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ABSTRACT 

Polymer matrix composites (PMCs) are widely used in various industries, including 

aerospace, vehicles, sports utilities, and civil infrastructures. Understanding the failure process 

and mechanisms of PMCs subjected to external loads is crucial for their reliability. This study 

aims to develop a semi-analytic stress-function variational method for accurate prediction of 

interfacial stresses and progressive cracking in PMC laminates. The method uses a three-layered 

cross-ply laminate model with periodic transverse ply cracks, introducing two unknown 

interfacial shear and normal stress functions at each laminate interface. The stress field is 

expressed in terms of these stress functions, using Euler-Bernoulli beam theory and elasticity. 

The method also considers transverse deflections of the plies, resulting in accurate predictions of 

interface stresses. The method can be used for scaling analysis of interfacial stresses and 

progressive cracking in PMC laminates as validated by finite element analysis (FEA). 
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1. INTRODUCTION 

Composite materials are made of at least two phases, i.e., the matrix phase and the 

reinforcing phase, which enable to provide improved material properties, e.g., the mechanical 

and physical properties, compared to those of the monolithic matrix and reinforcing constituents. 

The origin and application of composite materials can be traced back over one thousand years 

ago. The earliest composite materials as recorded in the literature, known as wattle and daub, 

were employed for constructing walls [1]. Since then, engineers had been using and developing 

various composite materials for broad applications. In the last five decades, significant research 

investigations have been made in scientific community to exploit their superior properties, 

improve their design, manufacturing, and deployment, and to reduce the fabrication costs, 

especially the development of modern high-performance carbon-fiber reinforced polymer matrix 

composites (PMCs) for aerospace and aeronautical structures and clay nanoparticle reinforced 

polymer composites for modern personal cars and other industrial utilities. Modern advanced 

PMC science and technology exemplify the development of modern materials technology with a 

wide range of structural applications due to their excellent mechanical performance, lightweight, 

high specific strength, and stiffness [2,3,10]. 

Structurally, the reinforcing fibers in PMCs carry much higher specific strengths than 

their bulk counterparts. The enhanced strength of the reinforcing fibers is attributed to their 

reduced presence of internal or surface defects compared to conventional bulk materials. The 

reinforcing fibers within PMCs are integrated into a resin matrix material in order to effectively 

withstand high loads. Simultaneously, the polymeric matrix also functions to bind the reinforcing 

fibers together to load transfer from one fiber to the next and to protect fibers against wear and 

degradation caused by various environmental factors. Due to the low mechanical properties of 
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the resin (e.g., polymeric matrix), the mechanical properties of a PMC experience a certain 

degree of reduction compared to those of reinforcing fibers. Nevertheless, PMCs remain 

significantly superior to the bulk matrix materials. Advanced PMCs further enhance their high 

unidirectional mechanical properties by utilizing aligned continuous high-performance fibers, to 

achieve up to 70% fiber volume ratio. Unidirectional fiber-reinforced PMCs exbibit significant 

anisotropy, with very high strength and modulus along the fiber direction. However, the material 

also exhibits a low modulus and strength in the direction perpendicular to the fiber direction. In 

the context of fiber-reinforced PMCs, the issue of in-plane anisotropy can be addressed through 

the utilization of angle-ply laminated PMCs (as depicted in Figure 1.1). This particular approach 

involves the arrangement of multiple plies of laminae, each possessing distinct fiber orientations, 

in order to achieve the necessary in-plane mechanical properties. The resulting laminate physical 

and mechanical properties can be optimized via tailoring the fiber orientations and layer stacking 

sequences, which form an important content in PMC design, fabrication, and applications. 

However, sufficient precaution should be taken in avoiding large stress concentration and 

resulting delamination at ply interfaces, especially near free edges, stemming from the 

mismatches of elastic and thermal properties at two neighboring plies [3-5]. 

While advanced PMCs are frequently characterized with their high specific strength and 

stiffness as well as reduced weight compared to their monolithic counterparts, their limited 

ductility and vulnerability to cracks and notches remain notable concerns. To date, researchers 

have developed various strategies to enhance their interlaminar fracture toughness, including 

techniques like stitching, Z-pinning, incorporation of whiskers, or utilization of braided 

composites. These technological advancements have drawn more attention to PMCs as materials, 

with the primary challenges in processing and predictable capabilities [6-10]. 
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Figure 1.1 Diagrams illustrating the structure of an angle-ply composite laminate (left) and a 

cross-ply composite laminate (right) [2]. 

 

A comprehensive understanding of the failure processes in composite materials under 

various loading conditions is crucial to establishing a systematic framework for predicting the 

failure behavior of these materials to ensure their load-carrying capacity, structural reliability and 

safety. Failure mechanisms must be well-understood in the design and implementation phases to 

avert the risk of unforeseeable catastrophic structural failure. In contrast to homogeneous 

materials with their typical failure in term of single-crack propagation, composite materials lack 

a singular, well-defined failure mechanism. This disagreement is due primarily to the increased 

anisotropy and constituent inhomogeneity in PMCs. Common failure modes in advanced PMCs 

encompass transverse matrix cracking, fiber-matrix debonding, fiber breakage, and delamination 

between laminae [3,10,19]. 
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Amongst all the failure modes, progressive matrix cracking emerges first in the relatively 

weak and compliant resin of the composite materials, which further lead to other subsequent 

failure modes due to stress redistribution and concentration that is to be discussed in Chapter 2. 

In addition, prediction of the interfacial stresses at ply interfaces is critically important, as 

elevated interfacial stresses can result in delamination at along the ply interfaces. Extensive 

research has been conducted to develop various rational models to predict the interfacial stresses 

and matrix cracking in advanced PMCs. So far, quite a few mechanics models of PMCs and 

joints have been reported in the literature for effective stress analysis of composite laminates and 

joints, which are often based on oversimplified or even falsified assumptions. For instance, a few 

such models adopted the assumptions that even fail to satisfy the simple traction-free boundary 

conditions (BCs) at the PMC or joint edges. 

Thus, the goal of this M.S. thesis is to adopt a semi-analytic stress-function variational 

method for high-efficiency and accurate prediction of the interfacial stresses and progressive 

matrix cracking in a three-layered cross-ply composite laminate under uniaxial tension. The 

stress-function variational method, originally developed by Wu and his group [11-16], has been 

used to predict the interfacial stresses in bonded and adhesively bonded joints. Later, this work 

was further expanded to predict progressive cracking in hard surface coatings. This highly 

accurate and effective semi-analytical method enables to provide the precise solutions and 

incorporate all the BCs that other models fail to address effectively. In addition, the deformation 

compatibility of the materials is realized in the stress-function variational method via evoking the 

minimum complementary strain energy theorem. 

The present thesis study focuses on a three-layered symmetric cross-ply PMC laminate as 

a simple laminate model to demonstrate this process. This model introduces two unknown 
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interfacial shear and normal stress functions at each ply surface. In addition, the planar stress 

field in each ply is expressed analytically in terms of these interfacial stress functions as follows: 

the axial normal stresses along the ply direction is assumed to vary linearly according to Euler-

Bernoulli beam theory, while the in-planar shear and transverse normal stresses are determined 

via triggering the stress equilibrium equations of 2D elasticity. The deformation compatibility of 

the PMC is guaranteed through the minimum complementary strain energy theorem, which 

results in a set of coupled ordinary differential equations (ODEs) for the interfacial stress 

functions. This set of ODEs is subsequently solved explicitly using eigenfunctions. The 

utilization of this method satisfies all the traction boundary conditions, especially the shear-free 

conditions at edges, which are commonly ignored in conventional analytic methods. 

The accuracy and effectiveness of the stress-function variational method for present 

stress analysis of the three-layered composite laminate are validated by FEM using a commercial 

software package ANSYSTM. In addition, scaling analysis to examine the dependencies of the 

interfacial stresses and crack spacing on the laminate geometries and elastic properties changes 

are made. Consequently. conclusions and suggestions of the present research are made. 
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2. LITERATURE REVIEW 

2.1. Matrix Cracking and Interfacial Stresses 

Subjected to external loading, the failure of a PMC laminate is a progressive process of 

microcrack nucleation, growth, and ultimately catastrophic failure. Common failure modes in 

advanced PMCs include matrix cracking, fiber-matrix debonding, fiber breakage, and 

delamination between laminae as shown in Figures 2.1 and 2.2. The actual damage progress in 

an advanced PMC is contingent upon various factors, including the nature of loading, PMC 

geometries, and material properties of the PMC constituents, among others. Typically, the 

damage process is characterized as a stochastic behavior, spreading throughout the composite 

material. Prior to reaching a catastrophic failure point, damage accumulates gradually and 

coalesces, ultimately leading to a visible macroscopic fracture. Figure 2.3 illustrates the 

progressive damage in composite laminates under tensile loading, with five identifiable 

consecutive damage mechanisms [17]. During the early phase of damage accumulation, there is a 

noticeable increase in matrix cracking in layers that are oriented perpendicular to the direction of 

the applied force. In the context of static tensile testing of cross-ply laminates, transverse matrix 

cracking is detected as early as 0.4-0.5% applied strain, which may vary based on the specific 

laminate configuration [10]. 

As stress builds, secondary cracks initiate transversely to the primary intralaminar cracks 

found in adjacent plies. These secondary cracks are known to induce interlaminar cracks, i.e., 

interlaminar fracture. In the early stage, these cracks are isolated, and dispersed across the plies. 

Over time, some of these interlaminar cracks coalesce, forming zone-like strips, which can 

eventually lead to extensive delamination. This results in a loss of laminate integrity within the 
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affected regions. In addition, the stresses become highly localized if the load gradually increases, 

ultimately leading to fiber breakage [3,18].  

 

Figure 2.1 The common damage modes of observed in a cross-ply composite material. (1) Fiber 

breakage; (2) matrix cracking; (3) fiber/matrix debonding; (4) delamination [3]. 

 

 

Figure 2.2 Images to show the failure mechanisms of fiber-reinforced composite laminates [10]. 
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Figure 2.3 Schematic diagram to show the damage development in composite laminates 

[Reproduced from [19]]. 

 

Among various types of damage modes, the first mode frequently observed in composite 

laminates is matrix cracking. These matrix cracks tend to develop perpendicular to the fiber 

orientation due to the brittleness and low ultimate tensile strain of the thermosetting resin (e.g., 

thermosetting epoxy). As the applied load intensifies, the crack density also increases, forming 

three-dimensional (3D) intersecting cracks spanning through multiple layers in multiple 

directions. Advanced PMC laminates utilize high-strength and high-modulus fibers embedded 

within a compliant polymeric resin to form a UD lamina, which delivers the essential load-

carrying capacity along the fiber direction. When subjected to tensile loading along the fiber 

direction, this UD lamina undergoes tensile failure due to fiber rupture. Because the reinforcing 

fibers are much stiffer than the polymeric matrix, a considerable strain can exert within the 
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matrix when a ply is subjected to transverse loading. The off-axis plies have a lower failure 

strain than those aligned with the loading direction. Consequently, a UD lamina exhibits the high 

strength and stiffness along the fiber direction but provides the minimal transfer of these 

properties in the transverse direction. Since these matrix cracks often align with the central plane 

of the laminate, they are commonly referred to as transverse cracks. While matrix cracking may 

not be the primary factor leading to structural failure, it can significantly weaken the material 

strength and further affect the structural integrity. In order to maximize the load-carrying 

capability of a PMC laminate, designers must count for matrix cracking, as it often precedes the 

final failure of the structure [3-5,10,18,19,41]. 

Matrix cracking in PMC laminates can be divided into three sequential stages, i.e., crack 

initiation, growth, and final localization, culmination in the ultimate failure. Furthermore, 

intralaminar crack initiation within a ply (lamina) is influenced by various factors, e.g., the 

laminate stacking sequence and material properties. In the design of composite structures, 

lamination optimization is often employed, where the arrangement of plies determines the 

overall stiffness and the failure behavior of the PMC structure. While cross-ply composite 

laminates with plies oriented at 0 and 90 degrees offer a straightforward lamination 

configuration, more complex loading conditions require intricate lamination arrangements. The 

stiffness of the plies and the entire laminate of a PMC decreases as damage accumulates. The 

decrease in stiffness can be associated with multiple factors, e.g., the density of intralaminar 

cracks, the level of delamination, or a combination of both, etc. [19]. 
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2.2. Current Understandings 

The initial investigations of microcracking within a PMC laminate involved use of cross-

ply laminates composed of UD polyester reinforced with glass fibers [20] and epoxy reinforced 

with glass fibers [21]. In the scenario that involved thick plies positioned at a 90-degree angle, 

the initiation of transverse microcracks occurred at the edges of the specimen and thereafter 

progressed rapidly over the entire width of the cross-section. This phenomenon of edge cracking 

was also observed in thinner plies. Notably, the tensile strain required for initiation of transverse 

cracks exhibited an increasing trend as the thickness of the 90-degree plies decreased [22]. It was 

observed that for extremely thin plies with the thickness of less than 0.1 mm, transverse crack 

did not initiate, and instead, laminate failure occurred. The explanation for such thickness-

dependent behavior was subsequently made by Talreja [23], who attributed it to the constraint 

exerted by the uncracked plies on the cracked plies. As the thickness of the 90-degree plies 

increased, the constraint arising from the 0-degree plies diminished, resulting in the initiation of 

microcracking at lower applied strains, and conversely, thinner plies experienced crack initiation 

at higher strains. A microscopic examination aimed at understanding the origin of microcracks 

revealed their correlation to the processing defects, voids, and regions with a higher fiber volume 

fraction [21]. These microcracks typically initiated with the debonding of the fiber-matrix 

interface. George et al. [24,25] in their series of two papers also reported that the global tensile 

strength of a PMC laminate is increased significantly with the decrease of ply thickness in thin 

constrained plies while the global strength of thick plies were almost remained constant. 

