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ABSTRACT 

Basu, Samidip, M.S., Department of Computer Science, College of Science 
and Mathematics, North Dakota State University, November 2010. 
Optimization of Mobile Sensor Movement in Self-Healing Sensor Networks. 
Major Professor: Dr. Kendall Nygard. 

This paper moves forward the key idea as proposed in past research works 

- a self-healing deployment approach for sensor networks, where a small 

percentage of mobile sensors are deployed along with the static sensors 

into a field of concern. Mobile sensors can move to make-up for a coverage 

holes or sensor failure and significantly boost network performance. 

However, since there are energy constraints on each individual mobile 

sensor, potentially receiving multiple requests from network holes, the 

decision to move a mobile sensor has to be optimum, one that maximizes 

network benefit. In this paper, I propose a hybrid distributed & central 

decision making algorithm to facilitate optimal moves by each mobile 

sensor. The algorithm uses several layered techniques like Rough Set 

analysis, sorting & multi-level auction to provide the best possible 

decision, given the network scenario and the approach is robust to 

incompleteness of information. The proposed solution also safeguards 

against network deadlocks and extensive simulations & statistical analysis 

have demonstrated superior performance of the algorithm when compared 

to its peers. Some traits of the algorithm proposed derive inspiration for 

decision support from Ants' swarm intelligence. 
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PREFACE 

Wireless sensor networks have gained prominence in a variety of 

fields in the recent past. Any such network consists of a number of small 

sensor nodes that perform sensing tasks of various natures and transmit 

appropriate information back to a central Base Station [1]. The use of such 

sensor networks has been increasing in the fields of environmental 

monitoring, military surveillance & target tracking [1]. With increased 

usage, the effectiveness of such networks is under increased scrutiny, 

especially sensor coverage on the network field [3]. Self-healing sensor 

networks would be the primary focus area of this research thesis. While 

the solution proposed applies to the field of sensor network coverage, the 

same principles could be generalized to be applied to broader optimization 

problems, as discussed henceforth. 

In a typical sensor network, as sensors are being deployed on the 

field, the location of each sensor node cannot be precisely controlled due 

to their large number, hostile environment, method of distribution etc. As 

such, geographical terrain might have a serious effect on network coverage 

and coverage holes will degrade network performance. [1] & [2] proposed a 

means of increasing network effectiveness by deploying a small proportion 

of mobile sensors, along with the static sensors in a sensor network. This 

approach aims at keeping costs low, while trying to maximize self-healing 

of the sensor network. The core idea is that the small proportion of mobile 
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sensors can greatly increase network effectiveness by moving to coverage 

holes on detection. The decision to move by each mobile sensor is based 

on several factors like distance from coverage hole, connectivity gain, 

coverage gain & overall network benefit. Since the mobile sensors could be 

limited in energy, several central & distributed approaches have been 

researched in deciding optimal movement by each mobile sensor. This 

research work would be aimed at better solving the optimization problem 

of limited moves by the mobile sensors in a self-healing sensor network. 

The following research proposes a new algorithm for a given mobile 

sensor to make a smart decision on which coverage hole it wants to move 

to cover, with the Base Station keeping track of movement by other mobile 

sensors so as to maximize network benefit. The problem under 

consideration essentially turns out to be an optimization decision, given 

some network constraints. The proposed solution may easily be used to 

effectively aid in decision making for most other optimization problems 

where the decision-making is based on several factors. Given such a 

scenario, the solution proposed could adapt by simply changing the 

factors under consideration and attempt to provide an optimal solution. 

One possible application that readily lends itself to be solved by the 

proposed solution is to effectively decide how cop patrol cars should visit 

various troubled neighborhoods to maximize police coverage. 
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INTRODUCTION 

The broad research area in the field of self-healing sensor networks 

was chosen to be the primary focus for the research thesis. To provide self

optimization and self-healing capabilities in a sensor network, the 

proposal is to deploy a small proportion of mobile sensors along with the 

large number of the static sensors [1], [2]. The static sensors are stationary 

once deployed; but they can talk to their neighbors. Another assumption is 

that the sensors are Location aware [ 1] and can sense holes in network 

coverage. Upon detection of such holes, they would broadcast requests for 

the neighboring mobile sensors to move in to cover the coverage holes and 

repair the network. 

Each mobile sensor may get multiple requests to cover network 

holes; but due to energy constraints, we will assume that each mobile 

sensor can make only one move and only one mobile sensor moves to a 

hole. Hence, it becomes an optimization problem as to which mobile 

sensor should move to which hole to provide the maximum benefit to the 

network. Several entirely centralized schemes have been discussed as in 

[ 1] that would help mobile sensors take a decision; but these depend 

largely on the base station and may not scale very well. I propose a largely 

distributed algorithm here, with base station involvement kept at a 

minimum and only when required. 
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Several ideas were to be investigated as in: 

✓ Iterative use of Rough Sets in distributed decision making 

✓ Sorting of best-fit requests 

✓ Smart multi-level auction protocol 

✓ Gain inspiration for decision support from Ants' swarm intelligence 

✓ Optimization through ILP for central decision making 

Of these, some appeared to be more promising than others. The 

proposed solution is for the mobile sensors to be distributed in their 

decision making as far as feasible. On receiving requests from static 

sensors to cover network holes, the mobile sensors would apply rough set 

analysis iteratively to filter out requests that are not at all potentially 

beneficial. Of the rest, the mobile sensors would apply greedy algorithms 

to figure out which is the best request for them to serve and communicate 

with the base station at a minimum, unless conflicts arise between two 

neighboring mobile sensors about the best request they have chosen to 

serve. The base station would employ a two-level auction to make choices 

that would result in maximum network benefit. In all of this, I derive 

inspiration and mimic the behavior of ants as in ant colony optimization. 
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ROUGH SETS ANALYSIS 

"The main goal of rough set analysis is induction of approximation of 

concepts" [4, p.4). Its application can be beneficial in the case of 

distributed decision-making and rule generation by mobile sensors when 

they are to filter out requests to move in order to cover holes in the sensor 

network coverage. 

Part I: Consistent Data 

Information System/ Table: 

Let us consider an information table (as in Table 1) for our domain, 

which may serve as a basis for rough set analysis. The cases represent the 

requests one mobile sensor may get from neighboring static 

sensors/ sensor groups indicating network holes. These requests would 

include GPS position of the hole and other necessary details for a mobile 

sensor to make an educated decision. As attributes, I consider several 

characteristics of each request [ 1] as they relate to the particular mobile 

sensor. These would be calculated on the fly based on the position of the 

mobile sensor in the network. I realize that not all of this information may 

be available and would consider incomplete data in subsequent sections. 

The following table shows 10 possible random requests that one mobile 

sensor might receive from neighboring static sensors & corresponding 

attribute values. 
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Table 1: Request attribute values from sensor network holes 

Attributes 

Cases Distance Coverage Connectivity Size of Hole 
Gain Gain 

1 s M s L 

2 s M L M 

3 M s s M 

4 s L s s 

5 L L M L 

6 M s M s 

7 L M L M 

8 s s s L 

9 L s M s 

10 M L M s 

Legend explaining Table 1: 

• S = Small 
• M = Medium 
• L = Large 
• Distance = Distance between present location of mobile sensor and 

hole. 

• Coverage Gain= Net area covered by the mobile sensor after the 
move to the corresponding sensor hole. 

• Connectivity Gain = Number of new links if and after the given 
Mobile sensor moved to the corresponding network hole. 

