.019	y=-0.46x+424.21
Crataegus mollis	10	135	April temp	0.734	0.002	y=-1.29x+212.32
			}	<u> </u>		
Prunus tomentosa	11	127	April temp	0.792	0.000	y=-1.21x-660.98
			May temp	0.077	0.033	y=-1.23x-660.98
			1			

Prunus armeniaca	16	125	April temp	0.615	0.000	y=-1.13x+223.96
			March temp	0.219	0.001	y=-0.91x+223.96
			May temp	0.052	0.036	y=-0.58x+223.96
Prunus americana	50	130	April temp	0.569	<.0001	y=-1.44x+380.03
			May temp	0.073	0.003	y=-0.82x+380.03
			March temp	0.106	<.0001	y=-0.52x+380.03
Ribes odoratum	34	130	April temp	0.605	<.0001	y=-1.42x+430.18
			March temp	0.060	0.025	y=-0.51x+430.18
			May temp	0.097	0.002	y=-0.56x+430.18
Ribes vulgare	25	130	April temp	0.549	<.0001	y=-1.37x+196.46
			May temp	0.099	0.021	y=-0.35x+196.46
Amelanchier alnifolia	41	131	April temp	0.463	<.0001	y=-1.22x+232.18
			May temp	0.121	0.002	y=-0.80x+232.18
Sambucus pubens	24	134	April temp	0.652	<.0001	y=-1.49x+984.52
Betula papyrifera	34	126	April temp	0.448	<.0001	y=-1.12x+208.57
			May temp	0.075	0.035	y=-0.58x+208.57
Spiraea arguta	17	130	April temp	0.860	<.0001	y=-1.61x+228.55
Cratagana sharaaraa	5	141	Veen	0.050	0.024	
Crataegus chrysocarpa	5	141	Year	0.856	0.024	y=1.08x-1955.73
Prunus pennsylvanica	20	132	April temp	0.644	<.0001	y=-1.41x+546.63
			May temp	0.113	0.012	y=-1.35x+546.63
			March temp	0.081	0.012	y=-0.68x+546.63
Prunus triloba	13	134	April temp	0.829	<.0001	y=-1.44x+241.13
Salix amygdaloides	6	135	None P<0.05			
Ostrya virginiana	12	130	April temp	0.770	0.000	y=-2.35x-16.27
			May temp	0.094	0.034	y=1.42x-16.27
Ribes americanum	9	134	April temp	0.747	0.003	y=-1.62x+121.95
Pikos missourissa		100	Annilterre	0.700	0.000	u= 2 20217.05
Ribes missouriense	8	136	April temp snowfall	0.706	0.009 0.011	y=-2.29x+217.85 y=-0.52x+217.85

Hippophae rhamnoides	7	131	None P<0.05			
						·
Zanthoxylum americanum	8	136	May temp	0.597	0.025	γ=-1.66x+283.59
Fraxinus lanceolata	35	127	April temp	0.582	<.0001	y=-1.41x+466.16
			May temp	0.063	0.023	y=-0.70x+466.16
Daphne cneorum	9	130	April temp	0.893	0.000	y=-1.37x-1145.25
	ļ		Last 32 low	0.055	0.046	y=0.38x-1145.25
Acer ginnala	11	147	April temp	0.781	0.000	y=-1.35x-257.19
Acei yiinuu	<u>_</u>		Feb temp	0.104	0.000	y=0.44x-257.19
· · · · · · · · · · · · · · · · · · ·				0.107	0.027	y-0.4 1 237.13
Prunus virginiana	37	139	April temp	0.406	<.0001	y=-1.16x+393.30
			May temp	0.249	<.0001	y=-1.14x+393.30
			March temp	0.079	0.004	y=-0.46x+393.30
Quercus macrocarpa	31	140	April temp	0.409	0.000	y=-1.15x+479.10
······	ļ		May temp	0.238	0.000	y=-1.05x+479.10
	ļ					
Syringa vulgaris	45	139	April temp	0.499	<.0001	y=-1.36x+458.86
			May temp March temp	0.183	<.0001 0.027	y≖-0.97x+458.86 y=-0.31x+458.86
Syringa persica	11	141	April temp	0.030	<.0001	y=-0.86x-582.51
Synniga persica		141	April temp	0.004	<.0001	y0.80x-382.31
	1					
Syringa villosa	17	153	May temp	0.631	0.000	y=-1.98x+561.88
	1		March temp	0.108	0.030	y=-0.56x+561.88
Euonymus nanus	9	145	March temp	0.242	0.005	y=0.57x-1306.61
						