The initial concept of the first-ply failure (FPF) hypothesis was proposed by Hahn and 

Tsai [12] to estimate the strain necessary to trigger the first microcracking Figure 2.4. The 

underlying principle of this theory assumes that the first cracking occurs when the strain 
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undergoing within the plies reaches a certain threshold, evolving the onset of cracking. 

Nevertheless, these predictions were not according to empirical data. This theory does not 

consider the ply thickness of the PMC laminates. The deviation from the experimental findings is 

obvious. Subsequent efforts to refine this theory by incorporating all the stress components were 

unsuccessful [10]. 

 

Figure 2.4 Strain to induce transverse cracking in 90-degree plies with varying thickness in a 

cross-ply PMC laminates [Reproduced from [10,22]]. 

 

In the case that matrix cracking is the predominant failure mode in a PMC laminate, it is 

common that the PMC laminate exhibits an enhanced capacity to support higher loads without an 

immediate reduction in its ability to transfer loads. Despite potential deviations in certain 

material properties, e.g., Young's modulus and coefficient of thermal expansion, the laminate is 

capable of retaining its load-carrying capacity. Allowing for controlled damage within a 

composite laminate can lead to more efficient design strategies. However, this methodology 

requires a thorough understanding of the mechanisms governing the crack initiation and 

progression, as well as their subsequent influences on the mechanical properties of the PMC 
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laminates. Multiple instances of crack initiation can yield several adverse consequences as 

reported by Arbate [18] as follows: 

• The presence of cracks in plies leads to a decrease in the effective stiffness, which in 

turn causes stress redistribution within the PMC structure. 

• Changes in the coefficients of thermal expansion of the PMC laminate. 

• The initiation of delamination between plies or the failure of fibers in the 0-degree 

plies. 

• The facilitation of fluid seepage in pressure vessels and heightened vulnerability to 

moisture infiltration are among the various adverse consequences. 

The study of transverse ply cracking in PMC laminates has been a subject of continuous 

research for decades, which is aimed at a comprehensive understanding of its mechanics and 

influence in the mechanical behavior of PMC laminates. One can refer to the following 

references [24-28] to additional understand the early stage development of progressive cracking 

in cross-ply PMC laminates subjected to monotonically increasing loads. To date, several 

effective models have been developed in the literature for prediction of progressive cracking in 

composite laminates. These models include the ply discount method, various adaptations of the 

shear-lag model, a variational approach based on the minimization of complementary strain 

energy, the continuum damage mechanics approach, an efficient experimental technique, and 

numerical methods, e.g., those based on FEM [10,18,19]. 

Within the context of energy-based models, microcrack initiation occurs whenever the 

accumulated strain energy becomes sufficient to surpass the critical energy release rate for crack 

growth. This criterion for crack initiation and propagation is rooted in the principles of classical 

linear elastic fracture mechanics (LEFM). In contrast to LEFM, transverse cracking entails the 
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creation of a measurable quantity of additional fracture area. When utilized in conjunction with 

precise stress analysis techniques, e.g., the stress-function variational method and FEM, it is 

anticipated that this approach would produce more accurate predictions of crack growth in 

various cross-ply PMC laminates [51,52]. 

However, according to the classical strength theory, cracking occurs when the stress level 

reaches the transverse tensile strength of the ply material or satisfies a failure criterion based on a 

multi-axial stress state. The model above was unsuccessful in accurately identifying the onset 

and advancement of cracks across various ply thicknesses. Moreover, the applicability of these 

models is severely restricted to cross-ply laminates due to the requirement for comprehensive 

stress analysis. Yet, their predictions have the difficulty to align with experimental measurements 

[53].  

Below an overview of the main research endeavors aimed at modeling the matrix 

cracking in PMC laminates is presented. Table 2.1 lists a few typical methods that were used to 

predict the stresses and matrix cracking in composite laminates. 

 

2.2.1. Ply discount method 

In this method, the stiffness of cracked plies is ignored, which makes it easier to model 

the matrix cracking. However, this approach tends to underestimate the stiffness of the laminate 

that have cracks, as the cracked plies can still contribute significantly to the load-carrying 

capacity [29]. As an alternative approach, the modified ply-discount model essentially assigns a 

transverse stiffness value of zero to the plies that have experienced cracks, which can be more 

effective. These models do not account for variations in stiffness due to crack density and are 

better suited for situations with high crack densities. With their simplicity, these models often 
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lack the reliability in design and failure analysis due to their reliance on a coarse assessment of 

the effects of transverse cracking. 

 

2.2.2. Variational approach 

In their study, Hashin [30,31] utilized the minimal complementary potential energy 

theory to predict the ply stresses stiffness, and coefficients of thermal expansion of cross-ply 

laminates that contain evenly distributed ply cracks. The approach utilized in this study entails 

the solving of a 2D boundary value problem and offers superior performance compared to one-

dimensional (1D) shear-lag approaches. The predicted results based on this method demonstrated 

excellent agreement with experimental data. However, when it comes to analyzing the stresses in 

more general composite laminate configurations other than cross-ply laminates, particularly off-

axis layups, the variational technique faces significant challenges, and at now, no variational 

solution is available for laminates of this nature [10]. This limitation indicates a major drawback 

of the variational approach. Figure 2.5 depicts the primary unit cell employed in the solving of 

the resultant 2D boundary value problem concerning cracked cross-ply laminates [32]. 
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Figure 2.5 The boundary value problem pertaining to a cross-ply composite laminate with a 

crack [32]. 

 

Hashin [29] assumed that the normal stresses in the load direction remain constant 

throughout the ply thickness. Additionally, the stress field is formulated in such a way that it 

satisfies the stress equilibrium as well as boundary and interface conditions via minimizing the 

complementary strain energy of the laminate. The following ODE is obtained with Hashin's 

variational scheme as 

𝑑4𝜑

𝑑𝜁4
+ 𝑝

𝑑2𝜑

𝑑𝜁2
+ 𝑞𝜑 = 0, (2.1) 
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where 𝜁 =
𝑥

𝑡90
, and p and q are two laminate parameters, φ is a function that describes the stress 

disturbance resulting from cracking. The relationship between the longitudinal stress in the 90° 

ply and φ is given by 

𝜎𝑥𝑥
90 = 𝜎𝑥𝑥0

90 [1 −  𝜑(𝑥)], (2.2) 

where 𝜎𝑥𝑥
90 is the 90o ply normal stress before cracking. In addition, the semi-analytic method 

proposed by McCartney [33] involves utilizing a generalized plane strain formulation. This 

approach assumes that two distinct functions determine the in-plane typical stress dependency on 

the two in-plane coordinates. In order to adequately represent the variation in stress over the 

thickness of a ply, it is the common practice to partition the ply into multiple thin sub-plies. The 

equilibrium equations are then applied using the average stress fields within each sub-ply. The 

process results in a series of recursive equations, rendering this method semi-analytic and 

requiring numerical calculations. 

 

2.2.3. Continuum damage mechanics (CDM) 

Using principles of damage mechanics presents a viable alternative method for 

characterizing the mechanical behavior of PMC laminates with matrix cracking. In continuum 

damage mechanics, specific parameters must be calibrated using experimental or numerical data. 

In a study conducted by Lee et al. (34), an empirical correlation was established between the 

internal damage state parameter and the stiffness of a matrix-cracked cross-ply laminate. These 

researchers utilized minimum potential energy theory to calculate the approximate solutions for 

the local stresses and strains, facilitating determination of the upper bounds on the laminate 

stiffness. 
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The fundamental process involves quantifying damage using appropriate parameters and 

then formulating the governing equations that describe its progression and impact on the 

mechanical properties of the composite laminate. The first step in this process involves defining 

the damage and establishing an appropriate metric. This method commonly addresses defects 

with the size much less than the customary microscopic size of the material under the assumption 

that the material exhibits homogeneous on a macroscopic scale [18]. So far, researchers have 

formulated several models for stress and fracture analysis of PMC laminates to undergo 

transverse matrix cracking. However, this method may not be feasible in practice due to the 

extensive efforts required to extract the relevant data on crack dispersion. Additionally, 

application of this method would require interrupting the ongoing testing process. 

  

2.2.4. Numerical methods 

Various numerical methods have been employed to analyze cracked cross-ply PMC 

laminates. The majority of these analyses are focused on addressing the 2D boundary value 

problems, similar to Hashin's [30,31] variational approach, with the assumption of either plane 

stress or generalized plane strain states. Only a few have ventured into performing 

comprehensive 3D stress analyses. The main computational approaches employed in such study 

include FEM, finite difference method (FDM), boundary element method (BEM), and finite strip 

method (FSM) [10,18,19]. These methods provide the benefit of yielding more precise stress 

solutions, hence offering significantly improved insights. For example, Marek [35] studied the 

mechanical response of UD fiber-reinforced PMCs subjected to transverse tension. This 

investigation included numerical homogenization techniques based on FEM. The model above 

demonstrates the high accuracy in simulating the damage procedure. The numerical outcomes 
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indicate that deviations in the local fiber orientation significantly contribute to the crack 

initiation in matrix due to stress concentration. However, it is important to note that these 

methods are often application-specified, as they require reconfiguration whenever changes exist 

in the laminate construction, material, or crack density. As a matter of fact, any analytical 

methods, whether existing, proposed, or under development, are frequently subjected to 

verification, comparison, or validation through various computational means.  



 

 

 

1
9
 

Table 2.1 Comparison of different methods used to model the matrix cracking in PMC laminates 

Method Description Advantages Limitations 

Ply discount 

method 

Empirical approach where the cracked plies 

are assumed to carry reduced loads due to 

matrix cracking. 

Gives simple and quick 

analysis. 

Oversimplifies complex 

damage mechanisms. 

Variational 

approach 

Utilization of variational principles to find 

approximate solutions to the governing 

equations of cracked laminates. 

Provides analytical insights 

into crack behavior. 

Limited to specific problems 

with known analytical 

solutions. 

Continuum 

damage 

mechanics 

Numerical modeling approach that simulates 

the crack initiation and growth in composite 

materials. 

Captures crack evolution over 

time. 

Requires detailed material 

properties and data. 

Numerical 

methods 

Use of FEM or BEM to solve the governing 

equations for stress and strain in composite 

laminates. 

Offers accurate and versatile 

analysis for PMC laminates of 

complex geometries. 

Requires expertise in 

numerical modeling and 

software. 

Shear-lag model 

Analytical method to analyze the gradual load 

transfer between intact and cracked regions in 

a PMC laminate. 

Provides insights into stress 

distribution in PMC laminates. 

Complex calculations for 

general laminate 

configurations. 
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2.2.5. Shear-lag model 

The shear-lag model is a widely employed analytical approach to examine the stresses in 

a multilayered composite and progressive matrix cracking in composite laminates. Shear-lag 

analyses in composite materials research often involve numerous approximations. This method 

considers the impact of load transfer between microcracked plies and their neighboring plies. 

This model assumes that load transfer between plies primarily occurs in shear layers located 

between adjacent plies. By closely examining the existing analytic and semi-analytic models [24-

28,35-36] of progressive cracking in cross-ply PMC laminates, it has been observed that 

oversimplified mechanical models have been utilized to calculate the interfacial stresses at the 

ply surfaces in cross-ply laminates, in which the plies are simplified as tension rods and shear-lag 

model is adopted for determining the shear stress at ply surfaces. This assumption suggests that 

neighboring plies always experience the same normal stress in the direction of the external load. 

The specific characteristics of the shear layers, e.g., the length and stiffness, are not precisely 

defined. The shear-lag hypothesis does not consider the stress and strain variations across the ply 

thickness. 

