
SEMANTIC ENRICHMENT OF DATABASE COLUMNS USING GENERATIVE

LANGUAGE MODELS FOR ADVANCED QUERY SEARCHES

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Dylan James Miska

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

April 2024

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 SEMANTIC ENRICHMENT OF DATABASE COLUMNS USING

GENERATIVE LANGUAGE MODELS FOR ADVANCED QUERY

SEARCHES

 By

Dylan James Miska

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Jeremy Straub

 Chair

Dr. Juan Li

Dr. Megan Orr

 Approved:

 May 11, 2024 Dr. Simone Ludwig

 Date Department Chair

 iii

ABSTRACT

This study introduces a novel application of natural language generation (NLG) models to

improve database table retrieval. Unlike previous works primarily utilizing embeddings and

natural language processing (NLP) models, this work explores using NLGs to generate database

column descriptions to enhance search accuracy. The evaluation involves two main aspects: firstly,

assessing the accuracy of AI-generated column descriptions compared to ground truth

descriptions; secondly, examining the impact of these descriptions when integrated into existing

search models to evaluate accuracy improvements. Results indicate improved semantic alignment

when comparing generated descriptions to ground truth over column names alone and improved

scores for established work.

 iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Straub for his support throughout navigating the paper.

His advice on direction with the paper helped make this work possible. I would also like to thank

my committee members, Dr. Li and Dr. Orr, for their interest in my work and willingness to serve

on my committee. Additionally, this work used resources of the Center for Computationally

Assisted Science and Technology (CCAST) at North Dakota State University, which were made

possible in part by NSF MRI Award No. 2019077. I am grateful for the access to these resources,

as they were instrumental in the completion of this research.

 v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

2. BACKGROUND .. 2

2.1. Embedding Explanation and Its Influence on NLP Models ... 4

2.2. Transitioning to Transformers and BERT .. 4

2.3. Generative Models: The Emergence of GPT ... 5

3. RELATED WORK ... 7

4. APPROACH ... 9

4.1. Bert Encoding ... 9

4.2. TaBERT and StruBert Tabular Processing .. 10

4.3. Column Name Enhancement .. 11

4.4. Experiments .. 12

4.5. Setup ... 12

5. EXPERIMENTS AND RESULTS ... 15

5.1. Comparing Models ... 15

5.2. Comparing Configurations ... 19

5.2.1. Custom Function.. 19

5.2.2. Adjusting Temperature .. 22

5.2.3. Max Token Setting .. 22

5.3. Comparing Prompts.. 23

5.4. Examining Context Significance .. 26

 vi

5.5. Additional Analysis .. 28

5.6. Impact on Related Work .. 29

6. CONCLUSIONS AND FUTURE WORK ... 32

REFERENCES ... 33

 vii

LIST OF TABLES

Table Page

1. Example Generated Descriptions. ... 11

2. Model Mean Scores by Metric. ... 16

3. Example Generated Descriptions by Model. .. 17

4. Model Mean Scores by Metric for Custom Function. .. 21

5. Custom Function Example Generated Descriptions. .. 21

6. Model Mean Scores by Metric for Temperature. .. 22

7. Model Mean Scores by Metric for Max Tokens. .. 23

8. Prompt Mean Scores by Metric. ... 26

9. Context Mean Scores by Metric for Context Significance. .. 28

10. StruBert Mean Metric Scores... 31

11. StruBert P Value Metric Scores. ... 31

 viii

LIST OF FIGURES

Figure Page

1. Baseline Prompt. ... 15

2. Metric Distributions by Model.. 18

3. Custom Function Prompt. ... 19

4. Custom Function Open API Spec. .. 20

5. Three Shot – Example 1 Prompt. .. 23

6. Three shot – Example 2 Prompt.. 24

7. Brief Column Descriptions Prompt. ... 24

8. For Unfamiliar Individuals Prompt. .. 24

9. Database Format Prompt... 25

10. Additional Context Prompt. .. 25

11. Documenter Role Prompt. .. 25

12. No Table Names or Datatypes Prompt. .. 26

13. Single Column Given Prompt. .. 27

14. Constraint Context Prompt. .. 27

15. Example Constraint Context Provided.. 27

16. Embedding Score vs Change in Position Score. ... 29

17. WIKITables Prompt. ... 30

 1

1. INTRODUCTION

Over the past several decades, locating relevant data within expansive databases, also

known as data discovery, has grown increasingly challenging. As these databases expand, they

often encompass a vast number of tables and columns, which are not always well-annotated or

documented. This issue has drawn significant attention from data scientists, corporations, and

researchers, underscoring a pressing need for effective solutions.

This paper aims to investigate an unexplored avenue in addressing this challenge. Recent

years have witnessed the rising popularity of generative language models, acclaimed for their

versatility in solving a broad spectrum of knowledge problems. This study aims to utilize this

capability to enhance the search retrieval accuracy of relevant database tables in response to user

queries. Specifically, the paper explores the performance of various generative language models

in accurately generating database columns. These generated descriptions will then be utilized

instead of column names in an existing work to evaluate accuracy improvement.

