
N-GRAM-BASED SEARCH PROCEDURE

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Szymon Woznica

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

June 2009

Fargo, North Dakota

North Dakota State University
Graduate School

Title

N-GRAM-BASED SEARCH PROCEDURE

By

SZYMON WOZNICA

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

lll

ABSTRACT

Woznica, Szymon, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, June 2009. N-gram-based Search
Procedure. Major Professor: Dr. Anne Denton.

Efficient querying and discovery of meaningful patterns in data becomes more

and more important with accelerating growth of data published every day on the

Internet. Tree pruning-based algorithms used in most popular search programs have

troubles when dealing with infrequent query strings, limiting the number of returned

results that might be of interest to the user. Furthermore, the existing tools are not

capable of finding data patterns that could inform the user about the frequency of

occurrence and location of a specific set of words in large, user-defined sets of

textual data, in an efficient manner.

In this paper, we present a new search tool, which is based on n-grams and

modern software technologies. Our tool can efficiently index word n-grams existing

in large sets of user-defined, textual data and subsequently assist users in querying

the text corpus, helping them to find hidden patterns and their locations in the input

data, effectively. We describe an algorithm for extracting word n-grams with a

parameter "n" equal to two, three and four, and demonstrate how it can be leveraged

by the end-user of the search tool to mine data in a new way. The presented tool

offers a unique feature that allows the user to search a set of n-grams, extracted from

abstracts of biomedical publications obtained from the U.S. National Library of

Medicine (NLM), filtering the search result by words existing in the English

language.

IV

The data tier of the search tool is based on the Microsoft SQL Server 2008

supported by a set of Common Language Runtime (CLR) functions and Transact

Structured Query Language (T-SQL) based stored procedures, whereas the business

logic and the user interface utilizes C# .NET 3.5 libraries to support regular

expression patterns, database connection (LINQ to SQL) and multithreaded system

operations.

V

ACKNOWLEDGEMENTS

I would like to express my gratitude to my adviser, Dr. Anne Denton whose

constant support and encouragement kept me motivated through my graduate

program and for all her valuable suggestions and for always finding time to discuss

my work.

I wish to thank other members of my graduate committee, Dr. Kendall Nygard,

Dr. Weiyi (Max) Zhang, and Dr. Edward Deckard for their time and helpful

suggestions.

Special thanks to my parents, wife, daughter and friends for their support and

motivating me to complete my paper and my graduate program.

Vt

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMEN1·s ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER I. INTRODUCTION .. 1

1.1. Overview ... 1

1.2. N-grams ... 2

1.3. Problem Statement. .. 3

1.4. Proposed Tool .. 4

1.4. l. Overview ... 4

1.4.2. Data Tier ... 5

1.4.3. Business Logic Tier .. 6

1.4.4. Presentation Tier-Graphical User Interface .. 6

1.5. Organization of the Paper .. 8

CHAPTER 2. BACKGROUND .. 9

2.1. Existing N-gram-based Search Tools .. 9

Vil

2.2. MED LINE® Database .. 10

2.3. Microsoft SQL Server ... 14

2.4. LINQ to SQL ... 14

2.5. Common Language Runtime Functions .. 15

2.6. User-defined Functions and Cross Apply mechanism 16

CHAPTER 3. APPLICATION DESIGN ... 17

3.1. Overview ... 17

3.2. Application Architecture ... 17

CHAPTER 4. IMPLEMENTATION ... 19

4.1. Input Data Reading .. 19

4.2. N-gram Extraction Algorithm ... 21

4.3. N-gram Search ... 30

4.4. Result Analysis .. 33

4.5. Full-Text Index Subtleness .. 34

CHAPTER 5. APPLICATION PERFORMANCE ANALYSIS 36

5.1. Search Effectiveness Analysis ... 36

5.2. Efficiency Analysis - Overview .. 38

5.2.l. Database Population and N-gram Extraction .. 38

5.2.2. Search .. 41

Vil!

5.2.3. Browsing Results .. 46

CHAPTER 6. CONCLUSION ... 48

6.1. Conclusion ... 48

6.2. Future Work and Limitations .. 49

REFERENCES ... 50

APPENDIX 1. A SAMPLE FRAGMENT OF XML FILE 54

IX

LIST OF TABLES

1. Search Tool Effectiveness Analysis ... 37

2. Properties of the input files .. 39

3. Scalability test results of the n-gram extraction component 3 9

4. Scalability test results of the search component for bi-grams42

5. Scalability test results of the search component for tri-grams 43

6. Scalability test results of the search component for quad-grams45

7. Scalability test results of the result browser component..47

X

LIST OF FIGURES

Figure

1. Tier interaction diagram ... 5

2. A sample interface of PubMed basic search module ... 11

3. A sample interface of Pub Med advanced search module 12

4. A sample representation of the Pub Med search results ... 13

5. Search tool data model ... 18

6. Code snippet for method for reading XML file ... 20

7. A sample set ofrecords in the Abstract table ... 21

8. The T-SQL stored procedure to extract n-grams ... 22

9. Scalability of then-gram extraction algorithm .. 25

10. Code snippet for the helper class "Bi Gram" .. 26

11. Code snippet for the table definition used by the CLR function 27

12. Code snippet for the "extractBirams" CLR function ... 27

13. Regular expression pattern used to identify word uni grams 28

14. Code snippet for a function that links the CLR function to SQL Server 28

15. Input data manager window ... 30

16. Search module window .. 31

17. Code snippet of the LINQ query called for the bi gram database search 32

18. Result browser module window ... 34

19. Task 1. Add abstracts to database .. 40

20. Task 2. Extract n-grams ... 41

XI

21. Efficiency test results - searching bi-grams ... 43

22. Efficiency test results - searching tri-grams .. 44

23. Efficiency test results - searching quad-grams .. 46

24. Efficiency test results - browsing results ... 4 7

CHAPTER 1. INTRODUCTION

1. 1. Overview

Rapidly increasing growth rate of traffic and data available through the Internet

[1] as well as public access to large quantities of machine-readable text, makes

mining such data and extracting useful information a challenging task. Feeding a

general purpose data search engine with a word or phrase is often not the most

efficient way to search. Regularly occurring spelling mistakes in search queries

(specifically those made in less frequently used words and phrases, such as common

biological names) can greatly bias or narrow the number of results returned by the

pure Boolean information retrieval programs [2]. Mining user-defined sets of textual

data is often limited to scanning text and searching for exact matches of the query

strings. Such techniques become very inefficient when dealing with large amount of

non-indexed data. These issues continuously encourage computer scientists to

develop new, more efficient algorithms and to design computer tools that aid their

users in finding information that is relevant to their needs. One group of the

techniques for information retrieval from large datasets which is recently gaining

more popularity and attention of companies developing broadly used web-based

search programs is based on n-grams. Converting text corpus to a set of n-grams has

multiple advantages, for example, it allows embedding it in a vector space, i.e.

representing as a histogram, thus allowing the textual set of data to be compared to

other textual data in an efficient manner [3]. Other, statistical methods, such as z

scores are used to compare sequences by examining, based on their standard

2

deviation measure, how much each n-gram differs from its mean occurrence in a

large set of textual data. N-grams have been also used to measure the likelihood that

two sequences come from the same source set [3].

1.2. N-grams

An n-gram is a sub-sequence of n items from a given sequence [3, 4]. N-gram

based algorithms are used in a broad range of research topics in computer science.

Most commonly we can find them in machine learning algorithms, spelling of

misspelled words, compression algorithms, speech recognition, OCR (optical

character recognition), and information retrieval. The last topic (information

retrieval) includes searching for documents, for information within documents and

for metadata about documents, as well as searching relational databases and the

World Wide Web [5]. Two types of n-grams can be distinguished: letter n-grams

and word n-grams. In this study we use n-grams of alphanumeric words with n in the

range of two to four words. Those n-grams are usually called two-grams (or di

grams), three-grams (or tri-grams), and four-grams (or quad-grams), respectively.

So, the sentence: "This is a red fox" would be composed of the following n-grams:

• bi-grams: This is, is a, a red, red fox

• tri-grams: This is a, is a red, a red fox

• quad-grams: This is a red, is a red fox

Typically, if we slice a sentence of length k words into n-grams, it will have a

maximum of k-l bi-gram instances, k-2 tri-gram instances, k-3 quad-gram instances,

3

and so on. Often, however, the number of unique n-grams is much lower, because

the same n-grams occur multiple times and only their frequency values increase. A

major benefit of using n-gram-based search algorithms is that single errors present in

the input data [6] do not significantly affect overall frequencies in textual patterns.

1.3. Problem Statement

It's both interesting and valuable for the scientists to discover and understand

data patterns, existing in a large number of scientific documents, published regularly

in the Internet. In the recent years, many information retrieval and web mining tools

leveraging n-gram-based algorithms have been presented, to manage and use data

available on the web [7]. However, the popular, general purpose search tools lack the

functionality that would provide comprehensive, domain specific information

beyond a location of documents that are matching a specific keyword, in textual set

of data [8]. The existing tools do not offer both high efficiency of indexing corpora,

and finding word n-grams that are unique to a domain-specific, user-defined sets of

data. One of the existing techniques used in n-gram-based search tools to provide

better search efficiency, pruning of infrequent n-grams, has the important

disadvantage. It doesn't store information about n-grams occurring infrequently (less

often than a defined support threshold value) what may greatly influence quality of

the search results.

