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ABSTRACT 

Chikara, Shireen, M.S., Genomics and Bioinformatics Program, College of Graduate and 
Interdisciplinary Studies, North Dakota State University, July 2010. Genome-wide Scan for 
Loci Affecting Iron Deficieny Chlorosis in Soybean. Major Professor: Dr. Phillip E. 
McClean. 

Iron deficiency results in iron deficiency chlorosis (IDC) in soybean grown in the 

north central regions of the United States. Soybean plants display a variety of symptoms, 

ranging from slight yellowing of the leaves to interveinal chlorosis, and sometimes IDC is 

followed by stunted growth. In severe cases IDC may even lead to cell death. The 

objective of this project was to employ a whole genome association mapping approach to 

uncover the genomic regions associated with the iron deficiency trait in soybean. Golden 

gate assay technology was applied to expedite the screening of 1,536 single nucleotide 

polymorphisms in two different sets of soybean populations belonging to the year 2005 and 

2006. The two soybean populations were screened for IDC at multiple locations in 

replicated field trials. 

The experiment only considered marker loci with a minor allele frequency greater 

than 0.1. Probability-probability plot helped in selecting the appropriate general linear 

models, which controlled for only population structure, and mixed linear models, which 

controlled for both the population structure and the ancestry. For the 2005 population, three 

statistical approaches (PCA, PCA+K and PCA+K*) identified twelve marker/trait 

associations, and for the 2006 population, five statistical models (Q, PCA, Q+K, Q+K * and 

PCA+K*) resulted in the discovery of twenty-two such associations. Although none of the 

markers significantly associated with JDC was common to both the populations under 

study, similar regions of significance were observed between the two years. When the 

phenotypic and the genotypic data of the two populations were combined, 10 markers were 
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significantly (pFDR < 0.01) associated with the IDC trait using the PCA and PCA+K* 

statistical models. Out of the 10 markers, six selected markers showed a significant 

phenotypic mean difference for the tolerant and susceptible alleles. A detailed analysis 

revealed that using a smaller set of combinations from these six markers can effectively 

identify IDC tolerant genotypes. The next step would be to verify the reproducibility of the 

selected set of marker combinations in another set of populations. 
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INTRODUCTION 

Biparental and association mapping are the two strategies employed to uncover 

marker-trait associations for quantitative traits with the help of molecular markers. These 

strategies utilize statistical analyses to correlate the phenotypic data with the selected 

polymorphic markers in a particular study. Biparental populations have undergone a 

limited number of recombination events in developing F2 or recombinant inbred line (RIL) 

population. In contrast to this, Association mapping (AM) utilizes numerous 

recombination events to enhance the resolution of physical linkage between the genetic 

variants and the gene(s) responsible for the particular genotype. Linkage disequilibrium 

(LD) refers to the non-random association of alleles at two or more loci on the same or 

different chromosomes. AM utilizes LD to enhance the ability to detect quantitative traits 

by utilizing all the meotic and recombination events that have occurred in multiple natural 

or breeding populations. AM has been conducted for plant traits such as tolerance to cold, 

flowering time, yield, pathogen resistance, nutrient deficiency and ecological adaptation in 

a wide variety of crops like Arabidopsis (Aranzana et al. 2007), maize (Thornsberry et al. 

2001 ), rice (Agrama et al. 2007), barley (Cockram et al. 2008), soybean (Wang et al. 2008) 

and wheat (Tommasini et al. 2007). 

Iron deficiency chlorosis (IDC) is one of the major yield-limiting factors in soybean 

cultivated on calcareous soils in the north central states of the U.S. (Hansen et al. 2004). 

Iron is taken up from the soil into the root system and is transported to the leaves via the 

xylem system. This process is regulated at several steps and multiple genes are involved in 

this process (Clemens et al. 2002). Previous QTL analysis studies on soybean have 

discovered markers linked with IDC in F2 and recombinant inbred (RIL) populations (Lin 
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et al. 2000; Charlson et al. 2003). However, the results were non-reproducible in other 

studies. Wang et al. in 2008 conducted an AM study to discover SSR loci associated with 

IDC. 

The primary aim of the present study is to identify SNPs having diagnostic potential 

in identifying IDC efficient genotypes with the ultimate goal of assisting the breeders in 

developing IDC tolerant varieties through marker assisted selection (MAS). For this 

purpose, two populations consisting of advanced breeding lines were first studied 

individually and later the combined data was evaluated to discover significant marker-trait 

associations. The notion behind using two different independent populations was to check 

the effectiveness and reliability of the markers in detecting IDC QTL across multiple 

populations. These lines were developed by public and private breeding programs for the 

north central states of the United States. The Golden Illumina Gate assay was used to 

genotype 1536 SNP markers having genome-wide distribution in the two populations. 

During the statistical analysis of these SNPs, factors such as population structure and 

kinship were taken into account as advocated by Pritchard et al. (2000); Price et al. (2006); 

Zhao et al. (2007). 

2 



LITERATURE REVIEW 

Soybean 

Importance of soybean 

Soybean [Glycine Max (L.) Merr.], like several other legume species such as 

common bean (Phaseolus vulgaris L.), pea (Pisum sativum), peanut (Arachis hypogarea 

L.), lentil (Lens culinaris Medik) and chickpea (Cicer arietinum L.), has been an important 

agricultural crop since its introduction in North America in 1765 (Hymowitz 2003) and has 

been recognized for its nutritive value. It is a rich source of vegetable oil (20%) with high 

unsaturated and low saturated fatty acids and has a high protein content (40%). Soybean 

seeds are also rich in soluble-fiber and are a good source of phytochemicals called 

isoflavones. The plant has the ability to fix atmospheric nitrogen and is compatible with 

grasses for crop rotation (Keshun 1997; Messina 1999). In the United States, soybean is 

cultivated mainly for its high protein content and is used as animal feed and for extracting 

oil for edible and inedible uses. One of the most contemporary industrial uses of soybean 

oil is in the production of biodiesel, an alternative to fossil fuel, to power diesel engines 

(Gardner and Payne 2003). 

In the United States, 80% of soybean is grown in the upper Midwest, Delta and 

southeast regions. In these regions, soybean accounts for approximately 90% of the 

vegetable oil production and is cultivated in rotation with com. In 2005, the US 

Department of Agriculture listed soybean as the second most important crop in terms of 

fann value (Ash et al. 2006). 

An increase in soybean acreage and production has been achieved by the cultivation 

of newer and improved seed varieties, use of fertilizers and improved soybean planting 
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practices. These have resulted in a greater number of pods per acre, thereby boosting 

productivity (Ash et al. 2006). 

Glycine soja-ancestor of soybean 

The genomic size of soybean is 1115 Mbp/1 C. The diploid ancestor (n=l 1) of 

soybean first underwent an aneuploid loss (n=l 0) and then allo and auto polyploidization 

events (n=20) (Armuganathan and Earle 1991; Singh and Hymowitz 1988). Soybean 

belongs to the pea family Leguminosae and is classified as genus Glycine which is further 

subdivided into subgenera Glycine and Soja. Glycine max (G. max) belongs to the 

subgenera G. soja (Hymowitz 1970). Morphologically G. soja is an annual weedy-form 

climber, and its pods shatter before the plant matures. It is prone to vining and lodging and 

lacks complete leaf abscission. Nutritionally, it is rich in seed-protein and linolenic acid 

with the concentration of the former ranging from 31 % to 52%; however, the concentration 

of lipid, oil and oleic acid is on the lower side (Hymowitz 1970). 

Domestication of soybean 

The transition of G. soja to G. max (cultivated soybean) is a result of three genetic 

bottlenecks. First, the domestication in various parts of Eastern Asian countries led to the 

production of many Asian landraces. Second, the founding effect led to the selection of a 

few landraces and to their subsequent introduction in northern and southern US. Third, the 

selective breeding in the US led to the production of the present-day cultivars (Hyten et al. 

2006). 
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The first genetic bottleneck occurred around 5000 years ago in Eastern Asian 

countries where the domestication of wild soybean (Glycine soja) (Sieb and Zucc.) initially 

commenced (Ohashi 1982). During this initial phase the classification of soybean cultivars 

was based on grain color, size and shape, and the time of planting (Smith 1995). The 

soybean cultivars from China were introduced in Europe in 1 712, however, unfavorable 

climatic conditions in that region prevented its growth (Smith 1995). 

The second genetic bottleneck occurred when soybean cultivars from East Asia 

were introduced in the United States. These soybean cultivars became the germplasm base 

for the production of subsequent cultivars. This resulted in the founder effect which is 

defined as a loss of genetic variations that occurs when a new population is established by a 

very small number of individuals from a larger population. W .J. Morse in 1918 ( quoted by 

Smith in 1995) classified soybean germplasm into Northern and Southern germplasms. 

Morse grouped cultivars based on their maturity period as late (adapted to southern states), 

medium late, medium, and very early (adapted to northern states). In 1949, Morse 

proposed the presence of nine different soybean maturity groups (MG) ranging from 0, I to 

VIII. According to him, MG O and I cultivars were adapted to northern United States, 

while MG VIII cultivars were better suited to southern United States. Today, however, 

there are 13 MG ranging from 000, 00, 0, I to X. 

The third genetic bottleneck occurred during the intensive breeding and selection 

process for good phenotypic traits between the Northern and the Southern cultivars in the 

United States (Gizlice et al. 1993). These three genetic bottlenecks have decreased the 

genetic diversity in the current soybean cultivars. In the 258 Northern cultivars released 
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between 1947 and 1988, 35 ancestors contributed to more than 95% of all the alleles 

(Gizlice et al. 1993). 

Important characteristics of the released soybean cultivars 

Selective breeding by skilled soybean breeders has led to the development of 

cultivars better adapted to the US. After World War II, research on soybean cultivars in the 

United States focused on plant breeding, marketing, plant physiology and pathology, and 

soil and weed science (Windish 1981 ). Soybean breeding has been mainly aimed towards 

improving yield, seed size, seed protein and oil quality and quantity, shattering of the pods, 

emergence, plant height, and resistance to various crop limiting affections. The conditions 

that commonly affect soybean are yellow mosaic virus (Singh et al. 197 4 ), phytophthora 

root rot (Kaufmann and Gerdemann 1958; Kenworthy I 989), alfalfa mosaic virus (Horlock 

et al. 1997) and soybean cyst nematode (Heterodera glycines Ichinohe) (Riggs et al. 1998). 

In addition to these, research is also directed towards improving lodging resistance and 

mineral nutrient resistance, especially the iron deficiency chlorosis (IDC). These events 

are predominantly seen when soybean is grown in calcareous soil (Chen and Barak 1982). 

Iron Deficiency Chlorosis 

Loss in soybean productivity 

IDC is a very common and important yield-limiting factor affecting soybean grown 

on calcareous soil. Calcareous soil, with a relatively high percentage of calcium carbonate 

and soluble salts, is commonly present in the north-central regions of the US and extends 

from central Iowa to central Minnesota and further into southeast South Dakota (Franzen 
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and Richardson 2000). In the US, the yearly loss of soybean yield due to IDC, has been 

estimated to be USO 120 million. In Iowa and Minnesota alone, IDC leads to a loss of over 

ten million dollars due to decreased soybean production (Hansen et al. 2004). 

Importance of Fe in plants and its storage 

Iron (Fe) is the fourth most abundant element in the earth's crust, and its 

concentration in the soil ranges from 0.5% to 5% (Ma and Nomoto 1996). Fe is needed for 

various biological redox processes such as chlorophyll synthesis and photosynthesis in the 

leaves, plant DNA and hormone synthesis, and nitrogen fixation (Marschner 1995). As a 

constituent of porphyrin ring precursors, iron plays an important role in the formation of 

chlorophyll in the chloroplasts. Because it is able to form six coordinated links with the 

electron donor atoms like oxygen and nitrogen, Fe is associated with heme and Fe-S cluster 

proteins (Marschner 1995). Iron is also involved in enzymatic systems such as the 

prosthetic groups of cytochromes that enable electron transport, and cytochrome oxidase. 

It also plays a significant part in the terminal step of respiration chain (Audebert 2006). 

Iron is stored in the plants in the apoplasmic spaces, vacuoles, and also as ferritin 

located in the plastids (Briat and Lobreaux 1998; Harrison and Arosio 1996). All ferritins 

have a conserved three dimensional structure having 24 protein subunits arranged in 432 

symmetry with a hollow shell of about 80 A diameter. The cavity is adept at storing up to 

4500 Fe2
+ ions as an inorganic complex (Harrison and Arosio 1996). Ferritins play an 

important role in iron homeostasis by storing iron in the seeds. It also alleviates 

environmental stresses by mobilizing iron stored in cotyledons to young seedling axis 

(Hyde et al. 1963). 

7 



Phenotypic indications of JDC 

Photosynthesis takes place in chloroplast which accounts for about 80% of leaf cell 

iron content and is the major plant cellular machinery where chlorophyll production occurs 

(Smith 1984). Inadequate production of chlorophyll by the plant, and its deficiency in the 

leaves leads to chlorosis, i.e., yellowing of the leaves (Brown 1956). IDC can be due to 

several reasons such as a deficiency of iron in the soil during the gro\\'1h of seedlings, an 

inability of the plant to mobilize the absorbed Fe from the roots to the leaves, or an 

inability of the leaves to utilize Fe. IDC symptoms range from slight yellowing of the 

leaves, with no differentiation between veinal and interveinal areas, to interveinal chlorosis 

in which the veins remain green, while the interveinal area becomes yellow. In severe 

cases, interveinal chlorosis is followed by a stunted growth or even cell death. As per the 

chlorosis rankings, described by Lin et al. (1977), plants are ranked on a scale of 1-5 where 

rank 1 indicates green plants with no chlorosis, while rank 5 denotes severe chlorosis with 

reduced plant growth followed by necrosis of some leaf tissues. Severe chlorosis may even 

lead to plant death (Froehlich and Fehr 1980). IDC symptoms are generally more visible 

in young leaves as Fe, a relatively immobile element bound in a complex with ferritin 

within the chloroplast, cannot move from the mature leaves to the younger ones (Waldo et 

al. 199 5). In 194 3, Weiss coined the terms Fe-efficient and Fe-inefficient plants. 

According to him, when grown on calcareous soil, plants which develop IDC are termed as 

Fe-inefficient and those which do not are termed as Fe-efficient. 
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Factors that impede the uptake of Fe present in the soil 

Onken and Walker (1966) suggested that IDC in sorghum resulted not due to a lack 

of iron in the soil but due to factors that affect its solubility. Several plant and soil factors 

responsible for chlorosis have been identified by Brown 1959a, 1959b; Walter and Aldrich 

1970; Coulombe et al. 1984; Nikolic and Romheld 1999; Barker and Pilbeam 2007. Some 

of the soil factors responsible for chlorosis include soil pH, which leads to the 

predominance of ferrous (Fe2
") or ferric (Fe3+) forms of iron, presence of bicarbonates, soil 

compaction, soil temperature, and soil water and heavy metals content. Plant factors 

include low root growth which controls Fe solubility in the soil solution and plant sap, and 

low Fe efficiency. 

