
AN ARCHITECTURE FOR THE IMPLEMENTATION AND 

DISTRIBUTION OF MULTIUSER VIRTUAL ENVIRONMENTS 

A Thesis 
Submitted to the Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 

By 

Benjamin James Dischinger 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 

Major Department: 
Computer Science 

May2010 

Fargo, North Dakota 



North Dakota State University 
Graduate School 

Title 

AN ARCIDTECTURE FOR THE IMPLEMENTATION AND 

DISTRIBUTION OF MULTIUSER VIRTUAL ENVIRONMENTS 

By 

BENJAMIN JAMES DISCHINGER 

The Supervisory Committee certifies that this disquisition complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the document, signatures have been 
removed from the digital version of this document. 



ABSTRACT 

Dischinger, Benjamin James, M.S., Department of Computer Science, College of Science 
and Mathematics, North Dakota State University, May 2010. An Architecture for the 
Implementation and Distribution of Multiuser Virtual Environments. Major Professor: Dr. 
Brian M. Stator. 

JavaMOO is an architecture for creating multiuser virtual environments focusing on 

domain-specific design and rapid development. JavaMOO components use best practices 

and extensible design for system configuration, client-server communication, event 

handling, object persistence, content delivery, and agent control. Application 

dependencies such as database and web servers are embedded, promoting wide 

dissemination by decreasing management overhead. The focus of this thesis is the design 

and implementation of the JavaMOO architecture and how it helps improve the state of 

multiuser virtual environments. 

The formatting of the thesis has been done in accordance with the Guidelines for the 

Preparation of Disquisitions. 



ACKNOWLEDGEMENTS 
Thank you to everyone who worked with me on this project including Bradley Vender, 

Robert Cosmano, Christopher Imdieke, John Opgrande, Kellie Erickson, and Jacob 

Halvorson. 

Special thanks is deserved to Dr. Brian Slator and Dr. Harold Chaput; without their 

help, I may not have found the motivation required to complete this endeavor. 

I am very grateful to my wife, Cheri, for her constant support, feedback, and patience 

during life's balancing act. 

IV 



TABLE OF CONTENTS 

ABSTRACT .......................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................... iv 

LIST OF TABLES ............................................................................................................... viii 

LIST OF FIGURES .............................................................................................................. .ix 

INTRODUCTION .................................................................................................................. I 

Virtual Environments ......................................................................................................... l 

Implementation Challenges ................................................................................................ 3 

Goals and Constraints ......................................................................................................... 5 

LITERATURE REVIEW ........................................................................................................ 6 

LambdaMOO ..................................................................................................................... 6 

MMOG Architectures ......................................................................................................... 8 

Service Distribution ..................................................................................................... 10 

Sharding ....................................................................................................................... 11 

Region-based Clustering .............................................................................................. 12 

Peer-to-Peer Distribution ............................................................................................. 14 

APPROACH ......................................................................................................................... 17 

First Attempt. .................................................................................................................... 17 

Dollarbay Prototype ......................................................................................................... 19 

JavaMOO Architecture ..................................................................................................... 21 

Overview ..................................................................................................................... 22 

Configuration ............................................................................................................... 23 

V 



Communication ........................................................................................................... 30 

Event Handling ............................................................................................................ 34 

Persistence ................................................................................................................... 3 7 

Content Delivery .......................................................................................................... 51 

Autonomous Agents .................................................................................................... 53 

Environment Development. ............................................................................................. 56 

Project Structure .......................................................................................................... 56 

Domain Objects ........................................................................................................... 59 

Events .......................................................................................................................... 63 

Event Handlers ............................................................................................................ 65 

Configuration ............................................................................................................... 66 

Content Delivery .......................................................................................................... 71 

Build ............................................................................................................................ 72 

Installation ................................................................................................................... 73 

EVALUATION ...................................................................................................................... 76 

Performance ..................................................................................................................... 7 6 

Development Process ....................................................................................................... 80 

Distribution ....................................................................................................................... 81 

FUTURE WORK .................................................................................................................. 83 

Transactional Cache with Deadlock Detection ................................................................ 83 

Scalability Research ......................................................................................................... 85 

Security Improvements .................................................................................................... 86 

VI 



LamdaMOO Emulator ...................................................................................................... 86 

CONCLUSION ..................................................................................................................... 88 

REFERENCES ...................................................................................................................... 89 

Vll 



LIST OF TABLES 

1. NDSU Virtual Environments ...................................................................................... 2 

2. JavaMOO Configuration Files .................................................................................. 26 

3. Default Derby Data Type Mappings ........................................................................ .46 

vm 



LIST OF FIGURES 

Figure 

1. UGAIM Service Distribution .................................................................................... I 0 

2. MMOG Sharding Example ....................................................................................... 11 

3. Region Based Grid Distribution ............................................................................... .13 

4. JavaMOO Component Diagram ................................................................................ 22 

5. Persistence Configuration Example .......................................................................... 25 

6. Example Logger Usage ............................................................................................. 27 

7. MOOServer Startup Sequence .................................................................................. 29 

8. Communication Interfaces ....................................................................................... .31 

9. Client Event Communication Sequence ................................................................... 32 

10. RMI Communication Implementation ...................................................................... 33 

11. EventHandler Polymorphic Map Usage ................................................................... 35 

12. Polymorphic Map Implementation ........................................................................... 35 

13. EventDispatcher Configuration Example ................................................................. 36 

14. Click Causes Explosion Example ............................................................................. 37 

15. Persistence Interface Design ..................................................................................... 39 

16. Persistence Query Example ...................................................................................... 40 

17. SQL Persistence Classes ........................................................................................... 41 

18. DDL for MOObject, Tangible, and Product.. ........................................................... .44 

19. DerbySQLDialect Save Example ............................................................................. .45 

IX 



20. Generated Inserts for a Dollarbay Product.. ............................................................. .46 

21. SQLQuery for Books Written Before 2000 by Author King .................................... 51 

22. Dollarbay Scoreboard JSP script.. ............................................................................. 52 

23. Agent Framework Classes ........................................................................................ 54 

24. Dollarbay Packages ................................................................................................... 59 

25. Example MOObject Domain Object.. ....................................................................... 61 

26. MOOServer Configuration injavamoo-beans.xml.. ................................................. 67 

27. PersistManager Configuration in javamoo-persist.xml... ......................................... 68 

28. Data Source Configuration in javamoo-persist.xml.. ................................................ 68 

29. SQL Dialect Configuration injavamoo-persist.xml.. ............................................... 69 

30. EventDispatcher Configuration in javamoo-events.xml. .......................................... 70 

31. Dollarbay Plugin Configuration in javamoo-plugins.xml.. ....................................... 70 

32. Fragment of dollarbay-install.xml and the Dollarbay Install Method ...................... 74 

33. Test Hardware Setup ................................................................................................. 76 

34. Create Performance ................................................................................................... 77 

35. Delete Performance ................................................................................................... 78 

36. Test Time to Completion ........................................................................................... 79 

37. Performance Test Failures ......................................................................................... 80 

38. Object Transaction Example ..................................................................................... 84 

39. LambdaMOO Emulator Event Sequence .................................................................. 87 

X 



INTRODUCTION 
JavaMOO is an architecture for creating multiuser virtual environments that helps 

developers focus on domain-specific design and rapid development. JavaMOO 

components use best practices and extensible design for system configuration, client-server 

communication, event handling, object persistence, content delivery, and agent control. 

Application dependencies such as database and web servers are embedded, promoting wide 

dissemination by decreasing management overhead. 

This thesis describes the design and implementation of the JavaMOO architecture and 

how it helps improve the state of multiuser virtual environments. 

Virtual Environments 

At North Dakota State University (NDSU), the World Wide Web Instructional 

Committee (WWWIC) is engaged in research aimed at developing virtual environments to 

assist in the education and growth of students (Slator, 1999). 

Some of the key factors that lead to the success of these environments are: the theory of 

role-based environments on which they are based (Brandt, 2006), the use of graduate and 

undergraduate students in the development process (Borchert, 2001 ), the use of the 

environments in actual classes (Mack, 2003; Slator, 2001), and the application of 

knowledge from a virtual environment to the real world (Slator, 1996). 

The virtual environments developed at NDSU cover a variety of disciplines. Two of the 

most mature and successful environments teach topics in cellular biology and geology. 

Table 1 lists the environments that have been or are currently being developed by 

WWWIC. 

1 



· Environment Description 

, Geology Explorer I Geologic exploration of the fictitious planet Oit. 
--- - - -- --- - -- ---

i 
_j 

C"irtual_ Cell , 3D environments teaching cellular biology concepts 

Blackwood 
1-19th centu~ town exploring America~-hist;ry ;~d microeconomics i 

L _j_ - - - - -- - - - -- --- - - - - - I 

On-a-Slant Village Simulation of a real-world archeology excavation 
~ -- -- - - -- --- - - -- ---

Dollarbay I Virtual shop-keeping teaching basic marketing and microeconomics 
- --- -- -- -- - - --- ---- --- --

Table 1: NDSU Virtual Environments 

We examine the On-a-Slant Village simulation to illustrate the typical educational goals 

of these environments. 

On-a-Slant models a Native American village in North Dakota, an important historic 

site that was occupied by the Mandan along the Missouri Valley until the late 18th century. 

Archeology students learn about the village by studying and interpreting the excavation 

documentation and maps, but it is difficult to visit the site to see it for themselves. 

This project presents a unique opportunity to experience the village "to the inch" as a 

three-dimensional environment. Students can login to the system and be immersed in a 

realistic environment that not be easily visited in real life. Students take on the role of an 

archaeologist in order to tackle problems scientifically. The goal is for the students to 

begin thinking as an actual archaeologist would, and to "learn by doing". It is emphasized 

that "this is NOT a museum piece where people come to wander around and passively look 

at things. Visitors will be engaged in geology, botany, and archeology of the excavation 

site." (NDSU Archeology Technologies Laboratory, 2008) 

As the On-a-Slant example shows, NDSU educational environments intend to place 

students in situations where authentic learning can take place which would otherwise not be 

possible because of physical, economic, or other limiting factors. 

2 



Implementation Challenges 

Each virtual environment has unique characteristics, but is implemented using the same 

fundamental architecture with servers written using LambdaMOO and clients written using 

Java. This hybrid architecture has created many implementation challenges in current 

virtual environments. 

LambdaMOO is a network accessible multi-user programmable system that can be used 

to construct text-based virtual realities. Users interact with LambdaMOO by typing in a 

command-line based client such as telnet. The user provides commands in an intuitive 

syntax such as "look in box". No alternative communication mechanism exists other than 

the text-based system that is intended for direct human interaction (Curtis, 1997). 

Graphics based environments have intrinsic challenges to overcome when being 

implemented using the text-based LambdaMOO. For graphical clients, where the user 

interacts with the virtual environment using a mouse, a translation from the Java 

representation of user actions to the LambdaMOO text representation must be performed. 

As with any communication protocol these actions must be translated into a format which 

both the client and server understand. 

For large data structures this text based representation is inefficient. The maximum 

length of a message for LambdaMOO is 256 characters, so large messages must be broken 

into smaller segments. In complex interactions, such as animation, the number of messages 

may increase dramatically. This further exacerbates scalability issues and the complexity 

of the communication. 

Any non-text content must be handled externally or implemented along side of 

LambdaMOO. No delivery system exists natively within LambdaMOO to send graphics or 

3 



other content to clients. An external solution creates increased system complexity, 

additional points of failure, and maintenance cost. A solution implemented within 

LambdaMOO must either extend the core system, which is complex and no longer 

regularly maintained, or be written within the MOO language itself and subject to the same 

communication challenges discussed earlier. 

Because of the need for a content delivery system, external dependencies are created, 

making the distribution of these educational simulations complex. A web server may be 

needed to deliver images, or an external database could be used to store learning 

assessment results. These types of dependencies require a high degree of knowledge to 

install correctly. 

LambdaMOO also features a fail-safe mechanism for canceling runaway processes that 

depends on monitoring processes for their 'tick count' and killing those that exceed a quota. 

Of course, in a continuous simulation, some routines are intended to run perpetually, and 

this is orchestrated with a 'suspend' mechanism, which yields execution to another process 

in exchange for resetting the process's execution limits. 

It is necessary for some LambdaMOO routines processing large datasets to pause even 

though they are not intended to be running forever. Because LambdaMOO was designed to 

be an open environment these execution limits are essential, but the overhead involved in 

monitoring is considerable and creates obvious inefficiencies in production systems. 

The LambdaMOO execution environment is purely interpreted. Unlike Java 

environments, LambdaMOO is a basic byte-code interpreter without any support for just

in-time compilation or similar improvements. All execution is performed serially in the 

4 



system to avoid concurrency issues. This further amplifies performance problems. 

Lastly, objects in LambdaMOO are memory resident, meaning that all objects must fit 

into available memory. The persistence strategy is to checkpoint all objects to disk 

periodically. This approach is inefficient if the number of objects is large, and if the 

cumulative size of all objects is greater then available memory, this approach fails. There is 

also danger in losing critical changes which were made to the system since the last 

checkpoint. Therefore, for a sufficiently large simulation, this persistence approach is not 

feasible. 

Goals and Constraints 

The goal of this thesis is to create a client-server architecture that addresses the above 

challenges while simplifying the design and implementation of virtual environments, and 

improving their scalability and performance. This architecture is called JavaMOO. 

We have the following goals: 

1. Existing virtual environments can be implemented using JavaMOO. 

2. Create a self-sufficient server with minimal external dependencies. 

3. Develop a client-server communication model that is customizable. 

4. Design incremental object persistence to avoid memory residency of objects. 

5. Ensure overall acceptable performance of JavaMOO. 

6. Identify JavaMOO best practices for future developers. 

5 



LITERATURE REVIEW 
There is a long lineage of programming architectures appropriate for developing 

multiuser environments. Like most useful technologies, these tools have been reused in 

many new and unforeseen ways. We examine relevant technologies from the past and 

present that have influenced the design of JavaMOO. The goal in this section is to provide 

relevant background and describe the technological gap that JavaMOO fills. 

LambdaMOO 

The original multi-user dungeon (MUD) was called just that; MUD was the title of the 

game, not a game genre. The first version was developed by Roy Trubshaw and Richard 

Bartle at Essex University on a DECsystem-IO mainframe in the spring of 1979. It 

supported multiple players, and employed the text-based adventure style that we still 

associate with MUDs today (Bartle, Nov. 1990). 

By 1990 there were many different MUD systems: AberMUD, LPMUD, TinyMUD, 

TinyMUCK, UberMUD, among others. These systems were differentiated by the level of 

user programmability, the programming language used, and what features were available. 

They all are descendants of the original MUD (Bartle, Dec. 1990). A new MUD called 

MOO (Mud-Object-Oriented) was created by Stephen White and released May 1990. 

MOO was developed with the same style and conventions as TinyMUD, but with an 

underlying object-oriented programming model and database (Wikipedia, 2008). 

Pavel Curtis, a programming language researcher at Xerox PARC, began playing MOO 

in September 1990, fixing bugs and adding a number of features to the language. In 

October he forked a version of MOO, called LambdaMOO, after his nickname lambda 

6 



since it was "Lambda's MOO" (Curtis, 1998). 

Although research on LambdaMOO began from a technical standpoint, it quickly 

became clear that the social aspects of mudding were worth research on their own. Curtis 

makes observations of social phenomena which occurred during the early life of 

LambdaMOO. This emergence of a collaborative community, and also the handling of 

trouble makers, is important to consider when developing environments for education 

(Curtis, 1992). 

LambdaMOO's strongest benefit is the ability of users to modify programs while the 

server is executing, allowing for rapid prototyping and real-time creation of virtual 

environments. This has been a major factor in the successful creation ofWWWIC 

environments because of the immediate feedback that is available when modifying the 

system. In addition, LambdaMOO has shown itself to be remarkably stable over the years, 

with system failures resulting from machine crashes more often than software failure. 

To aid in rapid prototyping, an intuitive verb based programming model exists where a 

user is able to type commands such as "put ball in box". LambdaMOO parses this 

command and calls the put verb on the ball object with the arguments "in, box", where box 

is a container object. This command structure allows for a natural text-based interaction 

and typically makes training new programmers for LambdaMOO easier than most modem 

programming languages (Curtis, 1997). 

Commands are executed serially in the system to avoid concurrency or locking issues. 

This isolates programmers from complex issues that arise in multi-threaded programming 

at the cost of performance. As a result, LambdaMOO programs do not run quick enough to 

7 



handle real time events such as mouse-motion or real-time network processing (Curtis, 

1998). 

MMOG Architectures 

The need to build scalable persistent multi-user virtual environments makes massively-

multiplayer-online-games (MMOGs) relevant to this thesis, including the background of 

MMOGs and the available literature surrounding their architecture and implementation. 

MMOGs are descendants ofMUDs such as LambaMOO. Like MUDs, MMOGs create 

persistent worlds in which thousands of players can interact simultaneously. The main 

difference is how the state of the world is created and communicated to the user; instead of 

users creating world content through textual descriptions and programming, MMOGs 

display a graphically rich three-dimensional world geography. It is uncommon for 

MMOGs to permit user created content, whereas for MUDs it is essential to their existence 

(Mortensen, 2006). 

