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ABSTRACT 

Cai, Yangwei, M.S., Department of Electrical and Computer Engineering, College 
of Engineering and Architecture, North Dakota State University, May 2010. Refinement
based Verification of Elastic Pipelined System with Early Evaluation. Major Professor: 
Sudarshan Srinivasan. 

This thesis presents a formal verification procedure to check correctness of the syn

chronous elastic pipelined system that incorporates early evaluation against its synchronous 

parent system. Note that the goal of the verification procedure is not to establish the 

correctness of the algorithm for synthesizing elastic circuits, but instead, to find bugs 

and formally prove the correctness of elasticized designs with early evaluation. Dataflow 

through elastic architectures is complicated by the insertion of any number of elastic buffers 

in any place in the design. Elastic token-flow diagrams are introduced, which are used to 

track the flow of data in elastic architectures. We provide a method to construct such 

diagrams. The thesis also develops a highly automated and systematic procedure based 

on elastic token-flow diagrams that compute functions that map states of elastic systems 

to states of the synchronous parent systems. Such functions, known as refinement maps, 

are used to compare behaviors of elastic and synchronous systems and hence prove their 

equivalence. The effectiveness of this method is demonstrated by verifying 8 synchronous 

elastic pipelined processor models with early evaluation. 

Keywords: formal verification, synchronous, elastic system, early evaluation, refine-

ment 
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CHAPTER 1. INTRODUCTION 

The constant scaling of technology has resulted in increased significance of wire 

delays in digital design. However, since precise information on wire lengths and delays 

are available late in the design process, accounting for these delays results in expensive re

designs making synchronous design infeasible for nanoscale systems. Latency insensitive 

(LI) [1-5, 10, 16-18] design is an emerging solution that addresses the wire delay challenge 

in the synchronous domain. The central idea is to use relay stations-which function 

like latches in a pipelined datapath-to break long wires that cause violations of timing 

requirements imposed by the clock. However, including such relay stations can alter the 

functionality of the system resulting in an incorrect design. The LI solution to this problem 

is to use a handshaking protocol known as the LI protocol to control the transfer of data 

between modules/stages. The protocol allows for insertion of buffers/relay stations without 

altering the functionality of the system. The resulting Latency Insensitive designs are 

still synchronous, i.e., the system synchronization is implemented using a global clock. 

Synchronous Elastic Networks (SEN) [7, 9] is one effective approach to implement LI 

designs and also synthesize LI systems from synchronous parents. 

One of the critical chellenges for any design paradigm to be feasible is verification. 

The verification challenge for hardware design has in fact been addressed by the Inter

national Technology Roadmap for Semiconductors (ITRS) 2007 report [8], which states 

that "Verification has become the dominant cost in the design process. . .. Without major 

breakthroughs, verification will be a non-scalable, show-stopping barrier to further progress 

in the semiconductor industry." The 2007 report of the ITRS also predicts that in 15 years 

40% of design errors will be exposed by formal verification methods. 

An important component of the verification challenge for LI systems is the verifica

tion of pipelined LI systems such as pipelined microprocessors, because, pipelining is a key 

optimization that is used extensively in digital design at both component and system-levels. 
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To adress this problem, we develop a verfication solution for LI pipelined systems designed 

using the SEN approach, referred to as elastic systems hereafter. 

Correctness Notion: The goal of the verification solution is to check the correctness of an 

elastic pipelined system against its synchronous specification. The notion of equivalence 

that we use is Well Founded Equivalence Bisimulation (WEB) refinement [12], which is 

based on stuttering bisimulation. Synthesis of elastic designs incorporates the insertion 

of additional elastic buffers in the data path to handle timing issues in the design. While 

the insertion of these buffers does not affect the functionality of the system, the timing 

behavior is altered. As a result, an elastic system can require several transitions to match 

a single transition of its synchronous parent system. This phenomenon is known as stutter 

and is accounted for by WEB refinement. We also choose to use WEB refinement as the 

methods we develop can be combined with existing methods in a compositional manner to 

verify elastic pipelined systems against high-level non-pipelined specifications, such as an 

instruction set architecture (ISA) specification. 

A detailed description of the theory of refinement can be found in [12]. It is enough 

to prove the following correctness formula [ 11] to prove refinement (thereby establish 

equivalence) between an implementation and its specification. 

Definition 1. (Core WEB Refinement Correctness Formula) 

(\:/imp! E IMPL :: 

spec r(impl) I\ next-spec Sstep(spec) I\ 

next-imp/= Jstep(impl) I\ next-spec =I= r(next-impl) 

spec= r(next-impl) I\ rank(next-impl) < rank(impl)) 

In the above formula, imp[ is a pipelined machine state. spec is the ISA state obtained 
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by applying the refinement map r to impl. next-spec is the successor of spec obtained by 

stepping the ISA machine in state spec and next-impl is the successor of impl obtained 

by stepping the pipeline machine in state impl. The formula above states that for every 

pipelined machine state impl its corresponding ISA state spec, if the successors of spec 

and imp!, namely, next-spec and next-imp!, respectively, do not match, then applying r to 

next-impl should result in state spec and the rank of next-impl should decrease w.r.t the 

rank of impl. The proof obligation that spec = r(next-impl) is the safety component and 

guarantees that if the implementation makes progress, then the result of that progress is 

correct as given by the specification. However checking safety alone provides no guarantee 

that the implementation will always make progress, i.e., will not deadlock. The proof 

obligation that rank(next-impl) < rank(impl) is the liveness component and guarantees that 

the machine will not deadlock, i.e., will always make forward progress. 

The specific steps involved in a refinement-based verification methodology are: (a) 

Construct models of the specification and implementation. (b) Compute the states of 

the implementation model that are reachable from reset (known as reachable states). (c) 

Construct a refinement map. (d) Construct a rank function for the implementation system. 

( e) The models, the refinement map, and the rank function can now be used to state 

the refinement-based correctness formula for the implementation model, which can then 

be automatically checked for the set of all reachable states using a decision procedure. 

We use the Bit-level Analysis Tool (BAT) system [13] to model the specification and 

implementation systems at the word-level and to state the correctness formula. We then 

use the decision procedure for bit-vectors incorporated in BAT to automatically check 

the correctness formula. The reachable states, refinement maps, and rank functions are 

computed manually using the procedures given in the thesis. 

1.1. Contributions 

3 



There are three main contributions in this thesis. First, we show how to extend the approach 

presented in [15] to verify elastic pipelined systems with early evaluation [6], a LI design 

approach that allows a design stage to complete execution when all the data required for 

proceeding with the computation of the results in that stage are available. Note that if early 

evaluation is not used, the elastic protocol forces a design stage to wait until all inputs are 

available, even though some of the inputs may not be required for execution. Second, we 

describe a systematic procedure for synthesizing rank functions used for deadlock detection 

for elastic pipelined systems without and with early evaluation. Third, we show how 

to combine our approach with existing approaches to check verify equivalance of elastic 

pipelined systems with high-level non-pipelined specifications. The specific contributions 

of the approach are: 

1. A method to compute elastic token-flow diagrams (described in Chapter 3) which can 

also track the flow and progress of data in elastic pipelined processor designs with 

early evaluation. These diagrams enables a systematic analysis of data flow in elastic 

architectures even after the insertion of any number of additional elastic buffers in 

any place in the data path. A method is provided to construct such diagrams. We 

also use token-flow diagrams for reachability analysis (described in Chapter 4). The 

network of elastic controllers is deterministic. However, when early evaluation is 

introduced the controller network becomes nondeterministic. 