All shear-lag analyses universally incorporate an assumption that simplifies the in-plane 

shear stress, represented as τ𝑥𝑦, by separating it into the x and y axes. Decoupling reduces the 

2D-planar elasticity problems to a more manageable 1D problem. The conventional 

simplification pertaining to shear stress involves the assumption that [37] 

𝜏𝑥𝑦 ∝
𝜕𝑣

𝜕𝑥
 , (2.3) 

where the variable v denotes the displacement in the y-direction. Within the context of linear 

elasticity, shear stress τxy is expressed 
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𝜏𝑥𝑦 = 𝐺𝑥𝑦𝛾𝑥𝑦 = 𝐺𝑥𝑦 (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
), (2.4) 

where 𝐺𝑥𝑦 is the in-plane shear modulus, γ𝑥𝑦 represents the in-plane shear strain, and u denotes 

the displacement in the x-direction. The fundamental assumption underlying all shear-lag 

analyses is that 

𝜕𝑢

𝜕𝑦
= 0, or at least that |

𝜕𝑢

𝜕𝑦
| ≪ |

𝜕𝑣

𝜕𝑥
| (2.5) 

Given 1D nature, doubts exist about the applicability of shear-lag model to more general layup 

configurations beyond the simple cross-ply composites. Researchers have made efforts to refine 

this model, and successful applications have been achieved in cross-ply laminates. Some shear-

lag models have also incorporated crack interactions into their procedure [19]. 

 

 

Figure 2.6 A representative cross-section of a cracked PMC laminate and a representative area 

element in load equilibrium [Reproduced from [38]] 

 

Aveston et al. [38] employed the shear-lag approach to examine the failure process of 

fibrous composite materials characterized by a brittle matrix that exhibits a lower failure strain 
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compared to that of the reinforcing fibers. They focused on the matrix cracking between the stiff 

reinforcing fibers, with the assumption of complete fiber debonding between two adjacent 

cracks. The criteria for multiple matrix cracking were identified by Aveston et al. [38] such that 

matrix stress equals to or exceeds the failure stress, and the energy consumption matches or is 

less than the energy supply during the transition from an uncracked state to the one with a single 

crack spanning the entire specimen. Hence, the governing equation can be written as, 

2𝛾𝑚𝑉𝑚 + 𝛾𝑑𝑏 +𝑈𝑠 + ∆𝑈𝑓 ≤ ∆𝑊 + ∆𝑈𝑚, (2.6) 

where γ𝑚 is the surface energy per unit area of the crack, 𝑉𝑚 is the matrix volume fraction, γ𝑑𝑏 is 

the interface energy per unit area between fiber and matrix, 𝑈𝑠 is the work done by matrix sliding 

unit cross-sectional area A over a distance 2x' on the fiber surface, ∆𝑈𝑓 is the increase of elastic 

strain energy of the reinforcing fibers per A (with unit thickness), ∆𝑊 is the work done by 

external (fixed) load per A (with unit thickness), and ∆𝑈𝑚 is the reduction of elastic strain energy 

of matrix per A (with unit thickness). Aveston et al. [38] derived an expression to the strain 

neglecting the contribution of γ𝑑𝑏 as 

𝜀𝑚𝑢𝑐 = (
12𝜏𝛾𝑚𝐸𝑓𝑉𝑓

2

𝐸𝑐𝐸𝑚2 𝑟𝑉𝑚
)1/3, (2.7) 

where 𝐸𝑓 and 𝐸𝑟 are the Young's moduli of the reinforcing fiber and polymeric matrix, 

respectively. According to Aveston and Kelly [39] in the extension of their previous work, they 

formulated an ODE for the load transfer such that 

𝑑2(∆𝜎)

𝑑𝑦2
= 𝜙∆𝜎, (2.8) 

where 

𝜙 =
𝐻𝐸𝑐

𝐸𝑓𝐸𝑚𝑉𝑚
, (2.9) 
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with 𝐸𝑐 as the Young's modulus of the composite and H as a constant. In their approach to 

solving H, Aveston and Kelly made an unreasonable assumption of a constant σ𝑦, thereby 

violating the underlying assumption that σ𝑦 is dependent on y. 

The modified shear-lag technique presented by Lim et al. [40] introduces the concept of a 

thin interlaminar shear layer between the cracked and intact ply group. This layer is responsible 

for transferring the load, as opposed to the entire 90o ply group. They applied the Griffith energy 

balance criterion. However, it is necessary to make some assumptions concerning the thickness 

and shear modulus of the shear layer in this analysis. The matrix cracking problem was 

addressed by Tan et al. [27] by utilizing an approximate 2D elasticity solution and fracture 

mechanics. The formulated ODE is the same as Eq. (2.8), and numerous investigations have been 

adopted to address the issue of transverse cracking based on the shear-lag method. The common 

feature of these studies is that the same ODE (Eq. 2.8) was examined, with the primary 

distinction among them lying in how the shear-lag parameters are determined. 

Consequently, similar to the stress results obtained through the shear-lag model in the 

literature, the shear stress along the ply surfaces fails to conform to the traction-free condition 

near crack tips and free edges. Moreover, the normal stresses perpendicular to the ply direction 

are completely disregarded, meaning that the deformation of the plies in the transverse plies is 

not considered. Consequently, stress analysis of these fiber-reinforced PMC laminates can be 

characterized as somewhat flawed, potentially leading to noticeably deviation in the stress 

distribution in the PMC laminates. 
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2.3. Stress-function Variational Method 

All the methods reviewed above have certain limitations for prediction of the interfacial 

stresses of PMC laminates with progressive cracking. To effectively overcome the drawbacks of 

these existing models for interfacial stress analysis in PMC laminates as well as bonded and 

adhesively bonded joints, a high-efficiency and accurate semi-analytic stress-function variational 

method was formulated by Wu and his group [12-16]. This stress-function variational method 

was initially formulated to find the free-edge interfacial stresses in bonded and adhesively 

bonded joints. It was later extended to predict the progressive cracking in hard surface coatings. 

This method uniquely introduces two unknown functions for the interfacial shear and 

normal stresses on each interface of the joints, which are further used to determine all the planar 

stress components in each adherend of the joints. The assumption made in this method is that the 

axial normal stress within each adherend of the joints varies linearly across the adherend layer. 

The unknown interfacial stress functions are further used to express the planar shear and 

transverse normal stresses in the adherends via evoking the static equilibrium equations in 2D 

elasticity. In this approach, the stress continuity across the adherend interfaces and the traction 

BCs at both the upper and lower surfaces and the free ends of the adherends can be exactly 

satisfied. The unknown interfacial stress functions are determined via triggering the minimum 

complementary strain energy theorem, which results in two coupled governing ODEs of the two 

unknown interfacial stress functions in the case of bonded joints with two adherends and finally 

solved explicitly in terms of eigenfunctions to satisfy all traction BCs at free edges. The 

interfacial shear and normal stresses predicted by this method are in high accuracy as validated 

by detailed FEA. 
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(A) 

  

(B) 

Figure 2.7 (A). Schematic of a single-sided strap joint consisting of a slender cover layer bonded 

to two identical slender substrate layers and (B). (a) Through-thickness cracking in a coating 

layer of a brittle thin-film/substrate system, (b) formation of a secondary crack [12,15]. 

 

With the same approach, the stress-function variational method is subsequently employed 

for predicting the free-edge interfacial stresses in adhesively bonded joints. In their paper, Wu et 

al. [15] further formulated a simple semi-analytic strain energy method to analyze the interfacial 

stresses and progressive cracking in surface coatings within the framework of LEFM, with taking 

into account of the combination of tensile traction, bending moment, and temperature change. 

This semi-analytic approach has been proven to be highly accurate and efficient and satisfies all 

the traction BCs. 

With the above literature review, the primary objective of this thesis is to expand the 

stress-function variational method to accurately analyze the interfacial stresses in PMC laminates 
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with progressive cracking. Numerical solutions based on FEM (ANSYSTM) are used to validate 

the present approach. During the process, without loss of the generality, a three-layered 

symmetric cross-ply PMC laminate is considered, and two unknown interfacial shear and normal 

stress functions are adopted at each ply surface. The planar stress field in each ply of the 

laminate is expressed in terms of these unknown interfacial stress functions. The axial normal 

stress in each ply is assumed to vary linearly across the ply thickness following the flexural stress 

formula of classic Euler-Bernoulli beams, i.e., treating the laminate plies as elastic beams rather 

than simple tension bars as used in existing literature. The remaining planar shear and transverse 

normal stresses in each ply are determined via triggering the static equilibrium equations within 

the framework of 2D elasticity and traction BCs at the top and bottom surfaces of the laminate 

and at the crack surfaces of the plies after cracking. 

A set of two coupled ODEs for the two unknown interfacial stress functions is obtained 

by evoking the theorem of minimum complementary strain energy of the representative 

segmental PMC laminate. These ODEs are then solved explicitly in terms of eigenfunctions to 

satisfy the proper traction BCs. This method ensures that the stress field in the plies satisfies all 

the traction BCs, especially the shear-free conditions at the crack tips, which were typically 

ignored in many analytic methods reported in the literature. 

The accuracy and effectiveness of the stress-function variational method are validated by 

comparing the interfacial stresses of the PMC laminate with those predicted by FEM and other 

analytical methods. Additionally, dependencies of the interfacial stresses and crack spacing on 

the laminate geometries, elastic properties, and temperature changes are examined. 

The remaining chapters of the thesis are organized as follows: 
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Chapter 3 provides the theoretical framework of the stress-function variational method 

for accurate interfacial stress analysis of a three-layered symmetric cross-ply composite laminate 

subjected to uniaxial tension. The obtained stress field in the plies is used to determine the strain 

energy release rate after transverse cracking in the mid-ply and to predict the crack spacing in the 

composite laminate. In addition, scaling analysis is conducted to examine how interfacial stresses 

and crack spacing depend on the laminate geometries and elastic properties. Comparisons are 

made between the present results and those predicted by FEM and available in the literature.  

Chapter 4 focuses on the interfacial stress analysis of adhesively bonded circular joints by 

detailed FEA. 

Chapter 5 summarizes the current work and outlines the potential future research 

directions after the present thesis work. 
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3. STRESS-FUNCTION VARIATIONAL METHOD FOR ANALYSIS OF INTERFACIAL 

STRESSES AND PROGRESSIVE CRACKING IN COMPOSITE LAMINATES 

This chapter is to formulate a stress-function variational method for analyzing the 

interfacial stresses and progressive cracking in a three-layered cross-ply composite laminates 

subjected to uniaxial tension. This new semi-analytical method can explicitly represent the entire 

stress field in composite laminates by adopting the standard procedure of the stress-function 

variational method. The stress results predicted by this method can be effectively validated by 

using the commercial FEA software package (ANSYS®) as demonstrated in this chapter. 

 

3.1. Problem Formulation and Solution 

Without loss of the generality, consider a three-layered symmetric cross-ply composite 

laminate subjected to uniaxial tension as shown in Figure 3.1. This classic laminate model has 

been adopted for progressive cracking analysis with the interfacial stresses determined by the 

shear-lag model in the literature. Herein, the upper and lower plies of this cross-ply composite 

laminate are identical, UD composite plies with the reinforcing fibers in the longitudinal 

direction, while the mid-ply of the laminate is a transverse ply with the reinforcing fibers aligned 

in the transverse direction. For the convenience of the upcoming discussions, the upper and 

lower plies are treated as homogeneous, isotropic, linearly elastic material with Young’s 

modulus E1, Poisson’s ratio υ1, and ply thickness h1; the mid-ply is also treated as homogeneous, 

isotropic, linearly elastic material with Young’s modulus E2, Poisson’s ratio υ2, and ply thickness 

2h2. With the assumption that the length and width of the laminate are large compared to the 

transverse dimensions, the 3D free-edge effects can be safely excluded. Thus, the stress analysis 

of this composite laminate can be reduced to a plane problem as shown in Figure 3.2 (a), either 

in plane-stress or plane-strain state depending on the lateral constraint conditions.  
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Figure 3.1 Schematic diagram of a three-layered symmetric cross-ply composite laminate 

subjected to uniaxial tension.  

