
A CLUSTERING APPROACH TO IMPROVING TEST CASE PRIORITIZATION:

AN INDUSTRIAL CASE STUDY

A Paper

Submitted to the Graduate Faculty

of the
North Dakota State University

Of Agriculture and Applied Science

By

Ryan Curtis Carlson

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

Software Engineering

November 2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A CLUSTERING APPROACH TO IMPROVING TEST CASE

PRIORITIZATION: AN INDUSTRIAL CASE STUDY

By

RYAN CURTIS CARLSON

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the docmnent, signatmes have been
removed from the digital version of this docmnent.

ABSTRACT

Carlson, Ryan Curtis, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, November 2010. A Clustering Approach to
Improving Test Case Prioritization: An Industrial Case Study. Major Professors: Dr.
Hyunsook Do, Dr. Anne Denton.

Regression testing is an important activity for controlling the quality of a software

product, but it accounts for a large proportion of the costs of software. We believe that an

understanding of the underlying relationships in data about software systems, including

data correlations and patterns, could provide information that would help improve

regression testing techniques. As an initial approach to investigating the relationships in

massive data in software repositories, in this paper, we consider a clustering approach to

help improve test case prioritization. We implemented new prioritization techniques that

incorporate a clustering approach and utilize history data on real faults and code

complexity. To assess our approach, we conducted empirical studies using an industrial

software product, Microsoft Dynamics Ax, which contains real faults. Our results show

that test case prioritization that utilizes a clustering approach can improve the rate of

fault detection of test suites, and reduce the number of faults that slip through testing

when testing activities are cut short and test cases must be omitted due to time

constraints.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisors, Dr. Hyunsook Do for all

her time in helping me prepare this paper and Dr. Anne Denton for all the guidance with

regards to the data mining aspects of this paper. I would also like to thank my supervisory

committee members: Dr. Dean Knudson and Dr. Roger Green for their time and

contributions.

I would also like to thank my beautiful wife for supporting me through this wild

endeavor while caring for our four wonderful children, Anika, Austin, Bridger, and Cierra.

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

1.1. Problem Definition .. 4

1.2. Significance of this Research .. 5

1.3. Organization of the Paper ... 6

2. BACKGROUND AND RELATED WORK ... 7

2.1. Microsoft Dynamics Ax ... 7

2.2. Test Case Prioritization ... 8

2.3. Clustering .. 11

3. PRIORITIZATION TECHNIQUES WITH CLUSTERING .. 13

3.1. Clustering Approach ... 13

3.2. Prioritization Techniques .. 14

4. EMPIRICAL STUDY 1 .. 18

4.1. Research Question .. 18

4.2. Object of Analysis ... 18

4.3. Variables and Measures .. 20

4.3.1. Independent Variable ... 20

4.3.2. Dependent Variable .. 21

4.4. Data Collection and Study Setup .. 21

4.5. Data and Analysis .. 25

5. EMPIRICAL STUDY 2 .. 27

5.1. Research Question .. 27

5.2. Variables and Measures .. 28

5.2.1. Independent Variables .. 28

5.2.2. Dependent Variable .. 29

5.3. Data and Analysis .. 29

6. THREATS TO VALIDITY .. 32

7. DISCUSSION .. 33

8. CONCLUSIONS AND FUTURE WORK ... 36

REFERENCES ... 38

LIST OF TABLES

Table Page

Table 1. Example of Prioritized Test Cases in Clusters .. 16

Table 2. Experiment Objects and Associated Data .. 19

Table 3. Prioritization Techniques ... 20

Table 4. An Example of Collected Data .. 22

Table 5. APFD Results .. 26

Table 6. Time Constraint Levels ... 28

Table 7. Results with Time Constraints Applied .. 31

LIST OF FIGURES

Figure

Figure 1. Microsoft Dynamics Ax .. 7

Figure 2. Design of Customer Form ... 9

Figure 3. Example of X++ Code .. 10

Figure 4. Hierarchical Cluster Tree ... 14

Figure 5. Study Process .. 24

Figure 6. Missed Faults Under Time Constraints ... 34

1. INTRODUCTION

Regression testing is an important part of software development to maintain the

quality of subsequent releases of a software product. The goal of regression testing is to

uncover new faults that have been introduced into the previously tested system. The

simplest and safest regression testing approach is to run all existing test cases. However,

this process is expensive and time consuming [1, 4, 5] for large scale industrial size

software systems. In fact in [9] we learn that one product with roughly 20,000 lines of

code takes nearly seven weeks to run the full suite of regression tests. We face the same

problem when we perform regression testing on Microsoft Dynamics Ax, whose entire

regression testing process requires several days for executing test cases and several more

days for analyzing the results. In order to deal with this huge time requirement for

regression testing, we need a way to improve the cost-effectiveness of regression testing.

Prioritization is one way we can accomplish this by moving the tests that can uncover

faults sooner in the execution pass as several researchers have proposed [9, 11, 23, 24,

25). Using an effective prioritization technique will allow using a smaller set of tests when

time is limited, such as overnight or each week instead of the current quarterly process.

In this way we can continue to provide lower possibilities that faults will escape into the

released system [1, 7).

Test case prioritization provides a way to run more important test cases earlier so that

we can detect faults earlier or provide earlier feedback to testers. Several studies have

been done on test case prioritization where a smaller set of tests are selected to be run

that still provide a high-degree of confidence that the smaller set of tests will uncover

defects [1, 4, 5, 7, 8, 9, 10]. Prioritization allows a decision to be made based on the

budget or time constraint imposed on a software project as to how many tests from the

entire suite will be run during a particular regression test run. Rothermel et al. [9, 11]

present test case prioritization with the goal of greater fault detection which is described

as, "a measure of how quickly a test suite detects faults during the testing process". We

will also consider fault detection as the primary metric for success when grouping tests in

this paper.

To date, various prioritization techniques have been proposed and empirically studied

[1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 22]. Most of these techniques depend primarily on code

coverage information or code complexity metrics. However, the various phases of the

software development process produce several different software artifacts such as

specifications, test cases, bug reports, and version control databases. We believe that an

understanding of the underlying relationships between these software artifacts can be

useful in providing data to assist us in prioritizing tests. There has been some existing

work such as in [6] that considers prior version data to improve software quality.

As an initial approach to investigating the relationships in massive data in software

repositories, in this paper, we consider a clustering approach, which will simplify test case

prioritization processes by dividing test cases into groups that have common properties. It

has been conjectured [22, 26] that if test cases have common properties (e.g., having

similar code coverage areas), then test cases within the same group may have similar fault

detection ability. If this conjecture is correct, engineers may be able to manage regression

testing activities more efficiently by using test case prioritization techniques that can

utilize clustering approaches. For instance, if an organization does not have enough time

to run all the test cases, by running a limited number of test cases from each cluster, they

could have a better chance to catch more faults than otherwise.