2. A method for computing refinement maps based on elastic token-flow diagrams 

(given in Chapter 5). The complexity in computing refinement maps arises because: 

(1) Each flip flop in the synchronous machines is replaced with two latches in the 

elastic machine. Therefore, an elastic storage element can have either 0, 1, or 2 valid 

data tokens, while in the synchronous system, every flip flop always has exactly one 

valid data token. (2) The insertion of additional elastic buffers in the design can 

significantly alter the data flow patterns of the architecture. 
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3. A method to synthesize rank functions for elastic pipelined systems without and with 

early evaluation, used to check liveness. 

4. We show how to combine our approach with existing approaches to check the equiv

alance of elastic pipelined systems with early evaluation against high-level non

pipelined specifications. 

5. We also show that the elastic token-flow diagrams can be used as a design aid to 

determine if the design will benefit from early evaluation (shown in section 5.3 of 

Chapter 5). This analysis is useful as the controllers required for early evaluation 

are more complex and expensive compared to the controllers required when early 

evaluation is not implemented. 

1.2. Outline of Thesis 

This thesis is organized as follows. Chapter 1 provides th~ background introduction, 

contribution and outline of the thesis. Chapter 2 describes Synchronous Elstic Network 

(SEN) and synchronous elastic pipelined processor models with early evaluation. Chapter 3 

describes elastic token-flow diagrams which are obtained by simulating the flow of data 

tokens in the elastic controller network of elastic models with early evaluation. Chapter 4 

describes token flow diagram for reachability analysis. Chapter 5 describes refinement 

maps and rank functions of elastic processor with early evaluation. Chapter 6 provides 

the results to show the efficient approach for checking the equivalence of elastic pipelined 

processors with early evaluation against their synchronous parents, also the conclusions 

and ideas for future research. 
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CHAPTER 2. ELASTIC PROCESSOR MODELS WITH EARLY 

EVALUATION 

This chapter provides the introduction of elastic processor models based on SEN and 

early evaluation mechanism. 

2.1. Synchronous Elastic Network 

SEN is one effective approach to implement LI designs and also synthesize LI systems 

from synchronous parents. The idea with SEN is to replace each of the flip flops in the 

design with a latch pair called an elastic buffer (EB). Each EB is clocked using a controller 

known as the elastic controller, which implements the LI protocol. The controllers are 

synchronized with a global clock. One controller is used for all the EBs in a stage of 

the design. The EBs as stated earlier are constructed using two latches, called elastic 

half buffers (EHBs). The left and the right EHBs are called the master and slave EHBs, 

respectively. The global clock of the synchronous design is now replaced by a network 

of elastic controllers. The elastic controllers are connected so that they communicate with 

their neighbors. In the resulting elasticized design, elastic buffers can be inserted in any 

place in the datapath to break long wires. 

Figure 1 shows an implementation of Elastic Half Buffer, which is a set of elastic 

modules and elastic channels. Elastic channels have two control wires implementing a 

handshake between the sender and the receiver. The wires are called valid, in the forward 

direction, and stop, in the backward direction. The role of these wires is similar to the one 

of the request/acknowledge wires in asynchronous systems. Depending on the state of the 

control wires, a channel can carry valid or invalid data items, that we will call tokens and 

bubbles, respectively. For simplicity in the explanation, we will initially assume that the 

elastic modules are combinational blocks and latches. 

Figure 2 depicts an example of a naive elastic implementation for transmitting data 

between souce side and destination side of elastic channels. Each register has an associated 
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valid bit (V) that keeps track of the validity of the stored data. The clock signal is not 

explicitly shown and the enable signal (En) indicates when new data is stored into the 

register. The chain of AND gates manages the backpressure generated by the receiver 

when it is not able to accept data (Stop = 1 ). The scheme in Fig 2 is not scalable due to the 

long combinational path from the receiver to the sender. When the pipeline is full, i.e. all 

Vs are at 1, the delay of the Stop chain becomes critical. 

Data transfer is performed by using the control signals Valid(V) and Stop(S) that 

determine three possible states in the channel (as shown in Figure 2): 

Transfer (T), (V A -.S): the sender provides valid data and the receiver accepts it 

Idle (I), (-.V): the sender does not provide valid data. 

Retry (R), (V /\ S): the sender provides valid data but the receiver does not accept it. 

Figure 3 shows how the EB interfaces with the source side and destination side 
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elastic channels. Communication between two EBs occurs via a elastic channel, which 

has 3 components including data and valid signal produced by the source EB and stop 

signal produced by the destination EB. Data is transferred through the elastic channel only 

if valid is asserted and stop is deasserted. We would like to emphasize here again that 

the transactions in the elastic channels are synchronized with a global clock. This is a 

significant difference from asynchronous hand-shaking based protocols, where no global 

clock is present. A detailed description of the elastic controllers can be found in [7, 9]. 

2.2. Elastic Processor Models with Evaluation 

One of the drawbacks in SEN system is that it can often result in an increased number 

of cycles required by the design to perform operations when introducing additional elastic 

buffers. Early evaluation is an optimization of elastic design to improve performance [6]. 

We use the following example to motivate early evaluation. Consider the forwarding 

logic of the DLX pipeline (shown in Figure 6). The em stage receives input from three 

stages namely de, em, and mm. Let us assume that there are two additional elastic buffers 

in the path from mm to em. These additional buffers will result in a degradation of perfor

mance and the resulting design will require more clock cycles. But, there could be several 

situations in which the data from mm is not required for the execution in the execute stage 

to proceed. In elastic designs however, the execution in the execute stage is forced to wait 

until the data token from mm arrives. Early evaluation provides a mechanism to allow 
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execution to proceed even if the data token from mm has not arrived, provided that the it 

can be determined that mm data token is not required using the data from only de and em. 

The mechanism used to implement early evaluation is based on anti-tokens. Suppos

ing that in the execute stage, the token from mm has not yet arrived, but it is determined 

that in fact the token from mm is not required for execution. As stated earlier, the early 

evaluation mechanism allows execution to proceed. The logic to detect and allow execution 

to proceed is implemented using an eager join structure described in [6]. The problem 

however is that the token from mm is still in the path from mm to em, and has not been 

consumed yet. Therefore, this token can interfere with future executions in the execute 

stage. To nullify this mm token that has not yet arrived, the eager join generates an anti

token. The anti-tokens are propagated in the reverse direction of the tokens and when 

tokens and anti-tokens meet, they are both nullified. Thus the anti-token generated by the 

eager join in the execute stage will flow in the path from mm to em, but only now in the 

reverse direction. When the anti-token meets the token from mm both are nullified. As 

a result, the token from mm is prevented from interfering with future executions in the 

execute stage. 

