
A FREE AND FLEXIBLE POKER ENVIRONMENT

A Paper

Submitted to the Graduate Faculty
of the

North Dakota State University
of Agriculture and Applied Science

By

Daniel George DeBilt

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

June 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A FREE AND FLEXIBLE

POKER ENVIRONMENT

By

DANIEL DEBILT

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

DeBilt, Daniel George, M.S., Department of Computer Science, College of

Science and Mathematics, North Dakota State University, June 2010. A Free

and Flexible Poker Environment. Major Professor: Dr. Kenneth Magel.

This paper introduces a framework and software that allows poker players to

create and play original and custom poker games, through a TCP/IP

connection, for free. This paper describes how the concept of playing user-

created poker games over the Internet is not known to currently exist in a

flexible, private, and free environment and also critiques what currently does

exist and is available for use. This paper also summarizes the software

development process used and the deliverables that ultimately led to a

working software application. Future version features and application

extensions are also discussed that may enhance the user experience, as well

as future research projects.

iii

TABLE OF CONTENTS

ABSTRACT .. iii

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1: INTRODUCTION ... 1

1.1. Hand Ranks .. 2

1.2. Ante, Betting, and Actions .. 3

1.3. Popular Poker Games ... 5

1.4. Problem Statement .. 7

1.5. Objectives .. 9

CHAPTER 2: LITERATURE REVIEW ... 11

2.1. Application Protocol(s) ... 11

2.1.1. The Art of UNIX Programming .. 12

2.2. Visual .. 14

2.2.1. pokerstars.com .. 14

2.2.2. pokerroom.com ... 17

2.2.3. partypoker.com .. 18

2.2.4. fulltiltpoker.com ... 19

iv

2.2.5. cakepoker.com ... 20

2.2.6. Texas Hold'em Poker (Zynga - Facebook) 21

2.2.7. Site Comparison ... 22

2.3. Other .. 23

2.3.1. Hiding and Revealing in Online Poker Games 23

2.3.2. Dealing Cards in Poker Games .. 25

2.4. Security .. 27

2.4.1. A Secure Mental Poker Protocol over the Internet 28

2.4.2. Keeping Bots out of Online Games ... 30

2.4.3. Cheat-Proof Playout for Centralized and Peer-to-Peer Gaming .. 33

CHAPTER 3: RESEARCH APPROACH ... 37

3.1. Solution Requirements ... 38

3.1.1. General Requirements ... 38

3.1.2. GUI Requirements .. 40

3.1.3. Game Creation Requirements .. 42

3.1.4. Game Mechanics Requirements ... 44

3.2. Architecture and Design ... 46

3.2.1. Poker Game Library .. 48

V

3.2.2. Controller ... 56

3.2.3. Controller GUI .. 60

3.2.4. Client .. 62

3.2.5. Client GUI ... 65

3.2.6. Client/ Server Layer 5 Communication Protocol 70

3.2.7. Poker Game Creation ... 82

3.2.8. Sequences .. 95

3.3. Testing .. 98

3.3.1. UnitTesting .. 99

3.3.2. End-to-End Testing ... 101

3.4. Deliverables .. 101

CHAPTER 4: RESEARCH EVALUATION .. 103

4.1. Flexible Poker Games ... 103

4.1.1. Flexibility .. 103

4.1.2. Privacy .. 105

4.1.3. Free .. 106

CHAPTER 5: CONCLUSIONS ... 107

5.1. Evaluation .. 107

vi

5.2. Research Application .. 107

5.3. Future Work ... 108

5.3.1. Game Features ... 108

5.3.2. Artificial Intelligence ... 108

5.3.3. Enhanced GUI ... 109

5.3.4. Game Creator ... 112

5.3.5. New Game Engines .. 112

5.3.6. Odds ... 113

5.3.7. Security .. 113

5.3.8. Commercial .. 114

BIBLIOGRAPHY .. 116

APPENDICES ... 118

7.1. No Limit Texas Hold'em Game XML. ... 118

7.2. 5 Card Draw Game XML ... 121

7.3. 5 Card Stud Game XML. .. 122

7.4. 7 Card Stud XML ... 124

7.5. Blind Man Poker Game XML. .. 126

7.6. Poker Hand Ranks .. 128

vii

LIST OF TABLES

Table

1. Poker Site Comparisons ... 22

viii

LIST OF FIGURES

Figure Page

1. A default partypoker.com table; http://www.partypoker.com 16

2. View of action intent options; http://www.partypoker.com 17

3. High Level Components .. 47

4. Poker Table Object Structure .. 49

5. Game Object Structure ... 51

6. Player Object Structure ... 52

7. Deck Object Structure ... 53

8. Card Object Structure ... 54

9. Poker Hand Object Structure .. 55

10. Controller Process Model. ... 57

11. Poker Server GUI. ... 61

12. Controller Components / Classes ... 62

13. Client Process Model. .. 64

14. Client Components/ Classes .. 65

15. Initial GUI on Load ... 66

16. Connecting to a Server ... 67

ix

17. An Empty Table .. 68

18. Actions ... 69

19. Community Cards .. 70

20. Discarding .. 71

21. Game Message Object Structure ... 73

22. Client Connect Request .. 96

23. General Client Request .. 96

24. Informative Message Sent By Client .. 97

25. Server Message Queue/ Send ... 97

26. Server Request/ Response Wait .. 98

27. Unit Tests ... 100

X

CHAPTER 1: INTRODUCTION

Most all poker players know and have tried 115 card draw". That is the

game where each player is dealt 5 cards from a standard deck of 52 playing

cards, with an option to discard some of those cards later in the game and

re-dealt more from the deck to get their hand back to 5 cards again. The

overall goal of that game, and any poker game, is to create the best ranking

poker hand at the table, which usually ranges from two up to ten players

total. Las Vegas Poker & Blackjack, on the lntellivision game system [14], was

this author's first introduction to the poker world at an age of six years old.

Since that time, the poker world has rapidly evolved over the last few

decades and has adapted the basic set of poker rules to create new games

with new entertainment value and possibilities.

Poker was said, according to Wikipedia.org [13], to have been found in

the 15th century through a game called Pochspiel. Pochspiel was a game that

incorporated hand rankings, and the human element known as bluffing.

Bluffing, in poker, is the act of a player trying to convince their opponents,

who are sitting at the same table, that they have a higher ranking hand in

order to get them to fold or surrender their hand. In nearly all poker games,

1

the players are not allowed to see the contents of each other's hands.

Playing poker is not considered complicated. Poker games are defined by a

set of sequences that must occur in a predetermined order, ultimately

leading to a showdown of each player's hand. The showdown, as it is usually

called, is where all remaining players show their cards to determine who has

the best ranking hand. Normal poker sequences include the ante, dealing

cards, betting, and discarding.

1.1. Hand Ranks

The hand ranking premise of Poker is simple. A standard deck contains

52 playing cards, which is composed of 4 distinct suits {spades, hearts, clubs,

diamonds}, and 13 values per suit {two, three, four, five, six, seven, eight,

nine, ten, jack, queen, king, ace}. In poker, the suits themselves have equal

rank compared to each other, though the individual card values are ranked in

increasing order, from two to ace. If a player were dealt only one card from

the deck, their hand rank is determined by that card alone. Things change

when a player is playing a poker game that allows players to have more than

one card in their hand, which is usually the case. Having the same card value

(e.g. two aces) in a hand is usually better than not having the same card

2

value on different cards. It gets more complicated when more cards are

allowed in a hand. If all 5 of a player's cards are in contiguous increasing

order (e.g. three, four, five, six, and seven), the rank of their hand is called a

straight; seven high. There is also a special rank if 5 of a player's cards share

the same suit as well, and that is called a flush. A flush is better than a

straight. Refer to Poker Hand Ranks (in the Appendix) for all the normal types

of poker ranks and how they compared to each other in power. No matter

how many cards the game allows any specific player to have, the best hand

rank always wins in poker, though ties are possible since a deck of playing

cards has multiple cards of the same number and some cards, community

cards, can be shared by all players. So for example, if an unusual poker game

allowed one player to have 3 cards, yet another player to have 6 cards, the

player with 3 cards can still create a better ranking hand than the player with

6 cards.

1.2. Ante, Betting, and Actions

In "S card draw", all players who wish to participate in the game must

ante. Ante, is the act of a player declaring their intent to participate in the

upcoming deal. The ante is usually denoted by an asset value, such as

3

money, coins, or chips, though the game can be played for free, with no

monetary or asset value attached. In poker games that use antes, the players

who are going to participate in the next deal, or instance of the game, are

dealt a certain number of cards, which depends on the poker game being

played. After the players have had a chance to look at their cards and

evaluate their hands, a betting round usually ensues. Betting normally starts

with the person to the left of the dealer, moving clockwise until every player

has had a chance to act. The first player to act has an option to bet, check, or

even surrender (fold) their hand, though the player has nothing to gain by

folding when no other person has placed a bet yet. If the first player checks,

the next player will also have that same option, as long as all players prior

have checked. However if the first player makes a bet, all subsequent players

must at least equal that bet (known as a call), or else they are forced to fold

their hand and be eliminated from the current deal. Players who are calling a

previous bet also have the option to raise the bet. The bet and raise amounts

in question are dependent on the rules of the game. Each game has its own

specific, yet flexible, rules that are usually decided by the players prior to

playing. Once all dealing and betting rounds have completed, and at least 2

4

people are still remaining, they must show their cards and the best ranked

hand will be determined the winner. Sometimes the hand does not make it

through all the predetermined sequences. This can happen if a player has bet

a significant amount of chips, and all other players do not wish to call that

bet, folding their hands. The player that had bet that significant amount of

chips usually has the option of not having to show their cards to the other

players who have folded their hands. When a player does not show their

cards, this is called mucking. This allows people to create a bluffing strategy.

1.3. Popular Poker Games

As far as types of poker, there are many variations. The most popular and

common are the following:

1. Texas Hold'em -this is a poker game where players are dealt two

private cards initially. After a betting round, three more cards are dealt

on the table face up (suit and value showing) as community cards,

which are cards that every player can use in their hand. After another

round of betting, a fourth community card is dealt. After yet another

round of betting, a fifth community card is dealt. A final betting round

takes place, and then it is the showdown, assuming at least two

5

players have made it that far into the hand. This game is currently the

most popular poker game at this time. Most televised and high profile

poker competitions showcase this game.

2. Five Card Draw- one of the older, yet still popular poker games.

Players are dealt five private cards. A betting round occurs, and then

players are allowed to discard a certain number of their cards from

their hand. The dealer will replenish the amount of cards they have

discarded with new cards from the deck. This allows players a chance

at creating a better ranking hand from their initial set of cards. After

the dealer has replenished all the discarded cards, a final betting round

occurs before the showdown.

3. Seven Card Stud - in this game, the players are dealt two private cards

initially. A betting round occurs, and then each player is dealt a card

face up in their hand (they cannot actually hold that card, as it must be

visible to the other players). The process of dealing a face up card and

betting occurs for four total cards. Finally, the last, seventh, card is

dealt privately to the players, and a final betting round occurs before

the showdown.

6

4. Omaha Hi/Low- This is similar to Texas Hold'em, except that each

player gets 4 private cards. Each player must use two cards from their

hand to form a "high" hand, which is basically trying for the best

normal poker hand. Each player must also use two, and only two,

cards from their hand to form a "low" hand, which is a set of five cards

whose face values are not greater than 8, and do not share the same

face value as another of the cards in that five card set (e.g. 8-7-5-3-2).

The cards used to form the "high" and "low" hands can be shared.

1.4. Problem Statement

There are many poker players who belong to a social group that

includes other poker players who play their own custom games by their own

rules. A social group of poker players will usually consist of friends or peers,

and the type of poker games played can vary, and those games aren't

necessarily the popular games someone may find on the major poker sites

available through the Internet. Some groups play with wild cards, some play

games that have different sequences or games that deal the players a

different number of cards to create a hand from. As time goes on, some of

these social groups dissolve and cease to exist. The big reason for the social

7

groups dissolving is lack of physical access to that group in a reasonable

fashion or schedule. Some players have to move for job or other reasons,

and can no longer partake in a routine meeting with those same players to

play poker. This author has experienced this type of problem when poker

playing friends had left after completing college. In most cases, it is not

economically feasible to maintain a routine poker playing schedule when the

members of the social group no longer live in the same area.

The major problem is that there is no known software that can allow

the social groups to continue playing the same custom games, and by their

own rules over a network connection, such as the Internet. There is no

software package that allows the social groups to all play online in a free,

private, and in a flexible environment. Flexible in the terms that they can play

the type of custom poker games that they are used to playing when they

were all under the same roof and at the same poker table. Even the software

packages that a player would have to purchase are still subject to the

limitations of the software, which are usually just the most popular poker

games. Of the software packages and poker sites that are free, most do not

allow a user to create a private table, most do not allow the user to configure

8

the stakes, and none of them allow the user to change the game at the table.

Most importantly, all of the available packages do not offer what the social

groups would desire the most, custom poker games. Of the newer types of

software that are big in today's online gambling circuit, such as

PartyPoker.com [O], PokerStars.com [10], and CakePoker.com [11], all offer

an impressive visual software package with numerous features, though they

all do not meet all the required needs. It may be free to use some aspects of

their service, but the tables are not private, the games are limited, and

nothing is configurable. As it stands currently, there is nothing available that

would meet the needs of a social group of players that enjoy playing poker

on a frequent basis, remotely. The assumption is that there are numerous

social groups of poker players that would desire this type of software.

1.5. Objectives

The overall objective is to obtain, extend, or develop software that would

meet the needs of not only the social group of poker players that this author

plays poker with, but also attempt to meet similar needs of other social

groups of poker players looking for the same type of system. This is an

important point of view and concept, for the following reasons:

9

1.) If this software can bring back the frequency of poker playing within

any social group, it could keep help maintain their friendships. In this

author's personal experiences, the less a person sees someone, and

the less they socialize with someone, the more they drift apart. The

solution would further reinforce and help maintain those friendships.

2.) It would be free, besides the burden of possible development to

introduce an initial version of the software.

3.) It would allow privacy. A group of players would be able to chat and

not have to worry about any unknown visitor frequenting the virtual

poker table.

