A GRAPHICAL TOOL FOR TEST GENERATION FROM STATE MODELS

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By
Qipeng Wu
In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

December 2009

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A GRAPHICAL TOOL FOR TEST

GENERATION FOR STATE MODELS

By

QIPENG WU

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

ABSTRACT

Wu, Qipeng, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, December 2009. A Graphical Tool for
Test Generation from State Models. Major Professor: Dr. Jun Kong.

This paper presented a graphical tool for generating test cases based on state models.
The tool provides users with a user-friendly model editor to create their state model in
a tree view structure. The tree based state model can then be saved to a disk in the form
of an xml file and any existing model file can be loaded back into the tool. Two
different traverse algorithms are explored by this tool, state based coverage and
transition based coverage. The tool implements both algorithms and is capable of
generating test paths based on different traversal algorithms. The tool also provides a
code generation process that walks through these test paths and generates test cases in
any one of the supported .NET based programming languages specified by the user.
Lastly, the tool can generate a Visual Studio compatible model file based on the same
state model created by the user. This model serves as a good visual representation of the
state mode] created by the user in the model editor. The same state model is
represented in three different forms, tree based state model in model editor, xml based

state model in an xml file and graphical based state model in Visual Studio. An example

1s used to demonstrate the usage of this tool and the algorithms used behind the scene.

11

TABLE OF CONTENTS

ABSTRACT ...ccoovreeeeveiveeeinans e eeetteseeiierateseieesetteeeieashareeeeenannraeeeeeitbaeee e tanaeta i rs et e aaas i1
LIST OF FIGURES ..ottt eettr e esrtee s eeresneeassseas s eeaesssmsesssssaeesabseasnsnesasnsrnsnanssennses vii
1. INTRODUCGTION ...ootviiiiieiiieieeeereirimreee e eesaseessesvsrasteaesensasessscsnessesaaenssessssossanssssas 1
1.1. Problem Definitioncccccooviieiriiiiiririeeeetreeeeae i esiraeeesesraseeneessesssenssmseesassaessaneresnse 1
1.2, TOOL OVEIVIEW ..oveeeviieireiieiiereereiveiaiesssesrnnesnrssnneenseassessesesesnassssmsenmeeaesesessesasiasisssenns 4
1.3. Organization 0f the Paper ... 9

2. BACKGROUND AND RELATED WORKcocoootiiiiriecirieecccieiniereeeeevreeeeenns 10
2.1. Model Based Test GEneration..........ccccouviiieeiieiecieiiieeecesiiineessesnenessesssssensesaees 10
2.2, RElAIEA WOTKovirieiiieeiiee ettt cetitee e er e e e s e et ee e e sssae e e aensbentaeessasrnnaesons 13

3. ALGORITHMS et evs e e e s ceabter e e esineeeaeessbnnsseaeenasransassnns 15
3.1. Test Generation AlZOTITRIMIS.c..uiiiiiieieeeciae et e e e e e eecsrer e s e s st e e erreeessaeens 15
3.1.1. State Based Traversalccccoociimieeiiiiiiei e 15
3.1.2. Transition Based Traversal...........cc.ccoooovieeeieienvinnrieiiieceriessnre s seneeeesnneesenis .18

3.2. Basics on Visual Studio DIQgramceeieirieeiienieiniennee e ceve e sveescesnnens 20

4, SYSTEM ARCHITECTURE. crrrervereeeenn reerernrerennreans Crveteennraereeieatreraaaan 22
4.1, Class DIAZIAIISocoooeiiirerirtisiesiise st sne st reae s e ans e saesseessesbasbsesaessassassneseas 22
4.2, Sequence DIagramiS........cocoeviiiiiiinienieinne et resste et e e esessaesaesseessassenas 24

5. DESIGN DETAILS ..ottt ettt ette s san st asesaeeseoneesaaees 26
5.0, MOAEIEQIOr ..ottt s ettt s a e e eeenernena 26
5.2, IMOAEIEIEIMENLouvviiieieicierieiiccieitreteeceeeer e s cearrareeeseesranscosnnssaesinsarsnsensssnsasenes 29
T R ¢ 1 (TSP 29

iv

B, MO oo ee s e e e ee s s st r e e et u s s ess s b bt anr et ata e et artrrerneaeennae s araetaes 30

5.5. StateTrECCONVEITETccoviiieeriireeeirereeiiitisiirtntesareesvesbase e assansseassresensnsrasnsneesais 32
5.6. TestCaseCodeGeNerator........ococevrerieeiiiiiicneiiiniinri et n st s e 34
6. USE CASES AND SCENARIOS.......cooiiiinirereencec et ns e 37
B. 1. ACKOIS ceiiiieiitiee et e ettt et e e e st r et e s et n e e b b s n s e s ae e as e s b e nte s 38
6.2. Scenarios and UI Step Throughccooiiiiininniriiecne 38

7. UTOVERVIEW ...ttt cer e smae s s s eaas st as s sne s an 48
Tl MENU BAT ..ot b e e 48
7.2, TaD PAZES ..cciuiiiciiiirieiiirerriies s sireeire s es st er s na e sss s s naaesee s s et b e e sn e e nebssensesnneraseass 48

8. CASE STUDIES ...ttt et sseesis s sabesaneonesses s ans s s e 50
8.1. The Bank Account State Modelccooeiiriieiiiriiniiec e 50
8.1.1. Step 1 —Create the Modelc.ooviiiieiiiiieeciir et ons 51
8.1.2. Step 2 — Generate State Diagram in VScoeeeeiirienininieneenc e 52
8.1.3. Step 3 — Generate Test Cases — State Based Coveragecccceeevvvverennennns 54
8.1.4. Generate Test Case Using Transition Based Coverage............cccovriveinenniens 55

8.2. The Spacecraft Ascent State Model...................... eee et e e e et e et e e e e e aerreas 57
8.2.1. Step 1 —Createthe Modelccoooviiierirree e e 57
8.2.2. Step 2 — Generate State Diagram in VSccccvvrieirininicrecreneesesreeeene 58
8.2.3. Step 3 — Generate Test Cases — State Based Coveragecoocccvevvervenennn. 58
8.2.4. Generate Test Case - Transition Based Coverageooceoveuveieerccniinencas 59

9. CONCLUSION AND FUTURE WORKccociimiirieiiiine e e 65
0.1, CONCIUSION 1.ttt ettt e et r et ese e a et e s b e asee e s eassaneanane 65
0.2, FUUIE WOTK ..ottt esameesmee e ne e 67

10.

REFERENCES

vi

LIST OF FIGURES

Figure Page
1. Construct astate Model........c.oocoiiiiiiiiiii e 5
2. XML representation of a state modelcooriiriiiiiiiii e 6
3. A graphical state model.............oooiiiiiii 7
4. Bank account state modelc.ccocmiiiiiciiiii e 11
5. State based traversalccccoceerieiiicire 15
6. A simple state modelc...cviiiiiinininnnn. SRRSO USSR 16
7. Generated test case - state based traversalccccvniciiiiiininiinc i 17
8. Transition based traversalccccocenereireiiniiciiii e 18
9. Asimplestate model ..o 18
10. Generated test cases - transition based traversalc.ccccooviiiininininn. 20
11. Visual Studio class diagramcooeiiciiiiiiiiiiiii e 21
12. C# code behind the diagramccooceomeriiniennirrc s 21
13. System architecture........ccooccvreencciionrvccnenns RO vovverns 22
14. Sequence diagram - generate state modelcccocereriricrininnieceee 24
15. Sequence diagram - SENErate tESt CASE..........coeeirueuemruereriririrteieretesieestresessesesasrnasens 25
16. ModelEditor class diagramcocmcneninnmcincn e 26
17. IMOAEIELEMENLcccoimiiiiiiiiietes ettt 29
18. State class diagramccceiviiiiinieiiiniiiii e s 29

vii

19. Method class diagram........... et e e e w31
20. StateTreeConverter class diagramccoceoevinenninncnnen. SRS 33
21. TestCaseGenerator class diagram.........ccooooeeiiiiennnennnnecnee e .. 34

22. Use cases...... P cevressisiriens tesrennenrerieiaaeaenas recrereevereirrenananns 37

28. Add transition 3........... e eer b arrrerennes et e errrtora—terearaeearaareenantaeeneseans eevenn.. 40
29. Add the Overdrawn state..........c..cccvvvveeennnenn. e rtteeerrear——aeeaear b abarereaaaatrraaaeiaranees 41
30. Display list of all states................ ettt st e ab e n e r e RTOURRPRURRON Y |
31. Two states and connection transition..........ccooevververereennnns e seerrenrrrrrrerraraeeareanranra 42
32. Delete transition 1......c..ccccovvreinnene freeerhreenrrreee e aenareasraaeas errererinr——raereaa—raees 42
33. Delete transition 2coceeevveeinreorveenvecenennee errebrereeesirerteeetrnrraaaeeann vereeerenreennnns 42