Poshosis thumbers ii	10	140	A	0.014	. 0001	1.04
Berberis thunbergii	19	140	April temp	0.814	<.0001	y=-1.84x+206.82
Lonicera tatarica	31	141	April temp	0.422	<.0001	y=-1.36x+490.41
			May temp	0.255	<.0001	y=-1.22x+490.41
			March temp	0.074	0.009	γ=-0.43x+490.41
Lonicera dioica	22	145	April temp	0.483	0.000	y=-1.02x+461.96
	ļ		May temp	0.314	<.0001	y=-1.29x+461.96
-	ļ		Feb temp	0.035	0.047	y=-0.21x+490.41
Cotoneaster acutifolius	21	147	April temp	0.453	0.001	y=-1.41x+1164.51
L	<u> </u>	I	1	<u> </u>	1	

					r	
Rhamnus cathartica	20	142	April temp	0.596	<.0001	y=-1.29x+468.49
			May temp	0.087	0.046	y=-0.77x+468.49
Elaeagnus angustifolia	5	159	None P<0.05			
		· · ·	-			
Juglans cinerea	19	139	April temp	0.816	<.0001	γ=-1.60x+679.61
Juglans nigra	17	150	May temp	0.416	0.005	y=-1.28x+409.39
Salix interior	8	145	April temp	0.613	0.022	γ=-1.74x+703.76
		·····	snowfall	0.250	0.030	y=-0.21x+703.76
Viburnum lentago	9	149	May temp	0.682	0.006	γ=-1.37x+805.38
			April temp	0.185	0.028	y=-1.60x+805.38
Malus sylvestris	23	134	April temp	0.817	<.0001	γ=-1.71x+513.48
			March temp	0.031	0.040	y=-0.41x+513.48
Malus baccata	17	132	April temp	0.673	<.0001	y=-1.46x+51.76
······································			May temp	0.092	0.035	y=-1.03x+51.76
Spiraea thunbergii	17	144	April temp	0.653	<.0001	y=-0.90x-253.75
			May temp	0.124	0.015	y=-1.63x-253.75
			Snowfall	0.063	0.028	y=-0.16x-253.75
Caragana arborescens	25	137	April temp	0.488	0.000	y=-1.46x+551.33
			May temp	0.142	0.008	γ=-1.06x+551.33
			March temp	0.079	0.027	y=-0.55x+551.33
Caragana pygmaea	16	149	April temp	0.770	<.0001	y=-0.76x+371.16
			May temp	0.124	0.002	y=-0.98x+371.16
Potentilla fruticosa	16	157	April temp	0.529	0.001	y=-1.87x+1052.01
Amorpha fruticosa	6	155	None P<0.05			
Cornus alba	11	147	April temp	0.818	0.000	y=-0.72x+296.40
			Snowfall	0.087	0.026	y=-0.21x+296.40
Pasa hugapis	14	157	Angiltana	0.711	0.000	v= 1.01v+1033.05
Rosa hugonis	14	157	April temp May temp	0.711 0.134	0.000	y=-1.01x+1022.65 y=-0.98x+1022.65
				1 0.13 4		

Rubus occidentalis	7	151	April temp	0.602	0.040	y=-1.14x+389.35
			Snowfall	0.076	0.042	y=-0.20x+389.35
Rubus strigosus	1	167	None P<0.05			
Viture enviro	14	152	May temp	0.637	0.001	y=-1.00x+208.70
Viburnum opulus		152	April temp	0.145	0.001	y=-0.65x+208.70
				0.145	0.020	<i>,</i>
Vitis riparia	11	160	May temp	0.545	0.010	y=-0.72x+236.80
			April temp	0.214	0.029	y=-0.97x+236.80
Rosa blanda	10	160	Eab taran	0.534	0.019	y=-0.46x+454.13
Kosa bianaa	10	162	Feb temp Year	0.524	0.018	y=-0.10x+454.13
				0.004	0.042	y=-0.10x+434.13
Rosa arkansana	13	166	None P<0.05			
Rhus glabra	12	183	Feb temp	0.410	0.025	y=-0.71x+200.88
Tamarix pentandra	8	165	May temp	0.829	0.002	y=-2.26x+650.86
			Snowfall	0.104	0.038	y=0.10x+650.86
Rhus rydbergii	4	168	Snowfal	0.965	0.018	y=-0.52x+173.18
			March temp	0.035	0.022	y=0.55x+173.18
Parthenocissus vitacea	6	185	None P<0.05			
Spiraea alba	4	181	None P<0.05			
·····	······	<u></u>				
Amorpha canescens	7	186	None P<0.05			
		·····				
Catalanaaa	45					
Catalpa speciosa	16	175	May temp	0.519	0.002	γ=-1.18x+640.65
		. – –				
Catalpa bignoniodes	12	179	Feb temp	0.431	0.020	y=0.39x+275.25
Symphoricarpos occidentalis	8	170	Maytome	0 557	0.024	V
symphonical pos occidentalis	0	179	May temp	0.557	0.034	y=-2.93x+310.51
			1			