To investigate the effectiveness of our approach, we conduct two empirical studies

using an industrial Enterprise Resource Planning software system, Microsoft Dynamics Ax

[3]. Enterprise Resource Planning (ERP) [2] is used to define a software package or system

that is used by a business to manage the information and business functions that occur

throughout a business. The example functions that an ERP system might provide are [2,

3], Manufacturing, Supply Chain Management, Financials, Project Management, Human

Resources, Customer Resource Management (CRM), and Service Management. Each of

these functions of an ERP system can be considered a module or sub-system. For the

scope of this paper we will focus our research on just the financials sub-system of the

Microsoft Dynamics Ax ERP software package. We are limiting our research to just the

financials sub-system because of two reasons. First, the researcher for this paper is

employed by Microsoft as a developer for the maintenance of just the financials sub­

system. Second, the sheer size of the Microsoft Dynamics Ax product is quite large and

managing the research data for the entire product was simply not conducive to

completing research in a timely fashion. The financials sub-system is still quite large and

measured in several thousand lines of code. More detail about the Microsoft Dynamics

Ax product will be discussed in Section 2.1 below.

1.1. Problem Definition

The current process for regression testing the Microsoft Dynamics Ax product during

maintenance is to run the entire test suite once every quarter throughout the year as we

prepare to package all the previously released bug fixes in a hotfix rollup [14]. During this

regression testing phase, all tests are executed sequentially with little thought given to

the priority of which tests should be executed first. The entire process takes several days

for executing the tests and several more days to analyze the results of the test runs. The

analysis process requires humans to decipher if a failure reported is a real, repeatable

failure that exists in the current version of the product, or if the failure is a random

environmental issue that is not repeatable. In addition, it is possible a test reports a

failure because of an intended change in the software. This would indicate a problem

with the test itself. Again, it should be noted that this process only occurs once each

quarter and defects in the software often remain for several weeks or months until the

defect is uncovered by running the full set of tests. If a smaller set of tests were run more

frequently, it is possible that the defect could have been found much sooner.

One important distinction is that we will differentiate between a defect found in the

software and a failure reported from an external source just as found in [6]. The external

source is typically a customer currently using the product. A defect can be found in the

software system before or after the software is released, and a failure is described as an

observable error in the software. For our purposes in this study, we will only consider

post-release failures reported by an external source.

1.2. Significance of this Research

The ability of the Microsoft Dynamics Ax Sustained Engineering team to find defects

more quickly by running fewer tests provides a huge benefit. This will help prevent

defects from being released to customers systems and presenting themselves as failures

in live customer systems. Also, it is well known that the cost of a software error carries a

much greater cost when found later in the development cycle especially after released

and found by a customer using the product [20]. If we are able to uncover defects more

quickly, the overall cost of the defect will be much lower.

As mentioned in Section 1.1, the current regression testing process used by the

Dynamics Ax Sustained Engineering team takes several days to run all the existing tests in

a regression test run. This is followed by the analysis of any reported failures to

understand if the failure is real and needs to be addressed, or if the failure was caused by

an environmental issue or a problem with the test itself. This study can provide a new

process for the team to reduce the number of tests that you would need to run and still

provide a way to uncover defects in the system. Today there is no way for the team to

accomplish this. For our study we will also look at various time constraints imposed on

the regression testing process. This can provide a way for a very limited set of tests to be

run overnight or a moderate set of tests to be run weekly that will allow more regression

test runs to occur instead of waiting for the quarterly roll-up and having to process a

larger set of defects reported from the run.

Lastly, the work from this paper will apply a new idea of using a clustering technique

to the prioritization of test cases in order to improve regression testing process. The cost

of clustering test cases was basically negligible in the entire process as it only required a

few minutes to run the clustering algorithm. More detail about the clustering and related

work can be found in sections 2.2 and 2.3. Prioritization of test cases is also an interesting

research area where several studies have already proven the importance of doing so, but

they have largely been focused on using code coverage metrics for prioritizing tests. Our

work is important with respect to test case prioritization because the clustering technique

can improve the prioritization process. The prioritized tests will allow us to select a

smaller set of tests to run on a more frequent basis while being able to uncover defects

more quickly.

1.3. Organization of the Paper

The remainder of this paper is organized as follows. Section 2 introduces the

background and related work. Section 3 will discuss the study design and how the

prioritization technique was applied. Section 4 presents the first empirical study. Section

5 presents the second empirical study. Section 6 presents the threats to validity. Section

7 discusses our results. Section 8 presents conclusions and discusses future work.

2. BACKGROUND AND RELATED WORK

2.1. Microsoft Dynamics Ax

Microsoft Dynamics Ax is an ERP product produced by Microsoft Corporation to

provide businesses the ERP functions previously mentioned in Section 1. All of the various

ERP functions can be accessed from a simple user interface displayed in a similar fashion

as Microsoft Outlook. The navigation pane (Figure 1) of the application allows a user to

select a functional area such as General Ledger and perform activities related to that area .

. fl Microsoft Dynamics AX • Demo (RCARLSONHP: Session 10 • 3) • (1 - ert]

► £Al ► General ledger ► G1meral ledger .:..rea .,
•• ■ ··•.I(.. ■ H•. > 8 llllliil . -y• • • ~ ~ .. - • • ~ ,- • • - t - ,, - - ~ • , " -~ ~ - -. '

L Microsoft Dynamics AX • ,
' -i -~~ ~ •'- -- • -~-• ~L..1.-' • ~ __ ,j; __ ,.,,__{ -'I ~~M •• ~-•- ,._ • .~-. - _.,._ tl.- _

My ::avorites

·.; Getting Started

General ledger

Places

General ledger .:..rl!a

Chart cf .:..ccounts

h•ed :.ssets

Forms

Chart cf .:.ccount Det,91ls

ledger budget
fn,;ed ,,:.,sset Dectluls

-~r! Cost a,:countir19

"• Bank

g3 CRM

,j ~Oh Accounh rt."Ceivabie

jj'' Accounh payable

Q Inventory manag'"ment

"i- Mauer planning

-& Production

:3'!' Product Builder

I II Jocrna 1s

! Gtnerai.,c·;•n~i

~1,ed ~:se~:

;:,H,j ~~~e~ t:c.:::!Je~

:-,ecpH1at1c:r t:cds

.:..i1c:at1t'l

Reports

Ea;ec data

Transacticns

Extern.!ll

lendrng

P.eccnc1hat1or,

Jcurnals

Budget

France

Setup

Ledger acccu,,~ categc~re:

Leoge• re~~cn~

PMa·neter:

Zak.at

Span1sh declaration

Fmanc,alstatement

D1mens•cns

Sales ta:,,.