The flow of anti-tokens is implemented using the controllers similar to the elastic 

controllers (designed to propagate tokens). Only the direction in which the anti-tokens are 

propagated is reversed (shown in Figure 4). Thus in early evaluation, the elastic controller 

,-,~!fv-,,, 

.-·--···--+----'--- s r· s· 

~ ~-

Figure 4: EHB with early evaluation 
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of an EB can hold up to two tokens or two anti-tokens. The controllers are also modified so 

that when tokens and anti-tokens meet, both are nullified. Figure 5 shows the interface of 

the elastic controller with early evaluation, which includes v+ and s+ as the output valid 

and stop for the tokens, and v- and s- as the output valid and stop for the anti-tokens. 

Also, vit, S!, V;;, and S&z are the inputs of the controller. The behavior of the controller is 

complex and we refer the reader to [6] for a detailed description. 

We developed 8 elastic processor models (AO, A 1, ... , A 7) that implement the LI 

protocol with early evaluation. The models are used to demonstrate the analysis and 

verification techniques and also used for experimentation. The models are based on the 

5-stage DLX model and are described using the BAT specification language at the bit-level 

with a data path width of 32 bits. AO is the model without any additional EBs. The other 

models A 1 through A 7 were obtained by placing additional EBs at various points in the 

data path. Figure 6 shows the positions of the additional EBs (11, 12, 14, and 15). Figure 7 

shows the elastic controller network for the processor model given in Figure 6 (which also 

happens to be model A 7. Table 1 shows the additional EBs in each of the models. 

Anti-tokens are generated in the execute stage. The execute stage receives input from 

three stages: execute, memory, and writeback. The paths from memory to execute and 

writeback to execute are forwarding paths. In the elastic framework, if additional EBs 

are placed in the forwarding paths, the execute stage will have to wait for data from all 

three paths before it can complete execution. However, it is possible for the execute stage 

to complete execution even if it does not receive data from the writeback stage. Such 

Figure 5: Interface of EB with early evaluation 
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Figure 6: High-level organization of elastic 5-stage DLX processor that implements the 
early evaluation LI protocol. The model has four additional elastic buffers: 11, 12, 14, and 

15 

! : :: i: 
- valid- valid• , : ,, I 
•-- stop- ~-- stop• li_:I ____ ~~~---_-_-_-_-_-_--@============: _ 

Figure 7: Network of elastic controllers for the elastic 5-stage DLX processor shown in 
Figure 6. The J and F blocks denote the join and fork circuits. the EJ block denotes the 
early join circuit, which is capable of generating anti-tokens. Valid+ and Stop+ are the 

valid and stop signals of the tokens. Valid- and Stop- are the valid and stop signals for the 
anti-tokens. Note that the directions of Valid- and Stop- are the reverse of the directions of 

Valid+ and Stop+, respectively. 

Table 1: Token-flow Diagram: Reachability 

Model Additional EBs 

AO 
Al 11 
A2 14 
A3 12, 14 
A4 12, 14, 15 
AS 11, 14 
A6 11, 12, 14 
A7 11, 12, 14, 15 
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a condition occurs when the two operands required for execution are available from the 

memory stage. This condition can be determined by examining data from only the execute 

and memory stages. Thus, under this condition, it is not necessary to wait for data from the 

writeback stage to complete execution. However, the data token from writeback, which will 

arrive at a later time will have to be nullified. This is achieved by generating an anti-token 

that will flow from execute to writeback (in the reverse direction). When the anti-token 

encounters the data token from write back, both are nullified, ensuring that this data token 

does not interfere with future operations in the execute stage. 

The early join block is used to identify the condition under which anti-tokens are 

required and also generates the required anti-tokens. The exact implementation of the early 

join block is given in [6]. In the models AO, ... , A 7, an early join block is used to join 

the paths from the memory and writeback to the execute stage and is depicted as EJ in 

Figure 7. If data from writeback has not arrived and is not require for execution to proceed 

in the execute stage, then the EJ block generates an anti-token that flows from execute to 

writeback and also allows the execute stage to complete. 
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CHAPTER 3. EARLY EVALUATION ELASTIC TOKEN-FLOW 

DIAGRAM 

In this chapter, we show how to construct token-flow diagrams, which are obtained 

by simulating the flow of data tokens in the elastic controller network, for elastic systems 

that implement early evaluation. The tokens are assigned numeric labels and the rules of 

simulation are modified so as to distinguish tokens that correspond to new data units that 

enter the system, from tokens of data units already present in the processor pipeline. These 

diagrams make it possible to analyze elastic networks and perform reachability analysis, 

compute refinement maps, and compute rank functions for elastic processors with early 

evaluation in a highly automated and sytematic manner. 

This approach is similar, a modified and extended set of rules are required to capture 

the behavior of the elastic controller network [15] (without early evaluation). Two primary 

differences are: (I) The controller network that implements early evaluation propagates 

anti-tokens in addition to regular tokens. Also, the anti-tokens propagate in the reverse 

direction. (2) While the generation of new tokens is a deterministic, the generation of new 

anti-tokens is nondeterministic w.r.t. to the state of the controller network. Whether anti

tokens are generated or not in a given state of the controller network also depends on the 

state of the datapath. 

The following notation is used to describe the rules. Each controller can hold up to 

a maximum of two tokens or two anti-tokens. A token or anti-token t is a natural number. 

A token or anti-token with value O corresponds to a bubble. The token diagram is based on 

the token-state of an early evaluation-based elastic controller network, which is defined as 

follows. 

Definition 2. The token-state of an early evaluation elastic controller network with n 

controllers is an n-tuple, where each element is a quad of the form (tm,ts,am,as), where 

tm,ts,am,as E lN. 
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If e is an early evaluation elastic controller, then tm,e and ts,e are the tokens in the 

master EHB and the slave EHB, respectively, and am.e and as,e are the anti-tokens in the 

master and slave EHB, respectively. t~.e, 1;.e, a~.e and a:.e are the master EHB token, slave 

EHB token, master EHB anti-token, and slave EHB token, respectively, in the next state 

of the controller. Vinp·e and Sinp·e are the current values of the input valid and input stop 

signals for tokens of e. Similarly, Vinm·e and Sinm·e are the current values of the input valid 

and input stop signals for anti-tokens of e. The values for the valid and stop signals can 

be obtained from the circuit of the early evaluation elastic controller network. ta and tb are 

valid tokens, while aa and ab are valid anti-tokens. A token with a zero value corresponds to 

a bubble. The new-token function defined in Section 3 is used to update elastic controllers 

with tokens. For a given controller, a1 is its input anti-token. We use a global counter to 

generate new anti-tokens. The counter is initialized to 1. The function new-anti-token will 

use the current value of the counter and as the new anti-token, and will also update the 

counter for future usage. This ensures that no two anti-tokens generated will have the same 

value. 

Rules 1 through 3 describe the transitions of the token-state of the controller from the 

state in which the controller does not have any tokens or anti-tokens. 