MMOGs have grown rapidly in popularity since the first, Meridian 59, was launched in 

1996 (Kent, 2003). By the year 2000, MMOGs as a whole had over one million monthly 

subscriptions and by April 2008 over sixteen million, with more than ninety percent in the 

fantasy role-playing genre. Blizzard's World ofWarcraft, the most successful MMOG to 

date, currently has by far the largest market share with over ten million subscribers 

(Woodcock, 2008). 

Because of this popularity, there is a wide interest in using MMOGs for such purposes 

as military training (Bonk, 2005), education (Big World, 2008), or distributed business 

meetings (Sun Press, 2006). Bonk and Dennon find an absence of research surrounding 

8 



MMOGs and suggest additional research to help determine the cognitive and cultural 

impact of these games on adults. They propose fifteen research experiments to help 

determine whether MMOGs could be useful for military training and education in general. 

These experiments could answer questions about the impact that MMOGs have on decision 

making skills, community building, and leadership skills (Bonk, 2005). 

Companies such as BigWorld have developed commercial middleware with the goal of 

reducing the average time to market for new MMOGs. Middleware implements the low

level functionality and difficult distributed system concepts so that development effort can 

be focused on game specific development. The middleware includes a server framework, 

server monitoring tools, client libraries, and content creation tools. A company wishing to 

create a new MMOG can license Big World tools for a fee made available under a non

disclosure agreement (Big World, 2008). 

The central problem in creating an MMOG is one of scale: how can high quality service 

be provided to thousands, or perhaps millions, of simultaneous players? In the following 

sections we will discuss useful or novel MMOG architecture techniques that help address 

this problem: service distribution, sharding, region-based clustering, and peer-to-peer 

distribution. 

Details of the system architectures for commercial MMOGs such as World ofWarcraft 

are not generally available to the public. We can only speculate on what the architecture is 

for many games, however reference material exists for open source projects such as Second 

Life and many papers have been written researching MMOG architectures. 

9 



Service Distribution 

A successful MMOG must provide many services such as authentication, region 

simulation, content management, game state management, and inter-player communication. 

OpenSim, an open source implementation of the SecondLife server, refers to these services 

as UGAIM or User, Grid, Asset, Inventory, and Messaging. An example distribution of 

these services are shown in Figure 1. Each service fulfills a specific purpose and can be 

implemented as an independent process on separate networked machines (Open Simulator, 

2009). 

Web Services 

Messaging 

User Authentication 
Billing 

Asset & Inventory 

Grid 

Figure 1: UGAJM Service Distribution 

The scalability of the system can be improved by simply dividing services into separate 

processes and distributing the workload across multiple machines. Splitting these services 

into separate cooperative networked processes allows them to scale to increasing numbers 

of users by adding new processes and machines to the system. Coordination is needed to 

route events between services. For example, events can be distributed to the appropriate 

grid server based on a player's location within the game world. The fact that dozens or 



hundreds of servers are processing user actions is transparent to the user connected to the 

MMOG, hopefully resulting in a seamless experience. 

Sharding 

Sharding distributes users across many identical copies of a world on geographically 

separated clusters. The player chooses, or is automatically directed to, the copy to connect 

with. In this way a large population of users, greater than what can be handled by service 

distribution alone, can be spread across many servers without expensive coordination 

because each copy is independent. An example of sharding is shown in Figure 2. If 

existing shards are nearing capacity, new shards can be added without affecting existing 

users. 

Game State Game State 

Figure 2: MMOG Sharding Example 

World of Warcraft currently has 241 realms, or shards, named from Aegwynn to 

Zuluhed (Blizzard, 2008). Each realm has an associated game play style: Normal, PvP 

11 



(player vs. player), RP (role playing), or RPPvP. Since players are allowed to select which 

realm they wish their character to belong, the distribution among realms is not evenly 

spread. Assuming ten million subscribers, there is an average of around 41,000 subscribers 

per realm. Thus a single realm must support thousands of simultaneous connections but not 

millions, helping to reduce the scale and complexity of the system. 

This intuitive approach helps reduce the number of players in each copy of the world 

substantially, but at a cost: since each shard is independent, players who wish to collaborate 

must ensure that they are on the same shard. Certain shards may become more popular due 

to a network effect as more players join where their friends play, resulting in a 'hot shard'. 

When the shard reaches quality of service thresholds future players will be forced to choose 

a different shard, which may be perceived negatively by the player. 

Region-based Clustering 

The large geographies present in MMOGs are no accident: a large world increases the 

potential distance between players, decreasing interaction and increasing scalability. Much 

like how mountain ranges or oceans separated ancient civilizations and limited how they 

could interact, distance within an MMOG can limit players interactions. This allows the 

geography to play a direct role in the processing of events, especially in relation to each 

player's sphere of interest and influence (Lu, 2006). 

Geography can be distributed across a cluster of servers using a variety of strategies, 

but most often each node is responsible for processing events that occur within a specific 

assigned geographic region. Either regions are statically determined as part of the world 

design, or can be dynamically allocated depending on the current system load. In the 

12 



distributed MMOG architecture developed by Assiotis, a dynamic approach splits 

congestion hotspots where too many users have congregated. The region is divided in two, 

and objects in the new region are transferred to the new server over an extended period of 

time. Once the transfer is complete the new server takes control of the split-off region 

(Assiotis, 2006). 

Figure 3 shows an example network topology of a cluster of machines distributed by 

game geography. In this example the game might be an American Revolutionary War 

simulation in which many users participate. The servers are each assigned responsibility 

for a unique region. 

Figure 3: Region Based Grid Distribution 

The amount of communication between regions is important for the transparency of the 

distribution. For example, Second Life assigns each 256x256 meter region to a different 

process running on its own processor core. Each region has a maximum number of 

simultaneous users, but users seamlessly travel between regions because of region process 

communication. To contrast, regions in the MMOG EverQuest are totally isolated from 

13 



each other so that no region communication is needed. In this approach, region event 

management is simplified, but a noticeable connection delay occurs when traveling 

between regions. 

Peer-to-Peer Distribution 

It is possible to create an MMOG in which no servers exist and the world state is 

distributed across clients. The previously discussed MMOG architectures are based on a 

centralized server architecture where clients connect to a server farm with potentially 

hundreds of dedicated machines. It is the responsibility of the organization managing this 

system to ensure the quality of service is met for the number of clients connected. 

It is very expensive to create and manage an MMOG server farm. Enterprise servers 

and storage with built-in redundancy features can cost tens of thousands of dollars per unit, 

easily adding up to millions of dollars. Development and administration labor costs can 

run millions of dollars per year. 

Peer-to-peer distribution has potential for reducing deployment costs and increasing 

scalability, allowing huge community hosted MMOGs to be created. Overlay networks can 

dynamically grow to thousands of participating nodes in a single system, but applying this 

to MMOG games has serious problems to overcome such as consistency, security, and 

reliability. No one has yet created a successful commercial peer-to-peer MMOG. 

Distributed hash tables (DHT) have become a key technology in peer-to-peer systems 

by solving how to distribute a large amount of data across a large number of systems and 

lookup that data quickly based on a key value (Wiley, 2007). The idea is simple: take a 

normal hash table, partition the key space of that table and assign responsibility of 

14 



partitions to nodes in a peer-to-peer network. The assignment of key-space should be done 

in such a way to aUow quick traversal across the overlay network to retrieve the data. 

Many different approaches exist to implement DHT and the original implementations from 

2001 are still in use today; these include CAN, Tapestry, Pastry and Chord (Ratnasamy, 

2001; Zhao, 2002; Rowstron, 2001; Brunskill, 2001 ). 

Research has attempted to utilize DHT in order to implement peer-to-peer MMOGs. 

SimMud, MOPAR, and a prototype developed by Hampel, use Pastry to build a MMOG on 

top of a peer-to-peer overlay network (Knutsson, 2004; Yu, 2005; Hampel, 2006). SimMud 

uses a DHT to replicate game state and interest management across nodes to scale to 

approximately 4000 users. The authors note the possibility of a catastrophic data failure if 

multiple nodes containing the main and replicated data leave the network simultaneously. 

With the test workload and a single replicated copy, a failure occurred on average once 

every 20 hours (Knutsson, 2004). 

Non-DHT implementations of peer-to-peer MMOGs have also been developed. Hydra 

is a novel architecture that presents to the game developer standard client-server interfaces, 

but translates these requests to an underlying peer-to-peer network (Chan, 2007). All peers 

participating in the game also act as servers. In order to scale the system, it is up to the 

game developer to implement their world into separate explicit regions that can be 

replicated for fault tolerance. 

Solipsis is another non-DHT implementation of a peer-to-peer MMOG that is very 

similar in concept to Second Life. Solipsis attempts to implement the concept of a 

metaverse, where users can travel to an unlimited number of user-generated worlds through 

15 



a single navigator application. It uses the Raynet overlay network which subdivides the 

game geometry into an approximation of a Voronoi tessellation (Beaumont, 2007). This 

assigns responsibility of game state and physics calculations to each individual client and 

optimizes event routing (Frey, 2008). 

16 



APPROACH 
JavaMOO has evolved in concept and design over time. We describe the work 

chronologically as we remember, culminating in the current design which is the main focus 

of this thesis. 

To give background and highlight differences from LambdaMOO, we first describe our 

beginning attempts at creating the JavaMOO framework. We then describe a prototype of 

an existing environment called Dollarbay which was created as a proof of concept to show 

the benefits of a pure Java implementation. From this prototype the requirements for 

JavaMOO were determined. Finally, we describe the design of the JavaMOO architecture 

in detail and show how new environments can be implemented using the framework. 

First Attempt 

We first envisioned a translation approach in designing JavaMOO. We wanted to take 

environments that were programmed in LambdaMOO and convert them to Java 

automatically with clever programming or using some form of semi-automatic human 

assistance. 

It did not take many design meetings to see that a translation approach would be 

impractical. Although LambdaMOO and Java are both object oriented, the language 

semantics are incompatible. LambdaMOO uses prototype inheritance, meaning that the 

class and instance of an object are identical (Taivalsaari, 1996). 

To illustrate the differences between prototype and class inheritance, let's consider a 

GenericBall object in LambdaMOO. The ball has properties such as color, weight, or 

bounciness and has verbs like bounce, throw, or hit. Even though the GenericBall is an 

17 



abstraction from which other balls will be created, it can still be a physical object in the 

environment; it can exist in a room, be picked up, and looked at. 

To create a new ball in LambdaMOO we call the create verb on the GenericBall to 

make a BouncyBall. The new object is said to be a child of GenericBall and inherits its 

properties and functionality. If we change the parent's color to orange, the BouncyBall's 

color, and more importantly the color of all children, will also change to orange. This 

dynamic property sharing is the essence of prototype inheritance. 

In LambdaMOO the inheritance tree of an object is a dynamic graph of object 

instances. In contrast, a Java class defines a structure that cannot be modified during a 

program's lifetime, including the fields, methods, and inheritance tree of the class. Each 

Java object is an instance of a single class whose class structure remains static for the 

lifetime of program execution. Whereas an object's inheritance structure could be changed 

in LambdaMOO dynamically at runtime, no such mechanism exists in Java. 

Prototype inheritance is not natively possible in Java. This hampers a direct 

LambdaMOO to Java translation because any occurrence of prototype inheritance would 

need to be implemented programmatically, essentially emulating LambdaMOO language 

constructs. This would hurt the performance and simplicity of the JavaMOO object model. 

In addition to inheritance model incompatibilities, LambdaMOO code relies heavily on 

the semantics of the MOO language. The language has unique features that are not easily 

translated into Java code. For example, the notion of object gender is built into 

LambdaMOO so that gender appropriate pronouns are used in messages to the user. 

Another example is the use of prepositions in user interaction that resolve to object verbs. 

18 



This allows players to specify "put ball into box" or "put box on ball". These natural 

language facilities do not exist in native Java and would need to be written for a conversion 

of LambdaMOO. 

Lastly, Java programs generated from LambdaMOO would not be well written. 

LambdaMOO contains a number of utility classes that have an overlap of functionality with 

existing Java libraries. To automatically convert the MOO code we would need to 

determine for every function whether the functionality should be ported or existing Java 

functions used. The resulting code would be difficult to follow and debug, and would not 

benefit from Java programming best practices. 

For these reasons we determined that neither automatic nor semi-automatic conversion 

ofLambdaMOO code to Java would be efficient, accurate, or desirable. Instead we 

decided to follow an iterative prototype approach. 

Dollarbay Prototype 

Instead of attempting to automatically convert LambdaMOO implementations into 

Java, it was decided to implement a Java prototype of an existing environment. This 

allowed us to determine the best way to implement existing virtual environments entirely in 

Java, and extract the necessary design for JavaMOO from that prototype. We decided to 

create the prototype using a relatively stable instance of a LambdaMOO environment: the 

NDSU Dollarbay educational game. 

The Dollarbay educational game teaches students different economic topics such as 

supply and demand, pricing, market research, advertising, and business strategy (Mack, 

2003). The original version, called SELL, was a tum-based simulation developed at 

19 



Northwestern University in the mid-nineties. Players set prices on their products and made 

decisions about their store during each tum. Between turns the simulation would calculate 

each store's sales based upon all players' decisions and consumer motivations (Slator, 

1996). 

Dollarbay has had many iterations and improvements since its SELL origins. It is now 

a real-time simulation with shoppers implemented as autonomous agents. A case-based 

tutor monitors play and helps players make better decisions (Regan, 2002). Players can 

interact with other players and with the agents in the game, which helps increase 

collaboration and engagement. There are now 286 different types of products and 63 

shoppers representing 20 different consumer groups. This relatively simple object 

structure, manageable amount of data, and rich client/server interaction makes Dollarbay a 

good choice for a pure-Java based prototype and the basis of an iterative prototype project. 

As players join the Dollarbay game they are assigned a location and must decide what 

to sell, what level of service to offer, how much to spend on advertising, how much to 

stock, who to buy from, and what prices to set in order to attract customer agents. 

In order to simulate an economic environment, time is divided into 'virtual weeks'. A 

virtual week is simulated game time, not to be confused with a real week of actual game 

play. At the beginning of each virtual week, simulated customer agents are given a 

shopping list representing a week's worth of demand for various products representing an 

economic group. These agents spend the virtual week purchasing the items on the list from 

the stores in Dollarbay. After each virtual week has concluded and the shopping lists are 

exhausted, each agent assigns new attractiveness ratings to each store based upon the past 

20 



week's experience (Slator, 200 l ). 

Players are also charged for their weekly expenses, such as rent and advertising, and 

their case files are updated with a record of the week's activity. Customer agent motivations 

are recalculated based on this new information, and new shopping lists are created for the 

upcoming week. 

At the end of a player's life, they are retired to the Hall of Fame. The Hall of Fame is a 

place where players are moved when they graduate from the game either by reaching a 

profit goal, going bankrupt, or being inactive for a long period of time. Upon a player's 

retirement from Dollarbay, their store's active case file is archived to the historical cases for 

future reference by the case-based tutor (Regan, 2002). 

The pedagogical goal of Dollarbay is to teach a wide set of skills associated with 

running a retail business by allowing the student to control a simulated store in a simulated 

economy. Therefore, the economic simulation must be authentic and complex, not only to 

effectively teach shop-keeping concepts but also to preserve the player's interest over an 

extended period (Slator, 2006). 

We chose Dollarbay because its design problems had already been solved. Dollarbay 

represented a fixed target where development of the JavaMOO architecture could be 

focused. Therefore, the purpose of the JavaMOO translation of Dollarbay was to 

demonstrate a proof of concept - a LambdaMOO simulation could be transformed into a 

JavaMOO simulation, with the additional goal that it work better than the original. 

JavaMOO Architecture 
The JavaMOO architecture has six components that together help developers 

21 



implement virtual environments. The following functional areas are provided: system 

configuration, client-server communication, event handling, object persistence, content 

delivery, and agent control. Developers are largely isolated from the underlying details of 

these areas, instead being directed to focus on the domain specific design of each virtual 

environment. In this section, we first describe the architecture at a high-level and afterward 

examine each component separately with a focus on design decisions, showing the utility of 

each component. 

Overview 

Figure 4 shows JavaMOO server component data flow. Clients communicate with the 

server using event objects, and retrieve content such as images, 3-D models, or dynamic 

web-pages from the content delivery component. The communication component receives 

events from the client, manages the client's session, and passes the events to the event 

handling component. 

MOOServer I 
Event Handling Persistence 

o----- Communication Domain Objects 

Ewnt 
~ 

I MOOClient ~ - Content Delivery 

Configuration 

Figure 4: JavaMOO Component Diagram 

Depending on the type of events received, event handlers modify domain objects that 

22 



comprise the state of the virtual environment. Changes to the environment must persist 

between invocations of the server. The persistence component ensures that the domain 

objects are saved. The objects are stored in backing storage, such as a relational or object 

database. 

Autonomous agents may also modify the state of the environment. Agents act within 

environments, either fulfilling a simulation role or providing entertainment value. The 

agent control component provides a way to organize and manage agents that exist within an 

environment. This component helps limit resource usage and reduce complex concurrency 

problems. 

The configuration component is responsible for the overall configuration of a virtual 

environment. This component connects dependent components together, and specifies the 

implementation that should be used for each component. The JavaMOO framework 

provides the ability to swap out different implementations for the components, increasing 

flexibility to meet environment requirements. Administrators of deployed servers can 

modify the configuration. 