Figure 3.2 Schematic progressive transverse cracking in a three-layered symmetric cross-ply 

composite laminate subjected to uniaxial tension. (a) No crack for the initial effective axial stress 

p0 < pc (the critical effective axial stress level to trigger cracking initiation), (b) crack initiation 

(first crack to appear) for the effective axial stress reaching pc, (c) periodic transverse cracks with 

spacing L for the effective axial stress p1 > pc, and (d) periodic transverse cracks with increasing 

dimensionless crack spacing 2h2/L for increased effective axial stress p2 > p1 > pc. 
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In the Figure 3.2, 𝑝0 represents the initial effective axial stress, 𝑝𝑐 the critical effective 

axial stress level to trigger cracking initiation, and 𝑝1and 𝑝2 are two increased effective axial 

stresses to lead to periodic cracking. When the composite laminate is subjected to monotonically 

increasing uniaxial tension, the first transverse cracking likely initiates in the mid-ply that carries 

the low ultimate tensile strength due to the brittleness of the typical thermosetting resins as well 

as the reinforcing fibers in the transverse direction as illustrated in Figure 3.2 (b). With further 

increasing the axial stress level, periodic cracks appear with gradually increasing crack density as 

illustrated in Figures 3.2 (c) and 3.2 (d), i.e., progressive cracking. In addition, the upper and 

lower plies carry the coefficient of thermal expansion different from that of the mid-ply due to 

different orientations of the reinforcing fibers. Thus, temperature change will induce different 

thermal strains and stresses in the plies that further influence the progressive cracking. For the 

convenience of the study, only axial tension loading is considered. 

Figure 3.3 (a) Schematic diagram of a representative segment of a three-layered symmetric 

cross-ply composite laminate between two neighboring cracks, and (b) schematic symmetric 

interfacial shear and normal stresses at the upper and lower interfaces of the laminate. 
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3.1.1. Static equilibrium equations 

For the present three-layered composite laminate subjected to uniaxial tension, periodic 

cracking is triggered in the mid-ply once the effective tensile stress is higher than the critical 

value 𝑝𝑐 as shown in Figs. 3.2 (c) and 3.2 (d). After periodic cracking, the laminate plies near the 

crack tips are in the general planar stress state. The plies of the composite laminate are slender 

and can be treated as the classic Euler-Bernoulli beams for simplification of the stress analysis 

while still maintaining sufficient accuracy. Consider a representative periodic laminate segment 

with the crack spacing L as shown in Fig. 3.3 (a). Due to symmetries of the laminate 

configuration and the applied axial loads, the interfacial normal and shear stresses at the upper 

and lower interfaces of the laminate are identical as illustrated in Fig. 3.3 (b). Thus, stress 

analysis of the laminate can be simplified to only analyze the stress field in the upper and middle 

plies. For the convenience of stress analysis, two coordinate systems of (𝑥, 𝑦1) and (𝑥, 𝑦2) are 

introduced to the upper and middle plies of the composite laminate, respectively, as shown in 

Fig. 3.3 (b), with x-axis along the mid-plane of each ply and y-axis passing through the 

perpendicular midline of the laminate segment. 

Free-body diagrams (FBDs) of the representative segments of the upper and middle plies 

are shown in Figs. 3.4(a) and 3.4(b), respectively, in which the stress components and related 

stress resultants, i.e., the axial force 𝑆i, shear force 𝑄i, and bending moment 𝑀i (i = 1, 2) per unit 

width, are defined to follow the positive sign conventions as designated in elementary mechanics 

of materials. The equations governing the static equilibrium of a representative segmental 

element in the upper ply, expressed in terms of stress resultants, are as follows: 

Σ𝐹𝑥 = 0:  
𝑑𝑆1

𝑑𝑥
= −𝜏, (3.1) 
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Σ𝐹𝑦 = 0:  
𝑑𝑄1

𝑑𝑥
= −𝜎, (3.2) 

Σ𝑀 = 0:  
𝑑𝑀1

𝑑𝑥
= 𝑄1 −

ℎ1

2
𝜏. (3.3) 

The static equilibrium equations for the representative segmental element of the mid-ply, as 

depicted in Figure 3.4(b), are as follows: 

Σ𝐹𝑥 = 0:  
𝑑𝑆2

𝑑𝑥
= 2𝜏, (3.4) 

Σ𝐹𝑦 = 0:  
𝑑𝑄2

𝑑𝑥
= 0, (3.5) 

Σ𝑀 = 0:  
𝑑𝑀2

𝑑𝑥
= 𝑄2. (3.6) 

Figure 3.4(b) shows that the stress state of the mid-ply is simple due to the symmetric normal 

and shear stresses induced at the upper and lower interfaces. 

 

Figure 3.4 Free-body diagrams (FBDs) of the representative segmental elements of the three-

layered symmetric cross-ply composite laminate. (a) FBD of the upper ply with interfacial 

normal and shear stresses at the lower surface and (b) FBD of the mid-ply with the symmetric 

interfacial normal and shear stresses at the upper and lower surfaces. 
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𝜏 = 𝑓(𝑥) and 𝜎 = 𝑔(𝑥). (3.7) 

The shear-free conditions at the crack tips (edges) at x = -L/2 and L/2 can be expressed as 

𝑓(−𝐿/2) = 𝑓(𝐿/2) = 0. (3.8) 

In addition, the axial tractions, shear-forces and bending moments at the segmental ends of the 

laminate specify the traction BCs as 

𝑆1(−𝐿/2) = 𝑝1ℎ1, (3.9a) 

𝑆1(𝐿/2) = 𝑝1ℎ1, (3.9b) 

𝑄1(−𝐿/2) = 0, (3.9c) 

𝑄1(𝐿/2) = 0, (3.9d) 

𝑀1(−𝐿/2) = 0, (3.9e) 

𝑀1(𝐿/2) = 0, (3.9f) 

𝑆2(−𝐿/2) = 0, (3.9g) 

𝑆2(𝐿/2) = 0, (3.9h) 

𝑄2(−𝐿/2) = 0, (3.9i) 

𝑄2(𝐿/2) = 0, (3.9j) 

𝑀2(−𝐿/2) = 0, (3.9k) 

𝑀2(𝐿/2) = 0. (3.9l) 

In the aforementioned context, it is worth noting that not all the traction BCs are linearly 

independent, as to be discussed later. 

In the case of thermomechanical stress analysis of the composite laminate due to a pure 

uniform temperature change ΔT and without constraints at boundaries, the right terms of (3.9a) 

and (3.9b) are set as zeros to satisfy the traction-free BCs. 
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Furthermore, all the stress resultants of the segmental elements of the plies can be 

expressed in terms of the two unknown interfacial stress functions f and g as adopted in (3.7). By 

integrating (3.1) with respect to x from x = -L/2, it yields 

∫ 𝑑𝑆1

𝑥

−𝐿/2

= −∫ 𝑓(𝜉)𝑑𝜉.
𝑥

𝐿
2

 (3.10) 

With the shear-free condition at x = -L/2, i.e., BCs (3.7) and (3.9), the axial normal force 

𝑆1(𝑥) in the upper ply can be determined from Eq. (3.10) as 

𝑆1(𝑥) = 𝑝1ℎ1 −∫ 𝑓(𝜉)𝑑𝜉.
𝑥

−
𝐿
2

 (3.11) 

By performing integration (3.2) with respect to x from x = -L/2, the shear force of the upper ply 

as 

∫ 𝑑𝑄1

𝑥

−𝐿/2

= −∫ 𝑔(𝜉)𝑑𝜉.
𝑥

−
𝐿
2

 (3.12) 

With the assistance of the shear-free condition at x = -L/2 as given in (3.9c), the shear force 

𝑄1(𝑥)in the upper ply can be determined from (3.12) as 

𝑄1(𝑥) = −∫ 𝑔(ξ)𝑑ξ.
𝑥

−
𝐿
2

 (3.13) 

Now, integrating (3.3) with respect to x from x = -L/2 results in 

∫ 𝑑𝑀1

𝑥

−𝐿/2

= ∫ [𝑄1(𝜉) −
ℎ1
2
𝜏]𝑑𝜉

𝑥

−𝐿/2

. (3.14) 

By utilizing the bending-moment BC at x = -L/2 as provided in (3.9e), the bending moment 

𝑀1(x) in the upper ply can be solved from (3.14) as 

𝑀1(𝑥) = −∫ ∫ 𝑔(𝜍)𝑑𝜍𝑑𝜉
𝜉

−
𝐿
2

𝑥

−
𝐿
2

−
ℎ1
2
∫ 𝑓(𝜉)𝑑𝜉.
𝑥

−
𝐿
2

 (3.15) 

Based on the same procedure, integrating (3.4) with respect to x from x = -L/2 yields 
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∫ 𝑑𝑆2

𝑥

−𝐿/2

= ∫ 𝑓(ξ)𝑑ξ
𝑥

−𝐿/2

. (3.16) 

By implementing the axial traction BC at x = -L/2 as specified in (3.9g), the axial force 𝑆2(𝑥) in 

the mid-ply can be determined from (3.16) as 

𝑆2(𝑥) = 2∫ 𝑓(𝜉)𝑑𝜉
𝑥

−
𝐿
2

. (3.17) 

In addition, the shear-force 𝑄2(𝑥) and bending moment 𝑀2(𝑥)of the mid-ply can be calculated 

by integrating (3.5) and (3.6) with respect to x, ranging from x = -L/2: 

𝑄2(𝑥) = 0, (3.18) 

𝑀2(𝑥) = 0. (3.19) 

In the previous discussion, the derivations have incorporated two BCs relating to the absence of 

shear force and bending moment at the position x = -L/2, as stipulated in Eqs. (3.9i) and (3.9k). 

 

3.1.3. Planar stresses in the three-layered composite laminate 

3.1.3.1. Planar stresses in the upper ply 

For linearly elastic slender plies of the composite laminate under consideration, the axial 

normal stress in each ply can be assumed to vary linearly across the ply thickness. The axial 

stress can be calculated by applying the flexural stress formula of classic Euler-Bernoulli beams 

as  

𝜎𝑥𝑥
(1)
=
𝑆1
ℎ1
−
𝑀1𝑦1
𝐼1

= 𝑝1 −
1

ℎ1
∫ 𝑓(𝜉)𝑑𝜉
𝑥

−
𝐿
2

+
12𝑦1

ℎ1
3 [∫ ∫ 𝑔(𝜍)𝑑𝜍𝑑𝜉

𝜉

−
𝐿
2

𝑥

−
𝐿
2

+
ℎ1
2
∫ 𝑓(𝜉)𝑑𝜉
𝑥

−
𝐿
2

]. 

(3.20) 
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Shear stress τ𝑦1𝑥
(1)

 in the upper ply of the laminate can be solved by integrating the 2D equilibrium 

equation: 

𝜕𝜎𝑥𝑥
(1)

𝜕𝑥
+
𝜕𝜏𝑦1𝑥

(1)

𝜕𝑦1
= 0, (3.21) 

with respect to coordinate 𝑦1 from an arbitrary location y to the top surface at 𝑦1=ℎ1/2: 

∫
𝜕𝜎𝑥𝑥

(1)

𝜕𝑥
𝑑𝑦1 +

ℎ1/2

𝑦1

∫
𝜕𝜏𝑦1𝑥

(1)

𝜕𝑦1
𝑑𝑦1 = 0,

ℎ1/2

𝑦1

 (3.22) 

which leads to 

𝜏𝑦1𝑥
(1)

= −
1

ℎ1
[(
ℎ1
2
− 𝑦1) −

3

ℎ1
(
ℎ1
2

4
− 𝑦1

2)] 𝑓(𝑥) +
6

ℎ1
3 (
ℎ1
2

4
− 𝑦1

2)∫ 𝑔(𝜉)𝑑𝜉.
𝑥

−
𝐿
2

 (3.23) 

In the above, traction-free BC: τ𝑦1𝑥
(1)
(ℎ1/2) = 0 has been employed. Furthermore, the transverse 

normal stress σ𝑦1𝑦1
(1)

 in the upper ply can be calculated by integrating the 2D equilibrium 

equation: 

𝜕𝜎𝑦1𝑦1
(1)

𝜕𝑦1
+
𝜕𝜏𝑥𝑦1

(1)

𝜕𝑥
= 0, (3.24) 

with respect to 𝑦1 from an arbitrary location y to the top surface at 𝑦1=-ℎ1/2 as  

∫
𝜕𝜎𝑦1𝑦1

(1)

𝜕𝑦1
𝑑𝑦1 +

ℎ1/2

𝑦1

∫
𝜕𝜏𝑥𝑦1

(1)

𝜕𝑥
𝑑𝑦1 = 0,

ℎ1/2

𝑦1

 (3.25) 

which yields 
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𝜎𝑦1𝑦1
(1)

= −
1

ℎ1
{
ℎ1
2
(
ℎ1
2
− 𝑦1) −

1

2
(
ℎ1

2

4
− 𝑦1

2)

−
3

ℎ1
[
ℎ1

2

4
(
ℎ1
2
− 𝑦1) −

1

3
(
ℎ1

3

8
− 𝑦1

3)]} 𝑓′(𝑥)

+
6

ℎ1
3 [
ℎ1

2

4
(
ℎ1
2
− 𝑦1) −

1

3
(
ℎ1

3

8
− 𝑦1

3)] 𝑔(𝑥). 