The ability of the computer program to search and efficiently filter search results

based on the existence of the query terms in the English language can help to

4

significantly narrow the amount of information presented to the user [9]. As a result,

it can uncover interesting patterns that are domain specific and would otherwise be

hidden. Our tool aims to overcome the described functionality and performance

issues, at the same time providing the users high quality information on frequent data

patterns and their locations in a specific, user-defined text corpus.

1.4. Proposed Tool

1.4.1. Overview

This paper presents word n-grams based search tool that aids users in efficient

information retrieval from a large set of data. The proposed search system is fast,

accessible and modular. The data to be searched is first provided in the Extensible

Markup Language (XML) format, and then processed by extracting n-grams and

their frequencies. The resulting data sets are indexed to deliver quick search results

as well as to provide the user with a full-text data context of the n-gram search result

obtained from the user-defined textual input.

The architecture of our tool is based on the three-tier model, which is one of the

commonly used software architecture patterns. The three-tier model consists of the

following three core tiers: data, business logic, and the presentation tier (user

interface). Each tier is developed and maintained as an independent module. This

approach has the advantage that it allows for developing modular software - in such

approach, any tier can be replaced or upgraded independently as requirements or

5

technologies change [10]. The tier interaction of our tool is shown in Figure 1 and

described in the following subchapters.

Data Tier

CLR
Functions

MSSQL
Server

Database

Table Valued
Stored Procedures

1.4.2. Data Tier

Business Logic Tier

Add
User Input

Data to
Database

Class
library

Extract
N-grams

Search
N-grams

Figure 1. Tier interaction diagram.

Presentation Tier

The database utilized by the tool is hosted by Microsoft SQL Server and first

populated with the user-defined input data and then with indexed word n-grarns and

their frequencies, as well as an English dictionary and a list of English stop words.

Tables holding data defined by the tool user are synchronized using both T-SQL

stored procedures and CLR table-valued functions. The database content is searched

using a set of T-SQL stored procedures returning tabular n-gram results to the user.

6

1.4.3. Business Logic Tier

Most of the search and result filtering process is done on the database server (in

the data tier) to minimize the number of data records that are being sent to the client

side. This approach also makes the tool more flexible by allowing changes to be

made to the database structure and database-located T-SQL stored procedures

without requiring the user to make changes in the high-level language compiled

code. With stored procedures, these sorts of changes can be hidden to an extent,

because the parameter list and the table-valued results returned by stored procedures

represent their contract, and changes can be made as long as the contract is met.

The business logic tier of our tool takes the mam responsibility for sending

database queries, collecting query results and processing them in a way that can be

presented to the end-user in form of lists, text, numbers, and graphs.

1.4.4. Presentation Tier - Graphical User Interface

The core functionality of the system is accessible through a Windows Form

based C# .NET application. The tool's presentation tier consists of the following

three low cohesive modules:

• Input data manager

• Search module

• Result browser

7

The user is allowed to use any set of abstracts using the input data manager

module. The two restrictions put on the input file are that it must be provided to the

program in XML format and include <AbstractText> and </ AbstractText> XML tags

in order to recognize the target data. Once, the input file is read, all bi-, tri-, and

quad-grams and their respective frequencies are extracted and indexed quickly.

Once, the input data is indexed, the search module becomes active and the user is

allowed to specify search parameters and perform searches by entering as little as

one character of the first n-gram. The user can choose the parameter "n" for the n

grams to be two, three, or four.

The search results browser module becomes available to the user, once the n

gram search is completed. The module has three major functions:

• To allow for browsing n-grams found during the n-gram search phase:

The user can see all matching n-grams as well as their corresponding

frequencies in the input data.

• To view the histogram of the n-gram data: Histograms are constructed to

plot data density [11]. It shows as bars, what proportion of the n-gram

search result fall in each of several categories corresponding to the

number of matching n-grams.

• To allow the user to select an n-gram and find out how it is used in the

full text input data. The program provides a means to the user to explore

the selected n-gram in a wider, more understandable context.

8

1.5. Organization of the Paper

The remainder of the paper is as follows: Chapter 2 provides a literature review

of the relevant existing tools and techniques used in the information retrieval area.

Chapter 3 explains details of a proposed algorithm and an architectural design of our

search tool. Chapter 4 gives an overview of implementation of the developed

application and explains its various features. Chapter 5 shows general

experimentation setup and results of data indexing and search performed on the test

data. Chapter 6 summarizes the work done, and provides conclusions and

suggestions for future work.

9

CHAPTER2.BACKGROUND

2.1. Existing N-gram-based Search Tools

There are many search tools that utilize n-grams to improve users' search

experience. Google Inc. [12] uses n-grams in a variety of its research and

development projects, including data mining of large data sets. Google's n-gram

database consists of a huge amount of word n-grams collected from the web. Google

Search however, uses algorithms that are not based solely on n-grams to provide the

most relevant search term suggestions to their users. Rather than n-grams, Google's

Search engine implements the content-based data classification techniques [13j.

Google Search displays the first ten (most popular) search suggestions and doesn't

allow the user to view the frequency count of the suggested word n-grams.

Sekine [14j proposed a tool for linguistic knowledge discovery, based on n

grams with "n" parameter equal to nine. The tool could work with an arbitrary

number of wildcards. It also had low hardware requirements and provided the search

results in a fraction of a second. However, to index 120 millions of n-grams using

five 4GB-memory machines, two months were needed. Increasing the amount of

random access memory to 64GB reduced the processing time to one week. This fact,

virtually limits the tool to be used with one static set, rather than dynamically

changing sets of data.

A system for querying n-grams produced from one trillion words that were

drawn from the Internet was presented by Hawker et al. [15). The authors created a

search tool that worked with the word n-grams with a parameter "n" in the range

from one to five. To reduce the size of the n-gram dataset, the collection was filtered

by a cut-off frequency of 200 units for unigrams, and 40 items for bigrams to 5-

grams. However, filtering the n-gram database made the tool difficult to use, when

searching for word n-grams having low frequency count value.

An approach to develop a tool based on word n-grams to improve the user's

search experience was made by Cui et. al. [16]. An algorithm presented by the

authors aimed to extract correlation between search query terms and document text

by analyzing server logs containing complete characteristic of the user browsing

activity. The algorithm was based on the information on the documents that were

selected by the users after reading a set of the search results for a particular set of

query terms. To measure the "query result set" correlation, word n-grams were

extracted from a complete set of available documents and then compared to a set of

words used as the search query. Before measuring correlation, stop words were

eliminated from the searched set to improve the overall accuracy of the search

results.

2.2. MEDLINE® Database

N-gram based algorithms usually work best with large sets of textual data. One

of such sets is MEDLINE®. It is the authoritative repository of abstracts from

literature published in medical and biomedical journals. MEDLINE currently

contains over 18 million abstracts, covering a wide range of disciplines within health

11

sciences (broadly interpreted), from biochemistry to public health [17]. The oldest

documents available at MEDLINE library were published in the late 40's of the 20th

century. All abstracts in the database are publicly-accessible for reading, basic

searching and downloading using PubMed - a native MEDLINE web-based search

tool [18]. This tool is in most cases effective for simple searches, but does not

provide an effective means of working with complex search scenarios. Figure 2

illustrates a sample interface of the PubMed basic search module, whereas Figure 3

shows a sample interface of the Pub Med advanced search module.

Figure 2. A sample interface of Pub Med basic search module.

The basic search module gives only a very basic functionality that allows the user

to search for a keyword or a set of keywords. The query is then processed on the

server side and a set of abstracts containing the searched terms is returned to the

user. The interface of the advanced module of the search application provides more

flexibility in specifying different search criteria. The user can search by author,

journal, publication date or different categories. However, even the advanced module

doesn't give much flexibility that would allow narrowing the search space or giving

the user more information about search terms found in the abstract texts (Figure 3).

The interface of PubMed, however, can be used to find abstracts within a subject

area that is of interest to the user. The obtained set of data, once saved, can be used

with other search and processing tools.

r::: Search by Author, Journal, Publication Date, and more

Fill in any or all of the fields below, as needed.

Q All of these (AND) Any of these {OR)

Author ..,,

Journal ..,,

Index

lndu

Publication Date ..,, to present

(yyyy/mm/dd - month and day are optional)

,;,;, Limit by Topics, Languages, and Journal Groups

Full Text, Free Full Text, and Abstracts

! Links to full text

Humans or Animals

Humans

Animals

Type of Article

Clinical Trial

Editorial

Letter

Me ta-Analysis

Pr.=ir- hcP ~111rl,:::ilin~

Subsets

Journal Groups

Core clinical journals

Dental Journals

Nursing journals

Tnnirc

Clear

Links to free full text

Gender

Male

Female

Languages

English

French

German

Italian

Ages

Abstracts

All Infant: birth-23 months

All Child: 0-18 years

All Adult: 19+ years

Newborn: birth-1 month

Infant: 1-)1 mnnths

Figure 3. A sample interface of Pub Med advanced search module.

12

13

PubMed is a pure Boolean retrieval engine [17], which often makes it difficult to

use, since it requires entering a complete search term, instead just part of it. A single

misspelled letter in a search string submitted to PubMed can result in zero returned

articles. It is a critical issue, specifically when users don't know the exact, correct

spelling of more complex non-english terms (such as common biological terms) that

frequently occur in the health science field. Figure 4 gives the sample search result

representation of PubMed search engine. The interface provides information about

the number of documents that contain specified search terms. However, it doesn't

give the users any option to search for a set of words, based on their existence in the

English language. There is also no quick way to find and browse documents based

on set of words related to the used search keywords.

