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ABSTRACT 

Clarke, Aaron, Ph.D., Department of Psychology, College of Science and Mathematics, 
North Dakota State University, July 2010. Neural Synchrony and Asynchrony as 
Mechanisms for Perceptual Grouping and Segmentation. Major Professor: Dr. 
Stephane Rainville. 

The question of whether neural synchrony has functional significance for cortical 

processing has been an issue of contention in the recent scientific literature. Although 

the balance of evidence now seems to be favoring a vie,v that synchrony does indeed 

play a significant functional role, this role's mechanisms and its behavioral consequences 

have not been fully elucidated. In this research I add to the growing body of evidence 

in favor of a significant functional role for neural synchrony in cortical processing. 

By leveraging a modified version of Cheadle, Bauer, Parton, Muller, Bonneh and 

Usher (2008)'s psychophysical paradigm and through experiments of own design, 

I find evidence suggesting that when contrast oscillations serve as inputs to the 

visual system, the system produces behavior that may be more synchronous than 

the stimulus or less synchronous than the stimulus depending on whether or not the 

oscillations occur on elements of a common object or on elements of separate objects 

respectively. The current paradigm has the potential to test behavioral manifestations 

of the underlying neural dynamics that heretofore were largely thought to be confined 

to physiological measures. Furthermore, I provide a biophysical model that predicts 

this behavior and other related electrophysiological findings. 
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CHAPTER 1. INTRODUCTION 

In this dissertation I will discuss many topics where the reader's comprehension 

will depend on a fundamental understanding of basic vision. As such, I have designed 

this document to progress from a basic review of vision science to a more sophisticated 

exposition of the topic of interest (mainly neural synchrony). During this process I will 

discuss spatial vision, temporal vision, joint spatiotemporal vision (including vision 

for motion). pattern vision and neural synchrony. After providing the necessary 

level of background knowledge I will weave together the thesis of this document, 

that cortical synchrony may be involved in encoding spatial relationships and that a 

plausible mechanism using synchrony may be modeled using networked Hodgkin and 

Huxley neurons. 

1. 1. Spatial Vision 

The term spatial vision generally refers to vision for static scenes. Although it 

is now known that the visual system integrates spatial and temporal information 

simultaneously (Adelson and Bergen, 1985: Heeger. 1987; Simoncelli and Heeger, 

1998), historically, there have been many papers published where these two topics 

are treated separately. This first section will thus focus spatial vision in its own right. 

There are literally thousands of articles published on spatial vision. The following 

review shall focus in detail on some of the foundational and most influential papers 

in this area that are of relevance to the current research. 

1. 1. 1. The Eyes 

Spatial vision begins with the eyes. Light from the world enters the eyes through 

the pupils and is focused at the backs of the eyes through their lenses. The back of 

each eye is covered with a layer of light-sensitive cells called photoreceptors that 

are sensitive to the impinging light's wavelength, intensity and spatial distribution. 
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There are at least two kinds of photoreceptors: rods and cones, with cones being 

divisible into three sub-categories depending on whether they are maximally sensitive 

to long, medium or short wavelength light ( corresponding roughly to percepts of 

red, green and blue) (Burns and Lamb, 2004). Cones are primarily concentrated 

in a densely packed region of the retina called the fovea, providing high resolution 

daytime vision ( or photopic vision), while rods predominate in the areas peripheral 

to the fovea. providing lower resolution night time vision ( or scotopic vision). Cones 

are fast acting and have a temporal integration window of about 50 msec, while 

rods are slower acting and have a temporal integration window of about 300 msec 

(Sterling, 2004). Signals from the photoreceptors pass through a complex network of 

neurons within the retina that spatially pool information over small regions of the 

visual field (Sterling. 2004). Part of this network's function seems to be involved 

in regulating sensitivity to light signals as a function of the average luminance in 

the environment (Sterling, 2004). Furthermore, the retinal neural network splits 

information into at least three streams based on three main classes of retinal ganglion 

cells: parasol, midget and bistratified ganglion cells. The parasol ganglion cells pass 

information integrated over many photoreceptors to higher levels of the visual system 

following a fast, myelinated pathway called the magnocellular pathway (Kandel et al., 

2000). The midget ganglion cells, conversely, integrate information over a relatively 

fewer photoreceptors and send their signals through a slower pathway called the 

parvocellular pathway (Kandel et al., 2000). The bistratified ganglion cells integrate 

information over an intermediate number of rods and cones and send their signals 

through a moderate conduction velocity pathway called the koniocellular pathway 

(Rodieck, 1991; Dacey, 1993). The three pathways magnocellular, parvocellular and 

koniocellular ( or m, p and k for short) are fairly well differentiated and anatomically 

distinct in the next neural relay station following the retina - the lateral geniculate 
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nucleus (or LGN). 

1.1.2. Lateral Geniculate Nucleus 

Within the LGN neural responses are retinotopically mapped, meaning that if 

two neurons are adjacent in the retina then the corresponding LGN neurons that 

they activate are also adjacent. LGN neurons respond selectively when the organism 

sees light in a particular part of its visual field and not when the light is in any 

other part of the visual field. The area of the visual field over which the neuron 

will respond is called its receptive field. Some LG N neurons have receptive fields 

that prefer stimuli with light in the middle and darkness in the surround. These 

are called on-center-off-surround receptive fields. Other LGN neurons have receptive 

fields that prefer stimuli with darkness in the middle and light in the surrounds. 

These are called off-center-on-surround receptive fields. Both receptive field types 

are circularly symmetric. Importantly, both retinal and LGN neural responses are 

time-locked to the incoming light patterns (Sherman, 1996, 2001). This means that 

spatial and temporal relationships existing in the external light field are preserved in 

the early internal representations of the light field. By filtering the retinal image with 

LGN receptive fields, the visual system essentially highlights contrast in an image, 

independently image's average luminance. 

1.1.3. Primary Visual Cortex 

Like LGN neurons, primary visual cortex neurons are also retinotopically mapped 

and have receptive fields. Unlike LGN neurons, however, primary visual cortex (Vl) 

neurons have receptive fields that are selective for orientation, spatial frequency, 

temporal frequency, color and binocular disparity (Hubel and Wiesel, 1962, 1968; 

De Valois et al., 1982) (see Figure 1). The Vl receptive fields reported by Hubel and 

Wiesel (1962) are presented in Figure 2. Hubel and Wiesel (1962) proposed that Vl 

receptive fields selectively pool inputs from LGN receptive fields as shown in Figure 
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3. This model is still widely accepted today (Stork and Wilson, 1990). 
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Figure 1. Examples of gratings having A: different orientations, B: different spatial 
frequencies, C: different temporal frequencies and D: different colors. 
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Figure 2. Example receptive fields reported by Hubel and Weisel (1962). Excitatory 
regions respond preferentially to increased illumination whereas inhibitory regions 
respond preferentially to decreased illumination. 

In the process of describing Vl neurons' behavior Hubel and Wiesel (1962, 1968) 

noticed that Vl RF's tended to fall into two general classes that they called simple 

and complex. Simple cells were classified based on having RF's that (a) possessed well 

demarcated regions preferentially responding to light or dark stimulation (b) summing 

responses within those regions and ( c) allowing one to qualitatively predict responses 
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Figure 3. Illustration of receptive field formation in VI based on LGN inputs. 
Circularly symmetric LGN neurons that are spatially distributed so as to fall along a 
straight line make converging connections with a single VI cell - thereby conferring 
that cell with orientation selectivity. 

to moving or flashing stimuli within those regions. Complex cell responses were 

classified as (a) failing to demonstrate the aforementioned properties and (b) generally 

showing a mixture of light and dark stimulation preference across their RFs. They 

also found "Hypercomplex" cells, which were classified based on demonstrating end

zone inhibition. Lastly, they found some cells with little or no orientation selectivity 

(Hubel and Wiesel, 1962). 

Simple and complex cell responses were more extensively investigated by De 

Valois et al. (1982). De Valois et al. (1982) found that simple cells responded to 

a sine wave grating drifting across their RF by changing their firing rate in a way 

that was spatially and temporally phase locked with, and at the same frequency as 

the drifting grating. A cell can not fire less than zero spikes/second, so during the 

negative phase of the grating's drift the cell's responses simply remained at zero (i.e. 

they showed half-wave rectification). In a small number of cases the simple cells were 

found to have a non-zero mean firing rate. These cells demonstrated a decrease in 
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responsiveness below the mean firing rate in response to the negative phase of the 

drifting grating. De Valois et al. (1982) also found that simple cells have an almost 

zero spikes/second response to a uniform gray field (0.25 spikes/sec). 

Complex cells, on the other hand were found to have a sustained response to 

a drifting sine wave grating while maintaining a near zero spikes/second response 

to a uniform field. De Valois et al. (1982) noted that, for complex cells, the 

predominant harmonic response to stimulation by a given frequency was twice the 

flicker frequency. This phenomenon is called frequency doubling and implies that 

complex cells respond equally to the white and black bars of the grating independently 

of their position (i.e. their responses are invariant with respect to contrast polarity). 

De Valois et al. (1982) found that simple and complex cell band\vidths 

roughly uniformly over a range from 0.6 to 2.5 octaves and that this range is consistent 

from the fovea to the parafovea. They found spatial frequency selectivity to range 

continuously from than half of a degree of visual angle to more than sixteen 

degrees of visual angle. Wilson (1978) had suggested that behaviorally obtained 

spatial frequency contrast sensitivity functions may be adequately modeled using just 

three or four different tuning functions. De Valois et al. (1982)'s results, however, 

suggested that this was not true of the underlying neural populations mediating the 

contrast response function, ·where many individual neurons had spatial frequency 

selectivity that spanned a relatively narrow range and covered overlapping regions of 

the spatial frequency spectrum. 

De Valois et al. (1982)'s research implies that a minimal description of Vl neural 

receptive fields characterizes them in at least in terms of a wavelet transform. Gabor 

(1946) provided the quintessential formulation of a wavelet transform and Figure 4 

shows examples of the kinds of wavelets he originated. Since Gabor's time, however, 

several more flavors of wavelets have come on the scene (such as the difference of 

6 



Figure 4. Example Gabors. These two Gabors differ in their orientation, spatial 
frequency and phase. 

Gaussians. the derivative of Gaussian. the oriented different of Gaussians and the 

balanced Gabor) and evidence suggests that Gabor's wavelets need to be modified in 

order to accurately model Vl neural responses, with perhaps the best fitting function 

being the balanced Gabor (Stork and Wilson, 1990; Blakeslee and I\fcCourt. 1999: 

Cope et al., 2008). 

Within the cortex, neurons are organized in a highly structured manner de

pending on their function and receptive field properties. Hubel and \Viesel (1962. 

1968) proposed the first known model of cortical hypercolumns (a modern view of 

hypercolumns is presented in Figure 5). A hypercolumn is a column of Vl neurons 

with similar spatial frequency (recall Figure 1) and position preferences covering the 

full range of orientations. The primary visual cortex is tesselated with hypercolumns 

covering the entire visual field. 

1.1.4. Spatial Frequency Contrast Sensitivity 

Campbell and Robson (1968) provided psychophysical evidence suggesting that 

the visual system decomposes retinal images into their Fourier components. They 

measured spatial frequency contrast sensitivity functions for different observers (spec

ifying how much contrast the observer needed to detect certain spatial frequencies) 

using sine-wave gratings of various frequencies (see Figure 6). They showed that con

trast sensitivity for patterns composed of sinusoidal luminance oscillations summed 
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Figure 5. A hypercolumn. The primary visual cortex (Vl) is subdivided into ocular 
dominance columns receiving input from the left and right eyes. At the center of 
each ocular dominance column is a color selective blob that is not tuned for contrast 
orientation. \,Vithin an ocular dominance column, orientation columns are selective for 
local contrast orientation. Color tuned blobs are selective for different colors within 
each column. Radiating outward from the blobs the cells are tuned to progressively 
higher spatial frequencies. A hypercolumn consists of a column of cells including cells 
sensitive to all orientations. 

over discrete frequencies could be predicted based on a subject's contrast sensitivity 

to the individual sine waves composing the patterns. These results suggest that the 

combined action of the retina, LGN and Vl (and likely other areas) serve to perform 

a kind of local Fourier decomposition on the incoming retinal image stream. 

1.2. Temporal Vision 

Temporal vision research is concerned with how the visual system processes 

dynamically changing scenes. Similar to spatial vision, thousands of temporal vision 

papers have been published and this review will only cover a subset of the more 
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and Robson (1968). Figure re-plotted based on their Figure 2. VD = Viewing 
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from left to right while contrast increases from top to bottom. Different bars appear 
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foundational and influential papers from the field. In particular, it will examme 

Hodgkin and Huxley (1952), Robson (1966), Albrecht et al. (2002), Lee and Blake 

(1999), Farid and Adelson (2001) and Blake and Lee (2005). Other more advanced 

papers that the reader might find interesting include Adelson and Bergen (1985) which 

deals with computational models of spatiotemporal processing, Buzsaki and Chrobak 

(1995) which deals with how neural ensembles may use synchrony to perform sensory 

binding and memory formation, Simoncelli and Reeger (1998) which elaborates on 

computational models for how Vl extracts contrast over space and time, Wilson 

(1999) which covers the basics of non-linear dynamical systems of equations and their 

application to modeling spiking neurons, Olshausen (2003) which outlines why Vl 's 

receptive fields are optimized for the natural environment and Izhikevich (2004) which 

provides simplified non-linear dynamical systems of equations for neural modeling 

while retaining biologically observable neural response properties. 
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1.2.1. Hodgkin and Huxley (1952) 

In 1952, Hodgkin and Huxley measured voltage changes across the neural mem

brane of the Loligo (squid) giant axon and examined ion conductances associated with 

these voltage changes. They found that membrane potentials could be accurately 

modeled if characterized in terms of four electrical currents across the membrane 

(sodium, potassium. leakage and stimulating currents) as well as the membrane's 

capacitance. Using a non-linear dynamical system of four equations (one for each 

membrane current), each of whose parameters were derived from empirical observa

tions, Hodgkin and Huxley were able to accurately reproduce neural spiking behavior 

in their model (Figure 7). Not only did this work win Hodgkin and Huxley the 1963 

:'.\obel Prize in Physiology or ~1edicine. but these equations have provided the most 

accurate representation of neural firing available to date and have predicted results 

(such as chaotic behavior) that Hodgkin and Huxley had not imagined at the time they 

wrote their seminal paper. Their work spawned a cornucopia of subsequent papers 

and books that examined their model's properties and led to newer simplified models 

that retained the original model's key attributes but allowed for analytic analysis of 

the model's isoclines and bifurcations (Morris and Lecar, 1981; Hindmarsh and Rose, 

1982, 1984; Rinzel, 1985; Rinzel and Ermentrout, 1989; Rose and Hindmarsh, 1989; 

Kepler et al., 1992; Rieke et al., 1997; Wilson, 1999; Izhikevich, 2004, 2006). 