34. Delete state 1........... e re ettt te ettt et bt a—a—s e e sanneesaataaeraneas e ta e veenn 43

36. Generate state diagram............ e e 43
37. State diagram - Open, Overdrawn..........cccocecenieiiiniciiniciicnnens rreeerrrerinrenneenns. 44
38. (GEINEMETALE LEST CASES.....ocevvreerisiesrrereeeasanereasirrrnesessesassesessersssssssssssassrssnesessarssens oo 45

39. Generated test caseccooveerennenn ieeereeerenaraan et ee e rrerrertur——tretraeaaerraneanee cereeen 45

viii

40. Save state MOEL........ccociviiirciieeriieneiite et 46
41. Saved xml model fileocoeeiiiriieiiiiie 46
42. Open state MOdel.........ccociiiiuiiiine s 46
43. USET OPLIOIIS ...c.oocuiiiiiniiiiiitieic ittt ettt et 47
44, WOTKSPACE.eotiiiiiieieitrie ettt 49
45. RESUIL taD....oiiiiei e e 49
46. OPLIONS taD.....ciiiiriiieierteeeec s 49
47. The bank account state modelccccoeveriiiiiniiiiiiniiiin 50
48. The bank account state model in model editorccoceevvrviriiniiiiiniininnene 51
49. The bank account state model in VS ..ot 52
50. Generated code file for VS state model.........ccccovvivirieneneniienieninnineenneneeeeeens 53
51. Generated model file for VS state modelccccoocerviirieniniinininiiis 54
52. Generated test case - State COVETAGE........c.ivvivririeieiiiiiiinininreeresree et reeenens 54
53. Generated test cases - transition COVerageccoouvvviiniiinriniineninenrcie e 57
54. The spacecraft state model in model editorc..cccccovniiiniiiiiniiinne, 57
55. Generated spacecraft graphical state model in VS..........oocooiiinininnininene 58
56. Generated spacecraft test cases - State COVETagecoerurrmrmirrmeeruencerrnenecnens 59
57. Generated spacecraft test cases - transition COVErage..........cccovrererurrrrererernnrererenes 63

X

1. INTRODUCTION

Testing is becoming more and more important in the modern software
development process. As object oriented design is becoming the mainstream design
mechanism, UML diagrams are used in different phases throughout the development
process [1]. One of the UML models, the state model, is not only used during design,
but also used in testing. In a popular software development methodology, test driven
development, the state model plays a vital role during the entire life cycle of the
software construction [2]. Subsystems\components are derived from the state model

during design and the same model is used during testing for generating test cases.

1.1. Problem Definition

A huge amount of development time and effort is spent on documenting these
state models. Sometimes these models are only used heavily during the design phase of
the development process and neglected during other development phases. Even when
state models are used throughout the development process, it is not an integrated
experience. State models are created during the design phase using UML modeling
tools. The design of classes is derived from the state model and code representing those
classes and operations among classes are written by hand. During testing, test engineers
come up with test cases by analyzing state models. Test cases are then hand written

based on identified test scenarios. Due to resource constraints, not all possible paths

through the transition tree are covered. Only those paths considered top priority will
be covered by test cases. There are model based test generation tools that do test
generation by traversing state models. However, users will need to reformat their
graphical state models into a program-friendly format, e.g. an xml document or a text
file [3]. This not only costs the extra effort of making a new format of the same state
model, but also incurs dual maintenance cost throughout the project’s lifetime and in
the products’ after life.

Another problem with graphical state models, or with any other UI modeling
tool, is that it is normally easy to use when few states are involved. However, when the
number of states gets larger, it is a tedious process dragging and connecting numerous
states in a single state model. Studies have indicated that humans are only capable of
tracking up to 7 items simultaneously. Having to keep track of huge number of states is
definitely an error-prone process.

Software is becoming more and more involved with our daily work and personal
lives. We rely on software to tell us what the weather is going to be like. We rely on
software to manage the transportation system that takes us to and from work. We rely
on software to inform us what is happening near us and around the world. We rely on
software to manage our personal, professional and financial lives. Our lives are run on
top of software. As more and more software are developed each day by different
software companies, the rate of software growth has not slowed down for decades.

People always want the latest, the fastest and the newest software in their hands.
2

Companies spend huge amount of resources developing software to meet the needs of
the ever growing fast paced model life style. Due to time and other resource
constraints, large amounts of software used by everyday people are not well tested. A
lot of development teams do not have a properly implemented development life cycle.
Code quality maintenance is a big issue for development teams to manage [4]. A lot of
source code repositories are un-guarded. Source codes are checked in at will when the
code author thinks he/she is done implementing the code. Some better practices
enforce peer code reviews before code submissions. While peer code review is an
effective way of catching mistakes and bugs in the code, it is not a reliable way of
enforcing source code integrity and correctness. Lots of time is spent fixing bugs
introduced by these unguarded source code submissions. It might seem fast to check in
source code at will and patch things up later, eventually, the bugs introduced would
come back and bite the development team. More time would be wasted identifying and
fixing the unintentional bug. If every source code submission had to run through a set
of simple tests before going into the source code repository, we would have caught the
bug in the first place and eliminated the need of coming back to identify and fix the
bug. It is hard to strike a perfect balance between time spent developing the software
and time spent testing it. Existing studies already indicate that model based testing

improves bug detection process and actually reduce testing cost [5].

1.2. Tool Overview

This tool is intended to solve the problems listed above by introducing a new
way of creating state models, exploring automated test generation from state models
and experimenting the use of unified state model throughout the development process.

Phase one is the construction of the state model. Pictures are worth a thousand
words. Graphical state models are very common and useful, because they are visually
appealing and very easy to read and understand. However, as mentioned in the problem
statement, it is always cumbersome to construct these state models graphically by using
standard UML state model paradigms manually, because the sheer number of states and
transitions one needs to deal with. Layout out huge number of states and event huger
set of intermingled transitions on a piece of paper in a visible and organized fashion is
no easy task.

Some resolves to construct non-graphical based state model by representing
states and transitions with nodes in a XML document. It avoids having to deal with
arrangement of graphical states and transitions, but it also loses the appealing visual
elements possessed by its graphical counterpart. Not to mention the fact that it is
virtually impossible for a normal human being to make any sense out of the page long
XML document.

The above problem is solved by introducing the tree view based state model

construction tool. Users of the tool start with a single root node, States, in their model.

As shown in Figure 1, a collection of child nodes can be easily added to the root node,
which represents all states in a given state model. Transitions can be easily added to
each state by adding child nodes under the Transition node under each state node.
Properties on a transition can be set to indicate the starting and ending state of a
transition. Constraints can also be specified on each transition. Details of how to

constructing a state model will be covered in the Scenario and UI Step through section.

1 Transitions
; {.g® getBalance
| -4#® withDraw
¥ deposit
- withDraw
Lo close
=-£7§ OverDrawn
© [g® Transitions
: i g deposit

i g™ getBalance

- deposit
&40} Closed
-g® Transitions

Figure 1. Construct a state model

When a state model is created in the model editor, it can be saved to the hard
disk. The tools will traverse the state model and convert the structure to an XML
document. The XML document can be saved to the hard disk and loaded back into the

tool. Figure 2 shows an example of an XML representation of a state model.

<StateModel>
<Open>
< getBalance StaItState , f st
<withDraw StartState Open Ef;,&State— Gpen Constramtm 'b-amt>=0" />
<deposit StartState="Open" EndState="Open" Constramt—-"amb-—O" /> ;
<withDraw StartState="Open" EndState="OverDrawn" Constraint="b-amt<0" /
 <close StartState="Open" EndState="Closed" Constraint=""/> et
</Open> PEN . ~0C ‘ -
<OverDrawn>

' <dep051t StartStat'

.

Figure 2. XML representation of a state model

After the state model is constructed, this tool can generate a graphical state
model based on the tree view based state model. This way we achieved the simplicity of
constructing non-graphical state models, avoided the clutterness of constructing
graphical state models by hand and harnessed the benefits we get from visual
representation. Result graphical model is shown in Figure 3.

The state model is a very good starting point to the entire development process.
Not only we can base our design on the state model, we can also use the same model for
testing. This is the perfect way of aligning the design process and the test process to
identify good testing scenarios, which leads to good coverage on source code and higher

quality software. That leads to the second problem.

E -

Figure 3. A graphical state model

By using the state model generated from phase one, the tool can generate test
cases based on two different test coverage criteria, state based coverage and transition
based coverage. State based coverage is a test generation algorithm in which test paths
are generated in such fashion that all states in the state model are traversed at least
once. Transition based coverage is a test generation algorithm in which test paths are
generated in such fashion that all transitions in the étate model are traversed at least
once. These different test generation algorithms will be covered in more detail in the
algorithm section.

