
TASK-RELEVANT API DEVELOPMENT FOR HIGHER EDUCATION USING GRAPHQL

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Dan Nygard

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Program:
Software Engineering

April 2024

Fargo, North Dakota

North Dakota State University
Graduate School

Title

TASK-RELEVANT API DEVELOPMENT FOR HIGHER EDUCATION
USING GRAPHQL

By

Dan Nygard

The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Anne Denton
Chair

Dr. Oksana Myronovych

Dr. Bernhardt Saini-Eidukat

Approved:

April 10, 2024 Dr. Simone Ludwig
Date Department Chair

ABSTRACT

To develop applications that support a variety of campus needs, North Dakota State

University's Enterprise Application Development team requires a method of accessing North

Dakota State University System data related to university students, faculty, and staff. As state

requirements limit direct access to this data, and conventional API access methods are not well-

suited to application use cases, this paper will explore how the data is acquired, stored, and then

made accessible to individual applications using GraphQL. A single application, Graduate

Waiver Wire, is presented as a use case depicting how GraphQL aids in the automatic data

update process, freeing the time previously spent by Graduate School personnel in manually

updating graduate student information.

iii

ACKNOWLEDGMENTS

I would not be writing this if not for my advisor, Dr. Anne Denton. Her guidance,

support, and encouragement throughout all aspects of this project have been invaluable. I thank

her for challenging me, from problem statement to finished project. It has also been an honor to

have Dr. Oksana Myronovych and Dr. Bernhardt Saini-Eidukat serve on my committee. To all of

them, I appreciate the time spent and support provided during this project. And I also appreciate

the mentorship, wisdom, and insight shared throughout many conversations that had nothing to

do with my Master's paper.

I would also like to thank my teammates at NDSU Enterprise Application Development,

William Diederich, Steve Templeton, and Trevor Knutson. It is a joy to work with each of them.

Richard Frovarp, Principal Software Engineer and Team Lead, has made us all better software

engineers by sharing his expertise, and not sharing it when he knows we can figure it out. And I

would like to thank our leadership, namely Steve Sobiech and Marc Wallman, for their steadfast

support and confidence in us.

Thanks to Nonnie Tangen, Alexandra Wede, Samantha Akers, and Audra Hart at the

NDSU Graduate School for working with me to develop Graduate Waiver Wire. The software is

a successful, working product because of their input.

And my most important thanks go to my family: my parents, Gordon and Theresa

Nygard, my brother Leif and sister Amanda, my in-laws Pam and Steve Reis, and brother-and-

sister-in-law Cody and Brittany Leadbetter. A special thanks to Dr. Kendall Nygard, who

provided so much encouragement to start the Master's program.

To Nicole, you are an incredible wife and partner, and the love of my life. Here's hoping

things slow down just a little.

iv

To Genevieve and Gerald, I couldn't ask for better children. You amaze me each day with

your creativity and curiosity. I hope I have set a good example, and as you grow up and move

through life you keep finding your own new mountains to climb.

v

TABLE OF CONTENTS

ABSTRACT...iii

ACKNOWLEDGMENTS..iv

LIST OF TABLES...viii

LIST OF FIGURES..ix

1. INTRODUCTION...1

1.1. Problem Statement..1

2. BACKGROUND...3

2.1. Application Development and Data Access at NDSU..3

2.1.1. Application Development...3

2.1.2. Data Access Overview...3

2.2. GraphQL Overview...4

2.2.1. Specification...4

2.2.2. Query..5

2.2.3. Schema Development...7

2.3. Related Work...7

3. IMPLEMENTATION: BIODEMO GRAPHQL SERVER...9

3.1. Base Server..9

3.2. Biodemo GraphQL Server..9

3.2.1. Schema Definition..9

3.2.2. Query Definition...10

3.2.3. Class Definition..11

3.2.4. Resolver Implementation..13

3.2.5. The N+1 Problem...15

3.3. Use Case: Graduate Waiver Wire...16

vi

3.3.1. Background...16

3.3.2. Graduate Waiver Wire Specification..17

3.3.3. Data Structure...17

3.3.4. GraphQL Query..18

3.3.5. POJO Classes..20

3.3.6. Biodemo Service Implementation..23

4. DISCUSSION AND CONCLUSION...27

4.1. Discussion...27

4.1.1. Update Time...27

4.1.2. Benefits Related to GraphQL...28

4.1.3. Drawbacks of GraphQL...29

4.2. Conclusion...29

REFERENCES..30

vii

LIST OF TABLES

Table Page

4.1. GraphQL Response and Refresh Database Times in Seconds...28

viii

LIST OF FIGURES

Figure Page

2.1. Data flow from NDUS Peoplesoft to an NDSU EAD application......................................3

2.2. Example GraphQL query [4]...5

2.3. Query calling for a data object along with related objects [4]...6

2.4. Query with an argument [4]...6

3.1. A HrData and StudentPlan GraphQL schema definition...10

3.2. User class diagram...12

3.3. A HrData.groovy class definition..12

3.4. Calling a list of HrData objects in UserResolver.groovy..13

3.5. Calling a list of User objects filtered by job family in UserQueryResolver.groovy..........14

3.6. Queries demonstrating nesting of data...16

3.7. Graduate Waiver Wire data diagram for students, programs, and positions. Data
automatically updated using a GraphQL query is in bold...18