2. (tm,e OAts,e OAam,e=OAas,e=OA(vinp·eA,v1nm•e))-+ 

(t~.e 0At;.e new-token(e,ti)Aa~.e 0Aa~.e=O) 

3. (tm,e = 0 A ts,e = 0 A am,e = 0 A as,e = 0 A ( •Vinp·e A Vinm·e)) -+ 

(t~.e O A t;.e O Aa~.e = 0 A a~.e = ai) 

Rules 4 through 7 describe the transitions of the token-state of the controller from the 
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10. (tm,e = 0/\ts.e 0/\am,e = O/\a5 .e = aa I\ (-.vinp·e-.vinm·e)) ----t 

(t~.e 0/\t;.e = 0/\a~.e = 0/\a~.e = aa) 

12. (tm.e = 0 I\ fs.e = 0 I\ am.e O I\ as.e = aa I\ ( Vinp•e I\ -.vinm,e)) ----t 

(t~.e = 0/\t;.e = 0/\a~.e = 0/\a~.e 0) 

13. (tm,e O I\ ls,e O I\ am,e = 0 I\ as.e = aa I\ ( ( Vinp·e I\ Vinm•e) V (-.vinp·e I\ Vinm·e I\ 

-.sinm-e))) ----t 

(t~.e = 0/\t;.e 0/\a~.e 0/\a~.e = ai) 

Rules 14 and 15 describe the transitions of the token-state of the controller from the 

state in which the controller has no tokens and two anti-tokens. 

15. (tm,e = 0/\ts,e = 0/\am,e = ab/\as.e aa 1\-.(-.vinp•e /\sinm-e)) ----t 

(t~.e = 0 I\ r;.e O I\ a~.e = 0 I\ a~.e = aa) 

The join block has two input tokens on the input side and one input anti-token on 

the output side. The join cannot generate anti-tokens. Rules 16 through 22 describe its 

behavior. Note that the join behaves as a join for tokens and as a fork for anti-tokens 

because anti-tokens flow in the opposite direction. The output of the join is a three-tuple, 

the first is the output token on the output side and the next two elements are the output 

anti-tokens on the input side. The max function computes the maximum of two input token 

or anti-token values. Note that rules 22 and 23 describe the situation where there is only 

one input token, in which case the token is not allowed to pass. 
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16. J(ta,tb,0)-+ (max(ta,tb),0,0) 

17. J(ta,tb,aa)-+ (0,0,0) 

18. 1(0,0,aa)-+ (0,aa,aa) 

19. J(ta,0,aa)-+ (0,0,aa) 

20. J(0,ta,aa)-+ (O,aa,O) 

21. J(ta,0,0)-+ (0,0,0) 

22. J(0,ta,0)-+ (0,0,0) 

The fork block has two input anti-tokens on the output side and one input token on the 

input side. The fork cannot generate anti-tokens. Rules 23 through 29 describe its behavior. 

Note that the fork behaves as a join for anti-tokens and as a fork for tokens because anti

tokens flow in the opposite direction. The output of the fork is a three-tuple, the first is the 

output anti-token on the input side and the next two elements are the output tokens on the 

output side. Note that rules 28 and 29 describe the situation where there is only one input 

anti-token, in which case the anti-token is not allowed to pass. 

23. F(aa,ab,0)-+ (max(aa,ab),0,0) 

24. F(aa,ab,ta)-+ (0,0,0) 

25. F(0,0,ta)-+ (0,ta,ta) 

26. F(aa,0,ta)-+ (0,0,ta) 

27. F(0,aa,ta)-+ (O,ta,O) 

28. F(aa,0,0)-+ (0,0,0) 

29. F(0,aa,0)-+ (0,0,0) 
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The early join is similar to the join, the primary difference being that it can generate 

anti-tokens. In fact, the early join follows rules 16 through 20. The difference occurs when 

only one token is input and there are no anti-token inputs. In such a situation, the early join 

may or may not generate and anti-token and both possibilities should be considered. Rules 

30 through 33 describe the behavior of the early join in this situation. 

30. EJ(ta,0,0)-, (0,0,0) 

31. EJ(ta, 0, 0) -, (0, 0, new-anti-token) 

32. EJ(0,ta,0)-, (0,0,0) 

33. EJ(0, ta, 0) -, (0, new-anti-token, 0) 

18 



CHAPTER 4. REACHABILITY ANALYSIS FOR ELASTIC 

SYSTEM WITH EARLY EVALUATION 

For elastic controllers without early evaluation mechanism, its controller network is a 

deterministic system, which means all the next-states are deterministic, and the reachability 

analysis can be performed by simulating the elastic network starting from an inital state 

until a convergence is reached, i.e., a state of the controller is reached that has already been 

visited as depicted in Figure 8. As shown in the figure, So is the initial state. When the 

elastic controller network transitions from Sr, it goes back to Sk again, which is a state 

that has already been visited. Therefore the reachable sates of the contoller network are So 

through Sr. 

In the reset state of an in-order pipelined processor, all the pipeline latches are actu

ally empty and do not contain any valid instructions. This is implemented by resetting the 

valid bits in the pipeline latches. However, the elastic controllers without early evaluation 

corresponding to the pipeline latches are initialized to the half state, i.e., with one token 

and the controllers of the additional elastic buffers are initialized to the empty state. Such 

an initialization is required as the presence of these tokens enables data flow in the elastic 

system. Also note that once states So, ... , Sr are computed using the above initialization, 

states So, ... , Sk- I can be dropped from the set of reachable states as for all practical 

purposes the actual elastic system can be initialized to any one of the states Sk, ... , Sr in 

which the controller of the program counter has at least one valid token. 

For the purpose of reachability analysis, we define the elastic-state of an elastic 

controller network as follows. 

Definition 3. The elastic-state of an elastic controller network with n controllers is an 

n-tuple, where each element is either empty, half, or full. 

An elastic-state of a controller network can be easily constructed from its token state 

by observing the number of valid (non-zero) tokens in each controller. We assume that 
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Figure 8: Reachability analysis of elastic controller networks 

the elastic-state function performs such a construction. Reachability analysis is performed 

using the following procedure. 

(1) Let ECp be the ordered set of elastic controllers corresponding to the pipeline latches 

(including the program counter) in the elastic processor. The position of a controller in 

ECp is based on its position in the pipeline and is given by the pos function. Let ECa 

be the set of additional elastic controllers in no particular order. For the DLX example 

ECp {pc,fd,de,em,mm}, and ECa = {ll,l2,l4,l5}. Then, the initial token state S~ is 

given using the following assignments to ECp and ECa: (a) (Ve E ECp :: (tm.e 0) /\ (ts.e = 

n 1- pos(e,ECp))). (b) (Ve E ECa :: (tm.e 0) /\ (ts,e 0). The tokens corresponding 

to memory components are initialized to the ts value of the pipeline latch at the end of 

the pipeline stage in which they are updated. For the DLX example in our experiments, 

the memory components are the register file (,f) and the data memory (dm), which are 

initialized to ts.de and ts.mm. 

(2) The set of visited states V is initialized to { elastic-state( S~)}. Initialize the current 

token-state S~ to S~ and the loop counter i to 0. 

(3) Compute the next token-state S~+ 1 from S~ using the elastic token-flow procedure given 

in Chapter 3. 

(4) If elastic-state(S}+i) EV, then terminate. Otherwise update V = VU { elastic-state(S}+1)}. 