• Size of Hole = Number of static sensors missing in hole. 
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The values of these attributes would be calculated based on the request 

and the present position of the mobile sensor with respect to the hole in 

the sensor network's coverage. There would be well-defined formulas to 

calculate each of the attribute values, some of which are described in [ 1]. 

Whether an attribute value would be designated as Small, Medium or 

Large may be controlled by some threshold values as set by the network 

administrator. Also, there could be a possibility of increasing the 

granularity of these attributes values (For e.g.: Small+, Small- etc.), as 

demonstrated in the test field used for data sampling in measuring the 

efficacy of the algorithm proposed. This can be achieved without changing 

any of the rough set analysis to follow; however, the rules generated would 

be different based on the attribute values. Also, I assume all attributes to 

have equal weight; future research may be targeted at tweaking the 

attribute weights based on impact on sensor network to further optimize 

the decision making for mobile sensors. 

Let: 

U = set of all cases, also called the Universe 

A = set of all attributes 

B = a non-empty subset of A 

V = set of all attribute values 

U x A ~ V: an information function 

For each a€ A, U -> Va, the Value set of a. [4] 
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I now define some samples of rough set constructs as they relate to 

our information system: 

Blocks of Attribute-value pairs: 

o [(Distance, S)] = {1,2,4,8} 
o [(Connectivity Gain, M)] = {5,6, 9, 1 0} 

Elementary sets of singletons: 

[l]{Distance} = [2]{Distance} = [4]{Distance} = [8]{Distance} = [(Distance, S)] = {l,2,4,8} 

Elementary sets of subsets of A: 

[ 1 ]{Distance, Coverage Gain}= [2]{Distance, Coverage Gain} = 

[(Distance, S)] n [(Coverage Gain, M)] = {1,2} 

Indiscemibility Relation: 

Let B be a non-empty subset of A. The Indiscernibility relation 

IND(B) is a relation on U defined for x,y € U such that 

(x,y) € IND(B) iff V(x,al = V (y,al for all a € B [7]. 

The corresponding partition on U will be denoted by B*. For example: 

• {Distance}*= { {1,2,4,8}, {3,6,10}, {5,7,9}} 

• {Distance, Coverage Gain}*= {{1,2,5,8}, {3}, {4}, {6}, {7}, {9}, {10}} 
• IND({Distance, Coverage Gain}) = {{1,2}, {5}, {8}} 

The indiscernibility relation IND(~ is an equivalence relation. Equivalence 

classes of IND(~ are called elementary sets and are denoted by [x]B. 
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Reducts: 

A subset B of the attribute set A is a reduct iff B*=A* and B is 

minimal with this property [5]. For example: 

{Distance, Coverage Gain}* = {{1,2,5,8}, {3}, {4}, {6}, {7}, {9}, {l 0}} 

:#:A*= {{l}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}} 

However, 

{Distance, Coverage Gain, Connectivity Gain}*= 

{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}} = 

A*= {{l}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}, and hence, a reduct. 

Decision Table: 

The attribute values in the Information System can be looked upon 

as independent attributes as the value of one can be calculated 

irrespective of the value of the other attributes. However, rough set 

analysis supports some dependent attributes whose values would be 

calculated based on the values of the independent attributes [6]. This is 

the basis of a decision support system where decisions could be taken 

based on the values of few input parameters. 

Here, I consider a decision attribute, which is the dependent 

attribute to be calculated, based on the values of the other attributes. This 

decision attribute is to mean whether a mobile sensor considers the 

request to move to cover a network hole somewhat beneficial. The idea 
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here is not to have the rough set analysis help make a final decision as to 

whether a mobile sensor should move or not; but rather help in ranking all 

the requests a mobile sensor has got from neighboring holes. 

Initially, the rough set analysis is going to look at all the request 

attributes and flag a request as 'Yes' or 'No' for the decision attribute. This 

would indicate that based on the rules established by the rough set 

analysis, a mobile sensor is able to throw away a few requests immediately 

as the decision attribute to move or not is a 'No'. The requests of interest 

are the ones that have a decision value of 'Yes'. This would suggest that 

based on initial evaluation; there is recommendation for the mobile sensor 

to cater to these requests by moving itself to the corresponding hole. Now, 

there may be multiple requests that yield a 'Yes' for the decision attribute. 

To decide which one of these requests is the best one for the mobile sensor 

to serve, I would apply separate algorithms to sort these requests for their 

desirability. This would be discussed in subsequent sections. 

Based on the sample requests to a Mobile Sensor from Table 1, 

following are the corresponding computed decision values as shown in 

Table 2. This, as discussed, is not the final decision; rather an initial 

screening of requests. Network administrators may optimize decision

making by tweaking the thresholds which guide the Decision Value 

calculations, based on the attribute values for all the concerned requests 

to a given mobile sensor. 
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Table 2: Decision values for given request attributes values 

Attributes Decision 

Cases Distance Coverage Connectivity Size of Hole Move to Hole 

Gain Gain 

1 s M s L y 

2 s M L M y 

3 M s s M N 

4 s L s s y 

5 L L M L y 

6 M s M s N 

7 L M L M y 

8 s s s L N 

9 L s M s N 

10 M L M s y 

Table 2 shows what the computed Decision Values might look like for the 

given set of attribute values for requests to a certain Mobile sensor. 

Concepts: 

Any elementary set of {Decision} is called a concept, which induces 

partitioning of the Universe. In our decision table, concepts are: 

[(Move to Hole, Y)] = {1,2,4,5,7,10} 

[(Move to Hole, N)] = {3,6,8,9} 
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Global Covering: 

Let d be a decision. A subset B of attribute set A is a global covering 

if and only if B* s; {d}* and B is minimal with this property. For example: 

{Distance} is not a global covering because 

{Distance}*= { {1,2,4,8}, {3,6,10}, {5,7,9}} 

{Move to Hole}*= {{1,2,4,5, 7, 10}, {3,6,8,9}} 

However, {Distance, Coverage Gain, Connectivity Gain} is a global covering 

because 

{Distance, Coverage Gain, Connectivity Gain}* = 

{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}} s; 

{Move to Hole}*= {{1,2,4,5,7,10}, {3,6,8,9}} 

Minimal Complex: 

Let Xis a subset of U. Let T be a set of attribute-value pairs t=(a,v). 

Set T is a minimal complex of X iff X depends on T and no proper 

subset S of T exists such that X depends on S. For example: 

A minimal complex for [(Move to Hole, Y)] = {1,2,4,5,7,10} is 

{(Distance, S), (Coverage Gain, M)} 

Local Covering: 

Let r be a non-empty collection of sets of attribute-value pairs. r is 

a local covering of X iff: 
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Each member T of r is a minimal complex of B, U {TI TET} = X and r is 

minimal. For example: 

Local covering for [(Move to Hole, Y)] = {1,2,4,5,7,10} is 

r = {{(Distance, S), (Coverage Gain, M)}, {Coverage Gain, L} 

{Distance, L}, {Distance, M}} 

Some induced rules are: 

{(Distance, S), (Coverage Gain, M)} ➔ [(Move to Hole, Y)] 

{Coverage Gain, L} ➔ [(Move to Hole, Y)] 

{Coverage Gain, S} ➔ [(Move to Hole, N)] 

These rules could be used in assigning weights to the Attribute values in 

arriving at certain Decision values. 

Part II: Inconsistent Data 

Now, based on how decision values are derived, we might end up 

having inconsistencies in the Decision values, as demonstrated in Table 3. 