While the Hodgkin and Huxley (1952) model comprehensively accounted for in

dividual neural functioning over time, it did not account explicitly for how networked 

neurons function over time. An open question, then, is how temporal sensitivity 

measured at the systemic /behavioral level arises from what is ultimately a collection 

of networked neurons. While the full answer to this question is not yet clear, some 

hints may be gained by examining the behavior that such neural networks yield. This 

is the next section's topic. 
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visual system is performing a sort of Fourier decomposition of the retinal image. 

1.2.3. Albrecht, Geisler, Frazor and Crane (2002) 

In the studies described so far there is a conspicuous paucity of data relating 

to the neural contrast response function's temporal properties. This situation was 

remedied by Albrecht et al. (2002), who undertook a detailed examination of this 

issue. They characterized the temporal contrast response function for cat area 17 

neurons and monkey Vl neurons. They found that these neurons exhibited local 

contrast-based response normalization and that this normalization was evident as 

early as 10 milliseconds following response onset. Furthermore, they found that 

Vl neurons integrate contrast over time following a Naka-Rushton type response 

integration profile. Figure 9 illustrates the full joint time-response to contrast function 

for a typical neuron. The main take-home message of this figure is that higher contrast 

leads to earlier neural responses and higher response rates. This is important because 

it means that not all neurons responding to a given scene will respond at the same 
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aspect ratio. Here, the only information available to subjects for task performance 

was the temporal structure of the contrast changes. In spite of the paucity of available 

information, subjects were able to perform the task at above chance levels. Based 

on these results Lee and Blake (1999) argued that the visual system is performing 

local contrast detection through time and is correlating the times at which contrast 

changes occur over neighboring local elements, segmenting those elements over which 

sharp temporal contrast correlation boundaries exist and grouping those elements 

that share close temporal contrast correlations. 

Subsequent to Lee and Blake (1999)'s paper Kandil and Fahle (2001) and Sekuler 

and Bennett (2001) wrote papers which lent further support to Lee and Blake (1999)'s 

argument replicating the finding that synchronized contrast changes can facilitate 

perceptual grouping and scene segmentation. 

Following Lee and Blake (1999)'s discovery, Farid and Adelson (2001) demon

strated that Lee and Blake (1999) 's stimulus contained a transient temporal contrast 

cue that was detectable through temporal filtering that unambiguously yielded the 

rectangle's shape. Farid and Adelson (2001) conducted their own experiment using 

a stimulus containing randomly moving dots that was parameterized so that it could 

provide or be free of the type of transient temporal contrast cue present in Lee and 

Blake (1999)'s study. They found that subjects could accurately perform the rectangle 

orientation identification task when the temporal contrast cue was present but not 

when it was absent. Based on these results Farid and Adelson (2001) argued that " ... 

synchrony is not responsible for the perception of form in these or earlier displays." 

Furthermore, they noted that blurring Lee and Blake (1999)'s stimulus produced 

transient spatial cues that could be used for task performance using single stimulus 

frames. 

In a rebuttal to Farid and Adelson (2001), Blake and Lee (2005) created stimuli 
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for which blurring between the frames yielded no transient spatial cues for task 

performance and their data still showed that observers engaged in perceptual grouping 

and segmentation based on temporal structure. They also argued that they never 

implied anything other than that the visual system engages in temporal filtering 

and highlighted that the results of temporal filtering is enhanced contrast in the 

temporal domain, which is exactly where they were proposing synchrony detectors 

would operate. They also noted that it is the correlated dynamic fluctuations in 

temporal filter outputs that facilitate grouping and segmentation, not static patterns 

generated by the filtering process. 

More than this, Blake and Lee (2005) compiled a summary of articles studying 

spatial segmentation based on temporal variations in luminance, contrast or contrast 

orientation. Interestingly, their summary highlighted a pattern of results suggesting 

that temporal modulations alone can promote perceptual grouping and segmentation, 

but that when these temporal modulations are paired with auxiliary cues such as 

orientation differences that promote the same pattern of perceptual grouping and 

segmentation, the temporal modulations have a relatively weaker effect. Similarly, 

when spatial and temporal cues are in conflict, the perceptual grouping and segmen

tation process typically favors spatial cues. 

Furthermore, Rainville and Clarke (2008) recently conducted experiments where 

they stochastically modulated image elements over time along one of several potential 

dimensions, or messenger types, such as contrast, position, orientation or spatial scale 

to form vertical or horizontal rectangles. The subjects's task was to identify the 

rectangle's orientation based on the temporally modulated grouping cues. Crucially, 

they manipulated whether the task-relevant temporal-grouping information resided 

in the stimuli's carrier waves, the stimuli's envelope, or in the combined carrier and 

envelope of each messenger's timecourse. They found grouping to be messenger-
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type specific in cases where the carriers contained grouping information but where 

the envelopes did not and grouping was messenger-non-specific in cases where the 

envelopes did contain grouping information. These results imply that temporal 

grouping may be mediated by messenger-specific carrier pathways and messenger

nonspecific envelope pathways. 

1.3. Joint Spatiotemporal Vision 

In order to fully understand the visual system, it is important to examine its 

responses to contrast changes over both space and time. This issue was touched on by 

Robson (1966), where he examined contrast sensitivity as a function of both spatial 

frequency and temporal frequency. Such studies reveal that the human spatiotemporal 

contrast sensitivity function can not simply be modeled as a product of individual 

spatial and temporal contrast sensitivity functions (i.e. the joint function is not 

a separable function of space and time). Furthermore, several neurophysiological 

experiments have found that a large number of Vl cells respond to drifting bars 

and edges, or drifting gratings (Hubel and Wiesel, 1962, 1968; De Valois et al., 

1982), suggesting that Vl cells cover a spectrum of joint spatiotemporal frequencies. 

Sensitivity to a spatiotemporal frequency with non-zero x- and y-spatial frequency 

components implies that a cell has local-motion selectivity (Adelson and Bergen, 

1985; Simoncelli and Reeger, 1998) and in cases where the x- and y-spatial frequency 

components are zero it implies flicker selectivity. Speed ( s) and direction ( 0) are 

related to spatiotemporal frequency by: 

Wt 
s = ------;=== 

✓w2 +w2 
X y 

0 = atan (::)- (2) 

Here, Wt denotes temporal frequency, while Wx and Wy denote spatial frequency in the 
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x- and y-directions. A given Vl simple cell, then, can be viewed as responding to 

motion at a given speed and direction over its spatiotemporal window of sensitivity. 

Simple cell responses to a drifting grating typically peak at a certain phase of the 

grating's drift cycle and fall off outside of this peak region (De Valois et al., 1982). This 

behavior is commonly known as phase-selectivity. Different simple cells' responses 

peak at different phases. Complex cells, on the other hand, generally show phase

invariance, meaning that they have high spike rates for all grating phases (De Valois 

et al., 1982). Complex cell responses to motion differ from those to flicker (see Figure 

10). In response to motion, complex cells exhibit a sustained response, but in response 

to flicker they exhibit an oscillating response (De Valois et al., 1982). 

Motion Simple Cells Complex Cells 

'O 'O 

§ i:: 
0 

Ill <.) <.) 

E Ill Ill 
~ "' ---~ "' "' Ill Ill 
,:,,:. ~ 
"j3_ ·s.. 
C/J C/J 

Space Time Time 

Counterphasing Simple Cells Complex Cells 

'O 'O 
i:: i:: 
0 0 

Ill <.) <.) 

E Ill Ill 
~ ~ 

~ "' "' Ill Ill 
,:,,:. ,:,,:. ·s.. "j3_ 
C/J C/J 

Space Time Time 

Figure 10. Simple and complex cell responses to moving (top row) and counterphasing 
(bottom row) gratings. 

1.4. Pattern Vision 

Pattern vision research is concerned with how the visual system integrates 

spatial and temporal information to detect patterns in the visual input. Pattern 

vision research is informed by both the spatial and temporal vision literature. Again, 
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literally thousands of pattern vision articles have been published and this review will 

only cover a subset of these that are foundational and influential. 

1.4.1. Field, Hayes and Hess (1993) 

Vision does not end with simple and complex cell responses. Following simple 

and complex cell response extraction, a series of operations are performed on Vl out

puts that culminate in a person's conscious experience of the visual world. Although 

not every step involved in this process is known, several clues point to what the next 

step might be. 

Field et al. (1993) performed experiments using primitive Gabor-like stimuli 

of the form known to elicit high firing rates from Vl neurons as evidenced by the 

experiments of De Valois et al. (1982). They provided psychophysical evidence 

suggesting that the visual system alters the salience of these image primitives based 

on spatial configuration. In particular, they found that contours made up of collinear 

and co-circular Gabor configurations were more detectable than contours made up 

of parallel or perpendicular Gabor configurations. This finding suggests that Vl 

neurons connect in a facilitative way with other Vl neurons whose receptive fields 

form collinear or co-circular relationships and in an antagonistic way with other Vl 

neurons whose receptive fields form parallel or perpendicular relationships. Thus, 

higher-level object representations may be built up from low-level image primitives 

by selectively grouping neurons with particular receptive field configurations. Field 

et al. (1993) called these collections of receptive fields "association fields" (Figure 11). 

Later studies examining the statistics of natural images found that local edge 

elements on global object-bounding contours tend to pair with their neighboring edges 

in a way consistent with a local association field model (Kruger, 1998; Sigman et al., 

2001; Geisler et al., 2001; Elder and Goldberg, 1998a, 2002). This suggests that 

the association fields evidenced in human vision may serve to help build up object 
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Figure 11. Association Field. Receptive fields that form parallel or perpendicular 
spatial relationships are unlikely to group together (denoted by dotted lines), while 
receptive fields that form collinear or co-circular spatial relationships are likely to 
group together ( denoted by solid lines). 

representations in an ecologically optimal way. 

Association fields primarily exploit what the Gestalt psychologists of the 1920's 

and 1930's called proximity and good continuation (Kohler, 1920; Koffka, 1935; Wertheimer, 

1938). More than these, however, the Gestalt psychologists provided behavioral 

evidence suggesting that the visual system also exploits similarity, symmetry, closure 

and common fate for perceptual grouping (see Figure 12). Proximity refers to how 

far apart two image features are. Good continuation refers to how smoothly image 

features vary in their orientations. Similarity refers to how close two image features 

are on dimensions like luminance, contrast polarity, shape, etc.. Symmetry refers to 

how well one side of an image maps onto the mirror reflection of the other side of 

the image (i.e. mirror symmetry) as well as to how well points in an image map 

on to other points reflected through the center of the image's coordinate system (i.e. 

rotational symmetry). These cues will become relevant in my Methods section where 

I use them to construct stimuli that elicit percepts of different numbers of objects in 

an image. 

1.5. Modeling Vl Responses 
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Figure 12. Gestalt grouping cues. Proximity: because the circles are closer together 
horizontally than they are vertically, they group into rows instead of columns. 
Similarity: because the elements in a column are similar, the elements group into 
columns instead of rows. Symmetry: because the black sections are symmetrical the 
figure groups into two symmetrical black objects against a white background instead 
of three asymmetrical white objects against a black background. Good continuation: 
this figure groups into two smooth contours - one horizontal and one vertical as 
opposed to two pointed contours each touching at their cusp. Closure: this figure 
groups into closed squares instead of open "I" shapes. 

In order to model the local Fourier decomposition imputed to be performed by 

Vl, researchers have traditionally convolved the image with a set of wavelets like those 

depicted in Figure 4, but spanning a range of spatiotemporal frequencies in octave 

intervals, and spanning the full range of possible orientations (i.e. 0° to 360°) with 

two phases (0° and 90°) at each spatiotemporal frequency/ orientation combination 

(Simoncelli and Heeger, 1998). The results of convolving an image with this type of 

filter bank yields model neural firing rates that can be negative and are unbounded 

(i.e. they can be infinite). Real neurons have positively valued firing rates and have 

a maximum firing rate beyond which they can fire no faster. In order to take these 

constraints into account, the convolution results are typically made positive through 

some form of rectification like half-wave rectification and squaring (i.e. half-squaring) 

and following this procedure, the convolution results within a given spatial region 
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are normalized ( typically through divisive normalization, shunting inhibition or a 

winner-take-all scheme) (Reeger, 1992; Carandini et al., 1997). This procedure is 

depicted schematically in Figure 13 and yields simple cell responses that resemble 

those reported in physiological recordings by Hubel and \Viesel (1962) and De Valois 

et al. (1982). 