(3.26) 

In the process to derive (3.26), traction-free BC: 𝜏𝑦1𝑦1
(1)

(ℎ1/2) = 0 has been carried out. 

 

3.1.3.2. Planar stresses in the mid-ply 

The stress components in the mid-ply can be approximated using the similar procedure. 

The axial normal stress can be approached by applying the flexural stress formula of classic 

Euler-Bernoulli beams and the stress resultants in the mid-ply (3.17-3.19): 

𝜎𝑥𝑥
(2)
=
𝑆2
ℎ2
−
𝑀2𝑦2
𝐼2

=
2

ℎ2
∫ 𝑓(𝜉)𝑑𝜉
𝑥

−
𝐿
2

. (3.27) 

Due to the symmetry of the composite laminate and external loading, no bending is exerted in 

the mid-ply and the axial normal stress does not vary across the ply thickness. Shear stress τ𝑦2𝑥
(2)

 

can be calculated via integrating the 2D static equilibrium equation: 

𝜕𝜎𝑥𝑥
(2)

𝜕𝑥
+
𝜕𝜏𝑦2𝑥

(2)

𝜕𝑦2
= 0, (3.28) 

with respect to 𝑦2 from the bottom surface 𝑦2 = ℎ2/2  to an arbitrary location 𝑦2of the mid-ply 

as  

∫
𝜕𝜎𝑥𝑥

(2)

𝜕𝑥
𝑑𝑦2 +

𝑦2

−ℎ2/2

∫
𝜕𝜏𝑦2𝑥

(2)

𝜕𝑦2
𝑑𝑦2 = 0

𝑦2

−ℎ2/2

, (3.29) 

which leads to 
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𝜏𝑦2𝑥
(2)

= [1 −
2

ℎ2
(𝑦2 +

ℎ2
2
)] 𝑓(𝑥). (3.30) 

In the above, traction BC: τ𝑦2𝑥
(2)
(−ℎ2/2) = 𝑓(𝑥) has been carried out. Furthermore, normal stress 

σ𝑦2𝑦2
(2)

 in the mid-ply can be solved via integrating the 2D equilibrium equation: 

𝜕𝜎𝑦2𝑦2
(2)

𝜕𝑦2
+
𝜕𝜏𝑥𝑦2

(2)

𝜕𝑥
= 0, (3.31) 

with respect to 𝑦2 from the bottom surface at 𝑦2 = ℎ2/2  to an arbitrary location 𝑦2 as 

∫
𝜕𝜎𝑦2𝑦2

(2)

𝜕𝑦2
𝑑𝑦2 +

𝑦2

−ℎ2/2

∫
𝜕𝜏𝑥𝑦2

(2)

𝜕𝑥
𝑑𝑦2 = 0

𝑦2

−ℎ2/2

, (3.32) 

which further reduces to 

𝜎𝑦2𝑦2
(2)

= 𝑔(𝑥) − [(𝑦2 +
ℎ2
2
) −

2

ℎ2
[
1

2
(𝑦2

2 −
ℎ2
2

4
) +

ℎ2
2
(𝑦2 +

ℎ2
2
)] 𝑓′(𝑥). (3.33) 

During the process to evaluate integral (3.32), traction BC: σ𝑦2𝑦2
(2)

(−ℎ2/2) = 𝑔(𝑥) has been 

evoked. 

In the derivations above, when assuming that the axial normal stress changes linearly 

across the thickness of the ply, the shear and transverse normal stresses in the plies exhibit 

parabolic and cubic variations over the ply thickness, respectively, while being in static 

equilibrium. 

 

3.1.4. Governing equations of interfacial stress functions and solution 

With the stress components of the representative laminate segment as determined in 

Section 3.1.3, the total strain energy of the laminate segment (-L/2 ≤ x ≤ L/2) can be expressed as 

[12-16,40,42-44], 
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U= 2∫ ∫ {
1

2

ℎ1/2

−ℎ1/2

𝐿/2

−𝐿/2
[𝜎𝑥𝑥

(1)
𝜀𝑥𝑥
(1)
+ 𝜎𝑦𝑦

(1)
𝜀𝑦𝑦
(1)
] +

1+𝜐1

𝐸1
(𝜏𝑦1𝑥
(1)
)2}𝑑𝑥𝑑𝑦1 +

∫ ∫ {
1

2

ℎ2/2

−ℎ2/2

𝐿/2

−𝐿/2
[𝜎𝑥𝑥

(2)𝜀𝑥𝑥
(2) + 𝜎𝑦𝑦

(2)𝜀𝑦𝑦
(2)] +

1+𝜐2

𝐸2
(𝜏𝑦2𝑥
(2) )2}𝑑𝑥𝑑𝑦2. 

(3.34) 

In the above, ε𝑥𝑥
(𝑖)

and ε𝑦𝑦
(𝑖)

 (i = 1, 2) are respectively the axial and transverse normal strains of the 

plies, which are determined according to the generalized Hooke's law of isotropic, linearly 

thermoelastic substances in the plane-stress state as 

𝜀𝑥𝑥
(𝑖)
=
1

𝐸𝑖
𝜎𝑥𝑥
(𝑖)
−
𝜐𝑖
𝐸𝑖
𝜎𝑦𝑦
(𝑖) + 𝛼𝑖𝛥𝑇, (3.35) 

𝜀𝑦𝑦
(𝑖)
=
1

𝐸𝑖
𝜎𝑦𝑦
(𝑖)
−
𝜐𝑖
𝐸𝑖
𝜎𝑥𝑥
(𝑖) + 𝛼𝑖𝛥𝑇. (3.36) 

In this context, 𝛼𝑖 (i= 1, 2) represents the coefficients of thermal expansion for the upper and 

middle plies, and ΔT denotes the uniform temperature change of the laminate from a reference 

temperature of a thermomechanical-stress-free state. From a mathematical perspective, strain 

energy (3.34) is a functional in relation to the two unknown interfacial stress-functions f and g, as 

defined in (3.7). By applying the principle of minimum complementary strain energy of an 

elastic body, the strain energy of the composite laminate reaches the stationary point at the static 

equilibrium state. This indicates that the variation of strain energy (3.34) is zero [12-16,40,42-

44], 

𝛿𝑈 = 0, (3.37) 

i.e., 
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𝛿𝑈 = 2∫ ∫ {
1

2

ℎ1/2

−ℎ1/2

𝐿/2

−𝐿/2

[𝜎𝑥𝑥
(1)𝛿𝜀𝑥𝑥

(1) + 𝛿𝜎𝑥𝑥
(1)𝜀𝑥𝑥

(1) + 𝜎𝑦𝑦
(1)𝛿𝜀𝑦𝑦

(1) + 𝛿𝜎𝑦𝑦
(1)𝜀𝑦𝑦

(1)]

+
2(1 + 𝜐1)

𝐸1
𝜏𝑦1𝑥
(1)  𝛿𝜏𝑦1𝑥

(1) }𝑑𝑥𝑑𝑦1

+∫ ∫ {
1

2

ℎ2/2

−ℎ2/2

𝐿/2

−𝐿/2

[𝜎𝑥𝑥
(2)𝛿𝜀𝑥𝑥

(2) + 𝛿𝜎𝑥𝑥
(2)𝜀𝑥𝑥

(2) + 𝜎𝑦𝑦
(2)𝛿𝜀𝑦𝑦

(2) + 𝛿𝜎𝑦𝑦
(2)𝜀𝑦𝑦

(2)]

+
2(1 + 𝜐2)

𝐸2
𝜏𝑦2𝑥
(2) 𝛿𝜏𝑦2𝑥

(2) }𝑑𝑥𝑑𝑦2, 

(3.38) 

where δ is the mathematical variational operator with respect to either f or g. Finally, by 

substituting the ply stress expressions (3.20), (3.23), (3.26), (3.27), (3.30) and (3.33) as well as 

normal strains (3.35) and (3.36) into (3.38) and evoking the variational operations and 

mathematical simplifications, it turns out that f and g satisfy a set of two coupled 4th-order linear 

ODEs of constant coefficients as 

[𝐴]{𝛷(𝐼𝑉)} + [𝐵]{𝛷′′} + [𝐶]{𝛷} + {𝐷} = {0}. (3.39) 

In the above {Φ}is defined as 

{𝛷} = {𝐹(𝜉), 𝐺(𝜉)}𝑇, (3.40) 

where 

𝐹(𝜉) = 𝐹 (
𝑥

ℎ2
) =

1

𝑝1ℎ2
∫ 𝑓(ζ)𝑑ζ
𝑥

0

, (3.41a) 

𝐺(𝜉) = 𝐺 (
𝑥

ℎ2
) =

1

𝑝1ℎ2
2∫ ∫ 𝑔(η

𝜁

0

)𝑑η𝑑ζ
𝑥

0

. (3.41b) 

[A], [B] and [C] are 2 × 2 square symmetric coefficient matrices related to laminate geometries 

and [D] matrices related to the external load can be given as 
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[𝐴] =

[
 
 
 
2ℎ12

3

105
+
𝑒12
30

11ℎ12
2

105
−
𝑒12
6

sys
26ℎ12
35

+ 𝑒12]
 
 
 
, (3.42a) 

[𝐵] = −

[
 
 
 
8ℎ12
15

+
2

3
𝑒12

2 − 10𝜐1
5

+ 2𝜐2𝑒12

sys
24ℎ12

−1

5 ]
 
 
 
, (3.42b) 

[𝐶] = 4 [
2ℎ12

−1 + 𝑒12 3ℎ12
−2

sys 6ℎ12
−3]. (3.42c) 

{D} and {0} are two vectors defined as 

{𝐷} = −{
𝐷1
0
}, (3.42d) 

{0} = {0,0}T. (3.42e) 

and ℎ12 and 𝑒12are respectively the ply thickness ratio and the ratio of Young’s moduli of the 

upper and middle plies as 

ℎ12 =
ℎ1
ℎ2
, (3.42f) 

𝑒12 =
𝐸1
𝐸2
, (3.42g) 

𝐷1 =

{
 
 

 
 2 +

(𝛼1 − 𝛼2)∆𝑇𝐸1
𝑝1

 (for mechanical and thermal loads − plane stress),

2                                                    (for mechanical loads − plane stress),
(𝛼1 − 𝛼2)∆𝑇𝐸1

𝑝1
                              (for thermal loads − plane stress).

 (3.42h) 

The solution of Eq. (3.39) can be obtained by superimposing the general solution {Ψ} of the 

corresponding set of homogenous ODEs onto a particular solution {Φ0}: 

{𝛷} = {𝛹} + {𝛷0}, (3.43) 

[𝐴]{𝛹(𝐼𝑉)} + [𝐵]{𝛹′′} + [𝐶]{𝛹} = {0}, (3.44) 
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{𝛷0} = −[𝐶]
−1{𝐷}. (3.45) 

To solve the system of homogenous ODEs as mentioned in (3.44), the general solution {Ψ}is 

assumed as: 

{𝛹} = {𝛹0} 𝑒𝑥𝑝( 𝜆𝜉), (3.46) 

where λ and {Ψ0} represent the eigenvalue and eigenvector, respectively, of the characteristic 

equation associated with (3.44): 

𝜆4[𝐴]{𝛹0} + 𝜆
2[𝐵]{𝛹0} + [𝐶]{𝛹0} = {0}. (3.47) 

By introducing a new variable vector 

{𝛹1} = 𝜆
2{𝛹0}, (3.48) 

the eigenvalue problem (3.47) can be transformed into a generalized eigenvalue problem: 

[
𝐼 0
0 𝐴

] {
𝛹0
𝛹1
} = −𝜆−2 [

0 -I

𝐶 𝐵
] {
𝛹0
𝛹1
}. (3.49) 

By utilizing eig( ) function available in MatlabTM , eigenvalue problem (3.48),can efficiently 

solved. Thus, the final expression of the general solution (3.39) is 

{𝛷} = ∑[𝑐𝑘{𝛹0
𝑘} 𝑒𝑥𝑝( 𝜆𝑘𝜉)

4

𝑘=1

+ 𝑑𝑘{𝛹0
𝑘} 𝑒𝑥𝑝( − 𝜆𝑘𝜉)] + {𝛷0}, (3.50) 

where {Ψ0
𝑘} (k = 1, 2, 3, and 4) are eigenvectors attached to eigenvalues λk (k = 1, 2, 3, and 4), 

respectively, and ck and dk (k = 1, 2, 3, and 4) are the real or complex coefficients to be 

determined to satisfy the traction BCs (3.8) - (3.9l). Only eight BCs are linearly independent and 

can be extracted from (3.8) - (3.9l) for determining ck and dk (k = 1, 2, 3, and 4) as 