~ ~"""''
~'~ 'J ''I\·

1 _, .. '!:U'.'0?'.'"·C.:l !',lt••')C', 'l"'';J 10';\;',,j ,,,y._,~JVl:>:)"1f~.,t.i:•'j_ ,• ,-,,,1' ''il'C"'W""<'C..;: 1•,'••:,c

;.'<. lkl!''.li ,'l'IIUMc'll\lC,

-C,pL .. ::Uc<~"<-'" :,,s:t1·12,:1

······~1

\, "''"'"'~ ::,: J,

• ,·t1•la,11 "'"''""b"• !, ,.,~,

• ~ '':;,"' ""'-''' ~~rl1U1' •Pll<>hoh<,l

Figure 4. A sample representation of the Pub Med search results.

14

2.3. Microsoft SQL Server

Microsoft SQL Server is a relational model database server developed at

Microsoft Corporation. The most popular programming language used by this

software is Transact Structured Query Language (T-SQL). The most current version

of SQL Server is SQL Server 2008 (code-name: Katmai) [18]. One of the key

features added to this version of the software is the Full-text index functionality that

has been integrated with database engine. Full-text indexing is a powerful and fast

way to reference the context of a character based column on a table that exists on the

SQL Server 2008 [20]. MS SQL Server and full-text index technology were

successfully utilized by Agrawal [21] in a system for a keyword-based search of

large databases.

2.4. LINQ to SQL

Microsoft .NET Language Integrated Query (LINQ) is a recently introduced

technology that allows a user to write queries in a uniform way in any high-level

programming language. LINQ takes full advantage of strong typing that is strictly

enforcing data type rules with no exceptions [22]. All data types are known at

compile time. By using strong typed code, more errors can be caught at compile

time, than in the case of weak typed code, resulting in fewer run-time exceptions.

Even though there are still some performance implications with LINQ, this

technology has a number of advantages such as [23]:

• type-safe data access

15

• compile-time syntax checking

• lazy query execution

• intellisense/auto-complete

• shorter syntax

• convenient way to specify queries

• SQL-like

• allows to define anonymous types (var types)

2.5. Common Language Runtime Functions

The Microsoft .NET Common Language Runtime (CLR) provides a shared type

system, intermediate language and dynamic execution environment for the

implementation and inter-operation of multiple source languages. It consists of an

intermediate language (IL), an Execution Engine (EE) which can execute IL and

manages a variety of runtime services such as: storage management, debugging,

security, etc. It also provides a set of shared .NET Framework libraries. There are

reports of using the CLR with a variety of programming languages, including C#,

Visual Basic, C++, Eiffel, Cobol, Standard ML, Mercury and Scheme and Haskell

[24, 25].

The CLR has been successfully integrated inside the SQL Server Database

Management System by Acheson et al. [26]. The authors emphasize the ability of

such integration to write business logic of the application in the form of functions,

stored procedures, triggers, data types, and aggregates using modern programming

16

languages. The presented design allowed running application code inside the

database in a secure, reliable, scalable, and efficient manner. Such approach is

described as extremely suitable to the design of application architectures that require

business logic to execute in the data tier and to avoid the cost of shipping data to a

business logic tier (middle tier) process in order to process data outside the database.

The application code is deployed inside the database using assemblies. Once the

assembly is saved in the database, the users can use SQL DDL statements which act

as procedures or table-valued functions to expose entry points of the code contained

within the assembly [26].

2.6. User-defined Functions and Cross Apply mechanism

Pushing down computations to the database tier has multiple benefits, such as

reduced data transfer costs and faster data access [27, 28, 29, 30). The most popular

way to do that is by using User Defined Functions (UDFs) written as T-SQL

statements [31]. The special type of UDFs are table-valued UDFs. Such functions

return a table instead of a single value as in the case of stored procedures. When a

RETURN command is executed, the records inserted into the variable of the

function, are returned as its tabular output [32].

One of the functions introduced to T-SQL and supported by MS SQL Server

2008 is CROSS APPLY. This function can apply a table-valued function to a table

(or row-set) in order to apply the table-value function to each row of the table, unites

the resulting row sets, and joins the input table in an efficient manner [31].

17

CHAPTER 3. APPLICATION DESIGN

3.1. Overview

This chapter presents the architecture of the proposed Search tool, which can be

used for searching n-gram database with various features. The tool allows also for

browsing search results in full-text input data context. The tool utilizes multiple

programming technologies to help achieve excellent performance and search

accuracy. The three-tier architecture model is used in this project. In such

architecture, the application is developed, executed, and maintained as independent

modules, what allows any of the tiers to be modified or replaced independently.

3.2. Application Architecture

The database is responsible for storing input data and indexing it for efficient

retrieval and processing. Our tool consists of six separate tables stored in the MS

SQL 2008 database. The data in two of them are not changeable (dictionary and stop

word tables), whereas the content of the remaining four tables holds the input data as

well as n-grams that are extracted from these data. These tables can be changed by

the user at the run-time. 'Ibere are no foreign-key relations among those tables.

However, the tables are dependent on each other and must be considered as a whole

from the business logic perspective. The data tables used by the search tool are

shown in Figure 5. A table that holds user-defined input data uses a full-text index

and the remaining tables have unique values indexed as and marked as their atomic

or composite primary keys (key icons in the figure).

\

~-

;::;
BioSearchStopWord

~· Properties

..T Stopword

:0.
Dictionary

"' Prnperties

::tr' Word

~
Abstract

Properties

' :::r Abstractld

..T AbstractT ext

BiGram

Properties

1 .::T f1rstWord

, .:T SecondWord

::I NumberOfMatches

TriGram

- Properties

·::f FirstWord

..T SecondWord

'..T ThirdWord

_'j'- NumberOfMatches

Four<iram

~, Propenies

, .:T Fi rstWord

.::1' SecondWorct

_'.r ThirdWorct

..:r' FowthWord

.:::t l\iUmberOfMatches

Figure 5. Search tool data model.

18

The user interacts with the tool usmg a windows form-based graphical user

interface (GUI). The tool's GUI acts as a center point where the user can provide and

mine data of interest. For ease of use, the data are provided and managed, processed,

and presented in three separate windows, respectively. Regardless of the number of

n-grams that the search is based on, the user uses the same interface for both search

options and browsing the search results.

19

CHAPTER 4. IMPLEMENTATION

4.1. Input Data Reading

The algorithm of our tool accepts data provided in the XML format that contains

one or more pairs of XML tags: <AbstractText> and </AbstractText>. These tags

indicate where the data to be read begins and ends, respectively. If a file doesn't

contain any tags with such name, no data will be read. A sample fragment of the

XML file is shown in Appendix 1.

Once, the data file is provided, it is read by the code leveraging the .NET 3.5

Class Library class Xm!TextReader. This class represents a data reader that

provides fast, forward-only, non-cached, access to XML data [33]. The fact the class

provides forward-only access, means that every element of the XML data structure,

must be read from the beginning of the file until the end (or until the desired XML

element is reached). Therefore, the tool requires the reading of the entire XML file.

Since the class does not provide any kind of file validation (the class assumes that

the file being read is valid), try-catch exception code was written to provide

exception message in case the XML is not valid. Since the class does not provide a

means of reading a specific type of XML tags, each pair of tags contained in an

XML document is read to determine whether the XML tag currently being read is the

one that is needed (in our case, the one containing the abstract). In our application

this is accomplished by creating XmlTextReader object and then iteratively calling

(within a do-while loop) the Read method as long as it returns the true flag. At each

20

call to the Read method, the XML file is read, one XML element at the time. The

element's name is also specified in the openXML method (Figure 6), so that the

application can distinguish between various element types and read the one that is

needed. The way the method is implemented allows for easy modifications to

change or add additional XML tags. In such case only one additional "if' statement

needs to be added to expand functionality of the application according to the user

needs.

public string openXML(string fileName)
{

int count O;
string result='"';
XmlTextReader reader= new XmlTextReader(fileName);

while (reader.Read())
{

}

XmlNodeType node Type= reader.NodeType;

//create sql connection and a new record
B ioSearch DataC lasses DataContext dataContext new B ioSearch Data Classes DataC ontext();
Abstract new Abstract= new Abstract();

switch (nodeType)
{

case XmlNodeType.Element:
if (reader.Name "AbstractText")
{

}

result= reader.ReadlnnerXml();

//insert text to database
new Abstract.AbstractText result;
dataContext. Abstracts. I nsertOnSubmit(new Abstract);
dataContext.SubmitChanges();
this.counter = count++;

break;

return result;

Figure 6. Code snippet for method for reading XML file.

21

Once each abstract is extracted from the input file, it is inserted into the Abstract

table. Then, the full-text index is placed on the record for quick search of n-grams in

the paper abstract text. A sample of several records of the Abstract table is shown in

Figure 7.