','orthholdmg ta>

Fixed asset$

Cre.!lte or update curTenc1es and exchange rates

Figure 1. Microsoft Dynamics Ax

Inqu:ries

,,,,. ?eriodic

:..ed9useniement'.

Perocd1c ;ournals

i:-c~~ ,1curncSi~

Pc:~ Je:::rt.1.!~1cr. bed _1cc_1ma,:

E•.pcrt !edgei tran~act1cns

Dut,:h au:l1t fiie

GS~ rl'.:T Internet File Tr.i'1sfer ,GIFT

E,~c"'. fo1anc1.i! d.!ltl tc ,-.BR~ Re1=crter

Zaka!

Sales ta:.. pa,..ment

Fixed .,~set~

Journllli:mg

Ccn;cl1date

Currenc:, requirement

F1Ka!yearclose

Cle11n up

Repc;,rt 3J7 and 3~9

Data f'Ypcr'T:

This paper will focus on the tests and code from only the financials sub-system which

includes the General ledger, Accounts Receivable, Accounts Payable, Fixed assets, and

Banking areas.

The Microsoft Dynamics Ax product is comprised of two different code bases. The

foundational or system level code base is the runtime, compiler and related system

frameworks that are written in C++. The application code to implement specific business

application logic is written in a proprietary language known as X++. X++ is very similar in

syntax and usage to Java. More information about X++ and its beginnings can be found in

[18]. It is important to note that development in Microsoft Dynamics Ax happens both by

modeling the design of the data structure, form layout, and report layout as well as by

writing X++ code. Figure 2 shows the design of a customer form where an entire form can

be modeled without writing a line of application code.

2.2. Test Case Prioritization.

As software evolves, software engineers perform regression testing on it to validate

new features and detect whether corrections and enhancements have introduced new

faults into previously tested code. In practice, engineers often reuse all of the existing test

cases to test the modified version of the software system; however, this retest-all

approach can be expensive [27].

Researchers have studied various methods for improving the cost-effectiveness of

regression testing. Regression test selection techniques (e.g., [23, 25]) reduce testing

costs by selecting, from the existing test suite, a subset of test cases to execute on the

modified software system. Test suite minimization techniques try to reduce the size of

test suite by identifying and eliminating redundant test cases to reduce the maintenance

cost [24, 28]. Both of these techniques reduce costs by reducing testing time and

maintenance effort, but unless they are safe they can omit test cases that would

otherwise have detected faults.

It AOT - \forms l!!lliJ Ei

~ CustTable

+ '/ Methods
:.;. ~ Data Sources

- .d Designs

- ~ Design

- ..:.J [Tab:Tab]
:+ l Methods

:+ [T abPage: TabOverview]

[T abPage: TabGener al]

+ / Methods
- ,., [Gro~p:Customer)

+ : Methods

- "' [Group:Description)
·+ ;' Methods
+ [.ii tnngEd1t:Descnption_Name

·+ faii StringEd1t:Description_NameAlias

.+ "' [Group:Posting]
•"f!

+ [Group:Currency)

+ faii StringEd1t:Language!d
+ , '' [Group:Classification)

·+ faii StringEdit:CustTable_Segmentld

+ faii StringEdit :CustT able _Subsegmentld
+ jabl StringEd1t:CustT able _SalesDistrictid

+ labl StringEdil::CustTable_CompanyChainld

.+ faii StringEd1t:CustTable_MainContactld

• [.ii StringEdit:CustTable_Memo
"'' [Group:ldentification]
·• l Methods

i+ !&bi StringEdit:ldentification_AccountNum

-• faii StringEd1t :ldentification_Part)'id

:+ __ffl ComboBox:ldentification_PartyType
:+ fabi StringEdit:ldentification_Orgld

:+ jn [Group:Credit]

:+. ,...z [Group:Governrnentidentification]

·+ [Group:Administration)

:+ '-'' [Group:\lendor)

:+ ..'..J [TabPage:TabDirPartyDetails]

+ ..'..J [TabPage:TabSetup)

Figure 2. Design of Customer Form

X++ code can be added or written by using the built in editor and can be seen in Figure 3 .

...iJ \Classes\Classl - Editor

I I! ► .a .. , # - II •. • ~
~ .. ~ ~ .. - ¥ • ' ... - ~ • '

classDeclaration ,::::.:::i ::e:.:.:::;,::::-1:i ()

HelloWcrld

Figure 3. Example of X++ Code

Prioritizing test cases has been studied previously [1, 7, 8, 9, 11] in attempts to order

tests that need to be executed with hopes that defects will be more quickly uncovered as

the more important tests will be executed first. These techniques help engineers reveal

faults early in testing, allowing them to begin debugging earlier than might otherwise be

possible. Depending on the types of information available relating to test cases, various

test case prioritization techniques can be utilized. Initially, most techniques utilized code

coverage information to implement prioritization techniques [8, 9, 11, 27] and numerous

studies have shown that prioritization can improve the effectiveness of regression testing

[1, 4, 5, 7].

More recently, several prioritization techniques that go beyond the use of code

coverage information have also been proposed. Jeffrey and Gupta [29] present an

algorithm that prioritizes test cases based on their coverage of statements in relevant

slices of the outputs of test cases. Kore I et al. [30] propose prioritization techniques based

on coverage of system models. Hou et al. [31] and Sampath et al. [32] study prioritization

of test cases for testing web services software and web applications. Qu et al. [21]

consider prioritization in the context of configurable systems, presenting algorithms for

prioritization of configurations. Walcott et al. [19] present a technique that combines

information on test execution times with code coverage information, and utilize a genetic

algorithm to obtain test case orderings. Mirarab and Tahvildari [15] present Bayesian

Network-based {BN) prioritization techniques that employ probabilistic inference

algorithms with code modification information, univariate measures of fault-proneness,

and test coverage information in an attempt to provide improved techniques.