𝐹[−𝐿/(2ℎ2)] = 0, (3.51a) 

𝐹[𝐿/(2ℎ2)] = 0, (3.51b) 

𝐹′[−𝐿/(2ℎ2)] = 0, (3.51c) 
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𝐹′[𝐿/(2ℎ2)] = 0, (3.51d) 

G[−𝐿/(2ℎ2)] = 0, (3.51e) 

G[𝐿/(2ℎ2)] = 0, (3.51f) 

G′[−𝐿/(2ℎ2)] = 0, (3.51g) 

G′[𝐿/(2ℎ2)] = 0. (3.51h) 

Consequently, substitution of (3.50) into (51a)-(51h) leads to a set of eight linear algebraic 

equations: 

∑𝑐𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] +∑𝑑𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = −Φ0
(1), (3.52a) 

∑𝑐𝑘Ψ0
𝑘,1 𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)]

4

𝑘=1

+∑𝑑𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] = −Φ0
(1), (3.52b) 

∑𝑐𝑘𝜆𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] −∑𝑑𝑘𝜆𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = 0, (3.52c) 

∑𝑐𝑘𝜆𝑘Ψ0
𝑘,1 𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)]

4

𝑘=1

−∑𝑑𝑘𝜆𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] = 0, (3.52d) 

∑𝑐𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] +∑𝑑𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = −Φ0
(2), (3.52e) 

∑𝑐𝑘Ψ0
𝑘,2 𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)]

4

𝑘=1

+∑𝑑𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] = −Φ0
(2), (3.52f) 

∑𝑐𝑘𝜆𝑘Ψ0
𝑘,2 𝑒𝑥𝑝[−𝜆𝑘𝐿/(2ℎ2)]

4

𝑘=1

−∑𝑑𝑘𝜆𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = 0, (3.52g) 

∑𝑐𝑘𝜆𝑘Ψ0
𝑘,2 𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)]

4

𝑘=1

−∑𝑑𝑘𝜆𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ − 𝜆𝑘𝐿/(2ℎ2)] = 0, (3.52h) 
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In the above, Ψ0
𝑘,1

 and Ψ0
𝑘,2

 (k = 1, 2, 3, and 4) are respectively the 1st and 2nd elements of 

the k-th eigenvector, and Φ0
(1)

and Φ0
(2)

 are the 1st and 2nd elements of {Φ0}. Moreover, for 

thermomechanical stress analysis of the composite laminate due to a pure temperature change, 

the right terms of (3.9a) and (3.9b) should be zeros since 𝑝1, which does not influence the right 

terms in BCs of (3.51). Therefore, once 𝑐𝑘 and 𝑑𝑘 (k = 1, 2, 3, and 4) are determined by solving 

the above system of linear algebraic equations (3.52a) - (3.52h) numerically, expressions (3.41a), 

(3.41b) and (3.50) give the final expression of f and g as 

𝑓(𝑥)

𝑝1
=∑𝑐𝑘Ψ0

𝑘,1𝜆𝑘 𝑒𝑥𝑝(−𝜆𝑘𝑥/ℎ2)

4

𝑘=1

−∑𝑑𝑘Ψ0
𝑘,1𝜆𝑘 𝑒𝑥𝑝( 𝜆𝑘𝑥/ℎ2)

4

𝑘=1

, (3.53a) 

𝑔(𝑥)

𝑝1
=∑𝑐𝑘Ψ0

𝑘,2𝜆𝑘
2 𝑒𝑥𝑝(−𝜆𝑘𝑥/ℎ2) +

4

𝑘=1

∑𝑑𝑘Ψ0
𝑘,2𝜆𝑘

2 𝑒𝑥𝑝( 𝜆𝑘𝑥/ℎ2)

4

𝑘=1

. (3.53b) 

Consequently, with f and g given in (3.53a) and (3.53b), all the planar stress components in the 

composite laminate can be determined using the stress expressions formulated in Section 3.1.3.  

Furthermore, the strain energy of the composite laminate system per unit longitudinal 

length can be expressed as 

𝑒 = 2∫ {
1

2
[𝜎𝑥𝑥

(1)
𝜀𝑥𝑥
(1)
+ 𝜎𝑦𝑦

(1)
𝜀𝑦𝑦
(1)
] +

𝜐1(1 + 𝜐1)

𝐸1
[𝜏𝑥𝑦1
(1)
]2

ℎ1/2

−ℎ1/2

}𝑑𝑦1

+∫ {
1

2
[𝜎𝑥𝑥

(2)
𝜀𝑥𝑥
(2)
+ 𝜎𝑦𝑦

(2)
𝜀𝑦𝑦
(2)
] +

𝜐2(1 + 𝜐2)

𝐸2
[𝜏𝑥𝑦2
(2)
]2

ℎ2/2

−ℎ2/2

}𝑑𝑦2. 

(3.54) 

The strain energy density (3.54) can be expressed utilizing the governing ODE (3.39), 

𝑒 =
1

2
 {𝛷}𝑇{𝐷}

𝑝1
2ℎ2
𝐸1

+
ℎ1
𝐸1
𝑝1
2. (3.55) 

Substitution of (3.50) into (3.55) leads to 
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𝑒(𝜉) =
1

2
∑[𝑐𝑘{𝛹0

𝑘}𝑇{𝐷} 𝑒𝑥𝑝( 𝜆𝑘𝜉)

4

𝑘=1

+ 𝑑𝑘{𝛹0
𝑘}𝑇 {𝐷}𝑒𝑥𝑝( − 𝜆𝑘𝜉)]

𝑝1
2ℎ2
𝐸2

−
1

2
{𝐷}𝑇{𝐶}−1{𝐷}

𝑝1
2ℎ2
𝐸1

+
ℎ1
𝐸1
𝑝1
2. 

(3.56) 

In Eq. (3.56), the first term represents the additional strain energy stored in the material due to 

the presence of localized stress concentration caused by cracking (specifically, two free ends). 

This term is dependent on the geometric properties and elastic characteristics of the laminate. 

The remaining part of the equation represents the strain energy density of the laminate without 

any cracks, denoted as 𝑒0, i.e., 

𝑒0 = −
1

2
{𝐷}𝑇{𝐶}−1{𝐷}

𝑝1
2ℎ2
𝐸1

+
ℎ1
𝐸1
𝑝1
2. (3.57) 

Furthermore, the strain energy density associated with the laminate with a single crack in the 

middle ply (left-half ξ > 0) is  

𝑒∞(𝜉) =
1

2
[𝑑𝑘{𝛹0

𝑘}𝑇 {𝐷} 𝑒𝑥𝑝( − 𝜆𝑘𝜉)]
𝑝1
2ℎ2
𝐸2

−
1

2
{𝐷}𝑇{𝐶}−1{𝐷}

𝑝1
2ℎ2
𝐸1

+
ℎ1
𝐸1
𝑝1
2, (3.58) 

where λ𝑘 (k =1, 2, 3 and 4) are the four eigenvalues with positive real parts, dk (k = 1, 2, 3, and 4) 

are determined to satisfy the traction BCs, which leads to a system of four linear algebraic 

equations: 

∑𝑑𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = −𝛷0
(1), (3.59a) 

∑𝑑𝑘𝜆𝑘Ψ0
𝑘,1

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = 0, (3.59b) 

∑𝑑𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = −𝛷0
(2), (3.59c) 
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∑𝑑𝑘𝜆𝑘Ψ0
𝑘,2

4

𝑘=1

𝑒𝑥𝑝[ 𝜆𝑘𝐿/(2ℎ2)] = 0. (3.59d) 

 

3.1.5. Progressive cracking analysis 

Within the framework of LEFM, criterion of through thickness cracking in the mid-ply of 

the composite laminate subjected to a tensile stress, denoted as 𝑝1, is that the strain energy 

increase U due to cracking is equal to the strain energy release  [45-46]: 

∆𝑈 = ∆ = 𝐺𝑐ℎ2, (3.60) 

where 𝐺𝑐 is the critical strain energy release rate (ERR) or fracture toughness of the mid-ply. 

Therefore, it is only necessary to examine the strain energy variation before and after the 

occurrence of through-thickness cracking within the mid-ply.  

The cracking threshold (3.60) for the initiation of the first cracking can be determined by 

utilizing strain energy densities (3.57) and (3.58) as 

𝐺𝑐ℎ2 = 2∫ [𝑒∞(𝜉) − 𝑒0]𝑑𝜉
+∞

0

, (3.61) 

which can be reduced as 

∑𝑑𝑘𝜆𝑘
−1{𝛹0

𝑘}𝑇{𝐷}
𝑝1
2ℎ2

2

𝐸1
= 𝐺𝑐ℎ2

4

𝑘=1

. (3.62) 

Expression (3.62) contains a quadratic term involving variable 𝑝1 on its left side. Furthermore, 

the right term of Eq. (3.62) can be rewritten as 

∑𝑑𝑘𝜆𝑘
−1{𝛹0

𝑘}𝑇{𝐷}
𝑝1
2ℎ2
𝐸1

= 𝐴𝑝𝑝𝑝1
2

4

𝑘=1

, (3.63) 
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where App is the coefficient relating the geometries and material properties of the laminate. Eq. 

(3.63) represents the general strain energy criterion governing the initiation of first cracking in 

the mid-ply. 

 

3.1.5.1. Progressive cracking and crack spacing in the mid-ply 

In order to examine the progressive cracking in the mid-ply of the present composite 

laminate, it is crucial to determine the correlation of the crack density to the external loads. 

When the laminate is subjected to a uniaxial tensile force with a gradually increasing magnitude. 

progressive cracking happens once the force magnitude reaches the threshold related to the 

specific crack density. This indicates that a newborn cracking happens between two consecutive 

cracks with a given spacing L in the laminate when the uniaxial tensile force reaches the 

threshold related to L (see Figure 3.2). Hence, it is rational to first examine the incidence of the 

subsequent cracking at a random site C located between loci A and B. 

According to the strain energy criterion (3.60) for cracking, it leads to 

𝐺𝑐ℎ2 = ∫ 𝑒()𝑑𝜉
𝑠1

0

+∫ 𝑒()𝑑𝜉
𝑠2

0

−∫ 𝑒()𝑑𝜉
𝑠

0

, (3.64) 

where 𝑠1 = 𝐿1 ℎ2⁄ , 𝑠2 = 𝐿2 ℎ2⁄ , 𝑠 = 𝐿/ℎ2 = (𝑠1 + 𝑠2) and e() is given by (3.56). The three 

integrals in (3.64) can be expressed explicitly: 

𝐺𝑐ℎ2 = 𝛱1 + 𝛱2 − 𝛱3, (3.65) 

where 
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𝛱1 = {∑𝑠𝑖𝑛ℎ

4

𝑘=1

𝜆𝑘𝑠1
2

[𝑐𝑘𝜆𝑘
−1exp (

𝜆𝑘𝑠1
2
){𝛹0

𝑘}𝑇

+ 𝑑𝑘𝜆𝑘
−1exp (

−𝜆𝑘𝑠1
2

){𝛹0
𝑘}𝑇]} {𝐷}

𝑝1
2ℎ2

2

𝐸1
, 

(3.66a) 

𝛱2 = {∑𝑠𝑖𝑛ℎ

4

𝑘=1

𝜆𝑘𝑠2
2

[𝑐𝑘𝜆𝑘
−1exp (

𝜆𝑘𝑠2
2
){𝛹0

𝑘}𝑇

+ 𝑑𝑘𝜆𝑘
−1exp (

−𝜆𝑘𝑠2
2

){𝛹0
𝑘}𝑇]} {𝐷}

𝑝1
2ℎ2

2

𝐸1
, 

(3.66b) 

𝛱3 = {∑𝑠𝑖𝑛ℎ

4

𝑘=1

𝜆𝑘𝑠3
2

[𝑐𝑘𝜆𝑘
−1exp (

𝜆𝑘𝑠3
2
){𝛹0

𝑘}𝑇

+ 𝑑𝑘𝜆𝑘
−1exp (

−𝜆𝑘𝑠3
2

){𝛹0
𝑘}𝑇]} {𝐷}

𝑝1
2ℎ2

2

𝐸1
. 

(3.66c) 

In the above, coefficients 𝑐𝑘 and 𝑑𝑘 (k = 1, 2, 3, and 4) in (3.66a-c) are the same as given in 

(3.50) with 
𝐿

ℎ2
= 𝑠1, 𝑠2 and s, respectively. 