While this may be a possible outcome in other systems, I will not be 

considering such a possibility, as explained below. 

{Distance, Coverage Gain, Connectivity Gain, Size of Hole}* = {l, 2} 

{Move to Hole}* == {{1 }, {2}} 
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Hence, the inconsistency is that 

{Distance, Coverage Gain, Connectivity Gain, Size of Hole}* #: 

{Move to Hole}*. 

Table 3: Inconsistent decision values for given attributes 

Attributes Decision 

Cases Distance Coverage Connectivity Size of Hole Move to Hole 
Gain Gain 

1 s M s L y 

2 s M s L N 

I do not consider the rough set analysis on inconsistent data as this 

is not a possibility for the case of deriving the decision attribute value for 

mobile sensors. There would be well-defined rules that would be used to 

generate the dependent attribute value from a given set of independent 

attribute values. For two requests that have the exact same values for all 

of the independent attributes, the decision attribute value would be 

identical in the given context. 

Part III: Incomplete Data 

In an incomplete decision table, some assumptions are: 

• All decision values are specified 

• Lost values are denoted by '?' 
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• 'Do Not Care' conditions are denoted by '*' 

• For each case, at least two attribute values are specified 

Blocks of attribute-value pairs: 

■ If for an attribute a, there exists a case x such that p(x,a) = ?, then 

the case x should not be included in any block [(a,v)] for all values v 

of attribute a. 

• If for an attribute a, there exists a case x such that p(x,a) = *, then 

the case x should always be included in any block [(a,v)] for all 

values v of attribute a. 

For example: 

[(Distance, S)] = {1,2,4,8, 10} 

[(Size of Hole, M)] = {2,3,7,10} 

Incomplete Decision Table: 

Decision-making systems may not always have complete information 

on all independent attributes that make up the data set, as demonstrated 

in Table 4 below. Intelligent systems may have fault tolerance built-in that 

allows for computing the Decision values, even in the absence of complete 

information. 

Table 4 shows the same information system table with attribute values; 

but with incomplete information. The "?" indicates unknown value and the 

"*" indicates don't-care conditions. 
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Table 4: Decision values with incomplete attribute information 

Attributes Decision 

Cases Distance Coverage Connectivity Size of Hole Move to Hole 
Gain Gain 

1 s ? s L y 

2 s M L M y 

3 ? s s M N 

4 s L s s y 

5 L L ? L y 

6 M s M s N 

7 L M L M y 

8 s s s L N 

9 L s M s N 

10 * L M * y 

Characteristic Sets: 

Incomplete decision tables are described by characteristic relations 

instead of indiscernibility relations. Also, elementary sets are replaced by 

characteristic sets. Characteristic set Ks(x) is the intersection of blocks of 

attribute-value pairs (a,v) for all attribute a from B for which p(x,a) is 

specified and p(x,a)=v [7]. For example: 

KA(l) = {1,2,4,8,10} n {1,3,4,8} n {1,5,8,10} = {1,8} 

KA(2) = {1,2,4,8,10} n {2.7} n {2,7} n {2,3,7,10} = {2} 

KA(3) = {3,6,8,9} n {1,3,4,8} n {2,3,7,10} = {3} 

KA(4) = {1,2,4,8, 10} n {4,5, 10} n {1,3,4,8} n {4,6,9, 10}= {4} 
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KA(5) = {5,7,9,10} n {4,5,10} n {1,5,8,l0}= {5,10} 

KA(6) = {6,10} n {3,6,8,9} n {6,9,10} n {4,6,9,10}= {6} 

KA(7) = {5,7,9,10} n {2,7} n {2,7} n {2,3,7,10}= {7} 

KA(8) = {1,2,4,8,l0} n {3,6,8,9} n {1,3,4,8} n {1,5,8,10}= {8} 

KA(9) = {5,7,9,10} n {3,6,8,9} n {6,9,10} n {4,6,9,10}= {9} 

KA(l0) = {4,5,10} n {6,9,10} = {10} 

Characteristic Relation R(B): 

A relation on U defined for x,y € U as follows: 

(x,y) € R(B) iffy€ Ka(x). R(B) is reflexive. 

Singleton Approximations: 

Lower Approximation: BX= {x € U I Ka(x) c X} [5] 

Upper Approximation: BX = {x € U I Ka(x) n X -I: 0} [5] 

Boundary Region: BNa(X) = BX- BX [5] 

A set is said to be rough if its boundary region is non-empty, otherwise the 

set is crisp [6]. 

[(Move to Hole, Y)] = {1,2,4,5,7,10} 

[(Move to Hole, N)] = {3,6,8,9} 

A {1,2,4,5,7,10} = {2,4,5,7,10} 

A {3,6,8,9} = {3,6,8,9} 

-A{l,2,4,5,7,10} = {l,2,4,5,7,8,l0} 

-A{3,6,8,9} = {3,6,8,9} 
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The biggest advantage of using Rough Set analysis in our case of 

optimization of Mobile sensor movement is the induction of rules (using 

algorithms like LEM2, a component of LERS based on attribute-value pair 

blocks [7][81) in case of incomplete/missing Attribute values for a variety of 

reasons. Use of rough set approximations allows us to induce Decision 

values in case the Mobile sensor is missing Attributes for any given 

request. 
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SORTING OF RECOMMENDED REQUESTS 

Once rough set analysis has been applied, the mobile sensor has a 

list of requests from other static sensors in the network where a move to 

cover the corresponding hole could prove beneficial. However under our 

assumption, the mobile sensor can only move once for energy constraints. 

Hence, it has to know a way of choosing which request is the best for it. 

Here, I apply a greedy algorithm to help sort the requests in order of their 

desirability. Because I do not suspect the number of requests to a mobile 

sensor to be substantially huge, application of a modified Bubble sort 

algorithm should work well in the given case, as shown in Table 5. I 

consider the request list to be a multidimensional array. 

Let us assume that a given mobile sensor has short-listed the 

following requests to be favorable in the initial screening: 

Table 5: Short-listed requests for given mobile sensor 

Attributes Decision 

Cases Distance Coverage Connectivity Size of Hole Move to Hole 
Gain Gain 

1 s M s L y 

2 s M M s y 

3 M L L L y 

4 M L M L y 

5 s L L L y 
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In order to calculate the relative strength of each request, I assign 

some numbers to the values of each of the attributes in the request. The 

sum of these numbers would be used in the evaluation algorithm below 

with the intention of higher numbers indicating greater desirability. Based 

on decided granularity of attribute values, the numbers to be used would 

be: 

Least Desirable = 1 

Middle Value = 2 

Most Desirable = 3 

Don't Care condition (*) = maximum = 3 

Incomplete value (?) = minimum = 1 

Algorithm 1: 

Procedure bubbleSortRequestList (A[ij[jj: request list to be sorted) 

Do 

Bool Swapped = false 

For each i in O to [1,ength (A} - 2] do: 

Int Current = 0 

Int Next = 0 

Current+= Procedure GetDesirabilityValue (A[ij[Distancej, 
Smaller Better) 

Current += Procedure GetDesirability Value (A[ij[Coverage Gain], 
Bigger Better) 

Current+= Procedure GetDesirabilityValue (A[ij[Connectivity 
Gain],BiggerBetter) 
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Current+= Procedure GetDesirabilityValue (Afi}{Size of Hole], 
BiggerBetter) 

Next+= Procedure GetDesirabilityValue (Afi+ ll[Distance], 
SmallerBetter) 

Next+= Procedure GetDesirabilityValue (A[i+ l][Coverage Gain], 
Bigger Better) 