 2

2. BACKGROUND

As data discovery has become a more significant problem, various solutions and avenues

have emerged. Overall, the common problem remains the same: finding relevant data from

source(s) based on some form of search criteria. Some of these strategies include text-to-SQL [1],

keyword driven search [2], dataset driven search, table union search, join-correlation search,

ontology-based search [3], and several others. Each of these strategies, and how they address the

problem, are now discussed.

Keyword-driven Search: Keyword-driven search, a foundational approach in data

retrieval, involves analyzing a user's search query to identify relevant data sources [2]. This

strategy resembles a search engine's functioning but is specifically tailored for tabular datasets.

For example, it may involve matching keywords in a query to those in table headers or column

descriptions, allowing for retrieving tables that best match the query terms. This technique is used

in [2, 4, 5, 6].

Dataset-driven Search: Dataset-driven search differs from keyword-driven search by

using an entire dataset as the input for finding relevant data sources rather than a user-entered

query [3]. This approach often involves comparing datasets' structures, schemas, or contents to

identify similarities and relevancies, effectively allowing for the discovery of datasets that share

characteristics with the input dataset. This technique is used in [2, 5].

Text-to-SQL: Text-to-SQL takes a unique approach by converting a user's natural

language query into an SQL query [1]. This method abstracts the user from the technicalities of

query formulation, directly translating their intent into a database query. For instance, a user asking

'show me sales data from the last quarter' would have their request automatically converted into

the corresponding SQL command. This technique is used in [1].

 3

Table Union Search: Table union search adds a layer of abstraction beyond basic search

retrieval by combining relevant columns from different tables to assemble the requested dataset

[3]. For example, suppose a query asks for customer information and purchase history. In that case,

this method might find the relevant data from multiple sources and stitch it together before

presenting it as the response. This technique is used in [7, 2, 8].

Join Correlation Search: Join correlation search is similar to table union search in that it

can stitch together tables to display results. However, it can also manipulate and integrate data

from various tables to create a dataset that meets the user's complex requirements, such as

correlating product IDs with sales figures across multiple tables [3]. This technique is used in [7,

2].

Ontology-based Search: Ontology-based search involves preprocessing data into an

ontology – a structured representation of the data's concepts and relationships [3]. This method

typically uses model-driven annotations to type columns and datasets, leading to efficient data

retrieval. For example, an ontology might categorize data by topics or themes, enabling users to

retrieve data that fits within a specific conceptual framework. This technique is used in [3].

While the strategies above yield varying results, they all depend on finding relevant

datasets initially. This comparison process can utilize several methods [9]. Keyword bag-of-word

analysis simplifies text into a set of keywords without considering word order; statistical methods

might involve frequency analysis or other quantitative metrics. However, the overwhelmingly

popular method today appears to be embeddings. Embeddings, often used in machine learning,

represent items in a high-dimensional space, allowing for more nuanced similarity assessments.

Consequently, recent research has increasingly focused on leveraging embeddings for data

discovery techniques. This work aims to explore a nuanced approach to enhancing the use of

 4

embeddings, offering a novel contribution to the field. The specifics of Embeddings and the

models that produce them are discussed in the next section.

2.1. Embedding Explanation and Its Influence on NLP Models

Regarding the field of NLP, embeddings have revolutionized how AI can process language

[9]. Embeddings transform words or phrases into numerical vectors. They map words or phrases

to vectors in a high-dimensional space where similar meaning terms are grouped, encapsulating

richer details about their context and relationships. Among their many use cases, they can be

directly compared to each other [10] to determine word or phrase similarity, which is essential for

ranking similar results. These advancements have allowed for more sophisticated text processing,

allowing AI to analyze language with a nuance closer to human understanding.

2.2. Transitioning to Transformers and BERT

The development of advanced embeddings beyond simpler models such as word-to-vec

[11] has paired closely with the advancements of NLP models, particularly the transformer model

introduced in [12]. This model’s self-attention mechanism processes words by considering their

full sentence context, drastically enhancing the interpretation of language subtleties. This marked

a departure from traditional, sequential text processing, allowing for models that capture deeper

linguistic context.

Building on this, Google’s bidirectional encoder representations from transformers

(BERT) [13] represents another significant advancement. BERT’s bidirectional approach

processes the context of words from both directions in a sentence rather than linearly. This is

possible thanks to dynamic embeddings, which adapt according to the word’s surrounding context.

Such embeddings have been essential in BERT’s ability to deeply interpret language, which is

crucial for applications such as database table ranking [10].

 5

In the context of this research, BERT’s capabilities are leveraged for their proficiency in

interpreting and processing the context and meaning of columns and tables. This is the key

advantage it has over other methods in this space. The dynamic nature of BERT’s embeddings

allows for a more accurate alignment of natural language queries with relevant datasets, addressing

the crucial need for understanding the nuanced meanings within database columns.

2.3. Generative Models: The Emergence of GPT

Following the advancements brought forth by models like BERT, the field of NLP has

witnessed the emergence of generative models, a notable example being generative pre-trained

transformer (GPT) [14], developed by OpenAI. Unlike Bert, which is primarily designed to

understand language (making it an encoder), GPT is built to generate text (functioning as a

decoder). GPT was a new application of NLP models capable of producing human-like text, often

referred to as NLG models. These models allowed for new applications, such as content creation

and conversational AI.