Configuration 

It became clear after developing the Dollarbay prototype that configuration played an 

important role in building a successful virtual environment. Without a well-defined 

configuration model, the system becomes difficult to use and modify. 

In the Dollarbay prototype, we created a configuration system based on a key-value 

pairs in a single flat file calledjavamoo.conf This contained the type of database, web 

server port, RMI URLs, logging configuration, and client content url. Configuration values 

23 



were used by classes by passing a lookup key to the Config.getValueO utility method. 

This approach worked, but had limitations and drawbacks. Using this type of 

configuration creates an explicit dependency between the configured class and the Config 

class. Only text-based values can be used, meaning that more complex data types such as 

objects or even numbers, have to be parsed from the text. This made it difficult to factor 

out the dependencies between classes into the configuration. We have addressed these 

limitations by utilizing the Spring application framework, specifically for the Inversion of 

Control container it provides. 

Inversion of Control (IOC). The idea behind IOC is to move dependency creation 

away from component classes and make it a part of the application configuration. This 

principle is also known as Dependency Injection because of the way class dependencies are 

set automatically by the IOC container. (Spring Framework, 2010) 

For example, consider a hypothetical Car class which depends on an Engine 

implementation. Without IOC the Car might create a new Engine inside of the constructor. 

This would be a hard coded explicit dependency between the engine used and the car. If it 

was decided that an electric engine was needed instead of gasoline, the code would need to 

be changed and recompiled. 

In contrast, IOC keeps the configuration of the Car in an XML file. The configuration 

file would specify that the Car depended on the electric engine, and the container would 

create the car, and then inject the Engine into the Car. Now if the developer wanted to 

switch to an electric engine from a gasoline, they change the configuration file and restart 

the application. This is much more flexible as not only simple values can be specified but 

24 



entire object trees. 

Configuration Example. Figure 5 shows an example configuration of the JavaMOO 

persistence component. Each object that is configurable in the IOC is called a bean. Top

level beans, the children of the root beans element, have unique ids. The application can 

use the ids to lookup beans created by the IOC container. 

<l:)E-:2:tn 

class="org.springframework.jdbc.datasource.DriverfvlanagerDataSource"> 
<prcp(':rty name= "dri verC..I.ass1'f:.lame,, 

value= "org. apache. derby. jdbc .EmbeddedDri ver"/> 
<.:::ri.:,1pc,rty name= "url,, value= "jdbc: derby' :db;cx:eate=true "/>· 

</constructor-arg> 
<constructor-arg> 

<bean class= "j avamoo .pers.ist. sq]. DerbySQLDJa..!ecL "/> 
</constructor-arg> 

</bc,a.n> 
<.:/bea.ns> 

----~ ·-·-----

Figure 5: Persistence Configuration Example 

In this example, a new persistManager bean will be created using the class 

SQLPersistManager. This class has two constructor arguments. The first is a 

java.sql.DataSource, an interface to create SQL database connections. We chose a Spring 

implementation for the DataSource, using an embedded Derby database. The second is a 

javamoo.persist.sql.SQLDialect,a JavaMOO interface containing specific implementation 

details for different database implementations. Since we are using a Derby database we use 

the Derby specific SQL dialect we have developed. 

Configuration becomes extremely flexible using IOC. We could change the type of 

persistence manager from an SQL to an object-oriented database if needed. As long as the 

chosen implementation implements the common PersistManager interface, all existing 

25 



dependencies are satisfied in the application and the environment does not need to be 

recompiled. The configuration files are shown in Table 2. 

Configuration File Description 

_ config/javamoo-beans.xml Central component IOC configuration. Contains 
implementation choices and values for persistence, 
communication, environment, and plugins. Imports 
javamoo-events.xml, javamoo-persist.xml and javamoo
plugins.xml. 

config/javamoo-events.xml Event handler configuration. Specifies the mapping 
between events and their handlers. This makes the actions 
taken for each event configurable. 

config/javamoo-persist.xml Persistence configuration. Defines the persistence 
implementation and its particular configuration. 

---- -- - ------------

config/javamoo-plugins.xml Defines a list of plugins for the environment. Plugins are 
, started during the server startup sequence. 

con_ fig/log4j.properties __ 1
1 ~ Logging properties. Defines where logging messages are 
sent and what log level to use for packages. 

.. - .. '••··-------- - --··· 

, bin/launcher.xml Configuration file for Apache commons launcher. This is 
• required to be in bin along side of LauncherBootstrap.class. 
-This file does not require changes for each environment. 

- -

Table 2: JavaMOO Configuration Files 

Configuration Files. JavaMOO has six configuration files. These configure the server 

components, logging, and launching of the server. The four Spring xml configuration files 

are meant to be customized for each environment and define the implementation and 

configuration of the server components. The other two files define logging and architecture 

independent startup configuration. The logging configuration can be modified to change 

debug level, or to send log messages to an alternate location, such as an email account for 

errors. The launcher configuration does not need to be modified. 

Logging. The lack of a formal logging facility was a major problem in the Dollarbay 

prototype. When the prototype was created we were unaware of the industry standard 

26 



logging facilities provided by the Java API or the open source log4j library. On multiple 

occasions when the prototype server was generating thousands of error logging messages, 

the log files grew to over a gigabyte in size. We had not thought of rolling logs or cleanup 

functionality when we implemented our own logging. 

We now have standardized JavaMOO logging using the Apache log4j logging library. 

This provides a configurable logging facility where log messages have multiple levels of 

severity and can be routed to different destinations. It is a best practice to instrument the 

code with many log messages, from debugging messages to fatal error messages. This 

provides very useful information to help debug problems without the use of a debugger, 

especially problems at installation sites. The configuration can filter which level messages 

are sent to the actual log file. 

Figure 6 shows our adopted usage of the Log4j logging facilities. Each class wishing to 

use logging has a static final variable that contains a logger object. This logger is used by 

all instances of the class for logging messages. Loggers are organized into a hierarchy that 

follows the package hierarchy. So, for example. the logger for javamoo.persist is a parent 

logger for javamoo.persist.sql.SQLPersistManager. Children loggers inherit the parent's 

log level and behaviors. This makes it possible to configure the logging based on the high

level parents, or control logging at a fine class-level granularity. 

public class LoginEventHandler implements EventHandler 
private static final Logger LOGGER= 

Logger.getLogger(LoginEventHandler.class); 

public void handle(Event e, Sessions) throws EventException 
LOGGER.info("Eandling event["+ e + "], session["+ s + "]" ); 

Figure 6: Example Logger Usage 

27 



Server Startup. Our goal is for JavaMOO to be platform independent, being able to 

run on Windows, Linux, Mac OS X or any other platform that supports Java. This gives us 

flexibility in distributing environments. 

Previously the Dollarbay prototype used custom shell and batch scripts in order to start 

the server. A variety of issues became clear with this approach, such as maintainability and 

portability. Every different architecture required a new non-trivial script to be written from 

scratch. There was no ability to leverage common code between the scripts since they were 

each written specially for a particular operating system. We have addressed this problem 

by designing a well-defined start up sequence for the JavaMOO server independent of 

underlying architecture. 

Figure 7 shows the sequence of steps that occur during the server start up. First an 

external utility starts the launcher. This could be a very simple couple-of-lines shell script, 

an application shortcut in Windows, or an operating system service. Launcher is an Apache 

commons component that "eliminates the need for a batch or shell script to launch a Java 

class" (Apache Launcher, 2009). This component reads a startup configuration from an 

xml file and starts the JavaMOO server. The same configuration file is used independent of 

the architecture we are currently running. This means JavaMOO will run on all operating 

systems where a supported VM is available. 

The launcher calls MOOServer's main method, initializing the server object from the 

Spring roe container. All components are specified in the configuration files and 

instantiated by roe so that the server now has all of the environment components and 

plugins loaded. After initialization, the server is started by calling the start method on all 

28 



dependent components and plugins in a specific order. 

launcher.xml 

1 startJavaMOOO 

MOOServer 1 ... 1 _sp_ri..,.n9_1o_c ___ ..._Pe_,s_is..,tM_an_a_ge_r .,,.__P_lug"T""in_(s_l __.l,._I _En_vi....,ror-nm_e_nt_.ll,_L_o_gin-rS-e111_e_r .... 

I 
I Launcher 

2: mamo 
I 

I 

f.-----.,.,_, mo0Se111en 

Figure 7: MOOServer Startup Sequence 

First started is the persistence manager, which depending on the implementation, may 

open a connection to the database and perform other implementation specific startup logic. 

Persistence is started first so that any subsequent components are guaranteed to have access 

to persistent storage. 

Started next are plugins, which are thin wrappers to components that extend the 

functionality of the JavaMOO server. Examples ofplugins are the content server, or a 

network discovery service such as JmDNS. Plugins need to be notified when to start, and 

have explicit life-cycle management so that plugins are notified when the server is 

stopping. 

The Environment component is started next. This is the entry point to start and 

initialize the specific environment implementation. For example, in Dollarbay the 

environment startup would initialize the map, refresh the scoreboard, and start the 

29 



shoppers. 

Finally the login server component is started. The login server is the entry point for 

clients to connect and is started last so that the initialization of the server has finished 

before clients are able to connect. 

Plugins. JavaMOO allows new functionality to easily be extended through plugins. 

Different environments will have varying requirements, and may need to provide additional 

server functionality to fulfill these requirements. Environment developers configure 

plugins in the javamoo-plugins.xml configuration file and initialized by the server using a 

entry-point provided by the Plugin interface. 

The content delivery component is an example of the type of functionality that can be 

provided through plugins. This component allows an environment to contain images and 

dynamic JSP web pages that any web client can access when connected to the server. The 

plugin simply starts up the Tomcat application server in embedded mode, which then 

allows JSP scripts to be written that have access to JavaMOO domain objects. For 

instance, the Dollarbay scoreboard can be dynamically generated through a JSP script. 

Communication 

JavaMOO uses an event based communication model where the server and client 

exchange small objects. These small objects are called events and correspond to specific 

environment actions. For example, a SayEvent with the data "Hello World!" may be 

passed from the client to the server to indicate the player spoke within a room. The server 

might then relay the SayEvent to clients who handle the event by displaying a speech 

balloon saying "Hello World!". 

30 



We designed communication with the five high-level interfaces shown in Figure 8. 

Interfaces are used in our design so that future environment developers can create their own 

implementation if the default implementation provided does not match their requirements. 

,-----
1 
I 
I 
I 
I 

' , 

I MOO~lient I-_ ' , 

«c:interface>» 
LoginHandler 

+ login(event: LoginEvenQ · ServerConnection 

' ' «<interface>" ' ' ServerConnection !.l 
- ->O 

+ send( eve nls : List) . void EwntHandler 
+ receiveO : Lisi 

<«interface,,,, 
Clientconnection 

+ sendToCiient(events. List) · void 

Figure 8: Communication Interfaces 

<<interface>> 
LoginServer 

+ startO : void 
+ stopO : void 
+ cJoseSession(s: Session) · voki 
+ closeSessionsO: void 

«<interface>» 
Session 

+ getC!ientConnectionO . void 
+ getServerConnectionO : void 
+ getAttributeO : Object 
+ getSessionldO : Siring 
+ getPersistManagerO : PersistManager 
+ getPfayerO : Pfayer 

Our provided implementation uses Java RMI (discussed in the next section), which may 

incur too much overhead ifreal-time positional updates are required. A developer could 

implement an efficient low-level network protocol underneath our provided interfaces and 

configure it through the IOC container to fulfill their real-time requirement. 

Figure 9 shows the sequence of client-server communication operations. Clients first 

connect to the server by calling the login function provided by LoginHandler. The login 

handler accepts a LoginEvent containing the data required to authenticate with the server. 

Depending on the environment, this data may be a simple usemame and password, or can 

be more complex as needed, such as a symmetric key encryption. 

If the LoginHandler authenticates successfully, a new ServerConnection is returned to 

the client. The ServerConnection contains all of the state and logic necessary to send and 

receive events from the server, and since the connection is an interface, an appropriate 

31 



underlying implementation can be chosen for each environment. 

The client calls send 
and receive in a loop, 
or in separate threads. 

MOO Client LoginHandler ServerConnection 

I 
1 · login(loginEve 

r'T----~,,...,_a-91=,_ _ _ LoginException 
thrown iffailure. 

I 
------7-------

3: receiveo I 

_____ eV!!jltlist ____ _ 

I 
I 

Figure 9: Client Event Communication Sequence 

After connecting with the server, the client can begin sending and receiving events. 

User actions generate events that are sent to the server which handles them according to 

their type. The event handlers may generate new events that need to be sent back to clients 

through the sendToClient method. The client receives events from the server by calling the 

connection's receive method. 

In order to process events properly and uniquely to each client, every connection is 

associated with a session object. The session keeps track of state information that is unique 

to each client, including the server and client connections, persistence manager, and generic 

session attributes. Session attributes are used to keep track of data that may be needed 

during event processing for the duration of the user's session. For example, the player 

object in Dollarbay is stored as a session attribute. This allows event handlers to access the 

player object, and through it, the player's store inventory and other state information. 

Once the client is closed, a disconnect event is sent to the server. This causes the server 

32 



to cleanup any resources that may have been created for the client. 

Remote Method Invocation. We chose to provide an implementation of the 

communication interfaces based on Java's remote method invocation (RMI). RMI provides 

a transparent mechanism to invoke methods on objects residing on remote machines with 

method arguments automatically marshaled using serialization. By using RMI we avoid 

the need to implement our own socket protocol and event serialization, instead utilizing 

existing infrastructure. Environment developers may also benefit from additional features 

such as dynamic class loading which allows the implementation of objects to be transmitted 

along side of its data. 

For clients to call remote methods they must obtain a remote object reference using a 

name lookup command, shown in Figure 10. 

MOOServer 

: MOOClient RMI Registry : RMILoginServer : RMIConneclion 

1: lookup('loginServe(' 

_ £~L~g~S~rv~r_ 

2: login(event:LoginEvenl) Server onneclion 

RMIConnection 

3: send(eve ts:Lisl) : void 
I 

I 

I 

These are remote c::, 
objects. The objects 
reside on the server, and 
the client uses RMI to 
call them. 

I 

--- - - I - ----
4: receive0 : List 

events I 
------------- ----,--------

Figure 10: RMI Communication Implementation 

Each environment has one remote bootstrap object implementing the LoginHandler 

interface. The client initially attempts to lookup the LoginHandler from the RMI server by 

its classname. If found, the client can proceed by calling the remote login method and the 

33 



server will attempt authorization, resulting in new RMI Connection and Session objects. 

The new connection is exported using its session id and is returned to allow the client to 

send and receive events. 

Event Handling 

Both client and server contain event handlers that are defined by the environment 

developers. Each event class has a handler associated that updates the environment state 

appropriately. Client side event handlers update the state of the user interface, such as 

displaying images or text, and server side event handlers update the state of the 

environment, such as changing the position of an item from one location to another. 

JavaMOO provides a composite event handler called EventDispatcher that can handle 

events of any type by delegating responsibility to children handlers. The EventDispatcher 

is configurable through the javamoo-events.xml configuration file by defining a mapping 

between event classes and event handler classes. 

Polymorphic Map. The underlying data structure for EventDispatcher is a 

polymorphic map. This allows EventDispatcher to handle any type of event passed to it by 

finding an appropriate child handler through the polymorphic map. An example event 

handler usage is shown in Figure 11. 

Although an easy to derive and understand concept, we have not found previously 

existing research mentioning this usage of a map or hashtable. A standard map is defined 

as map(k)->v, where k is a lookup key that determines value v. In a polymorphic map, key 

values are object classes and defined to be in the map if any of its superclasses exist in the 

map. The most specific class in the inheritance hierarchy existing in the map takes 

34 



precedence. A lookup in a polymorphic map can be implemented using a standard map as 

in Figure 12. 

private PolymorphicMap<EventHandler> handlerMap 
new PolymorphicMap<EventHandler>(); 

@Override 
public void handle(Event e, Sessions) throws EventException 

EventHandler handler= handlerMap.get(e.getClass()); 
if (handler== null) { 

throw new EventException(e, 
"Ne t.andler for '" + e. getClass () . getName () + "' . "); 

else { 
handler.handle(e, s); 

Figure 11: EventHandler Polymorphic Map Usage 

-, 
poly_lookup{k) 

val := NULL 
cur_key := k 
while (cur_key != NULL && val== 

val := map.lookup(cur_key) 
cur key:= parent class(cur 

return val 

Figure 12: Polymorphic Map Implementation 

NULL) 

key) 

The polymorphic map is useful whenever an action needs to take place based on the 

type of an object. Because of object inheritance and polymorphism, any valid class may 

have an entry in the map. For example, a default entry could be created for the base class 

so that any class without an explicit entry would use the default entry. 

This enables us to assign a new set of polymorphic crosscutting behaviors to a 

preexisting class of objects. For example, in the event handling case, we define a new class 

called EventHandler which defines a handleEvent method. We want to be able to execute 

this method on any type of Event class, but be able to change its behavior based on the 

Event's class. We do this by creating EventHandlers for each Event class. When the event 

35 

I 



is received, the handler is found and executed. The handleEvent method can not exist as 

part of the specific Event because it may have server or client specific logic. 