It has been postulated that for the proper growth of a plant, the iron concentration in 

the soil should be 1 OnM (Stephan 2002). Iron availability is governed by the soil redox 

potential and its pH. When the soil pH is low, ferric (Fe3+) iron is reduced to ferrous (Fe2+) 

form which is then readily available to the plant as per the following chemical process: 

Fe(OH)J+ 3H+ + Fe2+ +3H20 

When the soil pH is high, as seen in calcareous soil, ferrous iron is oxidized to 

ferric iron and is not readily available to plants. Under such conditions, the concentration 

of iron in the soil is not higher than 1 OOpM (Stephan 2002). However, at the same time, an 

excess of Fe2+ under acidic or reducing soil conditions would be toxic for the plant if the 

plant is unable to control iron fluxes and subsequently protect itself from the active cell 

metabolism which results when iron is absorbed at the root level (Stephan 2002). Water

logging occurring due to poor soil structure may lead to an accumulation of bicarbonates in 

alkaline or calcareous soils. "Lime induced chlorosis" (iron deficiency) generally occurs as 
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elevated concentration of bicarbonates (HCO3-) in the root apoplast impedes Fe3+-chelate 

reductase activity by neutralizing the H+ ions pumped into the cytosol to decrease the pH. 

Also, the uptake of nitrate/H+ co-transport increases the pH of the soil, further hindering 

Fe3+ reduction. Bicarbonates also immobilize the movement of iron to young leaves once 

it is absorbed at the root level (Barker and Pilbeam 2007). However, at the same time, 

under acidic conditions in a water-logged field, anaerobic bacteria may efficiently reduce 

iron to Fe2+ and an excess of the same may result in iron toxicity. 

The uptake of iron from the soil may be hindered due to its interaction under acidic 

soil conditions with other elements such as copper, calcium, magnesium, potassium and 

manganese. The high solubility of these elements suppresses the uptake of iron. 

Additionally, an excess of organic matter in the soil and/or compaction of the soil may 

cause poor root growth and generation of ethylene which hinders iron uptake, resulting in 

"ethylene-induced chlorosis" (Barker and Pilbeam 2007). 

The identification of the causes of IDC in soybean is often complicated due to 

changing environmental conditions (Cianzio et al. 1979). It is further adversely influenced 

by infestation of the plant with soybean cyst nematodes (SCN, Heterodero glycines 

Ichinohe ), a condition which often produces symptoms similar to IDC (Tylka 2001 ). 

In iron deficiency conditions, a set of coordinated responses are triggered. These 

responses enable the plants to assimilate an optimal amount of iron from the soil, utilize 

iron stores, and systematize the regulation of iron in the intercellular and intracellular 

compartments for various important cellular processes. 



Biochemistry involved in the uptake of Fe from the soil 

Brown et al. (1958) performed a reciprocal graft experiment and discovered that the 

uptake of iron is controlled by factors at the root level. They grafted the Fe-inefficient 

T203 soybean tops on Fe-efficient Hawkeye (HA) and Fe-efficient HA tops on the Fe

inefficient T203 rootstocks. They observed that the former became iron efficient and 

turned green while the latter developed chlorosis. The reciprocal experiment was also 

conducted in tomato using Fe-inefficient T3238FER and Fe-efficient T328FER by Brown 

et al. (1971) and the same results were obtained. 

Plants can uptake iron from the soil in both its ferrous or ferric forms. When the 

more soluble form of Fe, i.e., Fe2+ predominates in the soil, both the Fe-efficient and Fe

inefficient plants are able to absorb it from the soil into their root system. However, when 

Fe3+ predominates in the soil, Fe-efficient plants initiate a series of biochemical reactions to 

absorb from the soil, while Fe-inefficient plants fail to do so (Brown 1978). 

Marschner et al. (1986) divided plants into two categories, strategy I and strategy II 

plants, based on their mechanism of response to Fe availability. Strategy I plants include 

all dicotyledons and nongraminaceous plants such as Arabidopsis (Arabidopsis thaliana), 

pea (Pisum sativum) and soybean (G. max). In these plants, three steps regulate the uptake 

of Fe from the soil. First, there is a release of H+ from the root surface by the proton 

pumping H+ A TPase which lowers the pH in the soil rhizosphere. Acidification of the soil 

initiates the dissociation of Fe(OH)3 complexes into ferrous ions. The lowering of pH by 

one unit increases the solubility of Fe3
+ ions by a factor of thousands (Connolly and 

Guerinot 1998). Second, there is a reduction of Fe3+ by Fe3+ chelate reductase to the more 

soluble Fe2+. At neutral pH ferrous ions are 106 times more soluble than ferric ions. Third, 
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the iron transporters carry out the plasmalemma transport of Fe2
+. Strategy I plants also 

undergo changes in root morphology and biochemistry. The changes include an increase in 

root hair formation, thereby increasing the surface area available for iron uptake, and an 

increase in the citrate concentration in the phloem (Schmidt 1999). 

Strategy II plants include all graminaceous plants like wheat (Triticum aestivum), 

rice (Oryza sativa), barley (lfordeum vulgare) and maize (Zea mays) (Mori 1999). Under 

iron deficiency conditions, these plants synthesize and secrete phytosiderophores (PS), a 

non-proteinogenic group of amino acids. PS belong to the mugineic acid family of 

compounds and act as ferric chelators in the apical zones of the roots (Takagi 1976). 

During the biosynthesis of PS, the activity of nicotianamine synthase, the first important 

enzyme involved in the pathway, increases (Higuchi et al. 1996). The Fe3
+ -PS complex is 

then taken up by the iron uptake system from the soil (Mori 1999). 

Translocation of absorbed Fe at root level in plants 

It has also been observed that even when the concentration of Fe is high at the root 

level, the plants grown on calcareous soils may exhibit chlorosis (Mengel 1994). Along 

with an efficient root uptake system for the absorption of Fe from soil, an efficient root-to

shoot translocation of iron is imperative for the utilization of iron by the plant. The radial 

transport of iron either occurs through the symplast of rhizodermal cells or it is transported 

apoplasmically and introduced to the symplast of the cortex (Nikolic and Romheld 1999). 

It is imperative to balance iron homeostasis during its symplasmic transport because excess 

iron reacts with oxygen to produce free toxic radicals and decreases photosynthetic activity 

(Guerinot and Yi 1994; da Silveira et al. 2007). The reactive free radical can cause serious 
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damage to cellular components leading to cell death (Guerinot and Yi 1994). Therefore, 

iron molecules are chelated with the help of non-proteinogenic amino acid nicotianamine 

(Stephan et al. 1996.). The Fe2+-nicotianamide complex so formed is oxidized to Fe3
+ in 

the symplast of the root to facilitate its transport to the leaves through the xylem system. 

From the root symplast, iron can also be loaded into the xylem vessel as a ferric 

iron-citrate complex (Tiffin 1966). The re-transfer of iron from symplasm to apoplasm 

occurs with the help of a respiration dependent proton pump at the plasma membrane of 

xylem parenchyma cells (DeBoer et al. 1983). Kohler and Raschke (2000) based on their 

study on measurement of plasma membrane potential, doubted the loading of iron in xylem 

vessel as an energized process and concluded that it is a thermodynamically passive 

process occurring through an ion channel. 

The phloem sap sends signals to the root tips about the level of iron in the shoot. As 

the pH of the phloem sap is more than 7, iron is chelated to avoid its precipitation (Stephan 

et al. 1996; Gerendas and Schurr 1999). However, other synchronous studies have shown 

that protein-bound iron transport is generally favored as proteins have higher binding 

affinity in the phloem (Marentes et al. 1997; Wang et al., 1999). 

Methodology to avoid loss of soybean yield due to IDC 

IDC is a common problem which causes reduction in soybean yield in the North

Central regions of the US. Soybean yield loss due to IDC can be prevented by: (i) 

developing high yielding chlorosis resistant cultivars through breeding programs and (ii) 

studying the genetic inheritance for iron utilization in soybean plants. Plant breeders 

follow a rigorous process of selection for several years to develop improved cultivars 
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having a desired trait, while a geneticist tries to understand the underlying mechanism of 

inheritance and variations for the same trait (Bernardo 2008). 

Development of an iron efficient cultivar 

Breeders aim to develop high yielding cultivars to combat chlorosis when grown on 

calcareous soil. Through this approach, a partial improvement in IDC resistance in 

soybean cultivars has been achieved. On an average, a 20% increase in yield is expected 

with just one unit decrease in the chlorosis score. In breeding practices, the development 

of a desired cultivar involves the following steps: (i) crossing genotypes with desirable 

traits to generate variations in the segregating population (like F 1, F2 populations and so 

on), (ii) selecting genotypes which show the desirable traits from both the parents, followed 

by (iii) pedigree breeding, recurrent selection, and repeated backcrossing to develop 

improved cultivars. Breeders have developed IDC resistant cultivars since 1970s. A2, 

released in 1978, was the highest yielding cultivar resistant to IDC. Iowa State released 

five IDC resistant germplasm lines: Al 1, A12, A13, A14 and A15 (Jessan et al. 1988) 

Breeding programs of private seed companies such as Monsanto, Pioneer 

International Inc. (Helms et al. 2005 and Helms et al. 2009), Iowa State University 

(Cianzio 1991 ), and University of Minnesota (Orf and Denny 2004) are directed towards 

development of IDC resistant cultivars which may be made available commercially. 

Cultivars and germplasm with improved resistance to JDC are available for oat (Avena 

byzantina C.Koch), sorghum (Sorghum bicolor (L.) Moench), dry bean (Phaseolusvulgaris 

L.) and soybean (G. max). 
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However, at the same time, the soybean breeding programs can be hindered due to 

several factors. First, due to heterogeneous nature of the soil, IDC symptoms may vary 

from severe to nonexistent within a couple of meters; hence, variety screening to evaluate 

Fe efficiency is hard to perform (Diers et al. 1991; Lin et al., 1999). Second, visual 

analysis of chlorosis is unreliable as occasionally chlorotic symptoms observed during the 

early stages of plant development may disappear as the plant matures (Franzen and 

Richardson 2000). Third, variety breeding and selection is laborious, time consuming and 

expensive. It has been estimated that it takes at least six years of intensive breeding before 

a new plant variety is made commercially available. This means that soybean crosses 

made in 2005 will be able to reach preliminary trials in 2008 and then be commercially 

available in 2011 (quoted by Wang et al. 2005). Fourth, if the trait under investigation is a 

quantitative trait, it may at times be controlled by a few genes having a large effect and at 

other times by several genes having a small effect. Breeders usually select more than one 

trait in a breeding program, i.e., multiple QTL at one time. They have no control over the 

recombination events occurring during meiosis which segregates the desired QTL, thereby 

impeding the development of the desired genotype ( quoted by Bernardo 2008). 

Genetics of Fe uptake by plants 

Identification of candidate genes involved in iron utilization in model organisms 

like Arabidopsis and Saccharomyces cerevisiae have helped in our understanding of the 

role of multiple genes in the biochemical mechanisms under Fe deficient conditions. 

Grusak and Pezeshgi (1996) studied the expression of ferric reductase oxidase (FRO) gene 

in pea (Pisum sativum) and put forward the idea that indications for Fe deficiency in the 
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plant pass from the shoots to the roots. In strategy I plants (dicots and non-graminaceous 

plants), FRO protein regulates the release of Fe3
+ chelate reductase which reduces Fe3

+ to a 

more soluble Fe2+. The Fe-regulated transporter I IRTI protein regulates the release of Fe2
+ 

transporter, which helps in the uptake of Fe2
+ from the soil into the root epidermis (Eide et 

al. 1996; Henriques et al. 2002). The genes for these proteins were cloned in Arabidopsis 

based on their sequence similarity with yeast homologue FREI and FRE2 genes (Eide at 

al. 1996, Robinson et al. 1999). Arabidopsis has seven members of the FRO gene family. 

Under Fe deficiency conditions, the expression of mRNA for FR02 and FR05 is elevated 

in the roots, while, for FR03 it is increased in both the roots and the shoots, for FR08 it is 

increased in shoots, while for FR06 and FR07 the same is increased in photosynthetic 

tissue of the plants (Mukherjee et al. 2006). FR02 is essential for the expression of root 

specific Fe3
+ chelate reductase (Robinson et al. 1999). FROl has been identified in pea 

and tomato (Waters et al. 2002; Li et al. 2004). In pea, it is expressed in the root epidermis 

and cortex, in the nodules, and in the mesophyll and parenchyma of the leaves (Waters et 

al. 2002). After Fe3
+ has been reduced to Fe2+, it is transported into the roots by IRTI 

regulated metal transporters. IRTl gene was cloned in the Arabidopsis roots by functional 

complementation of a yeast mutant fet3/fet4 (Eide et al. 1996). Both IRTI and IRT2 

proteins are members of the ZIP ~rt-!rt-like Qroteins) gene family (Vert et al. 2001). IRT2 

is expressed in the epidermal cells of the plant roots and has same function as IRTI (Vert et 

al. 2001 ). The induction of FR02 and !RT under Fe deficiency conditions is best 

understood from the studies of the tomato mutant fer (Ling et al. 2004 ). In tomato the 

knockout mutant of AtbHLH29 showed Fe-deficiency symptoms due to a lack of leIRTJ 

and leFRO gene expression (Ling et al. 2004). FER, a regulatory gene, encodes for a 
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protein bHLH, which is involved in the mechanism of iron uptake in the roots of tomato. 

The protein AtbHLH29 (At2g28160) of Arabidopsis, showed high sequence similarity with 

the FER sequence at protein level in tomato. Protein AtbHLH29, encoded by FIT] or FRU 

gene is necessary to initiate the expression of Fe mobilization genes, IRTI and FR02, in 

the roots of Arabidopsis. At2g28 l 60 is named as FRU ( fer-like regulator of Iron !!Ptake 

or FITl = ,Ee-deficiency induced ,!ranscription factorl) (Jakoby et al. 2004; Bauer et al. 

2007). Since over-expression of FRU in Arabidopsis initiates Fe uptake responses, this 

gene is considered to be conserved in strategy I plants (Jakoby et al. 2004). FRU gene 

AtbHLH29 is an ortholog to FER gene in tomato (Yuan et al. 2005). Arabidopsis has four 

Fe transporter gene families: ZIP, natural resistance associated-macrophage protein 

(NRAMP), yellow stripe like 1 (YSL 1) and iron regulated exporter from gut (!REG) (Eide et 

al. 1996; McKie et al. 2000; Thomine et al. 2000; Le Jean et al. 2005). The NRAMP 

family consists of six genes that have been identified in Arab id ops is (Maser et al. 2001 ). 

Complementation studies in yeast Fe-uptake mutant identified that AtNrampl, AtNramp3 

and AtNramp4 are expressed under Fe deficiency condition (Curie et al. 2000). AtNrampl 

also plays a role in the distribution of Fe in the cells as its over-expression provides 

resistance to Fe toxicity (Curie et al. 2000). Transporter AtYSL 1 helps in the uptake of 

Fe2
+- nicotianamine (Fe-NA) chelate complexes into the seeds and also transports the same 

in the xylem. It is expressed in the vasculature and the intercostal regions of the leaves (Le 

Jean et al. 2005; Waters et al. 2006). YSL transporter protein in Arabidopsis shares 

homology with the strategy II plant maize (Zea mays). For the synthesis of chlorophyll and 

for the important role iron plays in photosynthetic electron transport, Fe has to reach the 

chloroplast. A permease gene in the chloroplast (PICI) was identified in Arabidopsis (Duy 
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et al. 2007). In picl mutant plants, they observed upregulation of FERl, FER4, YSLl and 

IRTl, and the presence of ferritin clusters in plastids. However, as the transport of Fe was 

blocked at the inner chloroplasts, the plants developed chlorosis and had dwarf phenotypes. 