1

2

3

4

5

6

7

8

Abstract Id_

4
······················••·· ... ,
5

6

7

8

9

1D

11

12
13

14

15

Abstract Text

AIM: To search candidate tumor suppressor genes {TSGs} on chromosome 4q through

AIM: To assess the occurrence of gastric acid reflux into the esophagus in endos ,

AIM: To investigate the frequency and risk factors for acute pancreatrtis after pancreati~

AIM: To evaluate the efficacy of resection and pnmar; anastomosis (RP.A) and RPA wtt~

AIM: To evaluate fecal calprotectin (FC) as a surrogate marker of treatment outcome of i
AIM: To analyze the ability of nine different potentially prob,otic bactena to induce matu~

AIM: To investigate the effects of interferon-alpha (IF N-alpha) to restrain the growth and!

AIM: To investigate the dynamic characteristics and the correlation between PCNA.

AIM: To study the relationship between nm23H 1 gene genetic instabilfy and rts clinical

Crohn·s disease is a chronic inflammatoiy condition that ma>• involve an)· segment of

The timing of the decision for operation in Crohn s disease is based on an evaluation of

The optimal duration of biological treatment. particularly anti•TNF, in inflammatory bowel

Figure 7. A sample set ofrecords in the Abstract table.

4.2. N-gram Extraction Algorithm

The n-gram extraction module of this application has the main responsibility of

input data management, which has two major functions: to read abstracts in to the

database and to allow the user to extract n-grams once the input data is read from the

file. Implementation of the first of these two functions is described in 4.1. The

second one is realized by creating an instance of the "ExtractNGrams" class and

calling its method in a separate thread. That method then calls the T-SQL stored

22

procedure that contains code to extract n-grams. Calling the "ExtractAIINGrams"

stored procedure is done with the help of LINQ to SQL class libraries. This stored

procedure consists of three similar components whose responsibilities are to extract

two, three, and four-grams. The stored procedure is shown in Figure 8.

BEGIN
--Extract all bi-grams
create table #TempAIIBiGrams (First Word V ARCHAR(50). Second Word V ARCHAR(50))

insert into #TempAIIBiGrams (First Word, Second Word)
select b.FirstWord. b.SecondWord from MSLAPTOP.dbo.Abstracts a
cross apply MSLAPTOP.dbo.extractBiGrams(a.AbstractText) as b

insert into MSLAPTOP.dbo.BiGrams (FirstWord, SecondWord, NumberOfMatches)
select t.FirstWord. t.SecondWord, count(*) as Matches from #TempAIIBiGrams t
group by t.FirstWord, t.SecondWord
drop table #TempAIIBiGrarns

--Extract all tri-grarns
create table #TempAllTriGrarns (FirstWord VARCHAR(50), Second Word V ARCHAR(50),
ThirdWord V ARCHAR(50))

insert into #TempAIITriGrams (FirstWord, SecondWord. ThirdWord)
select b.FirstWord. b.SecondWord. b.ThirdWord from MSLAPTOP.dbo.Abstracts a
cross apply MSLAPTOP.dbo.cxtractTriGrarns(a.AbstractText) as b

insert into MSLAPTOP.dbo.TriGrarns (FirstWord, SecondWord, ThirdWord. NurnbcrOIMatchcs)
select t.FirstWord. t.SecondWord. t.ThirdWord. count(*) as Matches from #TcrnpAIITriGrams t
group by t.FirstWord, t.SecondWord, t.ThirdWord
drop table #TernpAIITriGrams

--Extract all quad-grams
create table #TempAIIFourGrarns (FirstWord VARCHAR(S0). SecondWord VARCHAR(50).
ThirdWord VARCHAR(50), Fourth Word VARCHAR(50))

insert into #TempAIIFourGrams (First Word. SeeondWord. ThirdWord, Fourth Word)
select b.FirstWord, b.SeeondWord, b.ThirdWord, b.FourthWord
from MSLAPTOP.dbo.Abstracts a
cross apply MSLAPTOP.dbo.extractFourGrams(a.AbstractText) as b

insert into MSLAPTOP.dbo.FourGrams (First Word, SecondWord, ThirdWord. Fourth Word.
NumberOtMatches)
select t.FirstWord. t.SecondWord. t.ThirdWord. t.FourthWord. count(*) as Matches from
#TempAIIFourGrams t
group by t.FirstWord, t.SecondWord, t.ThirdWord, t.FourthWord
drop table #TempAllFourGrams
END

Figure 8. The T-SQL stored procedure to extract n-grams.

23

The logic that underlies the code for indexing n-grams implemented in the stored

procedure shown in Figure 8 is as follows:

1. Create a temporary table "TempAllBiGrams" to store all bi-grams,

2. Extract all bi-grams from each abstract in the database (in the abstract table)

with the help of the CLR function - "extractBiGrams",

3. Insert bi-grams extracted in step 2 into a temporary table created in step l,

4. Group bi-grams with the same first and second words and count bi-grams in

each group,

5. Insert obtained bi-grams with their frequency count into the permanent,

indexed "BiGrams" table,

6. Release the memory by removing the temporary table created in step I,

7. Repeat steps I to 6 for tri-grarns and quad-grams, analogously.

One of the two closure properties of itemsets - the downward closure property

states that all subsets of a frequent itemset are also frequent [34]. Since the tool gives

the user the ability to search for n-grams which frequency count is equal to one,

implementing the downward closure property in our application wouldn't be of

benefit. However, if the support threshold (the minimum n-gram frequency count)

would be more than one, then the algorithm could be modified to reduce the

computer memory use. In such case, the tool would first look up the bi-gram table,

and omit adding tri-grams and quad-grams (to the corresponding tables), which, as

their component, have bi-grams with the frequency count lower, than the minimum

24

support threshold. The disadvantage of implementing the downward closure property

in our tool would be a need of performing multiple table scans for bi-gram, and tri

gram frequency count verifications in step 7. It could result in significantly higher

CPU usage and much longer n-gram extraction processing times.

An alternative to the proposed logic that could be used to extract n-grams is as

following:

I. Locate one bi-gram in the abstract text

2. Check if that bi-gram exists in the bi-gram table

3. If yes, increase the frequency count by one

4. If not, add that bi-gram to the bi-gram table with the frequency count equal to

one

5. Repeat steps I to 4 for all n-grams located in the abstract text for all abstracts

in the abstract table

However, the complexity of such algorithm would be O(n\ an equivalent to

insertion sorting, which is very inefficient when used with large sets of data. Also

such algorithm would require multiple 1/0 hard disk operations that are significantly

(approximately one million times) slower than the processing times for operations

done in the random access memory (RAM). Since, in the proposed tool, the n-gram

table is scanned and sorted only once (at the end of the extraction phase), its

complexity is reduced to O(n log n), which is an equivalent to one of much more

efficient sorting algorithms such as merge sorting.

25

To test the scalability of the n-gram extraction algorithm, we measured the time

needed to extract bi-, tri-, and quad-grams from six sets of abstract data of sizes from

10,000 to 60,000, each time increasing the set size by 10,000 abstracts. Then-gram

extraction scalability test result showing the O(n log n) complexity of our algorithm

is shown in Figure 9.

1200

♦
.;;- 1000
"C
C • 0
u 800 (IJ

~ ♦
(IJ

E 600
i=
C
0

·..:: 400 u
n:I
)(

200 w

0

0 5000000 10000000 15000000 20000000 25000000

Total Number of Extracted N-grams

Figure 9. Scalability of then-gram extraction algorithm.

The CLR, table-valued functions described in the n-gram extraction algorithm,

namely: extractBiGrams, extractTriGrams, and extractFourGrams were written and

compiled in the C# programming language and Visual Studio 2008 integrated

development environment (IDE). Those functions were used in the efficient n-gram

extraction process and allowed to leverage the rich programming model provided by

the Microsoft .NET Framework.

26

Each of the CLR functions that were created consists of three separate parts:

• Helper class that defines an n-gram class data fields - words

• Table definition for the returned results

• The function that takes an input string as a parameter and returns a list of n

grams in the string that is provided

The code snippet for the helper class is provided in Figure 10. "BiGram" is a

trivial class that defines how the extracted n-grams are presented in the n-gram list

returned by the function. The properties of this class are defined using a constructor

taking two arguments: firstWord and secondWord that represent the first and second

word of each bi-gram respectively.

public class BiGram
{

private string FirstWord = '"';
private string SecondWord = "":

public BiGram(string first Word. string secondWord)
{

this.FirstWord = first Word:
this.SecondWord sccondWord:

Figure l 0. Code snippet for the helper class "BiGram".

The code snippet for table definition used by the CLR function to return

extracted n-grams is shown in Figure 11. The code fills in one row of the n-gram

table each time the function is called, which is the case when one abstract is

processed.

public static void FillTVFRowForBiGrams(object row, out Sq I String _first Word, out SqlString
_second Word)

{
BiGram biGram = (BiGram)row;

firstWord = biGram.FirstWord;
_secondWord biGram.SecondWord;

Figure 11. Code snippet for the table definition used by the CLR function.

27

The main part of the algorithm that contains the logic used to extract n-grams

from the input string is shown in Figure 12. It represents a static function that

accepts a string as an argument, creates a new .NET list, creates a collection of

matching n-grams for the input string, and finally loops through all n-grams making

sure they are not longer than 50 characters and adding them to the created list that is

returned by the function.

public static !Enumerable extractBiGrams(SqlString abstractText){
System.Collections.Generic.List<BiGram> bigramList = new
System. Collections. Generic. List<B iGram>();

MatchCollection singleWordCollection = Regex.Matches((string)abstractText, regExPattern);

for (int i 0; i < singleWordCollection.Count - 1; i++){
if(singleWordCollection[i].Length < 50 && singleWordCollection[i +!].Length< 50){
bigramList.Add(new BiGram(singleWordCollection[i].Value, singleWordCollection[i +

I].Value, 1));
}

}

return bigramList;
}

Figure 12. Code snippet for the "extractBirams" CLR function.