Clematis virginiana	11	230	None P<0.05		
·····				 	
Campsis radicans	4	209	None P<0.05		
····					

APPENDIX III

Date	Julian Date	Scientific Name	Common Name
4/17/2007	107	Anemone patens	Pasque flower
4/27/2007	117	Ranunculus rhomboideus	Prairie buttercup
5/8/2007	128	Geum triflorum	Prairie smoke
5/8/2007	128	Viola pedatifida	Prairie violet
5/8/2007	128	Caltha palustris	Marsh marigold
5/8/2007	128	Antennaria campestris	Prairie everlasting
5/8/2007	128	Lithospermum canescens	Hoary puccoon
5/11/2007	131	Cerastium arvense	Chickweed
5/11/2007	131	Pedicularis canadensis	Wood betony
5/11/2007	131	Oxalis violacea	Violet wood oxalis
5/11/2007	131	Calvatia gigantea	Giant puffball
5/27/2007	147	Hypoxis hirsuta	Yellow star grass
5/27/2007	147	Penstemon albidus	White beardtongue
5/27/2007	147	Senecio plattensis	Prairie ragwort
6/1/2007	152	Tradescantia occidentalis	Spiderwort
6/1/2007	152	Sisyrinchium angustifolium	Blue-eyed grass
6/1/2007	152	Cypripedium candidum	White lady's slipper
6/1/2007	152	Zizia aurea	Golden Alexander
6/1/2007	152	Penstemon grandiflorus	Large flowered penstemon
6/1/2007	152	Castilleja sessiliflora	Downy paintbrush
6/1/2007	152	Gaura coccinea	Scarlet gaura
6/1/2007	152	Penstemon gracilis	Lilac penstemon
6/1/2007	152	Anemone canadensis	Canada anemone
6/3/2007	154	Tragopogon dubius	Goatsbeard
6/3/2007	154	Rosa arkansana	Wild rose
6/3/2007	154	Asclepias syriaca	Milkweed
6/5/2007	156	Achillea millefolium	Common yarrow
6/8/2007	159	Pediomelum esculentum	Prairie turnip
6/8/2007	159	Gaillardia aristata	Blanket flower
6/9/2007	160	Physalis sp.	Yellow ground cherry
6/9/2007	160	Campanula rotundifolia	Harebell
6/15/2007	166	Rudbeckia triloba	Brown-eyed susan
6/15/2007	166	Onosmodium molle	False gromwell
6/15/2007	166	Delphinium virescens	Prairie larkspur
6/17/2007	168	Pediomelum argophyllum	Silver leaved scurf pea
6/21/2007	172	Thalictrum dasycarpum	Tall meadow rue
6/21/2007	172	Zigadenus elegans	White camas
6/21/2007	172	Lilium philadelphicum	Wood lily
6/21/2007	172	Echinacea purpurea	Purple coneflower
6/22/2007	173		Yellow flax

6/22/2007	173	Asclepias viridiflora	Green milkweed
6/22/2007	173	Ratibida columnifera	Prairie coneflower
6/27/2007	178	Amorpha canescens	Lead plant
6/27/2007	178	Cicuta maculata	Water hemlock
6/30/2007	181	Petalostemum canidum	White prairie clover
7/4/2007	185	Petalostemum purpurea	Purple prairie clover
7/4/2007	185	Lysimachia quadriflora	Prairie loosestrife
7/6/2007	187	Monarda fistulosa	Wild bergamot
7/11/2007	192	Liatris aspera	Tall blazing star
7/11/2007	192	Helianthus pauciflorus	Helianthus pauciflorus
7/17/2007	198	Helianthus maximiliani	Helianthus maximiliani
7/17/2007	198	Oenothera biennis	Common evening primrose
7/20/2007	201	Oenothera nuttallii	White evening primrose
7/25/2007	206	Allium stellatum	Wild onion
7/27/2007	208	Lactuca sp.	Blue lettuce
8/2/2007	214	Parnassia palustris	Northern grass of Parnassus
8/11/2007	223	Solidago rigida	Stiff goldenrod
8/14/2007	226	Gentiana procera	Fringed gentian
8/16/2007	228	Gentiana andrewsii	Closed gentian
8/31/2007	243	Gentiana puberula	Downy gentian