More relevant to our work is work by Leon and Podgurski [22], who present

prioritization techniques incorporated sampling methods that select test cases from

clusters that are formed based on distributions of test execution profiles. Their techniques

utilize clustering in test case prioritization, but the primary difference between their

techniques and those we consider here is that they simply apply random selection of test

cases from clusters for prioritization. In contrast, our approach applies prioritization

within each cluster using real fault history information and code complexity metrics. Yoo

et al. [26] study the use of expert knowledge for prioritization by pair-wise comparison of

test cases and propose clustering test cases into similar groups to facilitate the

comparison process. Unlike our goal in this paper, their primary goal of using clustering is

to help reduce the cost of human effort for pair-wise comparison.

2.3. Clustering

Clustering has recently been used to analyze the voluminous amounts of data

generated from version control systems or fault reporting systems [6, 12, 16}. In [6} there

was a considerable amount of research on the data retrieved from the version control

system and the bug database for five major software projects developed at Microsoft.

Their approach for mining metrics was similar to those used in this paper as a bug

database was linked to the version control system to provide the relationship between a

bug and a software artifact. In [12,13] a considerable amount of data mining work was

done to find related changes that may also need to happen or errors that may have been

introduced based on code patterns from prior errors.

As found in [22] we see that a clustering technique has been used to group tests

together based on similarity in the tests. The grouping of tests is used to assist in the

prioritization of tests. This allows a reduced set of regression tests to be run by selecting

a sub-set of tests from each cluster. In [22] they eventually used a combined approach to

prioritize tests. They found that using a combination of 2 different techniques was more

effective than each technique alone. Along with clustering tests together, they used a

maximum code coverage technique in the selection or prioritization of their tests. The

maximum code coverage technique is an effort to cover as much of the program to be

tested as possible with the smallest number of tests. The idea of clustering tests together

is similar to the approach we used in this paper. In this paper we will use clustering based

on code coverage to improve on a basic technique that only looks at code complexity to

prioritize tests.

3. PRIORITIZATION TECHNIQUES WITH CLUSTERING

We now describe the clustering and prioritization approaches that we use in this work.

While we describe these in terms of steps used on Microsoft Dynamics Ax, the approach

could be applied to any system for which the required information is available.

To implement our proposed test case prioritization techniques, we required two main

steps. First, we cluster test cases by retrieving code coverage and test case information

from the version control system for Dynamics Ax. Second, using clustered test cases, we

prioritize test cases based on software metrics we consider. The following subsections

describe each of these steps in detail.

3.1. Clustering Approach

We use agglomerative hierarchical clustering [11], which is based on the pair-wise

distances between test cases. The closest two test cases in terms of code coverage

similarity are merged into a cluster first. Then the algorithm proceeds iteratively through

the remaining test cases. The distances between a cluster and a test case, and between

two clusters, are determined using average linkage, i.e., the distances between the

elements of clusters are averaged. As a distance function we use Euclidean distance. The

result of this algorithm is a tree of test cases that returns one clustering with k clusters for

every k from 1 to the total number of test cases.

Figure 4 shows an example of a hierarchical tree. The numbers on the vertical lines in

the figure indicate the number of clusters at the particular level in the tree. This approach

provides a flexible way to adjust the number and size of clusters depending on the

particular test case prioritization strategy we consider.

k=2

k=3

k=9

I .----- -~
k= 21 r l- ,---

- l r--

~-
17 Il

Figure 4. Hierarchical Cluster Tree

3.2. Prioritization Techniques

Having created clusters, now we applied new prioritization techniques to them. To do

so, first, we reordered test cases within each cluster using specific software metrics.

Second, we generated the complete prioritized list of test cases by selecting test cases

from each cluster. To perform the first step, we considered three different test case

prioritization techniques that utilize the following information:

• Historical fault information

• Code complexity

• Combination of code complexity and historical fault information

The following subsections describe each of the prioritization techniques in detail.

Prioritization Using a Code Complexity Metric

Our first prioritization technique utilizes a code complexity metric. To calculate this

metric, we collected two data sets, the number of lines of code (LOC) for a class and the

method dependency count. To obtain LOC, we retrieved the project repository that stores

all source code information. The repository provides an easy way to collect a simple count

of non-blank lines for each class file.

We also collected dependency information directly from the Microsoft Dynamics Ax

system. The Microsoft Dynamics Ax system provides a cross reference mechanism that

maintains the relationships between objects (e.g., methods or classes) in the Dynamics Ax

system. This information is stored in internal SQL tables. We retrieved dependency

information for each method, and recC',ded the number of invocations from other

methods, which we refer as the number of dependency relationships.

Using these two data sets, first we calculated the LOC ratio and the number of

dependency relationship ratio by dividing LOC and the number of dependency

relationships by the largest number of LOC among classes and the largest number of

dependency relationships among methods, respectively. Then, we calculated a code

complexity metric (CC) by averaging these two ratios as shown in the following equation:

LOC I DC
CC= Max(LOC) Max(DC)

2

The code complexity metric value (CC) ranges between zero and one. Using this code

complexity metric, CC, we reordered test cases in each cluster in an order that puts the

highest CC values earlier.

To obtain a complete set of reordered test cases across clusters, we visited each

cluster using a round robin method. Starting from the first cluster that the clustering tool

generated, we picked the first test case in the cluster, added it to the prioritized list of test

cases (initially an empty list), and removed the added test case from the cluster. Then, we

moved to the next cluster, and repeated the same process until we added all the test

cases to the prioritized list. In cases where a cluster ran out of test cases due to the fact

that the number of test cases varied with each cluster (see Table 1), we skipped that

cluster and moved to the next cluster.

For instance, suppose we have five clusters and 15 test cases. Using our prioritization

technique, we reordered test cases for each cluster as shown in Table 1. Then, we created

the prioritized list, [T7, T2, Tll, TlS, Tl, T3, TG, TS, Tl3, TlO, T9, T8, Tl4, T12, T4], using

the process that we just described.

Table 1. Example of Prioritized Test Cases in Clusters

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5

T7 T2 Tll TlS Tl

T3 T6 TS Tl3 TlO

T9 T8 T14

T12

T4

Prioritization Using Fault History Information

Test cases that have detected faults in previous versions could have high fault

detection power when they are reused to test the current version of the program. If this is

true, we can improve test case prioritization process by running test cases that have fault

detection history earlier than those that do not. Since the Dynamics Ax program comes to

us, we can explore this possibility by implementing prioritization techniques that use fault

detection history of test cases.

To do this, first, we counted the number of faults detected by each test case. Then, we

calculated the fault detection ratio by dividing the number of detected faults by the total

number of faults. The fault detection ratio ranges between zero and one, and we used

these values to reorder test cases.

Similar to our first prioritization technique, we reordered test cases in each cluster in

an order that puts the highest fault count ratios earlier, and then selected test cases

across entire clusters until all the test cases had been added to the prioritized list.