4.) It would be flexible enough to allow the social poker group to play

their custom games by their own rules, and also not require the

players to have to get up and sit down at another table to play a

different poker game. The solution could understand a poker game

created, as long as it follows the rules of how to create a poker game

outlined later in this paper. Most players would never think of being

able to play "Blind Man's Bluff" online, with their fellow poker friends.

10

CHAPTER 2: LITERATURE REVIEW

Concentration on specific areas of research was employed prior to

architecting and creating a potential software application that would be

needed to solve the problems to be address. First, given that this application

would have to be able to communicate over the Internet, application level

protocols or other standards were researched. Secondly, other online poker

software applications were critiqued, to get a feel for the visual requirements

that could help enhance the user experience. Another area that is always

important and a major focus when deploying network applications, is

security. If the application was not secure, and open to anyone who knew

how to intercede during "private" game play, it would not meet the privacy

needs that would need to be solves.

2.1. Application Protocol(s)

An application protocol is an important piece in any application being

developed which must communicate to separate pieces over a

communication medium. Even if an application doesn't use a network for

communication, there can be separate components of an application that

11

need to communicate with each other, and a good way to accomplish that

could be to define or use existing protocols.

2.1.1. The Art of UNIX Programming

This online book, "The Art of UNIX Programming" (1], is focused on

providing information for UNIX programmers, and how to design software

for UNIX systems. Though the book is aimed toward UNIX, some of its

general ideas can be applied toward other operating systems and

development environments. Focus was placed on the chapters regarding

application protocols, given that the project that this paper encompasses

would require an application level protocol for communication.

The book argues that when an application protocol can easily be

parsed or interpreted by an eyeball, "many good things become easier.11

Transaction dumps become easier to interpret, and test loads become easier

to write. It is agreed with those claims in that it is easier to see things when

they are in readable form. An example is using "nvarchar" fields in a

database to store data. By using any query analyzer tool, the actual readable

data in the field can immediately be seen. However, there is disagreement in

some ways, because it can come with a cost. A readable form would be less

12

secure and normally less efficient (more bytes stored and transferred)

compared to compressed, non-readable data. Encrypted data may enlarge

the size of the data being transmitted, and though it is also not read-able, it

would less compromise the security of the application.

The author discusses three of the widely used mail application

protocols used on the Internet, which are SMTP, POP3, and IMAP. Then the

author transitions to HTTP, IPP (Internet Printing Protocol), BEEP (Blocks

Extensible Exchange Protocol), and finally XML based protocols such as XML­

RPC, SOAP, and Jabber. The author mentions that there is a developing trend

of application protocol design toward using XML. XML is a protocol that can

achieve great flexibility and would be an easy protocol to maintain for

communication when new, added information needs to be exchanged. An

XML interface allows an interface to become more easily backward

compatible.

Given that hardware and bandwidth have made great progress in the

past few decades, and that the conceptual view of the information that may

need to be exchanged between poker players is somewhat minimal, an XML

13

based application protocol would not add any significant performance

impact on the project to be developed.

2.2. Visual

It's important to critique and review current online poker applications

because they will give a good base point as to what this project should try to

encompass and build on in a visual and utility sense. Not only does it help

provide a good idea on what a GUI could or should look like, they can also be

used to help gather requirements of the system and GUI. Many of these

online poker applications have been around for at least 5-6 years and are

considered very popular and the places to play poker, both for free and for

real money. Not all of the major poker sites were reviewed, though a handful

of the major ones were.

2.2.1. pokerstars.com

pokerstars.com launched in late 2001, and they are deemed, by

themselves, as the world's largest poker site.

"We are the world's largest poker site, with millions of members

worldwide. On December 30 2007, we entered the Guinness

14

World Record books for having the most players simultaneously

playing online at PokerStars - 151, 758! 11

This record has most likely been broken since then, possibly by the Texas

Hold' em game application that can be played on Face book, created by a

company called zynga. The review of that software is coming below.

The visual table layout of this site is the most appealing of all the sites

reviewed. It looks very clean and non-cluttered. The colors blend in well with

the table and seats. It also allows the option to not show avatars. Showing

avatars can be arguably distracting and misleading to most other players.

This site offers a variety of popular games, including "5-card draw". Figure 1

shows the default layout of their poker tables. Each table can hold up to nine

players. The spots reserved for each player is small, which contributes to the

layout being open and no cluttered. Other players' cards are displayed

smaller than all cards whose values can be seen. The option to chat to other

players, as well as messages from the table can be viewed in the lower left

portion of the window. Previous history of the table can be viewed through

the links in the upper left corner of the window. The history that is viewable

15

goes only as far back as how long the current player has been viewing the

table.

•· Game =◄7':i90220279. ~el-man""' po1 /65)
Dealer lolodens 11:

1
, your h.Jm You h.eve 8 seconds 10 acl

Deeter loyve 11's yoi.; turn. You have 8 seconcfa lo act
Deater lobdents" lt'-~yourturn 't'oul"iave8s~toact

eoler The Crlhcs 11'.i you h.m You ha~ 8 seccnds to act
Deale< G= =47'.i90266099 toy,e'""' pol 17)

Figure 1. A default partypoker.com table; http://www.partypoker.com.

There are little white check box options in bottom middle of the GUI in

figure 2, which are called action intent options. Those white check boxes

allow the player to specify an action even when it is not their turn to act. The

action that is checked will be the action submitted automatically when it is

the player's turn to act. This allows the player to check an action they know

they will be performing in the future when it is their turn, and allow them to

16

focus their attention elsewhere and not have to stare and wait for it to be

their turn. This is noticeably useful when playing at more than one table or

carrying on a conversation with other players and also helps the game

execute faster.

Oealec p,danppa_ha~lwopM F...-e=¥ldThree1 ..
•* G..., a4 7590llJ0679 ,.danopa --. ,de po1 l5081 w,11, '"" oa1,
F'"rvei and Thees

Dealer Manaehtu has a tun hoose. Oueens 11.11 ol Thfees
Deolei Gome a4759U600679 Manael~lu wrn moon pol (1 ,369) w11h a 1\.1 I
house Oueen: hJI of Hvee-s

Figure 2. View of action intent options; http://www.partypoker.com.

2.2.2. pokerroom.com

pokerroom.com has been around since 1999. No download is required

to start playing there, as long as the browser and operating system support

java applets. This site is also supported on a smart mobile phone for players

17

on the go, or those who don't mind playing on a phone when there is no

access to a normal desktop/laptop with connection to the Internet. This site

allows players to play with play money or real money, and offers the most

popular poker game types, which includes Texas Hold'em.

The GUI of this site gives a bird's eye view of a virtual poker table,

which the player is part of once they join a table and sit down. The GUI also

assigns each player an avatar, though each avatar is already pre-assigned to a

certain seat number. So if a player does not like their avatar, they can leave

that table and re-join later when no other play is currently using the avatar

they would like to appear to be to the other players. The cards are easy to

read, chat is available on the lower right portion of the GUI, and there are

many options a typical poker player would have interest in.

2.2.3. partypoker.com

The oldest of the major poker sites on the Internet, partypoker.com

has been around since 1997, right when Texas Hold'em and Internet usage

started to boom. This site allows a player to play with real or fake money.

Gambling online with real money is still illegal in most states, though the

premise of this paper is focusing on playing the actual game. The cards are

18

easy to read on this site, and this site also has many similarities to

pokerroom.com, such as check boxes for future action intent, chat, and a

bird's eye view of the table. This site allows the player to choose an avatar,

rather than an assigned avatar for a seat. Not only does this site offer poker,

but it also offers other casino games such as slots, roulette, bingo, and

backgammon.

One of the things that partypoker.com tries to distinguish themselves

with, is game fairness. According to their site:

"Providing a safe and secure gaming environment to our players is vital

for the success of PartyGaming. We employ algorithms and practices

to ensure total fairness to every player. Our random number

generation (RNG) system operates at a high level of encryption and

randomness to ensure fairness without exception.

To that end, we develop and employ state-of-the-art systems that

ensure and maintain a collusion-free environment."

2.2.4. fulltiltpoker.com

According to Wikipedia.org, fulltiltpoker.com launched in June 2004

with the involvement of some of the current big name poker players. It is

19

ranked as the second largest online poker site, behind pokerstars.com. This

site has a lot of different poker games to play, such as Texas Hold'em, Omaha

H/L, Stud H/L, Stud Hi, and Razz [15), which is increasing in popularity. Even

with the large selection of games, 5 card draw is not offered.

The table layout is still similar to the other poker sites reviewed. One

unique thing about this site is that a player can change the background image

and the table theme. The beach look, which is an available background

theme, is more appealing than the traditional look of a dark room which

most sites show. This site, as well as most all major poker sites, has an option

to show a player the percentages of the sequences that they are still in the

hand, and how often they have won during those sequences. This is a very

nice feature, it helps a player find out if they are betting too much, too little,

or just plain staying in the hand too long when a player should not be.

Normally most experienced players keep pace and track of their opponents

betting behavior and only stay in the hand when they feel they have a high

ranking hand, or a chance to obtain a high ranking hand when more cards are

dealt.

2.2.5. cakepoker.com

20

cakepoker.com started in 2004. This is another visually appealing site

and is still very similar to the rest in terms of features and functionality. In

general, all of the poker sites are very similar to each other and they are all

lacking major features that would distinguish them from the others. This site

does allow players to change their screen names once every 7 days. The

advantage of allowing this is that ID tracking software becomes less

worthwhile to use. ID tracking software can be used by players to track

players they have played against over time. The software can report trends

for those players, giving the player: who uses that software an advantage.

2.2.6. Texas Hold'em Poker (zynga - Facebook)

Texas Hold1em Poker, by zynga, is currently the 2nd most popular game

on Facebook, which an average of over 28 million monthly users. This could

quite possibly be the most used poker software on the planet. zynga, the

company which created this software, also has other social games available

on Facebook which help advertise this game. This game is also available on

other social networking sites, such as MySpace and Twitter.

The only game that can be played on this site, through Facebook, is

Texas Hold1em; this is because the application is specific. The table layout is

21

similar to the other sites, though the avatars are the player's actual Facebook

profile photo, so in most cases a Facebook user can put a face on a player

and know who they are playing against.

2.2.7. Site Comparison

Table 1 contains a comparison of the most sought after attributes, for

this paper's purposes, and their comparison between the sites reviewed

above.

Site "Tl n "'0 -t 0 0 ::::0 U1
""'l C ""'l tD A> tD UI :c·)C 3 3 n n N n
tD A> A> A> A> A> A> N A>

0 UI ':T ':T
""'l ""'l ""'l
C. C. C. 3 tD :::c A> A>
V) V) C

~ -t 2. :::c
A> C C ""'l

A> C. ..:::.:. A>

3 2: ... r- C. C. ~ tD tD 0 tD UI 3 ~ UI

Cake Poker X X X X

PartyPoker.com X X X X X X

PokerStars.com X X X X X X X X

PokerRoom.com X X X X X

FullTiltPoker X X X X X X X

zynga poker X X

Table 1. Poker Site Comparisons.

22

2.3. Other

This section contains some other areas of research that cover current

and future areas that the framework can cover.

2.3.1. Hiding and Revealing in Online Poker Games

As mentioned in the introduction, poker is a type of game where a

player must make decisions with lack of information. What this means is that

a player doesn't know what all the cards are in play, and therefore must

deduce if he or she has a better hand than an opponent. This is normally

done by taking into consideration what is known, as well as the opponents'

behavior and reputation.

"Hiding and Revealing in Online Poker Games" [O], discusses the

problems with online poker applications, where players are presented to

other players via a handle or avatar. An online player is much more limited

with information, usually only to the cards he or she can see, which is their

own as well as community cards, if the game supports community cards. A

player is unable to physically see the other players, to observe any distress or

excitement over their own cards.

23

The authors also argue that the use of avatars can be more harmful

than good. This is because a player usually has the option to change their

avatar, and a human poker instinct is to associate betting actions and

behavior to what a player looks like. For example, if an opponent player's

avatar was a young, beautiful lady in a swimsuit, a male player may be more

apt to not take their betting behavior seriously, as compared to an opponent

player's avatar being an older, distinguished man dressed in a suit. According

to the authors, "This is most problematic where stereotypes are

exaggerated."

The authors suggest that if human-like representations are used, such

fake human avatars, they "should not convey potentially meaningful cues

that are not instigated by user action. Instead, a human-like image should

have a range of outputs that match input information."

There is agreement with the author's argument that the use of human

avatars may interfere with an online player's ability to understand another

player's betting behavior. There are some other clues that may lead an

online player to better understand their opponent, and that is the chat

interface that is available in all popular online poker software packages. By

24

looking at what that person may say, and the grammar associated with it, a

player may get a better feel for that person's intelligence, thoughts, and

behavior. There is agreement with the author's, because players do usually

make judgments about other people based on the way they talk or look,

even the way they virtually look with an avatar.

2.3.2. Dealing Cards in Poker Games

"Dealing Cards in Poker Games" [5], proposes a new protocol for

shuffling and dealing cards in a game of poker. The author argues that it is

less efficient to shuffle the deck of cards up front, implying a then

predetermined order of dealing, when there is a small number of players in

the game or if the game itself only requires a subset of the 52 cards in the

deck to be dealt. The proposed protocol for shuffling and dealing, which the

author mentions is ideally suited for resource-constrained devices such as

PDAs, is letting the players define the card dealt through random number

generation and an encryption scheme to verify non-collusion.

The protocol generates and deals a card via a player generating a

random number between 1 and 52 and then submitting that number after

encryption to all other players in the group. The group the author mentions

25

is analogous to players at a poker table who are playing. If no other player

has generated that same number, and no other player has that same number

in their current hand, the card is accepted and the card is dealt to their hand

through their own local client processing. If there is a collision, each player in

the group will have to retry the same deal round again by selecting a random

number and submitting it to the group. This removes the need for shuffling

cards to a predetermined, yet unknown order, because when a new dealing

round begins, it's just a matter of choosing a random number to see if it is

already chosen or in existence in the current hand. According to the author,

the initial setup of this proposed protocol is 85% more efficient than upfront

shuffling, and 66% more efficient overall with both shuffling and dealing in a

Texas Hold'em game with 5 players. The comparison was to existing generic

shuffle and dealing protocols.

