
REFINEMENT-BASED VERIFICATION OF ELASTIC PIPELINED

SYSTEM WITH EARLY EVALUATION

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Yangwei Cai

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

May2010

Fargo, North Dakota

North Dakota State University
Graduate School

Title

Refinement-based Verification of

Elastic Pipelined System with Early Evaluation

By

Yangwei Cai

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Cai, Yangwei, M.S., Department of Electrical and Computer Engineering, College
of Engineering and Architecture, North Dakota State University, May 2010. Refinement
based Verification of Elastic Pipelined System with Early Evaluation. Major Professor:
Sudarshan Srinivasan.

This thesis presents a formal verification procedure to check correctness of the syn

chronous elastic pipelined system that incorporates early evaluation against its synchronous

parent system. Note that the goal of the verification procedure is not to establish the

correctness of the algorithm for synthesizing elastic circuits, but instead, to find bugs

and formally prove the correctness of elasticized designs with early evaluation. Dataflow

through elastic architectures is complicated by the insertion of any number of elastic buffers

in any place in the design. Elastic token-flow diagrams are introduced, which are used to

track the flow of data in elastic architectures. We provide a method to construct such

diagrams. The thesis also develops a highly automated and systematic procedure based

on elastic token-flow diagrams that compute functions that map states of elastic systems

to states of the synchronous parent systems. Such functions, known as refinement maps,

are used to compare behaviors of elastic and synchronous systems and hence prove their

equivalence. The effectiveness of this method is demonstrated by verifying 8 synchronous

elastic pipelined processor models with early evaluation.

Keywords: formal verification, synchronous, elastic system, early evaluation, refine-

ment

iii

ACKNOWLEDGMENTS

I would like to express my deep-felt gratitude to my advisor, Dr. Sudarshan Srinivasan of

the Department of Electrical and Computer Engineering at North Dakota State University,

for his advice, encouragement, enduring patience and constant support.

I also wish to thank the other members of my committee, Dr. Raj. Katti and

Dr. Chao You of the Department of Electrical and Computer Engineering, and Dr. Jing

Shi at Department of Industrial and Manufacturing Engineering at North Dakota State

University. Additionally, I would also thank Koushik Sarker. Their suggestions, comments

and additional guidance were invaluable to the completion of this work.

Thanks Haiping and my brother Yangjun together with sister in-law for their support

during my study for a master's degree over the past two years at North Dakota State

University.

And finally, I want to thank the professors and staff of the ECE department of North

Dakota State University for all their hard work and dedication, providing me the means to

complete my master's degree.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES .. viii

CHAPTER 1. INTRODUCTION 1

1.1. Contributions . 3

1.2. Outline of Thesis . 5

CHAPTER 2. ELASTIC PROCESSOR MODELS WITH EARLY EVALUATION 6

2.1. Synchronous Elastic Network . 6

2.2. Elastic Processor Models with Evaluation. 8

CHAPTER 3. EARLY EVALUATION ELASTIC TOKEN-FLOW DIAGRAM.. 13

CHAPTER 4. REACHABILITY ANALYSIS FOR ELASTIC SYSTEM WITH
EARLY EVALUATION . 19

CHAPTER 5. REFINEMENT MAPS FOR ELASTIC SYSTEM WITH EARLY
EVALUATION . 23

5.1. Refinement Maps . 23

5.2. Liveness. 25

5.3. Using Token-flow Diagrams for Elastic System Design.............. 28

CHAPTER 6. RESULTS AND FUTURE WORK. 33

6.1. Results . 33

6.2. Future Work . 33

REFERENCES .. 35

V

TABLE OF CONTENTS (Continued)

CURRICULUM VITAE. 36

vi

Table

1

2

LIST OF TABLES

Token-flow Diagram: Reachability . 11

Token-flow Diagram for Early Evaluation Elastic: Reachability 22

3 Token-flow Diagram: Refinement Map Construction for So of Processor A4 25

4 Token-flow Diagram: Refinement Map Construction for S1 of Processor A4 26

5 Token-flow Diagram: Refinement Map Construction for S2 of Processor A4 26

6 Invariants for Elastic Processor Models with Early Evaluation 31

7 Refinement Maps and Rank functions for Elastic Processor Models with
Early Evaluation . 32

8 Verification Times and CNF Statistics for Anti Model 33

Vll

LIST OF FIGURES

Figure

1 Elastic half buffer . 7

2 Self protocol . 7

3 Interface of elastic buffer [7] . 8

4 EHB with early evaluation . 9

5 Interface of EB with early evaluation . 10

6 High-level organization of elastic 5-stage DLX processor that implements
the early evaluation LI protocol. The model has four additional elastic
buffers: 11, 12, 14, and 15 . 11

7 Network of elastic controllers for the elastic 5-stage DLX processor shown
in Figure 6. The J and F blocks denote the join and fork circuits. the
EJ block denotes the early join circuit, which is capable of generating anti
tokens. Valid+ and Stop+ are the valid and stop signals of the tokens. Valid-
and Stop- are the valid and stop signals for the anti-tokens. Note that the
directions of Valid- and Stop- are the reverse of the directions of Valid+ and
Stop+, respectively. 11

8 Reachability analysis of elastic controller networks . 20

9 Reachability analysis for A4 model . 21

10 Reachability analysis for A5 model . 29

11 Reachability analysis for A6 model . 29

12 Reachability analysis for A 7 model . 30

viii

CHAPTER 1. INTRODUCTION

The constant scaling of technology has resulted in increased significance of wire

delays in digital design. However, since precise information on wire lengths and delays

are available late in the design process, accounting for these delays results in expensive re

designs making synchronous design infeasible for nanoscale systems. Latency insensitive

(LI) [1-5, 10, 16-18] design is an emerging solution that addresses the wire delay challenge

in the synchronous domain. The central idea is to use relay stations-which function

like latches in a pipelined datapath-to break long wires that cause violations of timing

requirements imposed by the clock. However, including such relay stations can alter the

functionality of the system resulting in an incorrect design. The LI solution to this problem

is to use a handshaking protocol known as the LI protocol to control the transfer of data

between modules/stages. The protocol allows for insertion of buffers/relay stations without

altering the functionality of the system. The resulting Latency Insensitive designs are

still synchronous, i.e., the system synchronization is implemented using a global clock.

Synchronous Elastic Networks (SEN) [7, 9] is one effective approach to implement LI

designs and also synthesize LI systems from synchronous parents.

One of the critical chellenges for any design paradigm to be feasible is verification.

The verification challenge for hardware design has in fact been addressed by the Inter

national Technology Roadmap for Semiconductors (ITRS) 2007 report [8], which states

that "Verification has become the dominant cost in the design process. . .. Without major

breakthroughs, verification will be a non-scalable, show-stopping barrier to further progress

in the semiconductor industry." The 2007 report of the ITRS also predicts that in 15 years

40% of design errors will be exposed by formal verification methods.

An important component of the verification challenge for LI systems is the verifica

tion of pipelined LI systems such as pipelined microprocessors, because, pipelining is a key

optimization that is used extensively in digital design at both component and system-levels.

1

To adress this problem, we develop a verfication solution for LI pipelined systems designed

using the SEN approach, referred to as elastic systems hereafter.

