
SEMANTIC ENRICHMENT OF DATABASE COLUMNS USING GENERATIVE 

LANGUAGE MODELS FOR ADVANCED QUERY SEARCHES 

 

 

 

  

A Paper 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Dylan James Miska 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

 

 

 

 

Major Department: 

Computer Science 

 

 

 

April 2024 

 

 

 

 

Fargo, North Dakota 



North Dakota State University 

Graduate School 
 

Title 
 SEMANTIC ENRICHMENT OF DATABASE COLUMNS USING 

GENERATIVE LANGUAGE MODELS FOR ADVANCED QUERY 

SEARCHES 

  

  

  By   

  

Dylan James Miska 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Jeremy Straub 

 

  Chair  

  
Dr. Juan Li 

 

  
Dr. Megan Orr 

 

  
 

 

    

    

  Approved:  

   

 May 11, 2024   Dr. Simone Ludwig  

 Date  Department Chair  

    

 

 

 

 



 iii 

ABSTRACT 

This study introduces a novel application of natural language generation (NLG) models to 

improve database table retrieval. Unlike previous works primarily utilizing embeddings and 

natural language processing (NLP) models, this work explores using NLGs to generate database 

column descriptions to enhance search accuracy. The evaluation involves two main aspects: firstly, 

assessing the accuracy of AI-generated column descriptions compared to ground truth 

descriptions; secondly, examining the impact of these descriptions when integrated into existing 

search models to evaluate accuracy improvements. Results indicate improved semantic alignment 

when comparing generated descriptions to ground truth over column names alone and improved 

scores for established work. 
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1. INTRODUCTION 

Over the past several decades, locating relevant data within expansive databases, also 

known as data discovery, has grown increasingly challenging. As these databases expand, they 

often encompass a vast number of tables and columns, which are not always well-annotated or 

documented. This issue has drawn significant attention from data scientists, corporations, and 

researchers, underscoring a pressing need for effective solutions. 

This paper aims to investigate an unexplored avenue in addressing this challenge. Recent 

years have witnessed the rising popularity of generative language models, acclaimed for their 

versatility in solving a broad spectrum of knowledge problems. This study aims to utilize this 

capability to enhance the search retrieval accuracy of relevant database tables in response to user 

queries. Specifically, the paper explores the performance of various generative language models 

in accurately generating database columns. These generated descriptions will then be utilized 

instead of column names in an existing work to evaluate accuracy improvement. 
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2. BACKGROUND 

As data discovery has become a more significant problem, various solutions and avenues 

have emerged. Overall, the common problem remains the same: finding relevant data from 

source(s) based on some form of search criteria. Some of these strategies include text-to-SQL [1], 

keyword driven search [2], dataset driven search, table union search, join-correlation search, 

ontology-based search [3], and several others. Each of these strategies, and how they address the 

problem, are now discussed. 

Keyword-driven Search: Keyword-driven search, a foundational approach in data 

retrieval, involves analyzing a user's search query to identify relevant data sources [2]. This 

strategy resembles a search engine's functioning but is specifically tailored for tabular datasets. 

For example, it may involve matching keywords in a query to those in table headers or column 

descriptions, allowing for retrieving tables that best match the query terms. This technique is used 

in [2, 4, 5, 6]. 

Dataset-driven Search: Dataset-driven search differs from keyword-driven search by 

using an entire dataset as the input for finding relevant data sources rather than a user-entered 

query [3]. This approach often involves comparing datasets' structures, schemas, or contents to 

identify similarities and relevancies, effectively allowing for the discovery of datasets that share 

characteristics with the input dataset. This technique is used in [2, 5]. 

Text-to-SQL: Text-to-SQL takes a unique approach by converting a user's natural 

language query into an SQL query [1]. This method abstracts the user from the technicalities of 

query formulation, directly translating their intent into a database query. For instance, a user asking 

'show me sales data from the last quarter' would have their request automatically converted into 

the corresponding SQL command. This technique is used in [1]. 
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Table Union Search: Table union search adds a layer of abstraction beyond basic search 

retrieval by combining relevant columns from different tables to assemble the requested dataset 

[3]. For example, suppose a query asks for customer information and purchase history. In that case, 

this method might find the relevant data from multiple sources and stitch it together before 

presenting it as the response. This technique is used in [7, 2, 8]. 

Join Correlation Search: Join correlation search is similar to table union search in that it 

can stitch together tables to display results. However, it can also manipulate and integrate data 

from various tables to create a dataset that meets the user's complex requirements, such as 

correlating product IDs with sales figures across multiple tables [3]. This technique is used in [7, 

2]. 

