
A GRAPHICAL TOOL FOR TEST GENERATION FROM STATE MODELS 

A Paper 
Submitted to the Graduate Faculty 

ofthe 
North Dakota State University 

of Agriculture and Applied Science 

By 

Qj.peng Wu 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 

Major Department: 
Computer Science 

December 2009 

Fargo, North Dakota 



North Dakota State University 
Graduate School 

Title 

A GRAPHICAL TOOL FOR TEST 

GENERATION FOR STATE MODELS 

By 

QIPENGWU 

The Supervisory Committee certifies that this disquisition complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the document, signatmes have been 
removed from the digital version of this document. 



ABSTRACT 

Wu, Qjpeng, M.S., Department of Computer Science, College of Science and 
Mathematics, North Dakota State University, December 2009. A Graphical Tool for 
Test Generation from State Models. Major Professor: Dr. Jun Kong. 

This paper presented a graphical tool for generating test cases based on state models. 

The tool provides users with a user-friendly model editor to create their state model in 

a tree view structure. The tree based state model can then be saved to a disk in the form 

of an xml file and any existing model file can be loaded back into the tool. Two 

different traverse algorithms are explored by this tool, state based coverage and 

transition based coverage. The tool implements both algorithms and is capable of 

generating test paths based on different traversal algorithms. The tool also provides a 

code generation process that walks through these test paths and generates test cases in 

any one of the supported .NET based programming languages specified by the user. 

Lastly, the tool can generate a Visual Studio compatible model file based on the same 

state model created by the user. This model serves as a good visual representation of the 

state model created by the user in the model editor. The same state model is 

represented in three different forms, tree based state model in model editor, xml based 

state model in an xml file and graphical based state model in Visual Studio. An example 

is used to demonstrate the usage of this tool and the algorithms used behind the scene. 

111 



TABLE OF CONTENTS 
ABSTRACT .......................................................................................................................... iii 

LIST OF FIGURES .............................................................................................................. vii 

1. INTRODUCTION ................................................................................................... 1 

1.1. Problem Definition................................................................................................ 1 

1.2. Tool Overview ........................................................................................................ 4 

1.3. Organization of the Paper ....................................................................................... 9 

2. BACKGROUND AND RELATED WORK ......................................................... 10 

2.1. Model Based Test Generation ............................................................................... 10 

2.2. Related Work . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . .. . .. . . . . . . . . . . . . . .. .. . . ... . . . . . . . . . . . . . . . .. .. .. . 13 

3. ALGORITHMS ..................................................................................................... 15 

3.1. Test Generation Algorithms .................................................................................. 15 

3.1.1. State Based Traversal .................................................................................... 15 

3.1.2. Transition Based Traversal ............................................................................ 18 

3.2. Basics on Visual Studio Diagram ......................................................................... 20 

4. SYSTEM ARCHITECTURE ................................................................................ 22 

4.1. Class Diagrams ..................................................................................................... 22 

4.2. Sequence Diagrams ............................................................................................... 24 

5. DESIGN DETAILS ............................................................................................... 26 

5.1. ModelEditor .......................................................................................................... 26 

5.2. IModelElement ..................................................................................................... 29 

5.3. State ....................................................................................................................... 29 

lV 



5.4. Method .................................................................................................................. 30 

5.5. StateTreeConverter ............................................................................................... 32 

5.6. TestCaseCodeGenerator ........................................................................................ 34 

6. USE CASES AND SCENARIOS ......................................................................... .37 

6.1. Actors .................................................................................................................... 38 

6.2. Scenarios and UI Step Through ............................................................................ 38 

7. UI OVERVIEW ..................................................................................................... 48 

7.1. Menu Bar .............................................................................................................. 48 

7.2. Tab Pages .............................................................................................................. 48 

8. CASE STUDIES .................................................................................................... 50 

8.1. The Bank Account State Model ............................................................................ 50 

8.1.1. Step 1 - Create the Model ............................................................................. 51 

8.1.2. Step 2 Generate State Diagram in VS ........................................................ 52 

8.1.3. Step 3 Generate Test Cases State Based Coverage ................................. 54 

8.1.4. Generate Test Case Using Transition Based Coverage ................................. 55 

8.2. The Spacecraft Ascent State Model ...................................................................... 57 

8.2.1. Step 1 Create the Model ............................................................................. 57 

8.2.2. Step 2 - Generate State Diagram in VS ........................................................ 58 

8.2.3. Step 3 - Generate Test Cases - State Based Coverage ................................. 58 

8.2.4. Generate Test Case - Transition Based Coverage ......................................... 59 

9. CONCLUSION AND FUTURE WORK .............................................................. 65 

9.1. Conclusion ............................................................................................................ 65 

9.2. Future Work .......................................................................................................... 67 

V 



10. REFERENCES ...................................................................................................... 69 

Vl 



LIST OF FIGURES 

Figure 

1. Construct a state model ............................................................................................ 5 

2. XML representation of a state model ...................................................................... 6 

3. A graphical state model ............................................................................................ 7 

4. Bank account state model ...................................................................................... 11 

5. State based traversal ............................................................................................... 15 

6. A simple state model .............................................................................................. 16 

7. Generated test case state based traversal ............................................................ 17 

8. Transition based traversal ...................................................................................... 18 

9. A simple state model .............................................................................................. 18 

10. Generated test cases - transition based traversal .................................................. 20 

11. Visual Studio class diagram .................................................................................... 21 

12. C# code behind the diagram .................................................................................. 21 

13. System architecture ................................................................................................ 22 

14. Sequence diagram - generate state model ............................................................. 24 

15. Sequence diagram generate test case ................................................................... 25 

16. ModelEditor class diagram ..................................................................................... 26 

17. IModelElement ....................................................................................................... 29 

18. State class diagram .................................................................................................. 29 

vii 



19. Method class diagram ............................................................................................. 31 

20. StateTreeConverter class diagram ......................................................................... 33 

21. TestCaseGenerator class diagram ........................................................................... 34 

22. Use cases .................................................................................................................. 37 

23. ModelEditor ............................................................................................................ 38 

24. Create new state 1 ................................................................................................... 39 

25. Create new state 2 ................................................................................................... 39 

26. Add transition 1 ...................................................................................................... 40 

27. Add transition 2 ...................................................................................................... 40 

28. Add transition 3 ...................................................................................................... 40 

29. Add the Overdrawn state ....................................................................................... 41 

30. Display list of all states ........................................................................................... 41 

31. Two states and connection transition .................................................................... 42 

32. Delete transition 1 .................................................................................................. 42 

33. Delete transition 2 .................................................................................................. 42 

34. Delete state 1 ........................................................................................................... 43 

35. Delete state 2 ........................................................................................................... 43 

36. Generate state diagram ........................................................................................... 43 

37. State diagram - Open, Overdrawn ......................................................................... 44 

38. Genenerate test cases .............................................................................................. 45 

39. Generated test case ................................................................................................. 45 

Vlll 



40. Save state model ...................................................................................................... 46 

41. Saved xml model file .............................................................................................. 46 

42. Open state model .................................................................................................... 46 

43. User options ............................................................................................................ 47 

44. Workspace ............................................................................................................... 49 

45. Result tab ................................................................................................................. 49 

46. Options tab .............................................................................................................. 49 

47. The bank account state model ............................................................................... 50 

48. The bank account state model in model editor .................................................... 51 

49. The bank account state model in VS ..................................................................... 52 

50. Generated code file for VS state model ................................................................. 53 

51. Generated model file for VS state model .............................................................. 54 

52. Generated test case - State coverage ...................................................................... 54 

53. Generated test cases - transition coverage ............................................................ 57 

54. The spacecraft state model in model editor .......................................................... 57 

55. Generated spacecraft graphical state model in VS ................................................ 58 

56. Generated spacecraft test cases - state coverage ................................................... 59 

57. Generated spacecraft test cases - transition coverage ........................................... 63 

IX 



1. INTRODUCTION 

Testing is becoming more and more important in the modern software 

development process. As object oriented design is becoming the mainstream design 

mechanism, UML diagrams are used in different phases throughout the development 

process [ 1]. One of the UML models, the state model, is not only used during design, 

but also used in testing. In a popular software development methodology, test driven 

development, the state model plays a vital role during the entire life cycle of the 

software construction [2]. Subsystems\components are derived from the state model 

during design and the same model is used during testing for generating test cases. 

1.1. Problem Definition 

A huge amount of development time and effort is spent on documenting these 

state models. Sometimes these models are only used heavily during the design phase of 

the development process and neglected during other development phases. Even when 

state models are used throughout the development process, it is not an integrated 

experience. State models are created during the design phase using UML modeling 

tools. The design of classes is derived from the state model and code representing those 

classes and operations among classes are written by hand. During testing, test engineers 

come up with test cases by analyzing state models. Test cases are then hand written 

based on identified test scenarios. Due to resource constraints, not all possible paths 

1 



through the transition tree are covered. Only those paths considered top priority will 

be covered by test cases. There are model based test generation tools that do test 

generation by traversing state models. However, users will need to reformat their 

graphical state models into a program-friendly format, e.g. an xml document or a text 

file [3]. This not only costs the extra effort of making a new format of the same state 

model, but also incurs dual maintenance cost throughout the project's lifetime and in 

the products' after life. 

Another problem with graphical state models, or with any other UI modeling 

tool, is that it is normally easy to use when few states are involved. However, when the 

number of states gets larger, it is a tedious process dragging and connecting numerous 

states in a single state model. Studies have indicated that humans are only capable of 

tracking up to 7 items simultaneously. Having to keep track of huge number of states is 

definitely an error-prone process. 

Software is becoming more and more involved with our daily work and personal 

lives. We rely on software to tell us what the weather is going to be like. We rely on 

software to manage the transportation system that takes us to and from work. We rely 

on software to inform us what is happening near us and around the world. We rely on 

software to manage our personal, professional and financial lives. Our lives are run on 

top of software. As more and more software are developed each day by different 

software companies, the rate of software growth has not slowed down for decades. 