In general, the number of transitions in a state model is larger than the number
of states in a state model. Therefore, state based coverage provides a relatively smaller
number of test cases that offers a good coverage for the source code. Since this small
suite of test cases is quick and easy to execute, they can be used as a good suite of check

in tests emplaced as part of a gated check in process. A developer would runs these

7

check in tests before their code submission to make sure the code they are checking in
does not break major test scenarios. These tests provide good coverage for major
functionalities while remain relatively small in size, quick and easy to execute. If a bug
is introduced in the new source code that breaks an existing test case, it is relatively
easier to debug because the size of the test suite is smaller. It also provides more
incentives for developers to use before checking in for they are relatively less time
consuming to run.

Transition based coverage provides a relatively larger number of test cases that
offers more complete coverage for the source code. Since it is relatively bigger suite of
test cases and it may take longer to run, this suite of test cases can be used as a good
suite of regression tests that runs daily to identify possible bugs that may have been
checked in. Although new source code passed through gated check in tests, it does not
mean that the new source code is bug free. Daily ran regression tests provide more
extensive test coverage [6]. Bugs not caught by the gated check in test could be caught
by running the larger suite of test cases generated by transition based algorithm. As the
result, we can identify bugs early in the development cycle. It is hard to debug a
problem if there are a large number of bugs existing in the software. By identifying
bugs early, we not only make it easier to debug problem, but also eliminate the
possibility of duplicated dev effort. Because, sometimes, one bug can cause different
issues to surface which not only blocks the owner of the bug, but also blocks other

developers working on dependent or related components. This suite of generated test
8

cases can serve as a good base for regression tests which could be further extended by
manually adding additional test cases. It is a very cost effective way to develop software

and leads to better quality software.

1.3. Organization of the Paper

The remainder of this paper is organized as follows. Chapter 2 provides
background and related work on model based testing and automated test generation.
Chapter 3 introduces the algorithms used by the tool to traverse state models, some
background information on visual studio integration with the tool. Chapter 4 covers
the overall architect of the tool. Chapter 5 presents design details. Chapter 6 presents
use cases and user scenarios of the tool. Chapter 7 explains UI components of the tool.
Chapter 8 evaluates the tool by walking through an example. Chapter 9 summarizes

what this paper has covered and discusses some open issues for future work.

2. BACKGROUND AND RELATED WORK

2.1. Model Based Test Generation

“A classical estimate relates up to 50% of the overall development cost to testing.
Although this is likely to also include debugging activities, testing does and will
continue to be one of the prevalent methods in quality assurance of software systems”
[7]. Since the object oriented development has become the predominant methodology
for software development, more and more attention has been paid to the model based
testing.

The software development starts with gathering requirements. Domain experts
meet with software program managers so that program managers can learn more about
the specific domain and are able to define the problem the software is supposed to
solve. A set of requirements is written by the program manager to describe what
exactly the software should behave to solve the domain problem. These set of
requirements are written in human readable language so that both customers and
software development teams can read and understand. Customers and software
development teams then come to an agreement on these set of requirements. However,
since requirement specifications are written in human readable language, they have the
tendency to be incomplete, ambiguous and sometimes contradictory. Most of the
development teams have hand crafted tests based off of these requirement
specifications. Inevitably, these tests could be incomplete and not 100% reflection of

10

what exactly the customers really required. State models are constructed during
requirement/design phase to help clarify requirements.

Since state models are already widely used in the design phase, it is only logical
to reuse these set of state models for testing implementation based on these designs.
The model based testing makes scenarios under test more explicit, since system state
models accurately describe different states the object can be in and the transitions

among these states.

gerBalmmce
BankAccowunt
withdraw
fbamr>=0] 4
deposit
[aramry =0] getBolance
deposit famr» =0
withdraw
[b-any< 0]

deposit [Bramt<{]

Figure 4. Bank account state model

As shown in Figure 4, each state in the above state model accurately describes
the state the object is in. For example, the state Open in the BankAccount state model
in figure below. It indicates that when a BankAccount object is initialized and its
balance is greater than 0, its state is open.

Each transition consists of four parts of information. Take the transiﬁon from
the state Open to the state Overdrawn for example.

1. The start state of the transition is Open.

11

2. The end state of the transition is Overdrawn.

3. The event that triggers the transition is withdraw, represented by the arrow
going from Open to Closed.

4. The constraint on the event is b —amt < 0, which indicates that the
BankAccount object will only transit from the state Open to the state
Overdrawn when the balance of the BankAccount object is smaller than the
amount withdrawn from the account.

Not only do state models provide us with a rigorous way for defining problem
domains and designing software, they also provide us with a good foundation for the
automated test generation. A test path is a collection of transitions that starts with
object creation [8]. With the invocation of a given event, if the constraint of the event
is satisfied, the state of the object transforms from the start state to the end state,
therefore, completes the transition. Collection of test paths can be generated by
traversing through state models. Based on different traversing logic, different
collections of test paths can be generated. The collection of test paths can then be fed to
a code generator. The code generator can iterate through the test paths and generate
test cases. More advanced techniques can transfer state models into Constraint Logic

Programming language and generate test cases with test input parameters [9].

12

2.2. Related Work

Using formal methods to model system has long been researched and utilized
since the dawn of software industry. Using formal specifications to define system
behavior eliminates ambiguity and helps reducing the possibility of errors during the
software development process [9]. One kind of the most commonly used model
languages is finite state based language, in which states are defined from a finite set of
values. Several testing techniques come into existence based on finite state machines,
such as transition tour, modified T method, W-method, Wp-method, etc. These
techniques construct transition tree, traverse the transition tree based on different
traversing logic, and verifies each test path with predefined set of conditions. Many
state-based test generation methods also use a state model to represent the system and
then test whether or not the implementation and design models conform to each other
[8]. El-Fakih et al. have recently adapted four of the well-known methods (W, Wp,
UIOv, and HIS) for generating tests that would test only the modified parts of an
evolving specification [12]. Unfortunately, none of these techniques is tailored towards
the testing of object oriented systems.

State models are widely used in the design of object oriented systems. They
provide us with an accurate way of defining component behaviors. Test generation
techniques based on state models are also been researched and developed. Xu et al. 8]

explored the model based test generation based on four different criteria, the state

13

coverage, the transition coverage, and the basic and extended round-trip coverage.
Their tool is also capable of providing users with the ability to specify input parameters
for each transition and reuse these parameters when state model is modified. Hong et
al. [13] provide a way to derive extended state machines from state charts to devise test
criteria based on control and data flow analysis. Offutt et al. [14] provide definitions for
such test criteria as all transitions, all transition pairs, and full-predicate for guard
conditions. While topics covered in this paper is based on existing modeling and test
generation work, this paper concentrates on introduction of the tree based model
editing tool, the algorithms used in traversing the state model and the capability of
representing the same state model in three different formats, the tree based structure,

XML and the graphical state model in Visual Studio.

14

3. ALGORITHMS

3.1. Test Generation Algorithms

As introduced in the tool overview section, the tool can generate test cases based
on two different coverage criteria, the state based coverage and the transition based
coverage. These two coverage criteria are state model based traversal algorithms. We
start with the initial state in a state model, traverse through states in the state model
based on different algorithms and generate a collection of test paths. These test paths

are then used to generate test cases in the user preferred programming language.

3.1.1. State Based Traversal

ENDIF
ENDFOR L
Function Traverse (tranmnon targetState)
Mark targetState as visited . .;
Add transmon/targetState pair to the test path
FOR each transnmn t, that goes out of the targetState

\ Remove the last transmon/state pair added to the test path
END Function Traverse .

Figure 5. State based traversal

15

The traverse algorithm shown in Figure 5 can be explained by examining the
simple state model shown in Figure 6. It consists of 3 states, named A, B and C; and four
transitions, named 1, 2, 3 and 4.

O 21 [4]

(3]
B Cc

Figure 6. A simple state model

Here’s how the traversal works in steps.
Traverse (x, A)
Mark A as visited and add (x, A) to test path, [(x, A)]
Traverse (1, B)
Mark B as visited and add (1, B) to test path, [(x, A), (1, B)]
Since transition 2 leads to state A and A is marked as visited, skip transition 2
Traverse (3, C)
Mark C as visited and add (3, C) to test path, [(x, A), (1, B), (3, C)]
Since transition 4 leads to state A and A is marked as visited, skip transition 4
Since all transition from State C leads to visited states, save test path to collection
Remove (3, C) from test path, [(x, A), (1, B)]
Done Traverse (3, C)

Remove (1, B) from test path, [(x, A))

16

Done Traverse (1, B)
Remove (1, B) from test path, []
Done Traverse (x, A)

After the traversal, only 1 test path is generated for the simple state model above,
ie, [(x, A), (1, B), (3, C)]. The most important thing to take notice here is that all states
in the state model, A, B and C, are covered in this test path. However, not all
transitions are covered. Only transition 1 and 3 are included in the test path. We
created a path of states and reached each state by recording the transition/state pair.
Now, we can generate test cases based on the result test path collection. In this simple
case, we have only 1 test path in the collection. As shown in Figure 7, there is only 1

test case generated.