In Strategy II plants, genes responsible for the release of PS are nicotianamine 

synthase (NAS), nicotianamine aminotransferase (NAA 1) and iron deficiency specific gene 

(Mori 1999). NAS regulates the synthesis of nicotianamine (NA) which undergoes a 

deamination step by NAAT followed by another reduction step by deoxymugineic acid 

synthase (DMAS) (Bashir et al. 2006). Fe3+-PS complex is transported within the roots by 

specific transporters like YS and YSL (Higuchi et al. 1996; Schmidt 2003). Rice, a 

strategy II plant, releases PS in Fe deficiency conditions. Takagi (1976) observed that PS 

secreted from the roots of the rice plant facilitates the uptake of Fe from the soil. The 

amount of PS released is proportional to the level of Fe deficiency in the soil. The Fe2+ 

transporter genes OsIRTJ and OsIRT2 in rice are homologous to the IRTl in non

graminaceous plants (Bughio et al. 2002; Ishimaru et al. 2006). OsIRTl has features 

identical to those of the ZIP metal transporter family (Bughio et al. 2002). However, both 

OsIRTl and OsJRT2 in rice, and LeJRTl and LeJRT2 in tomato also reverse the growth 

defects of the yeast copper uptake mutant ctrl (Dancis et al. 1994). But, IRTl gene is not 

able to do so in Arabidopsis (Eckhardt et al. 2001 ). NA is a mobile non-protein amino acid 

found in the root and the leaf cells, as well as, in the phloem sap (Hell and Stephen 2003) 

and it is important for translocation of Fe and its accumulation in developing seeds as 

studied by Takahashi et al. (2003) in NA-deficient transgenic tobacco. Two NAAT genes, 

previously identified in barley, when introduced in rice did not have much effect on the 

response of the plant to Fe deficiency. However, it was observed that there was an increase 
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in the grain yield of these genetically modified rice plants when grown in alkaline soil with 

limited Fe availability (Takahashi 200 I). 

Like other dicotyledon plants, soybean, a strategy I plant, responds to iron non

availability in calcareous soil by inducing an active proton pump, a ferric reductase and an 

iron transporter mechanism. Several studies have been conducted to find candidate genes 

associated with IDC in soybean. Vasconcelos et al. (2006) introduced Arabidopsis FR02 

gene into soybean through agro-bacterium mediated transfer to study the gene's 

heterologous expression. They observed that hydroponics studies, with Fe3+-DTPA as a 

source of iron, showed a relatively reduced chlorosis response in FR02 transgenic soybean, 

while the non-transgenic control soybean plants had yellowing of the leaves. It was 

noticed that the transgenic soybean plants expressing Arabidopsis FR02 genes showed a 

higher concentration of chlorophyll in the leaves as compared to that observed in control 

soybean plants. A cDNA microarray study of soybean RNA, isolated from the roots of two 

near-isogenic lines, PI 548533 (Clark, iron efficient) and PI 547430 (lsoClark, iron 

inefficient), showed differences in iron efficiency. A total of 43 genes were differentially 

expressed, and while 24 of these genes showed sequence similarity to genes associated 

with Fe stress, the remaining 19 were unique to the soybean Fe response (O'Rourke et al. 

2009). 

IDC - A Quantitatively Inherited Trait 

Quantitative traits show a continuous phenotypic distribution smce they are 

controlled by more than one interacting loci and are under the influence of the environment 

(Falconer and Mackay 1996). The interacting loci may act in an additive, dominant, and 
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epistatic fashion with each other (Mackay 1996, 2001 ). Also, the distribution of multiple 

genes over the genome may be in a fixed or a random order. QTL mapping helps to gain 

insight into the genetics of quantitative variation (Bechmann and Sollerrn 1986). 

Weiss (1943) studied the inheritance pattern for IDC in soybean and concluded that 

iron utilization in soybean is controlled by a single major gene with dominant allele (Fe) 

for iron efficiency and recessive allele (fe) for iron inefficiency with complete dominance. 

He ignored some variations among the inefficient cultivars in response to their degree of 

iron efficiency as the effect of the modifying genes was little as compared to that of the 

dominant gene. Studies by Bernard (1947), and Cianzio and Fehr (1980) further affirmed 

the single gene inheritance for IDC. However, Cianzio and Fehr (1982) working on a 

breeding program at Iowa State University observed a continuous distribution of chlorosis 

scores ranging from 1.2 to 4.8 with a mean of 2.8 in the segregating population 

developed from a cross between Pride B-216 (a high yielding cultivar susceptible to IDC) 

and A2 (a low yielding cultivar resistant to IDC). Seven selected genotypes out of the 200 

F2 derived lines were backcrossed to the high yielding cultivar Pride B-216. None of the 

280 BC1F2-derived lines were as IDC resistant as A2. Therefore, it was concluded that 

IDC was a quantitative trait and its inheritance was controlled by additive gene action. 

Molecular Genetics as an Aid to Decipher QTL 

The discovery of DNA based molecular markers has paved the way for intensive 

genetic research to decipher the location of individual genes controlling a quantitative trait. 

Molecular markers are genetic variations in the genomic sequences between genotypes. 

These variations may or may not have any direct effect on the phenotype and are not 
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influenced by environment (Charlson et al. 2005). Molecular markers help in the 

construction of linkage maps, which enable linkage analysis of agronomically important 

traits. 

For marker assisted selection (MAS) to be effective, the construction of a high 

density genetic map where markers are tightly linked to the trait of interest is preferred. A 

high resolution genetic map helps to restrict the location of genes to a narrow frame in the 

complex genomic organization and it can be used to statistically associate the marker 

variant with the trait under study. If the marker is in close proximity to the QTL, i.e., 2cM 

or less, the marker may be substituted for the gene itself in MAS and thus traversing from 

phenotype dependent selection to genotype dependent selection. For a molecular marker to 

be incorporated in the MAS, it should be: (i) easy to use, (ii) cost effective, (iii) able to be 

screened using high-throughput analysis and multiplexing, (iv) able to produce 

reproducible results, (v) highly polymorphic and (vi) co-dominant in nature, i.e., have an 

ability to detect heterozygotes. 

Molecular markers are broadly classified into three groups: (i) the first generation 

molecular markers such as restriction fragment length polymorphism (RFLP) and random 

amplified polymorphic DNA (RAPD), (ii) the second generation molecular markers such 

as simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP), 

and (iii) the third generation molecular markers such as expressed sequence tags (EST) and 

single nucleotide polymorphism (SNP). Molecular markers selected for marker trait 

studies should employ a simple and inexpensive assay to detect polymorphism between 

genotypes (Vignal et al. 2002). 
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Restriction fragment length polymorphism (RFLP) 

RFLPs are different sizes of fragments produced upon restriction by a restriction 

enzyme in different genotypes. After restriction, the DNA is electrophoresed on the agarose 

gel which separates the fragments of different sizes. These fragments are hybridized with 

probes and then visualized by autoradiography. The differences in the fragment size could 

be because of point mutations, deletions, insertions or transpositions. RFLP markers are 

co-dominant in nature since they can differentiate between heterozygotes and dominant 

homozygotes (Tanksley et al. 1989). 

Random amplified polymorphic DNA (RAPD) 

RAPD markers are based on the PCR-amplification of DNA segments with 

arbitrary random primer pairs. When a particular primer pair amplifies a genomic segment 

in one genotype and not in the other, a polymorphism is identified. RAPD markers are 

classified as a dominant marker class as they cannot differentiate between heterozygotes 

and dominant homozygotes (Williams et al. 1994). 

Microsatellites or simple sequence repeats (SSRs) 

SSR markers are sets of tandemly repeated DNA sequences. The repeated 

sequence may be a set of two, three, four or more nucleotides (Tautz and Renz 1984). The 

regions flanking each locus with nucleotide repeats are unique and primers are designed to 

amplify the intervening SSR in different genotypes. The amplification product is 

electrophoresed on the agarose gel or polyacrylamide gel. The length of a particular 
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genomic region amplified in different genotypes depends upon the variability in the 

number of nucleotide repeats. This variability at a particular genomic location in different 

genotypes is an indicator of polymorphism. SSR markers are co-dominant in nature 

(Morgante et al. 1994). 

Amplified fragment length polymorphism (AFLP) 

AFLP markers employ the ability of restriction enzyme to restrict a genomic region 

along with polymerase chain reaction (PCR) to amplify that region after restriction. They 

detect the presence or the absence of a restriction fragment (Vos et al. 1995). 

Single nucleotide polymorphism (SNP) 

SNP refers to a single base pair change (point mutation) at a particular position in 

the DNA sequence, i.e., at each position any of the four nucleotide bases may be present 

(Vignal et al. 2002). SNPs are generally bi-allelic and co-dominant and their identification 

require prior DNA sequence data (Vignal et al. 2002). They are usually present in the non

coding regions of the genome, however, when present in coding, promotor or enhancer 

regions involved in gene expressions, they may or may not result in phenotypic difference 

among different genotypes. The distinguished quality of SNP molecular markers is their 

ability to genotype hundreds or more SNP in a large population through the high 

throughput genotyping technologies like Taqman, single-base extension based assay, 

MALDI-TOF mass spectrometry based systems, the invader assay and pyrosequencing etc. 

(Tsuchihashi and Dracopoli 2002). These genotyping methods employ different kinds of 

allele-specific discrimination methodology like differential hybridization, primer extension, 
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ligation, allele-specific probe cleavage and methods of signal detection (Kwok 2001 ). 

SNP analysis has the added advantage that using Golden Gate Illumina Assay, an 

integrated SNP genotyping system, it offers a robust > 1500 multiplexing assays on a bead 

array platform (Michael et al. 1998; Gunderson et al. 2004). 

Soybean and molecular markers 

RFLP markers were the first molecular markers used to construct the first genetic 

map of soybean. Keim et al. (1990) constructed F2 segregating population from a cross 

between cultivated and wild soybean, and constructed a soybean genetic map. In this study, 

150 RFLP markers covered 1200 cM and the genetic map included twenty six genetic 

linkage groups. The duplicated nature of soybean genome results in multiple banding 

patterns on hybridization (Shoemaker and Specht 1995). 

Morgante and Olivieri (1993) studied the feasibility of using microsatellites as 

markers in plant genetics using cultivated and wild annual soybean. G. soja showed low 

level of diversity for the first generation RFLP markers. Presence of a large number of 

variations for both the dinucleotide and the trinucleotide SSR in soybean ascertained the 

significance of SSR in the construction of the linkage map. Other studies also confirmed 

that SSR markers are highly polymorphic and show a random distribution across the 

soybean genome with approximately 26 alleles per locus (Rongwen et al. 1995; Maughan 

et al. 1995; Powell et al. 1996). Cregan et al. (1999) constructed a genetic map of soybean 

with 606 SSR markers in which each marker mapped a single locus in the genome. Grimm 

et al. (1999) estimated the frequency of SNP in soybean to be 3 .4 per kilo base in 18,000 

bases of DNA sequence studied in 18 genotypes. According to Zhu et al. (2003) the 
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frequency of SNP is two folds higher in the untranslated reg10ns (UTRs), intrans, and 

genomic regions close to coding sequence. 

Choi et al. (2007) reviewed earlier studies which used SSR markers for mapping 

and observed that while a fairly extensive set of 1000 genetically mapped SSR markers was 

available to soybean breeders and geneticists, the current map had 13 8 gaps of 5 cM or 

more in which no SSR marker was present. Out of the 138 gaps, 26 were 10 cM wide. 

They doubted the efficacy of SSR markers in mapping since these regions or gaps having 

an absence of or a low SSR marker density may be gene rich. They constructed the first 

genetic transcript map of soybean. This map involved genetic mapping of one SNP in each 

of the 1141 genie regions in one or more of the three recombinant inbred mapping 

populations. 

IDC related QTL discoveries 

QTL discovery is facilitated by two types of genetic mapping studies: (i) linkage 

mapping using a bi-parental mapping population, and (ii) association mapping using 

natural populations or germplasm collections. The two genetic mapping studies are similar 

as they use recombination events within the genome and correlate polymorphic molecular 

markers with phenotypic variations. However, they differ in the number of recombination 

events occurring at every locus. 

Bi-parental mapping and IDC QTL discovery 

It involves making crosses between two parental genotypes which differ in the 

quantitative trait of interest. The two parental genotypes are screened with molecular 
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markers to identify polymorphic ones. The segregating populations such as F 2, backcross 

(BC), double haploid (DH), recombinant inbred lines (RIL) and near isogenic lines (NIL) 

are generated and screened with the polymorphic markers (Collard et al. 2005). 

Polymorphic molecular markers in the segregating populations are ordered into linkage 

groups with their relative genetic distance (in cM) based on the recombination rates 

between the marker loci. These are then statistically correlated with the phenotypic trait 

and the location of QTL is identified between two marker loci (Abdurakhrnonov and 

Abdukarimov 2008). 

Diers et al. (1992) identified three markers out of the 272 mapped RFLP markers 

linked with QTL for Fe-efficiency in 13 F2-derived lines developed from a cross between 

G. max (Fe-inefficient) and G.soja (Fe-efficient). The observation was significant (P<0.01) 

and it explained 31 %, 25% and 17% of the phenotypic variations. However, these linkage 

associations were not reproducible in a second tester population. 

Lin et al. (2000) mapped QTL for Fe-efficiency in two bi-parental crosses of G. 

max x G. max. The pride population was developed from a cross between Pride B216 (Fe

inefficient) x A15(Fe-efficient), and the Anoka population was developed from a cross 

between Anoka (Fe-inefficient) x A 7 (Fe-efficient). The populations were scored visually 

and the chlorophyll concentration was measured in the laboratory. Ninety RFLP and ten 

SSR markers were used to construct the linkage map in Pride population of 120 F2 plants. 

One morphological (hilum color) marker, eighty-two RFLP markers and fourteen SSR 

markers were used to construct the linkage map in Anoka population of 92 F 2 plants. 

Replicated field trials were conducted with the F 2 derived lines using randomized complete 

block design. Using the interval mapping method, a multi-genie model of inheritance was 
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observed in the Pride population. Two QTL were mapped on chromosome 14 and one 

QTL was mapped on chromosomes 3 and 18. These QTL individually explained 7.7 to 

10.8% of the phenotypic variations observed in IDC visual scores. These findings 

confirmed the observations of Cianzio and Fehr (1982) regarding the multiple gene action 

for Fe-efficiency. In the Anoka population, two QTL were mapped on linkage groups 3 

and 5 and this explained 35.2% (LOD score =13.1) and 72.7% (LOD score =7.3) of the 

total JDC phenotypic variations. QTL on linkage group 3 was regarded as a major region 

because it was mapped with a high LOD score and contributed to a large number of 

phenotypic variations. This observation confirmed the findings of Cianzio and Fehr 

(1980). Markers from the Anoka population were evaluated in the Pride population and 

vice-versa to enhance the accuracy of the markers for MAS, however, neither of the 

markers could be scored in the other population. 