There is agreement with the author that this type of implementation

would be more efficient when there are a low number of players, and the

poker game itself requires a small amount of dealing from the deck. The

author didn't explicitly mention the overall architecture of the game

software, but the thought is that this paper implied that it was in a peer-to-

26

peer setting, since each player's client would be submitting a random

number for a card to be dealt, where all other client's would have to verify

that the card to be dealt to that player is not in existence or requested

already. The problem with the protocol is that as the number of players

grows, or the type of game changes to something that requires more cards

overall, such as "7 card stud", the possibility for dealing collisions will occur,

thus decreasing the efficiency of the proposed protocol and actually delaying

the dealing of cards much more. Preference was taken for a controller

component to manage the dealing of cards, and in a peer-to-peer setting, it

could just be a matter of one of the client's hosting the game and controlling

the dealing to other players as well as locally. Though with a controller

component, it may increase the possibility for collusion from the client

hosting the controller component, and some type of 3rd party service may

need to be implemented to keep client honesty.

2.4. Security

Security is an important research topic, because in any poker game, a

player absolutely does not want any other player to know what cards they

are holding. It is important that a poker application implement a security

27

scheme to reduce any possible chance for messages to be compromised by a

3rd party, which may or may not be participating in the current poker game.

2.4.1. A Secure Mental Poker Protocol over the Internet

"A Secure Mental Poker Protocol over the Internet" [4], is focused on

eliminating any potential collusion by any player in an online poker game.

The authors introduce previous encryption and decryption algorithms, and

their drawbacks and opportunities for problems. The premise of the

algorithms for encryption and decryptions are that every player (in a client

application context) is involved in the dealing and verification process

throughout the game. All players (clients) encrypt and decrypt an entire deck

based on a large agreed prime number for encryption, though have their

secret keys for decrypting. One player deals, and at the end of the hand, they

exchange their private keys to ensure that the cards passed around are

indeed the correct cards that were in play.

Another type of older algorithm the authors discussed included a "card

salesman", who is basically an independent chooser of a crypto scheme and

communicates to each player on how they are to encrypt. At the end of the

hand, all permutations communicated to each player are checked for

28

fairness. The authors point out that in this type of crypto system, it assumes

that the "card salesman" can be trusted, which is not a good assumption to

make. Also, cheating can only be detected at the end of the game, and not

during the course of the hand.

The authors suggest their own "mental" poker protocol, which is

responsible for shuffling and dealing cards one by one. An introductorily

summary of this scheme is as follows, from the paper:

1. Alice and Bob agree to choose the same 52 tokens for 52 cards, that

are suitable encoding set {l, ... , 52}.

2. Alice and Bob agree to choose the same prime number p, for use in

their respective crypto schemes.

3. Alice chooses her encryption and decryption key pairs (one public, one

private).

4. Bob chooses his encryption and decryption key pairs (one public, one

private).

5. [Shuffling] Alice and Bob each choose a secret random number,

encrypt each card in a random order, and send each other the

resulting 52 encrypted cards.

29

6. [Shuffling] Alice and Bob each encrypt the encrypted cards sent by the

other, and then sends them all back. On receipt, they both check the

double encrypted cards with a different encryption order, if the two

sets are not equal, the protocol is stopped. Otherwise, the process

continues.

7. [Dealing] When a player needs a card, they draw card "m", where "m"

is the card order after the double encryptions. That player sends "m"

to the other players after drawing "m" from his or her own set. All

other players delete "m" from their set.

When the hand is over, both Alice and Bob reveal their secret random

number, where each can check whether or not either had been cheating.

The authors conclude that their protocol is secure, efficient, and suitable

for any number of players. Their protocol alleviates the need for a "card

salesman."

2.4.2. Keeping Bots out of Online Games

"Keeping Bots out of Online Games" [3], is a publication regarding

software bots. A bot is software that controls an object, or set of objects, in a

software application. In the gaming sense, a bot is referred to as a computer

30

robot that is meant to act and sometimes meant to be perceived as a human.

Some Bots are considered good, though some Bots are very destructive to a

human's enjoyment of a game. In online MMORPGs, such as Ultima Online,

bots have been credited with massively destroying economies by their ability

to gather materials generate income at an autonomous rate much higher

than humans, over a period of time. Bots are an attractive alternative for

repetitious games, to gain a competitive advantage over others. The authors

quote, "In online card rooms, bots can be used to play games entirely based

on their statistical properties, thereby earning money against imperfect

human players."

The authors state three requirements to satisfy in distinguishing bots.

These requirements for games are to be cost effectiveness, immune to

cheating, and preserving human players' enjoyment of a game. The authors

give two approaches to eliminating bots. The first approach is the use of

software CAPTCHAs, which are Completely Automated Public Turing Test to

Tell Computers and Humans Apart. The second approach is the use of

hardware CAPTCHAs.

31

Software CAPTCHAs exist and are extensively used in most online

services, games, and other applications to eliminate bots, requiring the user

to input a string of characters in a muddled image is common software

CAPTCHAs. Most intelligent image reading software applications still cannot

accurately decode the characters from a muddled image. The authors argue

that introducing software CAPTCHAs into online games could become

somewhat disruptive, as it would interfere with the flow of the game if

others had to wait until the CAPTCHA test was passed or failed.

Hardware CHAPTCHAs would require physical user input, such as the

movement of a joystick, or pressing a key on a keyboard. The authors note

that people would be less apt to participate in an online game that required

them to update to a new piece of hardware with CHAPTCHA capabilities, in

order to play the game. The authors' solution would be to create a new piece

of hardware, such as a small keypad for human interaction called a

CHAPTCHA token. This new, inexpensive piece of hardware would be

required for purchase, but would eliminate the user having to upgrade their

existing input devices. The hardware would consist of a random set of

32

characters the user would be required to input on that hardware, in order to

validate that a human is indeed participating in the game.

2.4.3. Cheat-Proof Playout for Centralized and Peer-to-Peer Gaming

In "Cheat-Proof Playout for Centralized and Peer-to-Peer Gaming" [6],

the authors didn't focus on poker, though in a general sense it gives

background on the different approaches taken to reduce online cheating in

both client/server and peer-to-peer software architectures. The authors

mention that security and cheat prevention in online games today is highly

neglected, mostly because of a performance decrease in the techniques and

logic required to effectively prevent cheating, especially for real-time games

that require minimal latency for the user experience (e.g. first person

shooters, etc.).

Though not relating to poker, for games that require player

movement, a technique called "dead reckoning" is used by other clients to

guess the location of another client in the game. Average latency and

direction are used to guess positioning. An easy way to cheat and invalidate

"dead reckoning" is to block a client from announcing its moves for a period

of time or post past move announcements to make it appear as if the

33

packets were delayed in the network. This type of issue exists in client/server

architectures as well as peer-to-peer. The authors approach to correcting this

problem was a simple protocol called Lockstep, and an extension to that

called asynchronous synchronization, which improves performance and

proves that cheating is not possible.

Lockstep is basically a "stop and wait" protocol, where the

announcement (called a frame) of the next player move is given and then

only that information is used to make the next turn decision on a client, for

other clients. Only one announcement can exist in a given window of time.

This means that there is no pattern and thus it must wait until more

information is received to update other client's locations, etc, and that

multiple announcements will be ignored until a time window has expired

that indicates a new announcement can be received from another client.

Each client is on the same server controlled time clock for processing

messages, thus no client is allowed to process announcements faster or

slower. Received announcements are buffered. In a simulation with 75

players, 95% of the frames were stalled at least 10 milliseconds. The authors

did not mention the game, the average network latency, or the time window

34

used. The asynchronous synchronization allows each client maintain their

own time clock, thus each client does not need to hear from other clients in

order to move their player, but still must adhere to the Lockstep protocol

when interaction with other clients is required. The interaction can be

determined by distance or other factors, as indicated by the game engine.

With asynchronous synchronization on top of Lockstep, only 40% of the

frames were stalled at least 10 milliseconds, compared to 95% with just

Lockstep in place. Performance considerations still need to be taken into

account, since the proposed protocols can increase game play latency when

a player is interacting with other players, and the game could appear

"choppy11 depending on move delays.

Though [6) does not specifically relate to a poker game engine, it does

bring into consideration some of the types of protocols that could be put into

place to prevent online cheating in games. In poker, players do not move, but

instead submit actions that must be validated based on their current state in

the poker hand. All other players who are currently in the hand do not

necessarily need to see the action of another player unless it is their turn to

act, since they need information to act upon, such as the amount of chips to

35

call or how many other players are still participating in the current hand. In

poker, a Lockstep type of protocol is already in place for live games, because

a player whose turn it is to act must act, prior to subsequent players acting.

36

CHAPTER 3: RESEARCH APPROACH

After initial research, it was concluded that there is no software that is

available, whether purchasable or available for extension, that to solve the

problems and meet the objectives mentioned previously. The solution was to

build the software that would meet the objectives of this paper.

The solution of developing a software application is feasible to

imagine, given the state of current technology and the Internet

infrastructure as the communication medium for the solution. The solution

envisioned would be a simple client/server application. The clients would be

the users (players), and the server would be the table (game controller).

Another type of communication and control architecture, such as peer-to­

peer, does not appear to be as good as solution in replicating a poker table

environment. This is because players can join and drop at any time, and

there always needs to be some central control mechanism to control the

poker game sequences and determine which player is next to act.

The next step taken, after determining feasibility, was to determine

the user requirements. The process model that was followed was

prototyping for the GUI and a simple waterfall for the poker logic (since

37

poker rules are already defined and known). The GUI required prototyping,

with me as well as others as evaluators on whether or not the GUI met the

needs to create the right user experience. Some specific requirements, which

are mentioned below, were found throughout the process.

3.1. Solution Requirements

The first iteration of determining the requirements was done solely

through this author's own knowledge of poker. This knowledge also included

existing software packages, which were evaluated and explained in the

literature review chapter above. Given the popularity of some of those

packages, it seemed that gathering GUI and game mechanic requirements

from those packages was very beneficial.

The requirements were broken out into specific groups, each a more

distinct part of the overall solution, to assist in assuring that all desired

requirements were found.

3.1.1. General Requirements

The following are the general requirements:

38

- Windows XP /Vista/ 7 - The solution must be able to execute on the

latest Windows platforms. Windows OS still dominates the personal

computer market.

o The solution was to be developed in C#, which requires the .NET

Framework. The full .NET Framework is only supported on a

Windows OS, though a Silverlight client does not require a

Windows OS. A Silverlight client is not planned for the initial

version.

- TCP/IP support-the solution must be able to communicate through

an infrastructure or medium that supports TCP/IP. The main essence

of this requirement is that the solution must be able to work over the

Internet.

- The software must have the ability to interpret and allow known or

custom poker games to be played. The software does not need to have

any built-in games to play. This general requirement is in place to allow

the flexibility into the solution to play custom poker games.

- GUI - The solution must have a graphical user interface for a more

enhanced user experience. It is understood that the first release of this

39

solution may not have a comparable GUI to software packages that

already exist, such as partypoker.com, cakepoker.com, etc. Future

versions of the game may have an improved interface.

3.1.2. GUI Requirements

These are general GUI requirements, the actual look and feel of all

GUls was determined through prototyping and from the reviewed poker

sites.

3.1.2.1. Critiqued Poker Sites

The poker sites that were reviewed and critiqued were used as a

foundation for how the initial client GUI should look. All of the critiqued sites,

[O], [8], [O], [O], [O], and [12] have their poker table encompassing most of

the client space. Each site also has the players visually surrounding the table,

which is ideal. Each site also has their chat GUI on the bottom of the client,

and the action area on the bottom as well. The action area is the place where

the player is able to specify their action when it is their turn to act. Because

of their respected popularity, the client GUI created shares the same type of

visual locations for the table, player, chat, and action functionality.

40

-- -----------------

3.1.2.2. Client

- All game play must be able to occur and be shown through the GUI

o This includes allowing the user to specify their poker actions and

betting amounts through the GUI

- The GUI must allow a user to communicate to other players who are

also connected to the same server.

- Provide the player the ability to specify the IP address and port of the

poker server to connect to.

Allowing the users to upload an avatar that other players can see is not

planned. A solid argument was provided in [O], which is in agreement,

that avatars can be distracting and mislead other players. Though it is

assumed that the initial uses of this application will be to provide social

groups with a private mechanism to play over a network connection,

public use cannot be discounted.

3.1.2.3. Server

- Provide the user the ability to host a poker game. The host can be

referred to as the poker server in subsequent requirements.

41

- Provide the user, who is hosting a poker game, to select which poker

game to play out of a list of created poker games. Once a game is

chosen, it will take affect when the next hand is initiated.

- Provide the user, who is hosting a poker game, to specify the starting

amount of chips per player, and add an ability to give a player a

specific amount of chips at any time.

o This feature is useful so a player does not have to reconnect or

the host wants to configure player chip counts on a player by

player basis.

- Provide the user, who is hosting a poker game, to specify the TCP/IP

port that the application will use to listen for incoming client

connection requests.

3.1.3. Game Creation Requirements

- The person who creates the game (game creator), must have the

ability to specify the name of the game being created

- The game creator must have the ability to specify the minimum and

maximum number of players the game can support

42

- The game creator must have the ability to specify the number Decks,

of cards, that the game uses

- The game creator must have the ability to specify if an ante is used,

and if an ante is used, the initial amount of that ante, and additional

factors that can change the ante over time, and an expression that can

be applied to change the amount of ante over time. Some games refer

to an ante as "blinds", where the ante must be called by all other

players on a subsequent betting round. An ability to specify an ante as

a "called" or "non-called" ante must exist. Additional factors that can

increase the ante over time include:

a. Number of Deals

b. Time

- The game creator must have the ability to specify the minimum

betting amount, which is enforced during a betting round. The same

type of additional factors, as were used in the ante, can also be applied

to the minimum bet.

- The game creator must have the ability to specify the maximum

betting amount, which is enforced during a betting round. The same

43

type of additional factors, as were used in the ante and minimum bet

requirements, can also be applied to the maximum bet.

- The game creator must have the ability to specify the predetermined

order of sequences that occur during the game. The following

sequences must be supported:

a. Ante

b. Dealing of cards

c. Betting

d. Discarding

e. Changing card visibility

- The game creator must have the ability to specify which players a

sequence applies to (e.g. dealing a card to only one player during a

sequence).