The critical difference between GPT (NLG) and models like BERT (NLP) lies in their

training and intended use. GPT is trained on an extensive range of text, allowing it to generate

coherent and contextually relevant text based on a given prompt. This ability to generate text makes

GPT suitable for tasks that require creative language generation. In contrast, BERT’s bidirectional

understanding of context makes it ideal for tasks involving language interpretation, such as

sentiment analysis, question-answering, and information retrieval.

It is believed that the application of NLG models is largely yet to be explored for dataset

retrieval. One exception is Text-to-SQL, which has incorporated NLG for transforming relevant

table data to SQL queries, but finding the relevant tables is left to embeddings.

 6

A potential limitation in prior methodologies, particularly those relying on pre-trained

models such as BERT, is their intrinsic focus on interpreting text as-is, without the added layer of

generating new context or extrapolating beyond the given data. While BERT is adept at contextual

understanding, its architecture is not designed for creative text generation or conjecture. In

contrast, NLG models such as GPT are not only capable of interpreting text but excel at generating

new content that can reflect implications or hypotheses based on the available data. This distinction

suggests that generative models could offer a more comprehensive understanding of database

columns, not just by analyzing existing descriptions but also by suggesting enriched, contextually

relevant interpretations.

 7

3. RELATED WORK

In the area of database table retrieval, several recent studies have suggested novel methods.

Several relevant recent contributions and how they relate to the work presented here are now

discussed.

Zhang and Balong [4] proposed a novel approach to handling table retrieval tasks using

embeddings. Their approach was based on utilizing embeddings to compare the semantic meaning

between tables and input queries. They used multiple representations and similarity measures in a

supervised learning model, substantially improving retrieval performance over prior methods

primarily relying on lexical matching.

TABERT, introduced by Yin, Neubig, Yih, and Riedel [15], represents a novel effort in

interpreting both textual and tabular data. TABERT, which is a variant of the BERT model, was

trained on the WIKITABLES dataset to understand and interpret tables along with input queries

for enhanced retrieval performance. It utilized new methods to parse and handle larger contexts of

tables using “snapshots” created by encoding and manipulating portions of table data.

Gao, et al. [1] explored utilizing an LLM for prompt engineering in text-to-SQL tasks. The

study evaluated the effectiveness of optimizing LLM prompts to generate accurate SQL queries

from retrieved relevant tables. While Gao, et al. focused on generating SQL queries from tables,

the focus of this work is on the underlying table retrieval, which NLG did not enhance in their

study. Instead, their work utilized more traditional methods for this process, including embeddings.

Similarly to their work, this paper investigates prompt designs for accuracy.

Trabelsi, et al. [5] offered a novel approach for combining structural and textual table data.

Building on the work of TABERT, they used the base model, structured the tabular data as row

and column-based sequences, and applied horizontal and vertical self-attention to capture the

relationships within the table’s data. In addition, they utilized a model they called MiniBert to

 8

aggregate the results and determine table relevance to input data, including queries and other

tables. StruBERT is utilized as a baseline for comparison in this work.

Each of these recent papers contributed to the field of table data retrieval. Prior work

primarily focused on utilizing embeddings with the BERT model or variations to compare and

rank relevant table results. The work presented here makes a contribution by utilizing NLG models

to enhance existing results that rely on embeddings for relevant table retrieval tasks, such as the

prior work explained here.

 9

4. APPROACH

The approach used for this work differs from prior work in utilizing generative AI to

enhance existing methods. To better understand how and why this was used, current methods to

encode database tables using embeddings are now discussed. First, how the BERT model creates

embeddings is considered. This is followed by a discussion on how the current state-of-the-art

model, StruBert, processes tabular data before utilizing the BERT model.

4.1. Bert Encoding

The Bert encoding process occurs in a sequence of steps. Starting from a given sentence,

for example, the following steps are performed:

First, tokenization is performed. Bert utilizes WordPiece tokenization to break up an input

into tokens. These are trained words or sections of words that the model understands and has been

trained on. In addition, special tokens are added to the token sequence. These include CLS and

SEP, which indicate the start and separation points in the token sequence.

Second, tokens are converted into embedding vectors that the model can process and use.

These embeddings are not the final embeddings but are a base that will be processed. These base

embeddings then go through attention layers and are contextualized, meaning that they represent

the token and the context from the tokens surrounding it. Surrounding token context is essential

because a word can mean different things in different contexts.

Finally, after processing, the BERT model outputs a sequence of contextualized

embeddings corresponding one-to-one to the input tokens. These embeddings can now be utilized

as needed.

 10

4.2. TaBERT and StruBert Tabular Processing

Next, the use of embeddings by the StruBert and TaBert (which StruBert builds on) models

are discussed. One approach to handling the encoding process of tabular data is to attempt encoding

the entire table; however, BERT has a restrictive token limit and may not be able to interpret the

meaning of the data well. To handle the latter, TaBERT was trained on the WIKITABLES dataset

to interpret and understand tabular data and context better. StruBert uses this model to interpret,

process, and formulate the data into contextual embeddings. To process the data StruBert follows

a series of steps:

First, row and column processing is performed. StruBERT creates sequences from a table’s

rows and columns. For example, a three-by-three table would be turned into a total of nine token

sequences. Each token sequence includes common table data redundantly. Each sequence starts

with context, like the table name and metadata, and then moves through each cell that is contained

in each row and column. Special tokens are also added for separation purposes.