Charlson et al. (2003) developed F 2 and F 2 :4 populations using parent A97-770012 

(Fe resistance and moderate yield) and Pioneer 9254 (P9254) (moderate resistance and 

superior yield). On calcareous soils, at two locations in Iowa, chlorosis scores were 

evaluated for parents and for F2:4 derived population in replicated field trails while the 

genotypic determination was conducted on F2 lines using SSR markers. Single factor 

analysis of variance identified that three SSR markers: Satt2 l l, Satt48 l and Satl04 were 

associated with IDC (p<0. l ). Satt48 l was the only marker which showed marker-trait 

association at both the locations, showing 12% of the total phenotypic variations for IDC 

resistance. Hence, it was concluded that Satt481 might serve as an indirect selection for 

the JDC QTL. 
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Charlson et al. (2005) used a population with acceptable traits but moderate IDC 

resistance. The mapping population was developed by crossing a high yielding cultivar, 

Pioneer 9254, and an advanced experimental line, A97-770012. Out of the 108 SSR 

markers previously identified, only 22% (24 markers) were polymorphic in the parents. 

The genotyping was performed on the F2 lines, while the F2-dervied lines (F24 and F25) 

were used to evaluate IDC scores. Three markers, namely, Satt211 (mapped on 

chromosomes, 5), Satt481 (mapped on chromosome, 19) and Satl04 (mapped on 

chromosome 20) showed association with IDC (P:S 0.5) with r2 value ranging from 3.9 to 

11.5%. The objective of the study was to check the potential of Satt481 in MAS for early 

detection of IDC (Charlson et al. 2003). In this environment-independent study, Satt481 

was the only marker which was consistently associated with IDC. Even though IDC scores 

were slightly better, QTL on chromosome 3, which explained approximately 70% of the 

phenotypic variations, went undetected. 

Even though past researchers had discovered some maJor and mmor QTL 

associated with IDC trait, none of the QTL-flanking markers discovered in one population 

have so far been reproduced in another population. This questions the efficiency of using 

these markers in MAS for quantitative traits. The economic value of Satt481 in MAS is 

dependent on its effectiveness as a detector of IDC trait in other breeding populations. 

Association mapping in natural populations and QTL discovery 

An alternative approach to bi-parental mapping for marker-trait co-relation is 

association mapping which discovers the marker-trait association with the help of linkage 

disequilibrium (LD) pattern in a large population (Risch 2000). Unlike linkage mapping in 
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which the distance between two alleles at different loci is measured in cM, LD is defined as 

non-random associations between alleles at more than one loci and is a measure of physical 

distance between two alleles in a population (Flint-Garcia et al. 2003). 

The following steps are involved in association mapping: (i) selecting a group of 

individuals from a natural population or germplasm collection representing the wide range 

of phenotypic variations, (ii) genotyping the population with molecular markers and 

phenotyping them for the traits using replicated trials in different environments, (iii) 

estimating LD decay with the help of molecular markers, (iv) estimating the population 

structure (the level of genetic differentiation among the groups in the population) and 

kinship ( coefficient of relatedness between pairs of each individual within the population), 

and (v) applying appropriate statistical methods to identify marker loci in close proximity 

to the QTL of interest (Balding 2006). 

Advantage of LD Based Association Mapping 

There are several advantages of LD based association mapping. First, there is no 

pedigree or cross required as variations in the traits are studied not by the multiple 

segregation of loci between two the genotypes, but by the multiple segregation of loci in 

the entire population. Second, in a population of unrelated individuals, many rounds of 

recombination between alleles occur over several generations. In such a population, 

correlation between the QTL affecting the trait and the molecular markers closely linked to 

QTL will be retained, and the resolution of finding a marker in close proximity to QTL is 

higher (Mackay and Powell 2007). On the other hand, bi-parental mating results in F2 

population and recombinant inbred line (RIL). In a F2 population a less amount of 
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recombination has occurred while in a RIL population, homozygosity is achieved after a 

few generations. Third, multiple alleles for a locus can be identified in a random mating 

population, whereas in a bi-parental population there are just two segregating alleles for a 

single locus (Balding 2006). 

Generation of LD in a population 

There are two processes which regulate the pattern of LD decay observed m a 

population: (i) mutations which give rise to new alleles that might be linked to the QTL 

regions and (ii) recombinations which break the linkage between the new allele and the 

QTL region. The rate of LD decay has been reviewed by Hamblin et al. (2005) as a 

parameter of the rate of mutation (u) as 4Neu or 0 and as a parameter of the rate of 

recombination (r) as 4Ner or p, where Ne (effective population size) is a parameter of the 

historical size of the population, population structure, and mating system. When a random 

mating population is in equilibrium, LD is a simple function of 8/p. However, equilibrium 

is just a concept, since, in nature a population is affected by a number of factors such as 

selection, genetic drift and mating nature of the population. Hence, LD decay is neither 

constant throughout the genome (Nordborg 2002), nor constant within the same genomic 

regions across multiple populations (Hyten et al. 2007). 

Pattern of LD decay 

LD decay occurs as follows: First, recombination shuffles the regions of 

chromosomes and the alleles located on the same chromosome. Recombination frequency 

depends on the degree of polymorphism among the homologous chromosomes and only the 
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tight linkage between alleles in LD persists after several generations of recombination. 

Frudakis (2008) mentioned that under no selection pressure, the extent of LD decay over 

several generations is a function of the recombination rate between polymorphic markers 

and time. He summarized his observations in the following equation: 

t-.D = (1-r) 1 (where t-.D is the rate of LD decay, r is the recombination rate that is 

the function of the genetic distance between polymorphic markers, and t is the 

number ofgenerations) 

Second, the range of LD depends on the population history of a crop species, i.e., 

population genetic bottlenecks followed by the geographical expansion and subpopulations 

in which it is measured (Rafalski and Morgante 2004). According to population genetics, a 

population is a group of individuals who can freely mate and hence there is no restriction to 

gene flow. A population has subpopulations derived from the founder individuals and gene 

flow between the subpopulations may be limited (Wright 1951 ). There are two sources of 

genetic variations among the newly formed subpopulations: (i) gene pool of the founders 

and (ii) new mutations, specific to a subpopulation, which result in a genetic drift, i.e., the 

random change in the allele frequency. In a large population, changes in allele frequency 

due to drift are small, but in a small population allele frequency may change drastically 

(Ellstrand and Elam 1993). A limited number of founders imply fewer multi-loci 

combinations of alleles on the chromosomes. Mating among individuals in a sub

population leads to homogenous genomic regions and as a result, a large extent of LD 

persists. Third, the mating system (selfing/outcrossing) also determines the genetic 

variations within a sub-population. The amount of gene flow in a selfing species is smaller 

than that of an outcrossing species. Therefore, a greater number of differences would be 
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observed among subpopulations of the selfing species than among subpopulations of an 

outcrossing species. Fourth, population admixture results when two or more 

subpopulations are mixed together and allowed to interbreed. The different subpopulations 

have different allelic frequency at many loci (Flint-Garcia et al. 2003). This leads to 

changes in allele frequencies in the resulting admixed population, causing the generation of 

LD in previously unlinked loci. Random mating for several generations in the newly 

formed admixed population results in the breakage of LD (Flint-Garcia et al. 2003). Fifth, 

selection at a particular locus is expected to decrease the genetic diversity (same allelic 

combinations at different loci), thereby increasing LD in the surrounding region, a 

phenomenon known as selective sweep. During selection, LD is a function of 

r~combination rate and distance (Morrell et al. 2005). Sixth, the introduction of new 

mutations can disrupt the LD between pairs of alleles. Any new mutation will be in LD 

with the genetic region (alleles) on the chromosome responsible for the trait of interest. 

Generations of crossing-over will generate LD between the old pairs of alleles and the new 

mutant allele (Mackay and Powell 2007). 

LD studies in plants 

The knowledge of the extent of LD decay is important for conducting association 

mapping in any plant species (Flint-Garcia et al. 2003). It is also important as 

recombination rates are not uniform across the physical distance (Gaut and Long 2003). LD 

decay studies have been conducted in many plant species such as Arabidopsis (Nordborg et 

al. 2002 and 2005), maize (Zea. Mays ssp. mays) (Thornsberry et al. 2001; Tenaillion et al. 

2001; Remington et al. 2001; Jung et al. 2004 ), barley (Hordeum vulgare subsp. vulgare) 
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(Stracke et al. 2003; Morrell et al. 2005; Caldwell et al. 2006), rice (Oryza. saliva) (Garris 

et al. 2003; Rakshit et al. 2007), sorghum bicolor (Rooney and Smith 2000; Hamblin et al. 

2005) and soybean (Zhu et al. 2003; Hyten et al. 2007). 

Association mapping in a structured population 

The desired cause of LD is physical linkage, however, LD can be present in a 

population due to the population structure. Population structure or stratification is an 

important factor which contributes to Type I error (declaring a false positive association). 

Population structure creates LD between unlinked loci. In a homogenous (unstructured) 

population, molecular markers associated with the putative QTL for the trait can be 

inferred by studying differences in the marker-allele frequencies among genotypes showing 

variation. However, a structured population (presence of subpopulations within a 

population) may have different allele frequencies and any such difference might be in LD 

with the other alleles in that population. 

Population structure in soybean 

Soybean genotypes adapted to the northern US belong to the maturity groups 00, 0 

and I. Different soybean breeding programs aimed at improving the agricultural qualities 

of soybean in this region must exploit the variations present in a small sub-set of soybean 

population. In the different soybean breeding programs dedicated to improve the IDC 

resistance, breeders continually select breeding lines which show a good IDC score. This 

results in soybean lines having more differences in allele frequencies at a few gene loci 

responsible for the phenotype as compared to the differences in allele frequencies in other 
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regions. Since private companies do not share pedigree information about their lines, 

various lines used in the association mapping may have the same pedigree although they 

may have been taken from different sources. 

Statistical methods to avoid false positive associations due to population structure 

Pritchard and Rosenberg (1999) and Pritchard et al. (2000) developed two model

based approaches to define populations with the help of unlinked markers: (i) no-admixture 

model, and (ii) admixture model. A package called STRUCTURE was developed by 

Pritchard et al. (2000) to perform association mapping for a structured population. The two 

models utilize the multi-locus genotypic information collected for a population to estimate 

the proportion of subpopulation membership. Both models assume that unlinked markers 

provide independent information about the individual's ancestry (Pritchard et al. 2000). 

The no admixture model assumed that individuals are derived from one of the K 

populations with no gene flow between the populations (Pritchard et al. 2000). The no

admixture model however is not accepted as individuals generally have had some common 

ancestor in more than one population. The second, admixture model, assumed that there is 

a certain amount of gene flow between the populations and individuals have mixed 

ancestry (Pritchard et al. 2000). This is described as admixture LD. The linkage model 

uses a Markov chain Monte Carlo (MCMC) method to accurately estimate the number of 

subpopulation, the allele frequency and the variations in ancestry (Falush et al. 2003). 

Once individuals are organized into separate subpopulations, marker-trait associations 

within each subpopulation are determined using general linear models (GLM) and mixed 

linear model (MLM) analyses. The linkage model introduced by Falush et al. (2003) 
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extends the admixture model and accounts for correlation between linked markers on the 

same chromosome. 

Yu et al. (2006) proposed the MLM approach to avoid false positives (Type I error). 

The unified mixed linear model gathers information from the random selected marker, the 

subpopulation (Q-matrix) obtained from Structure, and (the) relative kinship (K-matrix) 

obtained from the SPAGeDi. The kinship matrix, generated using SPAGeDi software, 

estimates the identity by descent between individuals by adjusting the probability of 

identity by state between two individuals with the average probability of identity by state 

between randomly selected individuals (Yu et al. 2006). The independent variables 

included in the MLM are considered as covariates in the regression model to correlate the 

relation between genotype and phenotype. They studied three traits, namely, flowering 

time, ear height and ear diameter in a diverse set of 277 maize inbred lines using different 

association models. The Q+K model gave the best distribution of the p-values as compared 

to K-model, the Q-model and the nai"ve model in which no population structure data or 

kinship matrix was taken into consideration. Yu et al. (2006) observed that without the 

correction of population structure, the distribution of p-values was skewed towards 

significance, a strong indication of type I error. 

Zhao et al. (2007) found an artifact in the method of Kinship matrix estimation 

based on identity by descent and identity by state. In the absence of mutations, two genes 

identical by descent (IBD) have the same nucleotide sequence, while two homologous 

genes with the same nucleotide sequence are not necessarily IBD. Identity by state (IBS) 

implies IBD for markers with low mutation rates (like SNP) (Zhao et al. 2007). They 
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estimated the fraction of shared fragment haplotypes from the population under study to 

determine the kinship matrix. 

Another effective way to control population structure, other than the Q-matrix 

developed by SURUCTURE, is the principal component analysis (PCA) (Patterson et al. 

2006; Price et al. 2006). It was initially applied in association mapping studies conducted 

in humans to infer worldwide axis of human variation from the allele frequencies of 

various populations. PCA reduces the original markers to a minimum number ( component 

variables) to explain the variations observed in a population. These principle components 

explain the unobserved subpopulations variation from which individuals have originated. 

PCA matrix can be generated in SAS faster as compared to the complex STRUCTURE 

algorithm. 

Association mapping for JDC in soybean 

Wang et al. (2008) conducted association mapping in two independent advanced 

breeding populations of soybean using 24 SSR molecular markers (20 random and 4 IDC 

polymorphic markers). Populations were grown at 3-4 sites located in North Dakota in the 

year 2002 and 2003. Population structure (presence of subpopulations, where loci are in 

Hardy-Weinberg equilibrium and linkage equilibrium) estimated from STRUCTURE 

software identified five subpopulations in the two association mapping populations. The 

kinship coefficients (proportion of familial relatedness between individuals) were 

calculated by the procedure described by Loiselle et al. (1995) in SPAGeDi. Different 

statistical tests were also conducted to gain confidence in the identified putative marker

trait associations. Statistical tests such as single factor analysis (SF A), general linear 
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model (GLM) with population structure (Q) information, mixed linear model(MLM) with 

kinship matrix (K) information model, and another mixed linear model (Q+K) with both 

population structure and kinship matrix information was used to detect significant maker

trait associations with averaged IDC ratings. The four identified SSR markers, namely, 

Satt020, Satt 114, Satt 199, and Satt239 were associated with IDC at different locations. 

However, only two SSR markers, namely, Sattl 14 mapped on chromosome 13 and Satt 

239 mapped on chromosome 20 in the 2002 population were detected in the second 

confirmation population of the year 2003. 
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MATERIALS AND METHODS 

Materials 

Association mapping populations 

The two populations under study comprised of two independent advanced soybean 

breeding lines developed from different public and private breeding programs in Northern 

states of US during the years 2005 and 2006. These lines were unique except for a few 

standard lines. The two populations consisted of 143 and 141 soybean plants/lines for the 

years 2005 and 2006. 

Phenotypic analysis 

The 2005 population was grown at five sites near Arthur, Ayr, Chaffee, Colfax and 

Galesburg in North Dakota (ND). The soil at these sites had a pH varying from 7.8 to 8.1, 

salinity (EC) from 4.0 to 1.9 mmho/cm and CaCO3 contents ranging from 2 to 11 %. Thirty 

five seeds were planted in 5inch rows on 30-inch centers. The experimental design was a 

randomized complete block design with four replications at each site. Two visual 

observations were made at each location at the 2-3 and 5-6 trifoliolate stages. The visual 

ratings were ranked on a scale of 1-5, where 1 = no chlorosis and plants were normal and 

green; 2= a slight yellowing of the upper leaves with no differentiation in color between the 

leaf veins and interveinal areas; 3= interveinal chlorosis of the upper leaves (veins were 

green and interveinal area was chlorotic) without any obvious stunting of growth or death 

(necrosis) of leaf tissue; 4= interveinal chlorosis of the upper leaves with some apparent 

stunting of growth or necrosis of plant tissue; and 5= severe chlorosis with stunted growth 

and necrosis of the young leaves and plant death in some instances. Ten standard varieties 
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were also planted. These control varieties, listed here in descending order of their IDC 

resistance were: Iowa State ISU Al 1, Seeds 2000 2070RR, Traill, Council, Asgrow0801 

and Peterson PFS 0202RR, Glacier, and Mycogen 5072,Stine 0480 and NuTech 0S0SRR. 