Figure 7. Generated test case - state based traversal

17

3.1.2. Transition Based Traversal

Figure 8. Transition based traversal

The traverse algorithm shown in Figure 8 can be explained by examining the

same state model used for state based traversal, as shown in Figure 9.

Figure 9. A simple state model

Here's how the traversal works in steps.
Traverse (x, A)

18

Mark A as visited and add (x, A) to test path, [(x, A)]
Traverse (1, B)
Mark B as visited and add (1, B) to test path, [(x, A), (1, B)]
Since transition 2 leads to state A and A is marked as visited, add (2, A) to test path,
[(x A), (1, B), (2, A)]
Add test path [(x, A), (1, B), (2, A)] to collection
Remove (2, A) from test path, result test path [(x, A), (1, B)]
Traverse (3, C)
Mark C as visited and add (3, C) to the test path, [(x, A), (1, B), (3, C)]
Since transition 4 leads to state A and A is marked as visited, add (4, A) to test
path, [(x, A), (1, B), (3, C), (4, A)]
Add test path [(x, A), (1, B), (3, C), (4, A)] to collection
Remove (4, A) from test path, result test path, [(x, A), (1, B), (3, C)]
Remove (3, C) from test path, [(x, A), (1, B)]
Done Traverse (3, C)
Remove (1, B) from test path, [(x, A)]
Done Traverse (1, B)
Remove (x, A) from test path, []
Done Traverse (x, A)

After the traversal, 2 test paths are generated for the simple state model above,

ie., [(x,A), (1, B), (2, A)] and [(x, A), (1, B), (3, C), (4, A)]. The most important thing to"
19

are used to represent state models. The simple example shown in Figure 11 illustrates

why and how this diagram tool is used.

Z““ b4

" Statel A
Class

" State0 A
Class

Transition0

.

1

Figure 11. Visual Studio class diagram

S

.,

At first glance, one may easily mistake the above class diagram for a state model.
That is exactly why the class diagram in VS is used to represent the graphical state
model. State0 and Statel in the above diagram are actually C# classes. Transition0 is a
property on State(. The return type of Transition0 is Statel. That’s how VS represent
the association between two classes. A link from State0 to Statel represents a property
on the StateQ) whose return type is Statel. Figure 12 shows the code behind the above

class diagram.

class Statel
- public Statel Transition0 {}
class sStatel
{ o
}

Figure 12. C# code behind the diagram

21

4. SYSTEM ARCHITECTURE

4.1. Class Diagrams

ModelEditor

StateTreeConverter

«interface»
IModelElement

Method

TestCaseCodeGenerator

Figure 13. System architecture

Figure 13 shows the class diagram of the test generation tool.

ModelEditor

This class contains the UI element of the tool. It is responsible for creating the
state model. It also contains the state model diagram generating logic. State models can
be created and modified in the tree view structure in the model editor. When selecting
anode in the tree, the property pane on the right side of the model editor displays
related property information to the selected node. User can than modify properties of

the selected node, state or transition, through the property window. This development

experience should be very familiar with users of Visual Studio.

StateTreeConverter

22

This class is the container for all user created states. It also has the logic to
convert the state model into transition trees.
IModelElement

This interface provides some common properties that are shared between the
State class and the Method class.
State

This class is an abstraction of a state defined in the state model. It has a
transition table in the form of a collection of key value pairs. Each key value pair
consists of a transition and the ending state of that transition.
Method

This class is an abstraction of a transition in the state model. It has two
important properties, the start state and the end state. Start state is automatically
defaulted by the tool since transitions are created under a state. The start state of a
given transition would be the state under which the transition is created. When user
set the value of the end state on a given transition, the end state is looked up in the
collection of states and the transition entry on the start state is updated with the
corresponding end state.
TestCaseCodeGenerator

This class is responsible for iterating through the collection of test paths and

generating test cases based on each test path. Since the tool uses .NET CodeDom APIs

23

for code generation, it is capable of generating test cases in different NET based

programming languages [10].

4.2. Sequence Diagrams

Generate State Model Diagram

ModelEditor TestCaseCodeGenerator StateTreeConverter

. . |
menu item click,
|

new

stateLis:t M
e e o e e

[D GenerateCDXmi

Figure 14. Sequence diagram - generate state model

Figure 14 shows the sequence diagram for generating the state model. After the
state model is constructed in the model editor and the user clicks on the menu item
“Generate state diagram”; an instance of TestCaseCodeGenerator is created. The tree
view based state model from the state editor is traversed and C# code files are generated
by calling GenerateCodeForDiagram on TestCaseCodeGenerator. After C# code files are

generated, the same stateList is traversed again by calling GenerateCDXml to generate

24

the VS compatible model xml file. By adding the result code file and the model file to a
VS project, we can open the model file and view the generated graphical state model.

Generate Test Case Based on State Model

ModelEditor TestCaseCodeGenerator StateTreeConverter

menu item cIick: :

i

|

| |
GetStateList !
1

L .

stateList

S iy R LR LR P TR
DFTraverse :
| 1

H

y

[
1
[
[
new |
.|

GetTestCase

testCasés]_I
e e o e

Generate

Figure 15. Sequence diagram - generate test case

Figure 15 shows the sequence diagram for generating test cases. After the state
model is constructed in the model editor and the user clicks on the menu item
“Generate test cases”, the state model is traversed based on the coverage criteria chosen
by the user. A collection of test paths are generated as the result of the traversal. An
instance of TestCaseCodeGenerator is created. The collection of test paths is passed to
TestCaseCodeGenerator::Generate method to generate code files that contains actually

test cases based on the programming language user have chosen.

25

5. DESIGN DETAILS

5.1. ModelEditor

= Fields

¥ stateTreeConverter
Izl Methods
49 AddChildNode
4% deleteToolStripMenultem_Click
&% Dispuse
4% GenerateCDxml
,5% generateToolStripMenultem_Click
aﬁ IrdtializeConponent
gﬁ menultemGenerateDiagram_Click
:ﬁ rmenultemGenerateTC_Click
4% menultemOpen_Click
4% menultemSave_Click
«@ ModelEditor
fé@ newstateToolStripMenultem_Click
g@ newTransitionToolStripMenultem_Click
4% Openvs
&% treeviewl_afterLabelEdit
4% treeview] _afterSelect
&% treeview]l_NodeMouseClick

Figure 16. ModelEditor class diagram

Figure 16 shows the class diagram for the ModelEditor class.

Fields

stateTreeConverter — an instance of StateTreeConverter class that manages all user

created states.

Methods

veid AddChildNode (IModelElerent newMcdelElement)

26

Description: Adds a child node to the current selected node and hook up the newly
created child node to represent the new model element.

Parameters

newModelElement — the model element that represented by the newly created child

node.

deleteToclStripMenultem Click(object sender, Eventirgs e)

Description: this method handles the click event for clicking the “Delete” menu item

on a selected node.

void GenerateCDXml (}

Description: generate an xml file that has the format for displaying the state model in

Microsoft Visual Studio.

void menultemGenerateDiagram Click({object sender, EventArgs e)

Description: this method handles the click event for generating the state model
diagram. The outcome of this method is two generated files. A CSharp file is generated
to contain the structures that support Microsoft Visual Studio display of the state
diagram. An xml file is generated to contain the same information but in a different

form required by Microsoft Visual Studio for displaying.

vold menultemGenerateTC Click(object sender, EventiArgs e)

Description: this method handles the click event for generating test cases. The outcome
of this method is a code file containing the generated test cases and a test driver. The

language used in the code depends on the option the user set in the “Options” tab.

menultemOpen Click{object sender, Evenilrgs e)

27

Description: this method handles the click event for the file open dialog.

void menultemSave Click(object sender, EventArgs e)

Description: this method handles the click event for the file save dialog.

public ModelEditor ()

Description: this is the constructor of the ModelEditor class. It creates an instance of

StateTreeConverter class and hook up some event handler methods.

void newStateToolStripMenultem Click(object sender, EventArgs e)

Description: this method handles the click event for creating a new state.

void newTransitionToolStripMenuItem Click(object sender, EventArgs e)

Description: this method handles the click event for creating a new transition.

void treeViewl AfterLabelEdit (object sender, NodeLabelEditEventhrgs e)

)

Description: this method handles the event when user edits the name of a node in the

model editor.

void treeViewl AfterSelect(object sender, TreeViewEventArgs e)

Description: this method handles the event when user selects a node in the model
editor. It hooks into the property window so that the property window displays the

content of the selected node.

void treeViewl NodeMouseClick(object sender, TreeNodeMouseClickEventArgs

e)

Description: this method handles the event when a node in the mode editor is clicked.

It enables user to edit the name of the selected node.

28

5.2. IModelElement

IModelElement
¢ Interface

" pame

%m,muwww’

%‘
|
1
§ i=! Properties
{

Figure 17. IModelElement

Figure 17 shows the class diagram for the IModelElement interface.

Property

Name — this property is shared by the State class and the Method class which are both
model elements. This interface provides a common place to host similar properties

shared by both model elements.