Second, TaBert processing is performed. Once the sequences are created, they are

processed with the TaBert model to produce embedding sequences, as explained previously with

BERT. The output embeddings contain contextualized information for each token in the row and

column input token sequences. The special CLS token is utilized as a summarization for each row

and column.

Third, MiniBERT is used. Once the row and column embeddings have been created, they

are processed again by another model Stubert calls MiniBERT. This model interprets the output

embeddings from TaBERT and produces a relevance score for a table to query or another table.

 11

4.3. Column Name Enhancement

The main contribution of this work is an enhancement of previous work. Previous work

generated embeddings based on table metadata, column names, and table data. One potential

limitation, however, is that column names can be problematic within the dataset or databases in

general. For example, within the WIKITABLES dataset, column names can be missing,

abbreviated, shorthanded, challenging to interpret, and potentially not have been within training

data. This paper proposes a process to enhance the data before utilizing an NLG model. By

enhancing the column names with full column descriptions, the NLP model can better interpret

the meaning of the columns.

Table 1 shows how full English descriptions have been generated to allow the BERT model

to interpret the columns’ meanings more readily instead of relying on table data for the missing

link in context.

Table 1. Example Generated Descriptions.

Column Name Actual Description Generated Descriptions

KCODE Accounting type code

for PPE and IA

The code associated with the account

kind.

ATTACHEDDOCS Number of documents

attached

The number of attached documents for

the advanced report.

ANLPLAN5_ID 5th Order Analytics The ID of the fifth analysis plan

associated with the batch.

Several models and methods can be used to generate these descriptions. The technique

differs slightly depending on the model; however, there is a general process. First, a prompt is

designed. The prompt combines context and instructions for the model to follow. The prompt is

then sent to the model to be processed. Finally, a response is returned and parsed according to the

requested format.

 12

4.4. Experiments

To add additional column context, a process is needed to generate descriptions for each

column in each table based on a prompt. Once the descriptions have been generated, they may be

utilized in table retrieval tasks. To determine the best model and methods to generate descriptions,

several experiments were performed to compare generated descriptions to ground truth. Testing

was then performed on the generated descriptions within the StruBert model.

4.5. Setup

Similarity comparison to ground-truth descriptions was used to determine the best language

models, configurations, and prompts to generate accurate descriptions. This was obtained from a

large open-source ERP project called Millenium BSA [16]. While the columns were in English,

the descriptions were in Russian, however, so they were translated to English for ease of use and

to ensure optimal functionality with embeddings. A feedback loop was created to test multiple

models, configurations, and prompts.

The process consists of 3 main steps. These are now discussed.

First, description generation is performed. Descriptions are generated with a script that first

defines and connects to the model being tested. Some models vary on prompt setup, but all models

need at least a base prompt to tell the model to generate descriptions for a set of column names.

The script requests columns by each table so that each column may have the context of the

surrounding columns. In addition, the table name, metadata, and column data types are used as

additional context. The results are then parsed and extracted from the response from the model.

One note is that due to the size of some tables, it was not possible to request descriptions for an

entire table, and batching was implemented to request only up to 10 columns at a time.

 13

Second, once the descriptions are generated, an embedding was created for each ground

truth description, generated description, and column name. OpenAI Ada 2 embeddings were used

for this process. These embeddings differ from BERT embeddings in that they encompass an entire

phrase instead of a single token. This allows for a direct comparison between ground truth and

generated description embeddings.

Third, evaluation is performed. For evaluation, four metrics were used: Bilingual

Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation (ROUGE),

embedding comparison score, and relative position score. A final script calculates the scores for

each metric and results are recorded.

BLEU is a standard evaluation metric to measure machine translation quality and focuses

on precision. ROUGE is a standard evaluation metric to measure text summarization and focuses

on recall. Note that BLEU and ROUGE serve as additional information about the exact words

used. This work does not necessarily gain by having the exact words as the ground truth

descriptions.

The embedding comparison score compares the ground truth description embedding to the

generated description embedding using cosine similarity, which is the normalized dot product

between x and y. The distance between the embedding vectors is thought to compare the semantic

meaning of the text.

The relative position score refers to the ranking of the results. For each ground truth

description, all the generated descriptions were ranked using cosine similarity and the position of

the correct description in the list was noted. For both the embedding comparison and the position

score, the column name was compared to the ground truth description as a baseline. This is useful

because prior work uses the column name to allow the embeddings to interpret the meaning of the

 14

column. The goal is to allow the embeddings to interpret the column as closely to the ground truth

description embeddings as possible.

 15

5. EXPERIMENTS AND RESULTS

The subsequent sections describe the observations from each of the experiments, including

the model, configuration, prompt, and context inclusion comparisons. These are followed by a

brief analysis of the impact of the description replacement. Finally, an experiment showing the

results of replacing the column names with generated descriptions will be discussed.

5.1. Comparing Models

Four models were evaluated to identify performance differences. These were OpenAI’s

GPT 3.5 and GPT 3.5 0613, Meta’s LLAMA2, and Google’s PALM BISON. OpenAI’s GPT3.5

0613 is an updated version of the 3.5 model. The same prompt was used for all models to observe

the performance equally for each. This prompt is shown in Figure 1. From here on, it will be

referred to as the baseline prompt.