People always want the latest, the fastest and the newest software in their hands. 

2 



Companies spend huge amount of resources developing software to meet the needs of 

the ever growing fast paced model life style. Due to time and other resource 

constraints, large amounts of software used by everyday people are not well tested. A 

lot of development teams do not have a properly implemented development life cycle. 

Code quality maintenance is a big issue for development teams to manage [4]. A lot of 

source code repositories are un-guarded. Source codes are checked in at will when the 

code author thinks he/she is done implementing the code. Some better practices 

enforce peer code reviews before code submissions. While peer code review is an 

effective way of catching mistakes and bugs in the code, it is not a reliable way of 

enforcing source code integrity and correctness. Lots of time is spent fixing bugs 

introduced by these unguarded source code submissions. It might seem fast to check in 

source code at will and patch things up later, eventually, the bugs introduced would 

come back and bite the development team. More time would be wasted identifying and 

fixing the unintentional bug. If every source code submission had to run through a set 

of simple tests before going into the source code repository, we would have caught the 

bug in the first place and eliminated the need of coming back to identify and fix the 

bug. It is hard to strike a perfect balance between time spent developing the software 

and time spent testing it. Existing studies already indicate that model based testing 

improves bug detection process and actually reduce testing cost [5]. 

3 



1.2. Tool Overview 

This tool is intended to solve the problems listed above by introducing a new 

way of creating state models, exploring automated test generation from state models 

and experimenting the use of unified state model throughout the development process. 

Phase one is the construction of the state model. Pictures are worth a thousand 

words. Graphical state models are very common and useful, because they are visually 

appealing and very easy to read and understand. However, as mentioned in the problem 

statement, it is always cumbersome to construct these state models graphically by using 

standard UML state model paradigms manually, because the sheer number of states and 

transitions one needs to deal with. Layout out huge number of states and event huger 

set of intermingled transitions on a piece of paper in a visible and organized fashion is 

no easy task. 

Some resolves to construct non-graphical based state model by representing 

states and transitions with nodes in a XML document. It avoids having to deal with 

arrangement of graphical states and transitions, but it also loses the appealing visual 

elements possessed by its graphical counterpart. Not to mention the fact that it is 

virtually impossible for a normal human being to make any sense out of the page long 

XML document. 

The above problem is solved by introducing the tree view based state model 

construction tool. Users of the tool start with a single root node, States, in their model. 

4 



As shown in Figure 1, a collection of child nodes can be easily added to the root node, 

which represents all states in a given state model. Transitions can be easily added to 

each state by adding child nodes under the Transition node under each state node. 

Properties on a transition can be set to indicate the starting and ending state of a 

transition. Constraints can also be specified on each transition. Details of how to 

constructing a state model will be covered in the Scenario and UI Step through section. 

Transitions 
.. , getBalance 
, withDraw 
, deposit 

•·· dfl withDraw 
· dfl close 

El C OverDrawn 
' El , Transitions 

, deposit 
, getBalance 

. , deposit 
H·Q Closed 

' ·dfl Transitions 

Figure 1. Construct a state model 

When a state model is created in the model editor, it can be saved to the hard 

disk. The tools will traverse the state model and convert the structure to an XML 

document. The XML document can be saved to the hard disk and loaded back into the 

tool. Figure 2 shows an example of an XML representation of a state model. 

5 



<StateModel> 

<Open> < t{ < }.· · ? .•.f ···!~•·· · } 
<getBalance StartState=:~pen" E~dState="Openl' Cotistraint='.'"/> 
<withDraw StartState="OJ?':t1.~ EruiState="Op~:n~ Constraint="b-amt>=0" /> 
<deposit StartState="Open." En.dState="Open" Constraint="amt>=0" I> 
<withDraw StartState=''Open" EndState="OverDrawn" Constraint="b-amt<011 

<close StartState="Open" EndState=IJSlosed" Constraint=ll" I> 
</Open> ····· 

<OverDrawn>.. /~ i•.•·•·· 
<d~gosit StartState=0~y~rDrawn~ 
~ge'tBalatlce,.StartState~"Ov'r.;rPr 
<d~posifS te=110ver ... 

I> 
<IOviDrawn;··· 

<Clt:i$¢d/> 
</StateModel> 

Figure 2. XML representation of a state model 

After the state model is constructed, this tool can generate a graphical state 

model based on the tree view based state model. This way we achieved the simplicity of 

constructing non-graphical state models, avoided the clutterness of constructing 

graphical state models by hand and harnessed the benefits we get from visual 

representation. Result graphical model is shown in Figure 3. 

The state model is a very good starting point to the entire development process. 

Not only we can base our design on the state model, we can also use the same model for 

testing. This is the perfect way of aligning the design process and the test process to 

identify good testing scenarios, which leads to good coverage on source code and higher 

quality software. That leads to the second problem. 

6 



~~·-- .: ~/Open t, . W-·. -. l 
II e1m 

------~det,oslt.~ 
"il Li 

~------------=:H 
[\~__,~·-,'P"'=< • 
~~':· 

~ close , 
f>.i?closed'00·" .--;c;,'""'"":':'.,; 

elm 

Figure 3. A graphical state model 

det,oslt 

By using the state model generated from phase one, the tool can generate test 

cases based on two different test coverage criteria, state based coverage and transition 

based coverage. State based coverage is a test generation algorithm in which test paths 

are generated in such fashion that all states in the state model are traversed at least 

once. Transition based coverage is a test generation algorithm in which test paths are 

generated in such fashion that all transitions in the state model are traversed at least 

once. These different test generation algorithms will be covered in more detail in the 

algorithm section. 

In general, the number of transitions in a state model is larger than the number 

of states in a state model. Therefore, state based coverage provides a relatively smaller 

number of test cases that offers a good coverage for the source code. Since this small 

suite of test cases is quick and easy to execute, they can be used as a good suite of check 

in tests emplaced as part of a gated check in process. A developer would runs these 

7 



check in tests before their code submission to make sure the code they are checking in 

does not break major test scenarios. These tests provide good coverage for major 

functionalities while remain relatively small in size, quick and easy to execute. If a bug 

is introduced in the new source code that breaks an existing test case, it is relatively 

easier to debug because the size of the test suite is smaller. It also provides more 

incentives for developers to use before checking in for they are relatively less time 

consuming to run. 

Transition based coverage provides a relatively larger number of test cases that 

offers more complete coverage for the source code. Since it is relatively bigger suite of 

test cases and it may take longer to run, this suite of test cases can be used as a good 

suite of regression tests that runs daily to identify possible bugs that may have been 

checked in. Although new source code passed through gated check in tests, it does not 

mean that the new source code is bug free. Daily ran regression tests provide more 

extensive test coverage [6]. Bugs not caught by the gated check in test could be caught 

by running the larger suite of test cases generated by transition based algorithm. As the 

result, we can identify bugs early in the development cycle. It is hard to debug a 

problem if there are a large number of bugs existing in the software. By identifying 

bugs early, we not only make it easier to debug problem, but also eliminate the 

possibility of duplicated dev effort. Because, sometimes, one bug can cause different 

issues to surface which not only blocks the owner of the bug, but also blocks other 

developers working on dependent or related components. This suite of generated test 

8 



cases can serve as a good base for regression tests which could be further extended by 

manually adding additional test cases. It is a very cost effective way to develop software 

and leads to better quality software. 

1.3. Organization of the Paper 

The remainder of this paper is organized as follows. Chapter 2 provides 

background and related work on model based testing and automated test generation. 

Chapter 3 introduces the algorithms used by the tool to traverse state models, some 

background information on visual studio integration with the tool. Chapter 4 covers 

the overall architect of the tool. Chapter 5 presents design details. Chapter 6 presents 

use cases and user scenarios of the tool. Chapter 7 explains UI components of the tool. 

Chapter 8 evaluates the tool by walking through an example. Chapter 9 summarizes 

what this paper has covered and discusses some open issues for future work. 

9 



2. BACKGROUND AND RELATED WORK 

2.1. Model Based Test Generation 

"A classical estimate relates up to 50% of the overall development cost to testing. 

Although this is likely to also include debugging activities, testing does and will 

continue to be one of the prevalent methods in quality assurance of software systems" 

[7]. Since the object oriented development has become the predominant methodology 

for software development, more and more attention has been paid to the model based 

testing. 

The software development starts with gathering requirements. Domain experts 

meet with software program managers so that program managers can learn more about 

the specific domain and are able to define the problem the software is supposed to 

solve. A set of requirements is written by the program manager to describe what 

exactly the software should behave to solve the domain problem. These set of 

requirements are written in human readable language so that both customers and 

software development teams can read and understand. Customers and software 

development teams then come to an agreement on these set of requirements. However, 

since requirement specifications are written in human readable language, they have the 

tendency to be incomplete, ambiguous and sometimes contradictory. Most of the 

development teams have hand crafted tests based off of these requirement 

specifications. Inevitably, these tests could be incomplete and not 100% reflection of 



what exactly the customers really required. State models are constructed during 

requirement/ design phase to help clarify requirements. 

Since state models are already widely used in the design phase, it is only logical 

to reuse these set of state models for testing implementation based on these designs. 

The model based testing makes scenarios under test more explicit, since system state 

models accurately describe different states the object can be in and the transitions 

among these states. 

&:mkAcanmt 

w1thdrmv 
{h.amt>=O] 

get.Balance 

Open Clo~d 

gm&Jancti 
deposit [amr:, =OJ ----

wirlufrtr1i.__ __ -111-1 
[b-amt,cOJ 

OVt'l' 

dt'ftllll 

deposit [b+amt<O} 

Figure 4. Bank account state model 

As shown in Figure 4, each state in the above state model accurately describes 

the state the object is in. For example, the state Open in the BankAccount state model 

in figure below. It indicates that when a BankAccount object is initialized and its 

balance is greater than 0, its state is open. 