Having the dispatcher be configurable though a text file allows the behavior of the 

system to be modified without recompiling. The configuration determines how the various 

objects in the system are wired together. Figure I 3 shows an example of how the event 

dispatcher is configured. 

<bear, id="eventDispatcher" 
class= "_-javarnoo. event. handler. Event Dis.Loa teller">· 

<const1·uctor-arg> 
<ffap> 

<!-- Add new event handler definitions here--> 
<en.tr·:/ key= "j a-varnoo .. event ... Si.rnpl eLoginEven t "> 

<bec,n class= "j avamoo. e1,ren t. handler. SirnpleLoginEvent1-landler"/> 
</•':r:tr-y> 

<entry key="javamoo.event.DisconnectEvent"> 
<.Dc;3.n class= "j a\Tantoo. event. handler. Di sconnectEventF!andler "/>

</ Pr try> 

<entry key= "j a ,.1-amoo. don:ai.n. event. C.J. .i c.kE1.ren t "> 
<i.>~-::~.n class= "javamoo. do.rnain. event. handler. ClickEven tIIandler"/ > 

</entry> 
<!-- END event har:dler definitions--> 

</construetor-2rg> 

Figure 13: EventDispatcher Configuration Example 

It can even be possible to modify the configuration at runtime though Java 

management extensions called JMX. Figure 14 shows a specific example the event 

dispatcher usage of a polymorphic map. In this example a player's click causes an 

explosion. 

36 



* I · MOOClient 

Obiect2 : Player 

<<interface>> · Even!Dispatcher · PolymorphicMap ClickEven!Handler 

: Serverconnection 

I 1 · clickO I 
1.1 send(clickEvent I 

.1.1. handle(clickEv 

4: receiveEventsO 

. EXPLODE!O 

Figure 14: Click Causes Explosion Example 
Persistence 

1.1.1.1 get(ClickEv 1.lc1ass) 

ClickEventHandler 

2 handle(ilickEvent) 

3: sendToClie~t(explodeEvent) 

I 
I ________ T ______ _ 

I 
I 
I 
I 

Persistence ensures that environmental data, such as players or rooms, will survive 

multiple executions of a program. To achieve this, objects are written to a permanent data 

store. Our goals for creating an effective persistence mechanism are transparency, 

extendability, data integrity, and performance. 

Transparency is the hiding of whether a resource is in local memory or if it is stored on 

disk (Tanenbaum, 2002). Having transparency of persistence will help make JavaMOO's 

programming model intuitive. We do not aim to achieve complete persistence transparency 

in JavaMOO, because previous research has attempted this with great effort and small 

return (Atkinson, 2000). Our goal is to balance the amount of programmer action required 

to store and retrieve persistent objects with simplicity and efficiency. 

Domain Objects. Domain objects are environment specific; the Virtual Cell contains 

cell organelles, Geology Explorer has rocks and minerals, and Dollarbay has shoppers and 

products. The objects and their behaviors contribute to the uniqueness of each environment 

37 



and will define the environments, their objectives, and the experience to be had from them. 

The domain class library is created by the developers of each educational environment, 

as classes necessary to each specific game. It is the responsibility of the developers to 

ensure their domain objects are thread safe. JavaMOO is inherently multi-threaded, as 

domain objects are shared among all connected clients whose events are processed by a 

thread pool. 

To assist in the creation of domain objects JavaMOO provides a set of reference classes 

including Player, Agent and Room. These classes can be used as is, or extended by the 

developers to create domain specific classes. As these objects are created, they are saved to 

persistent storage for later retrieval. 

Interface Design. In order to meet our goal of extendability, we have designed a set of 

interfaces that facilitate easy to use persistence for storage, retrieval, and querying of 

objects. These interfaces, shown in Figure 15, make no assumptions on what types of data 

can be made persistent; all objects can potentially be persistent. They also make no 

assumptions as to what the underlying storage is, whether a database, binary file, or some 

other mechanism. 

The PersistManager interface is the main entry point for object persistence. It provides 

the methods that save, get, and query objects. An implementation of this interface would 

provide the logic to take an object, break it into appropriate pieces, and write it out to 

storage. It also must be able to retrieve and reconstitute the object based on an 

implementation specific PersistRef, which is a unique reference to the object that was 

stored. 

38 



<<interface ►► «interface>> 
PersistManager Query 

+ save(obj. Objecf) . PersistRef 
+ get(ref: PersistRe0: Object 
+ get(q. Query): List 
+ delete(ref: PersistRe0 : void 
+ getReference(obj: Objecf): PersistRef 
+ getReference(id · long, type : Class) · void 
+ getReferences(q: Que,y) : List 

• EQ : Operator 
• NEQ : Operator 

LIKE : Operator 
• LT: Operator 
• L TE : Operator 
• GT: Operator 
• GTE : Operator 

+ newQuery(c. Class). Query + clause(field: String, op : Operator, value: Objecf) : Query 
+ and(field: String, op: Operator, value: Objecf): Query 

<<interface►► I PersistException I 
PersistRef I 

I I 

+ or(field: String, op : Operator, value: Objecf) . Query 
+ noto : Query 
+ groupO : Query 

+ getJdO · Jong 
+ getO : Object 
+ isValidO: boolean 

+ orderAsc(field: String) : Query 
+ orderDesc(field: String) : Query 
+ getTypeO : Class 

+ isNew(J: boolean 
+ getTypeO : Class 

Figure I 5: Persistence lnteiface Design 

Any implementation of these interfaces must follow a set of rules to ensure data 

integrity. 

• Storage Referential Integrity- One copy of the object is saved to storage and 

consecutive save calls on the same object return equivalent PersistRefs, i.e. 

save( obj).equals( save( obj)) 

• Retrieval Referential Integrity - Two independent gets on equivalent PersistRefs 

must return the exact same object reference, i.e. refl .equals(ref2) => get(refl) == 

• 

get(ref2) 

Deletion Referential Integrity - If a persistent object is deleted, all subsequent 

calls to retrieve the object return null, i.e. delete(ref) => get(ref) == null 

Querying. A novel approach to querying for persistent objects has been designed as 

part of JavaMOO. This provides an intuitive way to formulate queries using Java code 

through chained function calling. Queries are created through a factory method on the 

39 



persistence manager. A factory method allows different implementations of the persistence 

manager to choose the query implementation. At this point if the resulting Query is 

executed, would return all the objects of the specified type. 

Query results are filtered by specifying clauses on the Query. In Figure 16, we want to 

query all people who have brown hair and weigh at least 200 pounds. When this query is 

executed it will return all Person objects that meet the specified restrictions. 

Query<Player> query= persistManager.newQuery(Person.class) 
. clause ( "hairColcr", Query. EQ, "brown") 
.and("weight", Query.GTE, 200); 

for (Person p : persistManager.get(query)) 
System.out.println(p.getName()); 

Figure 16: Persistence Query Example 

A current limitation of this query model is the string representation of field values such 

as "hairColor". These names must correspond exactly with a field name in the class being 

queried. Although our queries provide an easy to use query interface, if a field is renamed, 

automatic code refactoring of queries currently cannot be performed. Currently there is no 

Java language construct to obtain class fields such as Person.class.hairColor without 

specifying a string to allow for automatic refactoring. 

SQL Implementation. We have provided a SQL persistence implementation shown in 

Figure 17 using the interfaces discussed earlier. Our goals of extendability and 

performance have been considered as part of this implementation to allow for different 

SQL dialects, for example Derby, MySQL or Oracle. Caching techniques are used to aid in 

performance and referential integrity. 

SQLPersistManager implements all of the methods defined by the PersistManager 

40 



class. For example, the save method will result in a set of statements being generated in a 

particular dialect of SQL The successful execution of these statements will save the 

content of the object to the database. This sequence of operations is also true for the get, 

delete and query methods. 

SQLPersistManager SQLQuery 

+ BOOTSTRAP _ID : long - queryType . Class 
- dataSource · DataSource - token list: List 
- sqlDialect SQLDialect 
- tableSet: Set 

+ buildWhereClause(d · SQLDialect) : SQLSt 

- idSequence · SQLSequence 
- objec!Cache. Map 
- re/Map : Map 

Query 

SQLstatement 

PersistManager • targetClass 
- sql . String 

Class 

- bindValues . List 
SQLPersistReference - resultFields . List 

- type · Class - tableNames List 

- id: long - tableAliases · List 

- isNew: boolean 
- mgr. SQLPersistManager 

+ setlsNew(n: boolean) : void 
+ setPersistManager(mgr SQLPersistManager) : void 

<<interface>> 
SOL Tl,'PeMapping 

0 
PersistRef 

Figure 17: SQL Persistence Classes 

+ gelCoiumnType0 · String 
• bfndValue0 : void 
+ gelValue0 . Object 

DerbySQLDialect 
atement 

- typeMap. PolymorphicMap 

\I 

<<interface>> 
SQLDialect 

+ getSQLTypeMapping(c. Class): SQLTypeMapping 
+ ge!Tablelist(c : Class) : List 
+ getSqlEscO · Siring 
+ getTableName(c. Class) String 
+ getColumn(field String) : String 
+ ge!Column(table String, field String) String 
+ getOperator(String Operator). String 
+ getTableDDL(c Class, table: String). SQLStatement 
+ getClassSQLO : String 
+ getPopulateSQL(c : Class) List 
+ getQuerySQL(q Query) · List 
+ getlazyQuerySQL(q Query) . List 
+ getlnsertDML(c . Class) : List 
+ getUpdateDML(c : Class) . List 
+ getDeleteDML(C . Class) List 

SQLDialect abstracts all of the database implementation details into separate 

implementation classes. SQLPersistManager uses the configured dialect to generate the 

SQL required to persist objects. All that is required for JavaMOO to work with a new 

database is to implement a new type of SQLDialect and configure it to be used. 

There are three requirements for a class to be persisted using SQLPersistManager: 

• 

• 

Empty constructor to ensure that JavaMOO can instantiate through reflection . 

All fields must have valid data mappings for data translation to and from the 

database. 

• Field names must be case-insensitive unique to prevent database column name 

41 



collision. 

Object Relational Mapping. During a save the first time a new class of object is 

encountered new tables may need to be created in the database. How many tables to create 

and how to map data into those tables is an implementation specific concern. The main 

problem is how to map the class inheritance tree into one or more database tables. There 

are three usual approaches to this problem: one table per hierarchy, one table per concrete 

class, or one table per class (Ambler, 1997). 

In one table per hierarchy, each class as a new table created with all of its fields from all 

levels in the hierarchy as columns in the table. This has performance advantages of 

requiring only a single execution of insert, update, or select statements when updating or 

retrieving object data from the database. The disadvantage is performing queries across a 

common class in the hierarchy may require many separate queries. 

In one table per concrete class a table is created for each level of the inheritance 

hierarchy which is a concrete class (not an interface or abstract class). This provides a 

more natural mapping between levels in the hierarchy and tables in the database. Multiple 

execution of statements may need to be required to store and retrieve object data. The 

number of tables is reduced because not all types are stored in the database. 

Finally, in one table per class, every encountered object type has a corresponding table 

in the database, including interfaces. This is the most natural mapping between the 

inheritance hierarchy and the database tables. This approach allows queries on the 

interface level, finding all objects that implement a certain interface. This comes at a price; 

many more statements will be executed to extract and insert object data. 

42 



Independent of the table mapping chosen, one column will exist in the database for 

each field in an object. The database column data type must be decided for each object 

data type which depends on the specific database implementation. We have provided the 

SQLTypeMapping interface to implement these mappings and data conversions. Currently 

implementations exist for String, Numbers (int, float, etc.), Date, PersistRef, and 

Serializable. These mappings cover most types of Java objects and new mappings can be 

easily defined if needed. 

Derby SQL Dialect. We have chosen the open source Derby database and one table 

per class object relational mapping for our reference implementation. Derby can be 

packaged along with JavaMOO and executed embedded in the running virtual machine so 

that no external database is required for the environment. 

Every persistent class has a corresponding Derby table whose name is generated based 

on a combination of the hash code of the fully qualified class name and the simple class 

name. For example, the class dollarbay.domain.Product has the table name 

'1415003060 _product'. The reason for using the hash code is to prevent long table names, 

which might grow beyond the maximum table name length allowed by Derby. 

Since the value of Java's string hash code is consistent across virtual machine 

implementations, this table name will be portable. The name will be nearly guaranteed to 

be unique as the hash code is based on the full class name and appending the simple class 

name. In order for a naming collision to occur between two classes, the simple class names 

must be equal and the unique full class name must generate the same hash code. 

The first time a class is encountered the SQLDialect's getTableDDL method is called 

43 



(DDL stands for Data Definition Language). This generates the SQL necessary to create a 

table with all of the fields in the class and a unique object identifier (OID). Figure 18 

shows examples of generated DDL. The OID is the primary key for each table which can 

be used for more efficient data retrieval. The combination of OID and fully qualified 

classname, such as in a SQLPersistReference, allows an object to be reconstructed. 

CREATE TABLE "1602218791 _ moobject"( oid BIG INT NOT NULL, 
"persistreference" VARCHAR(512), PRIMARY KEY (oid)) 

CREATE TABLE "604275198_tangible"( oid BIGINT NOT NULL, 
"xpos" DOUBLE, "ypos" DOUBLE, "zpos" DOUBLE, "name" VARCHAR(30000), 
"description" VARCHAR(30000), "imagefile" VARCHAR(30000), "location" 

VARCHAR(512), 
"isdraggable" INT, "isclickable" INT, PRIMARY KEY (oid)) 

CREATE TABLE "1415003060__product"(oid BIGINT NOT 
NULL,"annualdemandindex" DOUBLE, 

"msrp" INT,"size" INT,"seasonal" VARCHAR(30000), "singulamame" 
VARCHAR(30000), 

"nountype" VARCHAR(30000), "generictype" VARCHAR(30000), "iscollectible" INT, 
"numberleft" INT, "consumertable" BLOB, PRIMARY KEY (oid)) 

--" ------- -· 

Figure 18: DDLfor MOObject, Tangible, and Product 

A save operation when using DerbySQLDialect with SQLPersistManager is shown in 

Figure 19. First, SQLPersistManager gets the PersistRef for the object it is saving to see 

whether the object is being updated, or is new and needs to be inserted into the database. In 

this example the object needs to be inserted and the dialect's getinsertDML method is 

called on the object's class (DML stands for Data Modification Language). 

The getlnsertDML method iterates through all of the superclasses and interfaces 

belonging to the target class and creates SQL insert statements for each one. It does this by 

using the Java Reflection API to introspect the class field types and names to build the 

query. 

44 



~ I : SQLPersistManager : DerbySQLDialect . SQLStatement : PolymorphicMap 

I 1: save(obj:Object) Pe sistRef 

For each statement in insertDML: 
For each bindValue: 

map= getTypeMap(bindValue) 
map.bind(bindPos, bindValue) 

Execute insertDML 

1.1: getReference(obJ:dbJect) PersistRef 
I 
I For each class and l:o 
I interface, create insert 

1.2: getlnsertDML(c:qass) List SQL with placemarkers 
for each field. 

insertDML 

SQljTypeMapping 

2.1.1 get(c:Class)Q 

_ _ _ _ sqlTypeMapping ___ _ 

I 
2.2: executeQ I 

I 

PreparedStatement 

------------------------~-------

Figure 19: DerbySQLDialect Save Example 

PolymorphicMap is used as part of the implementation to lookup mappings based on 

the type of the persistent object. This allows us to find the most specific data mapping for 

an object and specify very general mappings based on interfaces such as Serializable or 

List. The specific data type mappings are configured in javamoo-persist.xml and can be 

changed without recompiling. Default mappings are shown in Table 3 and new data 

mappings can be added for any Java class. 

Figure 20 shows the SQL resulting from getinsertDML for a Dollarbay product. There 

is an insert statement for each table of the inheritance hierarchy. Each insert value is 

assigned a bind variable positional placeholder, a question mark'?', which indicates where 

data should be placed for the statement. These bind variables are used in prepared 

statements, which is an efficient mechanism to execute the same SQL statements 

45 



repeatedly. Since we are saving multiple objects of the same type, we will be executing 

identical statements many times. 

Java Type Derby Type 

Long, long BIGINT 
------,-------

Date BlGINT 

. -~~~;~;:~ ---i~f -~ 
Byte, byte 

Boolean, boolean 

Double, double 

-J 
INT 

INT 

DOUBLE 
-------!-- ----------- -- --···· -···-···-------

Float, float DOUBLE 

Character, char CHAR(l) 

String VARCHAR(30000) 
-----

PersistRef VARCHAR(512) 

List, M;::i::~a:~~lect_io_n--+-1 ____ -_-_ -:-~-~-: 

Table 3: Default Derby Data Type Mappings 
--------------~ 

INSERT INTO "1415003060_product" 
(oid,"annualdemandindex","msrp","size","seasonal","singulamame","nountype","generict 
ype" ,"iscollectible", ''numberleft" ,"consumertable") VALUES (? ,? , ? , ? ,? , ? , ? , ? , ?, ? , ?) 

INSERT INTO "604275198_tangible" 
(oid,"xpos","ypos","zpos","name","description","imagefile","location","isdraggable","iscli 
ckable") VALUES(?,?,?,?,?,?,?,?,?,?) 