28

The regular expression pattern used to identify word unigrams in the input string

(defined as regExPattern variable in Figure 12) is shown in Figure 13. This pattern

identifies all words in a provided string and is used to create a collection of n-grams

for a given string of words. The regular expression pattern used in this project is

fully compliant with the .NET Framework [35]. That means it can be used with any

.NET programming language such as C#, C++ or Visual Basic .NET.

(?<=\w*)\w+l\w+.\w+(?=\s$)

Figure 13. Regular expression pattern used to identify word unigrams.

Once the CLR function is compiled, it is loaded as an assembly by the SQL

Server. Before the function was used, the T-SQL function was written to link the

external assembly and translate the result to the form that can be understood by the

SQL Server. The code snippet for that function is provided in Figure 14.

FUNCTION [dbo].[extractBiGrams](@absText [nvarchar](max))
RETURNS TABLE (

[FirstWord] [nvarchar](50) NULL,
[SecondWord] [nvarchar](50) NULL)

WITH EXECUTE AS CALLER AS
EXTERNAL NAME [TsqlCrlFunctions], [ClrFunctions].[extractBiGrams]

Figure 14. Code snippet for a function that links the CLR function to SQL Server.

As shown in Figure 14, the maximum size of an abstract text (absText) is set to

the "max" value (not size limited variable) and the maximum length of each of then

gram words is set to 50 characters. Although both the abstract text and a group of

29

potential n-grams are of an unknown length, the length of each n-gram was limited to

utilize the available random access and HDD memory more efficiently and to make

the result presentation more readable. The decision of setting threshold to 50 was

made based on the length of the longest English word that exists in English

dictionary [36]. The longest word in major English dictionary consists of 45

characters. Ten percent was reserved for potential special characters (such as

numbers) included inn-grams.

Our program provides a means for the user to manage the input data and the n

gram extraction process using AddData window (Figure 15). The module controls

three functions of the program. Using the AddData window controls, the user can:

• Add input data (Abstracts) to the program database

• Remove all input data (Abstracts and extracted n-grams) from the program

database

• Start the n-gram extraction process once the input data is loaded

The window also shows the current status of the input data, including

information on how many abstracts is currently in the database and how many has

been added since the program was started. The program also informs the user when

the process of extracting n-grams is finished.

30

11 ,.- AddDataForm

Data Collection

Add Abstracts to Database

Records in Database: 62620

Records Added: 0

I Remove Abstracts from Database j

Data Processing

I Extract N-sgrams

Status:

Figure 15. Input data manager window.

4.3. N-gram Search

The main function of the n-gram search module is to allow the user to specify

search criteria and to start the search n-gram process. The user can interact with the

application using the search form (main window of the application, i.e. the windows

that shows up when the program is started). The main window of the application is

shown in Figure 16.

, • - MainForm

N-gram Size

•~ • 2-grams

car

3-grams 4-grams

I Search ! I ShC7N Results J

Status: Done! Found: 46 n-grams

(0.03 seconds)

Add Data

31

I = l @ll ~ 1;

Options

D Use English dictionary in search

s s,c-o d rlf !l tionary?

Minimum Number of Items: 10

0 Exclude Stopwords

'
I

'!

I
I!

I'

,,

I!

Figure 16. Search module window.

Our application requires the user to enter as little as one character of the first

word n-gram as a search query. Moreover, the application allows for specifying

which word in an n-gram sub-sequence should be matched against words that exist in

English dictionary. The user is also allowed to set the application to ignore search

results that include at least one of the English stop words [37]. We also provide a

means for the user to specify the minimum frequency of n-grams that should be

included in the final result set. The user has a choice to select a number of words

("n" parameter of the n-gram) on which the search will be performed. The possible

word n-grams that the program accepts consist of two, three and four words.

The search process is done in a separate thread, so the user can interact with the

application and observe the search process status at all times in the main window.

Our tool performs the database search by calling one of the stored procedures using

32

the LINQ to SQL .NET Framework component. A code snippet of the LINQ query

code executed when the program performs search on the bi-gram table is shown in

Figure 17.

var items= from pin dataContext.searchBiGrams(searchWorkerHelper.startsWith,
search W orkerHelper. minimumN umberOfltems, search W orkerHel per. isStopwordExcl uded,
search W orkerHelper. isDictionaryl ndependent, search W orkerH el per. isFirst Word I nDictionary,
search W orkerHel per. isSecondW ordln Dictionary)
select p;

Figure 17. Code snippet of the LINQ query called for the bigram database search.

The "searchBiGrams" T-SQL stored procedure accepts six parameters that

specify:

• Search string text

• Minimum frequency of n-gram that it needs to have to be included in the

result set

• If the stop words should be included in the result set

• If the search process should be performed with use of the English

dictionary

• If the first word in the searched bi-grams exists in the English dictionary,

when search is performed with use of the English dictionary

• If second word in the searched bi-grams exists in the English dictionary,

when search is performed with use of the English dictionary

33

Once, the required parameters are provided by the user and read by the

application, our tool makes a connection with the database-located stored procedure

and perform the search. Then, the result table containing searched n-grams is

returned to the client and available to view by the user in the result window of the

application.

4.4. Result Analysis

Figure 18 shows the window of our application where the search process results

are displayed. There are three main functions of this module. First of all, it allows for

browsing n-grams found during the n-gram search phase. The user can see all

matching n-grams as well as their corresponding frequencies in the input data. All n

grams are sorted by the n-gram frequency in a descending order. Secondly, the user

is allowed to view the histogram of the n-gram data. The histogram shows the

number of n-grams that occur correspondingly often. The heights of the bars on the

histogram correspond to the number of matching n-grams. If the distribution of the

histogram is skewed to the right (positive skew [38]), then there is relatively low

number of n-grams with high frequency count values. Finally, the user can select a

word n-gram and find all its references in the full text input data. This way, the user

can explore the selected n-gram in a wider, more understandable context of the

original input data.

•z Resultsform

-·
earned

cance,
cardicMl,cular
can

~.

-
canloac

can

-· by ... -.. -
""' _. -a>nUol -uril -....,
to,

......,, -

..__
1863

1634

10 19 ,...
55<

55<

552

547

381

359

356

349

345

305

264

291

249

248

238

Figure 18. Result browser module window.

4.5. Full-Text Index Subtleness

34

Microsoft full-text search technology allows the user of our search tool to find n

grams from the n-gram search result list and browse the abstracts to see the n-grams

in the full context almost instantly (in a fraction of the second) - much faster than it

would take to scan search large database without using this feature. Full-text search,

however, has one minor drawback in this application, namely, it treats, by default, a

"." (period character) in a special way. When, a sentence ends with "." and a next

sentence starts with a capital letter, full-text search interprets the period as an end of

the sentence delimiter and does not index the two words with the .. _,. between them

together. For this reason full-text search technology cannot be used to search n

grams being part of two different sentences. It is not the issue for all other non

alphanumeric characters as full-text search places a marker in the index and treats

35

those characters the same way as a whitespace character. The described issue is

minor in our application since there is no (or very rarely) a need for finding word n

grams that do not belong to the same sentence.

36

CHAPTER 5. APPLICATION PERFORMANCE ANALYSIS

5.1. Search Effectiveness Analysis

To demonstrate the search effectiveness of the tool, several search tasks were

evaluated. We tested the tool for the quality of the search results with different set of

options enabled. In the presented scenario, the word "nucleoside" was used as the

search query for the tests. Nucleosides are chemical structures that can be bound to

the phosphate group to create new structures such as: nucleosides monophosphates.

nucleosides diphosphates, or nucleosides triphosphates [39]. Using our search tool,

the user can find out how often those forms occur in a specific, user-defined set of

publication abstracts. Table 1 presents a list of tasks and the search results

corresponding to each of them. In the first task, neither dictionary-based nor stop

word-based filtering was used. It resulted in returning a relatively large set of records

(84 bi-grams) that were mostly irrelevant to our search goal. In the next situation

(Task 2), we used the dictionary filtering mechanism to return all matching records

that for both words of the bigram exist in the English language. It allowed for

reducing the number of results to 52, but filtered out the records, that we hoped to be

returned in our sample search scenario. In Task 3, the dictionary filtering option was

also enabled. In this case however, the option allowing for search for records with

only the first word existing in the English language was selected. As the result, eight

bigrams were returned. As shown in the table, the first several results were relevant

to our search goal. Finally, we used stop words filtering option (Task 4), what

resulted in returning by the tool intended bigrams, with their corresponding

37

frequency counts, as the first three positions. We also used the same parameters as in

Task 4, for the tri-gram search. As a result, the search tool returned more detailed,

content specific information.