Next+= Procedure GetDesirabilityValue (A[i+ ll[Connectivity 
Gain], BiggerBetter) 

Next += Procedure GetDesirabilityValue (A[i+ l][Size of Hole], 
Bigger Better) 

If Next> Current then 

Swap (A{i], Afi+ 1]) 

Swapped = true 

End if 

Endfor 

While Swapped 

End Procedure 

Algorithm 2: 

Procedure GetDesirabilityValue (x: incoming attribute, y: desirability order) 

If x = 'S' then 

If y = SmallerBetter then 

Retum3 

Else 

Return 1 

Endlf 

End If 

If X = 'M' then 
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Return2 

End If 

If x = 'L' then 

If y = SmallerBetter then 

Return 1 

Else 

Return3 

End If 

End If 

If x = '*' then 

Return3 

End If 

If x = '?' then 

Return 1 

End If 

End Procedure 

Hence, at the end of applying the above two algorithms, the 

concerned mobile sensor is able to sort and rank its requests as shown in 

Table 6. Higher rank indicates favorable requests for the mobile sensor to 

serve. The algorithms used may be tweaked to serve special conditions and 

the individuals weights tied to each attribute may also be adjusted to suit 

various network priorities. If after the sorting algorithm, two requests are 

ranked the same with matching totals, the mobile sensor randomly picks 

one. 
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Table 6: Sorted & ranked (weighted) requests for given mobile sensor 

Attributes Decision Rank 

Cases Distance Coverage Connectivity Size of Move to With Totals 
Gain Gain Hole Hole 

1 s M s L y 4(9) 

2 s M M s y 5(8) 

3 M L L L y 2(11) 

4 M L M L y 3(10) 

5 s L L L y 1(12) 
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COMMUNICATION WITH BASE STATION 

Each mobile sensor in the sensor network may receive requests from 

surrounding static sensors indicating there are holes in coverage and 

requesting the mobile sensor to move to cover that hole & increase 

network coverage. On reception of each request, the concerned mobile 

sensor waits T seconds (a predefined threshold set by network 

administrator) for any other requests. If not, it treats this request as the 

only request it has received and lets the base station know about this. If it 

receives other requests, then for each new request, the mobile sensor 

resets its timer clock till it has received all possible requests. Once it has 

all the requests, the mobile sensor uses Rough Set analysis to throw out 

the requests that have no/very little potential benefit. Among the existing 

ones, the mobile sensor could potentially serve any request as the decision 

attribute value on the decision table is a 'Yes'. However, since we are 

operating under the assumption that due to energy constraints, each 

mobile sensor can move only once, it becomes that much more important 

to take the best educated decision. Hence, each mobile sensor lists all the 

possible favorable requests and applies the algorithms described above to 

sort/rank them. At this stage, the mobile sensor has picked the request 

that is the best for it to serve. If multiple requests have rank a of "1 ", the 

mobile sensor would randomly choose one of them as its best request to 

move to. 
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However, :t:iere there is a possibility of conflicts. The static sensors 

that detect sensor coverage holes will broadcast their requests and every 

mobile sensor in the vicinity will pick those up. What if two mobile sensors 

get the same request and ultimately rank that as their individual best? 

Although attribute values for the same request would be different based on 

the relative position of each mobile sensor, this is quite possible an 

outcome. Now, the two mobile sensors who have the ranked the same 

request as their best would want to move to the same corresponding hole, 

resulting in wasted network resources. Hence, there is some need for 

conflict resolution. 

The proposed conflict resolution would be centralized and will be 

handled by the base station monitoring the sensor network. One reason to 

propose such a model would be energy considerations of the mobile 

sensors [2). If they have to resolve such conflicts, it is going to demand 

multiple communications between the neighboring mobile sensors and 

further processing needs. Instead, if the base station handles such 

conflicts, communication is limited to only one request and response from 

the concerned mobile sensors to and from the base station. 
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BASE STATION AUCTION 

Once each mobile sensor has ranked some request as its best, it will 

send a notification to the base station and wait for a response. This 

request is informing the base station that the mobile sensor considers it 

most prudent to move to a certain coverage hole and is asking for 

clearance. On receipt, the base station would check to see if any other 

mobile sensor also treats the same request (identified by the coverage 

hole's GPS position or some other unique parameter on the request) as its 

best. If not, there is no conflict and the base station immediately clears the 

mobile sensor to move to the corresponding hole by serving that request. 

This clearance would also be given if the base station does not hear about 

any conflicts from any other mobile sensor within a certain predefined 

threshold time. The base station would have some memoty to remember 

which mobile sensors are moving to which hole so that no other mobile 

sensor in the near future is allowed to move to the same hole. 

However, if the base station is informed by more than one mobile 

sensor that they have ranked the same request as their best, then there is 

a conflict. The base station has to come up with a decision as to which 

mobile sensor offers the 'best price' for the given request. This basically 

means an auction among the competing mobile sensors to determine 

which one is best suited to serve the given request. I utilize a contract net 
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auction protocol that is extended to two levels. This partially addresses the 

problem of inherent non-linearity of best price auctions [10]. 

The auctioning is done by a comparative analysis of evaluating 

benefits as to which mobile sensor moving to which coverage hole has the 

best impact on network coverage. The simplest form of auction would be 

the case where each mobile sensor, after sorting its best requests, sends 

out notification to the base station. This notification is the mobile sensor's 

bid in case there are conflicts where some other mobile sensor also picks 

the same hole as its best. The base station applies a greedy algorithm to 

decide on the best bid and come up with the 'best price' for the request. 

On hearing the base station's decision, the winning mobile senor 

immediately moves to cover the corresponding hole as pertained to its best 

request. The other mobile sensors cannot move to the same hole and have 

to 'forget' about their present best request and re-evaluate what's best for 

them. Hence, they remove the conflicting request from their list, wait for a 

threshold time for fresh requests and then re-apply rough set analysis and 

the sorting algorithms to come up with a new best request. This is followed 

by communication to the base station and the whole cycle repeats itself. 
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TWO LEVEL SMART AUCTIONS 

However, following such a greedy algorithm at the base station to 

determine the best bid in case of conflicts, may not always serve the 

network best. There could be possibilities where picking the 'best price' 

choice for a given coverage hole may not lead to an overall optimal 

solution. Such an example situation is demonstrated as below in Figure 1: 

Figure 1: Actual & desired movement of mobile sensors 

Legends in Field of concern: 

Mobile Sensors -◊ 
Network Coverage Holes = 0 
Actual Movement = 

Ideal movement = c:1 ==~> 
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In the given setup, I assume that there are two coverage holes H 1 

and H2. Two mobile sensors that are close by are called MSl and MS2. I 

also assume that the field of concern does not change between iterations 

of rough set/sorting analysis, that is, no new holes or mobile sensors show 

up in the vicinity. All other parameters behaving as they are, our focus is 

on the 'Distance' parameter between the network holes and their nearest 

mobile sensors. 