In order to model complex cell responses. the VI simple cell responses are 

typically summed over the two measured phases (0° and 90°). This produces neural 

responses that are selective for spatial frequency and orientation, but that are phase

invariant. 

Similar to spatial vision, temporal vision is generally modeled usmg a local 

Fourier decomposition such as a wavelet code. Unlike spatial vision where a filter can 

be convolved with an image in either a forward or reverse direction, in temporal vision 

filtering may only include present and past information (future responses remain 

unknown). This constraint necessitates the use of causal filters - filters that use past 

and present but not future information (Figure 14). 

In order to build up a temporal frequency selective neuron from spatial frequency 

selective neurons it has been hypothesized that the responses of a cascade of neurons 

all with the same spatial frequency selectivity are pooled over time with each neuron's 

input reaching the pooling cell with a slight temporal offset (see Figure 15) (Reichardt, 

1969; Adelson and Bergen, 1985). In this way, a single set of spatial filters may be 

applied to an image and, depending on how they are connected to temporal pooling 

cells, they combine to produce cells selective for different temporal frequencies. 

This mechanism may be used to confer motion selectivity to VI simple cells, or, as 

in the example presented in Figure 15, flicker sensitivity. 

Speed and direction, of course, are related to spatiotemporal frequency as 

outlined in Equations 1 and 2. 
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of Gaussians, oriented difference of Gaussians, balanced Gabors, etc.), what range of 

spatiotemporal frequencies to use and how densely to sample the spatiotemporal 

frequency space ( e.g. ·Wilson and Gelb, 1984 suggest that six spatial-frequency

tuned mechanisms suffice), and how densely to sample the orientation space. At the 

response rectification one must consider what non-linearity best describes Vl 

cell response rectification ( e.g. half-wave rectification, squaring, half-squaring, etc.). 

At the response normalization stage one must consider how large a spatial extent 

to pool responses over, whether to divisively normalize, to use shunting inhibition 

or to use a winner-take-all model, what spatial frequencies to pool over and what 

orientations to pool over. 

Although this challenge may seem daunting several notable researchers have 

to meet it. Among these are Adelson and Bergen (1985), Heeger (1987), 

Simoncelli and Heeger (1998), Blakeslee and !vlcCourt (1999) and Cope et al. (2008). 

1.6. Kanizsa Figures 

Kanizsa (1976) provided a popular example of a figure that uses proximity, good 

continuation, similarity, symmetry, and closure to influence one's percept. Figure 16 

illustrates an example of a Kanizsa square. Here, strategically placed Pac-Ylan shapes 

induce the percept of a square even though there are no luminance discontinuities 

along much of the square's border (Gold et al., 1999, 2000). Since the induced contour 

percepts are illusory they are typically referred to as illusory contours (IC). 

Prior reverse-correlation studies have shown that humans use information along 

the illusory contour border to make discrimination decisions even when no 

relevant information is present at those borders (Gold et al., 1999, 2000). These 

findings suggest that illusory contour processing is implicit and automatic. A later 

study by ;vlurray et al. (2002), however, found that illusory contour processing be

comes more cognitive and effortful the more peripheral the stimulus presentation 
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Figure 16. The Kanizsa square illusion (Kanizsa, 1976). Although no luminance 
discontinuities are actually present between the Pac-1fan shaped symbols, subjects 
perceive edges at these locations, yielding the percept of a square. 

and suggested different cortical pathways for the processing of foveal and peripheral 

illusory contours. 

The determination of the cortical locus for illusory contour processing has been a 

topic of much debate in the scientific literature. Several studies have found activation 

as early as Vl (Hirsch et al., 1995; ~fendola et al., 1999; Larsson et al., 1999; Seghier 

et al., 2000: Ohtani et al., 2002: Halgren et al., 2003) and V2 (Hirsch et al., 1995; 

Ffytche and Zeki, 1996; Goebel et al., 1998; Mendola et al., 1999; Larsson et al., 1999; 

Seghier et al., 2000; Ohtani et al., 2002; Halgren et al., 2003), however, several other 

studies have found no activation in either Vl (Goebel et al., 1998; Kruggel et al.. 

2001; l\f urray et al., 2002; Pegna et al., 2002; Brighina et al., 2003; Ritzl et al., 2003; 

Stanley and Rubin, 2003; Murray et al., 2004) or V2 (Kruggel et al., 2001; 11urray 

et al., 2002; Pegna et al., 2002; Brighina et al., 2003; Ritzl et al., 2003; Stanley and 

Rubin, 2003; Murray et al., 2004) in response to illusory contours. Other areas that 

have been implicated in illusory contour processing include right Brodmann's area 

18 (Hirsch et al., 1995), V5 (Goebel et al., 1998; Seghier et al., 2000; Kruggel et al.. 

2001) and the Lateral Occipital Complex (LOC) (Ffytche and Zeki, 1996; Ivfendola 

et al., 1999; Murray et al., 2002; Pegna et al., 2002; Halgren et al., 2003; Ritzl et al., 

2003; Stanley and Rubin, 2003; Murray et al., 2004). 

Studies examining the timing of illusory contour processing suggest that illusory 
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contours are initially generated in area LOC and, through a feedback cascade, elicit 

activity in earlier visual areas (Murray et al., 2002, 2004). 

Several lines of evidence suggest that illusory contours are processed indepen

dently of contrast polarity (i.e. it does not matter if the inducers are black against 

a white background or if the inducers are white against a black background). In

tracranial studies using macaques have revealed contrast-polarity-independent figure

ground responses (Baumann et al., 1997; Zhou et al., 2000: Peterhans and Heitger. 

2001) as well as contrast-polarity-independence in responses to illusory contour pres

ence versus absence (Heider et al., 2000). Behavioral studies have demonstrated that 

illusory-contour-percepts persist over variations in contrast polarity across inducers 

(Prazdny, 1983, 1986; Shapley and Gordon, 1985: Dresp and Grossberg, 1997; Victor 

and Conte, 1998; Spehar, 2000) and over variations in the induced shape's subjective 

brightness (Ware, 1981). fl\IRI studies have shown contrast-polarity-independence for 

illusory contour presence versus absence in area LOC (I\1endola et al., 1999). Finally, 

VEP studies have shown contrast-polarity-independence for the timing of illusory 

contour processing (Murray et al., 2002). 

Given the useful properties of Kanizsa squares and the robust nature of the 

square percepts they induce, these figures will form the principal stimulus for my 

second experiment. 

1.7. Summary 

Of relevance to the current research, the above literature review suggests that 

a contrast modulated Gabor patch will selectively activate one, or a small number of 

Vl cells in a localized region of the visual cortex, with simple cells being activated 

in a phase-locked manner to the incoming retinal image stream. With this piece of 

information in hand, one can next consider how best to use this property to probe 

synchrony's effects on Vl cell pairs. I will leverage this property of Gabor patches in 
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my first experiment and show that stimuli carefully constructed using Gabor patches 

may reveal information about how the visual system uses synchrony. In my second 

experiment, I will use Kanizsa squares and show that they too can reveal interesting 

information about how the visual system uses synchrony. The next chapter will 

expound on what synchrony generally means in the scientific literature, where its 

significance lies and what role synchrony plays in perceptual grouping and scene 

segmentation. 
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CHAPTER2. SYNCHRONY 

Synchrony refers to the simultaneous occurrence of two or more events in time. 

Neurally, synchrony occurs at multiple levels. Synchrony can occur at the single-spike 

level and at the spike-rate level ( although these two levels become the same if one 

makes the latter's temporal integration window equal to a single spike's duration). 

Synchrony can also occur between two neural populations. Neural synchrony is 

ubiquitous m the brain (Engel et al., 1991a; Gray et al., 1989; Fries et al., 2001; 

Roelfsema et al., 1997; Steinmetz et al., 2000; Singer, 2004; Kreiter and Singer, 

1996). the question of relevance pertains to its functional significance. Researchers 

have found evidence that neural synchrony is associated with perceptual grouping 

(Engel et al., 1991a; Gray et al.. 1989). attention (Fries et al.. 2001: Roelfsema et al., 

1997; Steinmetz et al., 2000), coordinating information transmission between cortical 

areas (Engel et al., 1991c; Roelfsema et al., 1997) and even conscious awareness of 

events (Singer, 2004). Others, however, posit that neural synchrony results purely 

from neural responses phase locking to externally synchronous stimuli - like a boat 

rocking back and forth in response to the waves - or from chance resonance within 

the cortical circuitry, where the brain doesn't actually care that its neurons are 

responding synchronously and makes no use of that synchrony for internal functioning 

(Shalden and Movshon, 1999). They caution that the current body of experimental 

evidence does not warrant claims for neural synchrony's functional role in the cortex, 

that the computational complexity required of individual neurons in order to use 

synchrony is unreasonable and that alternative mechanisms exist for performing the 

tasks that have been attributed to neural synchrony (Shalden and Movshon, 1999). 

In this document I shall review the evidence bearing on neural synchrony's role in 

cortical processing, I will conduct an experiment that clears up some questions about 

synchrony's importance and I will propose a computational model that explains my 
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experimental results. 

2.1. Synchrony Sources 

One point of general agreement in the scientific community is that synchrony 

does occur in the brain. In binocular rivalry experiments, for example, et al. 

(1997) found that all stimulated neurons responded with a high rate, but 

that the rivalrous neurons winning the competition had relatively more synchronous 

responses than the neurons losing the competition (as measured by spike-field coher

ence). Engel et al. ( 199 lc) showed that synchronization between different cortical 

hypercolumns may be observed in the cross-correlograms performed on neural spike 

trains when the stimulated hypercolumns were responding to parts of the same object. 

et al. ( 199 lc) also showed through cross-correlation analysis on unit responses 

that cat area 17 neurons can synchronize with neurons in the cat's posteromedial 

lateral suprasylvian area. Engel et al. (1991a) found that neural in cat area 17 

can even synchronize across hemispheres ( as evidenced through cross correlograms 

performed on neural spike trains) and that this synchronization was abolished by 

sectioning of the corpus callosum, suggesting that the observed synchronization was 

resultant from cortico-cortical connections. 

Starting with this point of agreement then, in this section I shall examine when 

and how neural synchrony occurs in the brain. This, in turn, shall yield some hints 

as to neural synchrony's functional importance. 

Synchronous neural firing may from at least three possible sources: 

1. Stimulus-locking: Different neurons responding to the same stimulus will at 

the same time when the stimulus changes (Singer, 2004). 

2. Common input: Different neurons that receive their inputs from a common up

stream ''parent" neuron will both fire when stimulated by their common parent 
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(Singer, 2004). 

3. Dynamic interactions within the cortical network: some neurons fire transiently 

in synchrony when the cortical network is in a particular state and stop firing 

synchronously when the network state changes (Singer, 2004). This is analogous 

to how a section of violinists will all play in unison during one part of a concerto 

but will start playing different tunes at a different part of the concerto. Their 

synchrony depends on the state of the concerto. Hutcheon and Yarom (2000) 

suggest that this category may be subdivided into three subordinate categories 

based on the neuron's state of resonance and amplification: (a) synchrony 

caused by resonance alone: (b) synchrony caused by weak interactions between 

resonance and amplification; and ( c) synchrony caused by strong interactions 

between resonance and amplification that can destabilize a neuron's resting 

membrane potential and induce it to become spontaneously oscillatory. 

Each of these synchrony sources is important in its own right. Although the bulk 

of this paper shall focus on dynamic interactions within cortical networks, interesting 

insights may be gained by examining the first two synchrony sources in a little more 

detail. 

2.2. Stimulus-Locking 

Stimulus-locked synchronous responses have been found in many different areas 

throughout the brain. Rager and Singer (1998), for example found that flickering 

visual stimuli manifest as well-synchronized cortical responses, indicating that relativ~ 

spike timing is preserved when transmitted from the retina through the LGN to 

the cortex. Other experiments (Castelo-Branco et al., 1999) and modeling studies 

(Stevens and Zador, 1998) have revealed that relative spike timing is reliably trans

mitted with a precision in the millisecond range and that oscillatory retinal responses 
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are reliably and retinotopically transmitted to the cortex. \Vith every biological 

operation there is an associated cost. In the case of neural firing, for instance, 

there is a high metabolic cost. Less than one percent of cortical neurons can be 

concurrently substantially (Lennie, 2003). Given this high cost, there is a strong 

evolutionary drive to reduce the number of substantially active neurons involved in 

cortical computations. Only important computations are allowed to proceed and they 

must do so in the most efficient way possible. Despite some temporal variability in 

neural responses to stimuli, some have argued that neurons have sufficient fidelity 

to carry important information in their spike timing. It is thus likely the case that 

synchronized neural signals carry some useful information, especially since firing two 

neurons at the same time uses more metabolic resources per unit time than would 

be used if their firing \'s,ere spread out in time or if only one neuron ,vere to fire. 

The results of several experiments showing that temporal synchrony in a stimulus 

can facilitate spatial grouping (Elliott and ~Hiller, 1998; Fahie, 1993; Lee and Blake, 

2001; Parton et al., 2001; Usher and Donnelly, 1998; Koepsell et aL 2010) suggest 

that the useful signal carried by stimulus-locked neural synchrony is a perceptual 

grouping cue. Specifically, when an object's image projects onto the retina, all of 

its local parts project images that change at the same time or at very close times 

(i.e. they change along a smooth temporal gradient). The neurons responding to 

the objecfs parts become active at the same time and these synchronous responses 

indicate that the responding neurons represent information that should be grouped 

together. Imagine viewing a moth camouflaged against a tree trunk. As long as the 

moth remains still it is difficult to distinguish from its surrounds, but as soon as it 

moves, all of the neurons responding to its image begin to signal motion at the same 

A visual system that uses this exogenous synchrony cue presumably does a 

better job at correctly grouping and segmenting a retinal image than one that does 
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not use this cue. 