Each transition consists of four parts of information. Take the transition from 

the state Open to the state Overdrawn for example. 

1. The start state of the transition is Open. 

11 



2. The end state of the transition is Overdrawn. 

3. The event that triggers the transition is withdraw, represented by the arrow 

going from Open to Closed. 

4. The constraint on the event is b - amt < 0, which indicates that the 

Bank.Account object will only transit from the state Open to the state 

Overdrawn when the balance of the Bank.Account object is smaller than the 

amount withdrawn from the account. 

Not only do state models provide us with a rigorous way for defining problem 

domains and designing software, they also provide us with a good foundation for the 

automated test generation. A test path is a collection of transitions that starts with 

object creation [8]. With the invocation of a given event, if the constraint of the event 

is satisfied, the state of the object transforms from the start state to the end state, 

therefore, completes the transition. Collection of test paths can be generated by 

traversing through state models. Based on different traversing logic, different 

collections of test paths can be generated. The collection of test paths can then be fed to 

a code generator. The code generator can iterate through the test paths and generate 

test cases. More advanced techniques can transfer state models into Constraint Logic 

Programming language and generate test cases with test input parameters [9]. 

12 



2.2. Related Work 

Using formal methods to model system has long been researched and utilized 

since the dawn of software industry. Using formal specifications to define system 

behavior eliminates ambiguity and helps reducing the possibility of errors during the 

software development process [9). One kind of the most commonly used model 

languages is finite state based language, in which states are defined from a finite set of 

values. Several testing techniques come into existence based on finite state machines, 

such as transition tour, modified T method, W-method, Wp-method, etc. These 

techniques construct transition tree, traverse the transition tree based on different 

traversing logic, and verifies each test path with predefined set of conditions. Many 

state-based test generation methods also use a state model to represent the system and 

then test whether or not the implementation and design models conform to each other 

[8). El-Fakih et al. have recently adapted four of the well-known methods (W, Wp, 

UIOv, and HIS) for generating tests that would test only the modified parts of an 

evolving specification [12). Unfortunately, none of these techniques is tailored towards 

the testing of object oriented systems. 

State models are widely used in the design of object oriented systems. They 

provide us with an accurate way of defining component behaviors. Test generation 

techniques based on state models are also been researched and developed. Xu et al. [8) 

explored the model based test generation based on four different criteria, the state 

13 



coverage, the transition coverage, and the basic and extended round-trip coverage. 

Their tool is also capable of providing users with the ability to specify input parameters 

for each transition and reuse these parameters when state model is modified. Hong et 

al. [13] provide a way to derive extended state machines from state charts to devise test 

criteria based on control and data flow analysis. Offutt et al. [14] provide definitions for 

such test criteria as all transitions, all transition pairs, and full-predicate for guard 

conditions. While topics covered in this paper is based on existing modeling and test 

generation work, this paper concentrates on introduction of the tree based model 

editing tool, the algorithms used in traversing the state model and the capability of 

representing the same state model in three different formats, the tree based structure, 

XML and the graphical state model in Visual Studio. 

14 



3. ALGORITHMS 

3.1. Test Generation Algorithms 

As introduced in the tool overview section, the tool can generate test cases based 

on two different coverage criteria, the state based coverage and the transition based 

coverage. These two coverage criteria are state model based traversal algorithms. We 

start with the initial state in a state model, traverse through states in the state model 

based on different algorithms and generate a collection of test paths. These test paths 

are then used to generate test cases in the user preferred programming language. 

3.1.1. State Based Traversal 

FOR each state in.the listfof states 
IF the state is~ot Ill~rked ru, '7isit~d 

call Traveise (newTransition, state) 
·ENDIF· 

ENDFOR 
Function Tra.ver.;e (tra.risition; targetState) 

Mark ~getState as visited•·· .... 
Add tra.nsiti.6n/targ~tState pair to the test path 
FOR each tr~sitio.11, t, that goes out of t:fl,e targetS!ate 

IF the ~nclijlg s~(e oft is riot marked vi,site<l ··. 
Cali Trilver~~(t, endingState}. w 

ENDIF . . .· .. 

ENDFOR 
. ·· ..... IF all transition frqlll targetState leads tQ .visited ending states OR there is no·. 

transition coming out ~f the targetStat~ · 
Add the test path to the collecti~n of test paths 

ENDIF 
· Remo~e the last transiti~n/state pair added to the test path 

END Function Traverse 
Figure 5. State based traversal 

15 



The traverse algorithm shown in Figure 5 can be explained by examining the 

simple state model shown in Figure 6. It consists of 3 states, named A, B and C; and four 

transitions, named 1, 2, 3 and 4. 

[4] 

B C 

Figure 6. A simple state model 

Here's how the traversal works in steps. 

Traverse (x, A) 

Mark A as visited and add (x, A) to test path, [(x, A)] 

Traverse (1, B) 

Mark Bas visited and add (1, B) to test path, [(x, A), (1, B)] 

Since transition 2 leads to state A and A is marked as visited, skip transition 2 

Traverse (3, C) 

Mark C as visited and add (3, C) to test path, [(x, A), (1, B), (3, C)] 

Since transition 4 leads to state A and A is marked as visited, skip transition 4 

Since all transition from State C leads to visited states, save test path to collection 

Remove (3, C) from test path, [(x, A), (1, B)] 

Done Traverse (3, C) 

Remove (1, B) from test path, [(x, A)] 

16 



Done Traverse (1, B) 

Remove (1, B) from test path, [] 

Done Traverse (x, A) 

After the traversal, only 1 test path is generated for the simple state model above, 

i.e., [(x, A), (1, B), (3, C)]. The most important thing to take notice here is that all states 

in the state model, A, Band C, are covered in this test path. However, not all 

transitions are covered. Only transition 1 and 3 are included in the test path. We 

created a path of states and reached each state by recording the transition/state pair. 

Now, we can generate test cases based on the result test path collection. In this simple 

case, we have only 1 test path in the collection. As shown in Figure 7, there is only 1 

test case generated. 

Figure 7. Generated test case - state based traversal 

17 



3.1.2. Transition Based Traversal 

FOR~acl-t still¢ 
JR1tli~Sta't:~ . 

Figure 8. Transition based traversal 

The traverse algorithm shown in Figure 8 can be explained by examining the 

same state model used for state based traversal, as shown in Figure 9. 

4] 

C 

Figure 9. A simple state model 

Here's how the traversal works in steps. 

Traverse (x, A) 

18 



Mark A as visited and add (x, A) to test path, [(x, A)] 

Traverse (1, B) 

Mark Bas visited and add (1, B) to test path, [(x, A), (1, B)] 

Since transition 2 leads to state A and A is marked as visited, add (2, A) to test path, 

[(x, A), (1, B), (2, A)] 

Add test path [(x, A), (1, B), (2, A)] to collection 

Remove (2, A) from test path, result test path [(x, A), (1, B)] 

Traverse (3, C) 

Mark C as visited and add (3, C) to the test path, [(x, A), (1, B), (3, C)] 

Since transition 4 leads to state A and A is marked as visited, add (4, A) to test 

path, [(x, A), (1, B), (3, C), (4, A)] 

Add test path [(x, A), (1, B), (3, C), (4, A)] to collection 

Remove (4, A) from test path, result test path, [(x, A), (1, B), (3, C)] 

Remove (3, C) from test path, [(x, A), (1, B)] 

Done Traverse (3, C) 

Remove (1, B) from test path, [(x, A)] 

Done Traverse ( 1, B) 

Remove (x, A) from test path, [] 

Done Traverse (x, A) 

After the traversal, 2 test paths are generated for the simple state model above, 

i.e., [(x, A), (1, B), (2, A)] and [(x, A), (1, B), (3, C), (4, A)]. The most important thing to· 

19 



take notice here is that not onlv all states in the state model, A, B and C are covered bv . ' 

the collection of test paths, all transitions in the state model, 1, 2, 3 and 4, are also 

covered by the collection of test paths. Nmv, we can generate test cases based on the 

result test path collection. In this case, we have 2 test paths in the collection .. t\s shown 

in Figure 10, there are two test cases generated. 

I 

t 

' 

T•tlCl••• \••t-..u;1v,;; ,, , ... ru, l1 t 
II ,. au I 

I I: --M 

II 
'-••· 1ni tC 
II f ' 

fl 

■ r.nCl•nn, 
NII \ 1\a\• ii A 

JI 
rr \ ..... " .. 
" • 1t••· U C 

I 
•• • ••••• .. 

Figure 10. Generated test cases - transition based traversal 

3.2. Basics on Visual Studio Diagram 

The diagram tool from Visual Studio is very intelligent and powerful tool. It has 

the ability to automatically arrange notes once they are added to the model. The visual 

studio diagram tool is used for modeling class diagrams. Visual studio does not have a 

diagram tool for slate models. It is a bit confusing in the beginning that class diagrams 

20 



are used to represent state models. The simple example shown in Figure 11 illustrates 

why and how this diagram tool is used. 

StateO 
dass TransltionO~ ~el 

,, ________ . /. 

Figure 11. Visual Studio class diagram 

At first glance, one may easily mistake the above class diagram for a state model. 

That is exactly why the class diagram in VS is used to represent the graphical state 

model. StateO and Statel in the above diagram are actually C# classes. TransitionO is a 

property on StateO. The return type of TransitionO is State 1. That's how VS represent 

the association between two classes. A link from StateO to State 1 represents a property 

on the StateO whose return type is State 1. Figure 12 shows the code behind the above 

class diagram. 

class State(} 

public 

class Stated 
{ 
} 

Figure 12. C# code behind the diagram 

21 



4. SYSTEM ARCHITECTURE 

4.1. Oass Diagrams 

Model Editor 

«interface» 
I Model Element 

StateTreeConverter State 
-------r-----i.---~i------, 

I 
I 

Method 

: I I L __________________ f ___________________ J 
I 

I 

1 TestCaseCodeGenerator 
I 

[_ __J 

Figure 13. System architecture 

Figure 13 shows the class diagram of the test generation tool. 