Ontology-based Search: Ontology-based search involves preprocessing data into an 

ontology – a structured representation of the data's concepts and relationships [3]. This method 

typically uses model-driven annotations to type columns and datasets, leading to efficient data 

retrieval. For example, an ontology might categorize data by topics or themes, enabling users to 

retrieve data that fits within a specific conceptual framework. This technique is used in [3]. 

While the strategies above yield varying results, they all depend on finding relevant 

datasets initially. This comparison process can utilize several methods [9]. Keyword bag-of-word 

analysis simplifies text into a set of keywords without considering word order; statistical methods 

might involve frequency analysis or other quantitative metrics. However, the overwhelmingly 

popular method today appears to be embeddings. Embeddings, often used in machine learning, 

represent items in a high-dimensional space, allowing for more nuanced similarity assessments.  

Consequently, recent research has increasingly focused on leveraging embeddings for data 

discovery techniques. This work aims to explore a nuanced approach to enhancing the use of 
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embeddings, offering a novel contribution to the field. The specifics of Embeddings and the 

models that produce them are discussed in the next section.  

2.1. Embedding Explanation and Its Influence on NLP Models 

Regarding the field of NLP, embeddings have revolutionized how AI can process language 

[9]. Embeddings transform words or phrases into numerical vectors. They map words or phrases 

to vectors in a high-dimensional space where similar meaning terms are grouped, encapsulating 

richer details about their context and relationships. Among their many use cases, they can be 

directly compared to each other [10] to determine word or phrase similarity, which is essential for 

ranking similar results. These advancements have allowed for more sophisticated text processing, 

allowing AI to analyze language with a nuance closer to human understanding. 

2.2. Transitioning to Transformers and BERT 

The development of advanced embeddings beyond simpler models such as word-to-vec 

[11] has paired closely with the advancements of NLP models, particularly the transformer model 

introduced in [12]. This model’s self-attention mechanism processes words by considering their 

full sentence context, drastically enhancing the interpretation of language subtleties. This marked 

a departure from traditional, sequential text processing, allowing for models that capture deeper 

linguistic context. 

Building on this, Google’s bidirectional encoder representations from transformers 

(BERT) [13] represents another significant advancement. BERT’s bidirectional approach 

processes the context of words from both directions in a sentence rather than linearly. This is 

possible thanks to dynamic embeddings, which adapt according to the word’s surrounding context. 

Such embeddings have been essential in BERT’s ability to deeply interpret language, which is 

crucial for applications such as database table ranking [10].  
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In the context of this research, BERT’s capabilities are leveraged for their proficiency in 

interpreting and processing the context and meaning of columns and tables. This is the key 

advantage it has over other methods in this space. The dynamic nature of BERT’s embeddings 

allows for a more accurate alignment of natural language queries with relevant datasets, addressing 

the crucial need for understanding the nuanced meanings within database columns. 

2.3. Generative Models: The Emergence of GPT 

Following the advancements brought forth by models like BERT, the field of NLP has 

witnessed the emergence of generative models, a notable example being generative pre-trained 

transformer (GPT) [14], developed by OpenAI. Unlike Bert, which is primarily designed to 

understand language (making it an encoder), GPT is built to generate text (functioning as a 

decoder). GPT was a new application of NLP models capable of producing human-like text, often 

referred to as NLG models. These models allowed for new applications, such as content creation 

and conversational AI. 

The critical difference between GPT (NLG) and models like BERT (NLP) lies in their 

training and intended use. GPT is trained on an extensive range of text, allowing it to generate 

coherent and contextually relevant text based on a given prompt. This ability to generate text makes 

GPT suitable for tasks that require creative language generation. In contrast, BERT’s bidirectional 

understanding of context makes it ideal for tasks involving language interpretation, such as 

sentiment analysis, question-answering, and information retrieval. 

It is believed that the application of NLG models is largely yet to be explored for dataset 

retrieval. One exception is Text-to-SQL, which has incorporated NLG for transforming relevant 

table data to SQL queries, but finding the relevant tables is left to embeddings.  
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A potential limitation in prior methodologies, particularly those relying on pre-trained 

models such as BERT, is their intrinsic focus on interpreting text as-is, without the added layer of 

generating new context or extrapolating beyond the given data. While BERT is adept at contextual 

understanding, its architecture is not designed for creative text generation or conjecture. In 

contrast, NLG models such as GPT are not only capable of interpreting text but excel at generating 

new content that can reflect implications or hypotheses based on the available data. This distinction 

suggests that generative models could offer a more comprehensive understanding of database 

columns, not just by analyzing existing descriptions but also by suggesting enriched, contextually 

relevant interpretations. 
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3. RELATED WORK 

In the area of database table retrieval, several recent studies have suggested novel methods. 