Figure 1 shows the baseline prompt which provides the model with the schema, table name,

and a list of the columns for which descriptions are to be generated.

Figure 1. Baseline Prompt.

Table 2 shows the results for the various models. The Palm model scored the highest on

the BLUE, ROUGE, and embedding scores, while GPT3.5 0613 scored highest on the position

score. Since the BLEU and the ROUGE scores measure exact words, it follows that the column

name baseline would score highest in those categories. This also indicates that PALM may be

 16

returning results that are closer in alignment with the actual column name rather than the desired

descriptions. To further investigate, example description results from each model were examined.

Table 2. Model Mean Scores by Metric.

 BLEU Score ROUGE Score Embedding Score Position Score

GPT3.5 0.1088 0.1523 0.8222 0.9309

GPT3.5 0613 0.1171 0.1629 0.8225 *0.9359

LLAMA2 13B 0.1320 0.1831 0.8213 0.9208

PALM BISON *0.2539 *0.3252 *0.8515 0.9251

Column Name 0.3157 0.3838 0.8439 0.9250

As shown in Table 3, PALM consistently generated shorter and more conservative

descriptions that were not much different from the column name. This explains the favorable

BLEU and ROUGE scores, which often punish length and reword for the exact words used.

GPT3.5 0613, however, generated longer descriptions and moved further away from the column

name. This resulted in descriptions that often added considerably more context compared to

PALM. The distributions between the models were reviewed to further analyze the differences

between the models.

 17

Table 3. Example Generated Descriptions by Model.

Column Name Actual Description PALM Description GPT3.5 0613 Description

KCODE Accounting type code

for PPE and IA

Key code This column stores a code that

represents a specific category or type

of account kind

RESTDOCDATE Document date for

balance / overspend

RestDoc date This column stores the date

associated with a document related to

the restocking process

ATTACHEDDOCS Number of documents

attached

Number of the

attached documents

The number of attached documents

related to the advanced reports

ANLPLAN5_ID 5th Order Analytics ANLPLAN5 ID This column may store an identifier

that represents the fifth level of an

analytical plan or categorization

system used within the database

The distribution graph presented in Figure 2, shows that the PALM model is closely

associated with the column name baseline while the other models have similar distributions. All

models and the baseline column name generally had position scores greater than ninety percent,

while the GPT models were slightly elevated above the rest.

 18

Figure 2. Metric Distributions by Model.

Overall, the results show that the GPT3.5 0613 and PALM models performed the best

based on the metrics tested. However, it is important to note that the PALM model correlated much

more closely with the baseline and provided descriptions that differed little from the column name

alone. One interesting note is that the embedding score and the position score deviated from the

results, given that the position score relies on embedding comparisons to rank results for each

column. One possibility is that while the generated descriptions were closer to the actual

descriptions for the PALM model, the GPT model differentiated the meanings of the columns

more, resulting in a more accurate ranking.

 19

5.2. Comparing Configurations

In this section, configuration options that the GPT model offers were investigated to see

how they impact the results. The options tested included using a custom function call,

increasing/decreasing the temperature parameter, and utilizing a max token limit. Custom

functions are a feature offered by Open AI’s GPT models that can force the model to return a

response in a specific format, specified as Open API JSON format. Temperature refers to the

variation or randomness the model may introduce in its responses. Finally, the max token limit is

a limitation that can be introduced to force the model to respond in a limited response size.

5.2.1. Custom Function

A slightly different prompt was used for the custom function option, and an Open API spec

was used for the response. Figure 3 shows the prompt that was used to instruct the model to

generate the descriptions.

Figure 3. Custom Function Prompt.

It is unnecessary to specify the format in which the model should respond in the prompt.

The model was also told that it updates descriptions instead of providing descriptions. This is

because this specific variation of the GPT model was designed to provide JSON-formatted

responses to perform actions. No actions are actually performed, but this format is used to generate

descriptions more reliably.

 20

Figure 4 shows how the model was instructed to return a response in the format of an array

of object pairs containing each column name and associated description. The goal is that the model

will interpret this as though it is directly updating column descriptions in a database. This is an

attempt for the model to avoid speculative responses. Many responses from the baseline were given

in a speculative format that differs from those that would commonly be found in a database.

Figure 4. Custom Function Open API Spec.

Table 4 shows the custom function results. It shows improvements in all metrics by

utilizing this custom function configuration. As explained previously, the BLEU and ROUGE

scores reward exact word usage and similar length results. The results could indicate that this

configuration has resulted in closer results to the ground truth column descriptions. To further

examine this, examples from the results were examined. They are shown in Table 5.

 21

Table 4. Model Mean Scores by Metric for Custom Function.

BLEU

Score

ROUGE

Score

Embedding

Score

Position

Score

GPT3.5 0.1088 0.1523 0.8222 0.9309

GPT3.5 0613 0.1171 0.1629 0.8225 0.9359

GPT3.5 0613 Custom Function *0.1600 *0.2168 *0.8362 *0.9423

Table 5 shows that the generated descriptions are more concise and less speculative. They

would be more like what would be found in a database and less like a description that may be given

in conversation. This configuration accomplishes the task better than the parsing method.