Correctness Notion: The goal of the verification solution is to check the correctness of an

elastic pipelined system against its synchronous specification. The notion of equivalence

that we use is Well Founded Equivalence Bisimulation (WEB) refinement [12], which is

based on stuttering bisimulation. Synthesis of elastic designs incorporates the insertion

of additional elastic buffers in the data path to handle timing issues in the design. While

the insertion of these buffers does not affect the functionality of the system, the timing

behavior is altered. As a result, an elastic system can require several transitions to match

a single transition of its synchronous parent system. This phenomenon is known as stutter

and is accounted for by WEB refinement. We also choose to use WEB refinement as the

methods we develop can be combined with existing methods in a compositional manner to

verify elastic pipelined systems against high-level non-pipelined specifications, such as an

instruction set architecture (ISA) specification.

A detailed description of the theory of refinement can be found in [12]. It is enough

to prove the following correctness formula [11] to prove refinement (thereby establish

equivalence) between an implementation and its specification.

Definition 1. (Core WEB Refinement Correctness Formula)

(\:/imp! E IMPL ::

spec r(impl) I\ next-spec Sstep(spec) I\

next-imp/= Jstep(impl) I\ next-spec =I= r(next-impl)

spec= r(next-impl) I\ rank(next-impl) < rank(impl))

In the above formula, imp[is a pipelined machine state. spec is the ISA state obtained

2

by applying the refinement map r to impl. next-spec is the successor of spec obtained by

stepping the ISA machine in state spec and next-impl is the successor of impl obtained

by stepping the pipeline machine in state impl. The formula above states that for every

pipelined machine state impl its corresponding ISA state spec, if the successors of spec

and imp!, namely, next-spec and next-imp!, respectively, do not match, then applying r to

next-impl should result in state spec and the rank of next-impl should decrease w.r.t the

rank of impl. The proof obligation that spec = r(next-impl) is the safety component and

guarantees that if the implementation makes progress, then the result of that progress is

correct as given by the specification. However checking safety alone provides no guarantee

that the implementation will always make progress, i.e., will not deadlock. The proof

obligation that rank(next-impl) < rank(impl) is the liveness component and guarantees that

the machine will not deadlock, i.e., will always make forward progress.

The specific steps involved in a refinement-based verification methodology are: (a)

Construct models of the specification and implementation. (b) Compute the states of

the implementation model that are reachable from reset (known as reachable states). (c)

Construct a refinement map. (d) Construct a rank function for the implementation system.

(e) The models, the refinement map, and the rank function can now be used to state

the refinement-based correctness formula for the implementation model, which can then

be automatically checked for the set of all reachable states using a decision procedure.

We use the Bit-level Analysis Tool (BAT) system [13] to model the specification and

implementation systems at the word-level and to state the correctness formula. We then

use the decision procedure for bit-vectors incorporated in BAT to automatically check

the correctness formula. The reachable states, refinement maps, and rank functions are

computed manually using the procedures given in the thesis.

1.1. Contributions

3

There are three main contributions in this thesis. First, we show how to extend the approach

presented in [15] to verify elastic pipelined systems with early evaluation [6], a LI design

approach that allows a design stage to complete execution when all the data required for

proceeding with the computation of the results in that stage are available. Note that if early

evaluation is not used, the elastic protocol forces a design stage to wait until all inputs are

available, even though some of the inputs may not be required for execution. Second, we

describe a systematic procedure for synthesizing rank functions used for deadlock detection

for elastic pipelined systems without and with early evaluation. Third, we show how

to combine our approach with existing approaches to check verify equivalance of elastic

pipelined systems with high-level non-pipelined specifications. The specific contributions

of the approach are:

1. A method to compute elastic token-flow diagrams (described in Chapter 3) which can

also track the flow and progress of data in elastic pipelined processor designs with

early evaluation. These diagrams enables a systematic analysis of data flow in elastic

architectures even after the insertion of any number of additional elastic buffers in

any place in the data path. A method is provided to construct such diagrams. We

also use token-flow diagrams for reachability analysis (described in Chapter 4). The

network of elastic controllers is deterministic. However, when early evaluation is

introduced the controller network becomes nondeterministic.

2. A method for computing refinement maps based on elastic token-flow diagrams

(given in Chapter 5). The complexity in computing refinement maps arises because:

(1) Each flip flop in the synchronous machines is replaced with two latches in the

elastic machine. Therefore, an elastic storage element can have either 0, 1, or 2 valid

data tokens, while in the synchronous system, every flip flop always has exactly one

valid data token. (2) The insertion of additional elastic buffers in the design can

significantly alter the data flow patterns of the architecture.

4

3. A method to synthesize rank functions for elastic pipelined systems without and with

early evaluation, used to check liveness.

4. We show how to combine our approach with existing approaches to check the equiv

alance of elastic pipelined systems with early evaluation against high-level non

pipelined specifications.

5. We also show that the elastic token-flow diagrams can be used as a design aid to

determine if the design will benefit from early evaluation (shown in section 5.3 of

Chapter 5). This analysis is useful as the controllers required for early evaluation

are more complex and expensive compared to the controllers required when early

evaluation is not implemented.

1.2. Outline of Thesis

This thesis is organized as follows. Chapter 1 provides th~ background introduction,

contribution and outline of the thesis. Chapter 2 describes Synchronous Elstic Network

(SEN) and synchronous elastic pipelined processor models with early evaluation. Chapter 3

describes elastic token-flow diagrams which are obtained by simulating the flow of data

tokens in the elastic controller network of elastic models with early evaluation. Chapter 4

describes token flow diagram for reachability analysis. Chapter 5 describes refinement

maps and rank functions of elastic processor with early evaluation. Chapter 6 provides

the results to show the efficient approach for checking the equivalence of elastic pipelined

processors with early evaluation against their synchronous parents, also the conclusions

and ideas for future research.

5

CHAPTER 2. ELASTIC PROCESSOR MODELS WITH EARLY

EVALUATION

This chapter provides the introduction of elastic processor models based on SEN and

early evaluation mechanism.

2.1. Synchronous Elastic Network

SEN is one effective approach to implement LI designs and also synthesize LI systems

from synchronous parents. The idea with SEN is to replace each of the flip flops in the

design with a latch pair called an elastic buffer (EB). Each EB is clocked using a controller

known as the elastic controller, which implements the LI protocol. The controllers are

synchronized with a global clock. One controller is used for all the EBs in a stage of

the design. The EBs as stated earlier are constructed using two latches, called elastic

half buffers (EHBs). The left and the right EHBs are called the master and slave EHBs,

respectively. The global clock of the synchronous design is now replaced by a network

of elastic controllers. The elastic controllers are connected so that they communicate with

their neighbors. In the resulting elasticized design, elastic buffers can be inserted in any

place in the datapath to break long wires.

Figure 1 shows an implementation of Elastic Half Buffer, which is a set of elastic

modules and elastic channels. Elastic channels have two control wires implementing a

handshake between the sender and the receiver. The wires are called valid, in the forward

direction, and stop, in the backward direction. The role of these wires is similar to the one

of the request/acknowledge wires in asynchronous systems. Depending on the state of the

control wires, a channel can carry valid or invalid data items, that we will call tokens and

bubbles, respectively. For simplicity in the explanation, we will initially assume that the

elastic modules are combinational blocks and latches.