3.8 Graduate Waiver Wire GraphQL query for users (students), plans (programs), and
positions (hrData)...19

3.9. Example student response object...20

3.10. Plain Old Java Objects for JSON deserialization (top), and their corresponding
Apache Cayenne data model classes (bottom). A GradUser has one-to-many
relationships with HrData and StudentPlan objects; the Student class
correspondingly has one-to-many relationships with the Position and Program
class..22

3.11. Deserializing JSON into a list of GradUser objects...22

3.12. Method to update a Student based on a GradUser object..23

3.13. BiodemoServiceImpl class...24

ix

1. INTRODUCTION

North Dakota State University’s Enterprise Application Development (EAD) team serves

a variety of campus community needs, including application development for individual

departments and programs. In addition to maintenance on production applications, EAD must

also be prepared to develop new applications as campus needs arise. These applications rely on

accessing data relevant to the campus community. Automating this flow of data requires

retrieving information from its original source, North Dakota University System (NDUS)

PeopleSoft records, storing it, and providing a way for applications to easily access it.

This paper will focus on the last step mentioned above: providing a method for EAD

applications to easily access stored data. In doing so, it will discuss how NDSU has adopted

GraphQL in order to make complex data accessible to applications within a single API call.

1.1. Problem Statement

The objective of EAD is to create a task-relevant set of information sourced from the

NDUS PeopleSoft API. The North Dakota University System only allows for PeopleSoft data to

be accessed within two two-hour time intervals each day, precluding direct access to this data.

Individual applications need to access diverse subsets of this data to fit their particular needs.

Thus, there is a need for a local API service and data storage method that will allow applications

to make straightforward data requests that return only what is needed by that application. In

addition, as university applications require information pulled from multiple tables (for example,

a call for student information may also require the student's academic programs), the service

should have the ability to make complex requests without accessing numerous API endpoints.

Finally, to improve application maintenance, the service should provide a consistent API client

language that all developers on the team can understand and maintain across numerous projects.

1

Due to the above, conventional API calling methods are not well-suited. REST services

are prone to overfetching (returning more data than what is needed) and require multiple calls to

return data if it exists in more than one table [1]. And while SQL can handle complex queries,

EAD would prefer to provide applications a limited set of data through an abstraction layer

rather than a direct connection to the database. To provide this abstraction layer and a

straightforward query language to access it, EAD has chosen to use GraphQL, and this paper will

demonstrate how GraphQL helps fulfill the diverse data needs of a university application

development department.

2

2. BACKGROUND

2.1. Application Development and Data Access at NDSU

2.1.1. Application Development

EAD currently runs 23 custom web applications. These applications serve a variety of

university needs, including research equipment inventory tracking, signing up for training events,

and identity and access management support. Every application accesses a different data set, and

future applications will have their own data requirements, specialized to fit that particular

application's needs.

2.1.2. Data Access Overview

The original source of NDSU student data is the NDUS PeopleSoft Campus Solutions

system, and the source of faculty and staff data is PeopleSoft Human Capital Management. As

PeopleSoft data can only be accessed within certain time windows, they cannot be directly

accessed by applications in an efficient manner. EAD therefore maintains a MariaDB database to

store this information, and a series of data feed programs to access PeopleSoft within the

prescribed time windows and populate the database with current student, staff, and faculty data.

An overview of the flow of data from NDUS PeopleSoft to an EAD application is provided in

Figure 2.1.

Figure 2.1. Data flow from NDUS PeopleSoft to an NDSU EAD application.

3

Figure 2.1 depicts how NDUS PeopleSoft data is fetched by the data feeds, which are

written in the Groovy programming language and use the groovy-sql module [2] to write the data

to the NDSU Warehouse database. Here, the need arises to make this data available in a flexible,

efficient manner to NDSU applications, and EAD has chosen GraphQL for this purpose. When

an application such as Graduate Waiver Wire uses the GraphQL query language to make a data

request, the Biodemo GraphQL service uses groovy-sql to interact with NDSU Warehouse, and

will return the requested data to Graduate Waiver Wire in the form of a JSON string. Graduate

Waiver Wire then processes the returned data and stores it in the Graduate Warehouse database

using Apache Cayenne Object-Relational Mapping [3].

The main contribution of this paper is in the interactions between the Biodemo GraphQL

service and the Graduate Warehouse database. The structure of this interaction is discussed in

detail in Chapter 3.

2.2. GraphQL Overview

GraphQL is an API access method that is best described in two parts. On the client side,

it is a query language built to access data from an API. On the server side, it is a schema for

defining data along with a runtime engine which responds to client queries [4]. Its underlying

design and philosophy is outlined in a specification document [5] which will be discussed in the

next section.

2.2.1. Specification

The initial GraphQL specification was developed by Facebook in 2012 and made open

source in 2015. Notably, it defines GraphQL as "not a programming language capable of

arbitrary computation, but ... a language used to make requests to application services that have

capabilities defined in this specification." In other words, the specification provides the rules and

4

principles for building services useful to GraphQL clients. No programming language or data

storage system is mandated [5] and GraphQL libraries and frameworks have been developed for

languages such as Java, Javascript, Python, C#, and Ruby [6].