2.3. Common Neural Input 

Unlike stimulus-locking, synchrony from common input does not necessarily 

require the neural responses to be phase-locked to an exogenous stimulus. It only 

requires neural responses to be phase-locked with each other. 

Within the brain one can find connections of all sorts - some neurons send their 

signals to many other neurons and some neurons send their signals to only one neuron. 

Similarly, some neurons receive signals from many neurons and some neurons receive 

signals from only one neuron. A neuron that sends its message to many others may 

cause neural synchrony among the neurons it connects to. This is useful for the same 

reason that stimulus-locking is useful - if information about the same object is being 

sent to two cortical areas then the temporal grouping cues related to that object 

will need to be passed on to both areas in a reliable way in order for those cues 

to be maximally useful. What better way to reliably transmit the same temporal 

information than to have the same neuron seed activation in both cortical areas? 

2.4. Synchrony From Dynamic Interactions Within The Cortical Network 

Synchrony resulting from dynamic interactions within the cortical network does 

not have as easy an explanation as synchrony resulting from stimulus-locking or 

common input, but it happens often and in many different cerebral structures (for 

reviews see Engel et al. (2001) and Singer (1999)). To get a sense of whether or 

not this kind of synchrony has any purpose, lets examine the conditions under which 

it has been observed. Engel et al. (1991a) and Gray et al. (1989) found that the 

spatiotemporal patterning of synchrony resulting from dynamic cortical interactions 

depends on stimulus configuration. Cortical network activation state (meaning which 

neurons are actively firing and which neurons are silent) also seems to play a role 
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in determining the spatiotemporal patterning of synchrony resulting from dynamic 

cortical interactions (Herculano-Houzel et al., 1999; ::VIunk et al., 1996), as does 

attention (Fries et al., 2001; Roelfsema et al., 1997; Steinmetz et al., 2000). For 

the time being, however, I will focus on the effects of stimulus configuration on neural 

synchrony. 

In stimulus configuration experiments, reseaschers have presented animals with 

primitive stimulus elements like bars, edges and Gabor patches and have recorded 

from groups of two or more neurons in the thalamus or the primary visual cortex. 

Here, the typical finding is that neurons in different cortical hypercolumns (recall 

Figure 5) and in the same or different cortical areas and in the same or different 

hemispheres tend to synchronize their responses when stimulated with elements falling 

on a common contour and tend independently when stimulated with separate 

contours (Engel et aL 1991a,b,c; Freiwald et al., 1995; Gray et al., 1989). Note 

that this is not the same as synchrony from common input because if the neurons 

were synchronizing based on a common input then the neurons that ,vere not part of 

the same contour would synchronize by virtue of the fact that they were presented 

with their stimuli at the same time. At the receptive field level, synchrony tends 

to arise in both neurons with overlapping receptive fields and in neurons with non

overlapping receptive fields. However, for the neurons with non-overlapping receptive 

fields synchrony tends to arise only in those neurons with similar orientation pref

erences. These findings suggest that neurons whose receptive fields have a collinear 

or co-circular spatial arrangement (Field et al., 1993) are hard-wired to synchronize 

while those whose receptive fields form orthogonal spatial relationships are hard-wired 

to desynchronize (Yen et al., 1999). 

Synchrony is not solely used to indicate that two neuron's local receptive fields 

lie on the same global object, contour. At the surface perception leveL analysis of 
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neural pair in areas 18 and the posteromedial lateral suprasylvian complex (P:rvILS) 

of cats reveals that they synchronize their activity if the contours they're responding 

to are perceived as belonging to a common surface (Castelo-Branco et al., 2000). 

In the medial temporal cortex (area lVIT), Kreiter and Singer (1996) found that MT 

cells in macaques with overlapping receptive fields, but with different motion direction 

preferences, can engage in synchronous activity when stimulated with a single moving 

bar, but when activated by two different bars. each moving in the direction preferred 

by the cells at the two respective sites, responses show no or fewer synchronous 

periods. \i\Thatever neural synchrony is observed while the bar remains unperturbed 

must be the result of some internal process for which it is useful to make neurons 

responding to a common bar at the same time. 

Lisman (1996) argues that objects are neurally coded by synchronous bursts 

of activity. This implies that different objects could be represented cortically by 

synchronous neural bursts at different times. but all neurons responding to the same 

object would respond at the same (von der l\falsburg, 1981; Izhikevich, 2004). 

Lamme and Spekreijse (1998) conducted experiments whose results suggest that this 

may not be true of objects defined by texture, however, methodological problems with 

their experiment (i.e. they recorded from multiple neurons at the same time instead 

of from individual neurons) that were pointed out by Gray (1999) suggest that their 

conclusions may have been premature and that synchrony may still be involved with 

texture-based image segmentation. 

Inspired by the existent body of literature citing a significant role for synchrony 

in defining object membership, Koepsell et al. (2010) implemented an image 

mentation algorithm that encoded information about homogeneous image "'""'"',"'"'u 

through different oscillation phases. Their algorithm captured contrast information 

in spike rates and segmentation information in the phases of the spike trains. 

34 



Their results yielded natural scene segmentations that were qualitatively similar to 

human segmentations. 

Fries et al. (1997) performed a binocular rivalry experiment where they recorded 

from cat area 17 neurons responding to both suppressed and un-suppressed eyes 

and examined the resultant firing patterns. They found that all stimulated neurons 

responded at a high rate, but more importantly that the neurons winning the com

petition had relatively more synchronous responses (as assessed through a neural 

response cross-correlation histogram) than the neurons losing the competition. The 

dominant synchronous responses had power in the gamma frequency range (i.e. 25 

to 100 Hz). 

More than generally eliciting power over the broad band of frequencies in the 

gamma range, however, Izhikevich et al. (2003) showed that neurons can selectively 

target which of the many neurons they synapse with for activation by changing their 

output spike frequency (while still firing within the 25 to 100 Hz range). Individual 

neurons are optimally stimulated by different input frequencies, so changing one's 

output frequency allows a neuron to specify which neuron to optimally stimulate even 

though that neuron might make connections with several other neurons (Izhikevich 

et al., 2003). 

Neural synchrony's utility stretches even further than this, however, as within 

populations of synchronously oscillating neurons, individual cells can skip cycles 

(Buzsaki, 1996; Buzsaki and Chrobak 1995), and neurons engaged in population 

oscillations of different frequencies can have partial correlations (Jensen and Lisman, 

1998). These properties can be used to represent gradients and nested relations (Luck 

and Vogel, 1997). 
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2.5. Neural Oscillations 

An oscillation is a periodic fluctuation in a given measurement over time. Neu

rons maintain electrical potentials over their membranes. These potentials may 

oscillate given the right conditions. Furthermore, neurons fire spikes. The rate at 

which neurons spike may also oscillate over time. 

~fore than asking how synchrony one might ask how neurons come to 

oscillate in the place? Neural oscillations are an important prerequisite for 

neural synchrony and the mechanisms by which neural oscillations occur deserve 

some attention. 

Hutcheon and Yarom (2000) posit that resonance and amplification are impor

tant factors involved in neural oscillations. Resonance refers to the ability of some 

neurons to respond selectively to stimulation by neurons oscillating in their firing 

( or membrane potential) at a particular frequency while amplification refers to the 

ability to increase responses over all input frequencies. A neuron that prefers 40 

Hz stimulation, for example, will yield the highest response when stimulated with 

oscillatory inputs at 40 Hz and will respond less to oscillatory inputs of any other 

frequency. Subthreshold oscillations in membrane potential can be self-sustaining 

given the appropriate amplification. 

Put together, two neural properties (resonance and amplification) allow for 

three main forms of oscillation. The first is pure resonance where a neuron fires at a 

particular frequency under constant stimulation by another neuron. The second is an 

interaction between resonance and amplification where a neuron fires with a sustained 

oscillatory firing pattern at a given frequency if given the appropriate transient input. 

The third, and final oscillation type results from amplification that is so strong that 

it moves subthreshold membrane potential oscillations to the range where they can 

initiate action potentials and cause the neuron to engage in spontaneous and sustained 

36 



oscillatory firing. 

2.6. Synchrony at the Behavioral Level 

Although the effects of synchronous visual stimuli on neural responses have 

been shown to depend on the stimuli's spatial configuration, synchronous stimuli 

have also been shown to affect behavioral responses in a way that depends on spatial 

configuration. 17 A and B show two stimuli that differ in their spatial 

configuration. Figure 17 A shows a stimulus array where all of the elements are 

randomly oriented. This configuration yields no particularly salient percepts of any 

objects. Figure 17B. however, sho\VS a stimulus array where the elements along 

the horizontal meridian are all collinear with each other and yield the percept of a 

horizontal contour. Similar stimuli have been shown in single cell recording 

experiments to yield synchronous oscillatory responses from neurons whose receptive 

fields fall along the contour (Engel et al., 199la,b,c; Freiwald et al., 1995; Gray et aL 

1989: Kreiter and Singer, 1996). Recently, Cheadle et al. (2008) conducted a clever 

experiment using these two stimuli that revealed interesting behavioral effects related 

to synchrony between individual elements in these two stimulus configurations. Unlike 

prior experiments that used synchrony as a grouping cue to allow subjects to group 

or segment elements in a given image, Cheadle et al. (2008) used spatial configuration 

as the grouping cue and examined how different spatial configurations influenced a 

subject's synchrony percepts. In order to do this they made the two red and blue 

circled elements in 17 A and B undergo square-wave oscillations in their contrast while 

the remaining elements were held fixed at 100% contrast. The contrast oscillating 

elements could oscillate either in phase or could oscillate with some arbitrary temporal 

phase difference. Given a set of contrast oscillating elements embedded in a given 

static background (a zero-objects randomly oriented background or a single-object 

horizontal line background) the subjects were asked to perform a two-interval forced-
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choice task where they identified the interval containing the more synchronously 

oscillating elements. From trial to trial task difficulty was adjusted by making the 

elements in the two intervals more or less similar in their synchrony level. Critically, 

for a given synchrony level subjects' response accuracy varied depending on whether 

or not the oscillating Gabors were or were not part of a common contour (i.e. accuracy 

for 17 A differed from accuracy for 17B). In particular, they found that subjects 

were able to make accurate synchrony discriminations over a smaller portion of the 

possible phase difference spectrum when stimulus elements formed a collinear contour 

than when they formed an orientation jittered pattern. This is consistent with a 

model where flickering elements on a zero-objects pattern (Figure 17 A) are perceived 

veridically, but where flickering elements on a common contour (Figure 17B) are 

perceived as being more synchronous than they really are. resulting in a compression 

of the range of perceived synchrony levels and poorer performance on Cheadle et al. 's 

task. Cheadle et al. (2008) provide a model that describes behavioral performance 

on this task. This model is described in detail in the Modeling section, however, I 

shall outline a few key points here. Firstly, their model is premised on the notion 

that somewhere in the brain stimulus contrast oscillations are veridically transduced 

(although they do not specify whether these contrast oscillations are transduced into 

oscillations in membrane potentials, spike rates or population activity). This is not an 

unreasonable assumption given prior neurophysiological findings, however, it would 

have been preferable if they were explicit about what kind of oscillations they were 

talking about. Next, they posit that these internal oscillations are actively modulated 

by internal mechanisms that are sensitive to stimulus spatial configuration. The key 

predictions of the model are that the internal representations of the two oscillating 

Gabors are extended in time to have periods of overlapping high responses in the case 

where they fall on a common contour (the one-object pattern) and are represented 
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Figure 17. Exa1uplt' psn-hophn,ind stiurnli. A: Zern-ohjPch stinrnli. I3: O11e-olijPct 
stiurnlw,. C: T,,·o-objech stimuli (ol,j<'c-t lou\tious ar<' rnark<·d iu 1.1.;n'('ll). In <'ach 
stimulus tll<' tm> Cal,ors 011tli11ed i11 red awl l,lu<' oscillated iu th<'ir c-011trnst \\·l1il<' thr 
rr11rnini11g Gahors where held tixrd at 100\) coutrnst. The plwsc diff<T<'llU' lwt,n·c·11 
n•d c111<l l>lul' Gabor os('illatious ,·1-iriecl fr0111 trial to trial. :\on<' of th<' r<'cl. l>lnc or 
grceu marks appC:'an'd iu the <'xperimcuts c·o11du<'t<'cl . 

1·c·n et nl. (l!J!J!J) pro,·ide a lih1ck-hox std<' model (i.<'. c1 model \Yith 110 spl'citi<'d 

11e11nd d_\·uamics} for hmY sn1duouy could h<' used to group 11rnral r<'sponscs st('Jll

miug from a commou object and scgn•g,1t<· t h<'sc from 11eurnl respuns<·s stemming 

from sc•pmc1tc> ohj<·c-ts. CrnciHl to the formulation of Yc•u et ,\l. ( EJ!J!J). hmn·nT. 

is that responses to separntr objects lw nc-tin•l_\· 1frsyncltro11i::.ul. This is import nut 

bemuse' if two 1wurous oscillating in response to S<'pHrntr objC'cts haprwued to haY<' 

similnr st c1rt ing phase's. t lH•n the_\· could end up being grou p<'d t ogct hrr b_\· clwuc<' ewu 

though the_\· n•ally belonged tu sepHrnte olJjects. Actiw des.n1duonization ,ffoids 

this problem because the neural oscillation plrnses reprcsc•nting separate object s an., 

pushed apart cwn if they start off lwiug simihu. Clwndle er al. (2008) did not te;-;t 

for lwh.-ffiornl <'Yi den<'<' of this plienom<'non. Furt hcrmorc>, the model the_\· proYidc to 

account for t h<'ir results. "·hil<' producing t lie dcsin"< 1 s:n1d1ro11_\· or lack-t h<'r<'-of. is 

not a biophy;-;ical model. clops 11ot relat<' to spikiug n<'urous aucl fails to <'Xplaiu th<' 

rnnoniccll µ;amma frequ<'ncy powN oh;-;erwd in single cell recordi11g studies am! EEG 

pan-1ctigms that cxamirn' neural bcha,·ior mH.l<•r cornlitions of IWI'C'c>ptual grnupiug. 