Figure 2 depicts an example of a naive elastic implementation for transmitting data

between souce side and destination side of elastic channels. Each register has an associated

6

L H

s -~---1 s

Figure 1 : Elastic half buff er

Data * Data
...

t Valid !it b Valid ~ t Valid ~
"O ·g "O '8 "0 'ij C C C
cu u ~

~
cu cu VJ Stop 0::: VJ

"'
VJ Stop 0:::

Transfer (T) Jdle(I) Retry (RJ

Figure 2: Self protocol

valid bit (V) that keeps track of the validity of the stored data. The clock signal is not

explicitly shown and the enable signal (En) indicates when new data is stored into the

register. The chain of AND gates manages the backpressure generated by the receiver

when it is not able to accept data (Stop = 1). The scheme in Fig 2 is not scalable due to the

long combinational path from the receiver to the sender. When the pipeline is full, i.e. all

Vs are at 1, the delay of the Stop chain becomes critical.

Data transfer is performed by using the control signals Valid(V) and Stop(S) that

determine three possible states in the channel (as shown in Figure 2):

Transfer (T), (V A -.S): the sender provides valid data and the receiver accepts it

Idle (I), (-.V): the sender does not provide valid data.

Retry (R), (V /\ S): the sender provides valid data but the receiver does not accept it.

Figure 3 shows how the EB interfaces with the source side and destination side

7

..... Din Dout
C: C:
(l) (l)

..... E
Vin Vout

::i E
:::::, C: C. C:
C. 0 0

:::::, r... C: r...
0 '> - '> Si Sout C: C:

w w

Figure 3: Interface of elastic buffer [7]

elastic channels. Communication between two EBs occurs via a elastic channel, which

has 3 components including data and valid signal produced by the source EB and stop

signal produced by the destination EB. Data is transferred through the elastic channel only

if valid is asserted and stop is deasserted. We would like to emphasize here again that

the transactions in the elastic channels are synchronized with a global clock. This is a

significant difference from asynchronous hand-shaking based protocols, where no global

clock is present. A detailed description of the elastic controllers can be found in [7, 9].

2.2. Elastic Processor Models with Evaluation

One of the drawbacks in SEN system is that it can often result in an increased number

of cycles required by the design to perform operations when introducing additional elastic

buffers. Early evaluation is an optimization of elastic design to improve performance [6].

We use the following example to motivate early evaluation. Consider the forwarding

logic of the DLX pipeline (shown in Figure 6). The em stage receives input from three

stages namely de, em, and mm. Let us assume that there are two additional elastic buffers

in the path from mm to em. These additional buffers will result in a degradation of perfor

mance and the resulting design will require more clock cycles. But, there could be several

situations in which the data from mm is not required for the execution in the execute stage

to proceed. In elastic designs however, the execution in the execute stage is forced to wait

until the data token from mm arrives. Early evaluation provides a mechanism to allow

8

execution to proceed even if the data token from mm has not arrived, provided that the it

can be determined that mm data token is not required using the data from only de and em.

The mechanism used to implement early evaluation is based on anti-tokens. Suppos

ing that in the execute stage, the token from mm has not yet arrived, but it is determined

that in fact the token from mm is not required for execution. As stated earlier, the early

evaluation mechanism allows execution to proceed. The logic to detect and allow execution

to proceed is implemented using an eager join structure described in [6]. The problem

however is that the token from mm is still in the path from mm to em, and has not been

consumed yet. Therefore, this token can interfere with future executions in the execute

stage. To nullify this mm token that has not yet arrived, the eager join generates an anti

token. The anti-tokens are propagated in the reverse direction of the tokens and when

tokens and anti-tokens meet, they are both nullified. Thus the anti-token generated by the

eager join in the execute stage will flow in the path from mm to em, but only now in the

reverse direction. When the anti-token meets the token from mm both are nullified. As

a result, the token from mm is prevented from interfering with future executions in the

execute stage.

The flow of anti-tokens is implemented using the controllers similar to the elastic

controllers (designed to propagate tokens). Only the direction in which the anti-tokens are

propagated is reversed (shown in Figure 4). Thus in early evaluation, the elastic controller

,-,~!fv-,,,

.-·--···--+----'--- s r· s·

~ ~-

Figure 4: EHB with early evaluation

9

of an EB can hold up to two tokens or two anti-tokens. The controllers are also modified so

that when tokens and anti-tokens meet, both are nullified. Figure 5 shows the interface of

the elastic controller with early evaluation, which includes v+ and s+ as the output valid

and stop for the tokens, and v- and s- as the output valid and stop for the anti-tokens.

Also, vit, S!, V;;, and S&z are the inputs of the controller. The behavior of the controller is

complex and we refer the reader to [6] for a detailed description.

We developed 8 elastic processor models (AO, A 1, ... , A 7) that implement the LI

protocol with early evaluation. The models are used to demonstrate the analysis and

verification techniques and also used for experimentation. The models are based on the

5-stage DLX model and are described using the BAT specification language at the bit-level

with a data path width of 32 bits. AO is the model without any additional EBs. The other

models A 1 through A 7 were obtained by placing additional EBs at various points in the

data path. Figure 6 shows the positions of the additional EBs (11, 12, 14, and 15). Figure 7

shows the elastic controller network for the processor model given in Figure 6 (which also

happens to be model A 7. Table 1 shows the additional EBs in each of the models.

Anti-tokens are generated in the execute stage. The execute stage receives input from

three stages: execute, memory, and writeback. The paths from memory to execute and

writeback to execute are forwarding paths. In the elastic framework, if additional EBs

are placed in the forwarding paths, the execute stage will have to wait for data from all

three paths before it can complete execution. However, it is possible for the execute stage

to complete execution even if it does not receive data from the writeback stage. Such

Figure 5: Interface of EB with early evaluation

11

Figure 6: High-level organization of elastic 5-stage DLX processor that implements the
early evaluation LI protocol. The model has four additional elastic buffers: 11, 12, 14, and

15

! : :: i:
- valid- valid• , : ,, I
•-- stop- ~-- stop• li_:I ____ ~~~---_-_-_-_-_-_--@============: _

Figure 7: Network of elastic controllers for the elastic 5-stage DLX processor shown in
Figure 6. The J and F blocks denote the join and fork circuits. the EJ block denotes the
early join circuit, which is capable of generating anti-tokens. Valid+ and Stop+ are the

valid and stop signals of the tokens. Valid- and Stop- are the valid and stop signals for the
anti-tokens. Note that the directions of Valid- and Stop- are the reverse of the directions of

Valid+ and Stop+, respectively.

Table 1: Token-flow Diagram: Reachability

Model Additional EBs

AO
Al 11
A2 14
A3 12, 14
A4 12, 14, 15
AS 11, 14
A6 11, 12, 14
A7 11, 12, 14, 15

11

a condition occurs when the two operands required for execution are available from the

memory stage. This condition can be determined by examining data from only the execute

and memory stages. Thus, under this condition, it is not necessary to wait for data from the

writeback stage to complete execution. However, the data token from writeback, which will

arrive at a later time will have to be nullified. This is achieved by generating an anti-token

that will flow from execute to writeback (in the reverse direction). When the anti-token

encounters the data token from write back, both are nullified, ensuring that this data token

does not interfere with future operations in the execute stage.

The early join block is used to identify the condition under which anti-tokens are

required and also generates the required anti-tokens. The exact implementation of the early

join block is given in [6]. In the models AO, ... , A 7, an early join block is used to join

the paths from the memory and writeback to the execute stage and is depicted as EJ in

Figure 7. If data from writeback has not arrived and is not require for execution to proceed

in the execute stage, then the EJ block generates an anti-token that flows from execute to

writeback and also allows the execute stage to complete.