(5) Increment i and goto step 3. 

As for elastic controller network that incorporates early evaluation mechanism, its 

reachable states can also be performed using elastic token-flow diagrams as described 

(which is originally for elastic controller network without early evaluation) above with 
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two primary differences. First of all, the rules which are used to construct the elastic token

flow diagrams for elastic controller network with early evaluation are those described in 

Chapter 3. Secondly, the generation of anti-tokens is dependent on the state of the data 

path as well as the state of the elastic controller with early evaluation. Since the states of 

the data path could be extremely large, they are not used in the reachability analysis of the 

controller network. Instead we consider both situations. If it is possible for an anti-token 

to be generated, we consider the cases where the anti-token is and is not generated. The 

generation of anti-tokens is given by rules 30 through 33 in Chapter 3. Note that rules 30 

and 31 fire simultaneously and similarly rules 32 and 33 fire simultaneously. 

Figure 9 shows the reachable states and transitions of the elastic controller network 

of the A4 model. The elastic token-flow digram which are used to compute for reachable 

states of the A4 model is shown in Table 2. The initial state So is initialized with tokens 

as described in Chapter 4. All anti-tokens are initialized to bubbles. In the A4 example, 

anti-tokens, when generated are usually nullified immediately by the corresponding tokens 

in the opposite direction. Therefore, their presence is not seen in this token-flow diagram 

except in state S1, since only the S1 state has anti-token and no tokens at the same time. 

Therefore, the table only shows tokens, except in the S1 state where the anti-token is 

indicated by the 8 symbol. 

s 

Figure 9: Reachability analysis for A4 model 
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Table 2: Token-flow Diagram for Early Evaluation Elastic: Reachability 
State pc fd de em mm 12 14 15 

So 7 6 5 4 3 0 0 0 
S1 8 7,6 0 5 4 3 0/0 3 
S2 8 7,6 5 4 4 3 0 3 
S3 9,8 7 6 5 5 4 0 4 
S4 9,8 7 6,5 4 0 4 3 4 
S5 9 8 7 6 0 5 0 5 
S5 9 8 7,6 5 0 5 4 5 
S7 9 8,7 6 5 0 4 4 0 
Ss 10 9 8,7 6 6 0 5 0 
S9 10 9,8 7 6 0 5 5 0 
S10 10,9 8 7 6 5 0 0 0 
S11 11 10,9 8 7 0 6 0 6 
S12 12,11 10 9,8 7 7 0 6 0 

22 



CHAPTER 5. REFINEMENT MAPS FOR ELASTIC SYSTEM 

WITH EARLY EVALUATION 

5.1. Refinement Maps 

Verifying that the elastic implementation refines its synchronous counterpart requires a 

function that maps states of the elastic system to states of the synchronous parent system. 

This function, known as the refinement map, can be thought of as an abstraction func

tion that allows one to view an elastic system as a synchronous system. We introduce a 

procedure to compute such refinement maps for elastic pipelined processors. 

In elastic systems, some inputs can take several cycles to reach their destination 

stage. Whereas, in synchronous systems, inputs are available to each pipeline stage at 

every cycle. This variability in the latency of inputs in elastic systems is identified by 

bubbles (tokens with a O value) in the elastic token-flow diagrams. If we were to construct 

the token-flow diagram for a synchronous machine, there would be no pipeline latch with 

bubbles, nor would there be pipeline latches with two tokens. Also, a new token will be 

introduced at every step. A synchronous token-state for a pipeline with n-stages and m 

memory components would be an n + m-tuple with one token for each latch and one token 

for each memory component. In the synchronous state, memory components tokens are 

assigned the token of the pipeline latch at the end of the pipeline stage in which they are 

updated. For the 5-stage synchronous DLX, a token state would be of the form (pc, f d, 

de, em, mm, rf, dm) and three possible successive token states for the synchronous DLX 

would be (5, 4, 3, 2, 1, 4, 1), (6, 5, 4, 3, 2, 5, 2), and (7, 6, 5, 4, 3, 6, 3). Herein lies 

the usefulness of token-flow diagrams as they clearly bring out the differences in data-flow 

between the synchronous and elastic systems. 

One approach to define the refinement map is to roll back some or all the pipeline 

latches and memory components in an elastic state so that all the latches including the 
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program counter are in a half state and if t pc is the token of the program counter, then 

the tokens of the other n - 1 latches will have the following values: (Ve E ECp :: tm,e 

0 l\ts,e tpc + 1 - pos(e,ECp)) Projecting out the values of the slave elastic half buffers 

corresponding to the pipeline latches will give the corresponding synchronous state. Such 

an approach is similar to the commitment refinement map used for synchronous processor 

verification [11]. The extent to which each latch is rolled back depends on the state of the 

elastic controller network. Therefore, we define one mapping function for each reachable 

state of the elastic controller network. The overall refinement map selects and applies the 

appropriate mapping function for each controller network state. Given an elastic controller 

network state (Sr), the procedure to compute the mapping function is as follows. 

1. Count the number of pipeline latches that are in the empty state in Sr. Let this count 

be ne. Let r be the number of reachable states of the controller. 

2. Starting from a token-state of Sr (such a state can be obtained from the token-flow 

diagram constructed for reachability analysis), construct the token-flow diagram for 

ne * r steps. This provides sufficient steps of the token-flow diagram to perform the 

analysis required to compute the mapping function. 

3. Starting from the last token state in the diagram, search backwards in the pc column 

to find the first valid token, say tpc• Construct a synchronous token-state correspond

ing to Sr using the following equation: lj tpc 1 j, where j is the position of the 

latch in the pipeline, with j = 1 for the pc. Memory components would be assigned 

the token of the stage in which they are updated. 

4. Rolling back the pipeline latches is hard to compute directly. We instead use history 

variables that record previous values of pipeline latches. Therefore, all that is to be 

determined to construct the mapping function is which history should be projected. 

This is computed by searching backward in each of the columns in the token-flow 
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diagram (where each column corresponds to a pipeline latch), to find the first token 

that matches the token in the synchronous token-state. If the match for a pipeline 

latch was found k rows going backward, then the kfh history variable is projected for 

that latch. 

Note that anti-tokens are ignored in refinement map computation. Examples of computing 

refinement maps for some states of the A4 model are shown in Tables 3, 4, and 5. The 

circled tokens indicate when a match is found. 

5.2. Liveness 

As described before, checking for liveness is used to determine if the implementation 

(the elastic system) always makes forward progress, i.e., it does not deadlock. This is 

achieved by defining rank, a function from states of the implementation to the natural 

numbers whose value decreases when the implementation stutters w.r.t. the specification. 

Another way to think of the rank function is that it is used to distinguish stutter from 

deadlock. During both stutter and deadlock, the implementation does not seem to make 

progress w.r.t. the specification. If the lack of progress is due to stutter, the rank function 

identifies this by decreasing. If the lack of progress is because of deadlock, the rank 

function will not decrease pointing to a deadlock problem. We now describe a method 

that can be used to synthesize rank functions for elastic systems with and without early 

evaluation. 