Several relevant recent contributions and how they relate to the work presented here are now 

discussed. 

Zhang and Balong [4] proposed a novel approach to handling table retrieval tasks using 

embeddings. Their approach was based on utilizing embeddings to compare the semantic meaning 

between tables and input queries. They used multiple representations and similarity measures in a 

supervised learning model, substantially improving retrieval performance over prior methods 

primarily relying on lexical matching. 

TABERT, introduced by Yin, Neubig, Yih, and Riedel [15], represents a novel effort in 

interpreting both textual and tabular data. TABERT, which is a variant of the BERT model, was 

trained on the WIKITABLES dataset to understand and interpret tables along with input queries 

for enhanced retrieval performance. It utilized new methods to parse and handle larger contexts of 

tables using “snapshots” created by encoding and manipulating portions of table data.  

Gao, et al. [1] explored utilizing an LLM for prompt engineering in text-to-SQL tasks. The 

study evaluated the effectiveness of optimizing LLM prompts to generate accurate SQL queries 

from retrieved relevant tables. While Gao, et al. focused on generating SQL queries from tables, 

the focus of this work is on the underlying table retrieval, which NLG did not enhance in their 

study. Instead, their work utilized more traditional methods for this process, including embeddings. 

Similarly to their work, this paper investigates prompt designs for accuracy. 

Trabelsi, et al. [5] offered a novel approach for combining structural and textual table data. 

Building on the work of TABERT, they used the base model, structured the tabular data as row 

and column-based sequences, and applied horizontal and vertical self-attention to capture the 

relationships within the table’s data. In addition, they utilized a model they called MiniBert to 
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aggregate the results and determine table relevance to input data, including queries and other 

tables. StruBERT is utilized as a baseline for comparison in this work. 

Each of these recent papers contributed to the field of table data retrieval. Prior work 

primarily focused on utilizing embeddings with the BERT model or variations to compare and 

rank relevant table results. The work presented here makes a contribution by utilizing NLG models 

to enhance existing results that rely on embeddings for relevant table retrieval tasks, such as the 

prior work explained here. 
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4. APPROACH 

The approach used for this work differs from prior work in utilizing generative AI to 

enhance existing methods. To better understand how and why this was used, current methods to 

encode database tables using embeddings are now discussed. First, how the BERT model creates 

embeddings is considered. This is followed by a discussion on how the current state-of-the-art 

model, StruBert, processes tabular data before utilizing the BERT model. 

4.1. Bert Encoding 

The Bert encoding process occurs in a sequence of steps. Starting from a given sentence, 

for example, the following steps are performed: 

First, tokenization is performed. Bert utilizes WordPiece tokenization to break up an input 

into tokens. These are trained words or sections of words that the model understands and has been 

trained on. In addition, special tokens are added to the token sequence. These include CLS and 

SEP, which indicate the start and separation points in the token sequence. 

Second, tokens are converted into embedding vectors that the model can process and use. 

These embeddings are not the final embeddings but are a base that will be processed. These base 

embeddings then go through attention layers and are contextualized, meaning that they represent 

the token and the context from the tokens surrounding it. Surrounding token context is essential 

because a word can mean different things in different contexts. 

Finally, after processing, the BERT model outputs a sequence of contextualized 

embeddings corresponding one-to-one to the input tokens. These embeddings can now be utilized 

as needed. 
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4.2. TaBERT and StruBert Tabular Processing 

Next, the use of embeddings by the StruBert and TaBert (which StruBert builds on) models 

are discussed. One approach to handling the encoding process of tabular data is to attempt encoding 

the entire table; however, BERT has a restrictive token limit and may not be able to interpret the 

meaning of the data well. To handle the latter, TaBERT was trained on the WIKITABLES dataset 

to interpret and understand tabular data and context better. StruBert uses this model to interpret, 

process, and formulate the data into contextual embeddings. To process the data StruBert follows 

a series of steps: 

First, row and column processing is performed. StruBERT creates sequences from a table’s 

rows and columns. For example, a three-by-three table would be turned into a total of nine token 

sequences. Each token sequence includes common table data redundantly. Each sequence starts 

with context, like the table name and metadata, and then moves through each cell that is contained 

in each row and column. Special tokens are also added for separation purposes. 

Second, TaBert processing is performed. Once the sequences are created, they are 

processed with the TaBert model to produce embedding sequences, as explained previously with 

BERT. The output embeddings contain contextualized information for each token in the row and 

column input token sequences. The special CLS token is utilized as a summarization for each row 

and column. 