12

CHAPTER 3. EARLY EVALUATION ELASTIC TOKEN-FLOW

DIAGRAM

In this chapter, we show how to construct token-flow diagrams, which are obtained

by simulating the flow of data tokens in the elastic controller network, for elastic systems

that implement early evaluation. The tokens are assigned numeric labels and the rules of

simulation are modified so as to distinguish tokens that correspond to new data units that

enter the system, from tokens of data units already present in the processor pipeline. These

diagrams make it possible to analyze elastic networks and perform reachability analysis,

compute refinement maps, and compute rank functions for elastic processors with early

evaluation in a highly automated and sytematic manner.

This approach is similar, a modified and extended set of rules are required to capture

the behavior of the elastic controller network [15] (without early evaluation). Two primary

differences are: (I) The controller network that implements early evaluation propagates

anti-tokens in addition to regular tokens. Also, the anti-tokens propagate in the reverse

direction. (2) While the generation of new tokens is a deterministic, the generation of new

anti-tokens is nondeterministic w.r.t. to the state of the controller network. Whether anti

tokens are generated or not in a given state of the controller network also depends on the

state of the datapath.

The following notation is used to describe the rules. Each controller can hold up to

a maximum of two tokens or two anti-tokens. A token or anti-token t is a natural number.

A token or anti-token with value O corresponds to a bubble. The token diagram is based on

the token-state of an early evaluation-based elastic controller network, which is defined as

follows.

Definition 2. The token-state of an early evaluation elastic controller network with n

controllers is an n-tuple, where each element is a quad of the form (tm,ts,am,as), where

tm,ts,am,as E lN.

13

If e is an early evaluation elastic controller, then tm,e and ts,e are the tokens in the

master EHB and the slave EHB, respectively, and am.e and as,e are the anti-tokens in the

master and slave EHB, respectively. t~.e, 1;.e, a~.e and a:.e are the master EHB token, slave

EHB token, master EHB anti-token, and slave EHB token, respectively, in the next state

of the controller. Vinp·e and Sinp·e are the current values of the input valid and input stop

signals for tokens of e. Similarly, Vinm·e and Sinm·e are the current values of the input valid

and input stop signals for anti-tokens of e. The values for the valid and stop signals can

be obtained from the circuit of the early evaluation elastic controller network. ta and tb are

valid tokens, while aa and ab are valid anti-tokens. A token with a zero value corresponds to

a bubble. The new-token function defined in Section 3 is used to update elastic controllers

with tokens. For a given controller, a1 is its input anti-token. We use a global counter to

generate new anti-tokens. The counter is initialized to 1. The function new-anti-token will

use the current value of the counter and as the new anti-token, and will also update the

counter for future usage. This ensures that no two anti-tokens generated will have the same

value.

Rules 1 through 3 describe the transitions of the token-state of the controller from the

state in which the controller does not have any tokens or anti-tokens.

2. (tm,e OAts,e OAam,e=OAas,e=OA(vinp·eA,v1nm•e))-+

(t~.e 0At;.e new-token(e,ti)Aa~.e 0Aa~.e=O)

3. (tm,e = 0 A ts,e = 0 A am,e = 0 A as,e = 0 A (•Vinp·e A Vinm·e)) -+

(t~.e O A t;.e O Aa~.e = 0 A a~.e = ai)

Rules 4 through 7 describe the transitions of the token-state of the controller from the

14

10. (tm,e = 0/\ts.e 0/\am,e = O/\a5 .e = aa I\ (-.vinp·e-.vinm·e)) ----t

(t~.e 0/\t;.e = 0/\a~.e = 0/\a~.e = aa)

12. (tm.e = 0 I\ fs.e = 0 I\ am.e O I\ as.e = aa I\ (Vinp•e I\ -.vinm,e)) ----t

(t~.e = 0/\t;.e = 0/\a~.e = 0/\a~.e 0)

13. (tm,e O I\ ls,e O I\ am,e = 0 I\ as.e = aa I\ ((Vinp·e I\ Vinm•e) V (-.vinp·e I\ Vinm·e I\

-.sinm-e))) ----t

(t~.e = 0/\t;.e 0/\a~.e 0/\a~.e = ai)

Rules 14 and 15 describe the transitions of the token-state of the controller from the

state in which the controller has no tokens and two anti-tokens.

15. (tm,e = 0/\ts,e = 0/\am,e = ab/\as.e aa 1\-.(-.vinp•e /\sinm-e)) ----t

(t~.e = 0 I\ r;.e O I\ a~.e = 0 I\ a~.e = aa)

The join block has two input tokens on the input side and one input anti-token on

the output side. The join cannot generate anti-tokens. Rules 16 through 22 describe its

behavior. Note that the join behaves as a join for tokens and as a fork for anti-tokens

because anti-tokens flow in the opposite direction. The output of the join is a three-tuple,

the first is the output token on the output side and the next two elements are the output

anti-tokens on the input side. The max function computes the maximum of two input token

or anti-token values. Note that rules 22 and 23 describe the situation where there is only

one input token, in which case the token is not allowed to pass.

16

16. J(ta,tb,0)-+ (max(ta,tb),0,0)

17. J(ta,tb,aa)-+ (0,0,0)

18. 1(0,0,aa)-+ (0,aa,aa)

19. J(ta,0,aa)-+ (0,0,aa)

20. J(0,ta,aa)-+ (O,aa,O)

21. J(ta,0,0)-+ (0,0,0)

22. J(0,ta,0)-+ (0,0,0)

The fork block has two input anti-tokens on the output side and one input token on the

input side. The fork cannot generate anti-tokens. Rules 23 through 29 describe its behavior.

Note that the fork behaves as a join for anti-tokens and as a fork for tokens because anti

tokens flow in the opposite direction. The output of the fork is a three-tuple, the first is the

output anti-token on the input side and the next two elements are the output tokens on the

output side. Note that rules 28 and 29 describe the situation where there is only one input

anti-token, in which case the anti-token is not allowed to pass.

23. F(aa,ab,0)-+ (max(aa,ab),0,0)

24. F(aa,ab,ta)-+ (0,0,0)

25. F(0,0,ta)-+ (0,ta,ta)

26. F(aa,0,ta)-+ (0,0,ta)

27. F(0,aa,ta)-+ (O,ta,O)

28. F(aa,0,0)-+ (0,0,0)

29. F(0,aa,0)-+ (0,0,0)

17

The early join is similar to the join, the primary difference being that it can generate

anti-tokens. In fact, the early join follows rules 16 through 20. The difference occurs when

only one token is input and there are no anti-token inputs. In such a situation, the early join

may or may not generate and anti-token and both possibilities should be considered. Rules

30 through 33 describe the behavior of the early join in this situation.

30. EJ(ta,0,0)-, (0,0,0)

31. EJ(ta, 0, 0) -, (0, 0, new-anti-token)

32. EJ(0,ta,0)-, (0,0,0)

33. EJ(0, ta, 0) -, (0, new-anti-token, 0)

18

CHAPTER 4. REACHABILITY ANALYSIS FOR ELASTIC

SYSTEM WITH EARLY EVALUATION

For elastic controllers without early evaluation mechanism, its controller network is a

deterministic system, which means all the next-states are deterministic, and the reachability

analysis can be performed by simulating the elastic network starting from an inital state

until a convergence is reached, i.e., a state of the controller is reached that has already been

visited as depicted in Figure 8. As shown in the figure, So is the initial state. When the

elastic controller network transitions from Sr, it goes back to Sk again, which is a state

that has already been visited. Therefore the reachable sates of the contoller network are So

through Sr.