3.1.4. Game Mechanics Requirements

The requirements for the game mechanics of the software were clear,

given that this author considers himself to be an expert in the poker domain,

having played many variations of poker for many years. The game mechanic

requirements feed off of the game creation requirements as well.

44

The common requirements in this area include (for complication purposes,

all of the game mechanic requirements are not included):

- If a betting round sequence applies to all players, the game controller

must always start with the person to the left of the dealer who has not

yet called the last bet amount.

a. NOTE: In most all cases this is the person to the immediate left

of the dealer. However, in some games that incorporate blinds

(which is a form of ante, singled out to specific players), those

players who already put of blinds have already bet for the

upcoming round, and thus the players to their left are the first

to act.

- When a player is to act during a betting round sequence, and there is

an amount to call, and the player has at least that amount in chips, the

player must at least call, or their hand must be folded.

- When a player is to act during a betting round sequence, and there is

an amount to call and the player does not have that amount in chips,

yet the player has chips, the player must put all their chips into the

pot, or their hand must be folded.

45

- When a player is to act during a betting round sequence, and there is

an amount to call, and the player does not have any chips, the player

will be skipped.

- A player can only win an amount proportional to what they had bet.

This means that the pot of chips can be split in more than one way.

3.2. Architecture and Design

A game of poker is an extremely controlled environment. Only one

player is allowed to act at one time, and in a predetermined order. All other

players who are not allowed to act can only watch and wait until it is their

turn to act. The only exception to that is that any player may "stand up" and

leave the table at any time, though he or she forfeits any chips that they had

currently have in the pot. When a player acts, the action must be validated to

ensure that the player did not act incorrectly, given the rules of the poker

game being played. Once the action of the player has been validated and

approved by the rules of the game, the next predetermined player is up next

to make an action.

Given that poker requires this type of controlled environment where

only one player is allowed to make an action that must also be validated, the

46

architecture and design of the software being developed requires a

controller component. This controller component is responsible for running

the game being played, according to the game's sequences. Other

responsibilities include understanding the game rules, informing the players

who is the person that must make an action, and responsible for validating

any action that is made by every player. Figure 3 shows a high level

conceptual image of the main components {Client, Controller}.

Controller

Client WAN/ LAN Client

Client

Figure 3. High Level Components.

Since the controller component controls the game, it makes sense for

the clients to register with the controller in order to play, which makes the

controller, in essence, the server in this proposed client/server architecture.

47

3.2.1. Poker Game Library

The poker game library is a central repository for all poker related

objects which are used by both the clients and the server (game controller)

applications. The objects, in most cases, were built abstractly enough so that

future enhancements to the application, or the library itself, could be made

without compromising much of the architecture and design that was set up.

Taking an object oriented approach, which is an easy way to model

pieces of a system, the following types of objects are required:

1. Table - this will be the virtual equivalent to the table in which poker is

played on. The significance in the physical poker world is that the table

limits the amount of players that can play in a poker game, regardless

if the poker game being played can support more. This virtual table

will only allow as much as the client GUI can support visually. Figure 4

shows the object structure for the table.

2. Game -The game object represents a modeled poker game, which

resides in a created XML file. A game consists of some specified

attributes, such as min and max number of players, card decks, ante,

min bet, max bet, and sequences. Figure 5 shows the object structure

48

for the game, change rules, and sequences. Each unique sequence

class contains the logic for that sequence, which is constructed from

the game definition file.

«interface» PotManag er

ITable -Pots : object

rl) +Join() : boo/ +AddAnte()
+Leave() +Add Round()
+ID() : string +Process Winn

Table
+Seats() : object +Reset()

~ +ID: string «uses»

ings()

+Seats : object
r-------

+Join() : bool I
I

+Leave() «interface»

6 IPokerTable

--[) +Dea/erButtonSeat() : int
+Dea/Count() : int
+MoveButton() : void
+NextCanActP/ayerSeat() : int

PokerTable +FirstDea/Date Time() : object
+ActiveSeat() : int
+Pot() : PotManager
+Deck() : /Deck
+CommunityCards() : Cards : CollectionBase
+HighRoundBet() : int
+ActiveP/ayers() : int

Figure 4. Poker Table Object Structure.

3. The Game Sequences - These are the current possible sequences that

a user can put into each new game created.

a. Ante - The ante is a bet that is made, normally at the beginning

of a hand, which is used to put some stakes into the pot. There

are two types of Ante, "call", or "no call". A "call" ante means

49

that a player who did not have to ante must put that amount of

money into the pot during the next "Bet" round, or else they

cannot continue in the hand. A "no call" ante does not need to

be matched by any player who was not required to make an

ante.

b. Bet - This is a betting sequence will prompt each player still

active in the hand to act. A bet can be directed at a specific

player, rather than all active players remaining in the hand.

c. Dea/Card - This sequence will deal a card to a player, or all

players on the table.

d. Discard - The discard sequence allows players to remove certain

types of cards from their hand, and also the ability to add new

cards from the deck to replace the cards that were just

discarded.

e. ChangeCardType - This sequence allows the poker server to

change properties of a card in a player, or all players' hands. For

example, in some custom poker games, all players' cards are

so

dealt face down and flipped up one at a time between betting

rounds.

«interface»
Game !Sequence

+Nam
+Min
+Max
+Car
+Ante
+Min
+Max

e: string +Process/in oPokerTable: /PokerTable, in oMessageQueue: /GameMessageQueue.

Players : int +GetSequence Type() : string

Players : int +FromXml(in oNode : object)

dDecks: int +ToXml(): string

: ChangeRules +SeatsLeftOfDea/er() · int

Bet : ChangeRules 6
Bet : ChangeRules

«uses»
«uses» I I

--------- ~ I ------------------------' I
I
I
I
I

,!/

Sequence

-m_oTypes: object

+CreateSequence(in oNode object) : Sequence

,,/ ~ D,. ~
ChangeRules

+ TimelnMinutes : int
+NumberOf□eals : int
+Factor : int
+Operator : string
+lnitialValue: int

Ante Wait Bet Discard
+NoCall : bool +Seconds int

+MaxDiscard : int
+DiscardCardType: CardType
+DiscardCardVisibilityType : CardVisibility

i
+RedealCardType : CardType
+RedealCardVisibility Type : CardVisibility

ChangeCardType +RetumDiscardsToDeck: bool

+CardType: CardType
+CardVisibility Type : CardVisibility

DealCard

+CardType : CardType
+CardVisibilityType : CardVisibility

Figure 5. Game Object Structure.

Queue)

f. Wait - This sequence puts a pause in from moving on to the

subsequent sequence. This is useful in giving the players ample

51

time to understand what is going on and allowing them to see

their hands and make decisions.

4. Player - in order for a game to be played, there must be participation.

Only human player support is planned, though future versions could

include artificial intelligence for non-human players. Figure 6 shows

the object structure for a player.

«interface»

Player
!Player

+ID() : string
+ID: string rl> +Name() : string
+Name : string +Chips() : int
+Chips: int £'-,,.
+LeftTable : bool

I

D,.
«interface»

IPokerPlayer
+Reset()
+CanAct(). boo/
+LastAction() : HandAction

f
+LastBetSequenceAction() : HandAction
+LeftTable() : boo/

PokerPlayer +Sittingln() : boo/
+Hand() : f PokerHand
+lnCurrentHand() : boo/
+AutoShowCards() : boo/
+AutoMuck() : boo/
+AutoCheck() : boo/

' /

«enumeration»
HandAction

+NONE= 0
+ANTE= 1
+FOLD= 2
+CHECK= 3
+BET= 4
+CALL= 5
+RAISE= 6
+LAYDOWN = 7

Figure 6. Player Object Structure.

5. Deck of Card(s) - Poker requires a collection of cards to be played.

Most poker games require a standard deck of cards, which is

52

composed of 52 individual cards {13 values in 4 suits}. Figure 7 shows

the object structure for a deck.

Deck «interface»
-CardslnDeck: object !Deck
-DealtCards : object {) +Shuffle()
-RemainingCards : object +Dea/Card() : object
-ShuffleCount : int +Remove From Deck()
-RandomGenerator : object +AddToDeck()

Figure 7. Deck Object Structure.

When it came to shuffling and dealing cards, the implementation

chosen differed from shuffling up front which was the proposed

protocol in [5,] where each client submitted a random number for

their card. The chosen implementation involves resetting the deck

after each hand has completed, populating CardslnDeck above back to

a full deck. CardslnDeck is a 2-dimensional array with suits and

numbers as a dimension. A value of 1 indicates the card exists in the

deck, 0 means the card no longer exists in the deck. The Shuffle()

method resets the indices back to 1. On DealCard(), a random number

is generated {0 ... 4} for suit, and another {0 ... 13} for number. If a value

of 1 exists in that 2-dimensional indice, the card is dealt. If not,

random numbers are regenerated until a card is dealt. The algorithm

53

becomes less efficient as more cards are dealt, since more and more

indices will have a value of 0, though with current computational

power, a card is usually always dealt in less than a millisecond.

6. Card - an individual card, which has a distinct suit {Spade, Heart, Club,

Diamond}, and a distinct value {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}.

Figure 8 shows the object structure for a card.

Cards : CollectlonBase

+SuitCounts : object
+NumberCounts : object «uses»
+Add()
+RemoveAt()
+this(]()
+Sort()
+HighestNumberCount() : int Card
+HighestSuitCount() : int +Suit: CardSuit

+Number : CardNumber

«uses» +Type: CardType
+Visibility : CardVisibilily

' ,
«enumeration»

CardSult
+NONE= 0
+SPADE= 1

«uses»
I

I
I
I
I
I

'
«enumeration»
Card Number

+NONE= 0
+ACE= 1

«uses»
·---,

,

«enumeration»
CardType

+NONE= 0
+PLAYER= 1

«uses»

,

«enumeration»
CardVislblllty

+NONE= 0
+OWNER= 1

+HEART= 2 +DEUCE= 2 +COMMUNITY= 2 +OPPONENTS = 2
+CLUB= 3 +THREE= 3 +ALL= 3
+DIAMOND= 4 +FOUR= 4

+FIVE= 5
+SIX= 6
+SEVEN= 7
+EIGHT= 8
+NINE= 9
+TEN= 10
+JACK= 11
+QUEEN= 12
+KING= 13

Figure 8. Card Object Structure.

7. Hand -The hand is modeled as exactly what is expected that a player

would have in terms of cards, during the game, which is a collection of

54

cards to use. Figure 9 shows the object structure for a hand, which also

includes enumerations for the hand powers and the card powers for

each individual card number.

«interface»
I Hand Hand

+AddCard(Card)() KJ-i +Cards : object
+RemoveCard(index)() L----t:+--;A--;-dd-;-::C:;-a-rd-;-;;():---7

+GetCard(index)() : object +RemoveCard()
_};> +GetCard()

i ~
«interface»

IPokerHand

+ProcessHand()
+CompareHands() : int ~
+HighHandPower() : HandPower PokerHand
+HighBasePower() : int L-----r.-;-:--;--:-:-----;::~:----:-:----:1
+HighTiePower() _. int -HighHandCards : object
+LowPower() _. int -LowHandCards : object

#ProcessHighHand()
#ProcessLowHand()

«enumeration»
HighHandCardPower

+NONE= 0
+DEUCE= 1
+THREE= 2

+ ToString() : string

«uses»
~-------------------1

I
'-./

«enumeration»
Hand Power

+NONE= 0
+HIGH_CARD = 1
+PAIR= 2
+TWO_PAIR = 3
+ THREE_ OF _A_KIND = 4
+STRAIGHT = 5
+FLUSH= 6
+FULL_HOUSE = 7
+FOUR_OF _A_KIND = 8
+STRAIGHT FLUSH = 9

«enumeration»
LowHandCardPower

+NONE= 0
+ACE= 1
+DEUCE= 2

+FOUR= 4 «uses» +THREE= 4
+FIVE = 8 «uses» +FOUR= 8
+SIX= 16 +FIVE= 16
+SEVEN= 32 -------------' L---------)+SIX= 32
+EIGHT= 64 +SEVEN= 64
+NINE= 128 +EIGHT= 128
+TEN= 256 +NINE= 256
+JACK= 512 +TEN= 512
+QUEEN = 1024 +JACK= 1024
+KING= 2048 +QUEEN= 2048
+ACE= 4096 +KING= 4096

Figure 9. Poker Hand Object Structure.

8. Chips - not implemented. Instead, the player object has a "Chips"

integer value.

55

3.2.2. Controller

The controller needs the ability to interpret user created games. On

initialization, it will load all games that are made available in a default

directory. For simplicity, it will look for a "GameFiles" directory in the

application's current directory. Only .txt files will be searched for, and the

contents of the file must be valid XML in order for the controller to try and

understand it. The user, who started the controller instance, will be able to

specify specific options of the controller, through the GUI, such as:

1. The port, on which the controller will listen for incoming client

connections.

2. The amount of chips each client will be given once they successfully

connect to the controller.

3. An option to give a player a specific amount of chips at any time.

a. This feature allows players to keep track of their chips over a

period of time, and is useful for on-going games that cannot be

completed in one sitting.

4. The ability to change the game to be played. This will go into effect

after the current game, if any, is done being processed.

56

3.2.2.1. Controller Thread I Process Model

In order to maintain smooth operation of accepting and maintaining

client connections, as well as an on-going poker game, multiple processes

need to be running asynchronous to each other to alleviate any logic

execution blocking that could occur.

Figure 10, illustrates a high level process model of the controller,

which gives insight to the specific asynchronous processes that will be

running:

A Client Handler process
for receiving messages
will exist for each client
connected to the controller.

Client Handler

Figure 10. Controller Process Model.

Controller Start-Up

User Initiated "Run Controller"

Main UI Thread "Continues"

Message Processor Game Processor

Once the user initiates the controller to "start" the process of listening

for clients and running a game server, three new processes are created, in

57

addition to the process that runs the GUI, which is on the main thread of the

controller. The Client Listener process is a process that will continually listen

for new client connections, through the .NET thread pool, and will be notified

via a callback when a new connection is accepted. Every time a client

connection is accepted, a new object that represents the connection, a Client

Handler, will become available to the Message Processor for sending and

receiving messages.

The Client Handler is responsible for sending and receiving bytes over

a socket to the specific client that it was given to handle by the Client

Listener process. Any bytes to be sent to the client will be queued to the

Client Handler in the form of a message object by the Message Processor.