Third, MiniBERT is used. Once the row and column embeddings have been created, they 

are processed again by another model Stubert calls MiniBERT. This model interprets the output 

embeddings from TaBERT and produces a relevance score for a table to query or another table. 
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4.3. Column Name Enhancement 

The main contribution of this work is an enhancement of previous work. Previous work 

generated embeddings based on table metadata, column names, and table data. One potential 

limitation, however, is that column names can be problematic within the dataset or databases in 

general. For example, within the WIKITABLES dataset, column names can be missing, 

abbreviated, shorthanded, challenging to interpret, and potentially not have been within training 

data. This paper proposes a process to enhance the data before utilizing an NLG model. By 

enhancing the column names with full column descriptions, the NLP model can better interpret 

the meaning of the columns. 

Table 1 shows how full English descriptions have been generated to allow the BERT model 

to interpret the columns’ meanings more readily instead of relying on table data for the missing 

link in context. 

Table 1. Example Generated Descriptions. 

Column Name Actual Description Generated Descriptions 

KCODE Accounting type code 

for PPE and IA 

The code associated with the account 

kind. 

ATTACHEDDOCS Number of documents 

attached 

The number of attached documents for 

the advanced report. 

ANLPLAN5_ID 5th Order Analytics The ID of the fifth analysis plan 

associated with the batch. 

 

Several models and methods can be used to generate these descriptions. The technique 

differs slightly depending on the model; however, there is a general process. First, a prompt is 

designed. The prompt combines context and instructions for the model to follow. The prompt is 

then sent to the model to be processed. Finally, a response is returned and parsed according to the 

requested format. 
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4.4. Experiments 

To add additional column context, a process is needed to generate descriptions for each 

column in each table based on a prompt. Once the descriptions have been generated, they may be 

utilized in table retrieval tasks. To determine the best model and methods to generate descriptions, 

several experiments were performed to compare generated descriptions to ground truth. Testing 

was then performed on the generated descriptions within the StruBert model. 

4.5. Setup 

Similarity comparison to ground-truth descriptions was used to determine the best language 

models, configurations, and prompts to generate accurate descriptions. This was obtained from a 

large open-source ERP project called Millenium BSA [16]. While the columns were in English, 

the descriptions were in Russian, however, so they were translated to English for ease of use and 

to ensure optimal functionality with embeddings. A feedback loop was created to test multiple 

models, configurations, and prompts. 

The process consists of 3 main steps. These are now discussed. 

First, description generation is performed. Descriptions are generated with a script that first 

defines and connects to the model being tested. Some models vary on prompt setup, but all models 

need at least a base prompt to tell the model to generate descriptions for a set of column names. 

The script requests columns by each table so that each column may have the context of the 

surrounding columns. In addition, the table name, metadata, and column data types are used as 

additional context. The results are then parsed and extracted from the response from the model. 

One note is that due to the size of some tables, it was not possible to request descriptions for an 

entire table, and batching was implemented to request only up to 10 columns at a time.  
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Second, once the descriptions are generated, an embedding was created for each ground 

truth description, generated description, and column name. OpenAI Ada 2 embeddings were used 

for this process. These embeddings differ from BERT embeddings in that they encompass an entire 

phrase instead of a single token. This allows for a direct comparison between ground truth and 

generated description embeddings. 

Third, evaluation is performed. For evaluation, four metrics were used: Bilingual 

Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation (ROUGE), 

embedding comparison score, and relative position score. A final script calculates the scores for 

each metric and results are recorded. 

BLEU is a standard evaluation metric to measure machine translation quality and focuses 

on precision. ROUGE is a standard evaluation metric to measure text summarization and focuses 

on recall. Note that BLEU and ROUGE serve as additional information about the exact words 

used. This work does not necessarily gain by having the exact words as the ground truth 

descriptions.  

The embedding comparison score compares the ground truth description embedding to the 

generated description embedding using cosine similarity, which is the normalized dot product 

between x and y. The distance between the embedding vectors is thought to compare the semantic 

meaning of the text. 

The relative position score refers to the ranking of the results. For each ground truth 

description, all the generated descriptions were ranked using cosine similarity and the position of 

the correct description in the list was noted. For both the embedding comparison and the position 

score, the column name was compared to the ground truth description as a baseline. This is useful 

because prior work uses the column name to allow the embeddings to interpret the meaning of the 
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column. The goal is to allow the embeddings to interpret the column as closely to the ground truth 

description embeddings as possible. 
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5. EXPERIMENTS AND RESULTS 

The subsequent sections describe the observations from each of the experiments, including 

the model, configuration, prompt, and context inclusion comparisons. These are followed by a 

brief analysis of the impact of the description replacement. Finally, an experiment showing the 

results of replacing the column names with generated descriptions will be discussed. 