APPENDIX IV

Date	Julian Date	Scientific Name	Common Name
4/14/2008	105	Taraxacum officinale	Dandylion
4/16/2008	107	Corylus americana	Hazelnut
4/17/2008	108	Acer saccharinum	Silver Maple
4/17/2008	108	Capsella bursa-pastoris	shepherds purse
4/17/2008	108	Anemone patens	Pasque flower
4/23/2008	114	Populus deltoides	Cottonwood
4/23/2008	114	Forsythia 'Meadowlark'	Meadowlark Forsythia
4/24/2008	115	Ulmus americana	American Elm
4/25/2008	116	Salix lutea	willow
4/30/2008	121	Forsythia sp.	Forsythia
4/30/2008	121	Androsace occidentalis	Fairy Candelabra
5/1/2008	122	Acer negundo	Box Elder
5/3/2008	124	Sanguinaria canadensis	Bloodroot
5/5/2008	126	Ranunculus rhomboideus	prairie buttercup
5/5/2008	126	Carex heterophylla	sedge
5/5/2008	126	Geum triflorum	torch flower
5/8/2008	129	Antennaria microphyla	pussy toes
5/11/2008	132	Shepherdia argentea	Buffalo Berry
5/11/2008	132	Fraxinus pennsylvanica	Green Ash
5/12/2008	133	Thlaspi arvense	frenchweed
5/12/2008	133	Cerastium arvense	Field(Meadow) Chickweed
5/12/2008	133	Uvularia grandifolia	Large-flowered Bellwort
5/12/2008	133	Viola pubescens	Yellow Wood Violet
5/12/2008	133	Fragaria virginiana	Wild Strawberry
5/12/2008	133	Asarum canadense	Wild Ginger
5/12/2008	133	Ranunculus abortivus	littleleaf buttercup
5/12/2008	133	Caltha palustris	Common Marsh-Marigold
5/15/2008	136	Viola sororia	Common Blue Violet
5/16/2008	137	Lithospermum canescens	Hoary Puccoon
5/16/2008	137	Calvatia gigantea	Giant Puffballs
5/18/2008	139	Ribes missouriense	Gooseberry
5/18/2008	139		Honeyberry
5/18/2008	139	Prunus americana	American Plum
5/18/2008	139	Ribes rubrum	Red Lake Currant
5/19/2008	140	Amelanchier alnifolia	Juneberry
5/19/2008	140	Ribes americanum	Wild Black Currant
5/19/2008	140	Malus sylvestris	European Crabapple
5/20/2008	141	Oxalis violacea	Pink/Violet Wood Sorrel
5/20/2008	141	Lithospermum canescens	Hoary Puccoon
5/20/2008	141	Astragalus missouriensis/agrestis	Missouri or Purple milkvetch