ModelEditor 

This class contains the UI element of the tool. It is responsible for creating the 

state model. It also contains the state model diagram generating logic. State models can 

be created and modified in the tree view structure in the model editor. When selecting 

a node in the tree, the property pane on the right side of the model editor displays 

related property information to the selected node. User can than modify properties of 

the selected node, state or transition, through the property window. This development 

experience should be very familiar with users of Visual Studio. 

StateTreeConverter 

22 



This class is the container for all user created states. It also has the logic to 

convert the state model into transition trees. 

IModelElement 

This interface provides some common properties that are shared between the 

State class and the Method class. 

State 

This class is an abstraction of a state defined in the state model. It has a 

transition table in the form of a collection of key value pairs. Each key value pair 

consists of a transition and the ending state of that transition. 

Method 

This class is an abstraction of a transition in the state model. It has two 

important properties, the start state and the end state. Start state is automatically 

defaulted by the tool since transitions are created under a state. The start state of a 

given transition would be the state under which the transition is created. When user 

set the value of the end state on a given transition, the end state is looked up in the 

collection of states and the transition entry on the start state is updated with the 

corresponding end state. 

TestCaseCodeGenerator 

This class is responsible for iterating through the collection of test paths and 

generating test cases based on each test path. Since the tool uses .NET CodeDom APis 

23 



for code generation, it is capable of generating test cases in different .NET based 

programming languages [10]. 

4.2. Sequence Diagrams 

Generate State Model Diagram 

Model Editor TestCaseCodeGenerator I StateTreeConverter I 
menu item click: 

I 

new 

GetStateList 

statelist 

GenerateCodeforDiagram 

GenerateCDXml 

Figure 14. Sequence diagram generate state model 

Figure 14 shows the sequence diagram for generating the state model. After the 

state model is constructed in the model editor and the user clicks on the menu item 

"Generate state diagram", an instance of T estCaseCodeGenerator is created. The tree 

view based state model from the state editor is traversed and C# code files are generated 

by calling GenerateCodeForDiagram on TestCaseCodeGenerator. After C# code files are 

generated, the same stateList is traversed again by calling GenerateCDXml to generate 

24 



the VS compatible model xml file. By adding the result code file and the model file to a 

VS project, we can open the model file and view the generated graphical state model. 

Generate Test Case Based on State Model 

ModelEditor TestCaseCodeGenerator StateTreeConverter 

menu item click: I 
I 
I 

GetStateList 

stateList 
- - - - - - - - - - - - - - - - - - - - _I_ - - - - - - - - - - - - - - - - -

DFTraverse 

new 

GetTestCase 

testCases 
- - - - - - - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - -

Generate : 

Figure 15. Sequence diagram - generate test case 

Figure 15 shows the sequence diagram for generating test cases. After the state 

model is constructed in the model editor and the user clicks on the menu item 

"Generate test cases", the state model is traversed based on the coverage criteria chosen 

by the user. A collection of test paths are generated as the result of the traversal. An 

instance of TestCaseCodeGenerator is created. The collection of test paths is passed to 

TestCaseCodeGenerator::Generate method to generate code files that contains actually 

test cases based on the programming language user have chosen. 

25 



5.1. ModelEditor 

5. DESIGN DETAILS 

(3 Fields 

state TreeConverter 

f:7J Methods 

AddChildNode 
delete ToolStripMenuitem_ Click 
Dispose 

;j/t GenerateCDXml 
jff generateToolStripMenuitem_Click ~· ~• menuitemGenerateDiagram_Click 
tt-/f menuitemGenerateTC_Click 
jt menultemOpen_Click 
,ii menultemSave_Click 
,4il ModelEditor 

newState ToolStripMenuitem_ Click 
new Transition ToolStripMenultem_ Click 
Open\lS 
tree\liew 1 _AfterLabelEdit 
tree\liew 1 _AfterSelect 
tree\liew 1 _ NodeMouseClick 

Figure 16. ModelEditor class diagram 

Figure 16 shows the class diagram for the ModelEditor class. 

Fields 

stateTreeConverter - an instance of StateTreeConverter class that manages all user 

created states. 

Methods 

void AddChildNode(IModelElement newModelElement) 

26 



Description: Adds a child node to the current selected node and hook up the newly 

created child node to represent the new model element. 

Parameters 

newModelElement the model element that represented by the newly created child 

node. 

deleteToolStripMenuitem_Click( ect sender, e) 

Description: this method handles the click event for clicking the "Delete" menu item 

on a selected node. 

void GenerateCDXml() 

Description: generate an xml file that has the format for displaying the state model in 

Microsoft Visual Studio. 

void menuitemGenerateDiagram_Click(object sender, e) 

Description: this method handles the click event for generating the state model 

diagram. The outcome of this method is two generated files. A CSharp file is generated 

to contain the structures that support Microsoft Visual Studio display of the state 

diagram. An xml file is generated to contain the same information but in a different 

form required by Microsoft Visual Studio for displaying. 

void menuitemGenerateTC_Click( ect sender, e) 

Description: this method handles the click event for generating test cases. The outcome 

of this method is a code file containing the generated test cases and a test driver. The 

language used in the code depends on the option the user set in the "Options" tab. 

menuitemOpen_Click( ect sender, e) 

27 



Description: this method handles the click event for the file open dialog. 

void menuitemSave_Click(object sender, Eve~tArgs e) 

Description: this method handles the click event for the file save dialog. 

public ModelEditor() 

Description: this is the constructor of the ModelEditor class. It creates an instance of 

StateTreeConverter class and hook up some event handler methods. 

void newStateToolStripMenuitem_ Click (object sender, E:venti\rqs e) 

Description: this method handles the click event for creating a new state. 

void newTransitionToolStripMenuitem_Click(object sender, EventArgs e) 

Description: this method handles the click event for creating a new transition. 

void treeViewl _ AfterLabelEdi t (object sender, Nc,deLabelEdi tEventArgs e) 

Description: this method handles the event when user edits the name of a node in the 

model editor. 

void treeViewl _ AfterSelect (object sender, TreeViewEven,.Args e) 

Description: this method handles the event when user selects a node in the model 

editor. It hooks into the property window so that the property window displays the 

content of the selected node. 

void treeViewl_NodeMouseClick(object sender, TreeNodeMouseClickEventArgs 

e) 

Description: this method handles the event when a node in the mode editor is clicked. 

It enables user to edit the name of the selected node. 

28 



5.2. IModelElement 

Interf.ace 

(3 Properties 

:2?F Name 

Figure 17. IModelElement 

Figure 17 shows the class diagram for the IModelElement interface. 

Property 

Name - this property is shared by the State class and the Method class which are both 

model elements. This interface provides a common place to host similar properties 

shared by both model elements. 

5.3. State 

f IModelElement 

8 Fields 

J,I count 
,/I is\lisited 
:# name 
-I' transitionTable 

8 Properties 

Is\lisited 
Name 
Transition Table 

8 Methods 

"♦ State ( + 1 overload) 

Figure 18. State class diagram 

Figure 18 shows the class diagram for the State class. 

29 



Fields 

count - this acts as the unique id for the states created. 

is Visited - this field indicates whether this state has been visited by the state tree 

traverse algorithm. 

name - the name of the current State. 

transitionTable - a hash table that contains the transitions associated with the current 

State. Each transition contains information on the end State. 

Properties 

Is Visited - returns whether the current State is visited by the traverse algorithm. 

Name - returns the name of the current State. 

Transition Table - returns the transitionTable. 

Methods 

public State() 

Description: this is the public constructor for the State class. 

5.4. Method 

Figure 19 shows the class diagram for the Method class. 

Fields 

constraint - the constraint user can put on a Method. 

count - this acts as the unique id for the Methods created. 

end - this field indicates the end state of the current Method. 

30 



constraint 
count 
end 
name 
parameters 
start 
state TreeConverter 

!:::I Properties 

Constraint 
EndState 
Name 
Parameters 
StartState 
State TreeConverter 

8 Methods 

"t GetStandardl/alues 
"'f GetStandardl/aluesExclusive 
GI GetStandardl/aluesSupported 

Method { + 1 overload) 
Update Transition Table 

Figure 19. Method class diagram 

name - the name of the current Method. 

parameters - parameters taken by the current Method. 

start - this field indicates the owner state of the current Method. 

stateTreeConverter - the stateTreeConverter that contains all available States. 

Properties 

Constraint - returns the constraint of the current Method. 

EndState - returns the name of the end State associated with the current Method. 

Name- returns the name of the current Method. 

Parameters - returns the parameters of the current Method. 

StartState - returns the owner state of the current Method. 

31 



stateTreeConverter - return the stateTreeConverter that contains all available States. 

Since it is static, there is only one instance across the entire application. 

Methods 

public Method () 

Description: this is the public constructor for the Method class. 

override bool GetStandardValuesSupported(ITypeDescriptorContezt context) 

override TypeConverter.StandardValuesCollection 

GetStandardValues(ITypeDescr :{t context) 

override bool GetStandardValuesExclusi ve ( ITypeD,~script orContext context) 

Above three methods are implemented for the base class StringConverter. Method class 

dervies from the Microsoft .NET StringConverter class to support the pull down menu 

filling behavior observed in the property window [11]. 

void UpdateTransitionTable() 

Description: this method updates the transition table of the owner state if the user 

changes the end state by changing the end state property in the property window. 

5.5. StateTreeConverter 

Figure 20 shows the class diagram for the StateTreeConverter class. 

Fields 

modelName - the name of the current model. 

stateList - a list of all available States. 

states Visited - this keeps track of all the States that have been traversed by the traverse 

algorithm. 