Combined Technique

In the combined prioritization technique, we use the arithmetic mean of the code

complexity value and the fault detection ratio value to prioritize the final test case list.

Again, similar to the first prioritization technique, we reordered test cases in each

cluster in an order that puts the highest average values earlier, and then selected test

cases across entire clusters until all the test cases have been added to the prioritized list.

4. EMPIRICAL STUDY 1

As stated in Section 1, we wish to investigate whether the use of a clustering approach

can help improve the effectiveness of test case prioritization techniques, in application to

the Dynamics Ax product. Thus, we conducted two empirical studies. The following

subsections describe the first of these studies in detail. Section 5 discusses the second

study in detail.

4.1. Research Question

In this study, we investigate the following research question:

RQl: Can a clustering approach help improve the effectiveness of test case

prioritization techniques?

4.2. Object of Analysis

For this study, we analyze the Microsoft Dynamics Ax 2009 product including the

initial release and the SPl release of the product. We will also look back at the previous

version, Microsoft Dynamics Ax 4.0, as well to provide a set of defect data as an input to

one of our calculations for prioritizing data. The Microsoft Dynamics Ax product contains

several million lines of application code written in X++ (a proprietary language that

Microsoft Developed) This does not account for the kernel system code that provides the

runtime engine, the development interface allowing application code to be written, the

compiler and numerous other system pieces allowing tasks such as interfacing with the

database.

There are several maintenance teams in Microsoft Dynamics Ax. The author is

involved in maintaining the financials subsystem. Therefore, due to accessibility of

software artifacts, in this study we focus on the financials subsystem of Microsoft

Dynamics Ax, which contains about 827 classes and 705 KLOCs (the latest version).

Like other products developed at Microsoft, the Dynamics Ax repository maintains all

the software artifacts that have been produced during development and maintenance

phases including fault information reported by the users. Through this repository we

collected software artifacts required for our study as shown in Table 2.

Table 2. Experiment Objects and Associated Data

Objects Classes Size (KLOC) Test Cases Defects

Version O ~Goo ~G5o.o n/a 254
(Dynamics Ax 4.0)
Version 1 787 687.0 656 139
(Dynamics Ax
2009)
Version 2 827 705.8 908 221
(Dynamics Ax
2009 SPl)

Table 2 lists, for each version of Dynamics Ax, data on its associated "Classes"' (the

number of class files), "Size (KLOCs)"' (the number of lines of code), "Test Cases" (the

number of test cases), and "Faults" (the number of faults reported by users). Here,

"faults" indicates system failures that have been detected and reported by users after the

product has been released.

For version 1, the number of faults per class varies from 0 to 23 (average: 0.08), and

for version 2, it varies from Oto 16 (average: 0.05).

Test cases used in this study are functional test cases, which are the major type of test

cases that have been used for measuring the quality of the Dynamics Ax system. These

test cases were created by test engineers at Microsoft.

4.3. Variables and Measures

4.3.1. Independent Variable

Given our research question, this study manipulated one independent variable:

prioritization technique. We consider one control technique and three heuristic

prioritization techniques. Table 3 summarizes the techniques.

Table 3. Prioritization Techniques

Technique Label Description

Control Tc Conventional code complexity without
clustering technique

Code Complexity Tee Code complexity using clustering
technique

Fault based Tfb Historical fault feedback prioritization
using clustering

Combined Tcb Combination of Tee and Tfb

• Control (Tc): This technique serves as a control technique. The control technique (Tc) is

one that simply uses a conventional code complexity metric to prioritize the tests

without using clustering.

• Heuristics (prioritization using clustering): As we described in Section 3.2, we consider

three heuristics that utilize clustering:

-Code complexity (Tee): This technique orders test cases based on the code

complexity metric and clustering.

-Fault history based (Tfb): This technique orders test cases based on the fault history

information and clustering.

-Combined (Tcb): This technique combines Tee and Tfb.

4.3.2. Dependent Variable

We consider one dependent variable: Average Percentage of Fault Detection (APFD).

APFD [5] is defined as the average of the percentage of faults detected during the

execution of a test suite. APFD provides us with a value between 0 and 100 that indicates

how successful the prioritization technique is. The closer the value is to 100 the better

the prioritization technique is. More formally, let T be a test suite containing n test cases,

and let F be a set of m faults revealed by T. Let TFi be the first test case in ordering T' of T

which reveals fault i. The APFD for test suite T' is given by the equation:

APFD = 1- (TFl + TF2 + ... + TFm)/nm + 1/2n

4.4. Data Collection and Study Setup

To perform prioritization, our control technique and heuristics required four data sets:

code coverage information, the number lines of code, the number of dependency

relationships, and fault history data, as outlined in Section 3.

Data collection required three steps which can be seen in the process diagram found

in Figure 5. Each of these steps were automated, however manual intervention was

needed to run each automated task to collect data. Collecting data from each system

required a few minutes to a few hours at most from each system. First, we collected the

code coverage data for test cases executed against the System Under Test (SUT) using the

code coverage recorder that Dynamics Ax provides as a part of its framework. We stored

the code coverage data in the SQL database that lists information about which tests

exercised which methods in the program. For each class and method, unique identifier

values were assigned. This not only provides a key for the class or method tables that

easily map to foreign keys in the r·- lated tables, but also provides a way to hide the actual

names, protecting Microsoft's Intellectual property and sensitive data. A partial data set

we collected is shown in Table 4.

Table 4. An Example of Collected Data

ClasslD MethodlD #Dep LOC cc Faultl Fault2 ... Fault139 TestlDl ... Test1D656

3519 8 2 149 0.008314 1 0 0 1 0

3519 9 108 149 0.055341 0 0 0 1 0

3519 10 9 149 0.011419 0 0 1 0 0

3519 11 9 149 0.011419 0 0 0 1 1

1815 12 4 so 0.004266 0 0 0 0 0

1815 13 1 so 0.002935 0 0 0 0 1

1815 14 4 so 0.004266 0 0 0 1 0

In Table 4, the first two columns, "ClasslD" and "MethodlD", show the unique

identifier values assigned to each class and method in the system. "#Dep" is the number

of dependency relationships for a given method, "LOC" is the number of lines of code for

a given class, and "CC" is the code complexity metric we defined in Section 3.2. The

"Fault" columns list Boolean values indicating whether the fault occurred for a given

method: 0 indicates no faults occurred, and 1 indicates faults occurred. The "TestlD"

columns also list Boolean values indicating whether test cases exercised a given method

or not: 0 indicates that test cases are not exercised, and 1 indicates that test cases are

exercised.