5/20/2008	141	Prunus americana	American Plum
5/20/2008	141	Arisaema triphyllum	Jack in the Pulpit
5/20/2008	141	Descurainia pinnata	Western Tansy Mustard
5/20/2008	141	Lamiastrum galeobdolon	yellow archangel
5/22/2008	143	Smilacina stellata	False Solomon's Seal
5/23/2008	144	Euphorbia esula	Leafy Spurge
5/23/2008	144	Equisetum kanasanum	Horsetail
5/23/2008	144	Zizia aurea	Meadow Parsnip
5/23/2008	144	Viola canadensis var. rugulosa	White/Pink Wood Violet
5/23/2008	144		Russian Honeysuckle
5/23/2008	144	Malus spp.	Apple Tree
5/24/2008	145	Pedicularis canadensis	Common Lousewort
5/24/2008	145	Viola pedatifida	Prairie Violet
5/25/2008	146	Trillium cernuum	Nodding Wake Robin
5/27/2008	148	Zizia aurea	Golden Alexanders
5/27/2008	148	Sisyrinchium angustifolium	Blue-eyed Grass
5/27/2008	148	Cypripedium candidum	White Lady's Slipper
5/28/2008	149	Comandra umbellata ssp. pallida	Pale Bastard Toadflax
5/28/2008	149	Zizia aptera	Meadow Zizia
5/28/2008	149	Pedicularis canadensis	Common Lousewort
5/28/2008	149	Astragalus missouriensis	Missouri Milkvetch
5/28/2008	149	Galium aparine	Bedstraw
5/28/2008	149	Actaea rubra	Red Baneberry
5/28/2008	149	Trillium cernuum	Nodding Wake Robin
5/28/2008	149	Lithospermum incisum	Narrow-leaved puccoon
5/28/2008	149	Crataegus chrysocarpa	Hawthorn
5/28/2008	149	Lonicera sp.	Honeysuckle
5/28/2008	149	Erysimum asperum	Western Wallflower
5/28/2008	149	Hydrophyllum virginianum	Waterleaf
5/28/2008	149	Zanthoxylum americanum	Prickly Ash
5/28/2008	149	Galium aparine	Bedstraw
5/28/2008	149	Syringa sp.	Lilac
5/29/2008	150	Hypoxis hirsuta	yellow star grass
5/30/2008	151	Hesperis matronalis	Dame's Rocket
6/2/2008	154	Packera plattensis	prairie groundsel
6/2/2008	154	Conringia orientalis	Hare's ear mustard
6/2/2008	154	Castilleja coccinea	Yellow Painted Cup
6/7/2008	159	Viburnum lentago	Nannyberry
6/7/2008	159	Viburnum trilobum	Highbush cranberry
6/7/2008	159	Aesculus glabra	Ohio Buckeye
6/7/2008	159	Tradescantia occidentalis	Spiderwort
6/7/2008	159	Castilleja sessiliflora	Downy Paintbrush
6/8/2008	160	Juglans nigra	Black Walnut

6/9/2008	161	Sorbus decora	Showy Mountain-ash
6/10/2008	162	Anemone canadensis	Canadian anemone
6/10/2008	162	Agoseris glauca	Pale Agoseris/False Dandelion
6/10/2008	162	Erigeron philadelphicus	Philadelphia fleabane
6/10/2008	162	Vicia americana	Wild Vetch
6/10/2008	162	Aquilegia canadensis	Red Columbine
6/10/2008	162	Thalictrum venulosum	Early Meadow Rue
6/10/2008	162	Osmorhiza longistylis	Sweet Cicely
6/12/2008	164	Tragopogon dubius	Goatsbeard
6/13/2008	165	Trifolium repens	White Clover
6/13/2008	165	Oxalis stricta	Yellow oxalis, Lady's Sorrel
6/13/2008	165	Medicago lupulina	black medick
6/15/2008	167	Gaura coccinea	Scarlet Gaura
6/16/2008	168	Penstemon albidus	White Penstemon
6/16/2008	168		Creeping Ground Vetch
6/17/2008	169	Heuchera richardsonii	Alum Root
6/17/2008	169	Achillea millefolium	Yarrow
6/17/2008	169	Penstemon albidus	White Penstemon
6/17/2008	169		
6/17/2008	169	Penstemon grandiflorus Galium boreale	Large Beardtongue Northern Bedstraw
	169		
6/17/2008		Cypripedium parviflorum Rosa arkansana	Yellow Ladyslipper Wild Prairie Rose
6/17/2008	169 170		Black Snakeroot
6/18/2008	170	Sanicula marylandica	
6/18/2008	170	Scrophularia lanceolata	Lanceleaf Figwort
6/21/2008	173	Campanula rotundifolia	bluebell/bellflower/harebell
6/21/2008		Pediomelum esculentum	large Indian breadroot
6/21/2008	173	Penstemon gracilis	Lilac flowered penstemon
6/23/2008	175	Physalis virginiana	Ground Cherry
6/23/2008	175	Anemone cylindrica	Candle Anemone
6/24/2008	176	Oenothera serrulata	Toothed Evening Primrose
6/24/2008	176	Gaillardia aristata	Gaillardia/Blanket Flower
6/24/2008	176	Panicum virgatum	Switchgrass
6/24/2008	176	Heterotheca villosa var. villosa	Golden Aster
6/26/2008	178	Convolvulus arvensis	Field Bindweed
6/26/2008	178	Apocynum cannabinum	Dogbane/Indian Hemp
6/26/2008	178	Zigadenus elegans	White Camas
6/26/2008	178	Rudbeckia hirta	Brown-eyed Susan
6/26/2008	178	Potentilla arguta	tall cinquefoil
		Delphinium carolinianum ssp.	
6/27/2008	179	virescens	prairie larkspur
6/27/2008	179	Onosmodium occidentale	false gromwell
6/30/2008	182	Lilium philadelphicum	Wood Lily
7/4/2008	186	Asclepias syriaca	Common Milkweed