The second independent population was grown in 2006 at five different locations at 

Arthur, Colfax, Galchutt, Galesburg and Prosper, ND. The soil at these sites had pH 

varying from 8.1 to 8.3, salinity (EC) from 0.2 to 0.8 mmho/cm and CaCO3 contents 

ranged from 2 to 8%. The experimental design and the IDC rating scales were the same as 

that for the year 2005. The visual observations were made at 2-3 trifoliolate and 5-6 

trifoliolate stages, and also two weeks later. Only two observations could be made at 

Prosper due to recovery of the plants from chlorosis. The crop at Galchutt site was lost due 

to an unusually heavy white grub infestation. The same 2005 standard lines were used as a 

control for this experiment. Dr. Jay Goos and his research group at the Department of Soil 

Science, North Dakota State University, performed the field experiments and IDC visual 

ratings. 

DNA isolation 

For DNA extraction, the varieties under study for the year 2005 and 2006 were 

grown in greenhouse, and the young leaves were harvested and stored at -80 °C. Two to 

three gram of the frozen leaf tissue was later ground in liquid nitrogen in a chilled mortar. 

The powdered leaf tissue was then transferred to a 50ml plastic capped centrifuge tube and 

preserved again at -80 °C. 10 ml of preheated CTAB (Doyle and Doyle, 1990) isolation 

buffer was added to each tube and mixed gently. The tubes were then incubated in a water 

bath at 60°C for 30 minutes during which they were shaken every 10 minutes. Following 
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incubation, 10 ml of chloroform: isoamylalcohol (24: 1) was added to each tube and the 

contents were centrifuged for 15 minutes at 3500 rpm. The aqueous phase from each tube 

was transferred to another clean 50 ml centrifuge tube. To precipitate the DNA, cold 

isopropyl alcohol was added to the tubes in 1: 1 ratio with the aqueous phase. The tubes 

were kept overnight at 4°C for maximal precipitation of the DNA and the next day, the 

samples were again centrifuged for 15 minutes at 3500 rpm to obtain a DNA pellet. The 

DNA pellet was washed twice with 70% ETOH and then dried. This dried DNA pellet was 

then re-suspended with - 400ul TE with RNase (Doyle and Doyle, 1987; Doyle and Doyle, 

1990). 

SNP genotyping: selection of SNP and golden gate assay technology 

SNP molecular markers were designed from the Universal Soy Linkage Panel 1.0. 

1536 genome-wide SNPs were scored using the Illumina's Golden Gate assay technology 

at Beltsville Agricultural Research Center-West, MD under the guidance of Dr. Perry 

Cregan. 

Statistical Analysis 

Genetic diversity analysis 

Out of the 15 3 6 SNP markers studied in the two populations, 1265 markers were 

found to be polymorphic. A subset of 881 SNP markers for the 2005 population and 913 

SNP markers for 2006 population with a minor allele frequency (MAF) over 10% 

estimated using PowerMarker (Liu and Muse, 2005) were selected for analysis. On 

combining these 881 and 913 SNP markers, 84 7 markers were common between the two 
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populations. Polymorphic information content (PIC) and the total number of alleles for 

each SNP locus were estimated separately for each population. 

The expected PIC values were calculated as, PIC = 1- L (Pi)1, where Pi is the 

proportion of the population carrying the ith allele. It measures the polymorphism for the 

marker loci, a value ranging between 0 (monomorphic markers) to 1 (highly polymorphic 

marker). It is calculated by taking into consideration the number of alleles present and the 

relative frequency of each allele at that particular locus. 

SNP marker imputation 

FastPHASE 1.3 (Scheet and Stephens 2006) was used to impute missing 881 and 

913 SNP marker loci in the two populations using the "likelihood" based imputation. The 

imputation was included to avoid eliminating individuals with missing loci in association 

analyses. The software clustered together similar haplotypes characterized by similar allele 

frequency. For a missing allele at a marker locus, the probability of it being one allele or 

the other is estimated as a function of the haplotype cluster origin and the allele frequency 

for the marker in each cluster (Scheet and Stephens, 2006). We used the default 

parameters for the analysis. 

Pairwise linkage disequilibrium and LO decay 

The extent of LD was estimated as a square of allele frequency correlation 

estimates r2 for the 2005, 2006 and the combined 2005 and 2006 population data in 

TASSEL ver.2.1 (http://www.maizegenetics.net). r2measures the proportion of sample 

variance explained by the presence of the polymorphic allelic state at two polymorphic loci 
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LD decay determines the resolution of the association mapping. LD decay graphs 

were plotted with genetic (cM) and physical distance (bp) on the x-axis and r2 on the y-axis 

for each marker pair locus located on the same chromosome using a nonlinear regression 

described by Remington et al. (2001 ). The expected decay of LD was estimated according 

to the following equation, 

2 _ 10 + pd (3 + pd)(12 + 12pd + (pd)2) 
E(r ) - [(2 + pd)(ll + pd)][l + n(2 + pd)(ll + pd) ]n 

The above equation was described by Pyhajarvi et al. (2007), where n denotes the 

number of sequences p = 4Nec between adjacent sites d is the distance between the two 

sites of a pairwise comparison and c is the recombination rate(Hill and Weir 1988). We 

fitted this equation into a non linear regression using NLIN procedures in SAS ver. 9 .1.3 ® 

(SAS Institute, Cary, NC). The analyses were performed for individual chromosomes in 

both the populations. 

Population structure 

Estimation of population structure and ancestral (kinship) relationship were derived 

using a set of markers that had pairwise r2<0.5. In the 2005 population 312 marker loci, in 

the 2006 population 356 marker, and in the combined population 334 marker loci met this 

criterion. 

STRUCTURE ver 2.2 was used to estimate the subpopulation membership of the 

different lines in these two populations individually (Pritchard et al. 2000). Structure 

analysis was conducted with 312 SNP markers for the 2005 mapping population and 356 

SNP markers for the 2006 mapping population. STRUCTURE was run using the linkage 

model with correlated allele frequency (Pritchard et al. 2000). The program was run with a 
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bum-in-length of 100,000 Markov chain Monte Carlo (MCMC) and 500,000 iterations for 

estimating the parameters for each independent population. The optimal number of 

subpopulation (K) was set from 1 to 15 with 10 runs. For every K the posterior probability 

of the individuals was estimated. To find the best number of K, Wilcoxon two- sample test 

was used to compare adjacent sub populations (Kl vs. K2, K2 vs. K3 and so on) using 

NPARlWAY procedure in SAS 9.1.2 as described by Wang et al. (2008). The smaller K 

value in a pairwise comparison for the first non-significant p-value was chosen as the best 

number of sub populations. 

Principle component analysis (PCA) was also used to control for population 

structure in the two populations individually, and in the combined data for 2005 and 2006. 

Those principal components (eigenvectors/combination of SNP markers) which 

collectively explained 50% of the variation present in both the populations and in the 

combined population were selected to minimize the false marker-trait associations. 312 

and 356 SNP markers from the 2005 and the 2006 population respectively, and 334 SNP 

markers for the combined 2005 and 2006 populations were used for the PCA performed in 

SAS ver.9. l .3 using PRINCOMP procedure. 

Population kinship 

A pairwise Kinship coefficient matrix (K-matrix) which estimates the probability of 

recent co-ancestry between genotypes in the 2005 and 2006 mapping populations was 

developed in SP AGeDi 1.2 (Hardy and Vekemans 2002) using the formula as follows: 

Fij = (Qij - Qm)I ( 1-Qm) =~ 0.i, 
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Here eij is the pairwise kinship coefficient, Fij is an estimator of the coefficient, Qij 

is the probability of the identity by state between random loci for genotypes i andj, and Qm 

is the average probability of identity by state for loci from random genotypes in the 

population used to draw i and j (Loiselle et al. 1995). The Fij was calculated for all 

pairwise combinations for 143 genotypes in 2005 and 141 genotypes in 2006 populations. 

Negative values for the kinship matrix were set to zero as described by Yu et al. (2006). 

The second kinship coefficient (K* - matrix) (Zhao et al. 2007) was estimated as the 

proportion of shared alleles for all pairwise comparisons for the individuals in the 2005, 

2006 and the combined 2005 and 2006 populations using PowerMarker. 

Marker-trait association model-testing 

Nine different linear regression models were tested for marker-trait association 

using the MIXED procedure in SAS 9.1.3 (Table 1). Six mixed-linear models (MLM) 

considered both fixed and random effects while the remaining three general linear models 

(GLM) considered only the fixed effects. The performance of various models was tested by 

plotting a probability-probability (P-P) plot with observed p-values on the x-axis and 

cumulative p-values on the y-axis to accurately correct for the Type I error. The uniform 

distribution of the p-values for all the nine models helped in the assessment of the models 

which best controlled the type I error. 

In these models, y is a vector for phenotypic observations, a signifies the fixed 

effects related to the SNP marker, /J is a vector of the fixed effects related to the population 

structure, v is a vector of the random effects related to the relatedness among the 

individuals, and e is a vector of the residual effects. Xis genotypes of the SNP markers, P 
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is the matrix of the principle components, i.e., 13 principal components for 2005 and 12 

principal components for 2006 populations, K is the kinship matrix developed in the 

SP AGeDi ver 1.2, and K * is the kinship matrix developed in PowerMarker. The variances 

of the random effects were estimated as Var(u)= 2KVg and Var(e)= IVR, where K is a 

kinship matrix, I is an identity matrix with off-diagonal elements being 0 and diagonal 

elements being reciprocal of the number of the observations for which the phenotypic data 

was obtained, V g is the genetic variance and V R is the residual variance. 

Table 1. Summary of the regression models used for plotting the P-P plot 

Model 
Nai"ve 

K 

K* 

Q 

PCA 

Q+K 

Q+K* 

PCA+K 

PCA+K* 

Statistical model 
y= Xa +e 

y=Xa Kv+e 

y= Xa _,.. K*v + e 

y=Xa+ QP +e 

y=Xa PP+ e 

y= Xa + QP + K v + e 

y=Xa QP + K*v + e 

y= Xa + Pp + K v + e 

y= Xa + PP + K *v + e 

Information captured in the model 
y is related to X, without any correction for Q or K 

y is related to X, along with K-matrix estimated in SPAGeDi 

y is related to X, with K *-matrix estimated in Powerrnarker 

y is related to X with Q-matrix generated from STRUCTURE 

y is related to X with PCA instead ofQ-matrix, 

y is related to X, along with Q-matrix and K-matrix 

y is related to X, along with Q-matrix and K*-matrix 

y is related to X, along with PCA-matrix and K-matrix 

y is related to X, along with PCA-matrix and K*-matrix 

Marker trait association analysis 

Three different models were used for marker-trait association m the 2005 

population. These comprised of the PCA, a GLM approach, and PCA+K and PCA+K*, 

both of which are MLM approaches. In the 2006 population, five different models were 

studied for marker-trait association analysis. These included Q and PCA, which are GLM 
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approaches, and Q+K, Q+K* and PCA+K*, which are MLM approaches. For the 

combined 2005 and 2006 population, two different models, PCA +K* and PCA were 

studied for marker-trait association analysis. 

For all the above described GLM and MLM analyses, a total of 881 and 913 

marker-trait pairs for the 2005 and the 2006 populations respectively, and a total of 847 

marker-trait pairs for the combined 2005 and 2006 population were evaluated in SAS using 

the MIXED procedures (SAS Institute 1999). F-test with the denominator degree of 

freedom as determined by the Satterthwaite method was implemented to assess the 

importance of the marker effect of each marker-trait pair as described by Weber et al. 

(2009). For the selected model in each population, the positive false discovery rate (pFDR) 

was estimated using the MULTTEST procedures in SAS 9.2 to correct for multiple marker 

trait association. A union dataset for each of the population is based on a Q-value (pFDR) 

of 0.1 or less for each model (Weber et al. 2009). 
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RESULTS 

Phenotypic Analysis 

JDC Scores in the two soybean populations 

IDC, a quantitative trait, is controlled by both environmental and genetic factors. 

For the present study, field observations were made for IDC because they best mimic 

production environments. The correlation coefficients of visual IDC ratings averaged 

across different locations and sites indicated that the different ratings were highly 

correlated with each other at each location in the 2005 and the 2006 populations. The 

average IDC rating for each line was used for further data analysis. The visual IDC scores 

for the 2005 populatio'n ranged from 1.5 to 3.8 with an average of 2.9, while the scores for 

the 2006 population ranged from 1.6 to 3.8 with an average of 2.7. 

The distribution of IDC scores in the two populations under study, (Figure.la and 

1 b) were tested for normality using the Kolmogorov-Smimov (KS) Test at a significance 

level of p < 0.05. The null hypothesis is that the phenotypic data is normally distributed. 

The KS values were found to be 0.07 and 0.09 for the 2005 and the 2006 independent 

populations respectively. Since the observed p-values were greater than the significance 

level (p < 0.05), the null hypothesis was accepted, and it was concluded that the phenotypic 

data was normally distributed for both the populations. 

The variance in chlorosis scores for the 2005 and the 2006 populations showed a 

significant location effect, as well as a significant line by location interaction effect (Table 

2). This shows that the environment influenced the IDC scores. Broad sense heritability 

on an entry mean basis was also deduced from the analysis of variance. The broad sense 

heritability values were 0.99 for 2005 population and 0.97 for 2006 population. These 
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values demonstrate the demonstrate the consistency of the IDC rating. 
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(a) (b) 
Figure 1. Normal distribution oflDC scores for the individual soybean lines for the year (a) 
2005, and (b) 2006. 

Table 2. Analysis of variance mean squares value for IDC ratings for the two 
soybean populations grown at different locations 

Populations 

2005 

Source of variation Df MS 

Location 4 431.16*** 
Line 143 17.37*** 
Location x line 568 1.06*** 

Replication/location 12 3.19 

Error 2322 0.84 

***Significant difference p ::=; 0.001 

Genotypic Analysis 

SNP marker analysis 

df 
3 
140 
420 
9 

1705 

2006 

MS 
535.88*** 
12.99*** 
1.33*** 
3.08 

0.71 

SNP marker information was collected in each population at 1265 loci using the 

Illumina Golden Gate Assay technology. Out of the 1265 SNP marker loci, 881 markers in 

the 2005 population and 913 markers in the 2006 population had a MAF > 10%. The 

Wilcoxon two-sample test was not significant (p = 0.3439) for comparing the major allele 
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frequency in the two populations. The expected heterozygosity is generally low for SNP 

markers owing to their bi-allelic nature and the selfing nature of G. max. Gene diversity 

for the 2005 genotypes ranged from 0.1301 to 0.500 with an average of 0.38, and for the 

2006 genotypes it ranged from 0.1195 to 0.500 with an average of 0.37. The markers in 

both populations were polymorphic with PIC values ranging from 0.1216 to 0.3750 for the 

2005 population and from 0.1124 to 0.3750 for the 2006 population. 