Task No. Dictionary Options Exclude No. of Sample Set of Returned Search Results
Stop Results

words?
I. Not used No 84 nucleoside reverse 18

nucleoside analogues 14

nucleoside transporter 12

nucleoside analogue 12

nucleoside analog 10

nucleoside and 7

nucleoside transporters 6

nucleoside diphosphate 6

nucleoside naive 6

2. Used - all words are No 52 nucleoside reverse 18
in dictionary

nucleoside analogues 14

nuclcoside analogue 12

nucleoside transporter 12
nucleoside analog 10

3. Used - first word is No 8 nucleoside triphosphates 4
in dictionary, second

nucleoside diphosphates 3 is not
nucleoside 5 2
nucleoside rnonophosphates 2
nucleoside NNRTI I

nucleoside phosphotriestcrs I

nucleoside triphosphatase I

nuclcoside irn idazoqu inol i narn ines I
4. Used - first word is Yes 7 nucleoside triphosphates 4

in dictionary, second
nucleoside diphosphates 3 is not
nucleoside rnonophosphates 2
nuclcoside NNRTI I

nucleoside phosphotriestcrs I

nucleoside triphosphatase I

nucleoside irnidazoquinolinarnines I

5. Used - first word is Yes 2 nucleoside triphosphates LNA I
in dictionary, second
and third are not nucleoside triphosphatasc NTPasc I

Table 1. Search Tool Effectiveness Analysis

38

5.2. Efficiency Analysis - Overview

The efficiency analysis of the search tool can be measured by the time needed to

process the specific amount of data. The application's data is processed in a different

way by all three major components of our tool. First, the input file is read and the

database is populated with the publication abstracts as well as the n-grams are

extracted. Secondly, in the main - search component of our tool - the n-gram

database is searched and results are provided to the user. And finally, the user

browses the result n-grams and uses the full-text n-gram search functionality.

Scalability, a desirable property of a system or process, indicates its ability to

handle growing amounts of data in a graceful manner [40]. Although the time needed

to do a search on small amounts of data when utilizing the processing power of

modem computers is (most of the time) extremely short, when programs are fed tens

or hundreds of megabytes of data to process, programs need to be very designed to

work efficiently. In the ideal case, an application should work fast with small or

large amounts of data. In this chapter, we investigate the scalability of each

component of our system by comparing the times needed to accomplished specific

tasks with increasing amount of data provided to the system.

5.2.1. Database Population and N-gram Extraction

The scalability measure of then-gram extraction component can be viewed as the

time needed to load the abstract texts from the input file provided in the XML format

to the Microsoft SQL Server database as well as the time needed to extract all word

39

n-grams from the database. For the testing purpose, we loaded three different input

files containing abstracts downloaded from the PubMed website. The abstract files

contain a collection of all abstracts published on the PubMed website in the months

of December 2008, January 2009, and February 2009. Properties of the input data are

summarized in Table 2.

Set Date of Publish Size of Number of Number of Number of Number of
raw file Abstracts Bi-grams Tri-grams Quad-grams
(MB)

Set I December 2008 443 62 620 2 992 102 7 956 064 10904580
Set 2 January 2009 390 60 568 I 838 539 6 154 718 12 373 728
Set 3 February 2009 506 64 347 3 038 073 8 105 305 11124560

Table 2. Properties of the input files

To test how the program responds to the increasing amount of data, the tests were

conducted using Set 1 (62,620 abstracts) and then using cumulative data from Set 1

and Set 2 (123,188 abstracts), and finally using the dataset containing all three

subsets of data, that is Set 1, Set 2, and Set 3 (187535 abstracts). The amount of time

needed to perform the tasks specific to the Input Data Manager component are

presented in Table 3. The table shows both the actual time spent on the task and the

average amount of time spent on processing one thousand abstracts.

Task Task Description Time needed to complete the task (seconds)
No.

Set I Set I + Set 2 Set 1 + Set 2 + Set 3
Actual Per 1000 Actual Per 1000 Actual Per 1000

Abstracts Abstracts Abstracts
I. Add abstracts to 1598 25.5 3472 28.18 6121 32.6

database
2. Extract n-grams 1542 24.6 2842 23.1 44.81 23.9

Table 3. Scalability test results of the n-gram extraction component

40

The diagram presenting the time that the program needed to complete task 1

performed with each experimental set is shown in Figure 19. It can be observed that

as more data is added, scaling of the system was nearly linear - approximately the

same amount of time was needed to add each thousand abstract to the database. The

small decrease in speed is caused most probably by the growing size of the full-text

index with the increase of data present in the Abstract table.

35
0 30 u • 111-... "' 25 ♦ "O
"' C
.0 0

111 u
20 0 QI

0"' o-
.-4 QI

15 "' "O 111
"O .0

111 111
0 ;~ 10

E
i=

5

0

Set 1 Set 1 + Set 2 Set 1 + Set 2 + Set 3

Figure 19. Task I. Add abstracts to database.

Figure 20 shows that once the abstracts are added, it takes nearly the same

amount of time to extract the word n-grams. It means that the system scales linearly.

Linear scalability, relative to load, means that with fixed resources, efficiency of the

system decreases at a constant rate [41].

41

"' E .,, 30
E E
.~ "' 25 .0 ~ 05_
Q 0"' :::l .,_] 20
ti -g 8
,S : ~ 15
x E -S ~ 10
a, ·;:
E .., 5
i=

0

Set 1 Set 2 Set 3

Figure 20. Task 2. Extract n-grams.

5.2.2. Search

The level of efficiency of the search module of our tool is the one that will have

the biggest impact on the satisfaction level of the search tool user. While it is not

likely, that the user will be adding new abstracts to the program database very often,

the search module is designed to be utilized frequently to direct search queries to the

system. Thus, high efficiency of this module will be of a critical importance.

The efficiency level of the search module of our system was tested with different

combinations of features supported by the tool. Table 4 presents six test cases with

respective times needed for completing the test tasks when searching bi-grams. The

string "car" was used as the input string for all tests of the search and result browser

modules as it consists of the first three letters of "carbon nanotubes" - a term that

42

occurs relatively often in biomedical publications. The minimum number of search

results to display was set to one for all search scenarios.

Task # of Dictionary Exclude Time needed to complete the task in seconds and number of the results
No. words options Stop returned

words?
Set I Set I+ Set 2 Set I + Set 2 + Set 3

Actual Per 1000 Actual Per I 000 Actual Per l000
Abstracts Abstracts Abstracts

I. 2 Not used No 0.07 0.001 0.11 0.0009 0.16 0.0008
(9328) (15243) (20010)

2. 2 Not used Yes 0.08 0.001 0.12 0.001 0.17 0.0009
(8006) (13255) (17537)

3. 2 Used• all No 0.38 0.006 0.50 0.004 0.57 0.003
words are in (6593) (10425) (13382)

dictionary
4. 2 Used - all No 0.12 0.001 0.18 0.001 0.23 0.001

words are (301) (544) (772)
not in

dictionary
5. 2 Used· all Yes 040 0.006 0.58 0.004 0.62 0.003

words arc in (5753) (9266) (I 1993)
dictionary

6. 2 Used - all Yes 0.12 0.001 0.18 0.001 0.25 0.001
words are (260) (455) (656)

not in
dictionary

Table 4. Scalability test results of the search component for bi-grams

Figure 21 illustrates the test results presented in Table 4. It is clear, that our tool

performs much better in tasks 1, 2, 4 and 6, that is, when the program doesn't search

for words that exist in the English dictionary. The more abstracts provided, the

shorter is the time to process n-gram data extracted from each abstract. This property

helps to deal efficiently with large sets of the input data by storing each n-gram and

its frequency only once.

0.007
...
~ vi 0.006
-5 -g
~ 8 0.005
QI QI

"' "' !!! :: 0.004
.!H ti
Q. "' E !:: 0.003
8~
o "' 0.002 ~o
QI 0

E S 0.001
i=

0

Set 1 Set 1 + Set 2 Set 1 + Set 2 + Set 3

Figure 21. Efficiency test results - searching bi-grams.

43

■ Task 1

■ Task 2

Task 3

■ Task 4

■ Task 5

■ Task 6

The test results performed with our tool for searching tri-grams are shown in

Table 5. The combinations of other parameters used in this test were the same as

when testing the tool with bi-grams.

Task # of Dictionary Exdude Time needed to compkte the task in seconds and number of the results
No. words options Stop returned

words''
Set I Set I + Set 2 Set I + Set 2 + Set 3

Actual Per I 000 Actual Per 1000 Actual Per I 000
Abstracts Abstracts Abstracts

I. 3 Not used No 7.04 0.11 15.84 0.12 20.23 0.11
(22043) (39797) (55536)

2. 3 Not used Yes 3.86 0.07 1-U8 0.11 18.67 0.09
(12204) (22347) (31469)

3. 3 Used - all No 7.81 0.12 14.92 0.12 20.79 0.11
words are (16457) (29244) (40317)

in
dictionary

4. 3 Used - all No 6.46 0.10 7.62 0.06 8.52 0.04
words arc (111) (216) (307)

not in
dictionary

5. 3 Used - all Yes 948 0.15 14.24 0. 12 8.97 0.05
words are (9116) (16475) (23017)

in
dictionarv

6. 3 Used - all Yes 363(73) 0.06 8.80 0.07 8.12 0.04
words are (133) (187)

not in
dictionarv

Table 5. Scalability test results of the search component for tri-grams

44

Figure 22 illustrates the test results presented in Table 5. Distribution of the

search time, shows that the tool performed the best when the number of the returned

results was the smallest. These results suggest that the time needed for the tool to

load a large number of records from the indexed database to the computer random

access memory is significantly longer, than in case when smaller number of records

needed to be loaded. To accommodate this behavior, the user can choose to reduce

the maximum number of results being returned to increase the speed of search.