7/4/2008	186	Asclepias ovalifolia	Ovalleaf Milkweed
7/7/2008	189	Cirsium flodmanii	Flodman's Thistle
7/9/2008	191	Ratibida columnifera	prairie cone flower
7/9/2008	191	Echinacea angustifolia	purple coneflower
7/11/2008	193	Catalpa speciosa	Northern Catalpa
7/13/2008	195	Amorpha canescens	Leadplant
7/12/2000	105	Current anianna a casidantalia (albus	Buckbrush/snowberry
7/13/2008	<u> 195 </u>	Symphoricarpos occidentalis/ albus	Bracted Vervain
7/13/2008	195	Verbena stricta	Hoary Vervain
7/13/2008			Skeleton Weed
7/13/2008	195	Lygodesmia juncea	
7/13/2008	195	Asclepias syriaca	Common Milkweed
7/13/2008	195	Asclepias ovalifolia	Ovalleaf Milkweed
7/13/2008	195	Heracleum maximum	Cow Parsnip
7/13/2008	195	Rhus glabra	Sumac
7/13/2008	195	Scirpus atrovirens	Dark Green Bulrush
7/14/2008	196	Dalea candida	white prairie clover
7/14/2008	196	Oenothera nuttallii	white evening primrose
7/18/2008	200	Dalea purpurea	Purple prairie clover
7/22/2008	204	Monarda fistulosa	Wild Bergamot
		Symphyotrichum falcatum var.	
7/22/2008	204	commutatum	White prairie aster
7/22/2008	204	Calylophus serrulatus	Yellow sundrops
7/22/2008	204	Psoralea argophylla	Silverleaf Scurfpea
8/13/2008	226	Liatris aspera	tall blazing star
8/13/2008	226	Liatris punctata	dotted blazing star
8/13/2008	226	Allium stellatum	Pink Wild Onion
8/13/2008	226	Solidago missouriensis	Missouri Goldenrod
8/13/2008	226	Andropogon gerardii	Big Bluestem
8/13/2008	226	Amphicarpaea bracteata	Hog Peanut
8/21/2008	234	Artemisia biennis	Wormwood

APPENDIX V

Date	Julian Date	Observations	Common Name
4/13/2009	103	Taraxacum officinale	Dandylion
4/14/2009	104	Acer saccharinum	Silver Maple
4/15/2009	105	Corylus americana	Hazelnut
4/16/2009	106	Populus tremuloides	Quaking Aspen
4/17/2009	107	Ulmus americana	American Elm
4/17/2009	107	Anemone patens	Pasque Flower
4/22/2009	112	Stellaria media	Common Chickweed
4/23/2009	113	Forsythia x 'Meadowlark'	Meadowlark Forsythia
4/23/2009	113	Populus deltoides	Cottonwood
4/23/2009	113	Populus alba	White Poplar
4/24/2009	114	Ranunculus rhomboideus	prairie buttercup
4/24/2009	114	Acer negundo	Boxelder
4/25/2009	115	Sanguinaria canadensis	Bloodroot
4/25/2009	115	Fraxinus lanceolata	Green Ash
4/26/2009	116	Betula papyrifera	Paper Birch
4/27/2009	117	Shepherdia argentea	Buffaloberry
4/29/2009	119	Androsace occidentalis	Fairy Candelabra
5/3/2009	123	Asarum canadense	Wild Ginger
5/4/2009	124	Caltha palustris	Marsh Marigold
5/4/2009	124	Antennaria plantaginifolia	Pussy Toes
5/8/2009	128	Geum triflorum	Prairie Smoke
5/8/2009	129	Viola papilionacea	Violet
5/10/2009	130	Sanguinaria canadensis	Bloodroot
5/10/2009	130	Ranunculus rhomboideus	Prairie Buttercup
5/11/2009	131	Geum triflorum	Prairie Smoke
5/13/2009	133	Ribes missouriense	Gooseberry
5/13/2009	133	Ostrya virginiana	Ironwood
5/13/2009	133	Viola papilionacea	Violet
5/13/2009	133	Viola x wittrockiana	Pansy
5/13/2009	133	Lonicera caerulea var. edulis	Honeyberry
5/14/2009	134	Viola pedatifida	prairie violet
5/14/2009	134	Lithospermum canescens	hoary puccoon
5/14/2009	134	Calvatia gigantea	giant puffball
5/14/2009	134	Cerastium arvense	common chickweed
5/14/2009	134	Euphorbia esula	Leafy Spurge
5/14/2009	134	Uvularia grandiflora	Large-flowered bellwort
5/14/2009	134	Maianthemum stellatum	False Solomon's Seal
5/15/2009	135	Arisaema triphyllum	Jack-in-the-pulpit
5/16/2009	136	Amelanchier alnifolia	Juneberry
5/16/2009	136	Ribes rubrum	Red Lake Currant
5/18/2009	138	Astragalus missouriensis	Missourí Milk-vetch