Initially, marker-trait associations were detected in both the 2005 and the 2006 

populations and subsequently the genotypic and the phenotypic data for these populations 

were combined for further analysis. Because the breeding lines may have been related, it 

was imperative to control for population structure of the two independent populations and 

the combined 2005 and 2006 population dataset. 

LD decay estimation (2005 and 2006 populations) 

The non-linear regression model for estimating the decay of LD with distance was 

determined using a genome-wide LD decay graph. Using a pair-wise analysis for all the 

881 and 913 SNP loci in the 2005 and the 2006 populations respectively, LD decay graphs 

were plotted with r2 values on the y-axis, and with genetic distance in cM and physical 

distance in Mbp on the x-axis (Fig 2). The average decay of LD in terms of physical 

distance declined to an r2< 0.05 within 7 Mbp and 5 Mbp in the 2005 and the 2006 

populations respectively. The average decay of LD in terms of genetic distance declined to 

an r2< 0.05 within 20 cM in the 2005 population and within 12 cM in the 2006 populations. 
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Population structure and kinship analysis 

Two measures, r2 and D' were used to estimate LD. While D' gives an estimate of 

the historical recombination by taking into account the allelic association, r2 is the squared 

correlation coefficient between loci based on allele frequencies and is influenced by the 

mutations. 

•· 
p-~ ... ..- .. 1.i, .... -, .. ,,'l"fr) 

(a) (b) 

(c) (d) 

Figure 2. Genome-wide LD decay plot for the two populations. LD, measured as r2, 
between pairs of polymorphic marker loci is plotted against the gentic distance ( cM) and 
physical distance (Mbp) between the loci: (a) 2005, cM distance vs. r2

, (b) 2005, Mbp 
distance vs. r2, (c) 2006, cM distance vs. r2, and (d) 2006, Mbp distance vs. r2. 

Based on 312 markers in the 2005 dataset, 311,899 SNP marker-pair comparisons 

had r2<0.5. Similarly, for the 2006 population based on 356 markers, 332,378 SNP 
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marker-pair comparisons had r2<0.5. These two marker sets were then used to decipher 

population structure and kinship. 

Two different types of analyses were conducted to infer the number of 

subpopulations present in the 2005 and 2006 populations. The methods were implemented 

in the software programs STRUCTURE and Principal Component Analysis (PCA). The 

PCA analysis is an attractive approach compared to the STRUCTURE algorithm as it is 

computationally less demanding. 

Population structure was estimated in the software STRUCTURE using the linkage 

based model approach for the multilocus genotype data (Pritchard et al. 2000). The 

number of subpopulations (k) was entered in the STRUCTURE input file and the software 

program assigned genotypes by estimating the number of loci in Hardy-Weinberg 

equilibrium and linkage equilibrium in each sub-population. In the linkage model 

approach, the software determined the posterior probabilities for each run of an assigned k

value. In the present study, a total of 10 runs were made for k-values ranging from I to 15 

for both the 2005 and the 2006 independent populations respectively. As described by 

Wang et al. (2008), the Wilcoxon two-sample test was used to compare the posterior 

probabilities averaged over all the 10 runs for a given k value, i.e., k = l vs. k = 2 ; k 2 vs. 

3, and so on. The smaller k value in the first non-significant Wilcoxon two-sample test 

was considered to be the most accurate estimate of the population structure. Structure 

analysis showed that the 2005 population consisted of eight subpopulations, while the 2006 

population was comprised of twelve subpopulations. 

The PCA analysis, another approach to control population structure, was also 

implemented in this study. 50% of the molecular variance was explained by 13 principal 
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components for the 2005 population and 12 principal components for the 2006 population. 

The first principal component explains the linear combination of the observed data with the 

greatest variance and the subsequent components maximize the variance subject to being 

uncorrelated with the preceding components. The first principal component accounted for 

approximately 10% of variance present in the 2005 and the 2006 populations. 

To control for recent co-ancestry, a pairwise n x n kinship (K) coefficient matrix 

was developed for both the 2005 and the 2006 populations using the method employed by 

Loiselle et al. (1995). Another kinship matrix, K *, was generated using the shared 

haplotypes information in the Powemarker software for the two populations. 

Selection of the mixed linear regression model for marker-trait associations 

For all the nine different linear regression models (Table 1) independent marker

trait associations were conducted using 881 and 913 markers for the 2005 and the 2006 

populations respectively. A P-P plot showing the distribution of raw p-values by 

cumulative p-values was developed for the nine linear regression models for the 2005 and 

the 2006 population (Figure 3a and 3b ). For each population, the naive linear regression 

model, which did not consider population structure or co-ancestry, had the highest inflation 

of p-values. P-values were not uniformly distributed and 40.8% and 35.2% of the p-values 

were under the 5% threshold for both the populations (Table 3 and 4). The incidence of 

type I error was high in the naive model due to undetected population structure or kinship 

between individual genotypes. The different regression models which took into account 

population structure or kinship or both resulted in a decrease in the incidence of false 

positives marker-trait associations. 

52 



For the 2005 population, the distribution of P-values for PCA, PCA+K and 

PCA+K* models resembled a uniform distribution. Similarly, for the 2006 population, the 

distribution of P-values for Q, PCA, Q+K, Q+K* and PCA+K* models depicted a uniform 

distribution (Figure 3). 
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Figure 3. Graphical representation of the distribution of the p values for the naive, general 
and mixed models: (a) using 881 SNP markers and average IDC scores for the 143 
genotypes in the 2005 population, (b) 913 SNP markers and average IDC scores for the 141 
genotypes in the 2006 population. 

Table 3. Performance of nine different models to account for Type I error for the 2005 
population and estimation of such an error for all the different regression models used for 
marker-trait associations 

Models Tested e-value 'S 0.00 I e-value 'S 0.01 e-value 'S 0.05 
NaYve 11.50% 24.80% 40.80% 
K 11.40% 24.10% 39.50% 
K* 11.30% 24.30% 38.10% 
Q 4.90% 13.30% 26.60% 
PCA 1.80% 4.70% 14.90% 
Q+K 5.30% 13.50% 25.20% 
Q+K* 4.20% 12.70% 25.50% 

PCA+K 1.40% 5.00% 13.40% 

PCA+K* 1.50% 3.10% 11.60% 
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Table 4. Performance of nine different models to account for Type I error for the 2006 
population and estimation of such an error for all the different regression models used for 
marker-trait associations 

Models Tested p-value :S 0.001 p-value :S 0.01 p-value :S 0.05 

Nai:Ve 9.30% 19.80% 35.20% 

K 10.00% 19.93% 34.90% 

K* 10.40% 20.40% 34.70% 

Q 1.80% 7.10% 17.60% 

PCA 0.98% 6.70% 15.00% 

Q+K 2.12% 5.40% 13.60% 

Q+K* 1.65% 6.90% 15.80% 

PCA+K* 1.00% 5.80% 13.80% 

Marker/trait associations 

Associations between 881 and 913 SNP markers for the 2005 and the 2006 

independent populations respectively and JDC visual observations were evaluated using the 

GLM and MLM analysis. In the 2005 population, out of the 881 SNP markers, 15% of 

markers in the PCA model, 13% in the PCA+K-model and 10% markers in the PCA+K* 

model were observed to be significantly associated with the JDC trait (p < 0.05) for the 

average JDC visual observations at all the locations. These markers effectively covered all 

soybean chromosomes. However, a significant reduction in the number of marker-trait pair 

associations was observed after correction of multiple testing using the pFDR procedures at 

a significance level of Q < 0.10. Only 4% of the markers in the PCA model, 3% in the 

PCA+K model and 2% of the markers in the PCA+K* model revealed marker-trait 

associations. In the 2005 data, averaged over all the locations, 17, 28 and 31 significant 

SNP marker-trait associations were detected in one or more than one of the PCA, PCA + K 

and PCA+K* models respectively. One SNP marker on each of the chromosomes of 3, 4 
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and 10, two markers on chromosome 7, three on 8 and four markers on chromosome 19 

significantly associated with the IDC trait were observed to be significantly associated with 

the IDC trait in the three models studied (Table 5). 

Association analysis was conducted with the 2006 population to check whether 

markers previously associated with IDC could be used to differentiate between IDC 

efficient and inefficient soybean genotypes in a second independent population. Out of the 

913 markers, approximately 1 7% of the markers in the Q-model, 15% in the PCA model, 

11 % in the Q+K model, 15% in the Q+K* model and 13% markers in the PCA+K* model 

were observed to be significantly associated with the IDC trait (p < 0.05) for the average 

IDC visual observations at all the locations. pFDR, significantly reduced the number of 

marker-trait pair associations observed as a result of multiple comparisons. At a 

significance level of Q < 0.10, only 7% of the markers in the Q model, 4% in the PCA 

model, 0.04% in the Q+K model, 7% in the Q+K* model and 3% of the markers in the 

PCA+K* model revealed marker-trait associations. In the 2006 data, averaged over all the 

locations, 25, 34, 40, 63 and 64 significant SNP marker-trait associations were detected in 

one or more than one of the Q, PCA, Q+K, Q+K* and PCA+K* models respectively. One 

SNP marker on chromosomes 2, 3, 5, 10, 11, 16, 18 and 20, and three markers on 

chromosome 1 and 19 were significantly associated with the IDC trait (Q<0.10). These 

observations were shared among the five linear regression models (Table6) 

Needle graph explicitly shows the multipoint marker trait association analysis result 

for the two population for all the 20 linkage groups. The vertical axis shows that log10(P) 

obtained from the MLM analysis, the top horizontal axis represents the physical distance 
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Table 5. Significance of tests for association between soybean SNP markers and IDC ratings for the 2005 soybean 
o ulation 

PCA PCA+K * PCA+K2 

Genetic Physical 

Marker Chromosome distance(cM} distance{MbE2 P-value Q-value P-value Q-value P-value Q-value R-sg 

030669_06920 3 94.69 47.16 1.70E-04 l.30E-02 l.60E-04 I .60E-02 l.70E-04 l.I0E-02 0.04 

057913_15004 4 10.04 12.50 7.60E-05 8.70E-03 6. l0E-05 9.20E-03 7.60E-05 7.70E-03 0.06 

053261_1 l 776 5 3.449 93.73 l.l 8E-03 3.62E-02 1.32E-03 3.74E-02 U0E-03 6.60E-02 0.09 

039383_07310 7 39.94 7.15 2.30E-03 6.40E-02 2.40E-03 5.70E-02 1.50E-03 6.60E-02 0.18 

055937_13873 7 75.42 34.44 3.00E-03 7.60E-02 l.60E-03 5.IOE-02 2.00E-03 8.30E-02 0.04 

050171 09440 8 47.34 9.46 1.40E-03 5.60E-02 1.20E-03 5.IOE-02 l.l0E-04 8. I0E-03 0.10 

027726_06646 8 49.33 9.49 7.00E-04 3.80E-02 3.20E-04 2. l0E-02 7.20E-05 7.70E-03 0.08 

057257_14650 8 49.33 9.49 7.00E-04 3.80E-02 3.20E-04 2.1 0E-02 7.20E-05 7.70E-03 0.08 

040695_07821 19 33.22 34.92 3.60E-03 8.30E-02 3.60E-03 7.90E-02 2.20E-03 8.60E-02 0.02 

020457 04632 19 35.78 35.97 1.50E-04 l.30E-02 1.60E-04 l.60E-02 1.50E-04 1.00E-02 0.04 
u, 055315_13197 19 50.3 38.72 l.90E-04 1.30E-02 l.90E-04 l.60E-02 8.80E-05 7.70E-03 0.06 0\ 

042563 08305 19 50.68 38.66 l.60E-05 7.60E-03 l.50E-05 9.IOE-03 2.90E-06 l.80E-03 0.06 



(Mbp) and the bottom axis represent the genetic distance ( cM) between the markers. Each 

bar represents a marker locus and the corresponding value is an indication of the 

significance of that marker locus. The bars facing upward represent significant associations 

discovered in the 2005 population and those facing downward represent significant 

associations discovered in the 2006 population (Figure 4). All 881 and 913 SNP markers 

for the 2005 and 2006 populations respectively, with their pFDR values were used to plot 

the needle graph. The marker loci with large P-values are more in number as depicted by 

the thickness of the horizontal bars for all the LGs. On applying pFDR to correct for type I 

error, we found evidences of strong marker-trait associations on certain chromosomes for 

the 2005 and the 2006 populations separately. Some significant associations detected at p< 

0.05 and pFDR Q< 0.1 were unique to each population, while some shared genome-wide 

associations on chromosomes 2, 3, 7 11, 17 and 19 were also observed in the two 

populations. The dots in the needle graph represent those markers which have cleared the 

set significance level of p<0.05 and pFDR Q< 0.1. 

Pairwise LD (2005 and 2006 combined population) 

The pairwise LD was also calculated for the combined 284 genotypes of the 

combined 2005 and 2006 populations. A total of 84 7 SNP markers were common after 

combining 881 and 913 SNP markers from these populations. Based on 334 SNP marker 

loci, 357,713 marker-pair comparisons had r2< 0.5. These marker loci were used to control 

for population structure and estimate the kinship. Kinship matrix (K*) was generated using 

the shared haplotype information in the Powermarker software for the combined population 
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Table 6. Significant association between IDC and SNP markers detected in all the 4 out of the 5 models for the 2006 20:eulation 

Association Models Tested 
PCA 

Genetic Physical 

Marker Chromosome distance { cM} distance{Mb122 P-value Q-value R-sg P-value Q-value R-sg 

058135 15106 1 41.58 44.090 7. lOE-03 8.60E-02 0.03 2.70E-03 8.60E-02 0.03 

054393 12560 42.01 43.460 1.60E-05 3.00E-03 0. IO 2.30E-06 8.30E-04 0.04 

055131 13049 42.23 38.840 3.80E-03 6.SOE-02 0.01 3.00E-03 8.60E-02 0.06 

064293 18611 1 42.57 42.370 6.lOE-06 2.00E-03 0.08 2.00E-06 8.30E-04 0.06 

059897 16201 1 42.63 41.640 2.00E-03 5.1 OE-02 0.05 4.90E-04 4.70E-02 0.01 

065083 19095 45.58 6.090 3.00E-04 2.30E-02 0.02 2.70E-03 8.60E-02 0.02 

016079 02059 2 48.5 9.790 2.80E-03 5.50£-02 0.03 9.70E-04 7.1 OE-02 0.03 

013513 00508 3 81.04 43.990 5.70E-03 7.50E-02 0.02 2.JOE-03 8.60E-02 0.04 

018011 02495 5 50.98 34.290 2.20E-05 3.00E-03 0.04 I .30E-04 1.80E-02 0.03 

047374 12913 10 117.38 47.970 5.60E-03 7.50E-02 0.05 3.70E-03 9.lOE-02 0.02 
v-, 
00 054375 12539 10 120.652 49.020 3.36E-04 2.30E-02 0.08 9.95E-06 2.36E-03 0.03 