The high-level idea is as follows. Remember that the implementation is the pipelined 

Table 3: Token-flow Diagram: Refinement Map Construction for So of Processor A4 

State pc fd de em mm rf dm 

(2) 
Sync 7 6 5 4 3 5 3 

25 



Table 4: Token-flow Diagram: Refinement Map Construction for S1 of Processor A4 

State pc fd de em mm rf dm 

Sc-1 (]) 6 (2) @ GD 5 GD 
Sc 8 7,@ 0 5 4 (2) 4 
Sync 7 6 5 4 3 5 3 

Table 5: Token-flow Diagram: Refinement Map Construction for S2 of Processor A4 

State pc fd de em mm rf dm 

Sc-1 (]) 6 5 4 GD 5 GD 
Sc 8 7,@ (2) @ 4 (2) 4 
Sync 7 6 5 4 3 5 3 

elastic system and the specification is the pipelined synchronous system. Therefore, the 

only reason for stutter between the implementation and specification is because of the 

elastic nature of the implementation. The transitions of the elastic implementation that 

will result in stutter can be determined by analyzing the elastic controller network. 

The state diagram of the elastic controller network can be determined using elastic 

token-flow diagrams. Using the refinement map computations, we can determine which are 

the stuttering steps of the controller and which are the non-stuttering steps. 

We then label the edges in the state diagram of the elastic controller network as "s" 

or "ns" if the edge corresponds to a stuttering step or non-stuttering step of the imple

mentation. We then assign a rank (a natural number value) to all the states in the state 

diagram such that rank value decreases along a stuttering edge. The detailed procedure 

for synthesizing rank functions is described below. Note that the procedure can be applied 

to elastic systems with and without early evaluation. When early evaluation is not used, 

the elastic controller network is deterministic and its state diagram is just a loop. If 

early evaluation is present, the state diagram is more complex and can consist of multiple 
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overlapping loops. Figure 9 shows the state diagram of the A4 elastic processor including 

the stuttering edges and rank values for each of the states. The detailed method for rank 

computation is given below using two procedures. The first procedure is used to compute 

the stuttering transitions of an SEC. The input to the procedure is the State diagram of the 

Elastic Controller network (SEC) of the implementation machine. 

Procedure for computing stuttering transitions of SEC: 

1. Repeat steps 2 through 5 for each of the transitions (edges) in the SEC, which are all 

of the form w --+ v. 

2. Determine the token-state of w from the elastic token-flow diagram constructed for 

reachability analysis of the implementation system. 

3. Compute the token-state of v from the token-state of w using the rules for elastic 

token-flow diagrams. 

4. Apply the refinement map to both w and v to determine their corresponding syn

chronous token-states Ws and Vs, respectively. 

5. If Ws = Vs, then mark the transition (edge in the SEC) as "s", else mark it as "ns". 

Procedure for ranking states of SEC: 

1. For each of the loops in the SEC, repeat steps 2 through 4. 

2. Let p be the number of states in the loop and Ps be the stuttering transitions in the 

loop. 

3. Choose any state win the loop that has an incoming edge with an "ns" label. Assign 

the rank value of p tow. 
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4. Starting from the successor of w, assign the ranks of all the other states in the loop 

in the following way. If a state has an incoming edge with an s or ns label and its 

predecessor has a rank value of q, then assign the state a rank value of q-1 or q, 

respectively. Note that this approach ensures that the last transition in the loop from 

the predecessor of w tow will result in an increase in the value of rank from p-p8 to 

p. Also, for all stuttering transitions in the loop, the rank value will decrease by one 

and for all other non-stuttering transitions in the loop, the rank will remain the same. 

5. The next issue is that the loops in the SEC will have overlapping states. Thus, some 

states will have multiple rank values. If a state v has more than on rank assigned, the 

highest rank is chosen. Also, the ranks of the states in the loops that did not assign 

v its highest rank will have to be adjusted by incrementing the ranks of the states in 

these loops with the difference of the highest rank of state v and the rank assigned 

by that loop to state v. This situation will not occur in systems that do not use early 

evaluation, because, the controller network is deterministic and so the SEC will have 

only one loop. 

The rank of an elastic system state is given by the rank of the state of its elastic 

controller network. 

5.3. Using Token-flow Diagrams for Elastic System Design 

The reachability analysis performed using token-flow diagrams can be used for de

sign of the early evaluation elastic system. In performing reachability analysis of various 

elastic processor models with anti-tokens, we found several of these designs that seem to 

benefit from early evaluation, actually do not. Consider the example of the AS processor 

model. The reachability analysis of the A5 model is shown in Figure 10. 

If the AS elastic controller is initialized to the s11 or s12 state, then the controller will 

remain only in one of these states and no anti-tokens will be generated and therefore, early 
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Figure 10: Reachability analysis for A5 model 

evaluation is not required. Thus, if the A5 model is initialized to s11 or s12 states, then 

the more complex controllers required for early evaluation can be replaced with the basic 

elastic controllers. Two more examples that illustrate the use of the token-flow diagrams to 

eliminate early evaluation are models A6 and A 7. The corresponding reachability analysis 

of these models are shown in Figures 11 and 12. Note that in all these three figures, the 

reachable states are shown as shaded circles. 

Figure 11: Reachability analysis for A6 model 

Table 6 and Table ?shows the invariant constraint and mapping, rank functions for 

each of the reachable states of the elastic processors AO, Al, A2, A3, A4, A5, A6, A7. 

For anti-models AO and Al, no anti-tokens be generated, since the condition for generating 

anti-tokens is never satisfied. In the invariant constraint column, if x is a pipeline latch, 

x0, x½, x1, x-½ and x- 1 are used to indicate the empty/empty, half/empty, full/empty, 

empty/half and empty/full states of the latch, respectively. For the refinement map column 

in the table, we use the following notation. If x is a pipeline latch, ~ is used to indicate 
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S16 S19 

1r--e) 

Figure 12: Reachability analysis for A 7 model 

the projected value for that latch, where h indicates the history value (0 for current, -1 

for previous value, -2 for the value two cycles before, and 1 for the next value). y can 

either be s or m indicating that the projected value is from the slave EHB or the master 

EHB, respectively. The invariant constraints and mapping functions were obtained using 

the procedures described in Chapter 4 and Chapter 5. 