After rough set analysis, both MSl and MS2 rank Hl to be their 

best request in the area of concern, with H2 being second in rank. Under 

the simple auction scheme, both MSl and MS2 will submit a bid to move 

to Hl and transmit the information to the base station. The base station 

would apply a greedy algorithm to rank the bids and pick the best price for 

H 1. In this case, all other parameters remaining constant, MS 1 would offer 

a better price because of shorter distance and hence the fitter bid to move 

to H 1. The base station would thus pick MS 1 to move to H 1 and broadcast 

the decision. However, MS2 now has to forget about Hl and reiterate 

through its rough set analysis and sorting of best request. Given the 

assumption that no holes show up in our field of concern, in the second 

iteration, MS2 is going to rank H2 as its best request. Being the only 

mobile sensor in the vicinity, MS2 this time wins the auction and moves to 

H2. Hence, the final assignment is MSl to Hl and MS2 to H2. 
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However, this is clearly not ideal. MS2, winning the auction in its 

second iteration, has to travel a much longer distance to cover H2 and the 

sum of the distances travelled by MSl & MS2 is much higher. The optimal 

assignment would have been MS 1 moving to H2 and MS2 moving to H 1. 

This would have been much more beneficial for network coverage in terms 

of distance covered. However, it would mean that to make such a decision, 

the base station cannot be too greedy and get caught up in local 

optimums. The auction would have to be smart enough to make decisions 

where the most favorable choice is at times neglected for the overall benefit 

of the network. 

I propose that the base station does a smart auction by being less 

greedy and evaluate consequences of a decision before informing the 

mobile sensors. The auction would be extended to two levels and the base 

station evaluates choices that are little beyond the one with the best price 

[10]. However, to support this, the mobile sensors would have to do more 

so that the base station can take smarter decisions. At each iteration, the 

mobile sensor applies rough set analysis followed by sorting to figure out 

which request is its best. It then communicates its decision to the base 

station by sending out information about its best request. For the base 

station to be smarter in its decision-making, I propose that each mobile 

sensor send out two of its best requests (if available) in each iteration, as 

shown in Table 7 below. This would allow the base station to extend the 

auction process to two stages. Given that the base station knows about 
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each mobile sensor's best and second best requests, it can afford to look 

beyond the best price for each request. This has the potential of providing 

more optimized decisions for improving network coverage. 

In case of the given example, both MS 1 and MS2 would send two of 

their best requests to the base station, those being H 1 and H2. To the base 

station, the information could look somewhat like as follows: 

Table 7: Best two mobile sensor decisions in auction 

MSl Best Request (H 1) Total= 12 

Second Best (H2) Total= 10 

MS2 Best Request (H 1) Total= 8 

Second Best (H2) Total= 2 

Here, the totals indicate desirability values as utilized by the mobile 

sensors to sort their requests such that higher numbers mean better. 

Here, it is clear to the base station that the best request of MSl is fitter 

than the best request of MS2, as both pertain to the same coverage hole. 

MSl, thus presents, a better price for serving that request. However, 

considering the assumption that nothing changes in the field of concern, 

the second best choice for MS2 is a rather bad one. To avoid these 

situations, the base station extends the auction to two levels and 

considers second best options. 

In this case, even though MS 1 wins the bid at start, the base station 

considers the second best requests of both MSl and MS2. Here, the 
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network administrator can set a threshold value that the base station 

utilizes to evaluate the relative strengths of the second best requests. Let 

us consider that threshold value be 7 in terms of desirability numbers. I 

propose that the base station compare the desirability of the second best 

requests of each conflicting mobile sensor and reverse its decision if the 

difference is more than the threshold value. In this case, the second best 

requests of the conflicting sensors MS 1 and MS2 differ by more than 7, 

indicating that the second choice for MS2 is much worse as compared to 

that of MS 1. Given such circumstances, the base station neglects the 

initial winning bid of MSl and awards coverage hole Hl to MS2 for the 

overall benefit of the network. Hence, the final assignment becomes MS 1 

to H2 and MS2 to Hl. 
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ITERATIVE APPLICATION OF ROUGH SETS 

Once a mobile sensor picks a best request for it to serve, but gets 

turned down in auctioning from the base station, the mobile sensor must 

'forget' about its decision. It must then re-evaluate existing requests after 

waiting a threshold amount of time for newer requests. This would mean 

re-application of Rough Set analysis to filter out favorable requests and 

applying the sorting algorithms to evaluate potential benefit of each 

request against others. Here, Rough Set analysis is being revisited and 

acts as sort of a controller for the lower level search mechanism as in Tahu 

Searches. 

With a single pass of the Rough Set analysis, there could have been 

a possibility that requests that are deemed unfit at the start through the 

filtering, never actually have a chance to get served. This would be 

because the concerned mobile sensor, based on the request's attribute 

values has perpetually blocked the request. To get around this potential 

deadlock situation, I suggest re-application of Rough Set analysis by the 

mobile sensor once it loses out on its best price auction bid with the base 

station. To avoid having the same results again, the Rough Set analysis is 

applied with refined thresholds after each iteration. The idea is to be less 

aggressive in throwing out requests on each pass. 

Rough Set analysis is based on evaluating requests for attribute 

values as they pertain to the concerned mobile sensor. On successive 
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iterations, the network administrator sets up the Rough Set mechanism to 

be less aggressive and more optimistic than the last application. This is 

where the granularity of attribute values comes on handy. As mentioned 

before, I consider nine possible attribute values as in: [Small+, Small, 

Small-], [Medium+, Medium, Medium-) and [Large+, Large, Large-]. On each 

successive iteration, the Rough Set analysis assigns attribute values to be 

one better than the last run, if feasible. For example, if the Distance 

attribute for a request was assigned a 'Medium+' on first try, the second 

Rough Set pass is going to assign it to be 'Medium', as shorter distances 

are better. Another possible solution could be being more optimistic about 

a request in successive passes by auto-incrementing the ranking score for 

the given request to the concerned Mobile sensor. With multiple Rough Set 

passes, the hope is that the request would not be deadlocked and would 

eventually be considered fit enough for the Decision attribute value to be a 

'Yes'. Beyond this point, each mobile sensor begins its own sorting and 

things roll as usual. 
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INTEGER LINEAR PROGRAMMING (ILP) SOLUTION 

The optimal mobile sensor movement problem in the entire network 

can also be formulated as an Integer Linear Programming (ILP) problem 

[1[. The formulation seeks the global optimal solution of the mobile sensor 

movement problem, given a test field with static sensors broadcasting 

coverage hole details. The ILP formulation is presented as follows. 

Mathematical Model: 

Given: 

M = Set of Mobile Sensors 

H = Set of Coverage Holes 

Cy= Connectivity Gain if Mi moves to Hj; 

foreachiC MandjC H 

Sy = Size of Hole as Mi moves to Hj; 

for each i C Mand j C H 

Dy = Distance to be covered by Mobile Sensor if Mi moves to Hj; 

for each i CM andj C H[l] 

Define Variables: 

Xy = 1, if Mi moves to Hj ; for each i C Mand j CH 

= 0, otherwise 
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Maximize Network Gain: 

L ic M,jc HXij* (Cij+Sij - Dij) 

Subject To: 

0 <=Xij<= 1 

1 <= Cij<= 9 

1 <= Sij<= 9 

1 <= Dij<= 9 

AMPL Formulation: 

Based on the above mathematical model, the ILP problem can be 

formulated & solved through regular ILP solvers. AMPL is a great language 

for specifying such optimization problems. It provides an algebraic 

notation that is very close to the way the problem is described 

mathematically. The separation of model and data is the key to describing 

complex linear programs in a concise & understandable fashion. 