A second step was to query the fault history database of the prior version to find all

the related fault history information for the financials subsystem. Similar to the test

coverage recording process just explained, the code change information associated with

each fault was queried from the bug database by method names. We use this information

to populate the fault columns found in Table 4. For methods that have been changed due

to fault corrections, we assigned 1, on others we assigned 0.

A third step was to collect the number of lines of code (LOC) and dependency

information. For LOC we collected the number of non-blank lines including comments.

Typically comments should also be excluded but since most class files only have a set of

comments in each class file's header, known as XML Documentation (17], we had a

consistent enough comparison across class files when leaving comments in the count.

Dependency information was retrieved from the existing cross reference tables that exist

as part of the Microsoft Dynamics Ax system as explained in Section 3.2.

Once we collected all the required data, we formatted the data to make it readily

usable for the clustering tool. We used Matlab, which provides the agglomerative

hierarchical clustering method that we explained in Section 3.1. In this study, we created

ten clusters, and the median cluster size is 14. Then, we obtained reordered test cases by

applying the four different prioritization techniques described in Section 4.3.1. Then,

APFD values were obtained from the reordered test suites, and the collected values were

analyzed to determine whether the proposed prioritization techniques improved the rate

of fault detection.

Reccr::I

TEZ':.•~a-:.t-o-:i
M~ri:-.

Cll .. z-:.er

Te~s

.:..~ply

Fricriti:a:1:,r

Te:rr.,Q~e

Pricr1:i:e:,

Tes:s

F:;r ea:t- t·i.ig'.

firj::,-.argej

Bt..=:•~e:t-~d
r,1a:r1-r.

Cal:1..la:e His:c,ri::al

Fa~l:da:a

~

Figure 5. Study Process

Co~i::le:e Stt..dy
Ca:a !"!"atr1:w:

Sc1.,:ri::e C:c-:ia

Re~=~i=rv

Cal::1..la:e C::je
C~rr-plexi:--,

4.5. Data and Analysis

Our research question (RQl) considers whether a clustering approach can help

improve the effectiveness of test case prioritization techniques. To answer this question,

we compare techniques based on the results shown in Table 5. The table shows APFD

values for each technique and version, and the percentage of the improvement over the

control technique.

The results indicate that all heuristic techniques outperformed the control technique.

For version 1, on average, the three prioritization heuristics improved the rate of fault

detection by 44% compared to that of the control technique (Tc), and for version 2, the

average improvement was 39%.

In particular, for version 1, the technique that used code complexity with clustering

(Tee) produced the best results, which shows a 52% improvement over the control

technique. In version 2, both heuristics, Tee (code complexity) and Tcb (combined),

produced the best results, which show a 47% improvement over the control.

When we compared heuristic techniques against each other, the fault history based

technique (Tfb) performed the worst. The APFD values (64.67 and 56.01 for version 1 and

version 2, respectively) were several points less than those of the code complexity (Tee}

technique. The combined approach (Tcb} falls between these two techniques.

Table 5. APFD Results

Version 1 Version 2

Technique

APFD
Percentage

APFD
Percentage

improvement improvement

Tc 48.59 0% 45.77 0%

Tee 73.92 52% 67.09 47%

Tfb 64.67 33% 56.01 22%

Tcb 71.86 48% 67.31 47%

5. EMPIRICAL STUDY 2

The results of Study 1 suggest that a clustering approach can help improve the

effectiveness of prioritization. While these results provide insights into the potential

usefulness of clustering in test case prioritization, we do not know whether this

observation holds when time constraints have been imposed. Considering the situations

under time constraints is particularly important for industry because, in practice, software

development processes often impose time constraints on regression testing. For instance,

the Microsoft Dynamics Ax SE team often faces this situation because the current

regression testing process that they use is a lengthy and time consuming process. Thus, a

better understanding of the effects of time constraints could lead to improved testing

processes.

Prior studies [1, 7] show that time constraints can affect assessments of the

effectiveness of prioritization techniques, and also demonstrate that prioritization

heuristics can be beneficial under time constraints. In this study, we further explore the

findings from our prior studies by utilizing an industrial software product equipped with

real faults.

5.1. Research Question

For the second study in this paper we investigate the following research question:

RQ2: Do observations drawn from Study 1 hold when time constraints applied?

This study utilizes the same object of analysis, study setup, data sets, and prioritization

techniques as those used in our first study. We thus do not repeat discussion of these

here. Instead, we describe only the differences between this study and the prior one.

5.2. Variables and Measures

5.2.1. Independent Variables

Variable 1: Prioritization Techniques

We will use the same prioritization techniques found in the study 1 above for this

study.

Variable 2: Time constraints

Time constraints imposed on regression testing processes are very realistic in practice,

in particular, when the development cycle implements a nightly build-and-test approach

that imposes a limited number of hours allowed before development changes begin again

the next day as the Microsoft Dynamics Ax team does. Thus, to assess the effects of time

constraints, our second independent variable controls the amount of regression testing.

In this study, we consider three different time constraint levels that our prior study

utilized [1]: TCL-25, TCL-50, and TCL-75. They represent situations in which time

constraints shorten the testing process by 25%, 50%, and 75%, respectively. The different

levels are displayed in Table 6 below.

Table 6. Time Constraint Levels

ID Name Description

TC-25 25% reduction 25% of tests were omitted

TC-SO 50% reduction 50% of tests were omitted

TC-75 75% reduction 75% of tests were omitted

To implement time constraint levels, we followed the approach used in [1] - we

assume that all of the test cases for the Dynamics Ax financials subsystem have equivalent

execution times {this assumption is reasonable for the Dynamics Ax financials subsystem).

We then manipulate the number of test cases executed to obtain results for different

time constraint levels. For example, in the case of TCL-25, for each version and for each

prioritized test suite, we halt the execution of the test cases as soon as 75% of those test

cases have been run {thus omitting 25% of the test cases).

Time constraint levels we consider can be interpreted in light of the practicality of

testing processes. TCL-75, which omits 75% of the tests, may represent a nightly build and

test scenario where we only have a few hours each night to run as many tests as possible

before changes will continue to be made the following day. The levels TCL-25 and TCL-50

may represent a weekly test run where more time is allotted to run tests, such as over a

weekend or spread across several days.

5.2.2. Dependent Variable

By omitting test cases due to time constraints, we could have faults that escape into

the released system. Thus, as our dependent variable, we count the number of missed

faults for each time constraint level.