30 



Table 6: Invariants for Elastic Processor Models with Early Evaluation 
Processor Model Controller State 

AO 
Al 

A2 

A3 

A4 

AS 

A6 

A7 

Invariant-I 

Invariant-I 

Invariant-2 

Invariant- I 

Invariant-2 

Invariant-3 

Invariant-4 

Invariant- I 

Invariant-2 

Invariant-3 

Invariant-4 

lnvariant-5 

Invariant-6 

Invariant-I 

Invariant-2 

lnvariant-3 

lnvariant-4 

Invariant-5 

Invariant-6 

Invariant-7 

Invariant-8 

Invariant-9 

Invariant- I 0 

Invariant- I I 

Invariant- I 2 

Invariant- I 3 

Invariant-I 

Invariant-2 

Invariant- I 

Invariant-2 

Invariant- I 

Invariant-2 

Invariant-3 

lnvariant-4 

Invariant Constraint 
I I I I I 

pc'- /\Jd1 /\de'f. /\emi /\mm'i 

pc'- /\JJJ I\ de'J. I\ em2 I\ mm2 I\ 11° 

pc0 /\Jd½ I\ de0 I\ em½ /\ mm 1 /\ l1 ½ 

pc'- /\Jd'i /\de'i /\em'- /\mm'l. 1\14° 
I I I I I I 

pc2 /\Jd'l. /\de /\em'- /\mm2 1\/4'1. 
I j I I I I 

pcz /\Jd /\de'i /\em'i /\mmz /\l4'i. 
I I I I I 0 

pc /\fd 2 /\de'J. /\em'i /\mm'i 1\/4 

pc'i /\Jd 2 /\de'i /\em'i. /\mm'- 1\12° 1\14° 
I I 0 I I I ,n 

pc'- /\Jd /\de /\em'- /\mm2 /\l21 /\l•r 
1 I I I I I I 

pc /\Jd2 /\de2 /\em'i. /\mmz 1\1221\142 
I I I I O I I 

pc2 /\Jd2 /\de'i. /\em2 /\mm 1\122 /\l42 
I j I I I I I 

pc'i /\Jd /\de'i /\em2 /\mm'i. 1\121 /\l4'J. 
1 I I I O I I 

pc /\Jd'l. I\ de 2 I\ em2 I\ mm I\ /22 /\ 14'1. 

pd /\Jd 2 /\dez /\em'i. /\mmz 1\12° 1\14° /\lfJ 
I 1 0 I I I I I 

pc'- /\fd /\de /\em'f./\mm21\12'- /\l4- 2 /\[5 2 

I 1 I I I I 0 l 
pcz /\fd /\de'i. /\em'f. /\mm'J.1\1221\14 1\15 2 

1 I I I I l O l 
pc /\fd'1 /\de'J. /\em1 /\mmz 1\12'11\14 /\[Si 

j I I I O I I I 
pc /\fd'i I\ de I\ em'l. I\ mm I\ 122 I\ 142 I\ 152 

I I I I O I ;{) I 
pc2 /\fd'i. /\de"l /\em2 /\mm 1\122 /\lq~ /\l52 

I I I I O I I 1 
pc'i /\fd'i. /\de /\em'l. /\mm 1\121 /\l4i /\l5'i 

I 1 I I O I I 0 
pc'- /\Jd /\de'J. /\em'l. /\mm 1\/22 /\l4'J. 1\15 

I I 1 I I O I 0 
pc'i /\fd 2 /\de /\em'i /\mm21\12 1\14'- 1\15 

I I I I 0 I I ,-() 
pc'l. /\fd /\de'l. /\em'f. /\mm /\l2'J. 1\/4'1. /\l::r 

pc1 /\Jdi I\ de½ I\ em½ I\ mm½ I\ 12° I\ 14° I\ zj) 
I l I l 0 I 0 I pc'J. /\fd /\de'i /\em'l. /\mm /\l2i 1\14 1\152 

pc1 /\Jdi /\de 1 /\em½ /\mm½ 1\12° 1\14½ /\lfJ 

pc2 /\Jd° /\de'i. /\emz /\mm'J. /\llo 1\142 
0 I O I I I I 

pc /\fd 2 I\ de I\ em'l. I\ mm'l. I\ l1 '1. I\ l4'i. 

pc'i. /\Jd° /\de 2 /\em'1. /\mm'l. /\llo /\l2'1. /\[42 

pc0 /\Jd½ I\ de0 I\ em½ I\ mm0 I\ u½ I\ 12 1 I\ 14½ 

pc2 /\fd1 /\de'- /\em2 /\mm0 /\llo 1\12° 1\1421\15° 

pc0 /\fd1 /\de0 /\em½ /\mm½ /\ll½ 1\12° 1\14° /\lfJ 
I I Q l I 0 I 0 I pc2 /\Jd /\de /\em'l. /\mm'f. /\ll 1\/2'1. 1\14 1\15'1. 

1 l I I O l l I I 
pc'l. /\Jd'l. I\ de2 I\ em'i. I\ mm I\ l1 z /\ 121 I\ [42 I\ 152 
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Table 7: Refinement Maps and Rank functions for Elastic Processor Models with Early 
Evaluation 

Processor Model Controller State Refinement Map Rank 
pc fd de em mm if dm 

AO Invariant-I pc~ Jcf] de0 
s em0 

s mm0 
s if° dm0 

Al Invariant- I pc~ Jd;I de-; 1 em- 1 
s mm-1 

s 
,f-1 dm- 1 0 

Invariant-2 lll 
s Jcf] d -1 es em- 1 

s mm0 
s ,f-1 dm- 1 1 

A2 Invariant- I pc~ Jd; de0 
s em0 

s mm0 
s rj-0 dm0 4 

Invariant-2 pc;I Jd;I de0 
s em0 

s mm- 1 
s 

,f-1 dm- 1 3 
Invariant-3 pc;l Jcf] de0 

s em0 
s mm0 

s if° dm0 4 
Invariant-4 pc~ Jcf] de0 

s em0 
s mm0 

s if° dm0 4 
A3 Invariant- I pc~ Jd; de0 

s em0 
s mm0 

s rj-0 dm0 4 
Invariant-2 pc;I jcf} d -I es em- 1 

s mm- 1 
s if° dm- 1 3 

Invariant-3 pc~ Jcf] de0 
s em0 

s mm-1 
s if° dm- 1 4 

Invariant-4 pc~ Jcf] de0 
s em0 

s mm- 1 
s if° dm0 4 

Invariant-5 pc;I Jcf] de0 
s em0 

s mm- 1 
s if° dm- 1 3 

Invariant-6 pc~ Jcf] de0 
s em0 

s mm- 1 
s if° dm- 1 4 

A4 Invariant-I pc~ Jd; de0 
s em0 

s mm0 
s rj-0 dm0 20 

Invariant-2 pc;I Jcf] d -1 es em- 1 
s mm- 1 

s if° dm- 1 19 
Invariant-3 pc;' Jcf] de0 

s em0 
s mm-1 

s if° dm- 1 19 
Invariant-4 pc~ Jcf] de0 

s em0 
s mm-I 

s if° dm- 1 19 
Invariant-5 pc;2 Jd;I de0 

s em0 
s mm-2 

s 
,f-1 dm-2 18 

Invariant-6 pc~ Jcf] de0 
s em0 

s mm-I 
s if° dm0 19 

Invariant-7 pc;I Jd-;1 de0 
s em0 

s mm-2 
s 

,f-1 dm-2 18 
Invariant-8 pc;I Jcf] de0 

s em0 
s mm-2 

s if° dm0 18 
Invariant-9 pc;I Jd;I de0 

s em0 
s mm-2 

s ,f-1 dm-I 18 
Invariant-IO pc;1 Jcf] de0 

s em0 
s mm-2 

s if° dm0 18 
Invariant- I 0 pc~ Jcf] de0 

s em0 
s mm0 

s if° dm0 20 
Invariant-12 pc;I Jcf] de0 

s em0 
s mm- 1 

s if° dm0 18 
Invariant-13 pc;2 Jd;1 de0 

s em0 
s mm-2 

s 
,f-1 dm- 1 17 

A5 Invariant- I pc~ Jd;I d -2 es em-2 
s mm-2 

s ,f-1 dm-2 1 
Invariant-2 pc;l Jd;2 d -3 es em-3 

s mm-3 
s 

,f-2 dm- 3 0 
A6 Invariant- I pc~ Jd;I de;2 em-2 mm-4 ,f-1 dm-3 1 s s 

lnvariant-2 pc;I Jd;2 d -3 es em-3 
s mm-5 

s 
,f-2 dm-4 0 

A7 Invariant- I pc~ Jd; de0 em0 mm-2 rj-0 dm0 3 s s s 
Invariant-2 pc;I jcf} d -I es em- 1 

s mm-3 
s if° dm- 1 2 

Invariant-3 pc;2 Jcf] d -2 es em-2 
s mm-4 

s if° dm-2 1 
Invariant-4 pc~ Jcf] de0 

s em0 
s mm-2 

s if° dm-2 4 
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CHAPTER 6. RESULTS AND FUTURE WORK 