32 



StateTreeConverter 
Class 

Fields 

JI modelName 
sP statelist 
.. i ' statesVisited 
.# testCases 
:JI XDoc 

• a Properties 

Model Name 
Statelist 
TestCases 

Methods 

DFTraverse 
GetState 

~-. StateTreeConverter 

Figure 20. StateTreeConverter class diagram 

testCases - the internal structure defined for the test case generation logic. Each test 

case is represented by a list of States and the transitions they are associated with. 

xDoc - an xrnl representation of the States and their associated transitions tracked by 

the stateTreeConverter. 

Properties 

ModelName - returns the name of the current model. 

StateList - returns a list of all available States. 

TestCases - returns the internal structure representing test cases. 

Methods 

public StateTreeConverter() 

Description: this is the public constructor of the StateTreeConverter class. 

void DFTraverse( visitingState) 

33 



Description: this method traverse the transition tree and adds series of States together 

to form test cases. 

Parameters 

visitingState- the state the traversing algorithm is currently visiting. 

Stat~ GetState(st stateName) 

Description: this method gets the corresponding State identified by the name passed in 

by the caller. 

Parameters 

stateName the name of the state user is looking for. 

Return 

The state identified by the name passed in by the caller 

5.6. TestCaseCodeGenerator 

TestcasetodeGenerator 
cijss 

t:iil Fields 

t;P todoMsg 

8 Methods 
ct Generate 
,.., GenerateCodeForDiagram 

Figure 21. TestCaseGenerator class diagram 

Figure 21 shows the class diagram for the TestCaseCodeGenerator class. 

Fields 

34 



todoMsg - the TODO string used throughout the generated test case to remind tester to 

fill in the test data. 

Methods 

string Generate(string modelName, string typeName, 

List<List<KeyValuePair<Metnod, Scace>>> stateGraph) 

Description: this method generates the test cases based on the graph of states passed in. 

Parameters 

modelName - the name of the model 

typeName - the type of language the code generation logic should use to generate the 

test case. 

stateGraph- this is a list of KeyValuePairs of Method and State. Each second level list 

identifies a sequence of transition and state changes that indicate a test case. 

Return 

A string representing the full path of the file all the test cases are generated into. 

string GenerateCodeForDiagram(string modelName, List<State> stateList) 

Description: this method generates the CSharp code needed by the Microsoft Visual 

Studio to display the state diagram. Each state in the stateList is generated into a C# 

class. Each transition under that state is generated into a property on the generated 

class. The owner class of the property represents the start state of the transition and the 

return type of the property represents the end state of the transition. 

Parameters 

35 



Modelname the name of the model. 

stateList- a list of all available States. 

Return 

A string representing the full path of the generated CSharp file. 

36 



6. USECASESANDSCENARIOS 

«uses 

Generate State 
Model Diagram 

Figure 22. Use cases 

Figure 22 shows the use cases diagram for this tool. 

37 

Add/Delete 
Transition 



6.1. Actors 

Tester is the direct user of the tool who uses this tool to model their state model, 

create state model diagrams, and generate test cases from state models and other related 

activities. 

6.2. Scenarios and UI Step Through 

Before we proceed to our first scenario, the tool is started by double click on the 

tool exe ModelEditor.exe. Figure 23 shows the UI of tool in its starting state. 

States 

Figure 23. ModelEditor 

Create State Model 

This scenario consists of two sub scenarios, add/delete state and add/delete 

transition. In order to add a new state to the state model, the tester can select the node 

38 



in the main workspace labeled "States" and right click. A context menu should pop up 

and "New State" should appear as the only context menu item, as shown in Figure 24. 

Figure 24. Create new state 1 

The tester can click on "New State". A child node will be added to the "State" 

node. The name of the state is defaulted to "State", but tester can rename the node to a 

state name that makes sense in real life scenario. In this case, we'll name our new state 

"Open". Hit enter when finish and a new state is added. Notice the property window on 

the right side of the tool window is now displaying properties for the new state, as 

shown in Figure 25. 

Figure 25. Create new state 2 

To add a transition for a state, expand the state you want to add the transition 

to. A transition node will appear under the selected state node, as shown in Figure 26. 

39 



Figure 26. Add transition 1 

The tester clicks on "Transitions" node and right click to bring up the context 

menu that has one context menu item reads "New Transition", as shown in Figure 27. 

States 

El C Open 

New Transition 
:. , nIrnn-·1 -------

Figure 27. Add transition 2 

The tester clicks on "New Transition" and a child node appears under 

"Transitions". The name of the child node is defaulted to be "Transition". The tester can 

rename the node to a transition name that makes sense in a real life scenario. In this 

case we name this transition "withdraw", as shown in Figure 28. Hit enter when finish 

and a new transition is added. Notice the property window is displaying properties of 

the newly created transition. Property named "StartState" should be set to the state to 

which the transition belongs. 

Slates 
Q Open 
6···1' Transitions ,, .. 

fH OverD,awn 

Figure 28. Add transition 3 

40 



As shown in Figure 29, one more state called "Overdrawn" can be added. 

States 
3 C Open 

E'4fl Transitions 
· '4fJ WithDraw 

;£ 0 -··· 

Figure 29. Add the Overdrawn state 

Now, we can complete the transition we created under "Open" by setting the 

"EndState" property to "Overdrawn". In order to accomplish that, the tester can first 

click on the transition "withdraw". On the property window on the right side of the 

tool window, the tester can click into the "EndState" property. A drop down triangle 

appears on the right side of the control. Clicking on the drop down button, a list of the 

available states is displayed, as shown in Figure 30. 

Figure 30. Display list of all states 

The tester clicks on "Overdrawn" and insert "b-amt < 0 and b-amt>=-1000" 

under property "Constraint". Now, we completed adding two states and a transition 

connecting the two states, as shown in Figure 31. 

41 



Open 
, Transitions 

· WithDraw 
OverDrawn 

Figure 31. Two states and connection transition 

The tester can delete any transition instance by right clicking on the target 

transition instance and a context menu with one menu item "Delete" will appear, as 

shown in Figure 32. 

Transitions 
, lliiilll!I: 

Delete 

Parameters 

Figure 32. Delete transition 1 

Clicking on "Delete" removes the selected transition, as shown in Figure 33. 

Slates 
Open 
OveiDrawn 
BadS!ate , .•• 

Figure 33. Delete transition 2 

42 



The tester can delete any state instance by right clicking on the target state 

instance and a context menu with one menu item "Delete" will appear, as shown in 

Figure 34. 

1~ 1l,1i;rn-1rnit!I! 
:f '5,·0 IIDIII- ··::· - -- ~( ,c~,r~I ... •l~~e.. .... ·· ·••:: ; 

· ~ T · · 081st8 t. •-·~·- i\lmled , Fabe ~ 
. ~ •ons1 ~-... ..-o; ..i !(~tN~ ::!::;~&f: i~dSt•te : 

lt'1 •~~i;;.t·~~·; ·· (Colcction) : ,. 

Figure 34. Delete state l 

Clicking on "Delete" removes the selected state, as shov.,n in Figure 35. 

----*~•-\ f+I O O•,'!IC)ra,"n ]: 

, • I , 

Figure 35. Delete state 2 

Generate State Model Diagram 

The tester can get a graphical representation of the state model using this tool. 

This is where this tool integrates with Microsoft Visual Studio 2008. Tester clicks on 

"Tool" from the menu bar and clicks on "Generate State Diagram", as shown in Figure 

36. 

. .. ... .. ... .. - - -

---
Figure 36. Generate state diagram 

43 



As shown in Figure 37, the generated graphical state model can be opened in a 

VS project and rearranged to look like the following. 

~; Bank " Microsoft ¥isual Studio se'.F ·• '« iJ!bY 

i1ew Q,ebug dass Diagram_ Dgta I,ools Teit ~ndow 1:_ommuity t:J.elp 

.. ~Q'1l ,. AnyCPU 

(y ,r '.V 

'"''' 

,,,, , .. 

ye--~,-.. {~-
------,.,,,,.,..--~· 

Figure 37. State diagram - Open, Overdrawn 

Generate Test Case 

The tester can generate test case based on the state model created in the tool by 

clicking on "Tool" on the menu bar, then clicking on "Generate Test Case". There are 

two different test generation algorithms to choose from, state coverage based 

generation or transition coverage based generation. The tester can pick one based on 

the purpose of the test suite to generate tests, as shown in Figure 38. 

44 



State Coverage 

Transition CO¥erage 

Figure 38. Genenerate test cases 

To see the generated test cases, the tester can click on the "Result" tab. The 

generated test file containing test cases and a test driver is displayed, as shown in Figure 

39. 

I I This is a test suite for test 
na:m.espace testTestSuite I 

using System: 
using System.Collections.Generic; 
using test: 

public class test!estSuite 

public static void test!estl () 
test test = new test(): 
II !ODO: verify if the current state is Open 
I I b-amt < 0 and b-amt > -1000 
test.WithDrawn(): 
II !ODO: verify if the current state is OverDrawn 

public static void main(String[] args) { 
test!estl (): 

Figure 39. Generated test case 

Save State Model 

The tester can save the state model by go to "File->Save" on the menu bar, as 

shown in Figure 40. 

45 



. Q Open 
B ,, T t ansitions .,.,., 

1±1 Q Ove1Drawn 

Figure 40. Save state model 

The following is an example of a saved model :xml file, as shown in Figure 41. 

<StateModeh 

<qpat:;. 
<getllalance Stari:Sfat 
<witf,.DrawStartState=" 
<dep~it StartState="O 
< wu,:ii.uraW StartStat~n 

• E~c1State=11dP1i" Cons . . 
n11 EndState=•0pen• Consttamt="b-amt>=O" I> 

dState:::"O Q)nstrairi t>=O" I> 
::;:Dfilwn"C~nstraint="b-amt<0-1 /> 

<close Start§tate="O~h~ EndStil 

</~ /'::'.? 