5.1. Comparing Models 

Four models were evaluated to identify performance differences. These were OpenAI’s 

GPT 3.5 and GPT 3.5 0613, Meta’s LLAMA2, and Google’s PALM BISON. OpenAI’s GPT3.5 

0613 is an updated version of the 3.5 model. The same prompt was used for all models to observe 

the performance equally for each. This prompt is shown in Figure 1. From here on, it will be 

referred to as the baseline prompt. 

Figure 1 shows the baseline prompt which provides the model with the schema, table name, 

and a list of the columns for which descriptions are to be generated. 

 

Figure 1. Baseline Prompt. 

Table 2 shows the results for the various models. The Palm model scored the highest on 

the BLUE, ROUGE, and embedding scores, while GPT3.5 0613 scored highest on the position 

score. Since the BLEU and the ROUGE scores measure exact words, it follows that the column 

name baseline would score highest in those categories. This also indicates that PALM may be 
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returning results that are closer in alignment with the actual column name rather than the desired 

descriptions. To further investigate, example description results from each model were examined. 

Table 2. Model Mean Scores by Metric. 

 BLEU Score ROUGE Score Embedding Score Position Score 

GPT3.5 0.1088 0.1523 0.8222 0.9309 

GPT3.5 0613 0.1171 0.1629 0.8225 *0.9359 

LLAMA2 13B 0.1320 0.1831 0.8213 0.9208 

PALM BISON *0.2539 *0.3252 *0.8515 0.9251 

Column Name 0.3157 0.3838 0.8439 0.9250 

As shown in Table 3, PALM consistently generated shorter and more conservative 

descriptions that were not much different from the column name. This explains the favorable 

BLEU and ROUGE scores, which often punish length and reword for the exact words used. 

GPT3.5 0613, however, generated longer descriptions and moved further away from the column 

name. This resulted in descriptions that often added considerably more context compared to 

PALM. The distributions between the models were reviewed to further analyze the differences 

between the models. 
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Table 3. Example Generated Descriptions by Model. 

Column Name Actual Description PALM Description GPT3.5 0613 Description 

KCODE Accounting type code 

for PPE and IA 

Key code This column stores a code that 

represents a specific category or type 

of account kind 

RESTDOCDATE Document date for 

balance / overspend 

RestDoc date This column stores the date 

associated with a document related to 

the restocking process 

ATTACHEDDOCS Number of documents 

attached 

Number of the 

attached documents 

The number of attached documents 

related to the advanced reports 

ANLPLAN5_ID 5th Order Analytics ANLPLAN5 ID This column may store an identifier 

that represents the fifth level of an 

analytical plan or categorization 

system used within the database 

The distribution graph presented in Figure 2, shows that the PALM model is closely 

associated with the column name baseline while the other models have similar distributions. All 

models and the baseline column name generally had position scores greater than ninety percent, 

while the GPT models were slightly elevated above the rest. 
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Figure 2. Metric Distributions by Model. 

Overall, the results show that the GPT3.5 0613 and PALM models performed the best 

based on the metrics tested. However, it is important to note that the PALM model correlated much 

more closely with the baseline and provided descriptions that differed little from the column name 

alone. One interesting note is that the embedding score and the position score deviated from the 

results, given that the position score relies on embedding comparisons to rank results for each 

column. One possibility is that while the generated descriptions were closer to the actual 

descriptions for the PALM model, the GPT model differentiated the meanings of the columns 

more, resulting in a more accurate ranking. 
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5.2. Comparing Configurations 

In this section, configuration options that the GPT model offers were investigated to see 

how they impact the results. The options tested included using a custom function call, 

increasing/decreasing the temperature parameter, and utilizing a max token limit. Custom 

functions are a feature offered by Open AI’s GPT models that can force the model to return a 

response in a specific format, specified as Open API JSON format. Temperature refers to the 

variation or randomness the model may introduce in its responses. Finally, the max token limit is 

a limitation that can be introduced to force the model to respond in a limited response size. 

5.2.1. Custom Function 

A slightly different prompt was used for the custom function option, and an Open API spec 

was used for the response. Figure 3 shows the prompt that was used to instruct the model to 

generate the descriptions. 

 

Figure 3. Custom Function Prompt. 

It is unnecessary to specify the format in which the model should respond in the prompt. 

The model was also told that it updates descriptions instead of providing descriptions. This is 

because this specific variation of the GPT model was designed to provide JSON-formatted 

responses to perform actions. No actions are actually performed, but this format is used to generate 

descriptions more reliably.  