INSERT INTO "1602218791_moobject" (oid,''persistreference") VALUES(?,?) 

l_!!'J"SERT INTO "3211360658_object" (oid,CLASSNAME) VALUES(?,?) 
---- . - ---------- ,. ___________ ----------

Figure 20: Generated Inserts for a Dollarbay Product 

The update and delete cases are similar to the insert example. 

Caching Strategies. We have developed various caching strategies to aid performance 

and comply with the referential integrity requirements of the PersistManager interface. 

These cache approaches include the implementation of CachedSQLDialect, 

46 



QueuedPersistManager, and two weak reference maps internal to SQLPersistManager. 

CachedSQLDialect is a wrapper class for SQLDialect that caches results from calls to 

various dialect methods. The premise is that SQL statements used for creating and 

modifying database tables for a particular class do not change and should only be generated 

once to save cycles. CachedSQLDialect uses maps to keep track of which classes have 

already had the SQL generated for certain methods and instead of calling the child dialect, 

returns the cached data. This is done for the getlnsertDML, getUpdateDML, 

getDeleteDML, getPopulateDML,getTableList and getClassSQL methods. This saves 

much redundant processing. 

QueuedPersistManager is another wrapper class that queues save requests and forwards 

them in FIFO order to its child PersistManager. It consolidates redundant requests that 

already exist on the queue, effectively collapsing consecutive requests into a single save 

operation. An object may have all of its fields modified in rapid succession. If save is 

called after each modification, collapsing all these requests into a single operation will 

greatly help reduce the number of database round trips. 

We use a new data structure for QueuedPersistManager called a QueueSet. QueueSet is 

a FIFO queue that follows set semantics. We have implemented this data structure by 

extending AbstractMap, implementing the Set interface, and using a TreeMap whose main 

operations (add, remove, contains) have O(log n) complexity. Therefore, the QueueSet will 

have comparable complexity for offer and poll operations. 

QueueSet has an option to use identity instead of equals comparison for set semantics. 

Identity comparison means that two objects are equal only if they are exactly the same 

47 



object, i.e. their memory addresses are equa1. This provides an identity preserving data 

structure which is useful for persistence requests. QueueSet is a general purpose data 

structure in the javamoo.util package used by QueuedPersistManager, but can be used by 

anywhere found useful. 

Finally, we have utilized two reference maps to cache persistent objects and their 

corresponding PersistRefs. A reference map is a lookup table whose keys or values are 

stored using Java References, and depending on configuration, may be garbage collected 

and disappear from the map. This type of map is typically used to create a memory 

sensitive cache allowing garbage collection in the case of memory pressure. 

The first cache in SQLPersistManager is a ReferenceMap that uses PersistRefs for keys 

and persistent objects as values. The objects are stored in the map using weak references so 

that if a persistent object is garbage collected, it will disappear from the cache. We 

conform to the retrieval referential integrity requirement by checking this cache when a get 

operation is performed on a PersistRef. If a corresponding object exists in the cache we 

return it immediately. Otherwise we create a new object, populate it from the database, 

enter into the cache, and return the object. This ensures that only one valid persistent 

object is loaded into memory for any PersistRef. 

The second cache is the inverse of the first by using the objects as keys pointing to 

PersistRef values. Again, the objects are stored using weak references to allow garbage 

collection, with one important distinction. We have used a ReferenceldentityMap so that 

key comparison is identity based, meaning that the exact object must be used for lookup in 

order to succeed. 

48 



The ReferenceldentityMap helps solve a very important transparency problem. In the 

original Dollarbay prototype we required all persistent objects to extend a common base 

class called MOObject. We did this to assign a unique object identifier and keep track of 

whether an object was newly created and therefore requiring an insert or already persisted 

and requiring an update. This caused several design problems, and prevented us from 

directly persisting any class that was not explicitly written for JavaMOO. 

Using an identity comparison allows us to factor out the object identifier to an external 

map, therefore making a common base class unnecessary and enabling us to store 

preexisting Java classes external to JavaMOO. This makes our persistence solution 

transparent to the implementation of classes and increases its extendability. Most classes 

can be stored using existing data mappings, but new data mappings can be written and 

configured with no modifications to JavaMOO or the preexisting class. 

When an object is first saved, a call is made to getReference that attempts to lookup the 

corresponding PersistRef using the identity reference map. If no PersistRef exists one is 

created having an incremented unique object identifier and its isNew variable set to true. 

This value indicates an insert instead of an update statement must be executed 

We also add an entry to the cache when an object is first loaded from the database. This 

ensures compliance with storage referential integrity, meaning that we will not attempt to 

insert duplicate entries into the database. 

Query Implementation. SQLPersistManager provides the SQLQuery class which is a 

query implementation that generates a where clause to be used during select statements. 

End users will not be aware of the specific implementation because query instantiation is 

49 



abstracted through the newQuery factory method of PersistManager. 

SQLQuery keeps a record of all clauses and operations requested for the query, and 

constructs an equivalent SQL where-clause with bind values. The database tables used in 

the query are assigned table aliases so to ensure shorter statement text and enhance 

readability. 

The example shown in Figure 21 builds and executes a query for books written before 

the year 2000 by author King. First the newQuery factory method is called on the 

PersistManager. Because the programmer is using the PersistManager interface, the 

underlying SQLQuery implementation is hidden. Next the returned Query is used to add 

clauses. 

The event handler calls the clause method which takes the field name, an operator, and 

a comparison value. This adds an internal internal to the SQLQuery that holds the 

information (CLAUSE, "year", LT, 2000). Next the event handler adds another clause by 

calling the and method. This adds another token holding the information (AND, "author", 

EQ, "King"). If a field name is typed incorrectly a FieldNotFoundException will be 

thrown. The query is now built to the event handler's satisfaction. 

The event handler can now get objects satisfying the query. It does this by calling 

getReferences who in tum calls getLazyQuerySQL to build a statement to query objects 

matching the query. SQLQuery loops over all of the tokens in FIFO order and builds a 

where clause from the field names. The where clause is used to build the select statement 

joining multiple tables together to perform the query. PersistRefs are created from the 

results of the query, inserted into a list, and returned to the event handler. 

50 



0 : SQLPersistManager : DerbySQLDialect :SQLQuery PreparedStatement 

: EventHandler 
11: newQuery(Book.class) : Query 

I 
2: clause('yea(, LT, 2000)J: Query 

J3: and('autho(, EQ, "King") 

I I 
--------,---------r-------

1 I I 
4: getReferences(q:Queri-,: List I I 

4.1: getLazyQuerySQL g: uery) : List I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4.1.1: buildWhereC a se(d:SQLDialecl) SQLJ3tatement 

SELECT !Obj.aid, !Obj 
classname FROM object!Obj, 
book ID WHERE !Obj.oid=I0.oid 
AND to.year< ? AND to.author=? 

For each clause add 
restrictions: 
ID.year< ? AND 
to.author=? 

_______ _j_J,--------' 

L: bind(2000, "King") 

4.3: execute◊ 
For each result 
build a list of 
corresponding 
PersistRefs 4.4: getReference(id:long, type:Class) : void 

List<PersistRef> 
-7 

Figure 21: SQLQuery for Books Written Before 2000 by Author King 

Content Delivery 

Delivery of game content to clients can greatly influence end-user perceptions of 

performance and quality. Content may include images, three-dimensional models, sounds, 

or movies whose reliable transfer is necessary for game functionality. LambdaMOO 

environments rely on a web server separate from the server program to deliver content to 

clients. This introduces an external system dependency that must be installed and 

maintained by an administrator. 

To address this, JavaMOO includes an embedded web server so content can be 

packaged along side of the class library. This enables the educational simulation to be 

distributed as a complete application instead of requiring external dependencies. 

51 



I 
<%@ page import="javamoo.persist.*" %> 

i<%@ page import="dollarbay.event.handler.*" %> 
I<% 

1

PersistManager mgr= (PersistManager)getServletContext() 
.getAttribute(PersistManager.class.getName() ); 

%> 
l<html><head><title>Dollarbay Scoreboard</title></head> 
<body> 
<% out.print(InformationEventHandler.getScoreboard(mgr)); %> 
</body> 

!</html> 

[J Dollarbay ScorEboard 

Current player scores as of 1/22/10 4:04 Pl\-1 
Sorted by profit. 

Player Profit :'.\"et Worth Liquid Assets Liability ~lost recent connection 

bo0gi3man (S2,01 5 00) S22,925.00 S15,425.00 S0.00 Wed Jan 20 17:13:21 CST 2010 

bill (S2,21 0.00) S22,730.00 SS,380.00 S0.00 FriJan2216:03:38CST2010 

jake (S3,025 00) $21,975.00 Sll,9i5.00 S0.00 Fri Jan 22 16:02:58 CST 2010 

Figure 22: Dollarbay Scoreboard JSP script 

JavaMOO provides a plugin that starts an embedded web application server called 

Apache Tomcat (tomcat.apache.org). Dynamic web pages called Java Server Pages (JSPs) 

can be authored for Tomcat which are accessible through standard web browsers. 

Domain objects are available to JSPs through the JavaMOO persistence manager. 

When the Tomcat plugin is first started, the persistence manager is set as a servlet attribute 

using its class name as a lookup key. To obtain the persistence manager a JSP script must 

call ServletContext.getAttributeO. 

Queries can then be run against the persistence manager to obtain references to objects 

and build web pages from them. New objects can be created and persisted, for instance 

52 



displaying all of the current player's scores or executing learning assessments to test the 

knowledge acquired by the students. Any data gathered through the web server can be 

stored in the standard JavaMOO persistence mechanism. Figure 22 shows the Dollarbay 

scoreboard as a JSP script. 

Autonomous Agents 

Franklin and Graesser define an autonomous agent as "a system situated within and a 

part of an environment that senses that environment and acts on it, over time, in pursuit of 

its own agenda and so as to affect what it senses in the future" (Franklin, 1996). 

Agents are naturally implemented using threads. In Dollarbay, customers and 

employees are agents that participate autonomously in simulated commerce. There are also 

many "atmosphere agents", some notable examples being a beat cop, a fortune teller, and a 

political candidate running for office. These types of agents help bring life to an 

environment. 

In the original Dollarbay prototype each agent had their own thread of execution even 

though they may have only executed once every hour. This model complicated multi

threaded programming because it was difficult to debug behavior between agents. We 

have created a lightweight framework in JavaMOO to solve these problems by formalizing 

the execution of autonomous agents within environments. 

The lifecycle and execution of agents is managed by the agent controller component 

shown in Figure 23. The AgentController is implemented as a Plugin and so is started 

during the JavaMOO startup sequence. It can be configured to load all persistent agents 

implementing the StartupAgent marker interface. This behavior, enabled by the 

53 



loadStartupAgents variable, allows Agents to automatically start where they left off before 

the server stopped. 

Our framework provides a scheduling capability to agents within an environment, but 

does not provide the facilities to implement true agents which learn from their environment. 

This responsibility for creating true agents is left to the environment developer, which can 

use the agent framework in order to help schedule tasks which the agent must perform. 

AgentController <<interface» 
Agent 

- agentUst: List 
- executor: ExecutorService • getType0 · AgentType 
- mgr: PersistManager • setType(type .- Agen/Type) ·void 
- agentTimeout. long + getState0 .- AgentState 
- checkPeriod: long + setState(state .- AgentState) . void 
- numThreads : int • getOeJay0 .- Jong 
- loadStartupAgents : boolean • se/Oelay(delay .- long) _- void 

• add(agent: Agent) : void + getPeriod0 · long 

• remove(agent: Agent) : void • setPeriod(period .- Jong) .- void 
• scheduleAgentTask(agent · Agent, task: AgentTask, delay· long)· void • selT/meUnit(unit _ TimeUniQ · TimeUnit 

Taskstate c(c::enum>> l \ 
- agent. Agent 

Agentstate 
<<interface~~ TangibleAgent 

- session · Session +SCHEDULE· int= 0 startupAgent 
- controller. AgentController +RUNNING: int= 1 - type: AgentType = SCHEDULED 

+ CANCEL: int= 2 - state: AgentState 
• setAttribute(key. Object, value. Object). void 

+ STOPPED : int= 3 - unit: TimeUnit 
• getAttribute(key Object): Object 

+ REMOVE : int - 4 - delay long 
- period : long 

<<interface~~ 
AgentTask <<enum>> 

AgentType 
• execute(state · TaskState) +SCHEDULED: int= 0 

+ PERIODIC : int= 1 
+ RANDOM_PERIODIC int= 2 

Figure 23: Agent Framework Classes 

AgentController uses a scheduledThreadPoolExecutor to start runnable objects at either 

periodic or scheduled times in the future. Underlying the executor is a thread pool 

responsible for the actual execution of AgentTasks. Using a pool helps reduce thread 

pressure, and simplifies agent implementation by using a scheduling framework instead of 

a series of sleep function calls. A consequence is that agents can now be naturally 

implemented as state machines, with scheduled transitions between states. 

54 



All agents must implement the Agent interface. This provides the methods that the 

AgentController examines to determine when and how to execute the agent's tasks. There 

are three types of agents: scheduled, periodic, and random _periodic. The agent can switch 

between these types dynamically if needed to meet the desired agent behavior. 

Scheduled agents' tasks are explicitly scheduled to run once at a predefined time in the 

future using the delay Agent attribute. The delay units are defined by the agent's 

getTimeUnit method which specifies whether the unit is seconds, minutes, etc. This agent 

is useful for scripting actions taking place at scheduled intervals. For example an agent that 

enters a room, a second later says 'Hello', and two seconds later leaves. This can be 

implemented as a sequence of tasks that schedule the next task a certain amount of time 

into the future. 

Periodic agents are executed indefinitely using a predefined period. Again the time unit 

is defined by getTimeUnit. This type of agent is useful for scheduling actions that must 

take place on a fixed schedule. A simple example would be a character that updated a 

scoreboard every minute, or an agent that was responsible for managing an area and needed 

to monitor activity periodically. 

Finally, random periodic agents are executed indefinitely using a predefined period with 

a random delay. This can be used for modeling natural behaviors that must occur at 

random times. The next scheduled execution is guaranteed to occur randomly uniform 

within the time interval [period-delay, period+delay]. We use this type of agent to 

implement the atmosphere agents of Dollarbay, who should make an appearance once in a 

while, but not always at the same time. 

55 



An agent can exist in five states relative to the agent controller: scheduled, running, 

cancel, stopped, and remove. Scheduled means that an agent has been scheduled to run at 

some time in the future. Running agents are currently executing a task. The agent 

controller implements a timeout value to monitor running agents, and interrupt them in the 

event they become unresponsive. The cancel state means that any scheduled agent tasks 

should be canceled by the controller and moved to stopped state. Stopped agents still exist 

in the agent controller, but have not been scheduled for execution. Finally the remove state 

means to remove the agent from the controller all together. 

Environment Development 

One of the goals for JavaMOO is to make environment development easier while 

following programming best practices. With these considerations in mind, this section 

provides the necessary information to help developers create new JavaMOO environments. 

Project Structure 

JavaMOO is separated into three independent folders: client, common, and server. 

The client and server folder contains code which is only used on either the client or the 

server respectively. For example, graphical user interface classes are in the client folder 

while object persistence classes exist in the server folder. The common folder contains 

classes that are shared between the server and client. For example, event classes are shared 

because they are sent between the client and server. The folders are built into three jar 

files: javamoo-client.jar, javamoo-common.jar, and javamoo-server.jar. 

The client and server folders have a similar substructure. Both contain the following 

folders: bin, config, lib, log, and src. The bin folder contains files necessary to execute the 

56 



programs using Apache Commons launcher. Configuration information is kept in the 

config folder and log files generated by Apache log4j are kept in the log folder. All jar file 

dependencies necessary to run the client or server are kept in the lib folder. Finally, and 

most importantly, the Java source files are organized into packages, which is a folder 

hierarchy inside of the src folder. 

The project structure of an environment should mirror that of JavaMOO. This is not 

required but a recommended practice that we have found useful in organizing code and 

keeping a clear separation between client and server. A JavaMOO environment template is 

built as part of the distribution which contains all of the folder structure, jar files, and 

configuration files necessary to start a project. 

We have found Eclipse to be a very productive integrated development environment 

(IDE). A new project can be quickly created within Eclipse by going to 

File->Import->Existing Project and selecting the template zip file provided by JavaMOO. 

Figure Error: Reference source not found shows the Dollarbay project in Eclipse which was 

created from the JavaMOO project template. 

JavaMOO Package Structure. JavaMOO organizes its classes into packages that 

provide a grouping by functional area. The client jar has two packages, javamoo.client and 

javamoo.client.handler that contain convenience classes for GUI development The most 

interesting classes to examine exist in the common and server jars. 

The following sub packages currently exist in the top level javamoo package: agent, 

domain, event, net, persist, plugin and server. The package names correspond to the 

components discussed in the Overview section, except that the folder named net 

57 



corresponds to the communication component, and content delivery is implemented as a 

plugin. 

An important Java feature is that the same package can be found in multiple source 

folders, and hence multiple jar files. This allows a programmer to add a new class to a 

package without modifying source trees or jar files. Unit tests can be created in a separate 

source tree and still belong to the same package as the target class being tested, increasing 

the visibility of package private and protected functions for testing. Although a seemingly 

simple concept, knowing that the same package may exist in multiple folders is very useful. 