In the reset state of an in-order pipelined processor, all the pipeline latches are actu

ally empty and do not contain any valid instructions. This is implemented by resetting the

valid bits in the pipeline latches. However, the elastic controllers without early evaluation

corresponding to the pipeline latches are initialized to the half state, i.e., with one token

and the controllers of the additional elastic buffers are initialized to the empty state. Such

an initialization is required as the presence of these tokens enables data flow in the elastic

system. Also note that once states So, ... , Sr are computed using the above initialization,

states So, ... , Sk- I can be dropped from the set of reachable states as for all practical

purposes the actual elastic system can be initialized to any one of the states Sk, ... , Sr in

which the controller of the program counter has at least one valid token.

For the purpose of reachability analysis, we define the elastic-state of an elastic

controller network as follows.

Definition 3. The elastic-state of an elastic controller network with n controllers is an

n-tuple, where each element is either empty, half, or full.

An elastic-state of a controller network can be easily constructed from its token state

by observing the number of valid (non-zero) tokens in each controller. We assume that

19

Figure 8: Reachability analysis of elastic controller networks

the elastic-state function performs such a construction. Reachability analysis is performed

using the following procedure.

(1) Let ECp be the ordered set of elastic controllers corresponding to the pipeline latches

(including the program counter) in the elastic processor. The position of a controller in

ECp is based on its position in the pipeline and is given by the pos function. Let ECa

be the set of additional elastic controllers in no particular order. For the DLX example

ECp {pc,fd,de,em,mm}, and ECa = {ll,l2,l4,l5}. Then, the initial token state S~ is

given using the following assignments to ECp and ECa: (a) (Ve E ECp :: (tm.e 0) /\ (ts.e =

n 1- pos(e,ECp))). (b) (Ve E ECa :: (tm.e 0) /\ (ts,e 0). The tokens corresponding

to memory components are initialized to the ts value of the pipeline latch at the end of

the pipeline stage in which they are updated. For the DLX example in our experiments,

the memory components are the register file (,f) and the data memory (dm), which are

initialized to ts.de and ts.mm.

(2) The set of visited states V is initialized to { elastic-state(S~)}. Initialize the current

token-state S~ to S~ and the loop counter i to 0.

(3) Compute the next token-state S~+ 1 from S~ using the elastic token-flow procedure given

in Chapter 3.

(4) If elastic-state(S}+i) EV, then terminate. Otherwise update V = VU { elastic-state(S}+1)}.

(5) Increment i and goto step 3.

As for elastic controller network that incorporates early evaluation mechanism, its

reachable states can also be performed using elastic token-flow diagrams as described

(which is originally for elastic controller network without early evaluation) above with

20

two primary differences. First of all, the rules which are used to construct the elastic token

flow diagrams for elastic controller network with early evaluation are those described in

Chapter 3. Secondly, the generation of anti-tokens is dependent on the state of the data

path as well as the state of the elastic controller with early evaluation. Since the states of

the data path could be extremely large, they are not used in the reachability analysis of the

controller network. Instead we consider both situations. If it is possible for an anti-token

to be generated, we consider the cases where the anti-token is and is not generated. The

generation of anti-tokens is given by rules 30 through 33 in Chapter 3. Note that rules 30

and 31 fire simultaneously and similarly rules 32 and 33 fire simultaneously.

Figure 9 shows the reachable states and transitions of the elastic controller network

of the A4 model. The elastic token-flow digram which are used to compute for reachable

states of the A4 model is shown in Table 2. The initial state So is initialized with tokens

as described in Chapter 4. All anti-tokens are initialized to bubbles. In the A4 example,

anti-tokens, when generated are usually nullified immediately by the corresponding tokens

in the opposite direction. Therefore, their presence is not seen in this token-flow diagram

except in state S1, since only the S1 state has anti-token and no tokens at the same time.

Therefore, the table only shows tokens, except in the S1 state where the anti-token is

indicated by the 8 symbol.

s

Figure 9: Reachability analysis for A4 model

21

Table 2: Token-flow Diagram for Early Evaluation Elastic: Reachability
State pc fd de em mm 12 14 15

So 7 6 5 4 3 0 0 0
S1 8 7,6 0 5 4 3 0/0 3
S2 8 7,6 5 4 4 3 0 3
S3 9,8 7 6 5 5 4 0 4
S4 9,8 7 6,5 4 0 4 3 4
S5 9 8 7 6 0 5 0 5
S5 9 8 7,6 5 0 5 4 5
S7 9 8,7 6 5 0 4 4 0
Ss 10 9 8,7 6 6 0 5 0
S9 10 9,8 7 6 0 5 5 0
S10 10,9 8 7 6 5 0 0 0
S11 11 10,9 8 7 0 6 0 6
S12 12,11 10 9,8 7 7 0 6 0

22

CHAPTER 5. REFINEMENT MAPS FOR ELASTIC SYSTEM

WITH EARLY EVALUATION

5.1. Refinement Maps

Verifying that the elastic implementation refines its synchronous counterpart requires a

function that maps states of the elastic system to states of the synchronous parent system.

This function, known as the refinement map, can be thought of as an abstraction func

tion that allows one to view an elastic system as a synchronous system. We introduce a

procedure to compute such refinement maps for elastic pipelined processors.

In elastic systems, some inputs can take several cycles to reach their destination

stage. Whereas, in synchronous systems, inputs are available to each pipeline stage at

every cycle. This variability in the latency of inputs in elastic systems is identified by

bubbles (tokens with a O value) in the elastic token-flow diagrams. If we were to construct

the token-flow diagram for a synchronous machine, there would be no pipeline latch with

bubbles, nor would there be pipeline latches with two tokens. Also, a new token will be

introduced at every step. A synchronous token-state for a pipeline with n-stages and m

memory components would be an n + m-tuple with one token for each latch and one token

for each memory component. In the synchronous state, memory components tokens are

assigned the token of the pipeline latch at the end of the pipeline stage in which they are

updated. For the 5-stage synchronous DLX, a token state would be of the form (pc, f d,

de, em, mm, rf, dm) and three possible successive token states for the synchronous DLX

would be (5, 4, 3, 2, 1, 4, 1), (6, 5, 4, 3, 2, 5, 2), and (7, 6, 5, 4, 3, 6, 3). Herein lies

the usefulness of token-flow diagrams as they clearly bring out the differences in data-flow

between the synchronous and elastic systems.

One approach to define the refinement map is to roll back some or all the pipeline

latches and memory components in an elastic state so that all the latches including the

23

program counter are in a half state and if t pc is the token of the program counter, then

the tokens of the other n - 1 latches will have the following values: (Ve E ECp :: tm,e

0 l\ts,e tpc + 1 - pos(e,ECp)) Projecting out the values of the slave elastic half buffers

corresponding to the pipeline latches will give the corresponding synchronous state. Such

an approach is similar to the commitment refinement map used for synchronous processor

verification [11]. The extent to which each latch is rolled back depends on the state of the

elastic controller network. Therefore, we define one mapping function for each reachable

state of the elastic controller network. The overall refinement map selects and applies the

appropriate mapping function for each controller network state. Given an elastic controller

network state (Sr), the procedure to compute the mapping function is as follows.

1. Count the number of pipeline latches that are in the empty state in Sr. Let this count

be ne. Let r be the number of reachable states of the controller.