5/18/2009	138	Sisyrinchium angustifolium	Narrowleaf blue-eyed grass
5/18/2009	138	Prunus americana	Wild Plum
5/18/2009	138	Zanthoxylum americanum	Prickly Ash
5/18/2009	138	Lamiastrum galeobdolon	yellow archangel
	138	Ranunculus abortivus	Littleleaf Buttercup
5/19/2009	139	Dodecathion meadia	Shooting Star
5/19/2009 5/20/2009	139	Malus sp.	Flowering Crabapple
	140	Prunus triloba	Double flowering plum
5/20/2009		Cornus alternifolia	Pagoda Dogwood
5/20/2009	140		Wild Strawberry
5/20/2009	140	Fragaria virginiana Pedicularis canadensis	Common Lousewort
5/21/2009	141		
5/21/2009	141	Oxalis violacea	Pink/Violet Wood Sorrel
5/21/2009	141	Castilleja coccinea	Indian Paint-brush
5/21/2009	141	Arabis divaricarpa	spreadingpod rockcress
5/22/2009	142	Alliaria petiolata	Garlic Mustard
5/23/2009	143	Viola pubescens	Downy Yellow Wood Violet
5/23/2009	143	Aquilegia canadensis	Columbine
5/23/2009	143	Trillium cernuum	Nodding Trillium
5/23/2009	143	Sisyrinchium angustifolium	blue-eyed grass
5/23/2009	143	Oxalis violacea	violet wood oxalis
5/27/2009	147	Lithospermum incisum	Narrow-leaved puccoon
5/27/2009	147	Cypripedium candidum	White Lady Slipper
5/27/2009	147	Camandra umbellata	Bastard Toadflax
5/27/2009	147	Zizia aurea	Golden Alexanders
5/27/2009	147	Zizia aptera	Meadow Zizia
5/27/2009	147	Sorbus decora	Showy Mountain-ash
5/28/2009	148	Crataegus mollis/rotundifolia	Hawthorn
5/28/2009	148	Lonicera tatarica	Honeysuckle
5/28/2009	148	Hydrophyllum virginianum	Waterleaf
5/28/2009	148	Hesperis matronalis	Dame's Rocket
5/29/2009	149	Galium aparine	Bedstraw
6/1/2009	152	Packera plattensis	Prairie Groundsel
6/1/2009	152	Hypoxis hirsuta	Yellow stargrass
6/1/2009	152	Allium textile	White Wild Onion
6/1/2009	152	Castilleja sessiliflora	Downy Paintbrush
6/1/2009	152	Oxalis stricta	Yellow Oxalis
6/1/2009	152	Heuchera richardsonii	Alum Root
6/1/2009	152	Oxytropis lambertii	Lambert's locoweed
6/1/2009	152	Cornus stolonifera	Red-twigged Dogwood
6/1/2009	152	Acer ginnala	Amur Maple
6/3/2009	154	Smilax herbacea	Carrion Flower
6/3/2009	154	Brassica napus	Canola
6/4/2009	155	Berteroa incana	Hoary alyssum