The GraphQL specification outlines three types of operations that may be conducted by a

client: query, mutation, and subscription. A query is a read-only call for data from the server; a

mutation exists to write data to the server and can also fetch data in the same call; and a

subscription is "a long-lived request that fetches data in response to source events." [5] As the

primary EAD use cases involve requesting data, the next section will focus on the GraphQL

Query operation.

2.2.2. Query

A GraphQL query is a String object which outlines the information being requested by a

client. The server will receive the query, check to ensure it is requesting only items that have

been outlined in the schema, and return the requested data once the check clears, as shown in

Figure 2.2 from the GraphQL Foundation tutorial [4].

Figure 2.2. Example GraphQL query [4].

5

Queries can pull sub-objects related to the main object being requested, as shown in

Figure 2.3. This allows for a straightforward method to present complex data objects.

Figure 2.3. Query calling for a data object along with related objects [4].

In Figure 2.3 the hero object has its own field (name) but it also has a friends field, in

which multiple other heroes are included. If another class is defined, for example, Spaceships,

then it can be set up so each Hero object can have one or many Spaceships. This then allows for

later deserialization of query responses into classes which incorporate composition. In object-

oriented programming, composition is a concept in which one class shows it "has" members of

another class by declaring the owned class as one of its variables. These are compositional

relationships, in which one object can contain another object, and a GraphQL-based API is

useful in calling data structured in this manner.

Queries may also pass arguments directly. For example, a query can be developed in

which an ID parameter is passed in, and only objects assigned to that ID will be returned [4], as

shown in Figure 2.4.

Figure 2.4. Query with an argument [4].

6

2.2.3. Schema Development

A schema in GraphQL is created on the server side, and provides an explanation of the

overall data set that will be accessed. In it, an object is described in terms of its fields, each of

which is given a type. Types can be, among other things, scalar values (Int, Float, String,

Boolean, and ID, along with custom values that can be defined by the programmer). In addition,

another defined object in the schema can be used as a type definition. For example, in the below

basic schema two objects are defined:

type Student {
id: ID!
name: String
classes: [Class]

}

type Class {
id: ID!
title: String

}

In this schema, a student is able to hold multiple Class objects, which is shown by placing

the return value in square brackets. One-to-one relationships can also be given in a schema: if the

student were limited to only one class, this could be shown by removing the square brackets.

2.3. Related Work

GraphQL was built by Facebook (now Meta) as a response to difficulties in

implementing a REST architecture while developing the Facebook mobile application [7]. It is

now open source and governed by the GraphQL Foundation [8], and used by a large number of

companies, including AirBnB, Atlassian, GitHub, Meta, and PayPal [9]. Netflix has also

implemented GraphQL and developed the Domain Graph Services (DGS) Framework as an

implementation of the GraphQL specification [10].

7

GraphQL has also found uses in archival metadata systems. For example, it is used by the

European Holocaust Research Infrastructure portal, which makes available archival material

from 500 different research institutions [11], and by researchers working with healthcare

metadata [12] and developing federated research query services [13]. Work has also been done to

automate schema development [14] and pair GraphQL with the Linked Open Data Cloud [15].

Work has been done to provide performance and feature comparisons between GraphQL

and the REST framework. These experiments produce a variety of conclusions. For example,

Hartina and Panggabean analyze GraphQL and REST web protocols built to access similar data

from the Institute for Research and Community Service at Hansanuddin University, noting that

while REST produced faster response times, GraphQL reduces over-fetching of data and is the

right choice in situations where data needs change often [16]. Brito and Valente study computer

science student ability to implement queries in both protocols, showing that GraphQL requires

less developer effort to implement [17]. In a qualitative survey, Vadlamani et. al. surveyed

developers and noted that developers liked GraphQL's strong typing, validation, and schema

testing tools as opposed to the lack of these for REST; however, some developers in the study

did not like GraphQL's learning curve and potential computing complexity (for example, in

terms of N+1 problems) [18]. The N+1 problem in relation to GraphQL applications is discussed

further in Section 3.2.5.

As a final note, Hartig and Pérez have conducted an analysis of the properties of

GraphQL's query language to develop formal mathematical definitions of properties (such as a

schema and graph), and to "define a logical data model that formally captures the notion of this

graph" which allows further study of "the computational complexity of the language" [19], [20].

8

3. IMPLEMENTATION: BIODEMO GRAPHQL SERVER

3.1. Base Server

The base server implementation, which the EAD ‘Biodemo’ server implements, is a

Spring Boot application built using the Netflix Domain Graph Service (DGS) framework [21]

which incorporates the GraphQL Java implementation [22] and has been converted to the Java-

based Groovy programming language.

3.2. Biodemo GraphQL Server

As given in its name, the Biodemo GraphQL server is intended to provide biographical

and demographic information about NDSU people.