5.3. Data and Analysis

Our research question {RQ2) considers whether the observations we draw from Study

1 still hold when time constraints are applied. To answer this question, we compare

techniques based on the results shown in Table 7. Examining the table, we have observed

strong similarities with the results from Study 1. Overall, compared to the control

technique, heuristic techniques missed relatively small numbers of faults across all time

constraint levels for both versions with the exception of the fault history based technique

(Tfb) at TCL-75. In particular, the code complexity with clustering (Tee) technique

produced the best results, which is consistent with the results from Study 1.

When we examined the results at each time constrain level, we observed different

trends between time constraints among techniques. At TCL-25, for all heuristics, the

numbers of missed faults were very small (ranging from 1 to 3) compared to the control

technique (11 and 9). At TCL-50, the gap between the heuristics and the control slightly

widened, but still the difference between the heuristics (ranging from 3-18) and the

control (14 and 27) is outstanding. At TCL-75, however, the gap between these two

groups became smaller. In the case of the two heuristics (Tee and Tcb), the numbers of

missed faults (ranging from 12 to 22) were smaller than those of the control (17 and 29).

In the case Tfb, however, the results were not better than the control.

Table 7. Results with Time Constraints Applied

Version 1 Version 2

Technique

TCL
of Missed

%found TCL
of Missed

%found
Faults Faults

25 11 56% 25 9 78%

Tc so 14 44% 50 27 33%

75 17 32% 75 29 28%

25 2 92% 25 2 95%

Tee 50 3 88% 50 8 80%

75 13 48% 75 22 45%

25 1 96% 25 2 95%

Tfb so 5 80% 50 18 55%

75 19 24% 75 35 13%

25 2 92% 25 3 93%

Tcb so 6 76% 50 10 75%

75 12 52% 75 22 45%

6. THREATS TO VALIDITY

In this section, we describe the threats to the validity of our empirical studies, and

explain how we tried to reduce the chances that those threats affect the validity of our

conclusions.

Internal Validity: The outcome of our studies could be affected by the choice of the

number of clusters. Our choice, however, was based on the number of feature areas in

Dynamics Ax, and each code coverage-based cluster was formed based on areas test cases

exercise. Another factor involves the use of LOC at the class level. Our choice was based

on the availability of information that can be extracted from the project repository. This

choice could affect our results, but we believe that the difference would be minimal

because except for several methods, method size does not vary widely.

External Validity: We have studied an industrial software system with real faults

reported by real customers. We have, however, focused on the financials subsystem for

the Microsoft Dynamics Ax product, thus our findings might not be applied to the entire

Dynamics Ax product and products developed by other companies. Control for this threat

can be achieved only through additional studies with the entire product.

Construct Validity: Our dependent variables, APFD and the number of missed faults,

do not account for the possibility that faults and test cases may have different costs.

Accounting these additional factors could affect our results.

7. DISCUSSION

We now discuss our results, together with additional consideration of our data, to

derive practical implications of these results.

Clustering can help improve prioritization

Our results strongly support the conclusion that the use of clustering in test case

prioritization can improve the effectiveness of prioritization in terms of increasing the rate

of fault detection. The results of our study also show that the conjecture we raised holds:

if test cases have common properties, then test cases within the same group may have

similar fault detection ability.

One interesting result we observed was that the technique that used fault detection

history did not perform as well compared to other heuristics. This result was surprising

because we expected that test cases that have fault detection history can provide high

fault detection power. One possible reason for this is that since new test cases have been

added as the system is upgraded {see Table 2), newly added or modified components

could be more error-prone and thus these new test cases may be more likely to be fault­

revealing than previous test cases.

Clustering is effective under time constraints

Our results also strongly support the conclusion that the use of clustering in test case

prioritization can improve the effectiveness of prioritization in terms of reducing the

number of missed faults when time constraints are imposed.

As noted in Section 5.3, the results also show that the trend changed as time

constraint level changed. In particular, up to 50% of test case omission, the heuristics

performed far better than the control technique, but when we omitted test cases further

(75% cut), the differences were not outstanding and in the case of Tfb, the results were

reversed. We can see this detailed in Figure 6 below. The trends we observed in this

study are different from those in study [1]. The reason for this is that the two studies used

different control techniques: in this study, we used one type of prioritization techniques

(code complexity based) as a control technique, but in [l], we utilized the original test

order as a control.

40 -.---------------------

35 +----------------------,,
I \

30 -t--- ---------------r----
\

\
\

I
I

\
\

25 +-----------------------+--- --+--
\1 \ . \

' 20 +--------- ------------

Tc Tee Tfb Tcb

TC-25 TC-50

Tc Tee Tfb Tcb

TC-75

- # of Missed Faults Vl

- - - # of Missed Faults V2

Figure 6. Missed Faults Under Time Constraints - [TC-25 = 25% tests removed; TC-SO =
50% tests removed; TC-75 = 75% tests removed; Tc = control technique; Tee code
complexity technique; Tfb = fault base technique; Tcb = combined technique]

Practical implications for software industry

The results from our two empirical studies lead to very significant practical

implications for software industry because unlike our prior studies and a vast majority of

other empirical studies on prioritization, these studies investigated prioritization problems

in the industrial context by utilizing an industrial software product and its byproducts,

such as code complexity metrics and real faults reported by users.

In particular, the findings from these studies are directly related to the Microsoft

Dynamics Ax SE team. Thus, techniques we developed can be easily applied to their

regression testing process so that they can produce a better quality product with less

effort and costs.

Further, the fact that software development processes often impose time constraints

on regression testing is true for almost all software companies. Thus, we hope that the

results from these studies can provide useful insights into how software organizations

manage their regression testing processes cost-effectively considering their organizational

and process contexts.

8. CONCLUSIONS AND FUTURE WORK

We have presented two empirical studies of assessing the use of clustering in test case

prioritization in the context of an industrial software product. Our results show that our

new test case prioritization techniques that utilize a clustering approach can improve the

rate of fault detection of test cases and reduce the number of faults that slip through

testing when testing activities are cut short.

Our studies are constrained by a few limitations that can be considered for future

work. One of the constraints in these studies is the feature area of the software system.

As noted in section 4.2, we only examined the financial sub-system for Microsoft

Dynamics Ax product. This constraint could easily be expanded to the entire application

code for Microsoft Dynamics Ax, but expanding it to include the kernel or system level

APl's would require additional tooling not readily available.

Second, while the prioritization heuristics showed improvement over the control, still

we could improve the effectiveness of prioritization by utilizing additional information.