<0verDmwn>2 •·· ~~ · c;:·: '"'· .::::. ,<: : . 
<~~:: _-_ //:·?:?i?i_;;;;;;;;;;/:\}:\_; :;~:; i;: ·-:+>-: :::- \e;:em•emm·:·:; · ·,- _ : _: ',: : .. :-: .-: '":;< ·. :--~- jf.::1:: .. ,,,,/? _: :- "< :.:: 

<~osit:'S~tate=" •·•••·•••·•·••. ·•·• ·.· .· .. ·•·•··•·• .-wnfi•'~d.State= ,,<····. n". Constraint=
1

b+anit>==0
1l> 

<g~tBalance StartState=llsverDra'Vl111 EndSta\t=tQverDraWll" Constraint=""./~ . 
.. ·t StartState="OverDra . lEndStat . . ~bta1nial• 

. <1?%<:::::,,;,,\,"" ~:~:~:!::f~i~), '' . ,, . ,,,,,,._;:::,,;=.;:· 

</Over Drawn> 
<Closed/> 

</Staf~odel>:• 

Open F.:xisting State Model 

Figure 41. Saved :xml model file 

The tester can save the state model by go to "File->Open" on the menu bar, as 

shown in Figure 42. 

Figure 42. Open state model 

46 



Modify Tool Options 

The tester can modify tool options by navigating to the Options tab, as shown in 

Figure 43 . 

. File Tool 

r~delEditor I Result Options i ~---

language 
C# 
C++ 
VB 
JScript 

Figure 43. User options 

47 



7. UI OVERVIEW 

This tool consists of two major UI components: the menu bar and the tab pages. 

7.1. Menu Bar 

File-> Open 

Opens an existing state model file and load it into the tool. 

File-> Save 

Saves the current state model to the user specified location. 

Tool->Generate State Diagram 

Generates a state mode diagram and open it in Microsoft Visual Studio. 

Tool->Generate Test Case->State Coverage 

Generates test cases based on the state model constructed in the editor using 

state based coverage. 

Tool->Generate Test Case->Transition Coverage 

Generates test cases based on the state model constructed in the editor using 

transition based coverage. 

7.2. Tab Pages 

There are three tab pages in the tool, as shown in Figure 44. 

ModelEditor Tab 

This tab is the workspace for create state model. The property window on the 

rightmost side of the tab page display properties of the selected node in the workspace. 

48 



-U States 

Figure 44. Workspace 

Result Tab 

MooelE dilor ~8.!!l Ol)liom I 

Figure 45. Result tab 

As shown in Figure 45, this tab page displays the test cases and the test driver 

generated by the test generation component. 

Options Tab 

Longuege ul ... ,, •tr--... -----'illiffi 
C# I c-
VB 
JScript 

Figure 46. Options tab 

As shown in Figure 46, this tab page provides tool options for users to modify. 

Language - this pull down menu contains all the possible languages the tool can use to 

generate test cases. The available languages include C#, C++, Visual Basic and JScript. 

49 



8. CASE STUDIES 

8.1. The Bank Account State Model 

This state model documents state changes for a given bank account. There are 

three valid states for a bank account, Open, Overdrawn and Closed, as shown in Figure 

47. 

get/Jalance 

BankAcrount t I 

close 
Open Closed 

wtrhdraw 
. 

{b-amt>=OJ I depom 
{b•amt>=O} ge11Jalance 

dep-OSft [amt:, =OJ .. 
On1· 

wtrhdrcm drann {b--amt,:Oj -
I 

deposit [b+amt<O] 

Figure 47. The bank account state model 

For state Open, there are five different transitions coming out of it. 

1. One can perform getBlanace on a bank account. This transition does not affect 

the state of the bank account; therefore, it ends up back on the same state. 

2. One can deposit into a bank account. Noted by the constraint on the transition, 

as long as the deposit amount is not a negative amount, the end state is still 

Open. 

3. One can withdraw from a bank account. If the balance after withdraw is not 

negative, the end state is still Open. 

50 



4. If the balance after withdraw is negative, the end state is Overdrawn. 

5. One can also close the account. The end state is Closed 

For state Overdrawn, there are three transitions coming out of it. 

1. Deposit can be made to the bank account. If the ending balance after the deposit 

is positive, the end state is Open. 

2. If the ending balance after a deposit is negative, the end state is still Overdrawn. 

3. One can always get balance on an overdrawn account. The end state is still 

Overdrawn. 

For state Closed, there is no transition coming out of it. 

8.1.1. Step 1 - Create the Model 

Create model elements representing the above state model as shown in Figure 

48. 

}f'l/eTool, ·, 

"t-~dbjR~l Option;! 
aCJ 

r':JQ Open 
El 41[111' Transitions 

: yjll getBalance 
' 41[111' withDraw 
i 41[111' deposit 

L ·4" withDraw 
i --41[111' close 

8 Q OverDrawn 
841[111' Transitions 

,. yjll deposit 

; yjll getBalance 
. · yjll deposit 

afu Closed 
41[111' Transitions 

Figure 48. The bank account state model in model editor 

51 



8.1.2. Step 2 -Generate State Diagram in VS 

Generate state diagram, include generated code files and model files in a C# 

project. The model file can be opened in VS as shown in Figure 49. 

Figure 49. The bank account state model in VS 

Figure 50 shows the generated CSharp file, classl.cs 

::pen.\. . ~a.la.~9e,/f.} 
alue>tb:amt>=O<lvalue> 

public Open\i4ithdraw>{} 
I I I .. ~. lue?-ca.r;it>=O-<ly~iue> 
publi,, .. Open•·aeposi~.v(}:• 
Ill <value>b-amt<O<lvalti!§>. 
pubJiC Overdrawn wit.h:tiraw {} 

52 



public Closed close{} 

class Overdrawn 
{ 

Ill <value>b+amt>:::::0<lvalue> 
public Open deposit {} 
public Overdrawn getBalance {} 
Ill <value>b+amt<O<lvalue> 
public Overdrawn deposit{} 

class Closed 
{ 

} 

Figure 50. Generated code file for VS state model 

Figure 51 shows generated xml model file, classlDiagram.cd 

<Class Diagram> 
<Font Name:::::"Tahoma" Size:::::"8.25" /> 
<Class Name="Open"> 
.<Position X="0" Y="0'' Width="0" /> .. 
<Typeldentifier> 
<FileName>Classl .cs</FileName> 

</Typeldentifier> 
<ShowAsAssociation> 

<Property Name:::::"getBalance" /> 
<Property Name=::;"withdraw" /> 
<Property Name:::::''deposit1'/> 
<Property Name="withdraw" /> 
<Property Name=~close" /> 

</Show AsAssociatfon> 
</Class> 
<Class Name:::::"Overdrawn"> 
<PositionX="0" Y==.!'0" Width="0" /> 
<Type Identifier> 
<FileName>Classl .cs</FileName> 

<!Type Identifier> 
<Show AsAssociation> 
<Property Name:::::11deposit" /> 
<Property Name="getBalance" /> 
<Property Name="deposit" />· 

</Show AsAssociation> 
</Class> 
<Class Name:::::"Closed''> 
<Position X="0" Y="0" Width="0" /> 

53 



<J:'ypeldentifier> 
<FileName:>Class Lcsi/FileName> 
; . . .·. ""'l': 

i</Typeldenl!\!er>:l~ 
z/Class> ...... . 

· </ClassDia am> 
Figure 51. Generated model file for VS state model 

8.1.3. Step 3 - Generate Test Cases - State Based Coverage 

Following the state based traverse algorithm, the following collection of test paths 

are generated from the state based coverage. 

{[new, Open], [withdraw, Overdrawn]} 

{[new, Open], [close, Closed]} 

There are two test cases generated based on the collection of test paths. Notice all 

three states are covered by the two test cases, as shown in Figure 52. 

p~~tc static void Te':i:tCasel () { :•,.,. .......... . 

$~nkAccount bank.Account = new BankAccount () 
DO: verify if the cur stat Open · 

<0 •········' 

nt. wi tlichia"' <} ; 
.TODO: verify if the current 

pub!ie' · 
{ 

d Testep.se2( 

Bank.Account: bank.Account -
I I TODO: --., ___ the c 

. _II . ; :~\ 
/ ;tl~nkAccouri • lose O}'!J· 

I I .'!'ODO: verify if the 

Figure 52. Generated test case State coverage 

TestCasel starts with instantiating the BankAccount object and verifying that its 

state is Open. By calling withdraw with the constraint ofb-amt < 0, the state of the object 

is changed from Open to Overdrawn, therefore, we need to verify that the state of the 

object is Overdrawn. TestCase2 also starts with instantiating the BankAccount object and 

verifying that its state is Open. By calling close, the state of the object is changed from 

54 



Open to Closed, therefore, we need to verify that the state of the object is Closed. By 

executing these two test cases, all three states, Open, Overdrawn and Closed are covered. 

However, not all possible transition among these states are covered, therefore, this suite of 

test cases can be used as a good check in tests that runs before every developer's code 

submission to provide basic coverage. 

8.1.4. Generate Test Case Using Transition Based Coverage 

Following the transition based traverse algorithm, the following collection of test 

paths are generated from the transition based coverage. 