3.2.1. Schema Definition

The data to be fetched is delineated as a GraphQL schema in the user.graphqls file. The

base object in the schema is the User, and a User can be a student, staff, or faculty member. In

the schema, the fields of a User object are described, and given their data types. The emplid

(employee ID) field serves as the primary key of the object, and other information related to the

User is included such as first, middle, and last name. While standard scalar types such as Strings

are in the majority, types have also been created to represent other defined objects related to a

User's campus experience such as employment positions; student programs, plans, and subplans

of study; and information regarding a student's terms of enrollment.

To observe how the data is interconnected, Figure 3.1 shows two of the related objects a

User may hold:

9

Figure 3.1. A HrData and StudentPlan GraphQL schema definition.

Here, a User has bidirectional relationships with HrData and StudentPlan, as each HrData

and StudentPlan object is given a particular User in lines 67 and 109. This provides flexibility, in

that a User query can provide information on that user's HrData and StudentPlan objects, while a

HrData or StudentPlan query can provide information on the User assigned to each particular

object returned.

3.2.2. Query Definition

Queries are defined in a schema to provide a basic framework of what calls the server

will be able to answer. The majority of queries currently defined relate to an NDSU person

(called a User in the schema), and can call a single User based on their emplid or username

fields. Queries are also defined to return multiple users. For example, the query:

usersByJobFamilies(families: [String]): [User]

10

will return all users who have positions within a list of job family parameters. This query will be

employed in Section 3.3 to select all people holding positions in the job families related to

graduate assistantships.

3.2.3. Class Definition

Groovy classes are then implemented to reflect the scalar types each object holds. For

example, the User.groovy class defines its fields to match by name and type the scalar fields

defined in the schema, and provides an empty constructor along with a constructor that takes in a

row parameter, which is a single row in a database "SELECT" call. Only scalar types are defined

here, as these classes exist to process the results of the database calls that will be made by the

resolver classes. As the User schema object was defined by multiple EAD team members, it is

depicted as a class diagram in Figure 3.2.

In Figure 3.3, The HrData schema and its scalar fields are represented by the

HrData.groovy class, which is given in its entirety.

Each individual class handles each scalar field type for every object defined in the

schema. If a field has types defined as other objects (for example, the User schema has HrData,

and vice versa), the User class will rely on the HrData class definition in a call that will be

implemented in a Resolver, which will be discussed in the next section.

11

Figure 3.2. User class diagram.

Figure 3.3. A HrData.groovy class definition.

12

3.2.4. Resolver Implementation

Where the Object classes exist to hold schema data, Resolver classes make the actual

calls to the database, reflecting the schema query definitions. The User resolver is separated into

two parts, defined by the UserResolver.groovy and UserQueryResolver.groovy classes. In

UserResolver.groovy, methods are provided to handle object field types defined in the User

schema. This is done because separate database calls are required for each object. For example,

in Figure 3.4 the HrData information is fetched:

Figure 3.4. Calling a list of HrData objects in UserResolver.groovy.

Here, the Netflix DGS @DgsData annotation defines that this query parent is User who

will be looking for HrData objects. The DgsDataFetchingEnvironment parameter allows for

greater flexibility in defining queries: here, it allows for an optional parameter getAll to define

what data will be returned (line 45). If getAll is true in the defined query, then the SQL query

will return all data. If false, it returns data only within certain emplStatus categories,

observable in the SQL call in line 57.

Similar fetching methods are then given for each User field type that is an object (as

defined in the original schema): getWorkStudy, getStudentPrograms,

13

getStudentPlans, getStudentSubplans, and getStudentCarTerm. The DGS GraphQL

framework will look for these method implementations on startup, and will throw exceptions and

halt program execution if they are not there.

With each schema field relating to an object given a resolution in UserResolver.groovy,

the UserQueryResolver.groovy class is then prepared to execute the User queries defined in the

schema. All scalar types for the User are handled through the User.groovy class, while the object

types are handled by the resolutions built in UserResolver.groovy.

As an example, a list of Users filtered by job family is implemented by passing in a list of

job family strings as a "families" parameter, as shown in line 119 of Figure 3.5:

Figure 3.5. Calling a list of User objects filtered by job family in UserQueryResolver.groovy.

Within the resolver, the below SQL statement is built in lines 124-131 and executed, in

this case, for a list of job families containing five elements. The question marks indicate String

placeholders, and families is the list of job families to fill each placeholder:

("select distinct b.* from biodemo b, hr_data hr
where b.emplid=hr.emplid and hr.jobFamily in (?,?,?,?,?)", families)

14

This returns all users who have positions within the five job families passed in. The above

demonstrates the granularity that can be built into a schema-defined call. This call chooses a

person from the biodemo table, but also relies on related jobFamily information tied to that

student from the hr_data table. This returns a list of students filtered by jobFamily, thus

selecting only students in the assistantship job families and filtering out students who may be

working in other capacities. This query will be used in Section 3.3, which demonstrates

GraphQL employed in an EAD application.

3.2.5. The N+1 Problem

Mentioned briefly in Related Work, the N+1 problem can occur when working with

nested data in GraphQL. In essence, if data in a GraphQL schema exists in two separate tables,

multiple database calls must be made (the original N, plus one for each subsequent set of nested

data for each object returned in N). As noted in Roksela et. al:

A typical scenario looks as follows: the first database query returns a list of references (1

query returns N objects), and then N queries are made to access one of the objects each,

causing in total N + 1 database queries. [23]

While GraphQL is built to respond to complex queries, ignoring potential N+1 problems can

cause significant performance decline. As an example, the queries in Figure 3.6 demonstrate

three separate calls, each requesting an additional layer of nested data.