900336 00920 I I 113.62 38.770 5.00E-03 7.30E-02 0.03 I. I OE-03 7.IOE-02 0.02 

042681 08346 13 49.32 27.310 3.20E-04 2.30E-02 0.04 2.80E-03 8.60E-02 0.03 

017127 02213 14 11.51 2.220 3.40E-03 6.00E-02 0.06 l.70E-03 8.60E-02 0.02 

039687 07541 15 18.77 32.990 9.00E-03 9.90E-02 0.03 4.20E-03 9.70E-02 0.01 

030595 06910 16 23.8 3.039 8.50E-04 3.40E-02 0.08 3.40E-03 8.60E-02 0.04 

011625 00310 16 85.58 36.540 6.60E-04 3.00E-02 0.03 3.30E-03 8.60E-02 0.06 

013509 00507 18 78.5 57.350 2.90E-03 5.50E-02 0.04 2.50E-04 2.90E-02 0.02 

047428 12928 19 29.32 16.640 2.80E-04 2.30E-02 0.02 2.30E-03 8.60E-02 0.02 

059723 16418 19 56.4 40.360 5.00E-06 2.00E-03 0.12 2.00E-05 3.50E-03 0.09 

035235 07156 19 74.76 44.570 6.50E-03 8.lOE-02 0.04 2. IOE-03 8.60E-02 0.06 

013129 01447 19 90.44 48.070 3.00E-3 5.SOE-02 0.06 3.00E-03 8.60E-02 0.03 

010719 00713 20 109.17 45.780 5.IOE-02 7.30E-02 0.09 4.50E-03 9.40E-02 0.03 



Table 6(continued) 
Association Models Tested 

+K +K* 

Genetic Physical 

Marker Chromosome distance (cM) distance(Mbp) P-value Q-value R-sq P-value Q-value R-sq 

058135 15106 41.58 44.090 ns ns ns 1.70E-03 5.20E-02 0.03 

054393 12560 42.01 43.460 ns Ns ns 3.1 0E-07 2 . .20E-04 0.10 

055131 13049 42.23 38.840 l .90E-03 4.60E-02 0.01 3.50E-03 6.40E-02 0.01 

064293 18611 42.57 42.370 2.70E-06 l .20E-03 0.08 l .40E-06 4.80E-04 0.08 

059897 16201 42.63 41.640 5.20E-04 2.60E-02 0.05 6.00E-04 3.90E-02 0.05 

065083 19095 45.58 6.090 ns ns ns 2.60E-04 2.40E-02 0.02 

016079 02059 2 48.5 9.790 1.50E-03 4. l0E-02 0.03 3.40E-03 6.40E-02 0.03 

013513 00508 3 81.04 43.990 3.70E-03 7.10.E-02 0.02 4.30E-03 6.90E-02 0.02 

018011 02495 5 50.98 34.290 2.00E-05 3.60E-03 0.04 2.40E-05 4.40E-03 0.04 

047374 12913 10 117.38 47.970 5.00E-03 8. l0E-02 0.05 4.00E-03 6.60E-02 0.05 
V, 

\0 054375 12539 10 120.652 49.020 3.37E-04 l.86E-02 0.08 3.40E-04 2.36E-02 0.08 

900336 00920 11 113.62 38.770 4.50E-03 7.70E-02 0.03 2.37E-04 7. l0E-02 0.03 

042681 08346 13 49.32 27.310 ns ns ns 3.40E-04 2.70E-02 0.04 

017127 02213 14 11.51 2.220 ns ns ns 2.80E-03 6.40E-02 0.06 

039687 97541 15 18,77 32,990 6.50E-03 9.40E-02 0.03 8.30E-03 9.80E02 0.03 

030595 06910 16 23.8 3.039 7.20E-04 2.80E-02 0.08 8.00E-04 4.50E-02 0.08 

011625 00310 16 85.58 36.549 8.70E-04 2.80E-02 0.03 9.70E-04 4.50E-02 0.03 

013509 00507 18 78.5 57.350 2.50E-03 5.20E-02 0.04 3.40E-03 6.40E-02 0.04 

047428 12928 19 29.32 16.640 l .60E-04 1.50E-02 0.02 9.40E-05 l.30E-02 0.02 

059723 16418 19 56.4 40.360 4.20E-06 1.20E-03 0.12 4.40E-06 l .00E-03 0.12 

035235 07156 19 74.76 44.570 4.70E-03 7.90E-02 0.04 5.60E-03 7.60E-02 0.04 

013129 01447 19 90.44 48.070 2.30E-03 5.20E-02 0.06 2.60E-03 5.90E-02 0.06 

010719 00713 20 109.17 45.780 5.40E-03 8.60E-02 0.09 3.50E-03 6.40E-02 0.09 



Table 6. ( continued) 
Association Models Tested 

PCA+K* 
Genetic Physical 

Marker Chromosome distance ( cM) distance(Mbp) P-value Q-value R-sg 

058135 15106 41.58 44.090 1 JOE-03 8.00E-02 0.03 

054393 12560 42.01 43.460 2.70E-07 2.00E-04 0.04 

055131 13049 42.23 38.840 2.40E-03 9.90E-02 0.06 

064293 18611 42.57 42.370 8.70E-07 3.IOE-04 0.06 

059897 6201 1 42.63 41.640 2.60E-04 3.lOE-02 0.05 

065083 19095 1 45.58 6.090 2.90E-03 9.90E-02 0.02 

016079 02059 2 48.5 9.790 l .OOE-03 6.80E-02 0.03 

013513 00508 3 81.04 43.990 2.40E-03 9.90E-02 0.04 

018011 02495 5 50.98 34.290 l.OOE-04 1.90E-02 0.03 

047374 12913 10 117.38 47.970 ns ns ns 

°' 0 054375 12539 10 120.652 49.020 7.53E-06 1.82E-03 0.03 

900336 00920 11 113 .62 38.770 9.40E-04 6.80E-02 0.02 

042681 08346 13 49.32 27.310 2.70E-03 9.90E-02 0.03 

017127 02213 14 11.51 2.220 1.60E-03 8.50E-02 0.02 

039687 97541 15 18,77 32,990 ns ns ns 

030595 06910 16 23.8 3.039 ns ns ns 

011625 00310 16 85.58 36.549 3.30E-03 9.90E-02 0.06 

013509 00507 18 78.5 57.350 2.60E-04 3.lOE-02 0.02 

047428 12928 19 29.32 16.640 4.60E-04 4.IOE-02 0.02 

059723 16418 19 56.4 40.360 ns ns ns 

035235 07156 19 74.76 44.570 2.30E-03 9.90E-02 0.06 

013129 01447 19 90.44 48.070 3.20E-03 9.90E-02 0.03 

010719 00713 20 109.17 45.780 3.40E-03 9.90E-02 0.03 
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Figure 4. A needle graph depicting the multipoint marker-trait association analysis results 
for the two populations for all the 20 chromosomes (linkage groups). The bars facing 
upwards represent a marker loci significant loci in the 2005 population and those facing 
downwards represent significant marker loci in 2006 population with corresponding 
significance level of log10(P) on the vertical axis. The dots represent the significant loci at 
Q<O.l. 
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SNP marker and IDC phenotypic associations (2005 and 2006 combined population) 

For the combined population, PCA and PCA+K* analysis was implemented in SAS 

9.3.1. Out of the 847 SNP markers, 17% of the markers in the PCA-model and PCA+ K* 

model were significantly associated with the JDC trait (p<0.05) for the average IDC visual 

observations at all the locations. After the correction of multiple testing using pFDR at 

Q<0.01, only 5%, i.e., 49 SNP markers out of the total 847 SNP markers) of the markers in 

the PCA model and 6%, i.e., 52 SNP markers out of the total 847 SNP markers) of the 

markers in the PCA +K * model revealed significant marker-trait associations. One SNP 

marker on 2, 6, 9, 11, 12, 15 and 16, two on 1 and 6, three on 7, 10, 13 and 17, four on 18 

and 19, five on 5 and six SNP markers on 3, were significantly associated with the IDC 

trait in both the PCA and the PCA+K* model (Table 7). A needle graph was developed 

using the significant marker-trait associations discovered in just the PCA +K * model 

(Figure 5). 

Ten SNP markers distributed on chromosomes 1, 3, 4, 5, 7, 17, 18, and 19 were 

highly significantly associated with the IDC trait with a pFDR <0.01 (Table 8). Chi-square 

test was conducted to check the difference in the mean phenotypic rating for the alleles 

with 5% error rate (p<0.05). Only the extreme 50 individuals are used for this. Finally, 

out of the 10 markers, six selected markers had a significant phenotypic mean difference 

for the tolerant and susceptible alleles. Further, considering each of the marker 

combinations as a treatment, we performed an analysis of variance and grouped them 

based on LS means. We found that the phenotypic mean of genotypes with all 6 tolerant 
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Table 7. Significance of tests for association between soybean SNP markers and IDC ratings for the combined soybean 
£O£Ulation using the PCA and PCA+K* statistical a_e2roaches 

Genetic Physical PCA PCA+K * 
Marker Chromosome distance (cM) distance(Mbp) P-value Q-value P-value Q-value R-sq 

058135 15106 1 41.58 44.09 l .90E-04 l.32E-02 l.22E-04 8.84E-03 0.026 

054393 12560 1 42.007 43.46 l.95E-05 2.70E-03 l .62E-05 2.70E-03 0.032 

056237 14178 2 30.668 5.46 4.64E-03 7.36E-02 3.57E-03 7.70E-02 0.005 

028539 05944 3 74.162 43.49 2.12E-03 4.90E-02 2.07E-03 5.60E-02 0.13 

048557 10665 3 79.051 43.81 l.40E-03 3.87E-02 l.12E-03 3.62E-02 0.029 

044603 08734 3 85.822 45.01 4.12E-05 4.57E-03 2.08E-05 2.70E-03 0.137 

060109 16388 3 86.907 45.39 2.82E-04 l.42E-02 2.34E-04 l.36E-02 0.188 

016535 02085 3 88.225 45.42 9.2 lE-04 3.07E-02 5.07E-04 l .94E-02 0.171 

030669 06920 3 94.686 47.16 l.58E-03 3.98E-02 4.00E-03 7.70E-02 0.016 

044521 08714 4 33.106 6.38 9.40E-04 3.07E-02 l.12E-04 8.84E-03 0.013 

907035 01038 4 53.274 37.36 l.75E-03 4.21E-02 2.26E-03 5.87E-02 0.009 

°' 
053261 11776 5 3.449 0.94 l. l 8E-03 3.62E-02 l.32E-03 3.74E-02 0.006 

U,) 
052043 11321 5 21.708 8.91 2.66E-03 5.32E-02 l .26E-03 3.74E-02 0.076 

058785 15434 5 27.639 6.85 8.09E-03 9.8IE-02 4.9IE-03 8.49E-02 0.009 

054163 12369 5 29.91 27.21 8.05E-05 7.43E-03 l.36E-04 8.86E-03 0.033 

042331 08243 5 42.038 32.36 8.49E-03 9.81E-02 5.36E-03 8.49E-02 0.004 

014557 01578 6 67.988 11.82 8.45E-03 9.81E-02 3.95E-03 7.70E-02 0.015 

031395 07087 7 38.468 6.54 2.43E-04 1.42E-02 9.55E-05 8.84E-03 0.059 

900461 00929 7 39.074 7.30 4.13E-03 7.15E-02 2.62E-03 6.09E-02 0.127 

039383 07310 7 39.939 7.15 5.59E-04 2.21E-02 2.97E-04 1.41E-02 0.155 

042049 08162 9 12.142 2.01 6.87E-04 2.54E-02 l.20E-03 3.72E-02 0.032 

055653 13572 10 34.209 4.81 4.40E-03 7.22E-02 5. l 7E-03 8.49E-02 0.026 

019105 03305 10 50.102 11.77 3.08E-04 l .42E-02 5.00E-04 l.94E-02 0.033 

029491 06207 10 82.103 40.22 2.69E-03 5.32E-02 4.03E-03 7.70E-02 0.024 



Table 7~ continued) 
Genetic Physical PCA PCA+K * 

Marker Chromosome distance (cM) distance(Mbp) P-value Q-value P-value Q-value R-sq 

041167 07925 11 76.21 17.42 2.67E-02 5.32E-02 l.09E-03 3.62E02 0.01 

007732 00002 12 61.15 13.60 4.43E-02 7.22E-02 4.32E-03 8.0lE-02 0.008 

058031 15072 13 31.361 7.70 3.43E-04 I .46E-02 4.26E-04 l.85E-02 0.013 

043173 08548 13 33.672 8.26 3.08E-03 5.89E-02 3.75E-03 7.70E-02 0.02 

055499 13329 13 61.354 31.47 6.34E-03 9.0lE-02 7.84E-03 9.80E-02 0.114 

038977 07417 15 33.181 7.03 7.l8E-03 9.56E-02 6.54E-03 9.65E-02 0.007 

059379 15786 16 47.279 26.40 5.63E-03 8.44E-02 7.47E-03 9.70E-02 0.01 l 

031827 07220 17 8.164 1.79 3.45E-03 6.16E-02 2.36E-03 5.89E-02 0.01 l 

050543 09730 17 64.319 12.97 2.77E-04 l.42E-02 4.15E-05 4.50E-03 0.057 

017059 02191 17 64.734 13.06 l.25E-03 3.65E-02 2.50E-04 I .36E-02 0.027 

047504 12947 18 55.603 22.54 8.36E-03 9.81E-02 7.18E-03 9.70E-02 0.016 

0\ 
013509 00507 18 78.501 57.35 I .59E-05 2.70E-03 I.66E-05 2.70E-03 0.067 

4'>- 059017 15576 18 78.894 57.38 5.17E-03 7.96E-02 7.72E-03 9.80E-02 0.055 

054089 12331 18 79.119 57.29 2.67E-03 5.32E-02 5.64E-03 8.73E-02 0.011 

042665 08342 19 46.098 38.00 3.41 E-03 6.16E-02 5.12E-03 8.49E-02 0.065 

055315 13197 19 50.297 38.72 l .59E-06 8.80E-04 3.70E-06 2.40E-03 0.061 

042563 08305 19 50.678 38.66 5.73E-06 l.59E-03 l.18E-05 2.70E-03 0.066 

059723 16418 19 56.404 40.360 l.74E-04 l.32E-02 3.05E-04 1.41 E-02 0.133 



All the 847 SNP markers in the combined population were used to plot the needle graph 

taking into consideration the significance level of P<0.05 and pFDR Q<0. l. 
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Figure 5. A needle graph depicting the multipoint marker-trait association analysis results 
for the combined population for all the 20 chromosomes (linkage groups). The bars 
represent significant marker loci present in the both the population with corresponding 
significance level of log10(P) on the vertical axis . The dots represent the significant loci at 
Q <0.01. 
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Table 8. Ten significant marker loci with phenotypic mean difference for tolerant and 
susceptible alleles 

Genetic Physical Phenotypic 
Marker Chromosome distance{ cM} distance(Mbe) Mean Chi- sg 

058135 15106 41.58 44.09 ns 

054393 12560 42.01 43.46 *** 

044603 08734 3 85.82 45.01 *** 

044521 08714 4 33.11 6.38 ns 

054163 12369 5 29.91 27.21 ns 

031395 07087 7 38.47 6.54 *** 

050543 09730 17 64.32 12.97 *** 
013509 00507 18 78.50 57.35 ns 

055315 13197 19 50.30 38.72 *** 
042563 08305 19 50.68 38.66 *** 

Only markers with pFDR <0.01 were accepted 

alleles is significantly not different from the genotypes with only two tolerant alleles at 

44603_08734 and 050543_09730, and 050543_09730 and 042563_08305 (Table 9). 