5.3. State

{t IModelElement

(State (
s

2

o
SR

& Fields

4@ tount

¥ isVisited

&9 name

4% transitionTable
& Properties

o [syisited l

7 Name
4 TransitionTable

= Methods
% State (+ 1 overload)

Figure 18. State class diagram

Figure 18 shows the class diagram for the State class.

29

Fields

count — this acts as the unique id for the states created.

isVisited — this field indicates whether this state has been visited by the state tree
traverse algorithm.

name — the name of the current State.

transitionTable — a hash table that contains the transitions associated with the current
State. Each transition contains information on the end State.

Properties

IsVisited — returns whether the current State is visited by the traverse algorithm.
Name ~ returns the name of the current State.

TransitionTable — returns the transitionTable.

Methods

public State()

Description: this is the public constructor for the State class.

5.4. Method

Figure 19 shows the class diagram for the Method class.

Fields

constraint — the constraint user can put on a Method.
count — this acts as the unique id for the Methods created.

end — this field indicates the end state of the current Method.

30

Q} IModelElement

i Flelds
¥ constraint

@¥ count
3 end
«# name
¥ parameters
o start
o# stateTreeConverter
i Properties
2 Constraint
% EndState
jﬁ Name
% parameters
i StartState
e StateTreeConverter
5 Methods ‘
g GetStandardvalues
2@ GetStandardvaluesExciusive
@ GetStandardvaluesSupported
4 Method (+ 1 overload)
4% UpdateTransitionTable

Figure 19. Method class diagram

name - the name of the current Method.
parameters — parameters taken by the current Method.
start — this field indicates the owner state of the current Method.

stateTreeConverter — the stateTreeConverter that contains all available States.

Properties

Constraint — returns the constraint of the current Method.

EndState — returns the name of the end State associated with the current Method.
Name - returns the name of the current Method.

Parameters — returns the parameters of the current Method.

StartState — returns the owner state of the current Method.

31

stateTreeConverter — return the stateTreeConverter that contains all available States.

Since it is static, there is only one instance across the entire application.

Methods

public Method()

Description: this is the public constructor for the Method class.

override bool GetStandardValuesSupported(ITypelescriptorContext context)

‘zluesCollegtion

override TypsConverter.Standarc

GetStandardValues (ITypebesc srContext context)

override bool GetStandardvValuesExclusive (ITypeDescriptorContext context)

Above three methods are implemented for the base class StringConverter. Method class
dervies from the Microsoft .NET StringConverter class to support the pull down menu

filling behavior observed in the property window [11].

void UpdateTransitionTable ()

Description: this method updates the transition table of the owner state if the user

changes the end state by changing the end state property in the property window.

5.5. StateTreeConverter

Figure 20 shows the class diagram for the StateTreeConverter class.

Fields

modelName — the name of the current model.
stateList — a list of all available States.
statesVisited — this keeps track of all the States that have been traversed by the traverse

algorithm.

32

P
P

! StateTreeConverter (&)}
Class

= Fields
% modelName
49 statelist
¢ statesvisited

]

_,_59 testCases
¥Doc
= Properties
% ModelName
Statelist
74 TestCases
& Methods
=4 DFTraverse
“§ GetState
«§ StateTreeConverter

Figure 20. StateTreeConverter class diagram

testCases — the internal structure defined for the test case generation logic. Each test
case is represented by a list of States and the transitions they are associated with.
xDoc — an xml representation of the States and their associated transitions tracked by
the stateTreeConverter.

Properties

ModellName ~ returns the name of the current model.
StateList — returns a list of all available States.

TestCases — returns the internal structure representing test cases.

Methods

public StateTreeConverter()

Description: this is the public constructor of the StateTreeConverter class.

void DFTraverse (ReyVals Lr<Method, State> visitingState)

33

Description: this method traverse the transition tree and adds series of States together
to form test cases.

Parameters

visitingState — the state the traversing algorithm is currently visiting,

State GetState(string stateName)

Description: this method gets the corresponding State identified by the name passed in
by the caller.

Parameters

stateName — the name of the state user is looking for.

Return

The state identified by the name passed in by the caller

5.6. TestCaseCodeGenerator

Class :

i

{= Fields

| 4¢ todomsg

| & Methods

| % Generate

g GenerateCodeForDiagram

[TestCaseCodeGenerator (&) E

Figure 21. TestCaseGenerator class diagram

Figure 21 shows the class diagram for the TestCaseCodeGenerator class.

Fields

34

todoMsg — the TODO string used throughout the generated test case to remind tester to
fill in the test data.

Methods

string Generate({string modelName, string typeName,

List<List<KeyValuePair<Methnod, State>>> stateGraph)

Description: this method generates the test cases based on the graph of states passed in.
Parameters

modelName —the name of the model

typeName - the type of language the code generation logic should use to generate the
test case.

stateGraph — this is a list of KeyValuePairs of Method and State. Each second level list
identifies a sequence of transition and state changes that indicate a test case.

Return

A string representing the full path of the file all the test cases are generated into.

string GenerateCodeForDiagram(string modelName, List<State> statelList)

Description: this method generates the CSharp code needed by the Microsoft Visual
Studio to display the state diagram. Each state in the stateList is generated into a C#
class. Each transition under that state is generated into a property on the generated
class. The owner class of the property represents the start state of the transition and the
return type of the property represents the end state of the transition.

Parameters

35

Modelname —the name of the model.
statelist — a list of all available States.
Return

A string representing the full path of the generated CSharp file.

36

6. USE CASES AND SCENARIOS

cincludex_X7 Add/Delete State

Create State Model

«include»

Add/Delete
Transition

«uses
Generate State
Model Diagram
«wuses» V
«uses»
{ Y Generate Test Case
auses»
Tester
yses» Save State Model
Ses»

Open Existing
State Model

Modify Tool Options

Figure 22. Use cases

Figure 22 shows the use cases diagram for this tool.

37

6.1. Actors
Tester is the direct user of the tool who uses this tool to model their state model,
create state model diagrams, and generate test cases from state models and other related

activities.

6.2. Scenarios and Ul Step Through

Before we proceed to our first scenario, the tool is started by double click on the

tool exe ModelEditor.exe. Figure 23 shows the Ul of tool in its starting state.

Figure 23. ModelEditor

Create State Model
This scenario consists of two sub scenarios, add/delete state and add/delete

transition. In order to add a new state to the state model, the tester can select the node

38

in the main workspace labeled “States” and right click. A context menu should pop up

and “New State” should appear as the only context menu item, as shown in Figure 24.

=¥ ModelEdit

Figure 24. Create new state 1

The tester can click on “New State”. A child node will be added to the “State”
node. The name of the state is defaulted to “State”, but tester can rename the node to a
state name that makes sense in real life scenario. In this case, we’ll name our new state
“Open”. Hit enter when finish and a new state is added. Notice the property window on
the right side of the tool window is now displaying properties for the new state, as

shown in Figure 25.

" TransitionTable [Collection)

1
§
|
i
‘

Figure 25. Create new state 2

To add a transition for a state, expand the state you want to add the transition

to. A transition node will appear under the selected state node, as shown in Figure 26.

39

f* Transiions isConstruct False

Figure 26. Add transition 1

The tester clicks on “Transitions” node and right click to bring up the context

menu that has one context menu item reads “New Transition”, as shown in Figure 27.

i Tramzitione
M E TN

Figure 27. Add transition 2

The tester clicks on “New Transition” and a child node appears under
“Transitions”. The name of the child node is defaulted to be “Transition”. The tester can
rename the node to a transition name that makes sense in a real life scenario. In this
case we name this transition “withdraw”, as shown in Figure 28. Hit enter when finish
and a new transition is added. Notice the property window is displaying properties of
the newly created transition. Property named “StartState” should be set to the state to

which the transition belongs.

- Transitions
R o it

73 OverDiawn

Figure 28. Add transition 3
40

As shown in Figure 29, one more state called “Overdrawn” can be added.

=-g® Tiansitions
C ¥ WithDraw

: (3 (e Falee
 OverDrawn

{Coltection)

Figure 29. Add the Overdrawn state

Now, we can complete the transition we created under “Open” by setting the
“EndState” property to “Overdrawn”. In order to accomplish that, the tester can first
click on the transition “withdraw”. On the property window on the right side of the
tool window, the tester can click into the “EndState” property. A drop down triangle
appears on the right side of the control. Clicking on the drop down button, a list of the

available states is displayed, as shown in Figure 30.

States
77 Open
@#* Transitions
gi® WithDraw

71 g OverDrawn StartState
- £ Dasign

_ Paameters (Collection)

Figure 30. Display list of all states

The tester clicks on “Overdrawn” and insert “b-amt < 0 and b-amt>=-1000"
under property “Constraint”. Now, we completed adding two states and a transition

connecting the two states, as shown in Figure 31.

4

States
3 Open

E @ Transitions
i Legd® WithDraw
- #-53 OverDrawn

o DQelDréﬁn
Open

_ WithDraw
[Collection)

Parametets

Figure 31. Two states and connection transition

The tester can delete any transition instance by right clicking on the target
transition instance and a context menu with one menu item “Delete” will appear, as

shown in Figure 32.