...
Qj -Cl. Ill
..c "0
u C
... 0
I'll u
Qj Qj
Ill Ill

Qj -.. Ill
Qj ..

- u
Cl. I'll
E.::.
Q Ill
u .Cl
0 I'll
.. 0
Qj 0
E~
i=

0.16

0 .14

0.12

0.1

0.08

0.06

0.04

0.02

0

Set 1 Set 1 + Set 2 Set 1 + Set 2 + Set 3

Figure 22. Efficiency test results - searching tri-grams.

■ Task 1

■ Task 2

■ Task 3

■ Task 4

■ Task 5

■ Task 6

The results of the efficiency tests performed with quad-grams are summarized in

Table 6. The test procedures were the same as those for testing bi-grams and tri

grams. Also, in this case we tested the speed of search with optional features enabled

and disabled. It can be seen, that the time needed to search quad-grams was much

45

longer than to search bi-gram database. This might be caused by the higher

complexity of the primary key. In the case of quad-grams, the primary key is a

composite key that consists of all four n-grams.

Task # of Dictionary Exclude Time needed to complete the task in seconds and number of the results
No. words options Stop returned

words?
Set I Set I+ Set 2 Set I + Set 2 + Set 3

Actual Per 1000 Actual Per 1000 Actual Per IO00
Abstracts Abstracts Abstracts

1 4 Not used No 2.84 0.05 23.16 018 41.84 0 22
(28071) (53304) (76356}

2. 4 Not used Yes 2.70 0.04 30.96 0 25 31.60 0 17
(9941) (19128) (27537)

3. 4 Used• all No 6.55 0.10 29.39 0.24 40.35 0.22
words are (20136} (37940) (53898)

in
dictionary

4. 4 Used- all No 4.85 (51) 0.08 22.62 018 30.33 0 16
words are (96) (124)

not in
dictionary

5. 4 Used• all Yes 6.26 0.09 35.77 0.29 36.39 0 19
words are (6924) (13228) (18914)

in
dictionarv

6. 4 Used all Yes 3.64 (27) 0.06 25 79 021 35 94 0 19
words are (48) (60)

not in
diclionarv

Table 6. Scalability test results of the search component for quad-grams

The general trend that implies high degree of our system's linear scalability is

illustrated in Figure 23. Although times needed to search quad-grams are always

higher than for bi-grams, the average time needed to complete the search {per I 000

records of the input data) was significantly shorter for the smallest dataset. It

performed approximately equally fast with the second and third testing set. Since, the

46

number of n-grams stored in the index is much larger for the four-gram table. more

time is needed to perform the search.

0.35
...
QI -
D. "'

0.3
..c "C
u C
... 0 0.25 IV u
QI QI

"' "' QI - 0.2 ... "' .!! ...
u

D. IV 0.15 E
0 "' u.£1
0 IV
... 0

0.1
QI 0

E 0
0.05

i=
0

Set 1 Set 1 + Set 2 Set 1 + Set 2 + Set 3

Figure 23 . Efficiency test results - searching quad-grams.

5.2.3. Browsing Results

■ Task 1

■ Task 2

■ Task 3

■ Task 4

■ Task 5

■ Task 6

The user of our tool has the ability to browse n-grams selected in the search

process and browse the full text abstracts for the selected n-gram. The abstract

database contains often hundreds of thousands of records. Thus. the only option to

search and retrieve the abstract quickly is by utilization of full-text index

implemented in our tool with the help of a user-defined stored procedure. The

scalability test results of full-text search algorithm used in our tool is presented in

Table 7.

47

Time needed to complete the task (in seconds)
Set 1 I Set 1 + Set 2 I Set 1 + Set 2 + Set 3
0.14 I 0.36 I 0.62

Table 7. Scalability test results of the result browser component

Figure 24 illustrates the results summarized in Table 7. It indicates how the

number of records in the database influenced the efficiency of the result browser

component. The results indicate that the time needed to find all matching n-grams in

full text abstract increases with the increase in the amount of data provided by the

user. The time growth has a linear nature with the growth of the size of data. If the

input data set is doubled, it takes twice as long to find the reference of all matching

n-grams using search and the full-text index.

0.7

0.6

iii 0.5
"0
C
0 0.4 u
OJ
~ 0.3 (II

E 0.2 j::

0.1

Set 1 Set 1 + Set 2 Set 1 + Set 2 + Set 3

Figure 24. Efficiency test results browsing results.

48

CHAPTER 6. CONCLUSION

6.1. Conclusion

In the age of rapid increase in the amount of data stored in the electronic format,

efficient methods of information retrieval used by the users of search tools has

become a major challenge for software developers. This paper presents an algorithm

and implementation of a scalable windows-based application that aids its users in

searches performed on large data sets using n-grams.

Our contribution is an application that allows its users to first: efficiently extract

bi-, tri-, and quad-grams from the XML file and then to search those n-grams in an

efficient manner with multiple options (such as dictionary comparison) available. We

also provide a means for the user to view the search results and browse full-text

sources of records where found n-grams occur. Our application can be used with any

MEDLINE search results as well as with other databases with no or little

modification.

The presented application proves how the utilization of new technologies and

well designed architecture can significantly help to achieve high speed of data

processing and better quality of retrieved information. The performance of this

application has been demonstrated and analyzed through a variety of examples

involving data sets of different sizes and contents.

49

6.2. Future Work and Limitations

There is always room for improvement in computer programs. From the

perspective of the software functionality, more data mining techniques can be

incorporated into the application. Some examples are the prediction of the date when

the input text was published or finding the text author by finding similar texts using

n-gram-based search techniques.

The next version of the tool can also give users the option of saving the search

results for further processing. Once the results are saved, it should be possible to load

them from the file. It could help the user to work with different input datasets and

then keep the search results so that there is no need to extract n-grams each time.

50

REFERENCES

[1] K.G. Coffman and A.M. Odlyzko, "Internet growth: Is there a Moore's Law for
data traffic?", In Handbook of Massive Data Sets, Springer, pp. 47-93, 2002

[2] M. Sarr, "Improving Precision and Recall Using a Spellchecker in a Search
Engine. Numerish analys och datalogi", Department of Numerical Analysis and
Computer Science. Royal Institure of Technology. SE-100 44 Stockholm, Sweeden,
2004

[3] "N-gram", http://en.wikipedia.org/wiki/N-gram, n.d., last accessed: Junel4, 2009

[4] R. Poli and N.F. McPhee, "A Linear Estimation-of-Distribution GP System", In

Genetic Programming: 11 th European Conference, 2008

[5] "Information Retrieval", http://en.wikipedia.org/wiki/Information _retrieval, n.d.,
last accessed: May 31, 2009

[6] W. B. Cavner and J.M. Trenkle, "N-Gram-Based Text Categorization", In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, 1994

[7] M. Agyemang, K. Barker, and R. S. Alhajj, "Mining Web Content Outliers Using
Structure Oriented Weighting Techniques and N-grams", Proceedings of the ACM
symposium on Applied computing, pp. 482-487, 2005

[8] J. Brophy and D. Bawden, "Is Google enough? Comparison of an Internet search
engine with academic library resources", Aslib Proceedings, Vol. 57, Issue 6, pp.
498-512, 2005

[9] T. Strohman, D. Matzler, H. Turtle, W. Croft, "Indri: A language-model based
search engine for complex queries, Proceedings of the International conference on
Intelligence Analysis, 2004

[1 O] "Multitier architecture", http://en.wikipedia.org/wiki/Multitier _architecture,
n.d., last accessed: May 31, 2009

[11] "Histogram", http://en.wikipedia.org/wiki/Histogram, n.d., last accessed: May
31,2009

[12] "Google", http://www.google.com, n.d., last accessed: May 31, 2009

[13] "Understanding Google New Algorithm",
http://www.nicolasprudhon.com/google-seo/new-google-algorithm, n.d., last

accessed: May 31, 2009

[14] S. Sekine, "A linguistic Knowledge Discovery Tool: Very Large Ngram
Database Search with Arbitrary Wildcards", Coling: Companion volume Posters
and Demonstrations, pp. 181-184, Manchester, August 2008

51

[15] T. Hawker, M. Gardiner and A. Bennetts, "Practical Queries of a Massive n
gram Database", Proceedings of the Australasian Language Technology, pp. 40-48,

2007

[16] H. Cui, J. Wen, J. Nie, and W. Ma, ,,Query Expansion by Mining User Logs",
IEEE Transactions on Knowledge and Data Engineering, Vol 15. No 4., pp. 829-839,

2003

[17] J. Lin and M. D. Smucker, "How Do Users Find Things with PubMed? Towards
Automatic Utility Evaluation with User Simulations", Proceedings of the 31th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 08), 2008

[18] PubMed, http://www.ncbi.nlm.nih.gov/pubmed, n.d., last accessed: May 31,
2009

[19] Microsoft SQL Server, http://en.wikipedia.org/wiki/Microsoft_SQL_Server,
n.d., last accessed: May 31, 2009

[20] J. R. Hamilton, T. K. Nayak, "Microsoft SQL Server Full-text Search", Bulletin
of the Technical Committee on Data Engineering, Vol. 24 No. 4, pp. 9-10, 2001

[21] S. Agrawal, S. Chaudhuri, G. Das, "DBXplorer: A System for Keyword-Based
Search over Relational Databases", Proceedings. 18th International Conference on
Data Enginnering, pp. 5-16, 2002