{[new, Open], [getBalance, Open]} 

{[new, Open], [withdraw, Open]} 

{[new, Open], [deposit, Open]} 

{[new, Open], [withdraw, Overdrawn], [deposit, Open]} 

{[new, Open], [withdraw, Overdrawn], [getBalance, Overdrawn]} 

{[new, Open], [withdraw, Overdrawn], [deposit, Overdrawn]} 

{[new, Open], [close, Closed]} 

As shown in Figure 53, there are seven test cases generated based on the collection 

of test paths. Notice not only all three states are covered; all transitions are also covered 

with the generated test cases. This suite of test cases can be used as foundation for a good 

set of regression tests that runs daily to guarantee the quality of the software product. 

public static void testCasel {) 
{ 

Ba.n~C:C:OH!)ict,;b"'ti:l,)i;~ccourit :ii:•.· new Bank.AcCOunt.{r; 
ll TODO: verify.If the current state 
II 
P~.,~J;;,AcCpuIJt. getBalance () ; 
I/T9D0: verify if the 

55 



static void 

56 



II TODO: verify if the current state is Open 
II 
bankAccount.close(); 
II TODO: verify if the current state is Closed 

Figure 53. Generated test cases - transition coverage 

8.2. The Spacecraft Ascent State Model 

A model that has more states and transitions is shown in Figure 54. This 

example examines how the tool does in generating test cases based on different 

coverage criteria. This model describes the ascent and earth orbit flight phases of a 

spacecraft [15]. 

8.2.1. Step 1-Create the Model 

, file Too1 

(~: # T ransI11ons 
1' srb!gnr1ion 
_., failure 

FirstStage 
Transrlions 

stagelSeq 
;# abort 
, abort 

Cl SecondStage 
;~: d' T ransifions 

~ stage2Seq 
., repeat2Seq 
-JI' abort 
.-., la.sJetlison 

Q ThirdStage 

l::. Ji Transitions 
J, stageJSeq 
J) repeat3Seq 
# abort 
., restart 

FourthStage 
Transitions 
JI stage4Seq 
·, repeaMSeq 
J! abort 
,,t restart 

,- EarthOrbrt. 

Transitions 
Abortlr:,wAcllvelAS 

Transitions 
#' enlly 

.~: Cj Abortt-tighActiveLAS 

' :-\ -j) Transitions 
,,/' entry 

cc ,,:;i Entry 
.Jt Transitions 

Figure 54. The spacecraft state model in model editor 

57 



8.2.2. Step 2 - Generate State Diagram in VS 

Figure 55 shows the generated state diagram in Visual Studio. 

; PrelaunchC... (t 
I dass 

':if srblgnition . : 

: ArstStage 
':if restart · dass 

··············· fif~rest:it 1 

PadAbort 
':if failure Class 

':if abort 
i AbortlowAc. .. 
1 dass 

':if repeat~ seq 

~ stagelseq J 
~ abort ,----- ~ entry 

< AbortHlghAc. •. (~) 't•• ... ·········· 
! 5econdstage 

, , ..... ; Oass 
~ las.Jettison ' 

).,,,,~_;;A; 

,., __ ,·r···· 

jf- repeat3 seq 
! 