 20 

Figure 4 shows how the model was instructed to return a response in the format of an array 

of object pairs containing each column name and associated description. The goal is that the model 

will interpret this as though it is directly updating column descriptions in a database. This is an 

attempt for the model to avoid speculative responses. Many responses from the baseline were given 

in a speculative format that differs from those that would commonly be found in a database. 

 

Figure 4. Custom Function Open API Spec. 

Table 4 shows the custom function results. It shows improvements in all metrics by 

utilizing this custom function configuration. As explained previously, the BLEU and ROUGE 

scores reward exact word usage and similar length results. The results could indicate that this 

configuration has resulted in closer results to the ground truth column descriptions. To further 

examine this, examples from the results were examined. They are shown in Table 5. 
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Table 4. Model Mean Scores by Metric for Custom Function. 

 
BLEU 

Score 

ROUGE 

Score 

Embedding 

Score 

Position 

Score 

GPT3.5 0.1088 0.1523 0.8222 0.9309 

GPT3.5 0613 0.1171 0.1629 0.8225 0.9359 

GPT3.5 0613 Custom Function *0.1600 *0.2168 *0.8362 *0.9423 

Table 5 shows that the generated descriptions are more concise and less speculative. They 

would be more like what would be found in a database and less like a description that may be given 

in conversation. This configuration accomplishes the task better than the parsing method. 

Table 5. Custom Function Example Generated Descriptions. 

Column Name Actual 

Description 

GPT3.5 0613 

Description 

GPT3.5 0613 Custom 

Function Description 

KCODE Accounting type 

code for PPE 

and IA 

This column stores a 

code that represents a 

specific category or 

type of account kind 

The code associated with the 

account kind. 

RESTDOCDATE Document date 

for balance / 

overspend 

This column stores the 

date associated with a 

document related to 

the restocking process 

This date of the restocking 

document. 

ATTACHEDDOCS Number of 

documents 

attached 

The number of 

attached documents 

related to the advanced 

reports 

The number of attached 

documents for the advanced 

report. 

ANLPLAN5_ID 5th Order 

Analytics 

This column may store 

an identifier that 

represents the fifth 

level of an analytical 

plan or categorization 

system used within the 

database 

The ID of the fifth analysis 

plan associated with the 

batch. 
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5.2.2. Adjusting Temperature 

Open AI offers temperature as a parameter for its GPT models, ranging from 0 to 2. This 

setting adjusts the variability of the responses. More variability can lead to less restrictive 

responses. For this test, decreased and increased values were specified, and the results were 

examined. The baseline prompt previously shown was used for this test. Table 6 shows a slight 

improvement with a lower temperature compared to the base model. Using a higher temperature, 

on the other hand, results in considerably lower scores.  

Table 6. Model Mean Scores by Metric for Temperature. 

 

BLEU 

Score 

ROUGE 

Score 

Embedding 

Score 

Position 

Score 

GPT3.5 0.1088 0.1523 0.8222 0.9309 

GPT3.5 Temperature .5 *0.1170 *0.1556 *0.8223 *0.9353 

GPT3.5 Temperature 1.5 0.0796 0.1210 0.8096 0.8995 

5.2.3. Max Token Setting 

Max tokens is a parameter that Open AI offers in its GPT models that specifies the 

maximum number of tokens that the model can output. This can be helpful in restricting the model 

from generating long outputs that may not be optimal as a database description. However, one 

challenge with this parameter is that it includes the token count for all the output that is given back 

on results. As with previous experiments, batch sizes of ten were used. A maximum size of 250 

tokens was utilized, which is shared across all ten column descriptions the model generates 

descriptions for. Tables with less than ten columns or the final batch of tables with more than ten 

columns are not as restricted in their description size. Table 7 shows that this setting produced a 

minor increase in scores, as compared to the base model.  
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Table 7. Model Mean Scores by Metric for Max Tokens. 

 

BLEU 

Score 

ROUGE 

Score 

Embedding 

Score 

Position 

Score 

GPT3.5 0.1088 0.1523 0.8222 0.9309 

GPT3.5 Max 250 Tokens *0.1110 *0.1533 *0.8233 *0.9325 

5.3. Comparing Prompts 

As there has been evidence of differences in results with NLG models with different 

prompts [17], several prompts that may alter the generated descriptions’ results were examined.  

First, three shot examples were used for the prompt that display generic column names and 

descriptions.  This prompt is shown in Figure 5. 

 

Figure 5. Three Shot – Example 1 Prompt. 