Similar!_\·, '{en. :\Ieusd1ik, and Finkel":-; model. while d<'scrihing some neural behm·ior. 
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is also not a biophysical model and has no explicit dynamical formulation. 

In this dissertation I will provide behavioral evidence for active desynchroniza

tion between neurons responding to elements on separate objects and will develop 

a biophysical neural model that not only predicts my behavioral results, but which 

also explains the gamma frequency power observed in single cell recording studies 

and EEG paradigms that examine neural behavior under conditions of perceptual 

grouping. 
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CHAPTER 3. MODELING 

In this Chapter I present two models that describe how synchrony can arise 

the brain. The first is the Cheadle et al. (2008) model, which does not have an explicit 

level of description, but which may vaguely be interpreted as describing changes in 

membrane potentials, changes in the firing rates of individual neurons. or changes 

in the population activity of neural populations. The second model is based on 

Hodgkin and Huxley (1952)'s equations describing how neural membrane potentials 

change as a function of the ion currents traversing the membrane. In this model I 

network the neurons such that synchrony and asynchrony between neural pairs 

as asymptotically stable steady states depending on the input synchrony and on the 

neural coupling coefficients. 

For each model I will provide a detailed description of how the model works and 

what it predicts for various inputs. 

3.1. Cheadle et al. (2008) 

Cheadle et al. (2008) model produces results like those shown in Figure 

18. They showed that their model is capable of producing behavior that is uncoupled 

or synchronously coupled and I show that it is also capable of producing behavior 

that is asynchronously coupled. Critically, however, their model is not a biophysical 

model and it does not predict the gamma range power that has been observed in 

electrophysiological studies of perceptual grouping ( e.g. Fries et al., 1997). Further

more, rather than imposing true phase-alignment in the signal's Fourier components, 

Cheadle et al. 's model simply has each responding neuron cause an increase in the 

responses of its neighboring neuron. This model, thereby changes neuron one and 

two's relative amplitudes depending on whether synchrony or asynchrony is desired, 

but does not directly manipulate phase (Goodell and Rainville, 2009). 
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( \\·hen' D \\·as not originall)· reported by Clwadle et al.. 2008). Red traces denotr 
inputs to and responses from i ·1 while blue traces denote inputs to and n'sponses 
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Cheadle et a1.'s model employs four neurons and is illustrated in Figure 19. Two 

neurons, Vi and V2 , receive excitatory stimulus input and provide the main responses 

of interest. Connected to each of these two neurons are two more neurons, R 1 and 

R 2 , that receive excitatory input from V1 and V2 respectively and provide inhibitory 

feedback. Additionally, each neuron has recurrent connections, V1 and V2 providing 

self-excitation (balancing the inhibition from the inhibitory neurons) and R 1 and 

R2 providing self-inhibition (balancing the excitation from the excitatory neurons). 

Finally, Vi and V2 are coupled via mutual excitatory connections. The equations 

describing the neuron's behavior with respect to time ( derived from Cheadle et al. 

(2008) 's discrete difference equations) are: 

dVi . dt = (1 - k)[-V1 + A1F(Vi) - BF(R1) + A2F(V2) +Ii+ nozse](t) (3) 

dR1 dt = (1 - k)[-R1 + CF(V1) - DF(Ri)](t) (4) 

dV2 dt = (1 - k)[-V2 + A1F(V2) - BF(R2) + A2F(Vi) + h + noise](t) (5) 

dR2 dt = (1 - k)[-R2 + CF(V2) - DF(R2)](t) (6) 

where t denotes time (ranging from Oto 2000 msec in steps of 1 msec) k is a leaky 

integration constant (set to 0.98), A1 is the self-coupling coefficient that determines 

the level of V-cell self-excitation (set to 1), A2 is the coupling between V-cells (set 

to O for no-coupling and 0.3 for coupling producing synchrony), F is a firing rate 

nonlinearity which they specify as F ( x) = x / ( 1 + x) for x > 0 and F ( x) = 0 for 

x < 0 (this is a limiting case of the Naka-Rushton function with accelerating outputs 

for low input values and asymptoting outputs for high input values), B determines 

the inhibitory strength for the connection running from R to V ( set to 1. 75), C 

determines the excitatory strength for the connection running from V to R ( set to 
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Figure 19. Schematic demonstrating networking between neurons in Cheadle et 
al. (2008)'s model. Arrows indicate excitatory connecitons, filled circles indicate 
inhibitory connections and squares indicate connections that may be either excitatory 
or inhibitory. Vi and Vi are excitatory neurons and R 1 and R2 are inhibitory. 

0.9), D determines the strength of self-inhibition on the R-cells (set to 0.1), noise is 

a variable sampled independently from a Gaussian distribution at each time point 

with a mean of zero and a standard deviation of S D 1 ( set to 1), and I is the stimulus 

input (set to range between 0 and 0.33). 

In Cheadle et al. 's original formulation their stimuli underwent square-wave 

contrast oscillations (not sinusoidal as shown in Figure 18A) and they manipulated 

stimulus synchrony by shifting the square-wave onsets for the two circled Gabors in 

Figure 17 A and B by 0%, 25%, 50%, 75% or 100% of the square-wave's half-period 

- the maximal shift putting the inputs in anti-phase. To model human performance 
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using their equations they took these square-wave contrast oscillations as the inputs 

to their model's V-cells over time and calculated the level of asynchrony as the 

normalized signal difference between the two V-cells' outputs: 

J IF(½) - F(Vi)ldt 
J IF(½)+ F(Vi)ldt. 

(7) 

Curiously, their normalization does not constrain the range of integrated response 

differences to a bounded region (such as [0, l]). In order to relate this measure to 

subject's behaviors then, Cheadle et al. adopted the rule that if the amount of signal 

difference exceeded a given criterion threshold then they classified their V-cell outputs 

as asynchronous, otherwise the outputs were classified as synchronous. In order to 

model decision noise in the subjects' classifications, a second Gaussian noise term 

was added to the difference calculations prior to thresholding and classification. This 

noise term had a mean of zero and a standard deviation of SD2 , which was set to 0.25. 

This procedure allowed Cheadle et al. ( 2008) to generate psychometric functions for a 

two-interval forced-choice task using their model outputs instead of subject responses 

in order to predict how the subjects might respond to their task if the subject ·s neural 

mechanisms were actually implementing something like Cheadle et al. 's model. 

This model, while doing a satisfactory job at describing subject behavior, is 

not based on any known brain mechanisms. Furthermore, it makes no predictions 

beyond describing the behavioral observations in their experiment. Finally, the vmy 

they measure synchrony has nothing to do with the phase relationships between 

the two V-cell responses over time and simply measures response overlap. An ideal 

synchrony metric would capture the phase relationships between the two outputs and 

would preferably be normalized to a restricted range such as [0, 1 J. 

3.2. Hodgkin-Huxley (1952) 
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In 1952, Hodgkin and Huxley proposed a neural model based on the biophysics 

of neural ion currents and membrane potentials. This model is widely regarded as 

the most accurate description of neural firing to date and has successfully predicted 

behaviors beyond what Hodgkin and Huxley originally observed at the time of their 

research. In my research, I adopt a neural architecture consisting of four networked 

Hodgkin and Huxley neurons as shown in Figure 20. In this architecture two ex

citatory neurons (E1 and E2 ) receive stimulus-based input (e.g. from the LGN). 

These two neurons each have excitatory connections with inhibitory neurons (Ii and 

h) which inhibit the excitatory neurons. Finally, the two excitatory neurons make 

connections with each other that may be excitatory, inhibitory or they may not be 

connected at all depending on the spatial configuration of the receptive fields in 

question. 

Each neuron is described by four basic equations. The four equations for one 

neuron are: 

dV l 
-d =-(-(17.81 + 47.58V + 33.8V2 )(V - 0.48) 

t TV 

- 26R(V + 0.95) - 1.93C(l - 0.5H)(V - 1.4) - 3.25H(V + 0.95) 

- EE· G EE(V + 0.92) 

- IE· Grn(V + 0.92) 

- EI· GEIV + Input) 

dR _ l ( 2) -d -- -R + 1.29V + 0.79 + 3.3(V + 0.38) 
t TR 

dC l 
-d =-(-C + 6.65(V + 0.86)(V + 0.84)) 

t TC 

dH l 
- =-(-H +3C) 
dt TH 

(8) 

(9) 

(10) 

(11) 

The main equation governing the neuron's voltage over time is the dV/dt equa-
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Figure 20. Schematic demonstrating networking between neurons. Arrows indicate 
excitatory connections, filled circles indicate inhibitory connections and squares 
indicate connections that may be either excitatory or inhibitory depending on the 
two neurons' receptive field configuration. E 1 and E 2 are excitatory neurons and Ii 
and 12 are inhibitory. 

tion. This equation saturates with increasing voltage due to the negative coefficients 

on V appearing on the right hand side of the differential (meaning that V's rate 

of change decreases with increasing V), producing spikes with a rapid fall-off in 

voltage. The dV / dt equation is modulated by the three remaining equations. The 

dR/ dt equation regulates recovery from spiking and takes on increasing values with 

increasing voltage, but in turn helps to decrease the values in the dV/ dt equation with 

increasing voltage. The dC / dt equation represents the Ca 2+ conductance across the 

neural membrane and the current controlled by C triggers action potential bursts. 

The variable C also increases the neuron's internal Ca2+ concentration, represented by 

the variable H, by providing input to the dH / dt equation. The variable H represents 

Ca2+ -modulated K+ channel conductance, which functions on a much slower time 

scale than C. 
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Different cells are networked together through Rall's alpha function (Rall, 1967): 

where 

dF 1 
-dt = -(-F + Hstep(½re - Osyn)) 

, Tsyn 
dG 1 
-=-(-G+F) 
dt Tsyn 

if X > 0 

if X ::; 0 

(12) 

(13) 

(14) 

and ½re is the voltage at the presynaptic neuron and Osyn is the neuron's firing 

threshold. 

Excitatory neurons (E1 and E 2 ) are parameterized such that EI = 0 in the dd~ 

equation (Equation 8) and the connection from E 2 to E 1 passes through Rall's alpha 

function as: 

and similarly the connection from E 1 to E 2 passes through Rall's alpha function 

as: 

Similarly the connection from an inhibitory neuron to its corresponding excitatory 
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neuron passes through Rall's alpha as: 

Inhibitory neurons are parameterized such that IE = 0, EE = 0 and EI = 2 in 

Equation 8 and the connection from excitatory to inhibitory neurons passes through 

Rall's alpha function as: 

For eliciting synchrony, no coupling or asynchrony I used the excitatory-excitatory 

(EE) and inhibitory-excitatory (IE) connection weights given in Table 1 below. 

Table 1. Excitatory-excitatorv and inhibitory-excitatory connection weights. 
V 

Neural Behaviour EE IE 
Synchrony -33 -30 
No Coupling 0 0 
Asynchrony 27 30 

The constants I used (based on Hodgkin and Huxley's original work) are given 

in Table 2. 

Figure 22 illustrates this model's behavior under three different Ei-E2 connec

tion parameterizations (EE) for inputs that are temporally 45° out of phase. The 

way the model handles the input depends on the receptive field configuration of the 

neurons receiving the inputs (Figure 21). When the receptive fields are perpendicular 

(Figure 21 top), EE is set to +27 and the model exhibits asynchronous coupling 

causing the spike trains line up in antiphase and producing outputs that are less 
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Table 2. Consta11ts nsed in rny modcli11g. 
Variable SnnL,ol Vnlue Description 

T\ 0.9T \"eurnl time constant (m:,;ec) 

TH 

Tc 

TH 

Tsyn 

~Syn 

EI 
EE 
IE 

5.G 
30 
100 
.J() 

-0.2 
•) 

,·;--1ria hle 

30 

Recm·er>· time constant 
Time constant for Ca++ entry 
Time constant for inhibitor>· after-h>·1wrpolarizing potential 
Inhibitor>· post-s>·naptic potential time constant 
Threslwld for IPSP conductm1ce drnnge 
Excit n tor>·-inhil >it or>· W<'ight 
Excit;.1tor>·-excit<1tory conpling coefficient 
Inhil iit < ir>·-exci t Ht or>· W<'ight 

s>·nchronon:,; than th<' input:,; (Figur<' 22D). \\.hen thv recepti,·<, field:,; ,WP co-circubr 

or collinear (Figure 21 bottom). EE is :,;et to -:J:J ancl the model exhibits :,;>·ncl1ronous 

coupling .,·il'lding spik<' trnin:,; tlrnt !in<' up ,,·ith <'ach other crnd procln('e 011tp11ts tlrnt 

an' more s_n1chr011011:,; tlwn thC' input:,; (Fi_gllr<' 22C). \\"hen tllP reccptiw held:,; ar<' 

int<:'rmediat<' liC't,,·ecn pcqwwliculnr Hlld collinC'ar. EE is :,;ct to zero nwl th<' model 

exhibits no conpling and t lH' spike trnins phase lock with th<' input :,;timulu:,; ( Figure 

22B). 