In Figure 3.6 (a) a query of Users only asks for User information. In (b), HR information

is also requested. While requesting data structured in this manner is a useful feature, it does

necessitate another database call for each separate user. To illustrate a potential problem, in (c) a

User is requesting HR information, but within the HR information further User information is

15

requested. Thus, in (c) for each individual User, each individual HR object that User holds will

also trigger a database call. Nesting queries in this manner can greatly increase response times.

(a) (b) (c)

Figure 3.6. Queries demonstrating nesting of data.

In addition to query design, numerous other N+1 mitigation strategies exist. For example,

Robinson discusses minimizing N+1 issues through schema design, resolver optimization, and

caching [24].

In the use case described in Section 3.3, the data set is compact enough that N+1 doesn't

impact performance in a way that requires further mitigation, and our current method is

straightforward and easy for developers to understand, which improves maintainability.

However, N+1 is an important potential roadblock to be aware of when implementing GraphQL

systems.

3.3. Use Case: Graduate Waiver Wire

3.3.1. Background

The NDSU College of Graduate and Interdisciplinary Studies (or, the Graduate School)

requested that EAD develop an application to track graduate student tuition waivers. This

application, Graduate Waiver Wire, had a requirement to automatically include a record for each

NDSU graduate student holding a tuition waiver. This automatic student record would have to

contain student name and emplid; information from HR regarding each student's assistantships

16

(including department name, employment status, and so forth); and the description (in other

words, the working name) and term of each graduate program in which that particular student is

enrolled. All other information (related to contracts, the waivers themselves, additional hours

worked, and so forth) for each student would be manually entered by Graduate School staff into

fields existing alongside the automatically-created record.

GraphQL was chosen for this activity because of its flexibility and ease of handling

complex data. For example, consider a student who has two different assistantships and three

different programs (for example, two master's degrees and a certificate). Where REST requires

multiple individual requests to fetch this data, and will include all fields for each of the three

tables requested, GraphQL returns a single JSON object containing the student, their programs,

and their positions, and only the fields within those three subjects that are needed by the

application. Once received, this data can then be parsed into java objects on the client side.

3.3.2. Graduate Waiver Wire Specification

Graduate Waiver Wire is built using the Model View Controller architecture within the

Apache Tapestry web framework, which uses Java as its primary programming language. Object

relational mapping to the database is handled by Apache Cayenne, which defines a Java class

within Graduate Waiver Wire for each data table.

Google's Gson is an open-source library for serializing and de-serializing Java code

objects to JSON [25]. It is used by Graduate Waiver Wire to handle GraphQL response strings.

3.3.3. Data Structure

A MariaDB database called graduate_warehouse has been created for Graduate Waiver

Wire data persistence. While graduate_warehouse contains other tables related to graduate

17

student tuition waivers, for purposes of this case study the following sections will focus solely on

the tables containing data requested from the GraphQL server.

Figure 3.7 illustrates the three data tables that the automated system will be updating:

students, programs, and positions. Each table in Figure 3.7 contains data that is automated

through GraphQL, along with data that is manually entered (or kept up-to-date within the

system). For example, student emplid, first, middle, and last names are automated; however, the

"eligibleGrader" and "eligibleTa" attributes are determined by Graduate School personnel and

manually controlled. For each table, the data that is automated is in bold.

Figure 3.7. Graduate Waiver Wire data diagram for students, programs, and positions. Data
automatically updated using a GraphQL query is in bold.

3.3.4. GraphQL Query

To send the query to the Biodemo server, a DGS DefaultGraphQLClient is

instantiated. This client then executes the query given in Figure 3.8, and its response is fed into a

DGS GraphQLResponse object. In observing the query, note that the data names called reflect

18

the data as named with the Warehouse biodemo database table (and therefore the GraphQL

schema). The names in the Graduate Waivers graduate_warehouse database are different, to

reflect what is requested by the Graduate School, though they hold the same data.

In Figure 3.8, non-graduate-assistants are filtered out in line 2 (as assistantships are

categorized by the job families listed), and the request calls for student emplid, first,

middle, and last name, which will be placed in the students table in graduate_warehouse. The

term and description of all studentPlans for that particular student is requested, which

will be stored in the programs table. Finally, a number of hrData fields are requested, in order

to retrieve data for the positions table.

Figure 3.8 Graduate Waiver Wire GraphQL query for users (students), plans (programs), and
positions (hrData).

To illustrate, Figure 3.9 shows one student as returned from the Biodemo server, with all

data falsified to protect student anonymity. The student is in two programs, and they also have

two assistantships, illustrating how data containing multiple objects related to one student is

delivered.

19

Figure 3.9. Example student response object.

In Figure 3.9 the user (student) string contains two lists (denoted by square brackets)

containing studentPlans and hrData, which are labeled in lines 6 and 16. It is important to

note that this string is one element belonging to a larger user list, where each new user object

uses the same format to reflect ownership of one or many studentPlan or hrData elements.