The critical loads are determined by relation (3.65) for either a specified single load or 

combined loads with a constant ratio. Without loss of generality, position C of the newborn 

cracking can be considered as a stochastic variable. Therefore, it is beneficial to employ a 

probability density function p to describe the random position of the subsequent cracking. The 

expected value of the external threshold load 𝑃𝑐 (for tensile traction 𝑝1) to induce the next 

cracking in the mid-ply which already contains cracks with the crack density d (=1/L) is  

𝐸[𝑃𝑐(𝑠)] = ℎ2∫ 𝑝(
𝑠

0

𝜉)𝑝𝑐(𝜉)𝑑𝜉. (3.67) 

Selection of the probability density function is vital in determining the mean threshold load 

𝐸[𝑃𝑐(𝑠)] [11]. 
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3.2. Numerical Solutions and Validation 

3.2.1. Interfacial stresses due to mechanical loads 

To validate the analytical model developed in the previous section, a commercial FEA 

software package (ANSYS Mechanical APDLTM) is used to determine the interfacial shear and 

normal stresses in a three-layered cross-ply composite laminate subjected to uniaxial tension. 

Due to the symmetries of the laminate geometries and material properties as well as the applied 

loads, the interfacial shear and normal stresses at the upper and lower interfaces of the laminate 

are identical. The geometrical parameters of the three-layered cross-ply composite laminate 

(Graphite/epoxy: T300/934) taken in FEA are L = 20 mm, ℎ1 = 2.00 mm (upper layer where the 

fiber direction is along with the uniaxial tensile loads), and ℎ2= 4.00 mm (mid-layer where the 

fiber direction is transverse to the loads). For the convenience of comparison, each ply of the 

laminate is assumed as an isotropic, linearly elastic solid. The elastic properties of the upper ply 

are given as the Young’s modulus of 𝐸1 = 138 GPa and Poisson’s ratio of ν1= 0.29, The elastic 

properties of the mid-ply are given as the Young’s modulus of 𝐸2 = 11.7 GPa and Poisson’s ratio 

of ν2 = 0.4 The magnitude of the uniform tensile stress 𝑝1 is assumed to be 1.0 MPa. 

The FEM-based stress analysis (ANSYSTM) of this three-layered symmetric cross-ply 

laminate utilizes four-node elements (PLANE182) and mapped uniform quadrilateral meshes. To 

approach the varying trend of the singular stresses at the free edge, three different mesh sizes 

(i.e., 0.05 × 0.05 mm, 0.1 × 0.1 mm, and 0.2 × 0.2 mm) are used in FEA. Figure 3.5 shows the 

meshed symmetric right-top quarter of the cross-ply laminate as used in the linear FEA. Figures 

3.6 (a) and (b) show the variations of the interfacial shear and normal stresses of the cross-ply 

composite laminate as predicted by the present stress-functional variational method which are 

compared with the computational results generated by ANSYSTM . It can be found that the 
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present analytical model is capable of accurately predicting the variations of the interfacial shear 

and normal stresses along the ply interfaces of this cross-ply composite laminate. 

During the process, a constant traction of 1.0 MPa is employed as the axial load. The 

mismatch of the mechanical properties of neighboring plies leads to the high interfacial stress 

concentrations near the free edges. Such high singular interfacial stresses are responsible for the 

interlaminar delamination near the laminate free edges, one of the main concerns in the design 

and analysis of composite structures. 

 

 

Figure 3.5 The symmetric top-right quarter portion of the three-layered laminate segment used in 

FEA based on ANSYS TM. 
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Figure 3.6 Comparisons of the interfacial shear and normal stresses predicted by the present 

semi-analytical model with those calculated by FEM (ANSYSTM): (a) The interfacial shear stress 

and (b) The interfacial normal stress. 
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3.2.2.  Scaling analysis of interfacial stresses due to mechanical loads 

This section is to analyze the relationship between interfacial stresses and the geometries 

and material characteristics of the three-layered composite laminate. Specifically, the impact of 

the length ratio 𝐿 ℎ2⁄ , thickness ratio ℎ1 ℎ2⁄ , and modulus ratio 𝐸1 𝐸2⁄  on these interfacial stresses 

are examined in details. To conduct such scaling analysis, four thickness ratios (ℎ1 ℎ2⁄  = 0.5, 1.0, 

1.5, & 2.0), two length ratios (𝐿 ℎ2⁄ = 5 & 10), and two modulus ratios (𝐸1 𝐸2⁄  = 10 & 15) are 

adopted, respectively. A concise and efficient computational program has been designed to 

implement the current stress-function variational method for analyzing the interfacial stresses in 

this three-layered cross-ply composite laminate under consideration. This program can be utilized 

to explore the relationship between interfacial shear and normal stresses and various geometrical 

and material properties. During the scaling analysis, the two Poisson’s ratios, i.e., ν1= 0.29 and 

ν2= 0.40 of the upper and middle plies, respectively, are fixed and plane-stress state is assumed. 

Figures 3.7-3.10 show the variations of the dimensionless interfacial shear stress τ/𝑝1 and 

normal stress σ/𝑝1 at the interfaces with the dimensionless distance 𝑥/ℎ2 from the symmetric 

midspan of the uncracked laminate segment to the right crack surface. 
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Figure 3.7 Comparison of the variations of the dimensionless interfacial shear stresses in the 

cross-ply laminate over the dimensionless distance from the symmetric midspan: (a) The shear 

stress for the length ratio 𝐿/ℎ2= 5 and modulus ratio 𝐸1/𝐸2 =10, (b) The shear stress for the 

length ratio 𝐿/ℎ2= 5 and modulus ratio 𝐸1/𝐸2 = 15  
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Figure 3.8 Comparison of the variations of the dimensionless interfacial shear stresses in the 

cross-ply laminate over the dimensionless distance from the symmetric midspan: (a) The shear 

stress for the length ratio 𝐿/ℎ2=10 and modulus ratio 𝐸1/𝐸2 =10, (b) The shear stress for the 

length ratio 𝐿/ℎ2= 10 and modulus ratio 𝐸1/𝐸2 = 15. 
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Figure 3.9 Comparison of the variations of the dimensionless interfacial normal stresses in the 

cross-ply laminate over the dimensionless distance from the symmetric  midspan: (a) The normal 

stress for the length ratio 𝐿/ℎ2 = 5 and modulus ratio 𝐸1/𝐸2 = 10, (b) The normal stress for the 

length ratio 𝐿/ℎ2= 5 and modulus ratio 𝐸1/𝐸2 = 15. 
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Figure 3.10 Comparison of the variations of the dimensionless interfacial normal stresses in the 

cross-ply laminate over the dimensionless distance from the symmetric midspan: (a) The normal 

stress for the length ratio 𝐿/ℎ2 = 10 and modulus ratio 𝐸1/𝐸2 = 10, (b) The normal stress for the 

length ratio 𝐿/ℎ2 = 10 and modulus ratio 𝐸1/𝐸2 = 15. 
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From the above scaling analysis, the present semi-analytic model predicts the high 

interfacial stress concentration at the free edges of the three-layered cross-ply laminates. In each 

study case, the interfacial normal stress significantly exceeds the interfacial shear stress at the 

free edges. Moreover, in all the case, the predicted interfacial shear stresses at the free edges of 

the laminate approach zero, which fulfills the shear-free BC at the free edges. 

 Regarding the interfacial shear stresses, when the thickness ratio (ℎ1 ℎ2⁄ ) increases, the 

peak value of the interfacial share stress decrease. Similar stress variations are also observed for 

interfacial normal stresses. The peak normal stress increases with decreasing thickness ratio 

(ℎ1 ℎ2⁄ ). Additionally, the above stress diagrams also indicate that, the length ratio 𝐿 ℎ2⁄ , i.e., the 

ratio of the length of laminate to the thickness of mid-ply, does not affect the interfacial stresses 

noticeably. Given a fixed length ratio 𝐿 ℎ2⁄ , a higher flexural rigidity of the laminate due to the 

higher modulus ratio 𝐸1/𝐸2, i.e., the higher modulus in the longitudinal direction included by the 

stiff reinforcing fibers, or the higher thickness ratio ℎ1 ℎ2⁄ , i.e., the thicker upper-ply, leads to a 

lower stress concentration of both the interfacial shear and normal stresses at the free edges of 

this composite laminate. 

 

3.2.3. Crack density in the mid-ply  

This section is to examine the progressive cracking process in the three-layered 

symmetric cross-ply composite laminate. For a gradually increasing uniaxial tensile load, the 

first cracking arises in the mid-ply upon meeting criterion (Eq. 3.61). Once the initial cracking 

occurs, progressive cracking begins to evolve with the escalating loads according to relation (Eq. 

3.65). In this analysis, the focus is on the change in the dimensionless crack spacing with the 
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dimensionless critical load 𝑝1ℎ2/𝐺𝐼𝐶, more precisely, in the case of uniaxial stress prior to 

formation of a single crack as explored in the preceding section. 

The critical load is defined as the predicted value at which the next crack is expected to 

occur, provided it is equidistant from the existing cracks, with a spacing of 𝐿 ℎ2⁄ , as outlined in 

Eq. (3.64) with 𝐿1 = 𝐿2. Figure 3.11 shows the correlation between the dimensionless crack 

spacing and the dimensionless critical load at four thickness ratios (ℎ1 ℎ2 =⁄ 0.5, 1.0, 1.5, & 2.0) 

and two modulus ratios (𝐸1 𝐸2 =⁄ 10, 20). The numerical results shown that given a crack 

spacing, a decrease in the thickness of the upper ply or an increase in the thickness of the mid-

ply results in reduced threshold load. Conversely, in the case of stiffer upper and lower plies, a 

higher threshold load is necessitated, or on the other hand, a flexible mid-ply expects a higher 

threshold load. This relationship indicates that an increase in the 𝐸1 𝐸2⁄  ratio facilitates enhanced 

crack resistance, compared to scenarios where the ratio is comparatively lower. 

The above numerical test results are in align with the previously predicted interfacial 

stress patterns. A thicker and more rigid mid-ply not only results in elevated interfacial shear and 

normal stresses, typically associated with delamination failure, but it also demonstrates reduced 

resistance to crack initiation and growth within the mid-ply. This phenomenon can be understood 

in the sense of the principle of energy conservation, wherein highly stressed, stiffened, and thick 

mid-ply possesses the capability to release an adequate amount of strain energy, thereby 

promoting the spontaneous crack initiation and growth. 

This observation is compatible with the findings reported in the literature [15], wherein 

the progressive cracking of a hard surface coating was predicted. The current model 

demonstrates a noteworthy agreement with that study. Notably, in the progressive cracking 

analysis in a hard surface coating [15], the authors employed the same stress function variational 
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technique. Within the scope of this study, it is observed that as the coating surface-to-substrate 

layer thickness ratio or modulus ratio decreases, the threshold load for to initiate cracking also 

experiences an increase, mirroring the trends as observed in the present model. It is imperative to 

highlight that the disparity between the two models lies in the location of crack initiation. In the 

present study, cracking occurs in the mid-ply, while cracking manifests in the upper surface 

coating layer in the referenced study. 

This section substantiates the ongoing progressive cracking model by examining 

experimental data retrieved from the existing literature. Highsmith et al. [54] conducted the 

experiments on an E-glass-epoxy cross-ply composite laminate(0,90)𝑠. The authors specified the 

material properties as follows: 𝐸1 = 41.7 GPa (in the longitudinal fiber direction), ν1= 0.3 (in the 

in-plane Poisson’s ratio), 𝐸2 = 13 GPa (in the transverse direction), and ν2 = 0.45 (the out-of-

plane Poisson’s ratio). Although the paper does not provide the critical energy release rate 

𝐺𝑐 values, the same experimental data, as referenced by [26,31,55], utilizes a 𝐺𝑐value of 

193 Jm−2. Figure 3.12 shows the effect of the applied load (MPa) on the crack density 

(cracks/cm). The present model, as depicted in Figure 3.12, demonstrates a good agreement with 

the experimental data. Consequently, it is noteworthy that an increase in the thickness ratio, as 

discussed earlier, reduces the crack density for the same applied load, particularly accentuating 

the phenomenon observed in the thin mid-plies. 
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Figure 3.11 Variations of the dimensionless crack spacing vs the dimensionless critical load at 

thickness ratio of 
ℎ1

ℎ2
= 0.5, 1.0, 1.5, & 2.0 at (a) Modulus ratio of 

𝐸1

𝐸2
= 10 (b) Modulus ratio of 

𝐸1

𝐸2
= 20, respectively. 
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Figure 3.12 Comparison of the progressive cracking in E-glass-epoxy composite laminates by 

present model with different thickness ratios and experimental data from [54]  
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4. INTERFACIAL THERMOSTRESSES IN BONDED CIRCULAR BIMATERIAL 

THERMOSATS  

4.1. Introduction 

It is common that electronic devices are composite constructions or multilateral devices 

made from layered dissimilar materials. The performance of an electronic device is largely 

dependent on its design and construction. The device energy dissipation, thermal durability, and 

the amount of mechanical interference and vibration that a device can tolerate without loss of 

functionality are all influenced by the microelectronic design and construction. Electronic 

devices are typically joined by adhesive or solder [47]. However, contemporary microelectronics 

devices behave mechanically more flexible in nature, and solder is not suitable for bonding since 

it is susceptible to mechanical bending and vibrations. On the other hand, adhesive is compliant, 

low cost, and easy to process. Which technique is used, the main consideration is that the joint or 

bonded materials can survive the mechanical and thermal stresses and operate smoothly without 

performance degradation. Much research has been carried out in this field to find the optimum 

design for a specific application. 