An example of shared package names is javamoo.event.handler which exists in both the 

common and server jars. This allows us to have a generic handler called EventDispatcher 

which can be used on both the client and server, but at the same time have server specific 

handlers on the server source folder. When the environment client and server are built, they 

include the javamoo-common.jar, and so both contain the EventDispatcher class. 

Environment Package Structure. To help organize classes we recommend 

environment projects follow a similar package structure to JavaMOO. The top level 

package should reflect the project name. Figure 24 shows the package structure of 

Dollarbay. 

You can see that Dollarbay follows JavaMOO's package structure: the project name 

dollarbay as the top-level package with appropriate sub packages. In Dollarbay, the only 

package in the common folder is event because communication events are the only 

Dollarbay specific classes shared between the client and server. 

58 



.,,.. .. 

!:: Padcage Explorer f-2 b Hierarchy -r.:;-_ r 

-NewDollarbay 

~ -~~ clienVsrc 
,' -i'B dollarbay.client 

81 dollarbay,client.event.handler 

~ 1~ server/src 

, fB dollarbay.agent 

8:; dollarbay,agent.atmosphere 

IE dollarbay.domain 

Jtli dollarbay.event.handler 

flj dollarbay.server 

1'J3 dollarbay.util 

~ [11j common/src 

£f3 dollarbay.event 

Figure 24: Dollarbay Packages 

Domain Objects 

Every environment has domain specific objects that define what things can exist in a 

particular environment and how they are related to each other. Some domain objects 

should be persistent, like players and their inventory, other objects are transitory and do not 

need to persist across invocations. 

JavaMOO provides a set of basic domain classes in the javamoo.domain package that 

can be used or extended to create new domain objects. They are modeled in the spirit of 

the original MOO room metaphor. These domain classes include room, exit, player, and 

two generic classes called Tangible and MOObject. Tangible is an object which can be 

physically observed in the environment and has properties such as position and an image. 

MOObject is a convenience class to provide persistence that other domain objects can 

extend. It provides the methods save, delete, and getRef and keeps track of its persistence 

information. A PersistManager must be passed into the MOObject constructor and the save 

method be called in order for the object to be made persistent. Once the save method is 

called, the object will be stored using the provided persistence manager. For any method 

59 



that modifies the object the save method should be called again to update the data store 

with the modified data. It is up to the developer of the class to decide whether the object 

should call save when modified, or whether it is the caller's responsibility to call the save 

method. 

Figure 25 shows an example domain class named Car that extends MOObject. The car 

has three fields which will be persistent and one field, isRunning, which will not be saved 

because it is marked transient. Transient fields should always have an initializer, unless the 

default initializer is appropriate. There are two constructors for Car. The first, the required 

empty constructor, allows the persistence manager to reconstruct the object through 

reflection when being retrieved from the data store. 

The second constructor is the one called by the consumer of this class. The first line of 

this constructor calls its super constructor on MOObject to pass the persistence manager. It 

then initializes its member variables, and saves itself. It is not required to use the 

MOObject class for persistence, and it may not be possible if the developer must extend a 

different class that does not stem from MOObject. The standard persistence manager 

interface can be used to persist such classes. 

Environment developers need to identify all of the possible entities that will exist in the 

environment. This can be done in a brain-storm session, along with finding all of the 

entities' properties and relationships between entities. These relationships may help with 

organizing classes or determining where dependencies or inheritance might exist. These 

entities will correspond to the domain classes that are implemented for the environment. 

Design with Interfaces. Where a common generalization between entities is identified 

60 



a Java interface should be defined. Interfaces help create a flexible design environment and 

should be used liberally. Most entities should result in a corresponding interface as it helps 

so much in reducing dependencies and unit testing (Gamma, 1995). 

package racing.domain; 

!import javamoo.domain.MOObject; 
import javamoo.persist.PersistManager; 

public class Car extends MOObject 
private String mfg; 
private String model; 
private int year; 
private transient boolean isRunning 

public Car() {} 

false; 

public Car(PersistManager persistManager, 
String mfg, String model, int year) 
super(persistManager); 
this.mfg= mfg; 
this.model= model; 
this.year= year; 
save(); 

~-- -- -- ------- -----

Figure 25: Example MOObject Domain Object 

Interfaces allow developers to implement an is-a relationship without requiring an 

inheritance structure. This helps to reduce dependencies between components because 

interface usage will protect against changes in the underlying components. Interface types 

should be used as fields and parameters to constructors or methods, then no explicit 

dependencies are created between classes. When doing this, the entire underlying 

implementation can be swapped without breaking code. 

For convenience, a developer may wish to create an abstract class that implements the 

interface. In the JDK, for example, AbstractMap exists to make implementing the Map 

interface easy, only requiring the extending class to implement one method instead of 

61 



fourteen. However, it is still possible to implement the Map directly ifrequired. 

JavaMOO uses interfaces extensively to support generic implementation of 

components. The persistence manager and communication components all have interfaces 

defined, so if a different technology other than SQL or RMI is appropriate for an 

environment, a new implementation can be created and configured to be used without the 

need to recompile the environment. 

Composition versus Inheritance. Many times a decision exists during 

implementation whether to extend an existing class or to consume it's behavior as a 

member variable. When faced with this decision it is wise to "favor composition over 

inheritance" (Gamma, 1995). 

Composition allows us to take multiple separate components and utilize their behavior 

to create a new component without using inheritance. In order to use composition we need 

to be able to implement desired interfaces, so the previously discussed practice of designing 

with interfaces is important. 

An example of the use of composition in JavaMOO is the QueuedPersistManager. This 

is a persistence manager that forwards object save requests to its child persistence manager. 

This class could have been implemented as a specific extension to SQLPersistManager by 

extending the SQLPersistManager and overriding the save method but this approach would 

not have been reusable. 

Using composition allows us to create a general concept surrounding persistence 

managers that can be used for any persistence manager, not a specific extension. In 

general, whenever an extension of functionality can be abstracted to an interface, 

62 



composition results in more reusable code that can be applied to a large variety of problem 

sets. 

Events 

Events generated by clients and servers form the basis of each environment's 

communication protocol. Events sent from the server to the client typically carry domain 

object state changes, or are used to query the user for additional information. Events sent 

from the client usually indicate a user performed some action, such as clicking a button or 

typing a message. When either the client or server receives an event, the appropriate event 

handler is executed. 

JavaMOO provides a small set of general events in the javmoo.event package that can 

be used for any environment This includes the base Event interface that all JavaMOO 

events must implement. Other general events include create player, login, and disconnect 

events. 

JavaMOO also provides a set of domain events that can be used in the implementation 

of environments using the MOO room metaphor and are available in the 

javamoo.domain.events package. These include entering a room, clicking a tangible 

object, going home, saying something, and being notified of object changes. 

If the existing JavaMOO events do not fit the requirements for a particular 

environment, the events must be created by the developer. Events should be kept very 

simple in design, serving mostly as a data container to communicate required information 

between the client and server. Events should not contain any client or server specific 

objects so that a clean separation of code can be maintained. All member variables of an 

63 



Event must be serializable so that they can be marshaled across the network. 

Login Events. All events are sent to the server through a server connection except for 

the first which must initiate the server connection. This first event is called a login event, 

and must implement the LoginEvent interface. 

LoginEvent is a marker interface meaning that it does not have any methods defined 

and is only used to mark a class as having special behavior or following an implicit 

contract. In this case an event marked as a login event is able to be sent to a JavaMOO 

server without authentication. A successful handling of the login event will result in a 

ServerConnection and corresponding context to send and receive future events. 

JavaMOO provides an implementation of LoginEvent called SimpleLoginEvent that 

only contains the usemame and password of the player wishing to connect to the server. A 

client uses the login handler to send a login event to the server and the server will call the 

registered event handler. SimpleLoginEventHandler attempts to authenticate the user using 

the provided usemame and password by querying the current persistence manager. 

Users must somehow be able to create players in the environment. This could be 

accomplished differently depending on what is appropriate for the particular environment. 

For example an environment could use a JSP page from the content delivery component 

and have a user fill out a web form. The result of submitting this web form would be to 

create a new player with a usemame and password that can be used for future 

authentication. 

Another possible approach is for the game client to send a special login event that 

creates a player. JavaMOO provides a login event class called SimpleCreatePlayerEvent to 

64 



create player objects. The corresponding event handler, SimpleCreatePlayerEventHandler, 

creates a new player of a configurable type, for example, a DbayPlayer in Dollarbay. 

Once a player successfully logs in, a set of attributes are registered on the newly created 

session. These include the environment objects Player, Environment, and LoginServer. 

Each of these attributes use the interface class as keys, for instance, Player.class. Other 

attributes needed to handle events could be registered by custom login handlers. 

Event Handlers 

Events cause actions to take place on either the client or server. Handlers are objects 

that modify server or client state based on event data and perform a set of operations to 

successfully process specific types of events. Event handlers will almost always be tightly 

coupled to either the server or client because they contain references to client or server 

specific classes. 

Event handlers implement the EventHandler interface that defines the sole method 

handle(Event e, Sessions). Handlers should specify the targeted Event classes in the 

Javadoc for its handle method. This is an implicit contract that the consumer of the class 

must follow; it is not enforced through type checking using generics or by explicit class 

checks. If a consumer calls an event handler with an unsupported event class the result is 

undefined, but likely that a runtime exception such as ClassCastException would be 

thrown. 

The session parameter provides connection specific context for handling events. This 

allows a handler to understand which session caused the event and determines the set of 

objects that will be modified. Attributes can be registered on sessions to propagate global 

65 



or session specific data. For example, the persistence manager and authenticated player are 

attached to the session object. 

Server side event handlers will tend to follow a similar pattern: cast an event to a 

specific class, get the desired session variables, query for domain objects based on event 

data, modify the domain objects based on event data, and send result events back to client. 

Although a very simple logical flow, creating very specific event handlers that follow this 

pattern encourages small easy to follow code that is loosely coupled and scalable. 

Client side event handlers are less apt to follow a set pattern because they are more 

likely to be generic, handling many different event classes. A typical client event handler 

will update GUI elements such as images or labels, create new windows, or query the user 

for information. Any class can be an event handler, which means that a client window 

frame class could be an event handler to change the content in the window. 

Configuration 

JavaMOO configuration is very flexible and includes not only simple parameters, but 

also the ability to choose the implementation of specific components and how they are 

wired together. This is accomplished through a set of Spring IOC xml files that describe 

the initial set of objects to create and their properties. The structure of the configuration 

files is pure convention, the developer can choose to arrange the configuration any way 

they choose, and initialize any beans they want. 

The only requirement is that a bean exists with an id of mooServer that is an instance of 

MOOServer. Figure 26 shows an example MOOServer bean configuration. All other 

configuration requirements will stem from this single constraint. 

66 



class"" "ja 
bean= 

l"i,: bean= ·y• ,, / 
./ .. / 

bean="environment"!></con 
bean= "pl st "/>-</ccr::st 

Figure 26: MOOServer Configuration in javamoo-beans.xml 

Persistence. The environment developer has the ability to choose the persistence 

manager to use as part of the server configuration in javamoo-persist.xml. Each 

implementation of a persistence manager will have their own set of configuration options. 

Currently one wrapper class (QueuedPersistManager) and one base class 

(SQLPersistManager) exist in JavaMOO. 

The QueuedPersistManager, as discussed earlier, queues save requests and executes 

them against a child persistence manager in a FIFO order. There are two configurable 

parameters, the child persistence manager and the type of queue to use. 

In Figure 27 we are creating a new bean named persistManager of the class type 

QueuePersistenceManager. The first constructor argument creates a nameless child bean 

that is also a persistence manager. The queued manager's second argument specifies that a 

QueueSet should be used as the underlying queue. Any class which implements the Queue 

interface can be used as the underlying queue, so that the behavior or performance 

requirements of the environment can determine the type of queue needed. We see the 

highly hierarchical structure of object initialization reflected in the XML configuration, 

which is naturally good at representing hierarchies. 

A data source contains the information needed to connect to the database. An example 

data source configuration is shown in Figure 28. The first property specifies the driver to 

use for the connections; in this case we are connecting to an embedded Derby database. 

67 



The only other property needed to connect to an embedded derby database is the url. 

I•'~~~-- ·l. d;,,, "per''' c, t-rvr-. r1a· •-yor·" c. lass·= "7' ·4 ··-n'O''' ,0,. ✓_,..,, _ ,::,_,_.._,.._.Ja .... :,,: .. .:. _/ava 1 '- .. 8t. QueuedPersistMa.nager"> 

<ca11structor-a!g> 
<b•e.an class= "javamoo .. persist. sql. SQLPersist!"1anager"> 

<ccns~rucc0r-arg><r0f bean="dataSource"/></cc:1~:r~ctor-crg> 
<constr~ct0r-2rg><r0f bean=''sqlDialect"/></ccnslrucl.cr-hrg> 

</canstrLctor-arg> 
<constructcr-arg value="javamoo.util.QueueSet"!> 

- - --

Figure 2 7: PersistManager Configuration in javamoo-persist.xml 

<cean id="dataSource" 
class="org.springframework.jdbc.dat:asource.DriverManagel'DataSource"> 
<:prcperty name= ''dri 1,.rerClasslVarne ,, 

value= "org. apache. cierby. jdbc. En1i:A.➔ ciciedDr..i. ver"/> 
<pr,:1pe:rt·y name= "ur l" value= "jlibc: derb_v :db,·crea te=true "/> 

< /bee.r;> 

Figure 28: Data Source Configuration in javamoo-persist.xml 

The next constructor argument for the SQL persistence manager is the dialect. Al1 SQL 

databases speak the SQL language, but variations and deviations from standards exist, 

forming different dialects. The dialect parameter factors these differences for common 

operations that can be customized for each type of database. Since we are connecting to a 

Derby database, we are using the Derby dialect. 

One responsibility of the dialect is defining the mapping between Java data types and 

the appropriate database data types. This aspect of dialect is completely configurable so 

that the environment developer can create entirely new data mapping classess. A data 

mapping describes a Java and SQL data type pair, and the operations required to transform 

and store the data to a database column and retrieve and transform the data back into the 

corresponding Java data type. 

As an example, Figure 29 shows the configuration of a Derby dialect that only knows 

how to map strings and dates to the database. Only one constructor argument is needed, 

68 



which is a map with Java classes as keys and SQLMappings as values. The keys must be 

valid Java classes when they are translated into a polymorphic map which uses the class 

inheritance tree for key traversal. 

<::C,t=:3.n id= "sqlDi alect rr class= "j ai-ramoo. persist. sql ~ Derby·SQLDi alect ":> 

<map:> 
<!-- Add rew data mapping definiliors her~--> 
<entry key="java.lang.String"> 

<be-=rn class= "javatnoc .persist. sql .mapping. S:Tin9,tvJapping"> 
<,.:-:,r,sti:L:::•tt\t:-arq value="VARCHAR (30000) "/> 

</er:t::y> 
<E,nt.1 y key="java. uti.1 .Date".0• 

<::..•,r.in class= "javamoo.persi st. sql. mapping. Da t:eMapping" I> 
</entry> 

Figure 29: SQL Dialect Configuration in javamoo-persist.xml 

Default mappings exist in the provided javamoo-persist.xml file but are not shown here 

for brevity. These include mappings for all of the primitive data types, for example int and 

double, and their wrapper classes Integer and Double. Also included are all serializable 

implementations of the Java Collection interfaces: List, Map, Set, and Collection. 

Event Handlers. The association between events and their handlers is configurable in 

the javamoo-events.xml file which exists on both the client and server. The base event 

handler is called an EventDispatcher, which executes child handlers based on the current 

type of event. This mapping of child handlers needs to be defined and is similar to the SQL 

data mapping configuration. 

Figure 30 shows a simplified example of the configuration of an event dispatcher. The 

event dispatcher has a single constructor argument that is a map of event classes to event 

handlers. The keys of the map must be valid classes that implement the Event interface and 

the values must be EventHandler classes. This map completely describes the set of events 

69 



the server ( or client) expects and the behaviors that result when receiving these events. 

i <be;jn id= "e·ventDi SJJa cchcr "class= "ja\Tan100. event. handler. E1,1en tDis.J.qa tcher":> 
< ,::,:, r-:s tr. uct.<,,:r-a r 9> 

<.entry key= "j a varnoo. e·ven t. S.i.rnp.l_e!.rog i. n.Ei.len t' ">, 
.,/2ea ri class= "javarnoo .. event·. hand.I.er. Si.rnpl.eLoginEventJJandler"/ > 

</entry> 
<ent. r >/ key= "ja varnoo. doma .i. n. event. C..l. .i.ckEvent: ".> 

<:C>E:an class= "j a1larnoo. dornain. event .. hand] er. Cli ckEven t1iandler "/ > 
< / cr~try> 
<crtry key="javamoo.event.DisconnectEvent"> 

<_t;c~~. r·1 class= "j a varnoo. event.handler .. Di sconnect1~ven tlfandler "/ > 

</constr~ctor-arg> 

Figure 30: EventDispatcher Configuration injavamoo-events.xml 

Plugins. The plugin configuration file, javamoo-plugins.xml, contains a list of plugin 

components that have lifecycle management at the application level. Any initialization 

dependencies between plugins must be manually determined by the environment developer, 

but such dependencies are likely to be rare. 