Hence, I set about rewriting the above mobile sensor movement 

optimization problem as an AMPL Model & the simulation tests provide the 

data. The NetworkGain Model is described as below: 

setM; 

setH; 

param C {i in M, j in HJ; 
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param S {i in M, j in H}; 

param D {i in M, j in H}; 

var X {i in M, j in H}; 

maximizeNetwork_ Gain: sum {i in M,j in H} X [iJJ * (C [iJJ + S [i,j] D [i,j]); 

subject to Limitl { i in M, j in H }: 0 <= X [i,j] <= 1; 

subject to Limit3 { i in M, j in H }: 1 <= C [i,j] <= 9; 

subject to Limit4 { i in M, j in H }: 1 <= S [i,j] <= 9; 

subject to Limits { i in M, j in H }: 1 <= D [i,j] <= 9; 

subject to TotalMoves: sum { i in M, j in H} X [i,j] = 4; 

subject to MSlMove: sum {j in H} X/1,j] = 1; 

subject to MS2Move: sum {j in H} X/2,jj = 1; 

subject to MS3Move: sum {j in H} X/3,jj = 1; 

subject to MS4Move: sum {j in H} X/4,jj = 1; 

Standard AMPL commands & Minos Version 5.5 solver are then 

used to solve the above ILP solution for every simulation of the field test, 

which provides the data for the AMPL model. The results & its comparison 

with the proposed algorithm are discussed in the Performance Evaluation 

section. 
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INSPIRATION FROM ANT COLONY OPTIMIZATION 

"The behavior of ants has long fascinated scientists" [9, p.1]. In 

recent years, computer science has tried to gain inspiration from the way a 

colony of ants can solve complex problems; in particular, finding the 

shortest path from nest to food source [9]. Our model of self-healing 

sensor network also mimics ant colony optimization techniques, as we 

start demonstrating in Figure 2 below: 

Figure 2: Requests/responses in an ant colony 

Legends in Field of concern: 

Nest of ants/Mobile Sensors= Q 
Food Source/Network Coverage Holes = 0 
Broadcast Requests = 
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"Each ant in a colony operates on its own agenda, and yet the group 

as a whole appears to be highly organized" [9, p.1). "Ants form and 

maintain a line to their food source by laying a trail of pheromone, i.e. a 

chemical to which other members of the same species are very sensitive. 

They deposit a certain amount of pheromone while walking, and each ant 

prefers to follow a direction rich in pheromone. This enables the ant colony 

to quickly find the shortest route. The first ants to return should normally 

be those on the shortest route, so this will be the first to be doubly marked 

by pheromone (once in each direction). Thus other ants will be more 

attracted to this route than to longer ones not yet doubly marked, which 

means it will become even more strongly marked with pheromone" [9, p.l]. 

Over time, however, the pheromone trail starts to evaporate, thus 

reducing its attractive strength. The more time it takes for an ant to travel 

down the path and back again, the more time the pheromones have to 

evaporate. A short path, by comparison, gets marched over faster, and 

thus the pheromone density remains high as it is laid on the path as fast 

as it can evaporate. Pheromone evaporation has also the advantage of 

avoiding the convergence to a locally optimal solution. If there were no 

evaporation at all, the paths chosen by the first ants would tend to be 

excessively attractive to the following ones. In that case, the exploration of 

the solution space would be constrained around a local optimum or greedy 

solution. 
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The decision making behaviors of the mobile sensors in our case 

seems to have a direct analogy to the swarming intelligence demonstrated 

by the ants in ant colony optimization. Each mobile sensor can be thought 

of as a nest of ants and the holes in network coverage as food sources. The 

idea is to establish the shortest path to a food source, in essence picking a 

request to move to a hole that will prove most beneficial for the network. 

Each mobile sensor gets multiple requests from neighboring holes, 

thought of as food sources; and ants belonging to the given nest as in the 

mobile sensor must find the shortest route to the food. The mobile sensor 

applying rough set analysis on the requests it has received can be thought 

of being analogous to ants from a nest looking around randomly at first 

and trying to determine the shortest path to a food source. Once favorable 

requests have been chosen, each mobile sensor applies a greedy algorithm 

to pick the best request; something that could be thought of as ants 

leaving pheromone trails so that the shortest path is selected eventually. 

Once a mobile sensor has picked a request to be its best, it would 

inform the base station of its decision. If no conflicts occur, then this is 

the best choice for the mobile sensor and it would move to cover the 

corresponding network hole. The base station would remember this move 

and would disallow any other mobile sensors from moving to the same 

hole in future even if they treat the request as their best. This could be 

thought of as a family of ants belonging to a given nest releasing 

pheromones once they have found a shortest path to a food source; 
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chemicals that would actually repulse ants from other neighboring nests 

from finding the same food source. If there is a conflict between the mobile 

sensors and if a neighboring mobile sensor wins, the concerned mobile 

sensor has to 'forget' about its best request as the other mobile sensor 

offered a better price for the request. The concerned mobile sensor then 

drops its best request from its list, waits for a predefined time for fresh 

requests and starts the process of evaluating requests from the scratch. 

This could be thought of being analogous to pheromone evaporation on a 

certain trail of food in the ant world. It is this 'evaporation' that would 

prevent a local optima; in this case, from two mobile sensors moving to the 

same hole. 
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PERFORMANCE EVALUATION 

Simulation experiments were designed to evaluate the performance 

of the proposed rough set analysis and sorting-based distributed decision

making algorithm. Each simulation considered a field test bed where static 

sensors were deployed over a desired coverage area. To provide self

optimization and self-healing capabilities in a sensor network, the 

proposal is to deploy a small proportion of mobile sensors along with the 

large number of the static sensors. Each request to cover a network hole 

includes details about the coverage hole that is to be covered, which the 

concerned mobile sensor would use to evaluate the needed attribute 

values on the fly. These attribute values (as described in sections above) 

allow the mobile sensor to inspect a request to move to a coverage hole 

and evaluate the benefit derived from doing so. Based on network 

administrator-set thresholds, I consider that attribute values of the four 

factors could range anywhere in between 10 values (Small-, Small, Small+, 

Medium-, Medium, Medium+, Large-, Large, Large+ & Unknown). In our 

experiments (sample in Figure 3), these attribute values are generated 

completely randomly for each request. 

For experimental purposes, the field test comprised of a maximum of 

4 mobile sensors in range and up to 10 coverage holes as detected by the 

static sensors. This test is repeated in 20 completely random simulations 

to get an accurate average of how the different algorithms fare against 
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each other. Each algorithm comes up what it thinks is the best optimized 

solution as how the mobile sensors should move, given the coverage holes 

and their positions. 

The performance of the proposed algorithm is compared with two 

other heuristic algorithms - First Call First Served (FCFS) algorithm and 

Weighted Sum (WS) algorithm (as in Figure 6), as well as with that of 

Integer Linear Programming (ILP) solution, as demonstrated in Figure 4 & 

Figure 5. The two heuristic algorithms are presented below: 

FCFS algorithm: "Once a mobile sensor receives a request from a 

hole, it moves to the hole immediately" [1, p.6]. This would mean that the 

concerned mobile sensor always serves its first request to cover a network 

hole. It should also be noted that the assumption is that the request to 

serve the closest coverage hole gets to a mobile sensor before others. 