Table 5. Custom Function Example Generated Descriptions.

Column Name Actual

Description

GPT3.5 0613

Description

GPT3.5 0613 Custom

Function Description

KCODE Accounting type

code for PPE

and IA

This column stores a

code that represents a

specific category or

type of account kind

The code associated with the

account kind.

RESTDOCDATE Document date

for balance /

overspend

This column stores the

date associated with a

document related to

the restocking process

This date of the restocking

document.

ATTACHEDDOCS Number of

documents

attached

The number of

attached documents

related to the advanced

reports

The number of attached

documents for the advanced

report.

ANLPLAN5_ID 5th Order

Analytics

This column may store

an identifier that

represents the fifth

level of an analytical

plan or categorization

system used within the

database

The ID of the fifth analysis

plan associated with the

batch.

 22

5.2.2. Adjusting Temperature

Open AI offers temperature as a parameter for its GPT models, ranging from 0 to 2. This

setting adjusts the variability of the responses. More variability can lead to less restrictive

responses. For this test, decreased and increased values were specified, and the results were

examined. The baseline prompt previously shown was used for this test. Table 6 shows a slight

improvement with a lower temperature compared to the base model. Using a higher temperature,

on the other hand, results in considerably lower scores.

Table 6. Model Mean Scores by Metric for Temperature.

BLEU

Score

ROUGE

Score

Embedding

Score

Position

Score

GPT3.5 0.1088 0.1523 0.8222 0.9309

GPT3.5 Temperature .5 *0.1170 *0.1556 *0.8223 *0.9353

GPT3.5 Temperature 1.5 0.0796 0.1210 0.8096 0.8995

5.2.3. Max Token Setting

Max tokens is a parameter that Open AI offers in its GPT models that specifies the

maximum number of tokens that the model can output. This can be helpful in restricting the model

from generating long outputs that may not be optimal as a database description. However, one

challenge with this parameter is that it includes the token count for all the output that is given back

on results. As with previous experiments, batch sizes of ten were used. A maximum size of 250

tokens was utilized, which is shared across all ten column descriptions the model generates

descriptions for. Tables with less than ten columns or the final batch of tables with more than ten

columns are not as restricted in their description size. Table 7 shows that this setting produced a

minor increase in scores, as compared to the base model.

 23

Table 7. Model Mean Scores by Metric for Max Tokens.

BLEU

Score

ROUGE

Score

Embedding

Score

Position

Score

GPT3.5 0.1088 0.1523 0.8222 0.9309

GPT3.5 Max 250 Tokens *0.1110 *0.1533 *0.8233 *0.9325

5.3. Comparing Prompts

As there has been evidence of differences in results with NLG models with different

prompts [17], several prompts that may alter the generated descriptions’ results were examined.

First, three shot examples were used for the prompt that display generic column names and

descriptions. This prompt is shown in Figure 5.

Figure 5. Three Shot – Example 1 Prompt.

Next, three shot examples from the dataset were used for the prompt, which display column

names and ground truth column descriptions. This prompt is shown in Figure 6.

 24

Figure 6. Three shot – Example 2 Prompt.

After this, a prompt for the model to respond briefly was incorporated. This is an attempt

to limit the response size for each description, similar to what may be in the ground truth

descriptions. This prompt is shown in Figure 7.

Figure 7. Brief Column Descriptions Prompt.

The next prompt asks the model to produce descriptions for users unfamiliar with the

database to provide additional context. This prompt is shown in Figure 8.

Figure 8. For Unfamiliar Individuals Prompt.

Following this the model was prompted to generate descriptions in the format found in a

database. This is an attempt to reduce speculative language in the generated descriptions. This

prompt is shown in Figure 9.

 25

Figure 9. Database Format Prompt.

Next, additional context about the database for which the generated descriptions are

intended was provided. This prompt is shown in Figure 10.

Figure 10. Additional Context Prompt.

Finally, the model was assigned a role as though it is a documenter for column descriptions.

This is an attempt to gain database format in a concise format. This prompt is shown in Figure 11.

Figure 11. Documenter Role Prompt.

Table 8 shows that most prompts resulted in lower scores than the baseline prompt. The 3-

shot examples 1 and 2 appeared to map closer to the examples, resulting in higher BLEU, ROUGE,

and embedding scores, however they performed considerably lower in the position scores. Only

 26

the “for unfamiliar individuals” prompt had a minimal increase for all metrics as compared to the

baseline.

Table 8. Prompt Mean Scores by Metric.

BLEU

Score

ROUGE

Score

Embedding

Score

Position

Score

3 shot – Example 1 0.1433 0.1869 0.8248 0.9159

3 shot – Example 2 0.1623 0.2099 0.8313 0.9223

Brief Column Descriptions 0.1127 0.1577 0.8218 0.9326

For unfamiliar individuals 0.1384 0.1859 0.8290 0.9333

Database Format 0.1296 0.1740 0.8245 0.9255

Additional Context 0.1120 0.1570 0.8230 0.9307

Documenter Role 0.1262 0.1711 0.8245 0.9264

GPT3.5 Baseline 0.1088 0.1523 0.8222 0.9309

5.4. Examining Context Significance

This section considers the various context options and how they affect the descriptions

generated. The context options given in previous tests include the table name, other column names,

and each column’s data type. The impact of when the table name and data types are removed, only

one column is provided per batch, and join constraints are additionally provided are all examined.