The next step is to deserialize this large string into data useful within Graduate Waiver

Wire.

3.3.5. POJO Classes

GSON offers a number of methods to deserialize JSON, including writing custom

deserializers or adding the GSON RuntimeTypeAdapterFactory to theoretically write directly to
20

the database class objects [26]. However, EAD's preferred method of deserializing JSON strings

using GSON is to employ basic Java objects (colloquially known as Plain Old Java Objects, or

POJOs) to collect the data and pass this along to the Cayenne data model class objects. This is

done to provide a layer of separation between the JSON coming in and the Cayenne objects

themselves. In addition, for maintenance purposes, a future new Java programmer on the project

will easily understand java classes and how GSON is using them. POJO classes contain only

fields and getter/setter methods to access them.

Figure 3.10 diagrams the POJOs involved, along with their corresponding Apache

Cayenne data model class objects. The fields in the top (POJO) row are directly related to the

fields in the bottom (data model) row. Field names within GradUser, HrData, and StudentPlan

reflect the names existing in the Biodemo GraphQL server. Field names in the Student, Position,

and Program class are slightly different, as they were determined with the assistance of Graduate

School personnel during requirements gathering, and allow Apache Tapestry to automatically

generate user interface labels usable by the Graduate School.

Within the biodemo service implementation described in Section 3.3.6, a GraphQL

response is received and prepared in lines 82-85 of Figure 3.11, then converted into a list of

GradUser objects in line 90. Each GradUser object in the array contains its own lists of HrData

and StudentPlan objects as parsed from the GraphQL JSON response.

Once the array of GradUser objects is prepared, the update process depicted in Section

3.3.6 incorporates update methods to transfer the data from each GradUser, HrData, and

StudentPlan object into their corresponding Student, Position, and Plan Apache Cayenne data

model objects. An example update method, to update a Student based on a GradUser parameter,

21

is shown in Figure 3.12, in which the Student values are set using the values contained in the

GradUser parameter:

Figure 3.10. Plain Old Java Objects for JSON deserialization (top), and their corresponding
Apache Cayenne data model classes (bottom). A GradUser has one-to-many relationships with
HrData and StudentPlan objects; the Student class correspondingly has one-to-many
relationships with the Position and Program class.

Figure 3.11. Deserializing JSON into a list of GradUser objects.

22

Figure 3.12. Method to update a Student based on a GradUser object.

Similar methods to update a Position (based on a HrData parameter) and a Program

(based on a StudentPlan parameter) exist to serve the same purpose: passing data to the Apache

Cayenne objects so they can be committed to the graduate_warehouse database.

3.3.6. Biodemo Service Implementation

Within the Tapestry Application, the GraphQL client runs within a single class,

BiodemoServiceImpl, which is an implementation of a BiodemoService interface and is

diagrammed in Figure 3.13.

23

Figure 3.13. BiodemoServiceImpl class.

EAD's Tapestry Archetype is designed to implement recurring jobs based on service

interfaces, which is why this structure is chosen. The methods given in Figure 3.13 are utilized in

the refreshDatabase method, which is described in Algorithm 1.

24

As Algorithm 1 depicts, a GraphQL client sends the request to the server, along with a

header containing the security key in getGraduateStudents, which returns the JSON response,

which is then turned into an array of GradUser objects, each containing its own set of

StudentPlan and HrData objects. For each GradUser object, either an existing, corresponding

Student object is selected for update or a new Student is created. For each StudentPlan and

HrData element owned by the GradUser, the process is repeated (either update existing or create

new). For each Student and their Programs and Positions, any changes are saved to the

25

graduate_warehouse database. Once this is completed, if any existing students, programs, or

positions have not shown up in the current feed, they are respectively set to missing, deactivated,

or terminated.

This process is scheduled to run once every twelve hours through Apache Tapestry's

AppModule class, which allows services to be automated. This provides Graduate Waiver Wire

with twice-daily updates of Student, Program, and Position data.

26

4. DISCUSSION AND CONCLUSION

4.1. Discussion

The Graduate Waiver Wire application currently completes successful updates twice

daily using GraphQL with no issues. It should be noted that the number of Graduate Students

fetched hovers around 1,000. Applications accessing larger data sets may encounter more N+1

issues, as discussed in Section 3.2.5.

Graduate School personnel have reported many benefits from Graduate Waiver Wire and

its automated updates. GraphQL automation frees the time spent by Graduate School personnel

in manually tracking new students, positions, and programs, as was the case when using the old

Microsoft Access file. All information for each student is now in one central location, and

automation means new students are added seamlessly into the application. This automated basis

combined with manual entry has allowed for improved response times to student questions, and

for the addition of new features such as report generation. It has also helped prevent costly

human errors such as awarding a waiver to an unqualified student.