WS algorithm: A mobile sensor waits for requests for a pre-defined 

time and then moves to the hole that has the maximum weighted sum of 

four factors: Distance, Coverage gain, Connectivity gain and Size of Hole 

[1]. These are the same attributes used in our algorithm. The weight of 

each factor is given (obtained from extensive simulation experiments). The 

sets of weights used for the following experiments are: Distance: Coverage: 

Connectivity: Size= 4:3:3:3 and 2:5:3:3 [l]. 
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Figure 3: A screenshot of the C#.NET simulation program used to evaluate 
the field test bed and optimize movement for the mobile sensors. The same 
simulation values are also used to evaluate the solutions from other 
algorithms for a fair comparison 
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Figure 4: Screenshot of the same simulation test bed used through AMPL 

Results of the simulations and comparisons between the Proposed 

Algorithm & ILP are shown below in Table 8: 

Table 8: Comparison of proposed solution to ILP 

Simulations 

Rounded Coverage Gain: Proposed ILP Legend: 
1 6 4 
2 s 4 Small- l 
3 6 0 Small l 
4 6 6 Small+ 3 

s 6 3 Medium- 4 
6 s 4 Medium 5 
7 6 6 Medium+ 6 
8 6 3 Large- 7 
9 6 4 Large 8 
10 6 2 Large+ 9 
11 7 4 
12 6 4 
13 6 4 
14 8 4 
15 6 s 
16 6 4 
17 s 6 
18 4 s 
19 7 4 
20 7 5 

Mean 6 4.05 
Variance o. 736842105 1.944736842 

Standard Deviation 0.858395075 1.394538218 
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Figure 5: Graphical comparison of performance of proposed algorithm 
versus that of ILP 
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Figure 5 shows a graph of the Average rounded Coverage Gains gained by 

our sample network when using the Proposed Algorithm versus that of 

ILP. Also, to note is the fact that computational times were identical & 

minimal. 

A breakdown of the performance comparison, in terms of Rounded 

Coverage Gain, between the Proposed algorithm and the closest 

competition is shown as below in Table 9. 
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Table 9: Comparison of proposed solution to other methods 

Simulations 

Round•d Coverage Gain Proposed FCFS W5(4:3:3:3) W5(2:5:3:3) L<flmd: 
6 4 6 6 

2 5 4 3 3 Small-

3 6 4 8 8 Small 

4 6 5 7 7 Small♦ 

5 6 4 5 s Mftllum-

6 5 1 5 6 Medium 

7 6 3 7 7 Medium♦ 

8 6 2 7 4 ~ 
9 6 2 6 6 lm9e 
ID 6 2 4 4 Ill.♦ 

11 7 6 6 7 
u 6 3 5 6 
13 6 4 6 5 

IA 8 7 5 7 
15 6 6 6 6 
16 6 5 3 5 
17 s 6 3 s 
18 4 5 3 3 
19 7 7 6 6 
20 7 6 s s 

Mean 6 4.3 5.3 5.SS 
Variance 0.736842105 3.063157895 2.221052632 1.839473684 

Standard Deviation 0.858395075 1.7501B796 1.490319641 L3562719S 

Figure 6: Graphical comparison of performance of proposed algorithm 
versus that of other competing methods 
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Figure 6 shows a graph of the Average rounded Coverage Gains gained by 

our sample network when using the Proposed Algorithm versus that of 

several competing algorithms. Computational times were identical & 

minimal. 
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STATISTICAL ANALYSIS OF PERFORMANCE COMPARISONS 

Given our simulations that compare performance of the proposed 

algorithm against that of other algorithms, I would use statistical 

measures to further increase our confidence about the efficacy of the 

proposed methodology. 

The 10 simulation test runs demonstrate the choices made by the 

competing algorithms to arrive at their best solutions, measured in terms 

of one variable the rounded Coverage Gain of the Network as the 

concerned Mobile Sensors make their corresponding moves. Since the test 

bed with the position of the coverage holes is completely random, these 10 

simulations can be considered to be a good representative sample of the 

actual performance of the different algorithms in a much larger 

distribution. The rounded Coverage Gain of the network in every 

simulation effectively becomes the statistical variable consistently 

measuring the performance of different approaches to solve the same 

optimization problem. Statistics provides various methods in which to 

evaluate this variable closely and see how well the Coverage Gain 

represents what happened to each sensor network across simulations. 

Also, a large population could be sampled multiple times for better 

accuracy of results. Each of the samples has an average and a variance 

associated with it. If we aggregated all of the averages from these samples, 

we can create a sampling distribution of the Mean for the population. The 
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standard deviation of this distribution is commonly known as the 

Standard Error of the Mean (SEM or, simply, the Standard Error, SE). Since 

our simulation runs for each algorithm are completely random, the 

samples can be used to compute SEM to have an indicative idea of the 

dispersion of the overall population. 

In probability theory and statistics, the normal distribution or 

Gaussian distribution is a continuous probability distribution that 

describes data that cluster around a mean or average [12]. The graph of 

the associated probability density function is bell-shaped (as shown in 

Figure 7), with a peak at the mean, and is known as the Gaussian 

function or bell curve. Normal distributions are symmetric around their 

Mean and are denser in the center, but less dense in the tails of the bell 

curve (12]. The normal distribution can be used to describe, at least 

approximately, any variable that tends to cluster around the mean. Closer 

inspection of the simulation runs in our experiment for every algorithm 

demonstrates that the rounded Coverage Gain for each run centers 

around Mean; and hence, the Coverage Gain variable can be described 

using a normal distribution. 

By the central limit theorem, the sum of a large number of 

independent random variables is distributed approximately normally. For 

this reason, normal distribution is used throughout statistics, natural 

science, and social science as a simple model for complex phenomena. A 
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confidence interval gives an estimated range of values, which is likely to 

include an unknown population parameter, the estimated range being 

calculated from a given set of sample data. 

Per [11], the selection of a confidence level for an interval determines 

the probability that the confidence interval produced will contain the true 

parameter value. Common choices for the confidence level [C] are 0.90, 

0.95, and 0.99. These levels correspond to percentages of the area of the 

normal density curve. For example, a 95% confidence interval covers 95% 

of the normal curve -- the probability of observing a value outside of this 

area is less than 0.05. Because the normal curve is symmetric, half of the 

area is in the left tail of the curve, and the other half of the area is in the 

right tail of the curve. For a confidence interval with level C, the area in 

each tail of the curve is equal to (l-Cj/2. For a 95% confidence interval, 

the area in each tail is equal to 0.05/2 = 0.025. 

"The value z* representing the point on the standard normal density 

curve such that the probability of observing a value greater than z* is 

equal top is known as the upper p critical value of the standard normal 

distribution. For example, if p = 0.025, the value z* such that P(Z > z*) = 

0.025, or P(Z ,:: z*) = 0. 975, is equal to 1. 96. For a confidence interval with 

level C, the value pis equal to (l-Cj/2. A 95% confidence interval for the 

standard normal distribution, then, is the interval (-1.96, 1.96), since 95% 

of the area under the curve falls within this interval" [11, p.1]. 
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Figure 7: Bell curve of a normal distribution 

- z* z* 

(Diagram taken from [ 11]) 

Now, what if we have a normal distribution but do not know the 

standard deviation? This is possible if a random sample of the 

performance comparisons was chosen out a larger population of 

simulation runs. We could sample N values and compute the sample mean 

(M) and estimate the standard error of the mean (sM) [12]. What is the 

probability that M will be within 1.96 SM of the population mean? "This is a 

difficult problem because there are two ways in which M could be more 

than 1.96 SM from mean: (1) M could, by chance, be either very high or 

very low and (2) SM could, by chance, be very low. Fortunately, the way to 

work out this type of problem was solved in the early 20th century by W. 

S. Gossett who determined the distribution of a mean divided by an 

estimate of the standard error. This distribution is called the student's t 

distribution or sometimes just the t distribution" [ 12, p.1]. "The t 
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distribution is very similar to the normal distribution when the estimate of 

variance is based on many degrees of freedom but has relatively more 

scores in its tails when there are fewer degrees of freedom {DF}" [12, p.1]. 