2. Starting from a token-state of Sr (such a state can be obtained from the token-flow

diagram constructed for reachability analysis), construct the token-flow diagram for

ne * r steps. This provides sufficient steps of the token-flow diagram to perform the

analysis required to compute the mapping function.

3. Starting from the last token state in the diagram, search backwards in the pc column

to find the first valid token, say tpc• Construct a synchronous token-state correspond

ing to Sr using the following equation: lj tpc 1 j, where j is the position of the

latch in the pipeline, with j = 1 for the pc. Memory components would be assigned

the token of the stage in which they are updated.

4. Rolling back the pipeline latches is hard to compute directly. We instead use history

variables that record previous values of pipeline latches. Therefore, all that is to be

determined to construct the mapping function is which history should be projected.

This is computed by searching backward in each of the columns in the token-flow

24

diagram (where each column corresponds to a pipeline latch), to find the first token

that matches the token in the synchronous token-state. If the match for a pipeline

latch was found k rows going backward, then the kfh history variable is projected for

that latch.

Note that anti-tokens are ignored in refinement map computation. Examples of computing

refinement maps for some states of the A4 model are shown in Tables 3, 4, and 5. The

circled tokens indicate when a match is found.

5.2. Liveness

As described before, checking for liveness is used to determine if the implementation

(the elastic system) always makes forward progress, i.e., it does not deadlock. This is

achieved by defining rank, a function from states of the implementation to the natural

numbers whose value decreases when the implementation stutters w.r.t. the specification.

Another way to think of the rank function is that it is used to distinguish stutter from

deadlock. During both stutter and deadlock, the implementation does not seem to make

progress w.r.t. the specification. If the lack of progress is due to stutter, the rank function

identifies this by decreasing. If the lack of progress is because of deadlock, the rank

function will not decrease pointing to a deadlock problem. We now describe a method

that can be used to synthesize rank functions for elastic systems with and without early

evaluation.

The high-level idea is as follows. Remember that the implementation is the pipelined

Table 3: Token-flow Diagram: Refinement Map Construction for So of Processor A4

State pc fd de em mm rf dm

(2)
Sync 7 6 5 4 3 5 3

25

Table 4: Token-flow Diagram: Refinement Map Construction for S1 of Processor A4

State pc fd de em mm rf dm

Sc-1 (]) 6 (2) @ GD 5 GD
Sc 8 7,@ 0 5 4 (2) 4
Sync 7 6 5 4 3 5 3

Table 5: Token-flow Diagram: Refinement Map Construction for S2 of Processor A4

State pc fd de em mm rf dm

Sc-1 (]) 6 5 4 GD 5 GD
Sc 8 7,@ (2) @ 4 (2) 4
Sync 7 6 5 4 3 5 3

elastic system and the specification is the pipelined synchronous system. Therefore, the

only reason for stutter between the implementation and specification is because of the

elastic nature of the implementation. The transitions of the elastic implementation that

will result in stutter can be determined by analyzing the elastic controller network.

The state diagram of the elastic controller network can be determined using elastic

token-flow diagrams. Using the refinement map computations, we can determine which are

the stuttering steps of the controller and which are the non-stuttering steps.

We then label the edges in the state diagram of the elastic controller network as "s"

or "ns" if the edge corresponds to a stuttering step or non-stuttering step of the imple

mentation. We then assign a rank (a natural number value) to all the states in the state

diagram such that rank value decreases along a stuttering edge. The detailed procedure

for synthesizing rank functions is described below. Note that the procedure can be applied

to elastic systems with and without early evaluation. When early evaluation is not used,

the elastic controller network is deterministic and its state diagram is just a loop. If

early evaluation is present, the state diagram is more complex and can consist of multiple

26

overlapping loops. Figure 9 shows the state diagram of the A4 elastic processor including

the stuttering edges and rank values for each of the states. The detailed method for rank

computation is given below using two procedures. The first procedure is used to compute

the stuttering transitions of an SEC. The input to the procedure is the State diagram of the

Elastic Controller network (SEC) of the implementation machine.

Procedure for computing stuttering transitions of SEC:

1. Repeat steps 2 through 5 for each of the transitions (edges) in the SEC, which are all

of the form w --+ v.

2. Determine the token-state of w from the elastic token-flow diagram constructed for

reachability analysis of the implementation system.

3. Compute the token-state of v from the token-state of w using the rules for elastic

token-flow diagrams.

4. Apply the refinement map to both w and v to determine their corresponding syn

chronous token-states Ws and Vs, respectively.

5. If Ws = Vs, then mark the transition (edge in the SEC) as "s", else mark it as "ns".

Procedure for ranking states of SEC:

1. For each of the loops in the SEC, repeat steps 2 through 4.

2. Let p be the number of states in the loop and Ps be the stuttering transitions in the

loop.

3. Choose any state win the loop that has an incoming edge with an "ns" label. Assign

the rank value of p tow.

27

4. Starting from the successor of w, assign the ranks of all the other states in the loop

in the following way. If a state has an incoming edge with an s or ns label and its

predecessor has a rank value of q, then assign the state a rank value of q-1 or q,

respectively. Note that this approach ensures that the last transition in the loop from

the predecessor of w tow will result in an increase in the value of rank from p-p8 to

p. Also, for all stuttering transitions in the loop, the rank value will decrease by one

and for all other non-stuttering transitions in the loop, the rank will remain the same.

5. The next issue is that the loops in the SEC will have overlapping states. Thus, some

states will have multiple rank values. If a state v has more than on rank assigned, the

highest rank is chosen. Also, the ranks of the states in the loops that did not assign

v its highest rank will have to be adjusted by incrementing the ranks of the states in

these loops with the difference of the highest rank of state v and the rank assigned

by that loop to state v. This situation will not occur in systems that do not use early

evaluation, because, the controller network is deterministic and so the SEC will have

only one loop.

The rank of an elastic system state is given by the rank of the state of its elastic

controller network.

5.3. Using Token-flow Diagrams for Elastic System Design

The reachability analysis performed using token-flow diagrams can be used for de

sign of the early evaluation elastic system. In performing reachability analysis of various

elastic processor models with anti-tokens, we found several of these designs that seem to

benefit from early evaluation, actually do not. Consider the example of the AS processor

model. The reachability analysis of the A5 model is shown in Figure 10.

If the AS elastic controller is initialized to the s11 or s12 state, then the controller will

remain only in one of these states and no anti-tokens will be generated and therefore, early

28

Figure 10: Reachability analysis for A5 model

evaluation is not required. Thus, if the A5 model is initialized to s11 or s12 states, then

the more complex controllers required for early evaluation can be replaced with the basic

elastic controllers. Two more examples that illustrate the use of the token-flow diagrams to

eliminate early evaluation are models A6 and A 7. The corresponding reachability analysis

of these models are shown in Figures 11 and 12. Note that in all these three figures, the

reachable states are shown as shaded circles.

Figure 11: Reachability analysis for A6 model

Table 6 and Table ?shows the invariant constraint and mapping, rank functions for

each of the reachable states of the elastic processors AO, Al, A2, A3, A4, A5, A6, A7.

For anti-models AO and Al, no anti-tokens be generated, since the condition for generating

anti-tokens is never satisfied. In the invariant constraint column, if x is a pipeline latch,

x0, x½, x1, x-½ and x- 1 are used to indicate the empty/empty, half/empty, full/empty,

empty/half and empty/full states of the latch, respectively. For the refinement map column

in the table, we use the following notation. If x is a pipeline latch, ~ is used to indicate

29

S16 S19

1r--e)

Figure 12: Reachability analysis for A 7 model

the projected value for that latch, where h indicates the history value (0 for current, -1

for previous value, -2 for the value two cycles before, and 1 for the next value). y can

either be s or m indicating that the projected value is from the slave EHB or the master

EHB, respectively. The invariant constraints and mapping functions were obtained using

the procedures described in Chapter 4 and Chapter 5.