This model is rnpable of prodncing lwhm·ior that is 1mco11plecl. s>·nchronousl>· 

coupled or as.n1d1rono11sly coupled while rct aining liioph>·sical plausibility c111d. HS 

shall he se<'ll short l>·· predicts the gamma rnngc pmYer t lrn t has h<'<'ll ohs<'rwd in 

electroph>·siological studies of perceptual gronping. 

EE=27 

Figure 21. EE n1lues as a function ofreceptiw field configuration. Top: for orthogonal 
receptiw fields EE t c1kes on a rnlue of 27 t hereh>· desynchronizing the i11p11ts. Bottom: 
for collinear rcceptin' fields EE takes on a rnlue of -3:3 thereh>· s>·11chronizing the 
inpnts. 
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FigmP 22. :'doclC'l input:-; nrC' :-;hown on the top in A. :'l!oclel output:-; 1:1 n ' :-;hmn1 in tll<' 
bottom for D: 110 coupling. C: :-;n1dmmou:-; coupling. 1:111d D: H:-;~·11dno11ous coupling. 

I\otC' that for the :-;~·nd1ronou:-;ly coupled lH'uron:-; the ontputs nre more :-;yndmmous 
than the input:-;. \\·hil<' for t lie ;-1sy1Khronousl~· coupled w •11ron:-; t lie outputs arc less 
s~·11chronou:-; than the inputs. Plots E, F c111d G show spike rates for B. C and D 
res1wctiwl~· m1cl nn, lllOH' similar to Cheadle et al.·:-; model outputs shmn1 in Figure' 
18 than are the rct\Y spike plot:-;. :-;uggC':-;ting Cheaclle Pt al. ·s model ma~· l)P lw:-;t :-;uitccl 

a s a description of spike' rntc':-; rntllC'r than m emlm-me nJltage:-;. I\otc' in the:-;c' plut:-; 
that the 11eural :-;pike rnt es go \\·ell into and C' Yt' ll b eyond tlw gnmnrn nrnge dming 
b11rsting. 
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CHAPTER 4. MEASURING SYNCHRONY 

There are many ways to measure synchrony. vVhile each has its virtues, I develop 

here a measure that is best suited to the needs of this research. 

Synchrony ('¥) for two sinusoids with equal amplitudes and frequencies, like 

those shown in Figure 18A, may be intuitively defined as the phase difference between 

the two sinusoids: 

(15) 

where <Pi denotes the phase of sinusoid i. This metric lies on the [-1r, 1r] (given 

that care is taken to wrap differences than 1r or less than -n as in Figure 23) 

and takes on a value of 0 radians when the two sinusoids are perfectly synchronous 

and takes on a value of either -n or 7f radians when two sinusoids are perfectly 

asynchronous. In order to restrict this measure to a more useful range and to assign 

a single number to asynchronous cases the synchrony measure may be modified as 

follows: 

(16) 

This dimensionless metric now lies on the range [0, 1] and takes on a value of 0 when 

the two sinusoids are perfectly asynchronous and a value of 1 when the two sinusoids 

are perfectly synchronous and is similar to the wavelet-based synchronization metric 

of Hramov and Koronovskii (2004). 

Real world signals are rarely pure sinusoids with equal amplitudes, so a genera.lly 

useful synchrony metric requires a bit more complexity. If the signal's true amplitudes 

are allowed to differ (let's call them A1 and A2) then this constitutes another form of 

asynchrony. An amplitude-difference-based synchrony metric might reasonably take 

the form: 

(17) 
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Figme :23. DifferC'llC'f' lwt,n'<'ll plwsC's: o 1 - o 2 . H<'H' o._,_ is held fixC'd c1t --lG" "·hile 
o 1 is rotated around th<' dock from 0 2 to :3G!f. ::\otC' th< 1 s_Ymmetrin-d form of tlw 
differenn' function for hot h doc-kwisC' and co1111terdockwisc dC',·int ions fro111 --15 °. 

This lll<'tric li<'s 011 t lw rn11gc [O. oo) and tt1b-'s 011 a nilu<' of O ,Y\l('n t 11(' two sinusoids 

han' thl' s1:mw cnuplitud<1s at tlw s1-m1C' tillw nll(\ n nd11C' of oo when tlic 1 t"·o sinusoiJs 

h1-1n' inhnitch· diffcreut nmplitwlc,s. UulikC' tlw phnsE-' diffrreuc<' b0t ,n'Cll tm> si1111-

soicls. the arnplit 11de diffrrC'1H·e bct"·C'cn t"·o siuusoicl::; is 1rnb01 mded in t Ii<' posit in' 

direction. l11 ord<'r to restrict this mens1ire to c1 lll<ll'E-' us<'fnl rnuge the <'X]Wll<'11tic1l 

fu11ctio11 nrn>· be c1ppli<'d: 

( 18) 

This metric nmy lies 011 the range [O. 1] and tak<'s on n rnln<' of O "·hen th<' t,nJ 

sinu:soids arc infinitel>· c1s>·11c-hronous c111d a ,·1-ilue of 1 "·hen the two sinusoids ,:tre 

pE-'rfect ly s>·11chro11ous. 

A sy11d1ro11>· mC'usme that comhinPS both phase mid amplit.rn le infornrntio11 

t c1kes t lw lllC'c111 of these hn> s_n1c-hro11y lll(18sure:s: 

1 101 -o-, I I 1 I I) W = - -,.-- + exp ( - .r1 l - _r1.2 

2 
(19) 

This metric agam lies on the rnngC' [O. 1] and takC's 011 a rnlue of 1 for perfect l~· 

synchronous sig1wls a11d a rnluC' of O for i11fi11itel_Y nsync-hronous sigw::ds. Figme 2-l 
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sinusoids \Yith ditfen-'11t frccpt<'llC'ies. This fact allm,·s sn1chrony to hr comp11tc'd ,,·ithi11 

som<' frequenc>· bawl:-; lwn_, brcu post11l1-1ted to lw rnorc important than others for 

cortical prnces:-;iug and pC'1n•ptual grouping. In pm-ticular. :-;cn'ral authors hen-<' foull(l 

cortirnl synchrcm>· in the gmmna rnuge (20 - 100 H;1, ) during pnceptw.-11 grouping 

tasb both C'kctroph>·siologicalh· m1d neurophYsiologicall~- (Eugd et al.. HHHa: Grm· 

<'t al.. HJ8\)). Fumier ·:-; original work shO\H'd tlrnt a \\·hole signal (from start to finish) 

could lw r<'construct<'d with a smn of sine aucl rnsine wan·s of diffneut frequencies. 

arnplituch_,s and phc.Sl'S. I3nilc.ling 011 this \York, Gabor (Hl-:16) furthn d<'monstn1ted 

that small<'r. local pieces of a signal could lw reconstructed has<.'d on n similar pri11ciple 

i,; current!~· kumn1 as a u10 ·11f:lct tron.,fonn. Figure 25 giws au intuition of ,diat a 

,,.ff,·det transform accomplishes. The top panel shows a p11re si1rnsoid with a constant 

frequenc>· (period = 200 millisrconds) oscillating through tiu1c'. The hottorn pand 

,;hows that signal's wavelet trnnsform. Kote that the pec1k amplitude occ1irs c\t the 
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signal's period (200 miliseconds, or 5 Hz) and that the phase changes as the signal 

oscillates through time. 

For an arbitrary time-varying signal, V(t), the signal's wavelet transform may be 

achieved by convolving the signal with a quadrature phase Gabor pair (the wavelets), 

where an individual Gabor is represented by G(t) (Gabor, 1946). 

A Gabor is essentially a sinusoid with a unique frequency that is enveloped by 

a Gaussian window. The equations for quadrature phase Gabor pairs are: 

Gs,,(t: w, o-) - sin(2,rtw) exp (- G )') 
G,~(t; w, o-) - cos(2,rtw) exp (- G )') 

(20) 

(21) 

where t is time, w is frequency and a = 1/ Ji is the envelope standard deviation. 

Examples of such Gabor functions are given in Figure 26. 

In one dimension convolution is defined as: 

(22) 

Here * denotes the convolution operation, which is being performed on the functions 

V(t) and G(t) that are both functions of time (t). If both V and G lie on the range [-1 

l] then convolution is essentially a template matching operation where the convolution 

result will take a large value at locations where the function V matches the function 

G and will take a lower value the worse the match between V and G. 

For the purposes of this study, the signals of interest are neural membrane poten

tials given by Equation 8. Convolving the neurons' output voltages with quadrature 

phase Gabor pairs at a given frequency allows for an estimate of the amplitude and 

phase of those output voltages at the given frequency (w) and at each time point (for 
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an example see Figure 27). The amplitude at a given frequency is given by: 

A(w) = J(V * Gsin(w)) 2 + (V * Gcas(w)) 2 (23) 

and the phase by 

(24) 

where arctan is the arctangent function. 

Performing this operation for all frequencies allows one to estimate a signal's 

instantaneous phase and amplitude for each of those frequencies at each time point 

as shown in Figure 25. 

Having obtained phase-amplitude spectra for each of the output signals of the 

kind shown in Figure 22 one can measure the phase/ amplitude similarity of the two 

signals within any desired frequency band by applying Equation 19. 

In some cases it is desirable to have a synchrony metric that integrates infor

mation across frequencies. One might intuitively define such a metric as a simple 

average of the synchronies obtained within each frequency band: 

(25) 

where w(w) denotes the synchrony within the frequency band w, S1 is the set of all 

frequencies present in the signal and No. is the size of that set. One problem with 

this metric, however, is that it is subject to noise introduced by comparing the phases 

at frequencies with low amplitudes. When the amplitude is very close to zero phase 

measurements become highly uncertain and corrupt the synchrony measurements. 

Taking a weighted average alleviates this problem. Here, higher weights are assigned 

to frequencies with higher amplitudes and lower weights are assigned to frequencies 
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\\·ith IU\n'l' amplitudes. This c-cmn'rts Eqnation 2G to: 

(26) 

(27) 

Similar!~-- Oil(' ma_v wish to integrate s~·uchrom· rneasures uwr time. This uwy 

he achieved lJy Hn'raging Equation 26 on"r time: 

(28) 

where T is the set of cill discrC°te tirnes being integn-1.ted owr aml S·r is t lie size oft his 

:=;et. 

This nwasur(' of s~·nchr011~· 1s superior to Cheadle' et al.·s measure (Equation 
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7) for two main reasons. The first is that synchrony is defined directly in terms of 

the phase and amplitude relationships between sinusoidal \Vaveforms. Nowhere in 

Cheadle et al. 's formulation do they explicitly measure the phases of any waveforms 

associated with their neural outputs. Equation 28, on the other hand, directly 

measures the phases of the neural outputs' sinusoidal components and compares 

them between neural outputs. The second reason is that sinusoidal waveforms with 

power at multiple frequency bands may add their component waves such that the 

signals appear to overlap. \\!hile the phases at given frequency may be completely 

different. Cheadle et al. 's measure would regard this case as synchronous when in 

fact the phases within each frequency band would actually be misaligned. Equation 

28 allows the phase relationships between neural outputs within each frequency band 

to be analyzed independently of all the other frequency bands. therefore providing a 

maximally pure measure of the phase relationships between neural outputs and the 

best estimate of neural synchrony. Furthermore, this formulation allows for analysis 

of synchrony within particular frequency bands ( e.g. the gamma band) that may be 

of theoretical interest, where Cheadle et al. 's measure does not. 

A plot the wavelet transform for a single neuron under the Hodgkin and Hux

ley (1952) model is shown in Figure 28. The subplot shown in Figure 28A reproduces 

one of the spike trains from Figure 22B. The subplot shown in Figure 28B shows this 

signal's wavelet transform. Note that the signal demonstrates power extending into 

the gamma range (20-lO0Hz) (see also Figure 22) during neural bursting. 

A plot of the wavelet transform for a single model unit under the Cheadle et al. 

(2008) model is shown in Figure 29. The subplot shown in Figure 29A is the output of 

the Cheadle et al. (2008) model. The subplot shown in Figure 29B shows this signal's 

wavelet transform. Note that the signal does not demonstrate power extending into 

the gamma range, but instead simply has power at the input frequency of 5 Hz. 
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CHAPTER5.THECURRENTSTUDY 

To summarize the key points so far, the prior literature suggests that neural 

synchrony may be implicated in perceptual grouping processes. Neurophysiological 

studies show that neurons whose receptive fields lie in line with an association field 

tend to synchronize. Computational modeling studies suggest that while primitive 

stimulus attributes, such as contrast, may be signalled via a rate code, more complex 

object membership relationships may be encoded via a synchrony code, interleaving 

synchronous bursts from cells responding to separate objects (i.e. temporal multi

plexing). Behavioral studies reveal that synchrony sensitivity over different stimulus 

configurations is consistent \Vith models where synchrony is imposed on stimulus 

elements projecting from a common object. There is a gap in the literature, however, 

because in order for temporal multiplexing to be effective the nervous system needs a 

mechanism by which to desynchronize signals projecting from separate objects. :-.Ty 

neural modeling section provides a mechanism for how this may be achieved at the 

neural level. The current experiments will seek to provide behavioral evidence showing 

that human behavioral discriminations are consistent with a model that imposes 

asynchrony on representations of stimulus elements projecting from separate objects. 

Experiment 1 will test the hypothesis that humans perceive elements on separate 

objects to be less synchronous than elements on a common object and Experiment 

2 will test the hypothesis that human sensitivity to stimulus synchrony/ asynchrony 

falls in line with the predictions of a model that desynchronizes representations of 

elements projecting from separate objects. 
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CHAPTER 6. EXPERIMENT 1 

6.1. Participants 

Participants included two experienced psychophysical observers ( one female) 

whose vision was either normal or corrected to normal and whose ages were 18 and 

31. Participants gave informed written consent, and the study complied with the 

NIH standards of Human Participant Protection and was approved by North Dakota 

State University's IRB (protocol number SM06154). One participant was na·ive to 

the study's purpose and the other was an author. 