Any bytes received from the client will queued to the Message Processor in

the form of a message object. Similar to the Client Listener, each Client

Handler will use a callback to get notified when incoming bytes are available

to read from the socket, the callback is executed from the .NET thread pool.

The Message Processor is a process that will continually handle

messages from the Game Processor and from the Client Handler processes. A

Typical usage is the Game Processor needing to inform the players of game

58

information. A message will be queued from the Game Processor. The

Message Processor will grab the message and send it to the appropriate

Clients through the Client Handler objects. Responses or Requests from the

Client Handler objects are communicated back to the game through the

Message Processor, where the Message Processor will take the message and

decide if it needs to go to the Game Processor, or be distributed to all the

other clients through the Client Handlers (such as a chat message). Any

message processed by the Message Processor intended for the Game

Processor, which had requested a response, will be done through the actual

message object itself (such as a monitor/ wait/ pulse system).

The Game Processor runs the game logic. When it needs to

communicate to a client, or set of clients, it will construct a message and

notify the Message Processor via a message queue. For messages that

require a response, the Game Processor will wait and monitor the message

object that it had queued until that message has been given a response, or a

timeout had occurred. Once a response is received into the message object,

game logic processing will continue. Specifics of the message structure will

be explained in the below.

59

3.2.3. Controller GUI

It was thought that the GUI of the controller did not require any

complication or need to be extravagant in any way for the first release of this

application. All that was thought to be required was a simple interface to

adjust settings that pertain to allowing a client to connect, such as the

listening port for example. There actually is no particular reason for the

controller to have a GUI. It could work just as well as a console or service

application, where the settings are fed via a configuration file. Figure 11

shows the GUI that allows configuration of the controller component, as well

as allowing a host to run a poker server. The GUI has options for the server

port, an initial amount of buy-in chips given to each player, start and

shutdown of the server, selecting the game to play, as well as an option to

update a player's amount of chips at the table at any given time.

3.2.3.1. Controller Components

The controller was implemented as Windows application, using

Windows Forms in .NET. When the application starts, the PokerServer object

starts other threads as noted in the thread process model above. Each

connection accepted will be held in a ClientHandler object, which will track

60

the socket used and have access to the message queue, which is handled by

the RunMessageProcessor method on PokerServer. When a message needs

to be sent to a client, it will call Write on the ClientHandler, which will

serialize the request in to bytes and send it over the socket. When a message

is received on the socket for a client, it will de-serialize the message into a

GameMessage object (discussed later) and queue it to the message queue,

to be handled by the RunMessageProcessor method. When the

RunMessageProcessor method de-queues a message intended for the

RunGameProcessor method, it will set the response which events to the

RunGameProcessor that a response has been received that it had been

waiting for. Figure 12 illustrates the class diagrams of the controller.

Server Pert

Buy-ill'.

Game

Name

••

lseard 0raw

Figure 11. Poker Server GUI.

61

Shutdown

~ Reload ___ __,

1300
Update Cash I

ClientHandler

PokerServer : Form

-m_oClientHandlers : object «uses»

-m_oSocket : object
-m_oQueue: object
-m_slD : string

-RunClientListener() 1 ___________ _

-RunMessageProcessor()
) +Alive : bool

+ID: string
-RunGameProcessor() +Name : string

+Write()
+ShutDown()
-StartReiving()

Figure 12. Controller Components/ Classes.

3.2.4. Client

The client, just like the poker server, is split into separate functional

processes. The client requires processes that will receive and process

messages from the server, and at the same time, it must be able to process

user input which may or may not generate messages to be sent to the server.

3.2.4.1. Client Thread I Process Model

Figure 13 illustrates the client component's process model. When the

client starts and the user initiates a connection to a server, the main thread

of the application will create two new processes. One process, the

Connection Handler thread will handle receiving messages to and from the

server (sending is done through the thread wishing to send a message). Like

the Client Handler on the server controller component, the Connection

62

Handler implements a callback when bytes are received over the socket, and

the callback is invoked from the .NET thread pool. The Message Processor

thread will process all messages that are put onto a queue it watches. The

queue is either populated by the Connection Handler process or the Main UI

Thread. For example, when the server sends a message to the client,

requesting that the client should act on their hand, the Connection Handler

receives the message, de-serializes it into a GameMessage (discussed later),

and queues it the message queue that the Message Processor watches. The

Message Processor will grab it from the queue, process it and display to the

user that they should act (through the Main UI Thread). Once the user input

is received on the Main UI Thread, a message is created and put onto the

same queue. The Message Processor will grab that message and see that it is

intended for the server and will serialize the message into bytes and send the

message to the server (through the same socket that the Connection Handler

process is receiving messages on).

3.2.4.2. Client Components

There are not a lot of classes/ components in the client executable.

The PokerClient is the main form of the application. When the user wishes to

63

connect to a server, a PokerConnect form is created and displayed on top of

its parent, the PokerClient form. On a successful connection request to a

server, a ClientHandler object is created and held by the PokerClient form.

The ClientHandler object, which starts the Connection Handler process to

receive messages on, holds a reference to the socket that is used to send and

receive messages from the server. Figure 14 illustrates all of the client

components.

Client Start-Up

User Initiated "Connect"

Main UI Thread "Continues"

Connection Handler Message Processor

Figure 13. Client Process Model.

64

ClientHandler
-m_oSocket: object
-m_oQueue : object
-m_slD: string
+Alive : bool
+ID: siring
+Name : string

+Write()
+ShutDown()
-StartReiving()

I
I
I
I
I

«uses» :
I _____________ !

~

Figure 14. Client Components/ Classes.

3.2.5. Client GUI

PokerCllent : Fonn

-m_oConnectionHandler: object
-m sPlayerName : siring

-Connect()
-RunMessageProcessor()

«uses»

,/

PokerConnect:Fonn
-btnConnect. object
-btnCancel : object
+IPAddress : string
+Port : short
+PlayerName : string

-btnConnect_Click()
-btnCancel Click()

Creating the GUI was the part of the process that required

prototyping. A few different iterations were required in order to make the

interface ugood enough" to use, even though the understanding was that the

GUI would only serve as an initial interface and future releases would

enhance and make the GUI more desirable as an interface. The initial GUI

was modeled from the critiqued poker sites, through subsequent prototyping

was done in coordination with a small group of poker players whom this

author players poker with.

On initial startup of the client application executable, the player is

shown an empty table. The buttons in the lower left corner of the GUI, which

65

are used for poker actions, are grayed out, and there are no messages in the

lower right chat window. The table is empty, though placeholders can be

seen where the players will be shown around the table. The only options that

are available for the player to do are exit the application by clicking the "Exit

(F3)" option on the "File" menu or by clicking the "X" box in the upper right

corner on the application window, or connect to a server, which can be done

by clicking on the "File" menu in the upper left and going to the "Connect

(Fl)" option. See Figure 15 for the initial layout of the GUI when the

application executable is launched.

Figure 15. Initial GUI on Load.

66

After clicking on "Connect", the player is able to specify the IP Address

and Port of the server to connect to, as well as a name to use for their player.

The player is able to cancel the form, which will remove the "Connect" form

and the user will be back to the original GUI in Figure 15. Figure 16 shows the

form presented to the player, which allows them to connect to a server.

Figure 16. Connecting to a Server.

On successful connect, the server will send the player (client) the

current state of the table and game. A game may be in progress if other

players are currently connected to the server and sitting down to play. If the

player is the first to connect to the server, they will be presented with an

67

empty table, and empty seats as is shown in Figure 17. Once successfully

connected, the virtual dealer (server/ game controller) will send a message

to each connected client, indicating the following player has joined the table.

Figure 17. An Empty Table.

Once a game has started, which is the condition where at least two

players are "sitting in"; the cards will be dealt to all players who are "sitting

in". Figure 18, shows the view that each player will have when they are dealt

cards initially. The player who is next to act will also has their name panel

highlighted, as well as the possible actions that they can submit for their

turn.

68

Figure 18. Actions.

Some games require community cards, such as Texas Hold'em. The

figure below, Figure 19, shows an example view of two players playing Texas

Hold'em. The three community cards that have been dealt are known as the

"flop". Some games also allow the players to discard a portion of their cards

during a sequence. 5 card draw is a poker game that allows this. Figure 20,

shows a player selecting to discard. When the user is allowed to discard, they

can click on their cards. When clicking on those cards, they will become

highlighted. If the user wishes to not discard a highlighted card, they can click

it again to un-highlight it. Once they have chosen the cards to discard, they

69

can click the "Discard" action button to notify the server of the cards they are

discarding. The server will deal out new cards from the deck for the player.

Figure 19. Community Cards.

3.2.6. Client/ Server Layer 5 Communication Protocol

3.2.6.1. Authentication and Security

It is assumed that an implementation is not immediately required to

authenticate and attempt to keep unknown players or bots out of a private

game, as suggested in [3]. To intrude on a game, a user would have to know

the IP (Internet Protocol) address and port that the poker server is listening

70

on for incoming connections. From there, the user would need to either have

the correct client application or know the protocol explained in the

"Messaging" section. If the game's location, the IP address and port, was

distributed publicly in order to get a game going, a bot could be used to play

in the current implementation if the bot understands this application's

messaging protocol.

Figure 20. Discarding.

Future implementations or extensions could provide the host with an

ability to ban a user, via their IP address, or through a range of IP addresses.

Preventing bots is mostly done by requiring the user to enter text, usually

71

based on an image shown on a client. A future extension could randomly pop

up an image that would require them to enter a string of text matching that

image's text, in order to proceed with the game.

A security mechanism, such as encryption will also not be

implemented in the first version of this application. Numerous mechanisms

exist, such as suggested in [4] and [6], though the main reasoning for not

including it is that each client will only receive, through messaging, the cards

that are visible to them, no other cards are sent. However, it is still possible

that the other messages to the other clients can be intercepted and

interpreted to compromise the information of the game.

3.2.6.2. Messaging

This section explains the application level protocol that is used to

communicate between the clients and the server. All normal

communications, between the dealer and a player are included, and all other

messages that weren't added initially for poker game mechanical

requirements, were added during the development of the actual application

as they were needed. Figure 21 illustrates all of the messaging components

created during development.

72

«interface»
IGameMessage

+ID/in bytes : object) string
+From/) . string
+Toi): string

I «uses»
+Send() boo/ I

+Broadcast() boo/ I----------)

+GetMessageType(} · MessageTypes
+GetBytes()(} object

6

I
GameMessage

+r.ce . lf":!""-mokAo"'S""''"'.,.

6 7 'r I
Request

Response

+WaitForResponse() : GameMessage
+SetResponse()

6 6 _9, I.::,.
1 I
I SitDownResponse

«enumeration»
Message Types

+CHAT
+TABLE STATUS
+PLAYER_INFO
+SIT DOWN
+SIT =DOWN_RESPONSE
+STAND_UP
+SIT IN OUT
+ACTION
+ACTION_RESPONSE
+ALIVE
+ALIVE RESPONSE
+AUTO=MUCK
+LEAVE
+SHOW_CARDS
+SHOW_CARDS_RESPONSE
+SERVER_SHUTDOWN
+AUTO_CHECK
+DISCARD
+DISCARD RESPONSE

Informative

6

I I ShowCardsRequest SitDownRequest +Code
-

byte
+SeatNumber : byte Chat

PokerTableStatuslnfo

+PokerTable : IPokerTable
+ Message : string

+Game:Game - ---, Action Response
+Name : string

I Action Request +ShowCards : bool
Alive Request +Cash : decimal +Amount : double I

+AmountToCall : decimal Playerlnfo StandUp

+AutoMuck : bool +Name : string
+CanShowCards : bool +PlayerlD : string

Discard Response

+Discarded : object

Discard Request SitlnOut
Leave Table

MaxDiscards
CardType: CardType Alive Response
CardVisibility : CardVisibility

ServerShutdown

ShowCardsResponse

+ShowCards : bool
AutoMuck

Discard Request
«uses» «uses»

+DiscardMax : int AutoCheck

I ------ +DiscardCardType : CardType --------, +PlayerlD : string
I +DiscardCardVisibilityType : CardVisibility I

I I

I I

I I
I ,,

" «enumeration»
«enumeration»

CardType
CardVisibility

+NONE= 0
+NONE= 0 +OWNER= 1
+PLAYER= 1 +OPPONENTS = 2
+COMMUNITY = 2 +ALL= 3

Figure 21. Game Message Object Structure.

73

All application messages sent between the client and server will

adhere to the following format:

- Byte[0-1]: Length (unsigned 16 bit integer)

- Byte[2 ... 34]: Message ID (GUID)

- Byte[35]: Message Type

- Byte[36 ... Length-35]: Data (can be in any format- including XML)

Since all messages are represented as objects prior to serialization, and

are de-serialized to objects once received, another way to pass messages

between the server and clients would be to use .NET's "ISerilizable" interface

applied to the message objects. This would allow the objects to be serialized

into a stream (sending side), and then de-serialized back into an object from

a stream (receiving end). However, a major drawback of using .NET's

serialization of objects is that the amount of bytes required to represent the

objects is much larger than doing a custom serialization. This can become a

problem when a future extension allows hosting a poker server with

numerous tables, where each table is constantly sending and receiving

information. Also, most hosting centers have byte limits on bandwidth; in

case this research is taken further to introduce this into large scale hosting.

74

Some or all of the messages can use XML as the Data portion of the

message if there is actual data to pass. The data bytes, once converted to

UTF8 encoding, will be a valid XML document, which could have the

following signature:

<Message>

<ID/> - the ID of the message

<Type/> - integer value of the message type

<Data/> - each message request or response will have its own

specific data

</Message>

XML would be great for its flexibility and robustness. And it could be

anticipated that both the client and server applications will be backward and

forward compatible with each other. The game itself decides the level of

compatibility. However, since most messages just needed to pass one or two

items of significance in this initial version, the minimal amount of data is

being passed over the network connection.

The three major categories of messages are Request, Response, and

Informative.

75

3.2.6.3. Informative Messages

Informative messages do not require an action or response. They are

merely an FYI for one or more players involved in the game. Some

informative messages are sent periodically by the server, while others can be

player-initiated.