OverDrawn Data
BadState | Endotete

StarState
esign
Constraint

BadT uansklllol'l
[r‘ 1, I :

Figure 32. Delete transition 1

Clicking on “Delete” removes the selected transition, as shown in Figure 33.

&4, BadState
i, _@ Transtiors:

Figure 33. Delete transition 2

42

As shown in Figure 37, the generated graphical state model can be opened in a

VS project and rearranged to look like the following.

#5Bank - oft Yisual tudio
File Edt ¥iew Project &tﬁé Debug ~ClassDiagram Data Tools Test
A-Gdd 4 9B -6 -y avOU

- Window Community Help

|

jeeg uo !lnlog%

i«

QverDrawn it

A withDraw L}

fal
B

e
<

sa éq.ssdmd M@} gMaﬁ;’z‘\ sséD %‘;mm

|73 Class Details

(5] Output] 4 Ermor Lst |5 Find Ressuks 2| Find Symbal Resut

Figure 37. State diagram - Open, Overdrawn

Generate Test Case

The tester can generate test case based on the state model created in the tool by
clicking on “Tool” on the menu bar, then clicking on “Generate Test Case”. There are
two different test generation algorithms to choose from, state coverage based
generation or transition coverage based generation. The tester can pick one based on

the purpose of the test suite to generate tests, as shown in Figure 38.

44

| Tood

Generate TestCase ...'i State Coverage
| Transition Caverage

Generate State Diagram i o .

Figure 38. Genenerate test cases

To see the generated test cases, the tester can click on the “Result” tab. The

generated test file containing test cases and a test driver is displayed, as shown in Figure

39.

& Modelfditor

// This is a test suite for test
namespacs testTestSuite |

using System;

using System.Collections.Generic;
using test;

public class testTestSuite {

public static woid testTest1() {
test test = new tast():
// TODO: werify if the current state is Open
// b~amt < 0 and b~amt > ~1000
test, WithDrawn() :
// TODO: werify if the current state is OverDrawn

}

public static void main(String[] args) |
testTest1():
}

Figure 39. Generated test case

Save State Model
The tester can save the state model by go to “File->Save” on the menu bar, as

shown in Figure 40.

45

o felDlawn

Figure 40. Save state model

The following is an example of a saved model xml file, as shown in Figure 41.

<Sté§eModel>f !

Figure 41. Saved xml model file
Open Existing State Model

The tester can save the state model by go to “File->Open” on the menu bar, as

shown in Figure 42.

Figure 42. Open state model

46

Modify Tool Options
The tester can modify tool options by navigating to the Options tab, as shown in

Figure 43.

File Tool
| ModelEditor | Result| Options |

Language

C++
VB

JScrpt

Figure 43. User options

47

7. UI OVERVIEW

This tool consists of two major UI components: the menu bar and the tab pages.

7.1. Menu Bar

File -> Open

Opens an existing state model file and load it into the tool.
File -> Save

Saves the current state model to the user specified location.
Tool->Generate State Diagram

Generates a state mode diagram and open it in Microsoft Visual Studio.
Tool->Generate Test Case->State Coverage

Generates test cases based on the state model constructed in the editor using
state based coverage.
Tool->Generate Test Case->Transition Coverage

Generates test cases based on the state model constructed in the editor using

transition based coverage.

7.2. Tab Pages

There are three tab pages in the tool, as shown in Figure 44.
ModelEditor Tab
This tab is the workspace for create state model. The property window on the

rightmost side of the tab page display properties of the selected node in the workspace.
48

Figure 44. Workspace

Result Tab

Figure 45. Result tab

As shown in Figure 45, this tab page displays the test cases and the test driver

generated by the test generation component.

Options Tab

ModslEdtor | Resuft Options |

Jésfiegmw\\wmj

Language

Figure 46. Options tab

As shown in Figure 46, this tab page provides tool options for users to modify.
Language — this pull down menu contains all the possible languages the tool can use to

generate test cases. The available languages include C#, C++, Visual Basic and JScript.

49

8. CASE STUDIES

8.1. The Bank Account State Model

This state model documents state changes for a given bank account. There are

three valid states for a bank account, Open, Overdrawn and Closed, as shown in Figure

47.
getBaiance
BankAccount
> Closed

withdranww \

[B-ame>=0} b
deposit
[bramr=0] getBalance

deposit famt:=0]

withdraw
[-amt< 0]

deposit [b+amt=0]

Figure 47. The bank account state model

For state Open, there are five different transitions coming out of it.

1. One can perform getBlanace on a bank account. This transition does not affect
the state of the bank account; therefore, it ends up back on the same state.

2. One can deposit into a bank account. Noted by the constraint on the transition,
as long as the deposit amount is not a negative amount, the end state is still
Open.

3. One can withdraw from a bank account. If the balance after withdraw is not

negative, the end state is still Open.

50

8.1.1.

48.

If the balance after withdraw is negative, the end state is Overdrawn.

One can also close the account. The end state is Closed

For state Overdrawn, there are three transitions coming out of it.

Deposit can be made to the bank account. If the ending balance after the deposit
is positive, the end state is Open.

If the ending balance after a deposit is negative, the end state is still Overdrawn.
One can always get balance on an overdrawn account. The end state is still

Overdrawn.

For state Closed, there is no transition coming out of it.

Step 1 — Create the Model

Create model elements representing the above state model as shown in Figure

Transitions
; getBalance
g withDraw
“.g® deposit
. g® withDraw
i [@# close
& £3 OverDrawn
i [Eg® Transitions
i @* deposit
: - getBalance
- deposit
E-{J Closed
i g Transitions

Figure 48. The bank account state model in model editor

51

8.1.2. Step 2 - Generate State Diagram in VS
Generate state diagram, include generated code files and model files in a C#

project. The model file can be opened in VS as shown in Figure 49.

Tools Test Window Commurity Help
| » Debug .= Any CPU

§/ Emem sse[)%‘mmm Uﬂ!-'ﬂlosgz

R withDraw |

oo depnsﬂ (14 deposit

“%“; getbalence |

Fird Resuts 2|4 Find Symbol Results| ' Class Details

Figure 49. The bank account state model in VS

Figure 50 shows the generated CSharp file, classl.cs

class Open

public Closed close {}
3 ' :

class QOverdrawn
L o ~
/// <value>b+amt>=0</value>
public Open deposit {}
public Overdrawn getBalance {}
/// <value>bt+amt<0</value>
public Overdrawn deposit {}
}

class Closed
{
}

Figure 50. Generated code file for VS state model

Figure 51 shows generated xml model file, class1Diagram.cd

<ClassDiagram>
 ;
<Class Name="Open"> ;\
 <Position X="0" Y="0" Width="0" />
<Typeldentifier>
<FileName>Class! cs</F11eName>
</Typeldentifier> : -
<ShowAsAssociation>
<Property Name="getBalance" />
<Property Name="withdraw” />
<Property Name="deposit" />
<Property Name="withdraw" />
<Property Name="close" />
</ShowAsAssocmtmn> o
</Class>
<Class Name="Overdrawn">
<Position X="0" Y="0" Width="0" >
<Typeldentifier>
<FileName>Classl.cs</FileName> &
</Typeldentifier> :
<ShowAsAssociation> o
<Property Name="deposit" />
<Property Name="getBalance" />
<Property Name="deposit” />
</ShowAsAssociation> ‘
</Class> :
<ClassName="Closed> .~ » & =
<Position X="0" Y="0" Width="0" /> *

53

</Class>
</CIassD1agram> ,

Figure 51. Generated model file for VS state model

8.1.3. Step 3 — Generate Test Cases — State Based Coverage

Following the state based traverse algorithm, the following collection of test paths
are generated from the state based coverage.
{[new, Open], [withdraw, Overdrawn]}
{[new, Open], [close, Closed]}

There are two test cases generated based on the collection of test paths. Notice all

three states are covered by the two test cases, as shown in Figure 52.

‘;c_:count Glase{ i s
;‘/ TODO. verlfy £ the current state is Closed

Figure 52. Generated test case - State coverage

TestCasel starts with instantiating the BankAccount object and verifying that its
state is Open. By calling withdraw with the constraint of b-amt < 0, the state of the object
is changed from Open to Overdrawn, therefore, we need to verify that the state of the
object is Overdrawn. TestCase2 also starts with instantiating the BankAccount object and

verifying that its state is Open. By calling close, the state of the object is changed from

54

Open to Closed, therefore, we need to verify that the state of the object is Closed. By
executing these two test cases, all three states, Open, Overdrawn and Closed are covered.
However, not all possible transition among these states are covered, therefore, this suite of
test cases can be used as a good check in tests that runs before every developer’s code

submission to provide basic coverage.