We would also consider the t distribution in computing our Confidence 

Intervals for better comparison of the different algorithms. 

With these explanations in place, I set out to explore the results of 

applying these statistical measures to the results of our simulation runs 

for different algorithms (as shown in Figure 8). At least two measures are 

needed to describe the distribution of any statistical variable across a 

population [14]: 

(a) Measure of Central Tendency - i.e., where is the 'center' of the 

distribution? For our case, Mean would be the chosen measure of central 

tendency. 

Mean (Average}: M= sum (1] of the values divided by N 

(b) Measure of Dispersion - i.e., how much variation among values 

exists in the distribution? For our case, Variance, Standard Deviation & 

Confidence Levels with Intervals would serve as the measures of 

Dispersion. 

Variance: s2 = sum of squared deviations from the Mean divided by N 

Standard deviation: s = ✓s2 

Standard error of the mean: S.E.M. = s / ✓N 

95% Confidence limits (which define the confidence interval): (13][14] 
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For Normal Distribution: M ± (S.E.M. * C95 ); where C95 = 1.96 

(99%, C99= 2.576 ; 90%, C90= 1.645) 

For T-Distribution: M ± (S.E.M. * tcnt(.OS) ); where tcnt(.OSJ = 2.26 

Statistical Analysis of Proposed Algorithm's Performance: 

Population sample from Simulations: 

X = {6, 5, 6, 6, 6, 5, 6, 6, 6, 6} 

Summary Values: 

N = 10 

LX = 58 

:Ex2 =338 

Mean =5.8 

Variance =0.1778 

Standard Deviation =0.4216 

S.E.M =0.1333 

DF =9 

tcnt(.OSJ = 2.26 

C9s = 1.96 

95% Confidence Intervals for Estimated Mean of Population: 
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Normal Distribution: 5.8 ± (.13 * 1.96) = (5.55, 6.05) 

T-Distribution: 5.8 ± (.13 * 2.26) = (5.51, 6.09) 

Statistical Analysis of ILP Performance: 

Population sample from Simulations: 

X = {4, 4, 0, 6, 3, 4, 6, 3, 4, 2} 

Summary Values: 

N = 10 

:r.x = 36 

:r.x2 = 158 

Mean =3.6 

Variance =3.1556 

Standard Deviation = 1. 77 64 

S.E.M = 0.5617 

DF=9 

1:crit(.05) = 2.26 

Cgs = 1.96 

95% Confidence Intervals for Estimated Mean of Population: 
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Normal Distribution: 3.6 ± (.56 * 1.96) = (2.51, 4.69) 

T-Distribution: 3.6 ± (.56 * 2.26) = (2.34, 4.86) 

Statistical Analysis of FCFS Performance: 

Population sample from Simulations: 

X = {4, 4, 4, 5, 4, 1, 3, 2, 2, 2} 

Summary Values: 

N = 10 

LX=31 

LX2 = 111 

Mean =3.1 

Variance = 1.6556 

Standard Deviation = 1.2867 

S.E .. M = 0.4069 

DF=9 

"tcrit(.05) = 2.26 

C9s = 1.96 

95% Confidence Intervals for Estimated Mean of Population: 
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Normal Distribution: 3.1 ± (.40 * 1.96) = (2.32, 3.88) 

T-Distribution: 3.1 ± (.40 * 2.26) = (2.2, 4.0) 

Statistical Analysis of WS (4:3:3:3) Performance: 

Population sample from Simulations: 

X = {6, 3, 8, 7, 5, 5, 7, 7, 6, 4} 

Summary Values: 

N = 10 

I.x = 58 

I.x2 =358 

Mean =5.8 

Variance = 2 .4 

Standard Deviation = 1.5492 

S.E.M 0.4899 

DF=9 

tcrit(.05) = 2.26 

Cgs = 1.96 

95% Confidence Intervals for Estimated Mean of Population: 
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Normal Distribution: 5.8 ± (.48 * 1.96) = (4.86, 6.74) 

T-Distribution: 5.8 ± (.48 * 2.26) = (4.72, 6.88) 

Statistical Analysis of WS (2:5:3:3) Performance: 

Population sample from Simulations: 

X = {6, 3, 8, 7, 5, 6, 7, 4, 6, 4} 

Summary V slues: 

N = 10 

LX=56 

tx2 =336 

Mean =5.6 

Variance = 2.48 

Standard Deviation= 1.57 

S.E.M = 0.4989 

DF=9 

1:crit(.05) = 2.26 

Cgs = 1.96 

95% Confidence Intervals for Estimated Mean of Population: 
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Normal Distribution: 5.6 ± (.49 * 1.96) = (4.64, 6.56) 

T-Distribution: 5.6 ± (.49 * 2.26) = (4.5, 6.7) 

Figure 8: Graphical comparisons of the 95% confidence intervals as 
demonstrated by the sample distributions of the proposed solution versus 
that of other competing algorithms 
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Findings from Figure 8 explained in next section. 
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CONCLUSION 

To provide self-healing capabilities for sensor networks, I propose to 

deploy a few mobile sensors in addition to a large number of static sensors 

in a sensor network. Mobile sensors respond to multiple coverage requests 

by moving to connectivity holes and improve network performance. In this 

paper, I proposed a distributed decision-making algorithm, based on 

iterative Rough Set analysis and sorting, that has low computation 

requirements on the sensors and is robust to incomplete information. Our 

simulations demonstrate that the proposed algorithm performed well and 

mobile sensors could significantly increase sensor network coverage if 

using such optimization techniques before their move. 

The above statistical analysis shows the performance of the four 

competing algorithms on a single measurable variable across 10 

completely random simulations. Detailed breakdown of the measures of 

Central Tendency & measures of Dispersion for each algorithm 

demonstrate why the proposed algorithm outshines other ones. The Mean 

value of Rounded Coverage gain (the higher the better) for the sample 

obtained through the 10 simulations clearly points out the proposed 

algorithm to be performing at or above the levels demonstrated by the 

other algorithms. The measures of Central Tendency & Dispersion indicate 

that the proposed algorithm not only has a higher Mean result; but also 

performs with much less deviation compared to others. In other words, the 
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Rounded Coverage Gain to be obtained for any sample using the proposed 

algorithm is much closer to the Mean of the distribution as compared to 

the other algorithms. In fact, a significant win for the proposed algorithm 

stems from the fact that it has the lowest Standard Deviation for the given 

population compared to all other algorithms. The 95% Confidence 

Intervals are computed & represented for each algorithm for the samples 

drawn through the simulations. The Confidence Interval for the proposed 

algorithm clearly beats ILP & FCFS methods. There is closer competition 

with the weighted sum algorithms since there is overlap of the Confidence 

Interval. However, the Confidence Interval graph clearly demonstrates why 

the Interval of the proposed algorithm is more reliable; it is a smaller 

interval. The true mean of any sample population in the test field will be 

somewhere between these values (or within this confidence interval) in 

95 / 100 samples. This provides confidence in the uniformity of results 

expected by applying the proposed solution. While with the weighted sum 

techniques, it is possible by chance to get a better network coverage result; 

it is also equally possible to get a worst result. Further, the weights for the 

different network attributes may have to be realized by trial and error, 

which does not guarantee the same results under varying weights. In 

comparison, the proposed algorithm outlines a fixed set of steps to be 

taken by the network stakeholders which guarantees a high quality result 

in increased network coverage. 
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