6.2. Apparatus 

Stimuli were displayed on a 22 inch (56 cm) gamma-corrected Iiyama HM204DT 

Vision Master 514 CRT monitor (800 x 600 resolution, refresh rate 200 Hz) connected 

to a Macintosh Dual 2.7 GHz PowerPC G5 workstation with an ATI Radion X800 XT 

Mac Edition video card. At a viewing distance of 2 m the display monitor subtended 

8.5 x 11.3 degrees of visual angle. Participants viewed the stimuli binocularly and 

their head position was stabilized using a chin rest. CRT luminance increments were 

linearized by a look-up-table (using a least-squares fit of a gamma function to the 

monitor's voltage-to-luminance transfer function) to give 10 bit intensity resolution. 

A r-dinolta LS-110 handheld photometer was used to calibrate the display screen. 

Responses were collected using a Logitech RumblePad 2 gamepad. Experiments were 

scripted in :Matlab 7.2® using custom software and extensions from the PsychToolbox 

for OSX v. 10.4.11 (Brainard, 1997; Pelli, 1997). 

6.3. Stimuli and Procedure 

In this experiment I wish to test the hypothesis that image elements on separate 

objects are actively desynchronized relative to image elements on a common object. In 
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order to test this hypothesis I used the stimulus of Cheadle et al. (2008) that contains 

one object (Figure 17B), and I designed a new stimulus that contains two objects 

(Figure l 7C). In each stimulus pattern two of the elements sinusoidally oscillated 

in their contrast (marked by red and blue circles in Figure 17) while the remaining 

elements remained fixed at 100% contrast. The stimulus duration was three seconds. 

Over the course of a contrast oscillation the Gabors' :v1ichelson contrast ranged from 

zero to one. I designed the two-object pattern so that it exploited Gestalt 

principles of proximity. similarity, symmetry, good continuation and closure ( see 

Figure 12) to define object membership (Brunswik and Kamiya, 1953: Elder and 

Goldberg. 1998a,b; Elder and Zucker, 1996; Geisler et al., 2001; Kof:l:ka, 1935). 

If the active desynchronization hypothesis is correct then participants should 

perceive the elements on a one-object pattern to be more synchronous and the 

elements on a hvo-objects pattern to be less synchronous than they are physically. 

Stimuli were pre-computed for this experiment and were formed by placing 

Gabor patches on a lattice and varying their orientations (for a schematic see Figure 

30). The full stimulus array subtended 3.7 x 3.7 degrees of visual angle and was 

composed of 9 x 9 evenly spaced Gabor patches with a center-to-center distance of 

0.4 degrees of visual angle between neighboring Gabors. Each Gabor had an envelope 

standard deviation of 0.05 degrees of visual angle and a spatial frequency of 8.8 cycles 

per degree. On a single trial, subjects were presented with both a one-object pattern 

and a two-objects pattern simultaneously, with one pattern presented at the top of 

the display and the other pattern at the bottom (for a total height of 8.2 degrees). 

In the one-object image proximity, similarity, symmetry and good continuation 

were leveraged to form a single, horizontal contour along the image's midline (all 

of the Gabors on the image's midline are horizontally oriented) while the remain

ing Gabors formed random background clutter (Figure 30 bottom). In two-
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Figure 30. Stimulus schematic. The top pattern shows the two-objects pattern while 
the bottom pattern shows the one-object pattern. In both patterns, two of the Gabor 
patches in the same relative positions (marked by blue and red circles) were held fixed 
at a horizontal orientation. The Gabors in the two-objects pattern (circled in blue) 
always oscillated synchronously, while the Gabors in the one-object pattern ( circled 
in red) varied in their synchrony level from trial to trial. 

objects image proximity, similarity, symmetry, good continuation and closure were 

leveraged to compose two rings, where each ring was defined by proximal and co-
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circular Gabor elements forming a closed structure (Figure 30 top). The number 

of objects in the stimulus constituted the first independent variable for this study. 

My empirical data bear out that participants perceive my two types of object stimuli 

differently. In each stimulus two of the Gabors on the horizontal meridian were always 

at the same orientation and position (marked by blue and red circles in Figure 30 

but these marks were excluded in the stimulus presented to participants) and were 

separated by a center-to-center distance of 2.5 degrees of visual angle. These two 

Gabors sinusoidally oscillated in their contrast at a rate of 3 Hz (ranging from 0% 

contrast to 100% contrast) while the rest of the Gabors on the grid remained fixed 

at 100% contrast. The relative temporal phase of the two contrast-oscillating Gabors 

constituted the second independent variable in this study and was limited to the set 

¢ E [0°, 3°, 5°, 7°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°. 90°]. 

Stimulus Gabors were defined by the equation: 

L( ) __ 1_ ( (x - flx)
2 + (y - µy) 2

) x, y -
2 

exp 
2 

x 
21ra 2a 

(
-2na

2
) cos ( ¢) exp A 

2 

where L is the image luminance at a given position, x and y form a Cartesian 

coordinate system covering the image, µx is the x-coordinate of the Gabor's center, 

µY is the y-coordinate of the Gabor's center, a controls the Gabor's spatial extent, 

A controls the Gabor's period, 0 controls the Gabor's orientation and ¢ controls the 

Gabor's phase. Gabors normally have a non-zero DC component for phase angles 

¢ that are not 90°, however, the cos(¢)exp((-2na2 )/(A2
)) term in Equation 29 

adjusts the Gabor's Fourier transform to have a zero DC component for all phase 

angles creating "balanced Gabors." 
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The two different object levels ( one and two objects) were each generated in a 

particular fashion. For the one-object case (Figure 30 bottom), the orientations of 

all the Gabors lying on the horizontal meridian were clamped at horizontal while the 

remaining Gabors's orientations were sampled randomly and independently from a 

uniform distribution on the range [0°, 360°]. For the two-objects case (Figure 30 top), 

the Gabors were arranged two concentric circles one centered on the display's 

left half and the other on the display's right half. with the Gabors on the display's 

vertical midline clamped at a vertical orientation (i.e. 0 = 0°). 

In the experiment participants completed a two-alternative-forced-choice task 

where they were asked to choose which of the two presented patterns ( the top pattern 

or the bottom pattern) contained the less synchronously oscillating Gabors. 

ticipants were instructed that they were to identify the pattern containing the less 

synchronous Gabor pair by making a button press ( 1 or 3 on the Game Pad indicating 

top or bottom respectively) and that the computer would record their selection. From 

trial to triaL the one-object pattern was randomly assigned to either the top or bottom 

of the display and the two-objects pattern was assigned to the remaining side. Across 

trials, the two-objects pattern always contained synchronously oscillating Gabors and 

the one-object pattern varied in the synchrony of its Gabors. Each run consisted of 

240 trials, and trials were divided such that half of the presented stimuli had the same 

relative phase offsets (i.e. both top and bottom stimuli had a 0° phase offset). The 

remaining trials were evenly distributed among the remaining phase offsets for the 

one-object stimulus. This design ensures that chance performance is at 50% correct 

for the decision of which pattern was less synchronous. Over trials the computer 

stored the proportion of the time the participant identified the two-objects pattern 

as containing the more synchronously oscillating Gabors than the one-object pattern 

(i.e. proportion correct) at each phase offset. 
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different from 0.5 and a slope that is not significantly different from zero. Finally, 

if the endogenous desynchronization model is correct then a regression should yield 

an intercept that is significantly lower than cha.nee and a slope that is significantly 

greater than zero. 

6.4. Results 

Results from Experiment 1 a.re presented in Figure 32. Tables 3 and 4 summarize 

regression statistics from Experiment 1. As can be seen by comparing Figure 32 

with Figure 31, it is evident that the data support the endogenous desynchronization 

model. This subjective intuition is validated by the regression statistics in tables 3 

and 4 where, as predicted by the endogenous desynchronization model. all intercepts 

were found to be significantly lower than chance and all slopes were found to be 

significantly greater than zero (p < 0.05). 

Table 3. Regression Intercept Statistics From Experiment 1 

Subject 
Intercept 

Value Different from 0.5? Different from 1? 
AC 0.26 t(lO) = -8.50, p 6.91 X 10-6 • t(lO) -26.27, p = 1.47 X 10-lO 
LH 0.37 t(lO) = -3.75, p = 3.76 x 10-3 t(lO) -18.48, p = 4.64 X 10-9 

Combined 0.32 t(22) -7. , p = 3.61 X 10-18 t(22) -26.66, p = 3.05 X 10-18 

Table 4. Regression Slope Statistics From Experiment 1 

Subject 
Slope 

Value · Different from O? I 

AC 0.01 t(lO) = 13.78, p 3.94 X 10-S 
LH 0.01 , t(lO) = 10.48, p 5.17 X 10-7 

i Combined 0.01 I t(22) = 14.s1, p 4.82 X 10-13 • 
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CHAPTER 7. EXPERIMENT 2 

7.1. Participants 

Participants included one female and three males whose vision was either normal 

or corrected to normal and whose ages ranged from 18 to 31. Participants 

informed written consent. and the study complied with the NIH standards of Human 

Participant Protection and was approved by .\'orth Dakota State University's IRB 

(protocol number S:\106154). Three participants were na·ive to the study's purpose 

and one was an author. 

7.2. Apparatus 

experiment employed the same apparatus as Experiment 1, except that 

the viewing distance was changed to 150 cm due to an unavoidable change in testing 

rooms. At this new viewing distance the monitor subtended 11.3 x 15.0 degrees of 

visual angle. 

7.3. Stimuli and Procedure 

The results of Experiment 1 are subject to at least two possible criticisms. 

The first is that proportion correct is not an unbiased measure of sensitivity and, 

in effect, Experiment 1 essentially measured subjects' bias in their decisions about 

what kinds of patterns are perceived to be synchronous. Although perceptual 

biases are interesting, it might also be interesting if sensitivity differences exist as 

,vell. The second criticism is that Experiment l's two-objects pattern could possibly 

be interpreted by some as a pattern containing only one object. In order to strengthen 

my results and circumvent these two criticisms I designed Experiment 2 to measure 

subjects' sensitivity to synchrony and asynchrony as a function of whether syn

chronous/asynchronous elements were parts of the same object of parts of different 
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objects. Furthermore, I designed new stimuli that yield more robust percepts of one 

and two objects. 

For this experiment, stimuli were composed of Kanizsa (Kanizsa, 1976) 

where the inducers were arranged to yield percepts of either one or two objects. A 

schematic illustrating the stimuli employed in this experiment is shown in Figure 33. 

Each inducer's radius subtended 0.47 degrees of visual angle and the center-to-center 

distance between neighboring inducers was 1.88 degrees of visual angle. The center

to-center distance between the top inducers and the bottom inducers was 5.66 degrees 

of visual angle. 

In each stimulus pattern (for both the top and bottom patterns in Figure 33) the 

four central inducers underwent 3 sinusoidal contrast oscillations for 1.5 seconds 

while the remaining elements remain fixed at 100% contrast. Over the course of a con

trast oscillation the Gabors' Michelson contrast ranged from zero to one with a polar

ity inversion such that the mean contrast was zero. The center-left inducers oscillated 

in perfect synchrony with each other, as did the center-right inducers, but the center

left and center-right inducers oscillated with a variable phase offset from each other. 

One-Object Pattern Two-Objects Pattern 

Figure 33. Schematic illustrations of the stimuli employed in Experiment 2. The 
left-hand image depicts the one-object stimulus, while the right-hand image depicts 
the two-objects image. Stimulus dimensions are given in degrees of visual 
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For the top set of inducers, the phase offsets were limited to the set !:::.¢reference E 

[0°, 180°], while for the bottom set of inducers, the phase offsets were drawn from 

the set !:::.¢test E [0°, 15°, 30°, 45°, 60°, , 90°, 105°, 120°, 135°, 150°, 165°, 180°]. From 

trial to trial, subjects were required to perform a two-alternative forced-choice task 

where they indicated with a button press (1 or 3) whether the phase offset of the 

top inducer set was the same as the phase offset of the bottom inducer set. Trials 

were block-randomized such that 50% of the trials were the san1e and 50% were 

different. Furthermore, a block of phase offset comparisons was completed with only 

one object type ( either Figure 33 left or right) before moving on to the next object 

type. Subjects were allowed to view each trial's stimulus multiple times before making 

their discrimination decisions. 

This experimental design allows each subject's sensitivity to synchrony /asynchrony 

to be calculated via a measure called d'. According to signal detection theory, 

the results from the current method can be classified as shown in Table 5. Here, 

p(Hit) + p(Af iss) 1 and p(FalseAlarrn) + p(CorrectRejection) 

correct rejections, therefor, provide redundant information as 

1. Misses and 

can be calculated 

if one already knows the probabilities of hits and false alarms (F.A. ). Using hits and 

Table 5. Breakdmvn of possible real-world phase difference relationships and subject 
responses for Experiment 2. 

True phase 
difference 

relationship 
Same Different 

\Vhat subject says I Same Hit False Alarm 
I Different l'vliss Correct Rejection 
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false alarms, then one may calculate d' as illustrated in Figure 34 by taking 

d' = Z(Hits) - Z(F.A.) (30) 

where Z( •) indicates that we are taking the z-score for the given quantity using the 

inverse cumulative normal function. This measure provides a sensitivity measure that 

is unaffected by the subject's decision bias. In terms of Figure 34, subjects are making 

classifications of "same" whenever they sample an internal signal that falls to the left 

of the vertical blue line. Regardless of where they decide to put this "criterion" line, 

however, the d1 value will remain fixed as it is measuring the distance between the 

distributions and not where the criterion line ( or bias) lies. 