Chat- this type of message is initiated by a player, and even by the

server (game controller). A human player may send a chat message to

communicate with other players on the table. A chat message is displayed

for all other players to see. Currently chat messages initiated by players are

public, not private. The server can send a chat message informing the players

of specific messages, such as who won the last hand and what the winning

hands were.

PokerTableStatuslnfo - this broadcast informative message is sent

periodically by the server to inform each player the current status of the

table. This message includes all of the information about the table, which

includes all the players who are still sitting at the table, their cards, their

action, their cash, their name, the current pot, etc. Everything a player would

expect to know about everyone sitting at a table.

76

Playerlnfo - This message is sent from a client once connected to the

server. This message contains the name of the player, and their randomly

generated GUID ID, which the client application generates to identify the

player.

SitlnOut- this message is sent from a client once that player has

decided to sit in, or sit out of the next hand. This is basically a toggle. If the

player is currently sitting in, and the user submits this message to the server,

the server will now flag them as sitting out, and will not deal them in on the

next hand.

StandUp - this message is sent from a client when the player has

decided to stand up from the table, thus leaving the seat that the player

currently occupied, unoccupied. The player is still considered in the same

"room" as the table, and can still see chat messages, but since the player is

standing up, that player can no longer participate in subsequent gaming until

they decide to sit back down at an empty seat.

LeaveTab/e- this message is sent from a client when the player has

left a table "room". A client can initiate this message at any time. When a

77

player sends this message, they will be disconnected from the server that

they were previously connected to.

AutoMuck- this message is sent from a client when the player wishes

to toggle the automatic mucking of their cards when they have lost a hand. If

this toggle is on, when the player loses a hand during a showdown, the cards

will automatically be discarded for no one else to see. However, if this toggle

is off, the player has the opportunity to show their cards, once prompted by

the server through a separate message, for everyone else to see.

AutoCheck - this message is sent from a client when the player wishes

to toggle the automatic checking of their action when it is their turn to act

and not previous bet has been placed to call. If this toggle is on, and it's the

player's turn to act and there is not bet to call, they will automatically check

and will not be prompted, by the server, to act.

ServerShutdown - this unfortunate message is sent by the server

when it is in the process of shutting down.

3.2.6.4. Request Messages

These are message that are initiated by either the client or the server.

A response is expected for each request sent.

78

AliveRequest-this message is sent by the server when a client

(player) has not responded to a recent request (the request timed out at the

application level for the server). The client will automatically respond to this

request upon receipt without human intervention required. Upon receiving a

response for this request, the server will still assume the client is up and

running.

ShowCardsRequest - If the player does not have the auto-muck toggle

on, the server will request the player if they would like to show their cards

when the player has either decided to fold, or has won the hand without a

showdown required. A showdown is when both players are in the hand at

the very end, and no one has folded. Each player must show their hand in the

order of "last person to be shows last". If the first player shows their hand,

and the other players know they have lost, they can choose to not show their

cards. This is useful when trying to utilize bluffing and a long-term

personality strategy, where a player may not want the opponent to know

their betting style.

ActionRequest- this message is sent by the server when it is time for a

player to act {Check, Bet, Call, Raise, Fold, etc}. The message contains some

79

of the options that the player is allowed to do, which is based on what the

server thinks their toggles are set at.

SitDownRequest- this message is sent by the client when requesting

to sit down at a table. If the server has accepted this player at the seat

number requested, a response will be sent indicating that the client can

assume they are now sitting at that seat number on the table.

DiscardRequest - In poker games that allow discard sequences, the

server will sent a request to the players, asking them which cards they wish

to discard. The discard request contains the information, for the client, on

the rules of the discard, which includes the max number of cards they can

discard, the type of cards they can discard.

3.2.6.5. Response Messages

Response messages are messages sent to answer a specific request

message. An ID within the message itself is used to identify which request

the response is intended for.

SitDownResponse - this message is the response sent by the server, in

answer to the client's request to sit down on a table, at a certain seat

80

number. The Code is understood by the client through the shared game

library logic.

AliveResponse - this message is the response by the client, in

response to an AliveRequest message. This response is sent automatically by

the client, with no human intervention. This response indicates to the server

that the client is still alive and does not need to be removed from the table.

ActionResponse - this message is a response by the client, in response

to an Action Request message. The Amount value indicates exactly what the

action is, based on what the parameters were in the ActionRequest. For

example, if the AmountToCall was 0, and this response's Amount was 0, this

indicates that the player has made an action of CHECK. If the Amount was

greater than 0, this would indicate that the payer had made an action of BET.

If the AmountToCall was greater than 0, and the Amount in the response was

greater than the AmountToCall, it would indicate a RAISE. If the Amount was

equal, and they were both greater than 0, it would indicate a CALL. An

Amount equal to 0, when the AmountToCall was greater than O and the

player still has cash, would indicate a FOLD. An Amount less than the

81

AmountToCall, when the player has no cash left, indicates the player is still in

the game, though "All In" per se.

DiscardResponse- this message is a response by the client, in

response to a DiscardRequest message. The response indicates which cards,

of the cards in the player's hand, are to be discarded. The cards to be

discarded were validated by the client, and will be validated again by the

server on response, to make sure they are of the type of cards that can be

discarded.

ShowCardsResponse - This is a response by the client, in response to a

ShowCardsRequest message. The response indicates whether or not the

client wishes to show their cards to the rest of the table.

3.2.7. Poker Game Creation

For flexibility and robustness, all poker games that can be played with

the software must adhere to an XML format, rather than a string or flat byte

format where certain offsets and values define property meanings. Through

XML, any newer game created with extra attributes and elements will still

work for a prior version of the software, as it would remain backward

82

compatible, though lacking the new functionality intended for the later

version the game was created for.

A poker game can be constructed through XML in the following way:

<PokerGame name="name of the poker game">

<MinPlayers>

integer value ranging from 1 to 10

</Min Players>

<MaxPlayers>

integer value ranging from 1 to 10

</MaxPlayers>

<DecksOfCards>

integer value ranging from 1 to 255

</DecksOfCa rds>

<Ante> (optional)

<StartingValue>

This integer value is the initial value of the ante,

though the value can change depending on the

<ChangeRules> element below, if included.

83

</StartingValue>

<ChangeRules> (optional)

<Deals>

integer value ranging from 1 to the maximum

lnt32 value

</Deals> (optional - this node indicates to change

the ante value every time this number of deals has

taken place)

<Minutes>

A value in minutes that indicates to change

the ante every time this number of minutes

passes since the last time the ante value has

changed.

</Minutes>

<Expression>

A postfix notation expression, where the

variables "value", "deals", and "minutes" can

be used in the equation.

84

Example: value 2 *

</Expression>

</Change Rules>

</Ante>

<MinBet> (optional)

<StartingValue>

This integer value is the initial value of the

minimum bet, though the value can change

depending on the <ChangeRules> element

below, if included.

</StartingValue>

<ChangeRules> (optional)

<Deals>

integer value ranging from 1 to the maximum

lnt32 value

</Deals> (optional - this node indicates to change

the ante value every time this number of deals has

taken place)

85

<Minutes>

A value in minutes that indicates to change

the minimum bet every time this number of

minutes passes since the last time the ante

value has changed.

</Minutes>

<Expression>

A postfix notation expression, where the

variables "value" "deals" and "minutes" can , ,

be used in the equation.

Example: value 2 *

</Expression>

</ChangeRules>

</Min Bet>

<MaxBet> (optional - unlimited otherwise)

<StartingValue>

This integer value is the initial value of the

maximum bet, though the value can change

86

depending on the <ChangeRules> element below, if

included.

</StartingValue>

<Change Rules> (optiona I)

<Deals>

integer value ranging from 1 to the maximum

lnt32 value

</Deals> (optional - this node indicates to change

the ante value every time this number of deals has

taken place)

<Minutes>

A value in minutes that indicates to change

the maximum bet every time this number of

minutes passes since the last time the ante

value has changed.

</Minutes>

<Expression>

87

A postfix notation expression, where the

variables "value", "deals", and "minutes" can

be used in the equation.

Example: value 2 *

</Expression>

</ChangeRules>

</Max Bet>

<Sequences>

<Sequence type='<name>' ... />

</Sequences>

</PokerGame>

All elements and attribute values are constructed with text when a

number is not the intended value. This was done for readability and ease of

game creation.

3.2.7.1. Sequences

The sequences are run synchronous and in sequential order that they are

defined.

1. Ante (<Sequence type='ante' />)

88

This sequence indicates that players at the table must submit an ante.

call='yes/no': if this attribute is present, this indicates that the other

players on the table do or do not need to call the ante being

submitted. If this attribute is not included, it defaults to "yes" and all

players must match the ante in order to stay in the hand. If call is

indicated, or the attribute is not included which would default to

"yes", the actual calling of the ante will not take place until a betting

round sequence has started. When an ante must be called during the

next betting round, the first player to the left of the dealer who hasn't

called the ante, is first to act.

2. Deal Card (<Sequence type='dealcard' ... />)

This sequence indicates that cards will be dealt from the deck to the

players on the table that are still in the hand. The following attributes

can be used in the deal card sequence:

cardtype='<type of card>': this attribute indicates the type of card to

be dealt.

cardvisibility='<visibility of card>': this attribute indicates the visibility

of card to be dealt.

89

3. Bet (<Sequence type='bet' />)

This sequence indicates to start a betting round. In a betting round, all

players must participate. During a betting sequence a player may have

a chance to check, bet, call, raise the bet, or fold. Betting in this game

always starts to the player to the immediate left of the dealer.

o Future release can also define an attribute that allows the game

creator to vary the minimum and maximum betting amount

within the specific sequence, rather than always use and rely on

the Min Bet and MaxBet nodes under the <PokerGame> node.

4. Wait (<Sequence type='wait' seconds='<integer>' />)

This sequence indicates for the game to wait a period of time, in

seconds, before the next sequence is executed. This type of sequence

gives the players a chance to look at the current status of the table,

opponents' hands, etc, before the next sequence will occur.

5. Discard (<Sequence type='discard' ... />

This sequence allows a player(s) to discard current cards in his or her

hand, and replace them with new a new card(s) from the deck. The

following optional attributes can be used in the deal card sequence:

90

maxdiscards='<integer>': this value indicates the maximum number of

cards that a player can discard from his or her hand. The valid values

are O (which is the dealer) to 255. This value should be closely tied to

the number of decks that are used in the game (e.g. if the game

creator is creating a game with one standard deck of 52 cards, and 10

people are playing, a player should normally not be able to discard

more cards than are left in the deck, or cause a condition where the

last players to discard would not be able to get "new" cards from the

deck because they have all been dealt to previous players who have

already discarded. There is a card recycle attribute that can deal with

this condition (see below).

discardcardtype='<type of card>': this attribute indicates the type of

card to be discarded.

discardcardvisibility='<type of visibility>': this attribute indicates the

visibility of card that can be discarded.

redealcardtype='<type of card>': this attribute, if included, indicates

the type of card that will be dealt back after the discards.

91

redealcardvisibi/ity='<type of visibility>': this attribute indicates the

visibility of card that will be dealt back after the discards.

returndiscardstodeck='yes/no': this value indicates if the discarded

cards from each player discarding should be returned to the deck, and

available again for dealing. In some games, this option must be

available to satisfy a large number of players allowed to discard a large

number of cards from a game that only uses a certain number of

decks, in order to always make cards available for dealing to all

players.

shuffleondiscardreturn='yes/no': this value indicates if the deck will

be reshuffled once after all discards have been collected and all re­

deals have occurred. If the deck is not reshuffled when discarded cards

are returned to the deck, a player may be able to track when a specific

card would come available again on deal, though that may be desired

by the type of game.

6. Change Card (<Sequence type='changecard' ... />)

This sequence can change a card type. This is useful when a hidden

card must be made visible to other players during the course of the

92

game sequences. The following optional attributes can be used in the

deal card sequence:

cardtype='<type of card>': this attribute indicates the type of card that

can be changed.

cardvisibi/ity='<type of visibility>': this attribute indicates the visibility

of card that can be changed.

newcardtype='<type of card>': this attribute indicates the type of card

that the changed card will become.

newcardvisibility='<type of visibility>': this attribute indicates the

visibility of card that the changed card will become.

maxchanges='<integer>': this value indicates the maximum number of

cards in the player's hand that can be changed. The valid values are 1

(~hich is the dealer) to 255. The changing starts with the oldest card in

their hand that matches the cardtypetochange and moves toward the

most recent card dealt.

The following common attributes can be applied to sequences by

including them within the <Sequence> element:

93

- seatsleftofdealer='<integer>': this attribute, if present, indicates

which player the sequence applies to. A value of O indicates the dealer.

A value larger than the maximum possible amount of players for the

game is being allowed in case the creator of the game wishes to base

this value on some predetermined number, in which the value will be

mod by the number of players to determine which player left of the

dealer the value applies to. This attribute can be used with:

o Ante

o Dea/Card

o Bet

o Discard

o Change Card Type

- *cardtype='<type of card>': this attribute indicates the type of card

the sequence applies to. If this attribute is not included in the

<Sequence> node and is required, the type of card value will be

default to "none". Some sequences may have multiple attributes that

require a type of a card, the name of the attribute will indicate its

usage. The following are the set of valid values for the attribute:

94

o "player" - this card is only usable by the player it was dealt to.

o "community" - this card is usable by everyone.

o "none" - this card is not usable by anyone.

- *cardvisibi/ity='<type of visibility>': this attribute indicates the

visibility of card that sequence applies to. If this attribute is not

included in the <Sequence> node, the visibility of card value will ,

default to "none". Some sequences may have multiple attributes that

require a visibility of a card, the name of the attribute will indicate its

usage. The following are the set of valid values for the attribute:

o "none" - this card is visible to no one.

o "player" - this card is only visible to the person it was dealt to.

o "opponents" - this card is not visible to the person it was dealt

to, but is visible to everyone else on the table.

o "all" - this card is visible to everyone.

3.2.8. Sequences

The sequences below indicate how the system communicates. Figure

22 is an example of when a client connects to the controller (server). An

example of a client request is shown in Figure 23.