8.1.4. Generate Test Case Using Transition Based Coverage

Following the transition based traverse algorithm, the following collection of test
paths are generated from the transition based coverage.
{[new, Open], [getBalance, Open]}
{[new, Open], [withdraw, Open]}
{[new, Open], [deposit, Open]}
{[new, Open], [withdraw, Overdrawn], [deposit, Open]}
{[new, Open], [withdraw, Overdrawn], [getBalance, Overdrawn]}
{[new, Open], [withdraw, Overdrawn], [deposit, Overdrawn]}
{[new, Open], [close, Closed]}
As shown in Figure 53, there are seven test cases generated based on the collection
of test paths. Notice not only all three states are covered, all transitions are also covered
with the generated test cases. This suite of test cases can be used as foundation for a good

set of regression tests that runs daily to guarantee the quality of the software product.

public static void TestCasel ()
 BankAccount bankAccount = new BankAccount () ;
// TODO: verify if the current state is Open
’/ :

:bankAccount getBalance(); =

/) TODO: verify if the current state is Open

55

{

// TODO: verify if the current state 1s0Open
Iy

bankAccount.close();
// TODO: verify if the current state is Closed

Figure 53. Generated test cases - transition coverage

8.2. The Spacecraft Ascent State Model

A model that has more states and transitions is shown in Figure 54. This
example examines how the tool does in generating test cases based on different
coverage criteria. This model describes the ascent and earth orbit flight phases of a

spacecraft [15].

8.2.1. Step 1 - Create the Model

; % x® Transitions
- #® srbignition
L. faiture
FirstStage
i @ Transitons
- stage1Seq
é' ##* abort
I - abont
++ 1} SecondStage
| %.g® Transitions
-+ stage2Seq
+ 4 repeat2Seq
- abort
i - g lasJetlison
I i £ ThirdStage
| s+ Transitions
i -g# stagedSeq
repea3Seq
#* abor
+* restart
214 FourthStage
! i ¥ Transifions
@ stagedSeq
- @® repeatSeq
- @ abort
restart
b EarthOrbit 1
: -g® Transitions l
]
l
|
I
!
i

=43 PadAbort

- o Transitions
£3 Abortl owActivel AS
@ Transifions

entry

& 33 AbortHighActivel AS
iy @ Transitions
- entry
&4 Enby
« g Transitions

Figure 54. The spacecraft state model in model editor

57

8.2.2. Step 2 — Generate State Diagram in VS

Figure 55 shows the generated state diagram in Visual Studio.

s

f
R failure c&ass

2 sbignition

. Firststage @& { AbortLowAc.. &
 restart | Qass bra abort § Class

s

!
 abort ; ?

.. ,; mﬂ;mgm SIS i
| Cass .

:3] abort > R— SRNUS—— 5

Y
‘%
%
g
]

Figure 55. Generated spacecraft graphical state model in VS

8.2.3. Step 3 — Generate Test Cases — State Based Coverage

Figure 56 shows the generated test cases with the state based coverage.

public static void SpacecraftTestl [} {
Spacecraft spacecraft = new Spacecraft():

/-/.-TODO: verlfy if the: current state is PrelaunchCheck
e >

spacecraft“srblgnltlon(),

//- TODO: verlfy lf the current state is FlrstStage :
Sl - \
\spacecraft stagelSeq()

// TODO: verify if the current state is SecondStage.m

spacedraft stageZSeq() :
// TODO: verify if the current state is ThirdStage

58

[/
spacecraft.stage3Seq{);
£/+TODO: verify if the current state is FourthStage
e

spacecraft. stage43eq{),

// TODO: verify if the current state is EarthOrblt
}

public static void SpacecraftTestZ ()} { : . -~;
Spacecraft spacecraft = new Spacecraft{); ‘
// TODO: verify if the current state is PrelaunchCheck
//
spacecraftisrblIgnition(}; . :
[/ TODO: verify if the current state is FirstStage
/7 - :
spacecraft. stagelSeq(),~ o
// TODOY verify if the current state is SecondStage -
7t
spagecraft.stage2Seq(); ‘
// TODO: verlfy if the current state is ThirdStage
spacecraft. stage3Seq(}, G :
// TODO: verify if the current state is FourthStage
1/ ;
spacecraft.abort () ; : & =
[/ 20DO: verify if ‘the current state is AbortHighActivelAS
rL ‘ o .
spacecraft entry(), ‘
//-TODO: verify if the current state is Entry

}
public static void SpacecraftTest3{() {WSK
Spacecraftispacecraft = new Spacecraft():

//-TODO: verify if the current state is PrelaunchCheck
Ve ‘
spacecraft.srblgnitioni}:

// TODO: verify if the current state is FlrstStage'

// altitude <= 1.2e5 *

spacecraftiabort ()

// TODO: verify if the current state is AbortLowActlveLAS

} .

public statlc void SpacecxaftTest4{} {
Spacecraft spacecraft = new Spacecraft()
// TODO: verify if the current state is PrelaunchCheck
!/
spacecraft.failure(); .
L £/ TODO: verlfy if the current state is PadAbcrt
1

Figure 56. Generated spacecraft test cases - state coverage

8.2.4. Generate Test Case - Transition Based Coverage
Figure 57 shows the generated test cases with the transition based coverage.

59

publlc static void SpacecraftTestl() {

3

publlc static void SpacecraftTestZ() £

!

Spacecraft spacecraft = new:Spacecrafti{);

//.TODQO: verify if the current state is PrelaunchCheck
e , ,
spacecraft srbIgnltlon(), ~ _

// TODO: verify if the current state is FirstStage

Vol o

| spacecraft.stagelSeq();’

/4 TODO: verify if the current state is‘SecondStagé‘
o - 3 5 o
spacecraft stage2Seql); o .

// TODO: verify if the current state is ThirdStage
// e
spacecraft.stage3Seqgl);

£/ TODO: verlfy if the curreht state igﬂﬁourthStage

//

. spacecraft.stagedSeq(); _ : ; ,{
/L TOoDO: verlfy if the current state is EarthOrbit

Spacecraft spacecraft = new Spacecraft(),

. TODO‘ verlfy if the current state is PrelaunchCheck
f7. o , .
spacecratt. srbIgnltlon{), : ; e
// TODO: verify if the current state is FirstStage
2/ . o ~
Spacacraft stagelSeq(),

// TODO: verify if the current state is SecondStage

lh
spacecraft.stage2seql); - . ‘ -

// TODO: verlfy if the current state is ThirdStage
Ll . .
spagecraft,stage386q():

// TODO: verify if the current state is FourthStage

L7
spacecraft repeatdSeql);

// TODO: verify if the currént state iéfihifaStage

publlc static void SpacearaftTestS(} i

’spacecraft stagelSeq{),

spacecraft . stage3Seql):

Spacecraft spacecraft = new Spacecraft(}; - :
/4 TODO: verlfy if the current state is Prelaunchcheck

st

spacecraft srbrgnxtlon(), o

/1 TODO verlfy if the current state is FirstStage
/] : ; o
//.TODO: verify if the current gtate is Secondstage é
Y e ; o

~[spacecraft stageESeq{),

// TODO: verify if the current state is ThirdStage
77 ; .

// TODO: verify if the current state is FourthStage
//
spacecraft.abort ()

A TODO vexlfy-;

spacecraft . . E s
// TODO: ify i e is SecondStage

Thirdstage

“épaéeCraft.iepeat3Seq();
//+T0D0: verify if the ¢urrent

}

// TODO: verify if the current state is AbortHighActivelAS

public static void SpacecraftTest7 () {

}

Spacecraft spacecraft = new Spacecraft(),ﬁ
// TODO: verify if the current state is Prelaunchcheck
s

spacecraftisrbignitiond);

//. TODO: verify if the current state is FirstStage

// \
spacecraft.s?agelSeq(): e \
// TODO: verify if the current state is SecondBtage
/o ~
spacecraft.stage2Seq():; -

) TODO. verlfy if the current state is ThirdStage

'spacecraft restart(),

// TODO: verify if the current state is FirstStage

publlc static void SpacecraftTest8() {

Spacecraft spacecraft = new Spacecrafti{): = E
// TODO: verify if the current state is PrelaunchCheck
e :
spacecraft srblgnition();

/1l TODO Verlfy if the current state is F;rststage

il :

spacecraft stagelSeq(),

//:-TODO: verify if the current state is SecondStage
e

spacecraft repeatZSeq(),

// TQDO verlfy if the: curreat state is FlrstStage

public static void Spacecraftfest9().{ :

public statioh veia SpacecraftTes£10(>*{

Spacecraft spacecraft = new Spacecraft();
[/ TODO: verlfy if the current state is Pre\
[.

spacecraft, srbIgnltlon(),
//TODO: verify if the current state is FlrstStage
/L

spacecraft. stagelSeq(), o :
//T0D0: verify if the current state is SecondStage
il

nchCheck

,spacécraft abort {);

/1 F0DO: verlfy if the current state 15 AbortH;ghActlveLAS

Spacecraft spacdcraft = new Spacecraft(); ;

[/ TODO: verify if the current state is PrelaunchCheck
/7 .

spaceoraft srbIgnltlon(},

e

spacecraft.stagelSeq();

// TODO: verify if the current state is SecondStage

62

g - L
spacecraft, lasJett::.son{}, -
// TODO: verify if the current state is SecondStage
}
public static Qéld SpacecraftTestll() {
Spacecraft’ spacecraft = new Spacecraft{}:;
// TODO: verlfy if the current state is Prelaunchcheck
spacecraft srqunltlon(),
// “TODO: verify if the current state 1s FlrstStage
//.altitude <= 1:2e5
spacecraft.aborb(y: 0 o oa ~ o
// TODO: verify if the current state is AbortLowActlveLAS
e
spacecraft.entry{}; -
// TODO: verify if the current state is Entry

}

public static void SpacecraftTestl2() {
Spacecraft spacecraft = new Spacecraft{);
// TODO: verify if the current state is PrelaunchCheck
L/ o ‘

spacecraft. srbIgnltlon{),\; .