Table 9. IDC mean scores for six SNP markers genotypic classes 

SNP marker 
TDC 

044603 08734 031396 07087 050543 09730 054393 12560 042563 08305 055315 13197 rating 

Tx Gx Ax Gx Ax Cx 1.80 

Ay Ay A Ay A C 2.18 

T A A A A C 2.28 

T G A A A C 2.30 

A G A A Ty C 2.35 

T A A A T Ay 2.38 

A A A A A A 2.40 

T G A G T A 2.47 

T A A A A A 2.48 

T A A G A C 2.53 

A A A G A C 2.60 
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However, three markers effectively identified IDC tolerant and susceptible 

genotypes (Table I 0). In the present study we also found candidate genes located within 

the previously identified QTL regions (Table 11). 

Table l 0. Selection of soybean genotypes based on three marker loci selection 

044603 08734 042563 08305 050543 09730 Mean 

Tx Ax Ax 2.34 

Tx Tx Ax 2.59 

Ay Ax Ax 2.75 

Ay Tx Ax 2.77 

Tx Ax Gy 2.85 

Tx Tx Gy 2.98 

Ay Ax Gy 3. 13 

Ay Tx Gy 3.13 

Table 11. Six marker loci in the combined population mapped near known Fe metabolism 
gene 

Marker Chromosome Marker Physical Known Iron Gene Physical 
distance (Mbp) metabolism distance (Mbp) 

oene 

054393 12560 43.5 ATIREGI 43.2 

044603 08734 3 45 NAS 45.3 

031395 07087 7 6.5 FRO 6.5 

050543 09730 17 13 FRO 14.2 

042563 08305 19 38.7 NAS-like 38.2 

055315 13197 19 38.7 NAS-like 38.2 
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DISCUSSION 

Association mapping has been extensively used in human genetics; however, lately 

it has also gained importance in the plant genetics. In this study, association mapping was 

used to identify QTL associated with IDC in soybean using SNP markers. The study 

material for this research was comprised of two independent soybean populations. A set of 

1536 widely-distributed SNP markers from the Soy Linkage Panel 1.0 was selected. The 

idea behind using two independent populations was to recheck whether significant marker

trait associations discovered in the first population could be reproduced in the second 

population. The data from both years was also the combined data for the 2005 and the 

2006 populations. These lines, when gro~n in different environments, helped to neutralize 

the effects of environmental variations and thereby increased the heritability of each 

individual QTL. 

Marker assisted selection, a tool employed by breeding programs, requires markers 

which are a good representative of the genetic variations present in a wide variety of 

soybean germplasm and not just in segregating populations (Malosetti et al. 2007). SNP 

markers were chosen for QTL mapping and association analysis because they are the most 

abundant markers and have a low mutation rate. A significant advantage of using these 

markers is that the availability of high throughput and highly automated technologies 

facilitate the genotyping of a few to millions of SNPs in a few to millions of genotypes 

over a short period of time. The Golden Gate assay (Illumina Inc., San Diego, CA) can 

perform genotyping of up to 1,536 SNPs in 192 DNA samples within three days with the 

desired accuracy despite the recent diplodized tetraploid event in soybean (Hyten et al. 
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2008). These markers have been frequently used for construction of genetic maps to fine 

map and clone agronomically important traits in several crop species (Rostoks et al. 2005) 

Some previous studies have shown that soybean has a relatively low SNP 

frequency compared to other cultivated crop species (Zhu et al. 2003; Hyten et al. 2006). 

However, Choi et al. (2007) discovered 5500 SNPs in 2032 gene transcripts and mapped at 

least one SNP from 1141 gene transcripts and created version 3 of the soybean integrated 

linkage map. In the present study, we observed widely distributed SNPs throughout the 

genome with the genetic spacing between any two markers to be less than 10 cM in both 

the populations. The size of the 2005 and the 2006 populations, i.e.,143 and 141 lines 

respectively, seems appropriate to estimate multi-locus LD using co-dominant SNP 

markers. According to a study by Li et al. (2007), a sample size of 30 would be adequate 

to estimate LD in a population using co-dominant markers regardless of the level of 

heterozygosity. Among the 1536 SNP markers chosen for the GoldenGate assay, 1265 

were polymorphic in the two populations. It is possible that the monomorphic SNP 

markers might have been identical by descent between the genotypes studied. According 

to a simulated data study by Tabangin ct al. (2009), SNPs with minor allelic frequency 

(MAF) of 1 % or 5% tend to increase false positives. In general, genome-wide association 

studies remove SNPs with MAF<10% (Tabangin et al. 2009). In the present study, from 

the initial set of 1265 polymorphic SNP markers, we discarded SNP marker with 

MAF<l 0% to avoid false positives. However, we also acknowledge that removal of SNPs 

with low MAF may hamper the ability to detect rare variants with a significant effect. But 

given the complex nature of IDC tolerance, a single major factor is not expected. The 

average PIC value for markers with MAF> 10% was 0.3045 and 0.2969 for the 2005 and 
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the 2006 populations respectively. The PIC value is dependent on two factors: first, the 

variability at the marker locus and second, the transferability of alleles among germplasms. 

Since in our study, the SNPs were derived from EST which tend to be more conserved 

compared to random regions of the genome, hence, lower PIC values were expected. 

In our study, some genotypes had missing SNP data and these were imputed in 

fastPHASE. In genome wide association studies, it is a little uncertain as to what 

proportions of missing SNP are captured by the genotyped SNP. The missing data is 

imputed in fastPHASE with the assumption that the imputed SNPs might cover the 

variations which would otherwise remain undetected. Jannink et al. (2009) performed 

marker imputation studies in barley and concluded that fastPHASE accurately imputed 

nearly 80% of the markers correctly more than 95% of the time. 

In association mapping, one has to understand the structure of LD in a population. 

LD helps to determine the marker density required to effectively assay the common 

variants. Hyten et al. (2007) reported that a wild outcrossing ancestor of soybean, G. soja. 

showed lower levels of LD than self-fertilizing Asian G. max landraces. North America 

(N.Am.) cultivars developed from Asian G. max landraces and the elite cultivars developed 

from N. Am. Cultivars showed high levels of LO persisting from 90 to 574 Kb. In general, 

LO decreases rapidly in outcrossing plant species as compared to selfing plant species. 

The different soybean breeding programs analyzed here exploit the narrow-based 

germplasm belonging to the maturity groups 00, 0 and 1. This results in a narrow genetic 

diversity, i.e., a limited number of allelic combinations on chromosomes. The populations 

analyzed in the current study belong to this narrow-based germplasm and as expected, LO 

persisted to a longer physical and genetic distance. LD declined to an r2<0.05 within 7 
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Mbp and 20 cM in the 2005 population, and within 5 Mbp and 12 cM in the 2006 

population. 

In association mapping studies, spurious association is a common problem arising 

due to poorly understood population structure and ancestral relationships. In our study, 

ancestry informative markers (AIM) were selected to infer population structure and 

ancestral relationship and all markers with high intrachromosomal LD with an r2>0.5 were 

removed. Only 312 and 356 AIMs markers with r2<0.5 in the 2005 and the 2006 

populations respectively, with high allele frequency differences among the ancestral 

populations were retained to estimate population structure and ancestral kinships. 

According to Barnholtz-Sloan et al. (2008), approximately 50 to 100 AIMs can determine 

an individual's ancestry. 

The mixed linear model (MLM) approach which considers the population structure 

(Q) as a fixed effect and relatedness (K) as the variance-covariance structure of the random 

effect is generally used in genome wide association studies (Wang et al. 2008). In the 

present study, the naive model which does not take into account population structure and 

kinship was discarded because of high incidence of spurious associations (40.80% and 

35.30% of the values were under the 5% significance level for the 2005 and 2006 

populations, respectively). Yu et al. (2006), introduced the mixed-model approach for 

studying association mapping in allogamous species such as human and maize and 

concluded that the Q+K model resulted in a better approximation of the expected p-value 

with respect to the cumulative distribution of p-values, followed by K model, the Q model 

and lastly, the naive model. Price et al. (2006) and Balding (2006) observed that the 

principal components analysis was computationally less intensive then estimating structure 
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using the Bayesian method. The software program STRUCTURE used for association 

mapping is developed for unrelated genotypes that belong to populations in Hardy

Weinberg equilibrium (Pritchard et al. 2000). However, for germplasm sets of most 

species these assumptions might not be met, and thus STRUCTURE demands careful 

interpretation (Camus-Kulandaivelu et al. 2007). Zhao et al. (2007) demonstrated the 

ability of an alternative kinship matrix (K*), estimated as the (is it correct) fraction of 

shared fragment haplotypes, to capture the underlying structure in A. thaliana and 

compared it with other models such as Q, PCA, Q+K, Q+K*, PCA+K and PCA+K* using 

a P-P plot. The K* model performed the best, while the PCA model performed better than 

the Q model. However, a mixed-model approach combining PCA and Q with kinship 

estimates performed similarly. The study suggested that the alternative kinship was 

successful in reducing the type I error in the same way as the MLM approach used by Yu 

et al (2006). Casa et al. (2008), with the help of a P-P plot, concluded that Q+K and 

Q+K* were better mixed model approaches with 4.8% of the p-values under the 5% 

threshold as compared to other models like Kor K* with 5.1 % of the p-values under the 

5% threshold. Since the most favorable model approach for conducting a genome-wide 

association is under question, we decided to test different general linear models (GLM) and 

mixed linear model (MLM) in this study. We observed that for the 2005 population, the 

PCA, PCA+K and PCA+K* models and for the 2006 population, the Q, PCA, Q+K, Q+K* 

and PCA+K* models showed uniform distribution of the observed P-value with respect to 

the cumulative distribution of P-values. As explained by Stich et al. (2008), the K-model 

approach alone was not an appropriate approach to discover marker-trait association and 

the P+K model approach is a promising alternative to Q+K model approach. 
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In this study we have used genome wide AM to evaluate the genetic basis of IDC 

tolerance in soybean. Previous QTL studies using bi-parental populations have shown two 

inheritance patterns for JDC efficiency: first, a major gene with several modifier genes and 

second, the polygenic inheritance. Lin et al. (2000) studied the inheritance of iron in two 

intraspecific populations. Using the 2-year combined visual score data in the Pride x A 15 

population, polygenic inheritance was postulated and QTL for visual score exhibiting 

phenotypic variations ranging from 7.7 to 10.8% were mapped on chromosomes 3, 14, and 

18. These together explained a total of 21.5% of the phenotypic variation. QTL for 

chlorophyll concentration controlling 34.8% of the total phenotypic variation were mapped 

on chromosomes 12, 14, and 20. Similarly, in Anoka x A 7 population in which major 

gene and modifying gene inheritance was studied, chromosome 3 accounted for 72. 7% and 

chromosome 5 accounted for 35.2% of the visual score variations. Together, these loci 

controlled 73.5% of the total variations for the visual scores. QTL for chlorophyll 

concentration mapped on chromosome 3 and 20 together explained 80. 7% of the 

phenotypic variations. However, the markers flanking the QTL were population specific. 

This limits their efficiency for marker-assisted selection. In our study of the 2005 

population, we used the PCA OLM, PCA+K MLM and PCA+K* MLM approaches, and 

observed that that 31, 28 and 1 7 markers, in this order, were associated with IDC. These 

markers were widely distributed on chromosomes 3, 4, 6, 7, 8, 10, 11, 12, 14, 17 and 

19. 

Similarly, for the 2006 population, 64 markers were associated with IDC using the 

Q OLM approach, 35 with the PCA GLM approach, 25 with the PCA+K* MLM approach, 

40 with the Q+K MLM approach and 63 markers were associated with IDC using the 
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Q+K* MLM approach. The markers were distributed on chromosomes 1, 2, 3, 5, 7, 8, 9, 

10, 11, 1 13, 14, 15, 16, 17, 18, 19 and 20. We have identified novel JDC related QTL 

which were previously not detected on certain chromosomes. The identification of all these 

new IDC related QTL on several different chromosomes gives an indication of the 

plethora of candidate genes involved in IDC response. 

Since none of the QTL identified were common to both the populations, their 

application in the marker-assisted selection in breeding for IDC trait would have been 

questionable. Hence, we decided to combine the genotypic and the phenotypic data of the 

2005 and the 2006 populations to search for common markers. Using the PCA GLM 

approach, we observed that 49 markers were significantly associated with JDC; the 

corresponding figure for the PCA+K* MLM approach was 52. These markers were 

distributed on chromosomes 1, 3, 4, 5, 6, 7, 9, 10, 11, 1 13, 15, 16, 17, 18 and 19. 

In any QTL analysis, the usefulness of a marker is determined by its ability to 

distinguish between the resistant and susceptible genotypes in an environment independent 

fashion. Another characteristic of a marker is its reproducibility, i.e., the marker associated 

with a trait in one population should be associated with the same trait in a second 

population. On the basis of a 1 year data, Charlson et al. (2003) observed that SSR marker 

Satt481, mapped on chromosome 19, was associated with IDC resistant genotypes in 27% 

instances. Charlson et al. (2005) further confirmed the ability of the Satt48 l (accounting 

for 12% of the total phenotypic variation) to effectively screen for JDC efficient genotypes. 

Other significant IDC-related QTL like Satt2 l l mapped on chromosome 5, and Sattl 04 

mapped on chromosome 20 did not improve the population mean scores when selection 

was done based on homozygous lines for the tolerant allele. In the present study, the 
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probable reasons for not detecting the previously identified significant associations could 

have been the fixation of alleles contributing to the phenotypic variations in the population 

studied and the population specific nature of the analyzed QTL. To overcome these 

shortcomings, Wang et al. (2008) utilized the AM approach, an alternative for IDC related 

QTL discovery, using two advanced breeding lines provided by different private and 

public breeding programs. In their study, the populations analyzed represented the 

breeding material for the north central US, and the markers identified might have broad 

applicability for the same region. They observed that Satt 144 mapped on chromosome 13 

and Satt239 mapped on chromosome 20 were significantly associated with the IDC trait in 

the 2002 population, and the results were reproducible in the 2003 population. These 

markers showed significant association with the IDC trait in all the different genetic 

analyses like single factor analysis, Q GLM, K MLM, Q+K MLM. 

We tested different models to discover significant marker trait associations and 

detected different marker/trait pairs. We decided to work with markers which were present 

in all the three selected models for the 2005 population and in four out of the five selected 

models for the 2006 population. For the combined population, we selected only the 

common markers between the two models (PCA and PCA+K*) studied. Forty-three 

significant marker-trait associations were found in common between the studied PCA and 

PCA+K* approaches. The individual QTL detected in one population might have poor 

penetrance or expression for the iron deficiency chlorosis and hence might not have been 

detected in another population. Also, since IDC is a quantitative trait, the phenotypic 

observations are sensitive to the field environment. As the number of field trials and the 

environments increased, the probability of detecting IDC related QTL in the combined 
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population also increased. 

O'Rourke et al. (2009) took advantage of the microarray technology to study the 

differential expression of IDC related genes in two near isogenic lines of soybean and 

utilized the whole genome sequence assembly information of soybean to genetically 

position the identified genes. Clusters of differentially expressed genes were seen 

throughout the genome and a few of them were located within the previously iron QTL 

regions. Gene clusters were identified on chromosomes 2, 5, 6, 7, 9, 12 and 13. An 

extension of our association mapping study would be to search for candidate genes located 

within the identified QTL regions in the present study and then look for candidate 

polymorphisms. 
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