For instance, the current code complexity based technique utilized two sets of data (the

mean value of number of lines of code and dependency relationships normalized to a

value between O and 1). Alternative to this technique is to utilize other types of software

metrics, such as the number of child classes, the depth of inheritance, the age of classes,

or change-proneness of classes. Considering these possibilities, we intend to develop new

prioritization techniques so that we can further improve regression testing processes.

Third, as we discussed in Section 1, we utilized a clustering approach as an initial

approach to investigating the relationships in massive data in software repositories. Since

this approach provides promising results, the next natural step is to investigate other

alternative approaches, such as data mining (e.g., classification and association), that can

deal with massive, complex, and heterogeneous software artifacts that software

companies produce over time.

REFERENCES

1. H. Do, S. Mirarab,L. Tahvildari,G. Rothermel, An Empirical Study of the Effect of Time

Constraints on the Cost-Benefits of Regression Testing. Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, 2008,

Atlanta, Georgia

2. Wikipedia Contributors. Enterprise resource planning. Retrieved Feburary 5, 2010,

from http://en.wikipedia.org/wiki/Enterprise_resource_planning.

3. Microsoft Corporation (2010). Microsoft Dynamics Ax 2009. Retrieved February 5,

2010, from http://www.microsoft.com/dynamics/en/us/products/ax-capabilities.aspx.

4. G. Rothermel, S. Elbaum, A.G. Malishevsky, P. Kallakuri, and X. Qiu, 2004. On test suite

composition and cost-effective regression testing. ACM Transactions on Software

Engineering Methodology, Vol. 13, No 3, July 2004, Pages 277-331.

5. A. Malishevsky, G. Rothermel, S. Elbaum, Modeling the Cost-Benefits Tradeoffs for

Regression Testing Techniques. ICSM. 2002

6. N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures. ICSE.

2006

7. H. Do, G. Rothermel, An Empirical Study of Regression Testing Techniques

Incorporating Context and Lifetime Factors and Improved Cost-Benefit Models.

SIGSOFT- Foundations of Software Engineering, 2006, pages 141-151

8. J. M. Kim, A. Porter, A History-Based Test Prioritization Technique for Regression

Testing in Resource Constrained Environments, ICSE 2002. pages 119-129, 2002

9. G. Rothermel, R. Untch, C. Chu, M. Harrold, M. Test Case Prioritization: An Empirical

Study, ICSM, 1999, pages 179-188

10. T. L. Graves, M. J. Harrold, J.M. Kim, A. Porter, and G. Rothermel. An Empirical Study

of Regression Test Selection Techniques. ACM Transactions on Software Engineering

and Methodology, Vol. 10 No. 2, April 2001, pages 184-208

11. S. Elbaum, A. Malishevsky, and G. Rothermel. Test Case Prioritization: A Family of

Empirical Studies. IEEE TSE, Vol. 28, No. 2, 2002.

12. T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, Mining version histories to

guide software changes. ICSE 2004, pages 563-572.

13. B. Livshits, T. Zimmermann, DynaMine: Finding Common Error Patterns by Mining

Software Revision Histories. ACM SIGSOFT Software Engineering Notes, Vol. 30 No. 5,

September 2005.

14. Microsoft Corporation (2010). Dynamics AX Sustained Engineering. Retrieved Feb 13

2010, from http://blogs.technet.com/dynamicsaxse/archive/2009/09/30/dynamics­

ax-2009-rollup-3-has-been-released-to-partner-source-and-customer-source.aspx.

15. S. Mirarab and L. Tahvildari. A prioritization approach for software test cases on

Bayesian Networks. In Proceedings of the International Conference on Fundamental

Approaches to Software Engineering, LNCS 4422-0276, pages 276-290, 2007.

16. C. J. Bose, S. H Srinivasan, Data Mining Approaches to Software Fault Diagnosis, IEEE

Computer Society, RIDE-SDMA 2005, pages 45-52.

17. Microsoft Corporation (2010). XML Documentation Tags. Retrieved Feb 14, 2010, from

http://msdn.microsoft.com/en-us/library/cc607340.aspx.

18. A. Greef, M. F. Pontoppidan, and L. D. Olsen, {2006). Inside Dynamics Ax 4.0.

Redmond: Microsoft Press.

19. A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R.S. Roos. Time-aware test suite

prioritization. In Proceedings of the International Symposium on Software Testing and

Analysis, pages 1-12, 2006.

20. NIST (2010). Software Errors Cost U.S. Economy $59.5 Billion Annually. Retrieved

March 6, 2010 from http://www.nist.gov/pub1ic_affairs/releases/n02-10.htm.

21. X. Qu, M.B. Cohen, and K.M. Woolf. Combinatorial interaction regression testing: A

study of test case generation and prioritization. In Proceedings of the International

Conference on Software Maintenance, pages 255-264, October 2007.

22. D. Leon, A. Podgurski, A Comparison of Coverage-Based and Distribution-Based

Techniques for Filtering and Prioritizing Test Cases. Proceedings of the 14th

International Symposium on Software Reliability Engineering, 2003.

23. M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker. Empirical studies of a

prediction model for regression test selection. IEEE Transactions on Software

Engineering, 27(3):248-263, 2001.

24. J. Jones and M. J. Harrold. Test suite reduction and prioritization for modified

condition/decision coverage. IEEE Transactions on Software Engingeering, 29(3):193-

209, 2003.

25. G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE

Transactions on Software Engineering, 22(8):529-551, 1996.

26. S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective

and scalable prioritisation incorporating expert knowledge. In Proceedings of the

International Symposium on Software Testing and Analysis, pages 201-212, 2009.

27. A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development

environment. ACM SIGSOFT Software Engineering Notes, 27(4):97-106, 2002.

28. J. Offutt, J. Pan, and J.M. Voas. Procedures for reducing the size of coverage-based

test sets. In Proc. lnt'I. Conf. Testing Comp. Softw., pages 111.123, June 1995.

29. D. Jeffrey and N. Gupta. Test case prioritization using relevant slices. In Proceedings of

the Annual International Computer Software and Applications Conference, pages 411-

420, 2006.

30. B. Karel, G. Koutsogiannakis, and L. Tahat. Appf."cation of system models in regression

test suite prioritization. In Proceedings of the International Conference on Software

Maintenance, pages 247-256, September 2008.

31. S. Hou, L. Zhang, T. Xie, and J. Sun. Quota-constrained test case prioritization for

regression testing of service-centric systems. In Proceedings of the International

Conference on Software Maintenance, pages 257-266, September 2008.

32. S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A. Koru. Prioritizing user­

session-based test cases for web applications testing. In Proceedings of the

International Conference on Software Testing, Verification, and Validation, pages 141-

150, April 2008.