6/4/2009	155	Heuchera richardsonii	Alum Root
6/4/2009	155	Castilleja sessiliflora	Downy Paintbrush
6/8/2009	159	Barbarea vulgaris	
6/8/2009	159	Viburnum trilobum	Upright Cranberrybush
6/8/2009	159	Viburnum lentago	Nannyberry
6/9/2009	160	Silene alba	White Campion
6/10/2009	161	Penstemon albidus	White Penstemon
6/10/2009	161	Anemone canadensis	Wood Anemone
6/10/2009	161	Actaea rubra	Red Baneberry
6/10/2009	161	Scrophularia lanceolata	Lanceleaf Figwort
6/10/2009	161	Stellaria longifolia	Long-leaved Stitchwort
6/17/2009	168	Penstemon grandiflorus	Large Beardtongue
6/17/2009	168	Erigeron strigosus	Daisy Fleabane
6/17/2009	168	Pediomelum esculentum	Indian Breadroot
6/17/2009	168	Achillea millefolium	Yarrow
6/17/2009	168	Melilotus officinalis	Yellow Sweet Clover
6/17/2009	168	Penstemon gracilis	Lilac flowered penstemon
6/17/2009	168	Potentilla argentea	Silvery Cinquefoil
6/17/2009	168	Tradescantia occidentalis	Prairie Spiderwort
6/17/2009	168	Tragopogon dubius	Goatsbeard
6/19/2009	170	Gaillardia aristata	Gaillardia/Blanket Flower
6/19/2009	170	Gaura coccinea	Scarlet Gaura
6/19/2009	170	Amorpha nana	Dwarf Wild Indigo
6/21/2009	172	Zigadenus elegans	White Camas
6/22/2009	173	Koeleria macrantha	Junegrass
6/24/2009	175	Chrysopsis villosa	Hairy goldaster
6/24/2009	175	Anemone cylindrica	Candle Anemone
6/24/2009	175	Zigadenus elegans	White Camas
6/24/2009	175	Rosa arkansana	Wild Prairie Rose
6/24/2009	175	Asclepias ovalifolia	Oval Milkweed
6/24/2009	175	Campanula rotundifolia	Harebell
6/24/2009	175	Onosmodium occidentale	false gromwell
6/24/2009	175	Rudbeckia hirta	Brown-eyed Susan
6/24/2009	175	Thalictrum dasycarpum	Tall Meadowrue
6/24/2009	175	Prunella vulgaris	Heal-all/Selfheal
6/24/2009	175	Symphoricarpos occidentalis	Western Snowberry
6/25/2009	176	Heracleum maximum	Cow Parsnip
6/26/2009	177	Apocynum cannabinum	Indian Hemp
		Delphinium carolinianum ssp.	
6/30/2009	181	virescens	Prairie Larkspur
6/30/2009	181	Lilium philadelphicum	Wood lily

6/30/2009	181	Calylophus serrulatus	Yellow Sundrops
6/30/2009	181	Physalis virginiana	Virginia Ground Cherry
6/30/2009	181	Potentilla arguta	Tall Cinquefoil
7/4/2009	185	Asclepias syriaca	Common Milkweed
7/7/2009	188	Amorpha canescens	Lead Plant
7/7/2009	188	Psoralea argophylla	Silverleaf Scurfpea
7/7/2009	188	Convolvulus arvensis	Field Bindweed
7/7/2009	188	Cicuta maculata	Spotted water hemlock
7/7/2009	188	Catalpa speciosa	Northern Catalpa
7/8/2009	189	Echinacea angustifolia	purple coneflower
7/15/2009	196	Ratibida columnifera	Prairie Coneflower
7/15/2009	196	Dalea candida	white prairie clover
7/15/2009	196	Potentilla sp.	
7/16/2009	197	Pycnanthemum virginianum	Virginia mountain mint
7/16/2009	197	Dalea purpurea	Purple prairie clover
7/16/2009	197	Asclepias incarnata	Swamp Milkweed
7/16/2009	197	Verbena stricta	Hoary Vervain
7/16/2009	197	Lobelia spicata	Pale-spike Lobelia
7/22/2009	203	Monarda fistulosa	Beebalm/Wild Bergamot
7/24/2009	205	Lactuca pulchella	Blue Wild Lettuce
7/24/2009	205	Asclepias verticillata	Whorled Milkweed
7/29/2009	210	Liatris punctata	Narrow-leaved blazing star
7/29/2009	210	Liatris pycnostachya	Tall Blazing Star
8/4/2009	216	Allium stellatum	Pink Wild Onion
8/4/2009	216	Solidago missouriensis	Missouri Goldenrod
8/5/2009	217	Eupatoriadelphus maculatus	Spotted Joe-pye Weed
8/11/2009	223	Oligoneuron rigidum	Stiff Goldenrod
8/11/2009	223	Parnassia palustris	Northern grass of Parnassus
8/11/2009	223	Solidago canadensis	Canada Goldenrod