Next, three shot examples from the dataset were used for the prompt, which display column 

names and ground truth column descriptions. This prompt is shown in Figure 6. 
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Figure 6. Three shot – Example 2 Prompt. 

After this, a prompt for the model to respond briefly was incorporated. This is an attempt 

to limit the response size for each description, similar to what may be in the ground truth 

descriptions. This prompt is shown in Figure 7. 

 

Figure 7. Brief Column Descriptions Prompt. 

The next prompt asks the model to produce descriptions for users unfamiliar with the 

database to provide additional context. This prompt is shown in Figure 8. 

 

Figure 8. For Unfamiliar Individuals Prompt. 

Following this the model was prompted to generate descriptions in the format found in a 

database. This is an attempt to reduce speculative language in the generated descriptions. This 

prompt is shown in Figure 9. 
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Figure 9. Database Format Prompt. 

Next, additional context about the database for which the generated descriptions are 

intended was provided. This prompt is shown in Figure 10. 

 

Figure 10. Additional Context Prompt. 

Finally, the model was assigned a role as though it is a documenter for column descriptions. 

This is an attempt to gain database format in a concise format. This prompt is shown in Figure 11. 

 

Figure 11. Documenter Role Prompt. 

Table 8 shows that most prompts resulted in lower scores than the baseline prompt. The 3-

shot examples 1 and 2 appeared to map closer to the examples, resulting in higher BLEU, ROUGE, 

and embedding scores, however they performed considerably lower in the position scores. Only 
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the “for unfamiliar individuals” prompt had a minimal increase for all metrics as compared to the 

baseline. 

Table 8. Prompt Mean Scores by Metric. 

 

BLEU 

Score 

ROUGE 

Score 

Embedding 

Score 

Position 

Score 

3 shot – Example 1 0.1433 0.1869 0.8248 0.9159 

3 shot – Example 2  0.1623 0.2099 0.8313 0.9223 

Brief Column Descriptions  0.1127 0.1577 0.8218 0.9326 

For unfamiliar individuals  0.1384 0.1859 0.8290 0.9333 

Database Format  0.1296 0.1740 0.8245 0.9255 

Additional Context  0.1120 0.1570 0.8230 0.9307 

Documenter Role  0.1262 0.1711 0.8245 0.9264 

GPT3.5 Baseline 0.1088 0.1523 0.8222 0.9309 

5.4. Examining Context Significance 

This section considers the various context options and how they affect the descriptions 

generated. The context options given in previous tests include the table name, other column names, 

and each column’s data type. The impact of when the table name and data types are removed, only 

one column is provided per batch, and join constraints are additionally provided are all examined.  

First, the table name and datatypes were removed, and instead, the model was asked to 

provide descriptions with only the column names as context. This prompt is shown in Figure 12. 

 

Figure 12. No Table Names or Datatypes Prompt. 

Next, a similar prompt to the baseline was used, but the grammar was changed slightly to 

reflect that only a single column was provided as context, unlike the previous batches of 10. This 

prompt is shown in Figure 13. 
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Figure 13. Single Column Given Prompt. 

Following this, the standard prompt from baseline was used, but it was modified slightly 

to provide constraints as additional context shown in Figure 14. The constraints are SQL 

statements that can provide additional context to the model about column purposes. Figure 15 

displays an example of this.  

"  

Figure 14. Constraint Context Prompt. 

 

Figure 15. Example Constraint Context Provided. 

Table 9 shows that removing the table name and data types slightly reduced the BLEU and 

ROUGE scores, but improved the position score, implying that the table name and data types had 

minimal impact on the description accuracy. Removing additional columns from the request 

significantly reduced all scores, implying that the additional columns play a significant role in 
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producing accurate descriptions. Finally, the constraint context produced BLEU and ROUGE 

scores similar to the baseline, but they reduced the embedding and position scores. This could be 

due to too much context being provided or due to simply confusing the model and drawing its 

attention away from more meaningful elements. 

Table 9. Context Mean Scores by Metric for Context Significance. 

 

BLEU 

Score 

ROUGE 

Score 

Embedding 

Score 

Position 

Score 

No Table Name/No Data Types 0.0957 0.1382 0.8223 0.9360 

Single Column Given 0.0737 0.1123 0.8060 0.9010 

Constraint Context 0.1097 0.1558 0.8154 0.9160 

GPT3.5 Baseline 0.1088 0.1523 0.8222 0.9309 

5.5. Additional Analysis 

Additional analysis was performed to understand how the generated columns affected the 

position score. The change was mapped from the baseline to the gpt3.5 custom function 

configuration across the embedding score between the column name and the actual description. 