4.1.1. Update Time

To get a sense of update times, tests were run that focused on the time GraphQL took to

return a set of results, and the time it took for the BioDemo Service Implementation class to

update the database with the results. The data returned by the GraphQL JSON response consisted

of 984 users (students in Graduate Waivers), 2,369 studentPlans (programs), and 1,213 hrData

(positions) objects. For the Update Database evaluation, the database was cleared of all data prior

to each run, to simulate an update of the entire data set (in the actual application, only a small

subset of the full data set is updated each time). Tests were run on a desktop computer using an

Intel(R) Core(TM) i5-9600 CPU with a max speed of 4.6 gHz, and 16 MB RAM.

27

In twenty GraphQL calls, the response time varied from 0.498 seconds to 1.784 seconds,

with a mean of 0.797 seconds as shown in Table 4.1. Updating the database from the JSON

response took longer, varying from 1.225 to 3.427 seconds, with a mean of 2.417 seconds. The

increased running time of the Update Database function is expected, as the algorithm contains

nested loops. In further work, the refresh database method may benefit from further analysis and

refactoring in order to improve its speed.

Table 4.1. GraphQL Response and Refresh Database Times in Seconds.

Function Mean Median All times

GraphQL Response 0.797 0.574 0.922, 1.784, 0.837, 0.498, 0.565, 0.505,
0.533, 0.537, 0.555, 0.512, 0.588, 0.533,
0.720, 0.582, 0.497, 1.324, 1.114, 1.483,
1.282, 0.565

Update Database 2.417 2.444 2.354, 2.691, 1.711, 2.325, 3.343, 1.335,
1.728, 2.573, 2.365, 2.844, 1.704, 3.158,
2.382, 2.505, 3.427, 2.913, 3.142, 1.487,
1.225, 3.137

4.1.2. Benefits Related to GraphQL

From a developer perspective, the main benefit of GraphQL is rapid development of the

application GraphQL client. The JSON-like format of a GraphQL request, which lists the objects

needed, their related sub-objects, and only the fields required by that application, is very easy to

understand and implement. In addition, Gson deserialization tied to POJO classes is a very

straightforward process. This allows for improved collaboration and maintenance, as developers

have little trouble joining work on applications which may be new to them, but use GraphQL to

fetch data.

28

4.1.3. Drawbacks of GraphQL

From an EAD perspective, there is a steeper learning curve in working server-side. EAD

has implemented its service using Java/Groovy to connect to a MySQL database, but in any

programming setup the main challenges will be in understanding how the schema relates to the

data classes, and how these work with the resolver classes to interact with the database. The

upside is a service only needs to be implemented once in order to be accessed by many clients.

The other downside is the potential for inefficient queries due to the N+1 problem.

Smaller datasets appear to have few problems simply due to their small size, but accessing larger

complex datasets will require mitigation strategies.

4.2. Conclusion

This paper has discussed how EAD uses GraphQL to provide applications access to data.

The ability to make complex requests in a single query, alongside the ability to fetch only what

data is needed, have been especially useful. In addition to Graduate Waiver Wire, a number of

other applications have begun using GraphQL and further application development will continue

to do so, especially as development on the server side has reached a state of maturity.

Larger institutions or those planning on querying much larger data sets should consider

how to best mitigate query inefficiency, but for similar-sized universities that develop

specialized applications, GraphQL may provide a number of benefits, as it has done for North

Dakota State University's EAD team.

29

REFERENCES

[1] GraphQL vs REST API - Difference Between API Design Architectures - AWS. (n.d.).

Amazon Web Services, Inc. https://aws.amazon.com/compare/the-difference-between-

graphql-and-rest/

[2] The Apache Groovy programming language - Working with a relational database. (n.d.).

Groovy-Lang.org. https://groovy-lang.org/databases.html

[3] Apache Cayenne. (n.d.). Cayenne.apache.org. https://cayenne.apache.org

[4] GraphQL: A query language for APIs. (n.d.). Graphql.org. https://graphql.org/learn/

[5] GraphQL Specification Versions. (n.d.). Spec.graphql.org. http://spec.graphql.org/

[6] GraphQL Code Libraries, Tools and Services. (n.d.). Graphql.org.

https://graphql.org/code/

[7] Gudabayev, T. (2021, October 20). A brief history of graphql. DEV Community.

https://dev.to/tamerlang/a-brief-history-of-graphql-2jhd

[8] Frequently Asked Questions (FAQ) | GraphQL. (n.d.). Graphql.org.

https://graphql.org/faq/

[9] Who’s Using | GraphQL. (n.d.). Graphql.org. https://graphql.org/users/

[10] Srinivasan, K. (2023, August 14). Evolving the federated GraphQL platform at Netflix.

InfoQ. https://www.infoq.com/articles/federated-GraphQL-platform-Netflix/

[11] Bryant, M. (2017, December). GraphQL for archival metadata: An overview of the EHRI

GraphQL API. In 2017 IEEE International Conference on Big Data (Big Data) (pp.

2225-2230). IEEE.

30

https://www.infoq.com/articles/federated-GraphQL-platform-Netflix/
https://graphql.org/users/
https://graphql.org/faq/
https://dev.to/tamerlang/a-brief-history-of-graphql-2jhd
https://graphql.org/code/
http://spec.graphql.org/
https://graphql.org/learn/
https://cayenne.apache.org/
https://groovy-lang.org/databases.html
https://aws.amazon.com/compare/the-difference-between-graphql-and-rest/
https://aws.amazon.com/compare/the-difference-between-graphql-and-rest/

[12] Ulrich, H., Kern, J., Tas, D., Kock-Schoppenhauer, A. K., Ückert, F., Ingenerf, J., &

Lablans, M. (2019). QL4MDR: a GraphQL query language for ISO 11179-based

metadata repositories. BMC medical informatics and decision making, 19(1), 1-7.