First, the table name and datatypes were removed, and instead, the model was asked to

provide descriptions with only the column names as context. This prompt is shown in Figure 12.

Figure 12. No Table Names or Datatypes Prompt.

Next, a similar prompt to the baseline was used, but the grammar was changed slightly to

reflect that only a single column was provided as context, unlike the previous batches of 10. This

prompt is shown in Figure 13.

 27

Figure 13. Single Column Given Prompt.

Following this, the standard prompt from baseline was used, but it was modified slightly

to provide constraints as additional context shown in Figure 14. The constraints are SQL

statements that can provide additional context to the model about column purposes. Figure 15

displays an example of this.

"

Figure 14. Constraint Context Prompt.

Figure 15. Example Constraint Context Provided.

Table 9 shows that removing the table name and data types slightly reduced the BLEU and

ROUGE scores, but improved the position score, implying that the table name and data types had

minimal impact on the description accuracy. Removing additional columns from the request

significantly reduced all scores, implying that the additional columns play a significant role in

 28

producing accurate descriptions. Finally, the constraint context produced BLEU and ROUGE

scores similar to the baseline, but they reduced the embedding and position scores. This could be

due to too much context being provided or due to simply confusing the model and drawing its

attention away from more meaningful elements.

Table 9. Context Mean Scores by Metric for Context Significance.

BLEU

Score

ROUGE

Score

Embedding

Score

Position

Score

No Table Name/No Data Types 0.0957 0.1382 0.8223 0.9360

Single Column Given 0.0737 0.1123 0.8060 0.9010

Constraint Context 0.1097 0.1558 0.8154 0.9160

GPT3.5 Baseline 0.1088 0.1523 0.8222 0.9309

5.5. Additional Analysis

Additional analysis was performed to understand how the generated columns affected the

position score. The change was mapped from the baseline to the gpt3.5 custom function

configuration across the embedding score between the column name and the actual description.

This shows how the score changes, given how discrepant the column name is from the actual

description or meaning of the column.

Figure 16 shows the results of this. The graph shows several vertical lines, most notably

near the .94 embedding score mark. Additional analysis showed that these were duplicate columns,

specifically the ID columns from all the tables. This shows a limitation of using the position score

as a metric, because there were many duplicate ID columns, and the ranking for these would be

random. However, this would have been applied to all measurements, so it should not have biased

experiments.

 29

Figure 16. Embedding Score vs Change in Position Score.

Apart from these lines, the graph shows a fanning out as the embedding score decreases.

This could indicate that, as column names become less correlated with the actual meaning of the

column, the model’s estimations of the column’s meaning increase in variation. The graph also

shows how the model’s estimations are not always an improvement. Many generated descriptions

were a regression, as compared to simply using the column name. However, the results of the

previous experiments showed that the mean of the position scores is higher than the column name

alone, meaning that, on average, the model is potentially more correct than wrong when adding

additional context.

5.6. Impact on Related Work

To test if the generated descriptions add valuable context for use in existing models, the

column descriptions were substituted for the column names in the StruBert model. The StruBert

model utilizes the WikiTables dataset for its testing, which does not include column descriptions.

As such, comparing the generated descriptions to identify accuracy compared to ground truth is

 30

impossible. However, the goal is to determine if the added context improves search accuracy when

retrieving relevant database tables to a user query. The Wikitables dataset includes additional

context, which was utilized in prompts to generate the column descriptions.

Figure 17 shows the prompt provided to the model to generate descriptions for the

Wikitables dataset. The model was provided with the table name, second table title, table caption,

column IDs, schema, and sample table data. Then, batches of 10 columns were used.

Figure 17. WIKITables Prompt.

Once the column descriptions were obtained, they were concatenated to the column names

utilized by StruBert. StruBert utilizes its own processing, therefore it's necessary to modify its data

processing slightly to perform this action. StruBert requires a training process for its MiniBert

model. For this work, it was trained on a single Nvidia Quadro GP100. The environment was

reproduced utilizing the instructions given on the StruBert Github page and the suggested

parameters for testing were used. StruBert utilizes NDCG@5, MAP, and MRR to evaluate results.

It evaluates an average result based on predefined 5-fold datasets.

Table 10 shows the results with and without the generated descriptions. It shows that using

column descriptions gives an improvement across all metrics and considerably improves the MRR.

Note that each test was run 20 times, and these results were the top for each series of runs. To

 31

further identify if the results are significant, a one-sided t-test was performed on the series of

results, assuming equal variance.

Table 10. StruBert Mean Metric Scores.

 NDCG@5 MAP MRR

Strubert with column names 0.6252 0.6195 0.6450

Strubert with column descriptions 0.6263 0.6229 0.6591

Table 11 shows that all metrics are statistically significant at a sample size of 20 and a

statistical significance level of 0.05.

Table 11. StruBert P Value Metric Scores.

 NDCG@5 MAP MRR

Comparison of result

sets 0.01223 0.00002 0.00001

 32

6. CONCLUSIONS AND FUTURE WORK

The exploration of the use of NLG models for the semantic enrichment of database

columns identified several limitations and areas that are available for future research. Notably, the

attempt to reproduce the StruBert model did not yield the reported scores, suggesting an area for

further investigation. Although improvements were observed with the incorporation of column

descriptions, these did not surpass the previously reported scores.