':'JI- stage2seq J 

abort 
\ Clan 

\ 

~~~, 

~ l :::-- @r- · ··--·········- ·· L ...• : 

~ repeat4seq 
I 

7Jf stage3seq 

FourthStage 
Class 

7J!t stage4seq 

:ff entry 

Entry 
Class 

1· EarthOrblt i Class 

Figure 55. Generated spacecraft graphical state model in VS 

8.2.3. Step 3 - Generate Test Cases - State Based Coverage 

Figure 56 shows the generated test cases with the state based coverage. 

pub.l,~:=: stat.tc V9.t.~/~.8~9ecra.ftTest;f():J 
Spacecraft spacectaft ""}new Spacect~ft( 
II T0D0: verify if the current state is 
// ' 

~pacect'aft .';;BrgnitiJHf) ; 
II TODO: verify if.. the ··current 

t/ >···•••:? .. :,..... .(ii<\ 
'spacecraft. stagelSeq () ; 

1 

I l T0D0: verify if the current 
II 
spaCe8i2lft'.it:age2Seq(); 
// T0DO: verify if the current 

58 



II 
spacecraft.stage3Seq(); 
II TODO: verify if the current state is FourthStage 
II 
spacecraft. stage4Seq (); 
II TODO: verify if the current state is EarthOrbit 

public static void SpacecraftTest2() { 
Spacecraft spacecraft= new Spacecraft(); 

} 

II TODO: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition(); 
II TODO: verify if the current state is First Stage 
II 
spaQecraft.stagelSeq(); 
I I TODO: verify if the current state is SecondStage 
II 
spacecraft.stage2Seq(); 
II TODO: verify if the current state is ThirdStage 
II 
spacecraft.stage3Seq(J; 
II TODO: verify if the current state is FourthStage 
II 
spacecraft.abort(); 
II TODO: verify if the current state is AbortHighAct:iveLAS 
II 
spacecraft.entry(); 
II TODO: verify if the current state is Entry 

·. public static vqid SpacecraftTest3 () { 
Spacecraft spacecraft= new Spacecraft(); 
II TODO: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition(); 
II TODO: verify if the current state is FirstStage 
II altitude<= 1.2e5 
spacecraft.abort(); 
II TODO: verify if the current state is AbortLowActiveLAS 

public static void SpacecraftTest4 () 
Spacecraft spacecraft= new Spacecraft{); 
II TODO: verify if the current state is PrelaunchCheck 
II 
spacecraft.failure(); 
// TODO: verify if the current stateis PadAbort 

Figure 56. Generated spacecraft test cases - state coverage 

8.2.4. Generate Test Case - Transition Based Coverage 

Figure 57 shows the generated test cases with the transition based coverage. 

59 



pµ};:)Iit:)static vo 
Spacecraft spa 
I/ TODO: verify 
// 

acElqraft:f~st:1 {Y{ 
raft = new. Spacecraft() 

if the current stat · 

spacecraft. srbignitToh() ; 
II TODO: verify if the current 
I/ 
eipacec:ta:et. stagelSeq {) ; · 
// TODO: verify if the current 
II 
spa9rfrafy •. stag~~ SeqfJ; 
I/ TODQ: verify if the 
II 
S~:a,~7cr~~.}•·.sy,~gfT3.§etf(.t; 
l/ <TO oO: / ver i:f;'y\ if. U1e 
II 
~I)flCecr;rft. s.ta~.~4~~Sfl; 
~I TODOr ver±f:st i.f.1!·Jj,•~ ,..;K,..·:.i:d~•-i+' 

publicsta:tiov,oid Spae.eoran 
Spacecraft spacecraft·= n 
I/. TODO:. verify if the c 
1-J- ... 
spacecraft.srbfgnition{); 
If TODO: verify if the 
II 
spacecrafit.stag:elSeq!); 
II TODO: verify if the 
II 

sp.icecr aft< stagei2seqti•; 
I l TODO: Verify if ttie current 
II 
spacecrafJ::, stagf:i3Seq (); 
I />TODO: hrerifyiif the 
II 
s ace era :ft . abortJ l ; 

60 



I I TODO: verify i.f the 
II. ' .d,t:. 
spacecraft.entry(f; 
II 0: verify if .the current state is Entry 

'.'.,:':'.:,\ 

A ,'t,,,i:.,"' , ;~;sc, • de, , • • ' 1/;•;: 

public atiltic v;id s;~cecraftTest4() { , 
Spac~graft spacecraft "":::new S1?acecraf1;i,; 

.. ,,~l ~O: veri:f~ if the ~urrentf ·state is Pre 
'"/ I •• t"":: . . . 
spacecraft.srbignition O ;. · 
II TODO: v~Eify if the 
I~ .· •:z;:'.• 
spaeecraft .'~tagelSeq () ; 
II TODO: verify if the current 

· .. '.';~,aceci."ai~;~~ai~2seq ; . 
~f" I I TODO: verify if the current 

I I .· , .~ .•. :... . .. 
. 1;3pacecraft:~~tage3Se'q€} ; ,f it.i 
Tl 'I'ODO: verify if the cgffent 
I I •• [ 

~1¥)lic sta c ~~d Space 
·"' Space f "·""· cecraf' 

'/4 I/ 'i'.~00: v-ify if the 
. I I . 
:;~twecra~F: srbign (} 
ll 'l'ODO: ve:rdfy if c 
// 
$pacecraft. stagelJeq () ; 

;:?ll TODO:' 'tferifi i:t• the cu:1;rent. 
~ · 1 I , ...... . 

spacecraft ,'.~tage2Seq ( l ; 
TODO: 11 y if the cutr:ent 

pacecraft.repeat3Seq(); 
TODO: ve y if the c;u,rrent s:tate 

' ;,, . 

public static void Sp~e~crattTest6 0 { 
Spacecraft spa.,cecti:l.it:: = new Spacecraft(); 

·· ver~f i · he current· iilat~ 
I I . . 

srbigniHon {);. 
fy.if the CUt'J;"ent 

;;t;?,' 
spacecraft:stagelSeq(); 
II TODO: verify if t;tle cux-1:'ent 
I I . · · .. · ·· .... ,, . 
spac . aft. stage2Seq (} ; 
// 'I'090: vei:ify if the: 

L ~acecrat~;~b-Qtt: ( rf · 
61 



II TODO: verify if the current state is AbortHighActiveLAS 

public static void SpacecraftTest7() { 
Spacecraft .spacecraft"" new Spaceqraft{); 
II '.{'ODO: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition{); 
II TODO: verify if the current state is FirstStage 
II 
spacecraft.stagelSeq(); 
II TODO: verify if the current state is SecondStage 
II 
spacecraft.stage2Seq(); 
II TODO: verify if the current state is ThirdStage 
ll 
spadecraft.restart(); 
II TODO: verify if the current state is FirstStage 

public static void SpacecraftTest8 O { 
Spacecraft spacecraft= new Spacecraft{); 
II TODO: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition{); 
I /TODO: verify .if the current 
I/> 
spacecraft.stagelSeq(); 
II TODO: verify if the current 
II 
spacecraft.repeat2Seq(}; 
I l.JODO: verifY: if the current 

state 

state 

state 

public static void SpacecraftTest9() { 

is FirstStage 

is SecondStage 

is Fir§tStage 

Spacecraft spacecraft = new Spacecraft () ; ..... 

.. .. 

I I TODO: verify .if the current state·• is·. Prel~µnchChec~ · 
I I . 
spacecraft.srbignition(); 
II TODO: verify if the current state is FirstStage 
II 
spacecraft.stag:91Seq(); 
ll TODO: veriff.if the current state is SecondStage 
I I . 
spacecraft.abort(); 
II TODO: verify if the current state is AbortHighActiveLAS 

public static voidi~acecra~tTestlO () { 
Spacecraft spacecraft= new Spacecraft(); 
II T◊D0: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition(); 
II TODO: verify'.if the current state is FirstStage 
II 
spacecraft.stagelSeq{); 
II TODO: verif if the current state is SecondStage 

62 



II 
spacecraft.lasJettison(); 
II T0D0: verify if the current state is SecondStage 

public static v6id SpacecraftTestll{l { 
Spacecraft ~pacecraft = new Spacecraft(); 
II T0D0: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition(); 
II T0D0: verify if the current state is FirstStage 
II altitude<= 1.2e5 
spacecraft.abort{l# 
II T0D0: verify if the current state is AbortLowActiveLAS 
II 
spacecraft.entry ( l; ·· ... ·• 
II T0D0: verify if the current state is Entry 

public static void SpacecraftTest12 O { .. ·· 
Spac~craft spacecraft= new Spacecraft(); 
II T0D0: verify if the current state is PrelaunchCheck 
II 
spacecraft.srbignition(); 
II T0D0: verify if the current state is FirstStage 
II altitude>= 1.2e5 
spacecraft. abort U ; .. · . . . . ··.· 
II T0D0: verify if. the ctlrrent state is AbortHighActiveLAS 

pt1plic static void SpacecraftTest13.O { < ... 
.. Spacecraft spacecraft = new Spacecraft {); 

II T0D0: verify if the current state is PrelaunchCheck 
II 
spaceqraft.fallure{); 
I I T0D0: verify if·.· the current state is PadAbort 

Figure 57. Generated spacecraft test cases - transition coverage 

In the state based coverage, there are only four test cases generated. However, 

all states are covered by this suite of test cases. Based on our rationale, this suite of tests 

can be used as a good suite of check in gated tests, for their relatively smaller number of 

test cases and coverage of all states. 

In the transition based coverage, there are thirteen test cases generated. Every 

states and every transition is covered by this suite of test cases at least once. Based on 

63 



our previous reasoning, this suite of tests can be used as a good suite of regression test 

that can be ran daily, for their relatively larger number of test cases and relatively 

complete coverage of the source code. 

64 



9. CONCLUSION AND FUTURE WORK 

9.1. Conclusion 

The tool presented by this paper is a graphical tool for generating tests based on 

state models. As mentioned in the introduction section, testing is a vital part of the 

development process. Traditionally in a waterfall development methodology, testing is 

only one part of the development life cycle. In the new development process, testing is 

involved in every single aspect of the software life cycle. Here are three problems one 

would run into during the development process. 

1. It is often not easy to create and maintain an unified state model that would be 

used throughout the entire development life cycle. 

2. It is hard to create graphical based state models once there are too many states 

and too many transitions involved. 

3. During the implementation phase, due to limited resources, source code 

submissions are sometimes unguarded. This not only produces poor quality 

software, but also does not guarantee conservation of resource. Sometimes it 

even leads to more resources wasted in identifying and fixing bugs that could 

have been caught much easily if a suite of tests were emplaced as part of the 

source code management process. 

The first issue is solved by starting with the tree view based model editor. It is 

easy to construct a state model in the model editor. Anyone who is familiar with the 

65 



visual studio experience of property window should have no problem getting use to use 

the model editor to add/delete/edit states and transitions. The property window 

provides the user with a quick and error-resistant way to set start and end state on a 

transition. The tool also enables the user to save constructed model to an xml file on the 

disk and reload an existing xml file back into the tool. The xml style model file can also 

be viewed in IE or any other xml viewer for those who prefer to view state models in 

xml format. It also provides experienced users with a quick way of creating and 

modifying the model. Experienced users can open the model file in any other xml 

editor, edit the model and reload the xml model file back into the tool. 

Second issue is solved with the help of an existing functionality from visual 

studio, the class diagram. It may seem odd at the first that we are using a class model to 

represent a state model. The arrange engine used in visual studio class diagram viewer 

is quite intelligent. The tool can walk through the states and transitions created in the 

tree based state model. It generates visual studio compatible model files and 

corresponding code files. Then, one can open the generated model in the visual studio. 

After clicking on the arrange button in visual studio, a nice and clean graphical state 

model is presented, without the hassle of connecting dots and other visual and artistic 

challenges. 

Lastly, this paper presents a way to quickly and accurately generate a suite of 

test cases that provide good coverage for source code. Two different coverage 

algorithms are explored by my tool. The state based coverage guarantees that every 

66 



state in the state model is traversed at least once by the generated test paths. The 

transition based coverage guarantees that every transition in the state model is 

traversed at least once by the generated test paths. In most state models, the number of 

transitions is greater than the number of states. The suite of test cases generated by the 

state based coverage serves as a good suite of check in tests that a developer can run 

before source code submission. The suite of test cases generated by the transition 

coverage serves as a good suite of regression tests that can be ran daily to guarantee the 

quality of the software and catch bugs at an early stage. 

9.2. Future Work 

Some improvements can be made to the tool. 

To enhance the usability of the model editor, drag and drop support can be 

added for quick edits. User should be able to drag and drop states and transitions from 

one state to another. Copy/Cut/Paste operation can also be added to enable faster model 

editing. Tool tips and help text can be added to commands under the file menu to 

provide information on what the commands do. When the number of states gets too 

large and the model becomes harder to navigate, sub edit windows could be added so 

that user can edit a state in a fresh new window. 

To have a better overall user experience, tighter integration with visual studio 

can be explored so that graphical state model can be opened without opening visual 

studio. A visual studio project that contains the generated model files can be generated 

67 



automatically. When the user updates the state model in the model editor, the 

generated visual studio state diagram should sync up these changes. 

To enrich the functionality of the tool, other coverage criteria can be added to 

the tool. Since the tool already knows how to walk through the collection of generated 

test paths, integrating with other traversal algorithms should be relatively straight 

forward. 

68 



10. REFERENCES 

1. Meyer, B. "Object-Oriented Software Construction". Englewood Cliffs, NJ: 

Prentice-Hall, 1988. 

2. A. Pretschner. "Model-based testing," in ICSE '05: Proceedings of the 27th 

international conference on Software engineering, (New York, NY, USA), pp. 

722-723, ACM Press, 2005. 

3. P. V. R. Murthy, P. C. Anitha, M. Mahesh, Rajesh Subramanyan. "Test ready 

UML statechart models", pp. 75-82, SCESM, 2006 

4. Wong, W.E., Horgan, J.R., London, S., and Agrawal, H. "A Study of Effective 

Regression Testing in Practice", Proc. of the Eighth IEEE International 

Symposium on Software Reliability Engineering(ISSRE'97), pp. 522-528, 

November 1997. 

5. Rothermel, G., Untch, R.H., Chu, C., and Harrold, M.J. "Prioritizing Test Cases 

for Regression Testing". IEEE Trans. on Software Engineering, vol. 27, no. 10, 

pp. 929- 948, 2001. 

6. Pretschner, A., Slotosch, 0., Aiglstorfer, E., and Kriebel, S. "Model-Based 

Testing for Real - The Inhouse Card Case Study': J Software Tools for 

Technology Transfer, vol. 5, pp. 140-157, 2004. 

7. Pretschner, A., Prenninger, W., Wagner, S., Kuhnel, C., Baumgartner, M., 

Sostawa, B., Zolch, R., and Stauner, T. "One Evaluation of Model-Based Testing 

69 



and Its Automation". Proc. of the 27th International Conference on Software 

Engineering(ICSE'05), pp. 392 - 401, 2005. 

8. Xu, D., Xu, W., and Wong, W.E. "Automated Test Code Generation from UML 

Protocol State Machines", Proc. of the 19th International Conference on 

Software Engineering and Knowledge Engineering (SEKE'07), Boston, July 2007. 

9. Robert M. Hierons, Krill Bogdanov, Jonathan P. Bowen, etc. "Using formal 

specifications to support testing", Computing Surveys (CSUR), Vol. 41 Issue 2, 

Feb, 2009. 

10. Microsoft Corporation (2009). Dynamic Source Code Generation and 

Compilation. Retrieved October 20, 2009, from http://msdn.microsoft.com/en

us/library/650ax5cx.aspx. 

11. Microsoft Corporation (2009). System.ComponentModel Namespace. Retrieved 

October 20, 2009, from http://msdn.microsoft.com/en

us/library/system.componentmodel.stringconverter.aspx. 

12. El-Fakih, K., Yevtushenko, N., and Bachmann, G.V. "FSM-Based Incremental 

Conformance Testing Methods': IEEE Trans. on Software Engineering, vol. 30, 

no. 7, pp. 425-436, July, 2004. 

13. Hong, H.S., Kim, Y.G., Cha, S. D., Bae, D.H., Ural, H. "A Test Sequence 

Selection Method for Statecharts", / ournal of Software Testing, Verification and 

Reliability, vol.10, no.4, pp. 203-227, 2000. 

70 



14. Offutt, J., Liu, S., Abdurazik, A, and Ammann, P. "Generating Test Data from 

State-Based Specifications". Journal of Software Testing, Verification and 

Reliability, vol. I 3, no. I, pp. 25-53, 2003. 

15. Corina S. Pasareanu, Johann Schumann, Peter Mehlitz, Mike Lowry. "Model 

Based Analysis and Test Generation for Flight Software". Third IEEE 

International Conference on Space Mission Challenges for Information 

Technology, Volume 00, pp. 83-90, 2009. 

71 