95

~ 11 PokerConnect I
~ I Process Messages /Thread} I

I

I PokerSeryer I
Connect ctor()

I
I I

OK_CL~

-- I I ; I I
I I I

~ I I -- I I
I I

<form data> I I

I

~------- I I

Socket.Conrlect(IP, Port)
I
I
I

I
I I ~------------------------------L-------------- ! _______________

ctor(socket) : :
I

Beginlnvoke I
I

~ Enqueue Playerlnfo Msg

Write(Msg)

Player17to
1
Message

I I
PokerTableStatuslnfo Message

11 c==:, Enqueue PokerStatusTablelnfo Msg

Update Table()

'

I ..,_
~ I

I I I
I I

Figure 22. Client Connect Request.

~c_o_□_ne_cti_·_o□~II ~ -P-ro_c_•s_s_M_•_s_•_aa_•_•_<_T_h,_•_•d_l~

<Request> _Click

Enqueue <Request> Msg

Write(<Request> Msg)

<Request> Msg

<Response> Msg

Enqueue <Response> Msg

UpdateUI

Figure 23. General Client Request.

96

'

I
I

,..L

--
~

-

--~:, Process Connect Request

I PokerServer I

Process <Request>

An example of an informative message from the client is shown in

Figure 24.

<Info> _Click
E

I
I

EJ I Process Mess

1

aaes [Thread} I

Enqueue <Info> Msg

Write(<lnfo> Msg)

<Info> Msg

<Info> Msg

Enqueue <Info> Msg

UpdateUI

Figure 24. Informative Message Sent By Client.

:;) Process <Info>

An example of an informative message sent by the controller (server)

to one or many clients is shown in Figure 25.

I PokerServer I
I

I Process Messages /Thread} I
I r ,~ I

I
I

Dequeue & Write(Msg)

Figure 25. Server Message Queue/ Send.

97

PokerCl,ent

Msg

Process and/or Update UI

An example of when the controller (server) is requesting and waiting

for a response from a specific client is shown in Figure 26.

I Poke~eNer I
I
I

I Process Messages <Thread} I
I

I conn~ction I
I
I

Enqueue <Request> Msg Dequeue & Write(<Request> Msg)

Wait For Response

Notify <Response> -:, Dequeue <Response>

Process <Resposne>

I
I

Figure 26. Server Request/ Response Wait.

3.3. Testing

I Poke~lient I

<Request> Msg

<Response> Msg

Enqueue <Response>

I
I

<Response> _CIiek

Enqueue <Response> Msg

There are two types of testing processes that were done during and

after the development of the application. Unit testing was conducted during

the development, and after, to ensure that components and algorithms of

the application were initially correct and maintained their correctness even

through changes for other bugs (problems) that were found during all types

of testing. End to end testing was conducted to ensure that the overall

application functioned as expected when all components were combined.

98

3.3.1. Unit Testing

Tests were created to tests the major aspects and objects of the

software created, with the emphasis on the rankings of possible poker

hands. Since the software contains asynchronous processes, external

dependencies, and object usage cascading, a unit testing framework was

used called Moq, http://code.google.com/p/moq/. Moq is a mocking library

that allows a tester to mock (spoof) objects under test and their

dependencies that they may use. This type of framework allows unit tests to

be written for controller, which requires external socket connections to

process the game sequences. Most mocking frameworks can only spoof

object interfaces or virtual methods. Given that the software developed was

designed with interface decoupling in mind, it was easy to use for unit

testing.

Unit tests were created to conform to N'Unit standards (attribute­

based), and then executed with the N'Unit application. Refer to

http://www.nunit.org for more information regarding N'Unit. By looking at

Figure 27, it shows the different types of tests that were created and

executed during and after the development of the application.

99

UnitTests.dl!-

Fil< V"..w Proj<ct T..t Tools Help

j S · 0 C·\UseB\ddebl\llmdoplGIJme_NDSIJ\lriTes

- S 0 9 UilTess

I
6
Ii'
li

S 0 9 DockT-
0 AddToDock
O o.•eDock

' o DeBIAIICam
0 9 Remover-Dock
0 5tulle

s 0 9 Messooe Tea
O AequestNotT...n.t
0 9 AequestTiTedOla

0 9 -~
S 0 9 Pokertlancff-

0 9 Acel.ow9nillttl\ah
0 9 lbh_,lc,e
0 9 lbh_-,__7_Hif,
0 9 FauaAlhl_Ace 0 9 FauaAlhl __

O nAHoua_Ace
oe nA-_-
o" Hit,Card./a 0 9 HighCal'cl __

r 0 9 Mid9nqtlW,
• 0 9 p_.

0 9 Ray,tFl.sl

0 9 ~-~ 0 9 Sin,ogt ___

oe n..ea­oe TwoP.-
8 0 4' Pokorf'layorT-

0 9 C:......
0 Rood
oe 51trng1n

0 9 PoksTal>leT-

0 --
0 --0 4' Nex!Se,t

S 0 4' PmMenagerT-
0 9 Addlrie

- 0 " Addfbnl
0 ~Y.~.~
0 " ~Wlmmlntl'd
0 9 OneW___,..,..
O OneW.....or.l'd

S 0 9 Seot,enceT-
0 4' Irie
O Bot

- 0 01,ngeCadTp
I O" Del!ICanl
r 0 4' c.c.d

0 9 Wm

0-NI

Figure 27. Unit Tests.

Roon I I C:\Uomolddoliill\OoolclaplGom_NDSU\UnrtT •loll>n\llobug\UflolT-.dll

1111111111111111111111111111111111 1
Passed: 42 Failed: 0 Erron: 0 lncoaclnive: 0 lor•• M : 0 Ignored: 0 Skipped: 0 Trne: 1 147

I.~

Looking at the tests, there is a unit test for each specific type of hand

that is possible (including when the ace can be a low card}. Even though this

framework has been created to cover different types of poker games, the

tests were created to only cover poker hands possible, which are shared

100

among all poker games. Tests were also created to over the interface

methods of the major objects of the system, which are the Deck, Hand,

Player, Table, Pot, and Messages.

3.3.2. End-to-End Testing

This type of testing was more of an ad-hoc approach for the

development of this application. Before exposing the application to the

potential stakeholders, multiple instances of the client application were

executed to simulate actions for each player in each client. This method did

uncover problems in both the client and the server applications. When no

game mechanical problems were found after this type of testing, other

potential users were brought in to help test and provide feedback on the

game play and GUI. When other users were involved, they provided

feedback on a variety of things, including the GUI. They knew that the GUI

was just intended to serve as an easy way to play the game, and would be

revamped on future versions of the application as needed, but not for the

initial release.

3.4. Deliverables

101

The following were defined and developed throughout this paper's

research:

1. Requirements of a solution that would allow users to play poker

games over a network connection.

2. An extensible client/server software application that allows users to

play poker games over a network connection.

3. An XML definition that allows users to define and create custom

poker games, which can be played through the client/server

application.

4. Unit tests that were created to assist in ensuring a level of quality

of the client/server application.

102

CHAPTER 4: RESEARCH EVALUATION

Looking back at the restatement of the problem, it appears that the

software developed does solve the problems and issues that were presented.

Below is a breakdown of the main issues, into groups, in their respective

order of importance.

4.1. Flexible Poker Games

The main problem, of the set of problems described, was that there

was no existing application that allowed a group of poker players to play

their own custom poker games, whether purchasable or not. If a poker

player wanted to play "Blind Man's Bluff" within their social poker group,

they would have to physically meet somewhere in order for the game to

proceed. Now, with the application described and developed for this paper,

it is possible, and a reality.

4.1.1. Flexibility

The application developed allows a user to define a custom poker

game within the stated poker rules defined above.

The software package developed includes premade games such as:

103

1. 5 Card Draw

2. 5 Card Stud

3. 7 Card Stud

4. Texas Hold'em

5. Blind Man's Poker

Even though the above games are the only ones premade and ready to

play with the application, the game creation model allows a user to model a

custom poker game through XML. As long as the game follows the base

defined rules of poker, the game can be created and played. For example, if a

user wanted to create a game where each player only received two cards

only visible to that player, everyone bets, and then the person with the best

two cards wins, the XML would look like:

<PokerGame name="Two Card Madness">

<MiniPlayers>2</MinPlayers>

<MaxPlayers>l0</MaxPlayers>

<DecksOfCards>l</DecksOfCards>

<Sequences>

104

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player'' />

<Sequence type="bet" />

</Sequences>

</PokerGame>

In future versions of the application, the set of rules that define a

game's mechanics and how it is played in the application can be expanded.

For example, in the developed application's initial version, the user is not

able to define the value of a particular card number of suit, in respect to the

other card numbers or suits in a deck of cards. A future release could allow a

game to be created that could define every "Jack" to be worth more than an

"Ace", thus a pair of "Jacks" will beat a pair of "Aces". This is a little different

than defining a "Jack" as a wildcard, but an example nonetheless.

4.1.2. Privacy

A user can set up their own poker server and inform anyone, that they

wish to allow, the IP address and port to connect to. As long as no one else,

105

whom they do not wish to connect and join their server, knows the IP and

port of the poker server application, it can be considered private.

There currently isn't an implemented feature to boot or kick anyone

from a table, or ban an IP address from connecting to a server. Future

versions of the application can add those extra security measures to ensure

that the game remains as private as required.

4.1.3. Free

Last, but not least, initially this software package is free. A social group

of poker players do not have to pay anyone to use it. The solution was mainly

to meet the needs of this author and his group of social poker players.

From the three major points above, which attempt to solve the

problem where there is no current way to play custom or well-known poker

games in a free and private manner, the application developed makes a great

start to fulfilling that need. The functionality is now developed and available,

though it can use some enhancements in the future to better the user

experience and satisfaction.

106

CHAPTER 5: CONCLUSIONS

5 .1. Evaluation

Considering that the application developed is an initial version, and

could be expanded and enhanced, it is felt that the application developed

meets the needs of the problem described earlier in this paper. A framework

exists that allows users to create their own types of poker games, games that

do not currently exist online in a free and flexible environment.

5.2. Research Application

The research approach was based on the need for a solution that did

not currently exist that met the free, flexible, and private environment. The

initial research concluded that there was nothing currently existing that

satisfied the requirements and needs. Based on the initial research

conclusion, a software application was developed to meet those needs. This

type of approach is common in the software industry. When research

concludes that there is currently nothing that satisfies the needs and

requirements, usually the solution is developed. Or, something is changed or

amended to satisfy the requirements and needs. The assumption was that

107

existing applications that could have been amended or changed to satisfy the

requirements were proprietary and would not be available for changes. It

may also been easier to take the approach of creating a new application from

scratch, instead of modifying an existing application whose architecture and

design may not have been created robustly and flexible enough to absorb

the changes required in a timely manner.

5.3. Future Work

Expanding features for this application is an exciting area. There are

many items that could be done to further enhance the user experience.

5.3.1. Game Features

A way to indicate wild cards could be added to the poker engine and to

allow players to indicate which cards in the deck are wild in the game XML

definition, whether by suit or number. Even more flexibility could be added

to the sequences that allow betting rules to change as well, such as ante,

minimum bet, and maximum bet.

5.3.2. Artificial Intelligence

108

A great addition to the application would be to add the ability to

include non-human players. This would come in handy when no humans are

available to play, or there is a minimum requirement of players for a certain

game type. The largest effort involved for this future work would be to make

sure the Al is fine tuned and adjustable.

5.3.3. Enhanced GUI

The application developed does not have a comparable GUI, as

compared to the five poker sites included in the literature review section.

However, it should be noted that the GUI developed is a first generation GUI,

just enough to meet the needs of a prospective user. It does not have

avatars, it does not have configurable backgrounds, and it does not have any

images of chips, which are a common item of poker.

Future work could easily improve the GUI, without affecting any of the

core game functionality of the application. An improved GUI would improve

the user experience, and perhaps enhance the application enough to

compete on a global level for users of other online poker applications. Other

enhancements include an ability to provide instructional, tips, and game-play

information to the user as an educational and learning opportunity (e.g. If

109

the player has a certain hand ranking, give that information to the user, so

that they can correlate and understand the ranking system much faster).

WPF (Windows Presentation Foundation) could be used to enhance

the GUI. The user experience lies with the GUI, and WPF comes with great

ways to easily control a GUI through XAML and easy ways to animate objects.

A web interface, perhaps spawned from a java applet or the usage of

Silverlight, would be another way to enhance portability of the application.

Users wouldn't need to install the application on any different computer, but

instead just rely on the browser and OS supporting the platform. Silverlight

applications are only allowed to connect to certain ports on a destination

server, and must be validated by a policy server (listening on Port 943).

An example of a policy that allows Silverlight applications to connect to

a server is as follows (showing the actual port range):

<?xml version= 11 l.0 11 encoding="utf-8 11 ?>

<access-policy>

<cross-domain-access>

<policy>

<a II ow-from http-request-headers="* 11 >

110

<domain uri="*"/>

</allow-from>

<grant-to>

<socket-resource port="4502-4534"

protocol="tcp"/>

</grant-to>

</policy>

</ cross-do ma in-access>

</access-policy>

Silverlight can connect to a WCF service with a binding that does not

listen on the ports specified above. But since WCF is not a true full dual-plex

communication and connection oriented architecture, it would be much

harder to push and pull updates to and from the clients and server. This

could be solved by having the clients host their own WCF service host when

the client is launched, and give this information to the server. Though it the

client user would have to make sure their firewall supported this new

incoming connection.

111

A mobile interface would be an interesting spin-off as well. Cell phones

are become faster and more robust ever year. Within the next 10 years, a cell

phone could be a very powerful personal computer, capable of handling

applications as computers can today. Building applications with the mobile

mentality in mind is a good thing to consider.

5.3.4. Game Creator

Currently the application requires any new poker game type to be

developed by manually creating the betting and sequence structure with

XML. To do this, the user must create an XML file and input the needs of the

poker game.

A game creator application or even a feature of the client or server

application itself could allow a user to create a poker game by indicating

betting and sequence structure. The feature could then save the users newly

created game into the XML format desired.

5.3.5. New Game Engines

New game engines could be designed and created to allow other types

of games that are played with a standard deck of cards. Hearts, pinochle,

112

crazy eights, rummy, the list is endless. A game engine could be modeled in

XML, just as poker game types are currently modeled. The application could

load up all game type models on load and allow the users to pick the games

they want to play, just as they do now with the poker game types available.

Another option is allowing the current poker game engine to allow

wild cards, configurable card values, or even new hand ranks such as 5-of-a-

kind.