The named bean pluginList is created in Figure 31 with beans for tomcat web server, 

agent controller, and shopper controller. 

id='~luginList" class="java.util.LinkedList"> 

<list> 
<.bean class= "j alTan1oc). pl ugin. wel). Tome at P 1 ugin "> 

<c•.~•n:3t r uct,:,, <'-a rg>< ref: ean= "persistManager "/>< / cor :c; t:ructo r-ii.rg> 
<!---<corstructor-arg value="8081"/>--> 

<ref bean="agentController" /> 
<:ref bean= "shop[-)erController" /> 

</con2truct:or-arg> 

1 

</br::::a_n> 

Figure 31: Dollarbay Plugin Configuration in javamoo-plugins.xml 

These beans are implemented as plugins which will be started and stopped as the 

MOOserver is started and stopped. They are started in the order specified before the login 

70 



server but after the persistence manager and stopped in the reverse order. Any component 

that needs to be notified or manage state at server startup and shutdown can be registered as 

a plugin. 

Content Delivery 

Clients may require access to images, sounds, three dimensional models, or web pages. 

To efficiently store and update this information a content server is typically used. 

Web-based. Content such as images and multimedia can be stored on a file server for 

retrieval by the client. This enables content to be updated without the need to update the 

client software. As soon as new content is available, it can be uploaded to the webserver. 

Other content like web pages may be dynamically generated using environment domain 

objects and user data. These types of pages or web applications are typically served by an 

application server such as Websphere, Tomcat, or Spring. JavaMOO bundles the Tomcat 

application server as a plugin that can be used to serve this type of content through JSP 

pages and the http protocol. 

The Tomcat configuration, as shown in Figure 31, has two constructor arguments. The 

first argument is a persistence manager bean that allows JSP scripts to query for domain 

objects. The second optional constructor argument, serverPort, determines which network 

port to start the Tomcat server on. If the port is not specified the default port 8080 is used. 

Content in the webroot server directory will be available through the Tomcat server. 

The location of webroot is also configurable through the configuration property 

contentRootPath. All files placed into this directory hierarchy are publicly accessible 

through a web browser. JSP scripts will be compiled on the first access attempt. 

71 



Bundled content. Another approach to distributing content is to bundle it with the 

client. This has a number of advantages including perceived improved game play and 

reduced network requirements. It also has drawbacks such as larger client distribution size 

and difficultly updating content. 

JavaMOO includes support for a resource directory on the client. Any files placed into 

the resource directory will exist in the virtual machine classpath and can be retrieved 

through calls to the method Class.getResource. The Dollarbay images files are bundled 

with the client in this manner to reduce the load times of rooms. 

Build 

JavaMOO uses Apache Ant for its build process. Ant provides a syntax for describing 

steps needed for different targets such as compiling, building jars, and building distribution 

files. If an action has already occurred during a previous build, Ant will detect this and 

skip to the next action. For example, if ten Java files were compiled and then one was 

modified, only the modified file would need to be recompiled. 

In both the JavaMOO and environment projects the build file is named build.xml and 

exists in the project root directory. Five targets exist in the provided build configuration: 

init, clean, compile, jar, and dist. Init creates the build and dist directories which are 

required for the build. Clean removes any files and directories generated from a previous 

build. Compile creates class files for all Java files found in the client, server and common 

source directories. The jar target generates jar files using the compiled class files. Finally, 

dist will create a complete directory structure in the dist folder, copy the required files 

including the generated jars, and build a zip file that can be distributed. 

72 



The build can be started in two ways. Typically Ant is embedded into rDEs such as 

Eclipse. To execute the build in Eclipse simply right click on build.xml and select 

Run As-> Ant Build. This will initiate the ant process with the output displaying in the 

console panel. Ant can also be used manually to execute the build. Once Ant is installed 

a build can be started by executing the ant command from the project's root directory 

(Apache Ant, 2010). 

Installation 

An environment will need to create an initial set of domain objects. JavaMOO has a 

defined installation process to perform such initializations. When the install comand line 

argument is used to start the server, the install method for the Environment implementation 

is invoked. This method is responsible for initializing all of the objects which must exist 

for the environment. 

Specifying the initial objects to create poses a problem. This could be solved by hard 

coding all of the object initialization and breaking down each object into its constituent 

parts and dependencies. This approach would not be very flexible and requires 

recompilation after every change. A different strategy was taken in the first Dollarbay 

prototype. A flat dump file contained all of the initial object state in a special format, but 

this was difficult to modify and parse. It was especially difficult when new fields were 

added to domain objects. 

We solved the problem in JavaMOO Dollarbay by using the same roe mechanism used 

for configuration. When Dollarbay's install method is executed, a new Spring context is 

created from a special roe configuration file containing entries for all of the domain 

73 



objects that should be created during installation. This approach proved to be very easy to 

implement, as shown in Figure 32. 

< version="l.0" encoding="UTF-8"?> 
1<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" 
"http://www.springframework.org/dtd/spring-beans.dtd"> 
<beans> 

<import resource="dollarbay-products.xml"/> 
<import resource="dollarbay-shoppers.xml"/> 
<import resource="dollarbay-hoods. /> 
<import resource="dollarbay-wi').rehouses.xml"/> 
<import resource="dollarbay-admedia. "/> 

<!-- Atmosphere --> 
<bean id='Art Salesman' 

lclass='dollarbay.agent.atmosphere.ArtSalesman'> 
<constructor-.iliQ 'persistManager'/> 
<constructor-arg value='Art Salesperson'/> 
<property name='imageFile' value='/images/titania. '/> 
<property name='clickable' value='true'/> 

</bean> 

</beans> 

@Override 
public void install(ApplicationContext parentContext, String[] args) { 

I ApplicationContext appContext new 
I ClassPathXmlApplicationContext( 
· new String[] { "doll install.xml" }, parentContext); 
; } 

Figure 32: Fragment of dollarbay-install.xml and the Dollarbay Install Method 

Using IOC enables the developer to specify additional object creation without requiring 

a recompilation, only a reinstall. Creating a new ClassPathXmlApplicationContext will 

read the xml install file and create all of the beans listed. Since the bean types are 

persistent domain objects, the beans will be saved to the database so that the installation 

only needs to be ran once. 

The previously mentioned Dollarbay prototype dump file was automatically converted 

into xml install files by a custom utility class, dollarbay.util.DumpFileTransform. This 

allowed us to quickly create the files necessary for our new installation strategy. For a 

74 



sense of scale, the dollarbay-products.xml installation file is 2.8 MB and the installation 

typically takes less than a two minutes. 

75 



EVALUATION 
Test results and analysis show how successful we have been in achieving our goals of 

performance, functionality and ease of use. The implementation of JavaMOO successfully 

fulfills the goals of this thesis but with room for future improvements, work and research. 

Performance 

We've written test utilities for testing JavaMOO and LambdaMOO performance. The 

tests measure the time of each operation to create and delete 1000 simple objects. Four 

machines were used for the test setup, as shown in Figure 33, to reduce the chance of a 

hardware bottleneck. 

Sun X-1200 

CPU ◄ , 2.6 GH, AMO 

RAM:8GB 

1 -19 lr.s.tance,s 1' Clieo! 

CPU· ◄ , 2.6 GH1 AMO 

RAM:8GB 

Server 
----

Figure 33: Test Hardware Setup 

Multiple instances of the test are ran on each client machine starting with one instance. 

The number of instances increment by two until a maximum of 19 instances are running 

per machine. For each level we run the test is executed three times to help eliminate bad 

data. The test executions result in 60 data sets of performance data. 

The tests measure how much time each operation takes end to end, whether create or 

76 



delete. The results provide an estimate of how much work a server can handle as the 

number of connected clients increase. Figure 34 shows the performance of create 

operations for both JavaMOO and LambdaMOO. 

.!c! 
E 

..c: ·= "' .,, 
0 

....J 

"' .§,, ., 
<ii 
~ 

(.) 

1000 

10 

■ 

Crea1es JavaMJO w LambdaMJO 

■ 

■ 

10 20 30 50 

Number of Clients 

Figure 34: Create Performance 

60 

■ Ja•,aMOO 

'\ Linear Regres.sion for 
JavaMOO 

♦ Larnlx!aMOO 

·, Exponential Regression 

for Lambdat.100 

The average time taken per create event is better with JavaMOO than LambdaMOO. 

There are a few reasons for this. In JavaMOO events are batched together so that multiple 

events are sent as one message across the network. This will cause a delay in sending a 

message to the server, but will reduce the amount of network overhead overall. Although it 

took JavaMOO 120 ms versus 60 ms for LambdaMOO to respond to the first create 

request, JavaMOO batched one hundred events together. By the time LambdaMOO had 

created two objects, JavaMOO had created one hundred. 

As the number of clients increase we notice that JavaMOO response time increases 

linearly and that LambdaMOO becomes more and more unresponsive. The graph shows 

that LambdaMOO tests starts to degrade at about 30 clients. This is most likely due to 

77 



LambdaMOO being single threaded. 

Figure 35 shows the comparison of delete performance. JavaMOO delete performance 

is database bound. To process a delete event, a database statement must be executed across 

multiple tables. This is a synchronous event, so the event is not successfully processed 

until the database delete is finished. 

Deletes Javarvro w Lambdal'vro 
600 

500 ♦ 
/ 

/ 
.✓--· 

/ 

.... /' ... ♦ 

U) 
400 //♦ 

.§, ♦ / 
. .r'' 

■ JavaMOO 
.l!l ./ ♦ '- Linear Regression for a, 

/ 
cu 300 ·' Ja~af,100 
~ / 

✓ 

/ ♦ LamtxlaMOO 
a, / 

' E / Linear Regression for / ,= 
200 Lamtxla!.100 

r / 
/ 

✓ 

. .r'_.,,~ 

/ 
✓ 

♦ 
100 .//' 

♦ ✓• 
✓ • ♦ 

■ 
/ 

/ 

■ ■ ■ ■ / ■ ■ ■ 
,,.>Iii ■ 

10 20 30 40 so 60 

Number of Clients 

Figure 35: Delete Performance 

An interesting behavior ofLambdaMOO was observed as part of the delete testing. 

When the number of clients increased beyond twenty, multiple "unable to fork" messages 

appear. Examination of the MOO code and online research found recycle is performed as a 

background task. This means LambdaMOO returns immediately after scheduling the 

background task without waiting for the recycle to complete. 

The LambdaMOO error messages were a result of hundreds of recycle tasks backing up 

until the global background tasks threshold was reached. After setting the 

78 



background tasks option to infinity we no longer experienced this error message. An 

unfortunate side-effect ofrecycling this many objects in LambdaMOO is excessive CPU 

consumption. Long after the tests had completed, one CPU was utilized 100% in effort to 

catch up with the thousands of recycle background tasks. 

The performance comparison of JavaMOO to LambdaMOO is best illustrated using 

total time taken for test completion, shown in Figure 36. The LambdaMOO time do not 

include the extra time needed to recycle objects after the test program had finished. The 

graph uses a logarithmic scale and shows that JavaMOO finishes the tests an order of 

magnitude faster than LambdaMOO. This is the result of multi-threading and batching 

requests across the network. For 50 clients, JavaMOO took an average of ten seconds to 

finish whereas LambdaMOO took over seven minutes. 

1000 

12 100 
E = -.:: 
"' 0, 
0 

...J 

!:'.l ., 
,!!!. 
"' 10 
E 
;:: 

1 

0 

■ 

10 20 

Test Completion Tme 

■ 

30 

IJum Cients 

■ 

40 

Figure 36: Test Time to Completion 

60 

■ Jav•MOO 

'- Linear Regression for 
Jowt.1OO 

♦ Lllffl!X!IIMOO 
', Linear Regressioo for 

LambdBMOO 

Finally, LambdaMOO experienced errors when the number of clients increased as 

shown in Figure 37. These errors were related to the CPU problems discussed earlier with 

79 



recycling. 

Test Cliert FaikJres 

3 

8 ♦ 

7 

6 ♦ ♦ 

s 
"' ec ■ JavlllAOO 
~ 4 ♦ Lambd!!MOO 
"' u.. 

3 

2 

♦ • 
0 • • • • ♦ ♦ • • • • 

0 10 20 30 40 !.'j) 60 

tlum Clients 

Figure 37: Performance Test Failures 

The problem became more severe around 45 clients, where some tests froze waiting for 

a response from the recycle command. After waiting for several minutes the frozen tests 

were killed. JavaMOO did not experience errors or CPU load problems during testing. 

Development Process 

The JavaMOO development process is a change from the real time prototyping 

environment of LambdaMOO, but brings more powerful tools to the hands of developers. 

Although it is no longer possible to modify the logic of a running environment, this does 

not pose a barrier to the design of these environments. 

The bulk of environment programming does not require real time modification, and the 

ability to easily run unit tests and modem debugging tools fills the gap. The usage of an 

integrated development environment such as Eclipse, along with well-defined 

80 



programming interfaces, help to simplify the the development process. The usage of 

inversion of control configuration allows the developer to specify dependencies and objects 

without the need to recompile. The end result boils environment design down to defining 

domain objects, events, and handlers. 

A major benefit for developers is the unification of the client and server programming 

languages. The server code now has access to many programming libraries not previously 

available, and can communicate with the clients using a native object serialization protocol 

that does not require a difficult to program text-to-object translation parser. Also, the Java 

programming language uses strong data typing that helps catch programming mistakes. 

Another benefit of JavaMOO is the ability to choose the configuration, including the 

implementation of system facilities such as databases or network communication. These 

changes are not easily done in LambdaMOO. 

Lastly, the debugging support available is very useful to developers. This includes real 

time debugging on a server instance running from within an IDE supporting breakpoints, 

and profiling tools to determine performance bottlenecks. The logging support has been 

greatly improved, with the ability to choose different logging levels between debug and 

fatal errors. 

Distribution 

Environment distribution using JavaMOO is simplified through a unified approach with 

external dependencies eliminated. The server can be installed through a single installation 

process containing an integrated environment, with a web and database server that is 

platform independent. 

81 



Legacy environments rely on LambdaMOO, which is possible to run on a Windows or 

Macintosh based machine but require extra software to be installed such as a Unix shell and 

compiler. Most schools using these environments may not readily have access to a Unix 

machine. Often a lab of windows based personal computers is used, one of which selected 

as the server. Since JavaMOO is able to be run on any platform supporting Java, a standard 

lab machine would work well as server for a class of 30 students. 

Environments may require supporting material that is delivered using web pages and 

scripts including registration, supplemental materials, or help pages. This content requires 

some form of web server in order to be distributed. The legacy model was to host these 

materials on a centralized web server that would be accessed by all users of an environment 

across the world. For types of content where it is beneficial for data be gathered centrally, 

this model works well. Otherwise, being able to access material from the environment 

server will scale as the number of installations increases. 

82 



FUTURE WORK 
Although we have provided a complete framework to develop and deliver virtual 

environments, there is still much room for future research and improvement. A few 

interesting projects for future JavaMOO development are presented. 

Transactional Cache with Deadlock Detection 

A current limitation of the JavaMOO persistence model is the lack of a object 

transaction interface. An object transaction allows a set of objects to be added and 

modified atomically with respect to the environment. The set of object modifications can 

be either entirely committed or rolled back to the central object store. 

With the current persistence manager, if two events simultaneously modify the same 

object, the programmer must use object synchronization in order to ensure thread safety. 

This does not ensure that concurrent modifications performed across a set of objects occur 

in a serial fashion so that the results of the modification are predicable. The programmer 

must consider thread safety as part of the environment design, and introduces complexity to 

the programming model. 

Error recovery is also more complex without object transactions. Suppose an event 

modifies a set of objects so that the event handler successfully modifies ten objects, but on 

the next object an exception occurs. Without an object transaction there is no easy way for 

the event handler to rollback the modifications for the previous ten objects. 

It is desirable to extend the persistence manager to allow the concept of object 

transactions. Figure 38 shows example usage of object transactions. The persistence 

manager is asked to create a new transaction which can be used to perform all of the 

83 



persistence operations. All players named Sam are queried and told to go home and the 

transaction is either committed, resulting in all of the players named Sam going home, or 

rolled back so that no changes were made to any player named Sam. 

public void handleEvent(Event e, Sessions) { 
I PersistManager mgr= s.getPersistManager(); 
· Transaction t = mgr.newTransaction(); 

try { 

I 

} 

;~ Tell all player's named Sam to go home~; 
Query<Player> query= t.newQuery(Player.class) 

.clause("name", Query.EQ, "Sam"); 
for (PersistRef<Player> ref : t.getReferences(query)) 

Player p =ref.get(); 
p.goHome(); 

t. commit () ; 
catch (Exception~) { 

/* Rollback if ary error*/ 
t. rollback() ; 

Figure 38: Object Transaction Example 

In order for such an interface to function properly, changes made to any objects 

obtained as part of a transaction must be visible to only that transaction until committed. 

This means that a separate copy of an object must be maintained. 

One strategy for implementing transactions would be to use a form of copy-on-write 

semantics. No copy is done until the object is modified, then a copy is made. This would 

help reduce the amount of memory used in the transaction system, and improve 

performance by eliminating costly copy operations. 

Performance optimizations for the underlying persistence storage could result from a 

transaction interface. In the case of an SQL database, all of the queries needed to execute 

for a transaction could be batched together to increase performance. Objects of similar 

types could also be grouped together to reduce the number of round trips to the database. 