30

Table 6: Invariants for Elastic Processor Models with Early Evaluation
Processor Model Controller State

AO
Al

A2

A3

A4

AS

A6

A7

Invariant-I

Invariant-I

Invariant-2

Invariant- I

Invariant-2

Invariant-3

Invariant-4

Invariant- I

Invariant-2

Invariant-3

Invariant-4

lnvariant-5

Invariant-6

Invariant-I

Invariant-2

lnvariant-3

lnvariant-4

Invariant-5

Invariant-6

Invariant-7

Invariant-8

Invariant-9

Invariant- I 0

Invariant- I I

Invariant- I 2

Invariant- I 3

Invariant-I

Invariant-2

Invariant- I

Invariant-2

Invariant- I

Invariant-2

Invariant-3

lnvariant-4

Invariant Constraint
I I I I I

pc'- /\Jd1 /\de'f. /\emi /\mm'i

pc'- /\JJJ I\ de'J. I\ em2 I\ mm2 I\ 11°

pc0 /\Jd½ I\ de0 I\ em½ /\ mm 1 /\ l1 ½

pc'- /\Jd'i /\de'i /\em'- /\mm'l. 1\14°
I I I I I I

pc2 /\Jd'l. /\de /\em'- /\mm2 1\/4'1.
I j I I I I

pcz /\Jd /\de'i /\em'i /\mmz /\l4'i.
I I I I I 0

pc /\fd 2 /\de'J. /\em'i /\mm'i 1\/4

pc'i /\Jd 2 /\de'i /\em'i. /\mm'- 1\12° 1\14°
I I 0 I I I ,n

pc'- /\Jd /\de /\em'- /\mm2 /\l21 /\l•r
1 I I I I I I

pc /\Jd2 /\de2 /\em'i. /\mmz 1\1221\142
I I I I O I I

pc2 /\Jd2 /\de'i. /\em2 /\mm 1\122 /\l42
I j I I I I I

pc'i /\Jd /\de'i /\em2 /\mm'i. 1\121 /\l4'J.
1 I I I O I I

pc /\Jd'l. I\ de 2 I\ em2 I\ mm I\ /22 /\ 14'1.

pd /\Jd 2 /\dez /\em'i. /\mmz 1\12° 1\14° /\lfJ
I 1 0 I I I I I

pc'- /\fd /\de /\em'f./\mm21\12'- /\l4- 2 /\[5 2

I 1 I I I I 0 l
pcz /\fd /\de'i. /\em'f. /\mm'J.1\1221\14 1\15 2

1 I I I I l O l
pc /\fd'1 /\de'J. /\em1 /\mmz 1\12'11\14 /\[Si

j I I I O I I I
pc /\fd'i I\ de I\ em'l. I\ mm I\ 122 I\ 142 I\ 152

I I I I O I ;{) I
pc2 /\fd'i. /\de"l /\em2 /\mm 1\122 /\lq~ /\l52

I I I I O I I 1
pc'i /\fd'i. /\de /\em'l. /\mm 1\121 /\l4i /\l5'i

I 1 I I O I I 0
pc'- /\Jd /\de'J. /\em'l. /\mm 1\/22 /\l4'J. 1\15

I I 1 I I O I 0
pc'i /\fd 2 /\de /\em'i /\mm21\12 1\14'- 1\15

I I I I 0 I I ,-()
pc'l. /\fd /\de'l. /\em'f. /\mm /\l2'J. 1\/4'1. /\l::r

pc1 /\Jdi I\ de½ I\ em½ I\ mm½ I\ 12° I\ 14° I\ zj)
I l I l 0 I 0 I pc'J. /\fd /\de'i /\em'l. /\mm /\l2i 1\14 1\152

pc1 /\Jdi /\de 1 /\em½ /\mm½ 1\12° 1\14½ /\lfJ

pc2 /\Jd° /\de'i. /\emz /\mm'J. /\llo 1\142
0 I O I I I I

pc /\fd 2 I\ de I\ em'l. I\ mm'l. I\ l1 '1. I\ l4'i.

pc'i. /\Jd° /\de 2 /\em'1. /\mm'l. /\llo /\l2'1. /\[42

pc0 /\Jd½ I\ de0 I\ em½ I\ mm0 I\ u½ I\ 12 1 I\ 14½

pc2 /\fd1 /\de'- /\em2 /\mm0 /\llo 1\12° 1\1421\15°

pc0 /\fd1 /\de0 /\em½ /\mm½ /\ll½ 1\12° 1\14° /\lfJ
I I Q l I 0 I 0 I pc2 /\Jd /\de /\em'l. /\mm'f. /\ll 1\/2'1. 1\14 1\15'1.

1 l I I O l l I I
pc'l. /\Jd'l. I\ de2 I\ em'i. I\ mm I\ l1 z /\ 121 I\ [42 I\ 152

31

Table 7: Refinement Maps and Rank functions for Elastic Processor Models with Early
Evaluation