6.1. Results 

The verification results are shown in Table 8. The refinement proofs were automatically 

checked using the BAT decision procedure version 0.2 [13]. The Siege SAT solver (version 

4) was used to solve the SAT problems generated by BAT [14]. The experiments were 

conducted on a 1.8GHz Intel (R) Core (TM) Duo CPU, with an LI cache size of 2048KB. 

In the table, the "Siege" column gives the running times of the Siege SAT solver, which is 

used to as used As can be seen from the table, all the elastic 5-stage DLX-based processors 

were verified against the synchronous DLX within 1000 seconds. 

Table 8: Verification Times and CNF Statistics for Anti Model 

Processor Models Verification Time [sec] CNF Statistics 
Siege Total (BAT) Variables Clauses Literals 

AO 0.03 0.64 1,947 5,575 34,208 
Al 11.72 14.73 7,191 29,949 180,830 
A2 112.46 127.67 9.193 41,697 364,794 
A3 65.48 57.73 6,472 27,643 302,561 
A4 844.19 855.87 13.646 87.953 1730,012 
A5 18.70 23.22 13,479 64,373 373,418 
A6 62.49 65.96 13.743 65,229 370,418 
A7 68.86 71.24 20.069 107,029 631,014 

6.2. Future Work 

Refinement-based verification requires a refinement map that relates states of the imple

mentation and states of the specification. Defining efficient refinement maps often re

quires intuition about the design. We develop a methodology to compute refinement maps 

and rank functions in a highly automated manner for checking the equivalence of elastic 

pipelined system with early evaluation against synchronous parents system. The key idea 

33 



is to compute the reachable states of the elastic controller with early evaluation mechanism 

and use this information in computing refinement maps and rank functions. The reachable 

states are themselves computed using token-flow diagrams. The efficacy of the methods 

are demonstrated by verifying several elasticized pipelined processor models defined at 

the bit-level. For future work, we plan to develop a refinement-based verification tool for 

elasticized designs that will incorporate the developed methods. Also, using this tool, we 

will apply these methods to various other designs. 

34 



REFERENCES 

[l] Julien Boucaron, Jean-Vivien Millo, and Robert de Simone, Another glance at relay 
stations in latency-insensitive design, Electr. Notes Theor. Comput. Sci. 146 (2006), 
no. 2, 41-59. 

[2] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L. 
Sangiovanni-Vincentelli, A methodology for correct-by-construction latency 
insensitive design, ICCAD '99: Proceedings of the 1999 IEEE/ACM international 
conference on Computer-aided design (Piscataway, NJ, USA), IEEE Press, 1999, 
pp. 309-315. 

[3] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli, 
Theory of latency-insensitive design, IEEE TCAD 20 (2001), no. 9, 1059-1076. 

[4] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli, Coping with latency in soc 
design, IEEE Micro 22 (2002), no. 5, 24-35. 

[5] Mario R. Casu and Luca Macchiarulo, Adaptive latency-insensitive protocols, IEEE 
Design and Test of Computers 24 (2007), 442-452. 

[6] Jordi Cortadella and Michael Kishinevsky, Synchronous elastic circuits with early 
evaluation and token counterflow, DAC, 2007, pp. 416-419. 

[7] Jordi Cortadella, Michael Kishinevsky, and Bill Grundmann, Synthesis of 
synchronous elastic architectures, DAC, 2006, pp. 657-662. 

[8] ITRS, International technology roadmap for semiconductors 2007 edition, 2007, See 
URL http://www. i trs. net/Links/2007ITRS/Home2007. htm. 

[9] Sava Krstic, Jordi Cortadella, Michael Kishinevsky, and John O'Leary, Synchronous 
elastic networks, FMCAD, 2006, pp. 19-30. 

[10] Cheng-Hong Li, Rebecca Collins, Sampada Sonalkar, and Luca P. Carloni, 
Design, implementation, and validation of a new class of interface circuits for 
latency-insensitive design, MEMOCODE '07: Proceedings of the 5th IEEE/ACM 
International Conference on Formal Methods and Models for Codesign, 2007, pp. 13-
22. 

[11] Panagiotis Manolios, Correctness of pipelined machines, FMCAD, 2000, pp. 161-
178. 

[12] Panagiotis manolios, Mechanical verification of reactive systems, 
Ph.D. thesis, University of Texas at Austin, August 2001, See URL 
http://www.cc.gatech.edu/~manolios/publications.html. 

35 



[13] Panagiotis Manolios, Sudarshan K. Srinivasan, and Daron Vroon, Automatic memory 
reductions for rtl model verification, ICCAD, 2006, pp. 786-793. 

[14] Lawrence Ryan, Siege homepage, See URL 
http://www.cs.sfu.ca/~loryan/personal. 

[15] Sudarshan K. Srinivasan, Koushik Sarker, and Raj S. Katti, Verification of 
synchronous elastic processors, IEEE Embedded Systems Letters 1 (2010), no. 1, 
14-18. 

[16] Syed Suhaib, Deepak Mathaikutty, David Bemer, and Sandeep Shukla, Validating 
families of latency insensitive protocols, IEEE Transations on Computers 55 (2006), 
no. 11, 1391-1401. 

[17] Christer Svensson, Synchronous latency insensitive design, ASYNC, IEEE Computer 
Society, 2004, p. 3. 

[18] Muralidaran Vijayaraghavan and Arvind Arvind, Bounded dataflow networks and 
latency-insensitive circuits, MEMOCODE'09: Proceedings of the 7th IEEE/ACM 
international conference on Formal Methods and Models for Codesign (Piscataway, 
NJ, USA), IEEE Press, 2009, pp. 171-180. 

36 



CURRICULUM VITAE 

Yangwei Cai was born on Nov. 21, 1982. He got his bachelor's degree in Computer 

Science and Technology at Hebei University of Engineering in the summer of 2005 and 

master's degree in Detecting Technology and Automation Equipment at Nanjing Forestry 

University in 2008. He entered North Dakota State University to pursue a master's degree 

in Electrical Engineering (Computer Engineering) in the fall of 2008. Currently, he is doing 

PhD degree in Computer Engineering at University of South Florida from Fall 2010. 

37 