[13] Haris, M., Farfar, K. E., Stocker, M., & Auer, S. (2021, November). Federating scholarly

infrastructures with GraphQL. In International Conference on Asian Digital Libraries

(pp. 308-324). Cham: Springer International Publishing.

[14] Farré, C., Varga, J., & Almar, R. (2019). GraphQL schema generation for data-intensive

web APIs. In Model and Data Engineering: 9th International Conference, MEDI 2019,

Toulouse, France, October 28–31, 2019, Proceedings 9 (pp. 184-194). Springer

International Publishing.

[15] Taelman, R., Vander Sande, M., & Verborgh, R. (2018). GraphQL-LD: linked data

querying with GraphQL. In ISWC2018, the 17th International Semantic Web Conference

(pp. 1-4).

[16] Hartina, D. A., Lawi, A., & Panggabean, B. L. E. (2018, November). Performance

analysis of GraphQL and RESTful in SIM LP2M of the Hasanuddin University. In 2018

2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)

(pp. 237-240). IEEE.

[17] Brito, G., & Valente, M. T. (2020, March). REST vs GraphQL: A controlled experiment.

In 2020 IEEE international conference on software architecture (ICSA) (pp. 81-91).

IEEE.

[18] Vadlamani, S. L., Emdon, B., Arts, J., & Baysal, O. (2021, June). Can graphql replace

rest? a study of their efficiency and viability. In 2021 IEEE/ACM 8th International

31

Workshop on Software Engineering Research and Industrial Practice (SER&IP) (pp. 10-

17). IEEE.

[19] Hartig, O., & Pérez, J. (2017). An initial analysis of Facebook's GraphQL language.

https://repositorio.uchile.cl/xmlui/bitstream/handle/2250/169110/An-initial-analysis-of-

facebooks-GraphQL-language.pdf?sequence=1

[20] Hartig, O., & Pérez, J. (2018, April). Semantics and complexity of GraphQL. In

Proceedings of the 2018 World Wide Web Conference (pp. 1155-1164).

[21] DGS Framework. (n.d.). Netflix.github.io. https://netflix.github.io/dgs/

[22] graphql-java/graphql-java. (n.d.). GitHub. https://github.com/graphql-java/graphql-java

[23] Roksela, P., Konieczny, M., & Zielinski, S. (2020, July). Evaluating execution strategies

of GraphQL queries. In 2020 43rd International Conference on Telecommunications and

Signal Processing (TSP) (pp. 640-644). IEEE.

[24] Robinson, Ed (2023, December 10). Introduction to the GraphQL N + 1 Problem.

Caisy.io. Retrieved March 14, 2024, from https://caisy.io/blog/understanding-solving-

graphql-n-1

[25] Gson User Guide (n.d.). https://github.com/google/gson/blob/main/UserGuide.md

[26] Paraschiv, E. (2022, June 24). Gson Deserialization cookbook. Baeldung.

https://www.baeldung.com/gson-deserialization-guide

32

https://www.baeldung.com/gson-deserialization-guide
https://github.com/google/gson/blob/main/UserGuide.md
https://caisy.io/blog/understanding-solving-graphql-n-1
https://caisy.io/blog/understanding-solving-graphql-n-1
https://github.com/graphql-java/graphql-java
https://netflix.github.io/dgs/
https://repositorio.uchile.cl/xmlui/bitstream/handle/2250/169110/An-initial-analysis-of-facebooks-GraphQL-language.pdf?sequence=1
https://repositorio.uchile.cl/xmlui/bitstream/handle/2250/169110/An-initial-analysis-of-facebooks-GraphQL-language.pdf?sequence=1

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1. Problem Statement

	2. BACKGROUND
	2.1. Application Development and Data Access at NDSU
	2.1.1. Application Development
	2.1.2. Data Access Overview

	2.2. GraphQL Overview
	2.2.1. Specification
	2.2.2. Query
	2.2.3. Schema Development

	2.3. Related Work

	3. IMPLEMENTATION: BIODEMO GRAPHQL SERVER
	3.1. Base Server
	3.2. Biodemo GraphQL Server
	3.2.1. Schema Definition
	3.2.2. Query Definition
	3.2.3. Class Definition
	3.2.4. Resolver Implementation
	3.2.5. The N+1 Problem

	3.3. Use Case: Graduate Waiver Wire
	3.3.1. Background
	3.3.2. Graduate Waiver Wire Specification
	3.3.3. Data Structure
	3.3.4. GraphQL Query
	3.3.5. POJO Classes
	3.3.6. Biodemo Service Implementation

	4. DISCUSSION AND CONCLUSION
	4.1. Discussion
	4.1.1. Update Time
	4.1.2. Benefits Related to GraphQL
	4.1.3. Drawbacks of GraphQL

	4.2. Conclusion

	REFERENCES