Processor Model Controller State Refinement Map Rank
pc fd de em mm if dm

AO Invariant-I pc~ Jcf] de0
s em0

s mm0
s if° dm0

Al Invariant- I pc~ Jd;I de-; 1 em- 1
s mm-1

s
,f-1 dm- 1 0

Invariant-2 lll
s Jcf] d -1 es em- 1

s mm0
s ,f-1 dm- 1 1

A2 Invariant- I pc~ Jd; de0
s em0

s mm0
s rj-0 dm0 4

Invariant-2 pc;I Jd;I de0
s em0

s mm- 1
s

,f-1 dm- 1 3
Invariant-3 pc;l Jcf] de0

s em0
s mm0

s if° dm0 4
Invariant-4 pc~ Jcf] de0

s em0
s mm0

s if° dm0 4
A3 Invariant- I pc~ Jd; de0

s em0
s mm0

s rj-0 dm0 4
Invariant-2 pc;I jcf} d -I es em- 1

s mm- 1
s if° dm- 1 3

Invariant-3 pc~ Jcf] de0
s em0

s mm-1
s if° dm- 1 4

Invariant-4 pc~ Jcf] de0
s em0

s mm- 1
s if° dm0 4

Invariant-5 pc;I Jcf] de0
s em0

s mm- 1
s if° dm- 1 3

Invariant-6 pc~ Jcf] de0
s em0

s mm- 1
s if° dm- 1 4

A4 Invariant-I pc~ Jd; de0
s em0

s mm0
s rj-0 dm0 20

Invariant-2 pc;I Jcf] d -1 es em- 1
s mm- 1

s if° dm- 1 19
Invariant-3 pc;' Jcf] de0

s em0
s mm-1

s if° dm- 1 19
Invariant-4 pc~ Jcf] de0

s em0
s mm-I

s if° dm- 1 19
Invariant-5 pc;2 Jd;I de0

s em0
s mm-2

s
,f-1 dm-2 18

Invariant-6 pc~ Jcf] de0
s em0

s mm-I
s if° dm0 19

Invariant-7 pc;I Jd-;1 de0
s em0

s mm-2
s

,f-1 dm-2 18
Invariant-8 pc;I Jcf] de0

s em0
s mm-2

s if° dm0 18
Invariant-9 pc;I Jd;I de0

s em0
s mm-2

s ,f-1 dm-I 18
Invariant-IO pc;1 Jcf] de0

s em0
s mm-2

s if° dm0 18
Invariant- I 0 pc~ Jcf] de0

s em0
s mm0

s if° dm0 20
Invariant-12 pc;I Jcf] de0

s em0
s mm- 1

s if° dm0 18
Invariant-13 pc;2 Jd;1 de0

s em0
s mm-2

s
,f-1 dm- 1 17

A5 Invariant- I pc~ Jd;I d -2 es em-2
s mm-2

s ,f-1 dm-2 1
Invariant-2 pc;l Jd;2 d -3 es em-3

s mm-3
s

,f-2 dm- 3 0
A6 Invariant- I pc~ Jd;I de;2 em-2 mm-4 ,f-1 dm-3 1 s s

lnvariant-2 pc;I Jd;2 d -3 es em-3
s mm-5

s
,f-2 dm-4 0

A7 Invariant- I pc~ Jd; de0 em0 mm-2 rj-0 dm0 3 s s s
Invariant-2 pc;I jcf} d -I es em- 1

s mm-3
s if° dm- 1 2

Invariant-3 pc;2 Jcf] d -2 es em-2
s mm-4

s if° dm-2 1
Invariant-4 pc~ Jcf] de0

s em0
s mm-2

s if° dm-2 4

32

CHAPTER 6. RESULTS AND FUTURE WORK

6.1. Results

The verification results are shown in Table 8. The refinement proofs were automatically

checked using the BAT decision procedure version 0.2 [13]. The Siege SAT solver (version

4) was used to solve the SAT problems generated by BAT [14]. The experiments were

conducted on a 1.8GHz Intel (R) Core (TM) Duo CPU, with an LI cache size of 2048KB.

In the table, the "Siege" column gives the running times of the Siege SAT solver, which is

used to as used As can be seen from the table, all the elastic 5-stage DLX-based processors

were verified against the synchronous DLX within 1000 seconds.

Table 8: Verification Times and CNF Statistics for Anti Model

Processor Models Verification Time [sec] CNF Statistics
Siege Total (BAT) Variables Clauses Literals

AO 0.03 0.64 1,947 5,575 34,208
Al 11.72 14.73 7,191 29,949 180,830
A2 112.46 127.67 9.193 41,697 364,794
A3 65.48 57.73 6,472 27,643 302,561
A4 844.19 855.87 13.646 87.953 1730,012
A5 18.70 23.22 13,479 64,373 373,418
A6 62.49 65.96 13.743 65,229 370,418
A7 68.86 71.24 20.069 107,029 631,014

6.2. Future Work

Refinement-based verification requires a refinement map that relates states of the imple

mentation and states of the specification. Defining efficient refinement maps often re

quires intuition about the design. We develop a methodology to compute refinement maps

and rank functions in a highly automated manner for checking the equivalence of elastic

pipelined system with early evaluation against synchronous parents system. The key idea

33

is to compute the reachable states of the elastic controller with early evaluation mechanism

and use this information in computing refinement maps and rank functions. The reachable

states are themselves computed using token-flow diagrams. The efficacy of the methods

are demonstrated by verifying several elasticized pipelined processor models defined at

the bit-level. For future work, we plan to develop a refinement-based verification tool for

elasticized designs that will incorporate the developed methods. Also, using this tool, we

will apply these methods to various other designs.

34

REFERENCES

[l] Julien Boucaron, Jean-Vivien Millo, and Robert de Simone, Another glance at relay
stations in latency-insensitive design, Electr. Notes Theor. Comput. Sci. 146 (2006),
no. 2, 41-59.

[2] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L.
Sangiovanni-Vincentelli, A methodology for correct-by-construction latency
insensitive design, ICCAD '99: Proceedings of the 1999 IEEE/ACM international
conference on Computer-aided design (Piscataway, NJ, USA), IEEE Press, 1999,
pp. 309-315.

[3] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli,
Theory of latency-insensitive design, IEEE TCAD 20 (2001), no. 9, 1059-1076.

[4] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli, Coping with latency in soc
design, IEEE Micro 22 (2002), no. 5, 24-35.

[5] Mario R. Casu and Luca Macchiarulo, Adaptive latency-insensitive protocols, IEEE
Design and Test of Computers 24 (2007), 442-452.

[6] Jordi Cortadella and Michael Kishinevsky, Synchronous elastic circuits with early
evaluation and token counterflow, DAC, 2007, pp. 416-419.

[7] Jordi Cortadella, Michael Kishinevsky, and Bill Grundmann, Synthesis of
synchronous elastic architectures, DAC, 2006, pp. 657-662.

[8] ITRS, International technology roadmap for semiconductors 2007 edition, 2007, See
URL http://www. i trs. net/Links/2007ITRS/Home2007. htm.

[9] Sava Krstic, Jordi Cortadella, Michael Kishinevsky, and John O'Leary, Synchronous
elastic networks, FMCAD, 2006, pp. 19-30.

[10] Cheng-Hong Li, Rebecca Collins, Sampada Sonalkar, and Luca P. Carloni,
Design, implementation, and validation of a new class of interface circuits for
latency-insensitive design, MEMOCODE '07: Proceedings of the 5th IEEE/ACM
International Conference on Formal Methods and Models for Codesign, 2007, pp. 13-
22.

[11] Panagiotis Manolios, Correctness of pipelined machines, FMCAD, 2000, pp. 161-
178.

[12] Panagiotis manolios, Mechanical verification of reactive systems,
Ph.D. thesis, University of Texas at Austin, August 2001, See URL
http://www.cc.gatech.edu/~manolios/publications.html.

35

[13] Panagiotis Manolios, Sudarshan K. Srinivasan, and Daron Vroon, Automatic memory
reductions for rtl model verification, ICCAD, 2006, pp. 786-793.

[14] Lawrence Ryan, Siege homepage, See URL
http://www.cs.sfu.ca/~loryan/personal.

[15] Sudarshan K. Srinivasan, Koushik Sarker, and Raj S. Katti, Verification of
synchronous elastic processors, IEEE Embedded Systems Letters 1 (2010), no. 1,
14-18.

[16] Syed Suhaib, Deepak Mathaikutty, David Bemer, and Sandeep Shukla, Validating
families of latency insensitive protocols, IEEE Transations on Computers 55 (2006),
no. 11, 1391-1401.

[17] Christer Svensson, Synchronous latency insensitive design, ASYNC, IEEE Computer
Society, 2004, p. 3.

[18] Muralidaran Vijayaraghavan and Arvind Arvind, Bounded dataflow networks and
latency-insensitive circuits, MEMOCODE'09: Proceedings of the 7th IEEE/ACM
international conference on Formal Methods and Models for Codesign (Piscataway,
NJ, USA), IEEE Press, 2009, pp. 171-180.

36

CURRICULUM VITAE

Yangwei Cai was born on Nov. 21, 1982. He got his bachelor's degree in Computer

Science and Technology at Hebei University of Engineering in the summer of 2005 and

master's degree in Detecting Technology and Automation Equipment at Nanjing Forestry

University in 2008. He entered North Dakota State University to pursue a master's degree

in Electrical Engineering (Computer Engineering) in the fall of 2008. Currently, he is doing

PhD degree in Computer Engineering at University of South Florida from Fall 2010.

37