Additionally, there are opportunities to utilize larger models. This work utilizes both NLP

and NLG models, both of which could be replaced with larger options. However, this work did not

utilize larger NLG models such as GPT4, LLAMA2 63B, or PALM 1.5, which could show

improved description generation. In addition, one potential limitation could be the limited size of

the NLP model, BERT. If the NLP model was replaced with a larger model, it could shrink the

discrepancies in scores observed in this work.

Finally, utilizing NLG models to directly determine the relevance of database tables to

queries presents a promising direction. Traditional reliance on embeddings could be replaced with

NLG’s dynamic response generation, potentially improving accuracy and reducing computational

demands as models evolve to handle larger context windows efficiently.

In conclusion, this work examined the potential of NLG models to generate database

column descriptions and assessed the impact of various models, configurations, prompts, and

context inclusions on the accuracy of these descriptions. The application of these generated

descriptions in place of column names within the state-of-the-art StruBert model demonstrated that

the generated descriptions provide additional valuable context that can be utilized to improve

tabular data search retrieval.

 33

REFERENCES

[1] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, "Text-to-SQL

Empowered by Large Language Models: A Benchmark Evaluation," 2023,

arXiv:2308.15363.

[2] N. W. Paton, J. Chen, and Z. Wu, "Dataset Discovery and Exploration: A Survey," ACM

Computing Surveys, vol. 56, no. 4, 2023, doi: 10.1145/3626521.

[3] Y. Suhara, J. Li, Y. Li, D. Zhang, Ç. Demiralp, C. Chen, and W.-C. Tan, "Annotating

Columns with Pre-trained Language Models," in Proc. of the 2022 ACM SIGMOD Int.

Conf. on Management of Data, Philadelphia, PA, USA, 2022, pp. 1493-1503, doi:

10.1145/3514221.3517906.

[4] S. Zhang and K. Balog, "Ad Hoc Table Retrieval using Semantic Similarity," in Proc. of

the 2018 World Wide Web Conf. on World Wide Web - WWW ’18, 2018, doi:

10.1145/3178876.3186067.

[5] M. Trabelsi, Z. Chen, S. Zhang, B. D. Davison, and J. Heflin, "StruBERT: Structure-

aware BERT for Table Search and Matching," in Proc. of the ACM Web Conf. 2022,

Virtual Event, Lyon, France, 2022, pp. 442-451, doi: 10.1145/3485447.3511972.

[6] Z. Chen, M. Trabelsi, J. Heflin, Y. Xu, and B. D. Davison, "Table Search Using a Deep

Contextualized Language Model," in Proc. 43rd Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2020, pp. 589-598, doi:

10.1145/3397271.3401044.

[7] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragkoulis, C. Lofi, A.

Bonifati, and A. Katsifodimos, "Valentine: Evaluating Matching Techniques for Dataset

Discovery," in 2021 IEEE 37th Int. Conf. on Data Engineering (ICDE), 2021, pp. 468-

479, doi: 10.1109/ICDE51399.2021.00047.

 34

[8] G. Fan, J. Wang, Y. Li, D. Zhang, and R. Miller, "Semantics-aware Dataset Discovery

from Data Lakes with Contextualized Column-based Representation Learning," 2023,

arXiv:2210.01922.

[9] U. Naseem, I. Razzak, S. K. Khan, and M. Prasad, "A Comprehensive Survey on Word

Representation Models: From Classical to State-Of-The-Art Word Representation

Language Models," 2020, arXiv:2010.15036.

[10] J. Lin, R. Nogueira, and A. Yates, "Pretrained Transformers for Text Ranking: BERT

and Beyond," 2021, arXiv:2010.06467.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word

Representations in Vector Space," 2013, arXiv:1301.3781.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, "Attention Is All You Need," 2023, arXiv:1706.03762.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding," in Proc. 2019 Conf. of the

North American Chapter of the Assoc. for Computational Linguistics: Human Language

Technologies, vol. 1, Minneapolis, Minnesota, 2019, pp. 4171-4186, doi:

10.18653/v1/N19-1423.

[14] A. Radford and K. Narasimhan, "Improving Language Understanding by Generative

Pre-Training," 2018, Available: https://api.semanticscholar.org/CorpusID:49313245.

[15] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel, "TaBERT: Pretraining for Joint

Understanding of Textual and Tabular Data," 2020, arXiv:2005.08314.

https://api.semanticscholar.org/CorpusID:49313245

 35

[16] D. Valentino, E. Akhmetkhanov, and TheTypoMaster, "Millennium Business Suite

Anywhere (MBSA): An open-source ERP/CRM platform," 2017, Available:

https://github.com/vporoxnenko/mbsa.

[17] L. Reynolds and K. McDonell, "Prompt Programming for Large Language Models:

Beyond the Few-Shot Paradigm," in Extended Abstracts of the 2021 CHI Conf. on

Human Factors in Computing Systems, 2021, Art. no. 314, doi:

10.1145/3411763.3451760.

https://github.com/vporoxnenko/mbsa