// TODO: verify if the current state is FirstStage

// altitude >= 1.2e5 w

spacecraft.abort ()

// TODO: verlfy if the current state is AbortﬁlghActlveLAS

1

publlc static void Spacecraft?estlB() { . .
Spacecraft spacecraft = new Spacecraft{):

// TODO: wverify if the current state is PrelaunchCheck

Lfo

gpacecratt. fallure{}, : ‘

s TODO verify if the current state is PadAbort

Figure 57. Generated spacecraft test cases - transition coverage

In the state based coverage, there are only four test cases generated. However,

all states are covered by this suite of test cases. Based on our rationale, this suite of tests

can be used as a good suite of check in gated tests, for their relatively smaller number of

test cases and coverage of all states.

In the transition based coverage, there are thirteen test cases generated. Every

states and every transition is covered by this suite of test cases at least once. Based on

63

our previous reasoning, this suite of tests can be used as a good suite of regression test
that can be ran daily, for their relatively larger number of test cases and relatively

complete coverage of the source code.

64

9. CONCLUSION AND FUTURE WORK

9.1. Conclusion

The tool presented by this paper is a graphical tool for generating tests based on
state models. As mentioned in the introduction section, testing is a vital part of the
development process. Traditionally in a waterfall development methodology, testing is
only one part of the development life cycle. In the new development process, testing is
involved in every single aspect of the software life cycle. Here are three problems one
would run into during the development process.

1. Itis often not easy to create and maintain an unified state model that would be
used throughout the entire development life cycle.

2. Tt is hard to create graphical based state models once there are too many states
and too many transitions involved.

3. During the implementation phase, due to limited resources, source code
submissions are sometimes unguarded. This not only produces poor quality
software, but also does not guarantee conservation of resource. Sometimes it
even leads to more resources wasted in identifying and fixing bugs that could
have been caught much easily if a suite of tests were emplaced as part of the
source code management process.

The first issue is solved by starting with the tree view based model editor. It is
easy to construct a state model in the model editor. Anyone who is familiar with the

65

visual studio experience of property window should have no problem getting use to use
the model editor to add/delete/edit states and transitions. The property window
provides the user with a quick and error-resistant way to set start and end state on a
transition. The tool also enables the user to save constructed model to an xml file on the
disk and reload an existing xml file back into the tool. The xml style model file can also
be viewed in IE or any other xml viewer for those who prefer to view state models in
xml format. It also provides experienced users with a quick way of creating and
modifying the model. Experienced users can open the model file in any other xml
editor, edit the model and reload the xml model file back into the tool.

Second issue is solved with the help of an existing functionality from visual
studio, the class diagram. It may seem odd at the first that we are using a class model to
represent a state model. The arrange engine used in visual studio class diagram viewer
is quite intelligent. The tool can walk through the states and transitions created in the
tree based state model. It generates visual studio compatible model files and
corresponding code files. Then, one can open the generated model in the visual studio.
After clicking on the arrange button in visual studio, a nice and clean graphical state
model is presented, without the hassle of connecting dots and other visual and artistic
challenges.

Lastly, this paper presents a way to quickly and accurately generate a suite of
test cases that provide good coverage for source code. Two different coverage

algorithms are explored by my tool. The state based coverage guarantees that every
66

state in the state model is traversed at least once by the generated test paths. The
transition based coverage guarantees that every transition in the state model is
traversed at least once by the generated test paths. In most state models, the number of
transitions is greater than the number of states. The suite of test cases generated by the
state based coverage serves as a good suite of check in tests that a developer can run
before source code submission. The suite of test cases generated by the transition
coverage serves as a good suite of regression tests that can be ran daily to guarantee the

quality of the software and catch bugs at an early stage.

9.2. Future Work

Some improvements can be made to the tool.

To enhance the usability of the model editor, drag and drop support can be
added for quick edits. User should be able to drag and drop states and transitions from
one state to another. Copy/Cut/Paste operation can also be added to enable faster model
editing. Tool tips and help text can be added to commands under the file menu to
provide information on what the commands do. When the number of states gets too
large and the model becomes harder to navigate, sub edit windows could be added so
that user can edit a state in a fresh new window.

To have a better overall user experience, tighter integration with visual studio
can be explored so that graphical state model can be opened without opening visual

studio. A visual studio project that contains the generated model files can be generated

67

automatically. When the user updates the state model in the model editor, the
generated visual studio state diagram should sync up these changes.

To enrich the functionality of the tool, other coverage criteria can be added to
the tool. Since the tool already knows how to walk through the collection of generated
test paths, integrating with other traversal algorithms should be relatively straight

forward.

68

10. REFERENCES

. Meyer, B. “Object-Oriented Software Construction”. Englewood Clifis, N.J.:
Prentice-Hall, 1988.

. A. Pretschner. “Model-based testing,” in ICSE ’05: Proceedings of the 27th
international conference on Software engineering, (New York, NY, USA), pp.
722-723, ACM Press, 2005.

. P. V. R. Murthy, P. C. Anitha, M. Mahesh, Rajesh Subramanyan. “Test ready
UML statechart models”, pp. 75-82, SCESM, 2006

. Wong, W.E, Horgan, J.R., London, S., and Agrawal, H. “A Study of Effective
Regression Testing in Practice”, Proc. of the Eighth IEEE International
Symposium on Software Reliability Engineering (ISSRE’97), pp. 522-528,
November 1997.

. Rothermel, G., Untch, R.H., Chu, C., and Harrold, M.]. “Prioritizing Test Cases
for Regression Testing”. JEEE Trans. on Software Engineering, vol. 27, no. 10,
pp. 929- 948, 2001.

. Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel, S. “Model-Based
Testing for Real - The Inhouse Card Case Study ”. /. Software Tools for
Technology Transfer, vol. 5, pp. 140-157, 2004.

. Pretschner, A., Prenninger, W., Wagner, S., Kiihnel, C., Baumgartner, M.,

Sostawa, B., Zolch, R., and Stauner, T. “One Evaluation of Model-Based Testing

69

10.

11.

12.

13.

and Its Automation”. Proc. of the 27th International Conference on Software
Engineering (ICSE'05), pp. 392 — 401, 2005.

Xu, D., Xu, W., and Wong, W.E. “Automated Test Code Generation from UML
Protocol State Machines”, Proc. of the 19th International Conference on
Software Engineering and Knowledge Engineering (SEKE'07), Boston, July 2007.
Robert M. Hierons, Krill Bogdanov, Jonathan P. Bowen, etc. “Using formal
specifications to support testing”, Computing Surveys (CSUR), Vol. 41 Issue 2,
Feb, 2009.

Microsoft Corporation (2009). Dynamic Source Code Generation and
Compilation. Retrieved October 20, 2009, from http://msdn.microsoft.com/en-
us/library/650ax5cx.aspx.

Microsoft Corporation (2009). System.ComponentModel Namespace. Retrieved
October 20, 2009, from http://msdn.microsoft.com/en-
us/library/system.componentmodel.stringconverter.aspx.

El-Fakih, K., Yevtushenko, N., and Bochmann, G.V. “FSM-Based Incremental
Conformance Testing Methods ", IEEFE Trans. on Software Engineering, vol. 30,
no. 7, pp. 425-436, July, 2004.

Hong, H.S., Kim, Y.G., Cha, S. D., Bae, D.H., Ural, H. “A Test Sequence
Selection Method for Statecharts”, Journal of Software Testing, Verification and

Reliability, vol.10, no.4, pp. 203-227, 2000.

70

14. Offutt, J., Liu, S., Abdurazik, A., and Ammann, P. “Generating Test Data from
State-Based Specifications”. Journal of Software Testing, Verification and
Reliability, vol.13, no.1, pp. 25-53, 2003.

15. Corina S. Pasareanu, Johann Schumann, Peter Mehlitz, Mike Lowry. “Model
Based Analysis and Test Generation for Flight Software”. Third IEEE
International Conference on Space Mission Challenges for Information

Technology, Volume 00, pp. 83-90, 2009.

71