[22] M. Torgersen, "Language Integrated Query: unified quering across data sources
and programming languages", Dynamic Language Symposium. Companion to the
21th ACM SIG PLAN symposium on Object-Oriented programming systems,
languages, and applications, pp. 736-737, 2006

[23] I. Hopkins, "Unified Theory of Data Access with LINQ", University of
Saskatchewan, Department of Computer Science SR Lab Meeting, March 6, 2008

52

[24] A. Kennedy, D. Syme, "Design and Implementation of Generics for the .NET

Common Language Runtime", Proceedings of the ACM SIG PLAN 2001 conference

on Programming language design and implementation, pp. 1-12, 2001

[25] J. Hamilton, "Language integration in the common language runtime", ACM

SIGPLAN Notices, Vol. 38, Issue 2003

[26] A. Acheson, M. Bendixen, J. A. Blakeley, "Hosting the .NET Runtime in

Microsoft SQL server", International Conference on Management of Data.
Proceedings of the 2004 ACM SIGMOD international conference on Management of

data, pp. 860-865, 2004

[27] Q. Chen, Y. Kambayashi, "Nested Relation Based Database Knowledge

Representation", Proceedings of ACM SIGMOD, Vol. 20(2), 1991

[28] Q. Chen, "A Rule-based Object/Task Modeling Approach", ACM SIGMOD,

1986

[29] D. T. Jim Gray, M. Liu, M. A. Nieto-Santisteban, ,,Scientific Data Management

in the Coming Decade", SIGMOD Record 34(4), 2005

[30] M. Hsu, Y. Xiong, "Building a Scalable Web Query System", LNCS, Vol.

4 777. Springer, Heidelberd, 2007

[31] Q. Chen and M. Hsu, "Correlated Query Process and P2P Execution", LNCS

Vol. 5187, pp. 82-92, 2008

[32] Table-Valued User-Defined Functions, http://msdn.microsoft.com/en
us/library/msl 91165.aspx, n.d., last accessed: May 31, 2009

[33] "XmlTextReader", http://msdn.microsoft.com/en

us/library/system.xml.xmltextreader.aspx, n.d., last accessed: May 31, 2009

[34] K. Sriphaew and T. Theeramunkong, "Measuring the Validity of Document

Relations Discovered from Frequent Itemset Mining", IEEE Symposium on
Computational Intelligence and Data Mining, pp. 293-299, 2007

[35] C. Campeanu, H. Li, K. Salomaa and S. Yu, "Regex and Extended Regex", In

Proceedings of the CIAA'02, Paris, France, pp. 81 - 89, July 2003

[36] "Longest word in English",

http://en.wikipedia.org/wiki/Longest_ word _in_ English, n.d., last accessed: May 31,

2009

53

[37] C.J. Van Rijsbergen, "Information retrieval", in London: Butter-worths, 1979

[38] "Skewness", http://en.wikipedia.org/wiki/Skewness, n.d., last accessed: May 31,

2009

[39] "Nucleoside", http://en.wikipedia.org/wiki/Nucleoside, n.d., last accessed: May
31,2009

[40] "Scalability", http://en.wikipedia.org/wiki/Scalability, n.d., last accessed: May
31,2009

[41] "Linear Scalability", http://www.adobe.com/livedocs/coldfusion/5 .0/
Advanced_ ColdFusion_Administration/overview2.htm, n.d., last accessed: May 31,
2009

APPENDIX 1. A SAMPLE FRAGMENT OF XML FILE

<PubmedArticle>
<MedlineCitation Owner="NLM" Status="MEDUNE">

<PMID> 18649720</PMID>
<DateCreated>

<Year>2008</Year>
<Month>07</Month>
<Day>24</Day>

</DateCreated>
<DateCompleted>

<Y ear>2008</Y ear>
<Month>09</Month>
<Day> 12</Day>

</DateCompleted>
<Article PubModel="Print">

<Journal>
<ISSN lssnType="Print">0029-6570</ISSN>
<J ournallssue CitedMedium="Print">

<Volume>22<Nolume>
<Issue>42</lssue>
<Pub Date>

<MedlineDate>2008 Jun 25-Jul 1 </MedlineDate>
</Pub Date>

</Journal Issue>
<Title>Nursing standard (Royal College of Nursing (Great Britain) :

1987)</Title>
</Journal>
<ArticleTitle>A holistic approach to caring for people with Alzheimer's

disease.</ Article Title>
<Pagination>

<MedlinePgn>S0-6; quiz 58</MedlinePgn>
</Pagination>
<Abstract>

54

<AbstractText>This article adopts a holistic view of Alzheimer's disease.
Biomedical, psychological and social aspects of the condition are discussed, and
aetiology, epidemiology, diagnosis and treatment explored. A range of approaches to
working with people with Alzheimer's disease, based on a psychological model of
dementia, is described including reminiscence and cognitive stimulation
therapy.</ A bstractT ext>

</ Abstract>
<Affiliation>University of Stirling, Stirling.

l.f.m.mccabe@stir.ac.uk</ Affiliation>

<AuthorList Complete YN="Y">
<Author ValidYN="Y">

<LastName>McCabe</LastName>
<F oreN ame> Louise</F oreN ame>
<Initials> L </Initials>

</Author>
</ AuthorList>
<Language>eng</Language>
<Publication Type List>

<PublicationType>Journal Article</PublicationType>
<Publication Type> Review</PublicationType>

</PublicationTypeList>
</Article>
<MedlineJournallnfo>

<Country> England </Country>
<MedlineT A>Nurs Stand</MedlineTA>
<NlmUniquelD>9012906</Nlm UniqueID>

</MedlineJ ournal Info>
<CitationSubset>N</CitationSubset>
<MeshHeadingList>

<MeshHeading>
<Descriptor Name Major Topic YN="N"> Age

Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>

<DcscriptorName MajorTopic YN="N"> Aged</DescriptorName>
</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopicYN="N">Aged, 80 and
over</DescriptorN ame>

</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopic YN="N"> Alzheimer
Disease</DescriptorName>

<QualifierName MajorTopic YN="Y">diagnosis</QualifierName>
<Qualifier Name MajorTopic YN="N">epidemiology</QualifierName>
<QualifierName MajorTopicYN="N">psychology</QualifierName>
<QualifierName Major Topic YN="Y">therapy</QualifierName>

</MeshHeading>
<MeshHeading>

<DescriptorName Major Topic YN="N">Cognitive
Therapy</DescriptorName>

</MeshHeading>
<MeshHeading>

55

<Descriptor Name
MajorTopicYN="N">Communication</DescriptorName>

</MeshHeading>
<MeshHeading>

<DescriptorName Major Topic YN="N">Disease
Progression</Descriptor Name>

</MeshHeading>
<MeshHeading>

<Descri ptorN ame MajorTopic YN="Y"> Empathy</DescriptorN ame>
</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopic YN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>

<Descriptor Name Major Topic YN="Y"> Holistic
Health</DescriptorName>

</MeshHeading>
<MeshHeading>

<Descriptor Name MajorTopic YN="N">Humans</DescriptorN ame>
</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopic YN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopicYN="N">Medical History
Taking</DescriptorName>

</MeshHeading>
<MeshHeading>

<DescriptorName Major Topic YN="N">Mental Status
Schedule</DescriptorName>

</MeshHeading>
<MeshHeading>

<Descri ptorN ame Major Topic YN=''N"> Models,
Nursing</DescriptorName>

</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopicYN="N">Models,
Psychological</DescriptorName>

</MeshHeading>
<MeshHeading>

<DescriptorN ame MajorTopic YN=''N"> Narration</DescriptorName>
</MeshHeading>
<MeshHeading>

56

<DescriptorName MajorTopic YN="N">Neuropsychological
Tests</OescriptorName>

</MeshHeading>
<MeshHeading>

57

<DescriptorName MajorTopicYN="Y">Nurse's Role</DescriptorName>
<Qualifier Name MajorTopic YN="N">psychology</QualifierName>

</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopic YN="N"> Nurse-Patient
Re lati ons</Descri ptorN ame>

</MeshHeading>
<MeshHeading>

<Descriptor Name MajorTopic YN="N">Nursing
Assessment</Descri ptor Name>

</MeshHeading>
<MeshHeading>

<Descri ptorName MajorTopic YN="N "> Patient-Centered
Care</Descri ptorN ame>

</MeshHeading>
<MeshHeading>

<DescriptorN ame MajorT opic YN="N"> Prevalence</OescriptorName>
</MeshHeading>
<Mesh Heading>

<Descriptor Name MajorTopic YN="N">Sex
Distribution</DescriptorName>

</MeshHeading>
</MeshHeadingList>
<NumberOfReferences> 32</NumberOfReferences>

</MedlineCitation>
<PubmedData>

<History>
<PubMedPubDate PubStatus="pubmed">

<Year>2008</Year>
<Month>7</Month>
<Day> 25</Day>
<Hour>9</Hour>
<Minute>0</Minute>

</PubMedPubDate>
<PubMedPubDate PubStatus="medline">

<Year> 2008</Y ear>
<Month>9</Month>
<Day> 16</Day>
<Hour>9</Hour>
<Minute>0</Minute>

</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleldList>

<Articleld IdType="pubmed"> 18649720</ Articleld>
</ ArticleldList>

</PubmedData>
</PubmedArticle>

58