84 



The benefits of a transaction system include a simplified multi-threaded programming 

model and the ability to atomically commit or rollback changes to a set of objects. This 

allows event handlers to be written more robustly in the face of errors. 

Drawbacks include potential poor performance resulting from reduced concurrency and 

the possibility of object deadlocks. The same object must not be modified concurrently by 

two threads, specifically until one of the transactions is finished by committing or rolling 

back. The result could be a deadlock if two threads each require access to the same object. 

The deadlock situation must be accounted for in any implementation of transactions. In 

the case of an object deadlock, a PersistException could be thrown, and victim thread could 

rollback the transaction and retry the operations. For an event handler, this would simply 

be the re-execution of the handleEvent method. 

Scalability Research 

Currently the JavaMOO server resides on a single machine. This means that there is no 

way to scale JavaMOO horizontally if an environment grows larger than what the hardware 

of a single machine can achieve. Research must be done to apply the scaling concepts from 

the MMOG community discussed in the literature review. 

One possible scaling strategy is to distribute rooms or geographies across multiple 

JavaMOO servers. The client would be programmed to connect to each server either 

simultaneously, or in an as-needed basis. As the environment grew larger, more servers 

could be added for the new rooms and players. 

Since JavaMOO is entirely embedded, both the server and the client code can be ran 

from within the same VM. This means a client could also act as a server, enabling a peer-

85 



to-peer type of environment. A second-life like environment could be developed where 

users connect to each other's servers to explore the world-wide distributed environment. 

This would allow the environment to scale as the number of clients grew. 

Security Improvements 

JavaMOO does not currently use an encrypted channel of communication between the 

client and server. A custom SSL socket factory could be developed for the RMI connection 

to improve security. 

No authorization check occurs during event processing to ensure that the event actually 

came from the expected client. This means that connections could potentially be hijacked 

by a malicious third party to execute a man in the middle attack. Finally, the password 

mechanism should use some form of encryption such as SHA or MD5 to help ensure that 

user privacy is not violated. 

LamdaMOO Emulator 

The first attempted approach for JavaMOO was an automated translation of 

LambdaMOO code to Java. This proved problematic because of inherent incompatibilities 

between the two languages. As part of writing the current implementation of JavaMOO, 

another potential approach to migrate LambdaMOO environments was realized: execute 

LambdaMOO environments using an emulator running inside of JavaMOO. 

The idea is to create a language interpretor as a script engine able to understand MOO 

verb code. As the code is interpreted, Java objects are looked up and modified. 

A new persistent Java class called Lambda would contain properties and verbs in 

dynamic maps. An instance of this class would be created for each LambdaMOO object, 

86 



and persisted to the database. Figure 39 shows an possible sequence of events for event 

processing in the LambdaMOO emulator. 

lambda 
int objNum 
Uslproperties 
List verbs 
exewte(¥el'b) 
get(prop) 

) 

I EventHandler 
81/efltf'look at ,¥; I 

i Perslstt;1anac 11.,. ~l.aiiiiilimbda~-..,1 1 M22'21a!llr I 
i '""'"~'" I 

I I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 
I 
I 

lnte!l)ret look ve!b ' 

Figure 39: LambdaMOO Emulator Event Sequence 

The LambdaMOO database is a text file which contains all of the objects and verbs that 

exist for the environment. The installation process for the emulator would process this text 

file to create the corresponding Lambda objects, populating them with the appropriate 

properties and verbs. Legacy environments could be installed using Java with minimal 

effort, providing many benefits such as real-time persistence, event-based client 

communication, multi-threading, and improved performance. 

87 



CONCLUSION 
This thesis has presented an architecture named JavaMOO to help developers create 

multiuser virtual environments focusing on domain-specific design and rapid development. 

Best practices for developing environments were shared and an extensible design for 

system configuration, client-server communication, event handling, object persistence, 

content delivery, and agent control was presented. JavaMOO is a stand-alone application 

which can be easily deployed to remote sites without external dependencies and improves 

the current state of virtual environments. 

It has been shown that existing environments can be implemented with JavaMOO using 

a client-server communication model customizable to each environment. A flexible 

persistence mechanism delivers per-object granularity to avoid complete memory residency 

of objects. Evaluation has shown acceptable performance of JavaMOO using a multi

threaded architecture. For the above reasons, the goals of this thesis have been met. 

88 



REFERENCES 
Ambler, S. The Realities of Mapping Objects To Relational Databases. Software 

Development. 5, 10 October 1997, 71-74. 

Apache Ant, Installing Ant, Retrieved March 2010, from 

http://ant.apache.org/manual/instalLhtml. 

Apache Launcher, Documentation, Retrieved March 2009, from 

http://commons.apache.org/launcher/. 

Assiotis, M., & V. Tzanov, A Distributed Architecture for MMORPG, Netgames'06 ACM, 

October 2006. 

Atkinson, M., Persistence and Java - a Balancing Act, Objects and Databases Lecture Notes 

in Computer Science, June 2000, 1-31, Springer-Verlag. 

Avram,A Domain-Driven Design Quickly. 2007. Lulu.com. 

Bartle, R., Early MUD History, rec.games.mud newsgroup post, November 1990. 

Retrieved March 31, 2010, from http://www.mud.co.uk/richard/mudhist.htm. 

Bartle, R., Interactive Multi-User Computer Games, Technical report, BT Martlesham 

Research Laboratories, December 1990. 28. Retrieved March 31, 2010, from 

http:/ /www.mud.co.uk/richard/imucg.htm. 

Beaumont, 0., A.M. Kermarrec & E. Rivire, Peer to peer multidimensional overlays: 

Approximating complex structures. In OPODIS, 11th International conference on 

principles of distributed systems, 2007. 

Beck, K., Test Driven Development: By Example, Addison-Wesley Longman Publishing 

Co., Inc., Boston, MA, 2002. 

89 



Big World, Press Release - Big World Education, Retrieved March 2008, from 

http://www.bigworldtech.com/news/press _ 080724. php. 

BigIP, White Paper Load Balancing 101, Retrieved March 2008, from 

http://www.f5.com/pdf/white-papers/load-balancing101-wp.pdf. 

Blizzard, World of Warcraft Realm Status. Retrieved October 2008, from 

http://www.worldofwarcraft.com/realmstatus/. 

Bonk, C. J. & V.P. Dennen, Massive Multiplayer Online Gaming: A Research Framework 

for Military Training and Education. Technical Report 2005-1, U.S. Department of 

Defense, 2005. 

Brandt, L., 0. Borchert, K. Addicott, B. Cosmano, J. Hawley, G. Hokanson, D. Reetz, B. 

Saini-Eidukat, D.P. Schwert, B.M. Slator, & S. Tomac, Roles, Culture, and 

Computer Supported Collaborative Work on Planet Oit., Journal of Advanced 

Technology for Leaming, 2006, 3(2), 89-98. 

Brunskill, E. 2001. Building Peer-to-Peer Systems with Chord, a Distributed Lookup 

Service. Proceedings of the Eighth Workshop on Hot Topics in Operating 

Systems (May 20 - 22, 200 l ). IEEE Computer Society, Washington, DC, 81. 

Chan, L., J. Yong, J. Bai, B. Leong, & R. Tan, 2007. Hydra: a massively-multiplayer peer

to-peer architecture for the game developer. In Proceedings of the 6th ACM 

SJGCOMM Workshop on Network and System Support For Games(Melboume, 

Australia, September 19 - 20, 2007). NetGames '07. ACM, New York, NY, 37-42. 

Curtis, P., Mudding: Social Phenomena in Text-Based Virtual Realities, Proceedings of the 

1992 Conference on the Directions and Implications of Advanced Computing, 1992, 

90 



Berkeley, CA. 

Curtis, P., & D. A. Nichols, MUDs Grow Up: Social Virtual Reality in the Real World, 

COMPCON, 1994, 193-200. 

Curtis, P., LambdaMOO Programmer's Manual, 1997, Retrieved March 31, 2010, from 

http://mirrors.ccs.neu.edu/M OO/ProgrammersManual. txt. 

Curtis, P., Not Just a Game: How LambdaMOO Came to Exist and What It Did to Get Back 

at Me, High Wired: On the Design, Use, and Theory of Educational MOOs, 

(Haynes & J. R. Holmevik Eds.), 1998, Ann Arbor, MI: Univ. of Michigan Press. 

Franklin, S. & A. Graesser, Is it an Agent, or Just a Program?: A Taxonomy for 

Autonomous Agents, Proceedings of the Third International Workshop on Agent 

Theories, Architectures, and Languages, Springer-Verlag, 1996. 

Frey, D., J. Royan, R. Piegay, A.M. Kermarrec, E. Anceaume, & F. Le Fessant, "Solipsis: A 

Decentralized Architecture for Virtual Environments". In Proc. of International 

Workshop on Massively Multiuser Virtual Environments (MMVE), 29-33, March 

2008. 

Hampel, T., T. Bopp, & R. Hinn, 2006. A peer-to-peer architecture for massive multiplayer 

online games. Proceedings of 5th ACM SIGCOMM Workshop on Network and 

System Support For Games. NetGames '06. ACM, New York, NY, 48. 

Kent, S. "Alternate Reality: The History of Massively Multiplayer Online Games" 

GameSpy Magazine. Septemter 23, 2003. 

Knutsson, B. et. al. Peer-to-peer support for massively multiplayer games. In Proceedings 

ofINFOCOM, 2004. 

91 



Lu, F., S. Parkin, G. Morgan, Load Balancing for Massively Multiplayer Online Garnes, 

Proceedings of 5th ACM SIGCOMM workshop on Network and System Support for 

Garnes, October 30-31, 2006, Singapore 

Gamma, E., R. Helm, R. Johnson, & J. Vlissides, 1995 Design Patterns: Elements of 

Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc. 

Mack, J., B. Slator, K. Boulais, V. Doan, & students of CS345, Leaming by earning: The 

Dollar Bay Project., Proceedings of the 36th Midwest Instructional Computing 

Symposium (MICS-03), April 2003, 27. 

Mortensen, T., "WoW Is the New MUD: Social Gaming From Text to Video" Garnes and 

Culture 1 (4), 397-413, 2006 

NDSU Archeology Technologies Laboratory, Virtual Archaeologist Website, Retrieved 

March, 2008, from http://fishhook.cs.ndsu.nodak.edu/horne/. 

Open Simulator, Documentation, Retrieved February 2009, from 

http://opensirnulator.org/wiki/OpenSirn:Introduction _and_ Definitions. 

Ratnasarny, S., P. Francis, M. Handley, R. Karp, & S. Schenker, 2001. A scalable content

addressable network. Proceedings of the 2001 Conference on Applications, 

Technologies, Architectures, and Protocols For Computer Communications (San 

Diego, California, United States). SIGCOMM '01. ACM, New York, NY, 161-172. 

Regan, P. & B. Slator, Case-based Tutoring in Virtual Education Environments, ACM 

Collaborative Virtual Environments, October 2002, Bonn, Germany. 

Rowstron, A. I. & P. Druschel, 2001. Pastry: Scalable, Decentralized Object Location, and 

Routing for Large-Scale Peer-to-Peer Systems. Proceedings of the IFJPIACM 

92 



international Co,iference on Distributed Systems Plat.forms Heidelberg (November 

12 - 16, 2001). 

Second Life, Documentation, Retrieved March 2008, from 

http://wiki.secondlife.com/wiki/. 

Slator, B. & R. Hooker, A Model of Consumer Decision Making for a Mud Based Game, 

Proceedings of the Simulation-Based Leaming Technology, Workshop at the Third 

International Conference on Intelligent Tutoring Systems (ITS'96), Montral, 1996 

Slator, B. & H. Chaput, Leaming by Leaming Roles: A Virtual Role-Playing Environment 

for Tutoring, Proceedings of the Third International Conference on Intelligent 

Tutoring Systems (ITS'96), Springer-Verlag, June 1996, pp. 668-676 (Lecture Notes 

in Computer Science, edited by Frasson, C., Gauthier, G., Lesgold, A.). 

Slator, B. M., 0. Borchert, A. Bergstrom, J. Hockemeyer, J. Clark, P. Juell, P. McClean, B. 

Saini-Eidukat, D. P. Schwert, A. R. White, C. Hill, J. Bauer, F. Larson, B. Vender, B. 

Bandli, B. Chen, M. Dean, R. Frovarp, G. Hokanson, C. Johnson, J. Kittleson, N. 

Kruger, J. Landrum, M. Li, B. Nichols, J. Opgrande, R. Potter, P. Regan, L. Ong 

Teo, A. Tokhi, S. Tomac, J. Turnbull, J. Willenbring, Q. Xioo, X. Ye, and M. Zuro, 

Recent Advances in Immersive Virtual Worlds For Education, Proceedings of the 

34th Annual Midwest Instruction and Computing Symposium (MICS-01 ), April 

2001 

Slator B.M., J. Alt, J. Aus, D. Balliet, D. Balliet, C. Bergstrom, R. Blaha, K. Bopp, 

B.Carlson, S. Carlson, G. Collins III, P. Crary, J. Cusey, M. Deck, A. Dewald, S. 

Dieken, A. Elezovic, D. Ely, G. Engels, M. Ernst, K. Fimreite, E. Finke, C. 

93 



Fredrickson, N. Fredrickson, M. Guerard, T. Hall, M. Hanson, K. Hartman, W. 

Hawkinson, K. Hessinger, H. Ho, J. Hoert, C. Ho, B. Hokanson, M. Holzer, M. 

Hoque, S. Hossain, M. Hurlburt, B. Johnson, S. Kawamura, J. Levasseur, N. 

Lindvall, B. Lorentz, J. Louwagie, D. Mafua, R. Martens, J. Matthews, B. Miller, S. 

Moorhouse, D. Olson, K. Parisien, J. Reiser, C. Resler, J. Richardson, C. Romberg, 

S. Schilke, J. Schmidt, D. Schott, S. Seira, R. Sell, B. Seymour, L. Sjoblom, J. 

Tarnowski, S. Ternes, B. Thompson, T. Wells, M. Wolters, A. Wong, Rushing 

Headlong into the Past: the Blackwood Simulation, Proceedings of the Fifth 

IASTED International Conference on Internet and Multimedia Systems and 

Applications(IMSA 2001), August 2001, pp. 318-323 

Slator, B.M., H. Chaput, R. Cosmano, B. Dischinger, C. Imdieke & B. Vender, 2006, A 

Multi-User Desktop Virtual Environment for Teaching Shop-Keeping to Children, 

Virtual Reality Journal, 9, pp. 49-56. Springer-Verlag. 

Slator, B., et. al, From Dungeons to Classrooms: The Evolution ofMUDs as Learning 

Environments, Studies in Computational Intelligence, Volume 62, Springer-Verlag 

Berlin, Heidelberg, 2007 

Squire, K., Video Games in Education, International Journal oflntelligent Simulations and 

Gaming, 2003, 2(1). 

Sun Microsystems, Press Release, Leap into Second Life, Retrieved March 2009, from 

http:/ /www.sun.com/smi/Press/sunflash/2006-lO/sunflash.20061010.2.xml 

Spring Framework, Version 3.0 Reference Documentation, Retrieved March 31, 2010, from 

http://static.springsource.org/spring/docs/3.0.x/spring-framework-

94 



reference/pdf/spring-framework-reference.pdf 

Taivalsaari, A., On the notion of inheritence, ACM Computing Surveys (CSUR), 

September 1996, 28 (3), pp. 438-497 

Tanenbaum, A. S., & M. Van Steen, Distributed Systems, Prentice Hall, Upper Saddle 

River, NJ, 2002. 

Vivendi Garnes, About Vivendi Garnes, Investor Guide, February 2007, Retrieved February 

2008, from http://www.vivendi.com/ir/download/ 

pdfNivendi _Garnes_ Overview_ 2 _ l _ 07. 

Wikipedia, MOO Wikipedia Webpage, Retrieved February 2008, from 

http:// en. wikipedia. org/wiki/M 00. 

Wiley, B. Distributed Hash Tables Part 1, Linux Journal, October 2007, Retrieved March 

2009, from http://www.linuxjoumal.com/article/6797. 

Woodcock, B. S. "An Analysis of MMOG Subscription Growth" MMOGCHART.COM 

12.0. 29. April 2008. Retrieved October 2008, from 

http:/ /www.mrnogchart.com/Chart4.htrnl 

Yamamoto, S., Y. Murata, K. Yasurnoto, & M. Ito, 2005. A distributed event delivery 

method with load balancing for MMORPG. In Proceedings of 4th ACM SIGCOMM 

Workshop on Network and System Support For Games (Hawthorne, NY, October 

10-11, 2005). NetGarnes '05. ACM, New York, NY, 1-8. 

Yu, A. & S.T. Vuong, 2005. MOPAR: a mobile peer-to-peer overlay architecture for interest 

management of massively rnultiplayer online games. Proceedings of the 

International Workshop on Network and Operating Systems Support For Digital 

95 



Audio and Video (Stevenson, Washington, USA, June 13 - 14, 2005). NOSSDAV 

'05. ACM, New York, NY, 99-104. 

Zhao, B. Y., J. D. Kubiatowicz, & A. D. Joseph, 2002. Tapestry: a fault-tolerant wide-area 

application infrastructure. SIGCOMM Rev. 32, I, 81. 

96 