This shows how the score changes, given how discrepant the column name is from the actual 

description or meaning of the column. 

Figure 16 shows the results of this. The graph shows several vertical lines, most notably 

near the .94 embedding score mark. Additional analysis showed that these were duplicate columns, 

specifically the ID columns from all the tables. This shows a limitation of using the position score 

as a metric, because there were many duplicate ID columns, and the ranking for these would be 

random. However, this would have been applied to all measurements, so it should not have biased 

experiments.  
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Figure 16. Embedding Score vs Change in Position Score. 

Apart from these lines, the graph shows a fanning out as the embedding score decreases. 

This could indicate that, as column names become less correlated with the actual meaning of the 

column, the model’s estimations of the column’s meaning increase in variation. The graph also 

shows how the model’s estimations are not always an improvement. Many generated descriptions 

were a regression, as compared to simply using the column name. However, the results of the 

previous experiments showed that the mean of the position scores is higher than the column name 

alone, meaning that, on average, the model is potentially more correct than wrong when adding 

additional context.   

5.6. Impact on Related Work 

To test if the generated descriptions add valuable context for use in existing models, the 

column descriptions were substituted for the column names in the StruBert model. The StruBert 

model utilizes the WikiTables dataset for its testing, which does not include column descriptions. 

As such, comparing the generated descriptions to identify accuracy compared to ground truth is 



 30 

impossible. However, the goal is to determine if the added context improves search accuracy when 

retrieving relevant database tables to a user query. The Wikitables dataset includes additional 

context, which was utilized in prompts to generate the column descriptions. 

Figure 17 shows the prompt provided to the model to generate descriptions for the 

Wikitables dataset. The model was provided with the table name, second table title, table caption, 

column IDs, schema, and sample table data. Then, batches of 10 columns were used.  

  

Figure 17. WIKITables Prompt. 

Once the column descriptions were obtained, they were concatenated to the column names 

utilized by StruBert. StruBert utilizes its own processing, therefore it's necessary to modify its data 

processing slightly to perform this action. StruBert requires a training process for its MiniBert 

model. For this work, it was trained on a single Nvidia Quadro GP100. The environment was 

reproduced utilizing the instructions given on the StruBert Github page and the suggested 

parameters for testing were used. StruBert utilizes NDCG@5, MAP, and MRR to evaluate results. 

It evaluates an average result based on predefined 5-fold datasets. 

Table 10 shows the results with and without the generated descriptions. It shows that using 

column descriptions gives an improvement across all metrics and considerably improves the MRR. 

Note that each test was run 20 times, and these results were the top for each series of runs. To 
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further identify if the results are significant, a one-sided t-test was performed on the series of 

results, assuming equal variance. 

Table 10. StruBert Mean Metric Scores. 

 NDCG@5 MAP MRR 

Strubert with column names 0.6252 0.6195 0.6450 

Strubert with column descriptions 0.6263 0.6229 0.6591 

Table 11 shows that all metrics are statistically significant at a sample size of 20 and a 

statistical significance level of 0.05. 

Table 11. StruBert P Value Metric Scores. 

 NDCG@5 MAP MRR 

Comparison of result 

sets 0.01223 0.00002 0.00001 
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6. CONCLUSIONS AND FUTURE WORK 

The exploration of the use of NLG models for the semantic enrichment of database 

columns identified several limitations and areas that are available for future research. Notably, the 

attempt to reproduce the StruBert model did not yield the reported scores, suggesting an area for 

further investigation. Although improvements were observed with the incorporation of column 

descriptions, these did not surpass the previously reported scores.  

Additionally, there are opportunities to utilize larger models. This work utilizes both NLP 

and NLG models, both of which could be replaced with larger options. However, this work did not 

utilize larger NLG models such as GPT4, LLAMA2 63B, or PALM 1.5, which could show 

improved description generation. In addition, one potential limitation could be the limited size of 

the NLP model, BERT. If the NLP model was replaced with a larger model, it could shrink the 

discrepancies in scores observed in this work. 

Finally, utilizing NLG models to directly determine the relevance of database tables to 

queries presents a promising direction. Traditional reliance on embeddings could be replaced with 

NLG’s dynamic response generation, potentially improving accuracy and reducing computational 

demands as models evolve to handle larger context windows efficiently. 

In conclusion, this work examined the potential of NLG models to generate database 

column descriptions and assessed the impact of various models, configurations, prompts, and 

context inclusions on the accuracy of these descriptions. The application of these generated 

descriptions in place of column names within the state-of-the-art StruBert model demonstrated that 

the generated descriptions provide additional valuable context that can be utilized to improve 

tabular data search retrieval. 
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