5.3.6. Odds

Everyone who plays poker wants to know what their chances are of

winning. If a player is playing Texas Hold'em against nine other players, and

they are dealt a pair of aces, they may think you have a great shot of

winning. However, the fact that they are playing against nine other players,

rather than just two or three, greatly reduces their chance to win if everyone

decides to stay in the hand and not fold. Future work, could add an odd

calculation system, to give the user a visual representation of what their

chances are of winning, depending on what cards have been seen by the

user, and how many people are still left in the hand.

5.3.7. Security

113

Currently the application has not security scheme. Due to the assumed

low, and private usage of the developed application, security is not much of a

concern at this point. However, if popularity increases, the addition of

security to keep games private and cheating prevention may be a new

requirement.

Many application level protocol security schemes exist, including a

newly proposed scheme, which was included in the literature review. An

easy to implement encryption protocol, such as MDS, could be put into place

to provide enhanced security. The client and server would both need to

know a secret key in order for this protocol to be implemented.

5.3.8. Commercial

If most or all of the previous future work items are completed, there

could be a business potential to the application. Millions of users play online

poker, for real money daily. The poker sites themselves take a cut of the

money circulating on the tables, known as a rake. Most sites have a rake

percentage that is not too noticeable and does not cut into the profits of the

users. Most sites employ a 1-2% rake percentage. If millions of users play

online daily and this application has the potential to see a few thousand of

114

those users, a few percentage of the money exchanging hands could be

significant.

In order to be a commercial application, the application would require

extensive modifications, most of which I won't mention because it would

require extensive research to figure out what all of them would be. One of

the more important items is that it would need to be certified by

independent quality assurance firms. To pass those rigorous tests, perhaps

thousands of automated component and end-to-end tests would need to be

created, and thousands of hours of testing would need to be put in place to

ensure the system works as expected.

115

BIBLIOGRAPHY

1. Raymond, Eric Steven, The Art of Unit Programming, 2003

http://www.faqs.org/docs/artu/index.html (February 20, 2009)

2. Golder, Scott A. and Donath, Judith S. (2004): Hiding and revealing in

online poker games. In: Proceedings of ACM CSCW04 Conference on

Computer-Supported Cooperative Work 2004. pp. 370-373.

3. Galle, Philippe and Ducheneaut, Nicolas (2005): Keeping bots out of

online games. In: Lee, Newton (ed.) Proceedings of the International

Conference on Advances in Computer Entertainment Technology - ACE

2005 June 15-15, 2005, Valencia, Spain. pp. 262-265.

4. Zhao, W., Vadaharajan, V. and Mu, Y. (2003). A Secure Mental Poker

Protocol over the Internet. In Proc. First Australasian Information

Security Workshop (AISW2003). Adelaide, Australia. CRPIT, 21.

Johnson, C., Montague, P. and Steketee, C., Eds. ACS. pp. 105-109.

5. Galle, Philippe (2005): Dealing Cards in Poker Games. In: Proceedings

of the International Conference of Information Technology: Coding

and Computing (ITCC'05) - Volume 1. April 2005. pp. 506-511

6. Baughman, Nathaniel E., Liberatore, Marc and Levine, Brian Neil

(2007). Cheat-Proof Playout for Centralized and Peer-to-Peer Gaming.

In IEEE/ACM Transactions on Networking (TON)-Volume 15. Issue 1

(February 2007). pp 1-13.

7. PartyPoker.com. http://www.partypoker.com

8. PokerRoom.com. http://www.pokerroom.com

116

9. FullTiltPoker. http://www.fulltiltpoker.com

10. PokerStars.com. http://www.pokerstars.com

11. Cake Poker. http://www.cakepoker.com

12. zynga poker. http://apps.facebook.com/texas_holdem

13. 11Poker." http://en.wikipedia.org/wiki/Poker (February 23, 2009)

14. 11 lntellivision." http://en.wikipedia.org/wiki/lntellivision

15. Razz (poker game). http://en.wikipedia.org/wiki/Razz_(poker)

117

APPENDICES

7 .1. No Limit Texas Hold'em Game XML

<PokerGame name="No Limit Texas Holdem">

<MinPlayers>2</MinPlayers>

<MaxPlayers>l0</MaxPlayers>

<DecksOfCards>l</DecksOfCards>

<Ante>

<StartingValue>l0</StartingValue>

<Change Rules>

< Dea ls>S</Dea Is>

<Minutes>20</Minutes>

<Expression>value 2 *</Expression>

</ChangeRules>

</Ante>

<MinBet>

<StartingValue>20</StartingValue>

<Change Rules>

<Dea Is> 20</Dea Is>

118

<Minutes>20</Minutes>

<Expression>value 2 *</Expression>

</ChangeRules>

</Min Bet>

<Sequences>

<Sequence type="ante" seatsleftofdealer="2" />

<Sequence type="ante" seatsleftofdealer="2" />

<Sequence type="ante" seatsleftofdealer="l" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="wait" seconds="3" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="wait" seconds="S" />

<Sequence type="bet" />

<Sequence type="wait" seconds="3" />

<Sequence type="dealcard" cardtype="community"

cardvisibility="all" />

119

<Sequence type="wait" seconds="l" />

<Sequence type="dealcard" cardtype="community"

cardvisibility="all" />

<Sequence type="wait" seconds="l" />

<Sequence type="dealcard" cardtype="community"

cardvisibility="all" />

<Sequence type="wait" seconds="3" />

<Sequence type="bet" />

<Sequence type="wait" seconds="l" />

<Sequence type="dealcard" cardtype="community"

cardvisibility="all" />

<Sequence type="wait" seconds="3" />

<Sequence type="bet" />

<Sequence type="wait" seconds="l" />

<Sequence type="dealcard" cardtype="community"

cardvisibility="all" />

<Sequence type="wait" seconds="3" />

<Sequence type="bet" />

120

</Sequences>

</PokerGame>

7.2. 5 Card Draw Game XML

<PokerGame name="S Card Draw">

<MinPlayers>2</MinPlayers>

<MaxPlayers>6</MaxPlayers>

<DecksOfCa rds> 1 </DecksOfCa rds>

<Ante>

<StartingValue>l0</StartingValue>

</Ante>

<MinBet>

<StartingValue>l0</StartingValue>

</Min Bet>

<MaxBet>

<StartingValue>40</StartingValue>

</Max Bet>

<Sequences>

<Sequence type="ante"/>

121

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="bet" />

<Sequence type="discard" discardcardtype="player"

discardcardvisibility="player" redealcardtype="player"

redealcardvisibility="player" maxdiscards="3"/>

<Sequence type=" bet" />

</Sequences>

</PokerGame>

7 .3. 5 Card Stud Game XML

122

<PokerGame name="S Card Stud">

<MinPlayers>2</MinPlayers>

<MaxPlayers>l0</MaxPlayers>

<DecksOfCards>l</DecksOfCards>

<Ante>

<StartingValue>l0</StartingValue>

</Ante>

<MinBet>

<StartingValue>l0</StartingValue>

</Min Bet>

<MaxBet>

<StartingValue>40</StartingValue>

</Max Bet>

<Sequences>

<Sequence type="ante"/>

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

123

<Sequence type= 11 dealcard 11 cardtype= 11 player 11

cardvisibility= 11 all 11 />

<Sequence type= 11 bet 11 />

<Sequence type= 11 dealcard 11 cardtype="player"

cardvisibility= 11 all 11 />

<Sequence type="bet" />

<Sequence type= 11 dealcard 11 cardtype="player"

cardvisibility="all" />

<Sequence type="bet" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="all" />

<Sequence type="bet" />

</Sequences>

</PokerGame>

7.4. 7 Card Stud XML

<PokerGame name="7 Card Stud">

<MinPlayers>2</MinPlayers>

<MaxPlayers>7</MaxPlayers>

124

<DecksOfCards>l</DecksOfCards>

<Ante>

<StartingValue>l0</StartingValue>

</Ante>

<MinBet>

<StartingValue>l0</StartingValue>

</Min Bet>

<MaxBet>

<StartingValue>40</StartingValue>

</Max Bet>

<Sequences>

<Sequence type="ante"/>

<Sequence type= 11 dealcard 11 cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="dealcard" cardtype="player"

cardvisibility= 11 all 11 />

125

<Sequence type="bet" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="all" />

<Sequence type="bet" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="all" />

<Sequence type="bet" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="all" />

<Sequence type="bet" />

<Sequence type="dealcard" cardtype="player"

cardvisibility="player" />

<Sequence type="bet" />

</Sequences>

</PokerGame>

7 .5. Blind Man Poker Game XML

<PokerGame name="Blind Man Poker">

<MinPlayers>2</MinPlayers>

126

< MaxPlayers> 10</MaxPlaye rs>

< DecksOfCa rds> 1 </DecksOfCa rds>

<Ante>

<StartingValue>l0</StartingValue>

</Ante>

<MinBet>

<StartingValue>l0</StartingValue>

</Min Bet>

<MaxBet>

<StartingValue>40</StartingValue>

</Max Bet>

<Sequences>

<Sequence type="ante"/>

<Sequence type="dealcard" cardtype="player"

cardvisibility="opponents" />

<Sequence type="bet" />

</Sequences>

</PokerGame>

127

7 .6. Poker Hand Ranks

The ranks below are listed in order of descending rank. When examples are

given below, the number indicates the card value, the letter indicates the

card suit {s=spades, h=hearts, c=clubs, d=diamonds}.

7 .6.1. Straight Flush

The Straight Flush requires 5 cards. All 5 cards used must be the same

suit. All 5 cards combined must form a contiguous sequence that spans 5

numbers.

Example: {4h-Sh-6h-7h-8h}

The highest ranking Straight Flush is a {10-J-Q-K-A} of any suit (considered

a Royal Flush in Poker lingo).

Tiebreaker: If multiple players have a Straight Flush, the Straight

Flush with the highest card value wins. If multiple players have the

same highest card value, it is a tie, and the pot, if any, is split among

those players.

128

Example: {7s-8s-9s-10s-Js} beats {2h-3h-4h-5h-6h}, since J has

a higher card value than 6.

{7s-8s-9s-10s-Js} ties {7h-8h-9h-10h-Jh}, since both hands have

the same highest card value, which is a J.

7 .6.2. Four-of-a-Kind

A Four-of-a-Kind requires 4 cards. All 4 cards must have the same card

value.

Example: {4s-4h-4c-4d}

The highest ranking Four-of-a-Kind is an {As-Ah-Ac-Ad}.

Tiebreaker: If multiple players have a Four-of-A-Kind, the Four-of-a­

Kind with the highest card values wins. If multiple players have the

same highest card values (which can exist when the 4-of-a-kind is

made up of community cards), the highest 5th card, if exists, is used to

determine the winner. If a 5th card does not exist, or is the same, it is a

tie, and the pot, if any, is split among those players.

Example: {8s-8h-8c-8d} beats {4s-4h-4c-4d}, since an 8 has a

higher card value than 4.

129

7.6.3. Full House

A Full House requires 5 cards, where 3 of the 5 cards must have the same

card value, and the other 2 cards must have the same card value.

Example: {9s-9h-9c-3s-3h}

The highest ranking Full House is an {A-A-A-K-K}, where the cards can be

of any mix of suits.

Tiebreaker: If multiple players have a Full House, the Full House with

the highest card values of the cards where 3 must match, wins. If

multiple players have the same highest 3 card values, the player with

the highest card values of the cards where 2 must match, wins. If the

players still tie, the pot, if any, is split among those players.

7 .6.4. Flush

Example: {Ks-Kh-Kc-6s-6h} beats {Js-Jh-Jc-2s-2h}, since the K,

in the set of Ks, has a higher card value than a J.

{Qs-Qh-Qc-7s-7h} beats {Qs-Qh-Qc-Ss-Sh}, since the 7, in the

pair of 7s, has a higher card value than a 5.

130

A Flush requires 5 cards, where all 5 cards used must have the same suit.

Example: {As-Js-8s-7s-3s}

Tiebreaker: If multiple players have a Flush, the Flush with the highest

card value wins. If multiple players have the same highest card value,

the pot, if any, is split among those players.

7.6.5. Straight

A Straight requires 5 cards, where all 5 cards used must form a contiguous

sequence that spans 5 numbers.

Example: {7h-8s-9s-10d-Jc}

Tiebreaker: If multiple players have a Straight, the Flush with the

highest card value wins. If multiple players have the same highest card

value, the pot, if any, is split among those players.

7 .6.6. 3-of-a-Kind

A 3-of-a-Kind requires 3 cards, where all 3 cards are the same number.

Example: {Kh-Kd-Ks}

Tiebreaker: If multiple players have a 3-of-a-Kind, the 3-of-a-Kind with

the highest card value wins. If multiple players have the same highest

131

card value, up to two remaining cards in each player's hand is used to

determine the winner. The player with the highest card(s), which are

not the same numbers as the cards that were used to create the 3-of­

a-kind, is determined the winner.

7.6.7. 2-Pair

A 2-Pair requires 4 cards, where 2 cards of the 4 are the same number,

and the other 2 cards of the 4 are the same number, but different than the

other 2 cards. The condition where 2 cards are the same number is called a

Pair.

Example: {6s-6d-2h-2c}

Tiebreaker: If multiple players have a 2-Pair, the Pair with the highest

card value of both pairs determines the winner. If multiple players

have the same highest card value, up to one remaining card in each

player's hand is used to determine the winner. The player with the

highest card, which is not the same numbers as the cards that were

used to create the 2-Pair, is determined the winner.

132

7.6.8. Pair

A Pair requires 2 cards, where both cards are the same number.

Example: {7s-7d}

Tiebreaker: If multiple players have a Pair, the Pair with the highest

card value determines the winner. If multiple players have the same

highest card value, up to three remaining cards in each player's hand is

used to determine the winner. The player with the highest card(s),

which are not the same numbers as the cards that were used to create

the Pair, is determined the winner.

7 .6.9. High Card

A High Card requires only one card.

Example: {Ks-8d-6h-2c-4h}

Tiebreaker: If multiple players have a High Card, the High Card with

the highest card value determines the winner. If multiple players have

the same highest card value, up to four remaining cards in each

player's hand is used to determine the winner. The player with the

133

highest card(s), which are not the same numbers as the cards that

were used to create the High Card, is determined the winner.

134