Some possible outcomes for this experiment are illustrated in Figure 35. If 

subjects are unable to perform the task then their results should follow the patterns 

shown in Figure 35 A and B. Here, subjects sensitivity is zero over all test phase 

offsets. If subjects are able to perform the task, but they are unaffected by whether 

the contrast-oscillating inducers form part of the same object or parts of different 

objects then their results should follow the patterns shown in Figure 35 C and D. 

Here, sensitivity increases with increasing distance of the test phase offset from the 

reference phase offset, but there is no sensitivity difference between the one-object and 

two-objects curves (the red and blue curves). If subjects endogenously synchronize 

their internal representations of contrast-oscillating inducers forming part of a com

mon object relative to inducers forming parts of different objects then their results 

should follow the patterns shown in Figure 35 E. Finally, if subjects endogenously 

desynchronize their internal representations of contrast-oscillating inducers forming 

parts of different objects relative to inducers forming part of a common object then 

their results should follow the patterns shown in Figure 35 F. 
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Figure 3-!. Sensiti,·it_\·. ns mea:-mrcd b_\· cl'. is the dist anc-e het\W'C'll the signal and noise 
distributio11s in units of standard deviations. It ma.\· lw calculated. as shmn1 in the 
top panel. h_\· measuring the 11111ulwr of standard deviations l>Pt\\·een th(' means of 
the ra\\· distributions. or as shown in the bottom pmwl. by measuring the difference 
between z-scores for hit:-; and false alarms on the z-nonnalized distributions. where 
the hit region is filled in green awl thP false alarm region is filled in red. 

7.4. Results 

Results from Experiment 2 are plotted in Figur('s 36 and 37. Figure 36 plots 

data for the 0° reference phase offset rnndition. Cornpari11g this data "·ith that 

prPsented in the left column of FigurP 35. there are e,·idently some subtle differences 

bct,n'en the curws for the om·-ob_ject allCl two-objects data .. lrnt it is difficult to 

Sa_\· whet her the owrall pattern most closd.\· resembles Figure 35 C or E. Statistical 
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Fignre J.S. ThrC'(' possible S<'ts of outcorne:-; for Expniment 2. In each plot. sensiti,·it,· 
is plotted against test plrn.se offset for the one-object pattern (red li11C's) and the 
two-ol>.iects pattern (blue lines). The left plots show predictions for the case where 
the reference pattern is sn1d1ronous (i.e . .::io,., fer, nr, = 0°) arnl the right plots shmY 
predict ions for the case ,dwre the refr.'r<:'JIC(' pa ttC'nl is as_nichronous (i.e. ~On J, r,n,·c = 
1800). A and B show prrdict('d perfon11a11ce for t lw case wh<'r<:' subjects arr unable 
to perform the task. Here. sensiti,·itY i:-; <'lhn1~·s at zero for all test phase offsets. C 
and D shmY prC'clictrcl performance for thC' case \\·here subjects are able to perform 
the task. but ,Ylwrr there is no cliffen'lH'(' in their ahilit:-· to discriminate the t(•st and 
reference phase' offsets between thC' one- or the tmi-ohject rmttcrns. E and F show 
predicted performance assuming an rffrct of the muuher of ohj('ds on sensiti,·ity. 
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a11c1.l~·sis using a t,Yo-factor repeH.tcd-mcas11res A.'.'\OVA performed on the data shovi·s 

a marginall~· significant difference bet,n'cn the onP-oliject arnl t,n)-objects pnttcrn 

scnsiti,·ity mcas1m's over the te,t. phase offsets (F( 1.3) = 8.95. p = 0.058) nnd no 

significm1t interaction betm'en 1rnmber of objects rn1cl test plrns<• offset ( F ( 11.33) = 

1.9,. p = 0.0G5------, .'.'\.S.). 

Figure :3, plots dc1.tn for the 180C refern1ce phase offset condition. Comparing 

this data \\"ith that presented in the right colunm of Figme 35. the darn most doseh· 

resemble that present eel in Fig11re 35 F. where s11bjccts endogenousl~· des~·ndmmize 

the two-objects pattern rdntin' to tlw one-object pattern. This i11t11ition is also 

lJon1 011t in the resnlts of n t\\·o-factor n•pec1tecl-mcns11res A:\O\'A performed 011 the 

dnt a showing a significant difference l iet\\"<'('11 th<' 011<'-object and t,Yo-objcct s pat tern 

scn:-itiYitY 11H·c1s1m·s oYcr the test plwse offsets (F( 1.:3) = 15.!Jt,. p = 0.0:2;-;) aud no 
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to Figure 3.5 left col11m11). The first four plots shmY incli\·iclual subject data \Yhile the 
last plot shmYs the m·en-112;<' over subjects vi'ith standard errors. 
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signifiumt internctiou l wt,Yc>en 1111111brr of obj re-ts all(l trst phc1s(' offset ( F ( 11.:3:5) 

0..10. p = 0.944---; ~.S.). 

For both the 0° mid 180° references. there \\"8S 8 significant. hut llllsurprising 

effect of test phase offset on d" (JJ < (l.OS). indin1ting that rl. m·crngl'cl owr 1mmhcr 

of olJjects. vrns not nmst,mt across ,dl phase offsets. 
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CHAPTER 8. DISCUSSION 

The current experiment's results imply that subjects desynchronize their inter

nal representations of elements lying on separate objects. To my knowledge, this is 

the first behavioral evidence supporting segmentation by asynchrony hypothesis first 

proposed by Yen et al. ( 1999). 

Experiment l's results show that when comparing flickering Gabors that form 

part of a common object with flickering Gabors that form parts of separate objects, 

subjects show a bias indicating that the elements on the separate objects are perceived 

as flickering less synchronously than are the elements on the common object. This 

bias is most clearly seen in Figure 32 when both the one-object and two-objects 

patterns contain perfectly synchronously flickering elements ( i.e. test phase offset 

0°) and the intercept of regression line deviates significantly below the 0.5 

mark on the y-axis. This result implies that when synchrony is at ceiling levels and 

no further internal synchrony may be imposed on what is physically present in the 

stimulus, the subject internally represents the elements on the two-objects stimulus as 

being less synchronous than the elements on the one-object stimulus implying that 

the subject is internally desynchronizing the elements on the two-objects stimulus. 

Beyond this point, when the test phase offsets are than zero degrees, it is 

reasonable to assume some mixture of internal desynchronization of the elements on 

the two-objects stimulus and internal synchronization of the elements on the one

object stimulus (Cheadle et al., 2008) accounts for the observed biases from veridical 

perception. The balance of this mixed bias doesn't reach the point of subjective 

equality (i.e. the point when proportion correct equals 0.5) until somewhere between 

13° and 24° depending on the subject. 

The results of Experiment 2 suggest that more than having a biased percept 

towards desynchronizing elements on a two-objects pattern relative to elements on 
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a one-object pattern, subjects are also less sensitive to test phase offsets for ele

ments forming a two-objects pattern when the reference phase offset is perfectly 

asynchronous at 180°. Similarly, subjects are less sensitive to test phase offsets for 

elements forming a one-object pattern when the reference phase offset is perfectly 

synchronous at 0°. These results are exactly what one would expect if subjects were 

internally desynchronizing their representations of the elements on the two-objects 

pattern (see Figure 35 F) and synchronizing their representations of the elements 

on the one-object pattern (see Figure 35 E). To see why this is so, consider the 

function that relates the stimuli's physical phase difference to the subject's internal 

representation of that phase difference. Both physical and internal phase differences 

have minimum and maximum attainable values of 0° and 180° respectively. with 

0° marking perfect synchrony and 180° marking perfect asynchrony. In the case of 

veridical perception, the function relating external to internal phase difference would 

be a straight line going from the point ( 0°, 0°) to ( 180°, 180°). Internal synchronization 

would manifest as deflections of this line towards an internal synchrony of 0° and in

ternal desynchronization would manifest as deflections of this line towards an internal 

synchrony of 180°. In the case where the the stimuli's physical phase difference is 

180° it is at the point where internal desynchronization can go no further. If subjects 

are internally desynchronizing the elements on the two-objects pattern, then their 

internal representation of those elements would remain at 180° for external phase 

differences that are less than 180°, thereby making the high end of phase differences 

indiscriminable to the subject and decreasing their sensitivity scores as measured by 

d'. Conversely, if subjects are internally synchronizing the elements on the one-object 

pattern, then their internal representation of those elements would remain at 0° for 

external phase difference that are more than 0°, thereby making the low end phase 

differences indiscriminable to the subject and decreasing their d' scores for phase 
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differences near 0°. These are exactly the patterns observed in the data and argue 

strongly for the binding by synchrony and segmentation by asynchrony hypotheses. 

These results bear directly on object representation theories. Contrary to the 

views espoused by Shalden and I\fovshon (1999), the present results suggest that the 

brain does indeed use synchrony/ asynchrony in a functional way - instead of represent

ing the relative phases of contrast oscillating stimulus elements veridically, the visual 

system synchronizes or desynchronizes them depending on the static spatial context 

in which the elements are embedded. These findings lend support to the findings of 

many other researchers who have found a functional role for synchrony/ asynchrony 

in the brain (Engel et al., 1991b,a.c: Gray et al., 1989; Fries et al., 2001; Roelfsema 

et al., 1997; Steinmetz et al., 2000; Singer, 2004; Kreiter and Singer, 1996; Fries et aL 

2001; Roelfsema et al., 1997; Steinmetz et al., 2000; Engel et al., 1991c; Roelfsema 

et al.. 1997; Herculano-Houzel et al., 1999; Munk et al., 1996; Kreiter and Singer, 

1996: Cheadle et al., 2008). The implication of my research is that the brain is 

taking the original stimulus locked neural responses and modifying them to produce 

the observed behavior in a context-dependent way. Since the contrast oscillations 

in the one-object and two-objects stimuli were identical, the results suggest that 

the observed modulation in perceived synchrony is related to the different static 

backgrounds which were designed to elicit perceptual grouping and segmentation. 

The brain is representing the exogenous signals presented in this experiment 

in a non-veridical way. I present a model for how this may be accomplished using 

standard biophysical modeling equations (Hodgkin and Huxley, 1952). The presented 

model (see Modeling section) demonstrates a simple and neurally plausible mechanism 

for implementing a synchronizing/desynchronizing circuit in the brain. The model's 

strengths are that it stems directly from biophysics, that it describes the current 

experimental findings and that it generalizes beyond these findings to explain why 
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electrophysiological experimenters observe gamma-range power when recording EEG 

signals from subjects performing perceptual grouping tasks. 

Taken together, my behavioral results and my neural model bind together a 

parsimonious story for how the brain neurally represents information about local 

object membership - synch if they're the same and desynch if they're different. 

Having covered the what and how of neural synchrony, I would now like to turn 

to the question of why the brain might want to impose illusory synchrony. The visual 

system could conceivably have been constructed to perceive the world veridically, 

but instead it imposes illusory synchrony in cases where elements lie on a common 

object and illusory asynchrony in cases where elements lie on separate objects. If 

the brain were merely using synchrony/asynchrony as labels for object membership 

then presumably it could have done so in a way that would not affect subjective 

percepts ( one could imagine, for example, synchronizing/ desynchronizing activity 

in the gamma range but leaving oscillations at the stimulus frequency veridical). 

\\That purpose does shifting the perceived synchrony level serve? The answer to this 

question might be more readily apprehended by examining the answer to a similar 

question. One could similarly ask, when examining Figure 16 (Kanizsa, 1976), why 

do subjects perceive edges that aren't actually there? The answer supported by the 

empirical evidence is that in the world we evolved in, edges that line up perfectly are 

usually connected, even if one can not detect the connection (Elder and Goldberg, 

1998a,b; Geisler et al., 2001; Sigman et al., 2001; Elder and Goldberg, 2002), so seeing 

them as part of a connected whole will generally yield a veridical percept. Getting 

back to the question at hand, edges projecting from a common object will generally 

tend to appear and disappear at the same time, so seeing perfectly lined up edges 

as appearing and disappearing at the same time will generally facilitate veridical 

percepts. Furthermore, if the visual system does perform grouping by synchrony 
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and segregation by asynchrony then preparing a synchronous response to elements 

lying on a common object and preparing an asynchronous response to elements 

lying on separate objects will facilitate the process of making correct grouping and 

segmentation decisions in the future. 
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CHAPTER 9. CONCLUSIONS 

In this paper I have demonstrated that normal observers endogenously synchro

nize or desynchronize their experiences of exogenously contrast oscillating stimulus 

elements depending on perceptual grouping cues present in the static patterns in 

which the oscillating elements are embedded. I have developed a biophysical neural 

model, based on the the work of Hodgkin and Huxley (1952) showing that this 

behavior may be reproduced at the neural level and have shown how this model is 

corroborated by separate electrophysiological and neurophysiological findings showing 

gamma frequency power in neural populations engaged in perceptual grouping tasks. 

Although neurons burst with an inter-burst frequency corresponding to the stimulus 

frequency, the pattern of firing within a burst is what elicits power in the gamma 

frequency range. Synchronized over a population of neurons this gamma frequency 

power is observable through large-scale brain recording techniques like EEG. The 

virtues of this model are that it is biophysically based, it successfully predicts both 

behavioral and electrophysiological results and it makes directly testable predictions 

on single cell neurophysiology and electrophysiology. 

Importantly, I have provided new evidence suggesting that a mechanism used 

by the visual system is segregation by asynchrony. This finding complements prior 

results suggesting a role for grouping by synchrony and furthers our understanding 

of cortical mechanisms for scene segmentation. 
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