This chapter is to consider the interfacial stresses in bonded circular bimaterial 

thermostats due to the mismatch of their elastic properties and coefficients of thermal 

expansions. When temperature varies, thermal stresses, strains, and displacements will be 

induced in the bonded materials due to their heterogeneous material properties. This will not 

only lead to the mechanical failure but also to the functional failure of the bonded materials. For 

example, if the semiconductor chip is unable to dissipate the heat properly instantaneously, high 

thermal stress will be accumulated, which can lead to the functionality loss of the chip. A 

significant number of analytical models are available in the literature. Yet, few models are based 
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on FEM to find the interfacial shear stress and normal stress or peeling stress, which are 

responsible for debonding failure of the joint [47-50].  

 

Figure 4.1 Two circular sheets bonded through an adhesive layer [Reproduced from [47]]. 

 

Consider the simplest case of two adhesively bonded circular dissimilar materials as 

shown in Figure 4.1. This particular case was considered earlier by Chen and Nelson in IBM 

[47], who developed analytical solutions using modified Bessel functions. The present model 

assumes an axisymmetric nature. Chen and Nelson assumed that when the bonded region is filled 

with adhesive, the interfacial shear stress is zero at the center and gradually increases toward the 

free edges. Consequently, an increase in radius corresponds to an increase in the interfacial shear 

stress.  
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Chen and Nelson concluded an analytic expression to determine the interfacial shear 

stress, 

𝜏 =
2(𝛼1 − 𝛼2)𝑇𝐺

𝜂𝛽(𝐶1 + 𝐶2)
𝐼1 (𝛽𝑟), (4.1) 

where 𝐶1 and 𝐶2 are two integration constants, and 𝐼1 (β𝑟) is the modified first-order Bessel 

functions of the first kind. In expression (4.1), Chen and Nelson defined the following 

parameters: 

𝛽2 =
𝐺

𝜂
(
1 − 𝛾1

2

𝐸1𝑡1
+
1 − 𝛾2

2

𝐸2𝑡2
), (4.2) 

𝐶1 = −
2

1 + 𝛾1
[
1 − 𝛾1
𝛽𝑅

𝐼1 (𝛽𝑟) − 𝐼0 (𝛽𝑟)], (4.3) 

𝐶2 = −
2

1 + 𝛾2
[
1 − 𝛾2
𝛽𝑅

𝐼1 (𝛽𝑟) − 𝐼0 (𝛽𝑟)], (4.4) 

where 𝐼0 (𝛽𝑟) is the modified zero-order Bessel functions of the first kind. Consequently, Chen 

and Nelson extracted the maximum shear stress at the end of the adherends at r=R as  

𝜏𝑚𝑎𝑥 =
2(𝛼1 − 𝛼2)𝑇𝐺

𝜂𝛽(𝐶1 + 𝐶2)
{

1

1 + 𝛾1
[
1 − 𝛾1
𝛽𝑅

−
𝐼1 (𝛽𝑟)

𝐼0 (𝛽𝑟)
] +

1

1 + 𝛾2
[
1 − 𝛾2
𝛽𝑅

−
𝐼1 (𝛽𝑟)

𝐼0 (𝛽𝑟)
]}. (4.5) 

Furthermore, Suhir et al. [49] also achieved an analytical solution similar to the one by 

Chen and Nelson by using modified Bessel functions. In contrast to Chen and Nelson’s work 

[47], Suhir et al. formulated the analytic solutions for identical circular adherends, in which they 

treated the adherends as circular plates with small deflections, with the assumption of no effect 

of the interfacial normal stress on the interfacial shear stress. The maximum shear stress occurs 

at r=a (at the end of assembly) as 

𝜏𝑚𝑎𝑥 =
(1 + 𝜈1)𝑎𝐼1 (𝑘𝑎)

𝑘𝑎𝐼0 (𝑘𝑎) − (1 − 𝜈1)𝐼1 (𝑘𝑎)

∆𝛼∆𝑡

𝜅
, (4.6) 
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where κ is the interfacial compliance of the assembly. The interfacial normal stress is expressed 

as 

𝑝0(𝑟) = 𝑝𝑚𝑎𝑥
𝑘𝑎𝐼0 (𝑘𝑎) − 𝑎 

𝐼1(𝑘𝑟)
𝑟

𝑘𝑎𝐼0 (𝑘𝑎) − 𝐼1(𝑘𝑎)
, (4.7) 

and 𝑝𝑚𝑎𝑥 is 

𝑝𝑚𝑎𝑥 =
3

4

1 + 𝜈1
1 + 𝜈0

ℎ1
ℎ0
𝐸0

𝑘𝑎𝐼0 (𝑘𝑎) − 𝐼1(𝑘𝑎)

𝑘𝑎𝐼0 (𝑘𝑎) − (1 − 𝜈1)𝐼1(𝑘𝑎)
∆𝛼∆𝑡. (4.8) 

Both of the aforementioned works provided the numerical solution. However, their analytical 

solutions were not well validated by FEA. The subsequent section of this chapter is to conduct 

FEA to determine the interfacial shear stress and normal stress resulting from thermal loading 

(changes in temperature) in a bonded circular bimaterial thermostat.  

 

4.2. Finite Element Analysis of Bonded Circular Bimaterial Thermostats  

A commercial FEA software package (ANSYSTM) is used to analyze the aforementioned 

case of bonded circular bimaterial thermostats. Material properties of the two bonded circular 

materials are tabulated in Table 4.1. During the FEM-based computational simulation 

(ANSYSTM), 2D axisymmetric state, four node elements (PLANE182), and uniform quadrilateral 

meshes are used. The reference temperature without thermal stresses is assumed as 25 °C and a 

temperature rise to 125 °C is considered in this modeling study. Mesh refinement is employed at 

the interface and near the free edge where stress concentration exists. 

Figure 4.2 shows the interfacial shear stress and normal stress along the joint interface, 

corresponding to the numerical solutions by Chen and Nelson [47]. The maximum shear stress as 

identified through FEA is 28.96 MPa, in contrast to 40 MPa as reported by Chen and Nelson. 
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Similarly, the maximum normal stress is determined as 19 MPa, while Chen and Nelson found it 

to be 12.5 MPa. These disparities can be attributed to the simplification of the analytic model.  

 

Table 4.1 Material properties of the bonded material couple  

Component Top adherend Bottom adherend Adhesive 

Young’s modulus (GPa) 117 275 3.45 

Poisson ratio 0.25 0.3 0.45 

Coefficient of thermal expansion 

(/°𝐶) 
1.6 × 10−5 6.5 × 10−6 233 × 10−6 

Thickness (mm) 1.51 1.57 0.051 

Assembly radius (mm) 51 

Temperature change ∆𝑇 (°𝐶) 100 

 

 

Figure 4.2 Half axisymmetric model of the bonded circular bimaterial thermostat for FEA.  
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Figure 4.3 FEM-based prediction of the interfacial shear and normal stresses at the interface 

between two bonded dissimilar materials. (a) Interfacial shear stress and (b) Interfacial normal 

stress. 
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4.2.1. Effect of loading and boundary conditions  

This section is to discuss the stress analysis with various loading conditions, BCs, and 

adhesive layer thicknesses within the bonded circular materials. Figure 4.4 shows the interfacial 

shear and normal stresses of the circular joints, resulted from varying temperature change. The 

material properties given in Table 4.1 are employed for the FEM-based computational 

simulation, with the joint radius of 20 mm. The maximum shear stress of 26.6 MPa is determined 

by FEA with temperature change of ∆T = 100℃, which is higher than that obtained at 

temperature change of ∆T=50℃. Refined examination of the FEA results shows that the 

interfacial shear stress is negligibly small along most of the binding line and yet increases 

significantly only near the free edges. Similarly, a lower temperature change (∆T = 50℃) 

corresponds to a lower peak interfacial normal stress of 9.21 MPa, compared to the peak 

interfacial normal stress of 18.4 MPa at a higher temperature change (∆T = 100℃). In addition, 

the normal stress diminishes to zero along the interface, which switches from positive (tensile) to 

negative (compressive) near the free edges, while the shear stress remains the same direction. 

Figure 4.5 shows the variation of interfacial stresses with the varying thickness of the 

adhesive layer. During the computational process, the same BCs are maintained for the adhesive 

layer, and, a uniform temperature change of ∆T = 100℃ is applied. In the case study, two 

distinct thicknesses of the adhesive layer, 0.05 mm and 0.1 mm, are examined, resulting in a 

maximum shear stress of 28.1 MPa for the thinner layer and 21 MPa for the thicker one. 

Evidently, the thicker layer suppresses the interfacial shear stress in the bonded circular joint 

subjected to steady thermal loading. Similarly, the peak interfacial normal stress of the thicker 

layer is 11.5 MPa, in contrast to the peak interfacial normal stress of 18.4 MPa of the thinner 

layer 
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Figure 4.4 FEM-based prediction of the interfacial stresses due to temperature change ∆𝑇 =
50℃ and 100 ℃, respectively.  (a) Interfacial shear stress and (b) Interfacial normal stress.  
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Figure 4.5 FEM-based prediction of the interfacial stresses due to temperature change 100 ℃ at 

varying thickness of adhesive layer. (a) Interfacial shear stress and (b) Interfacial normal stress. 
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Figure 4.6 reveals how different BCs affect the interfacial stress of bonded circular joints. 

Notably, when the bottom adherend is fixed, thereby constraining the free bending, both 

interfacial shear stress and normal stress exhibit considerable elevation compared to the case that 

the adherends are free of flexural bending. The use of the non-bending condition results in a 

maximum shear stress of 45.9 MPa, whereas the presence of bending generates 28.2 MPa, 

indicating a substantial increase in the interfacial shear stress. Similarly, the interfacial normal 

stress without bending is measured at 47.2 MPa, while the presence of bending yields 18.2 MPa. 

It is crucial to emphasize that a thermal load of ∆T=100℃ is applied in this numerical process. 
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Figure 4.6 FEM-based prediction of the interfacial stresses due to temperature change 100 ℃ at 

different BCs of bottom layer. (a) Interfacial Shear stress and (b) Interfacial normal stress 
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4.3. Conclusions 

In summary, FEM-based computational modeling is conducted in this chapter to 

determine the interfacial stresses of bonded circular bimaterial thermostats resulting from 

thermal loads as a typical example considered in the literature. The present computational study 

offers valuable insights and resources to understand the stress concentration at free-edges due to 

mismatch of the elastic properties and coefficients of thermal expansion of two bonded circular 

materials. The peak shear stress appears at the free edges of joint, which is responsible the 

debonding of the two bonded materials. As a rule of thumb, FEA is needed to evaluate the 

structural strength for design optimization and to ensure the superior performance of electronic 

devices without premature failures. 
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5. CONCLUSIONS 

In summary, PMCs made of compliant polymeric resins (e.g., epoxies) reinforced with 

high-performance microfibers (e.g., carbon, glass, or plant fibers) have found broad structural 

applications in aerospace, aeronautical and ground vehicles, marine ships, industrial and civil 

infrastructures, and sports utilities. Due to their heterogeneous microstructures and large 

difference of the mechanical properties of resins and reinforcing fibers, the failure of a PMC is 

typically a progressive cracking process of microcrack nucleation, crack growth, and final 

catastrophic failure. To ensure the structural reliability and health of PMCs, it is important to 

develop robust methods for understanding and predicting the failure process and mechanisms of 

PMCs subjected to external loads and temperature change. 

The objective of this study was to develop a semi-analytic stress-function variational 

method that can accurately and efficiently predict the interfacial stresses and progressive 

cracking in PMC laminates under external loading. During the process, a classic three-layered 

symmetric cross-ply PMC laminate with periodic transverse ply cracks is considered. To 

accurately determine the stress field in the PMC system, two unknown interfacial shear and 

normal stress functions are introduced at each laminate interface (i.e., ply surface), and the planar 

stresses of each ply of the laminate are expressed exactly in terms of the stress functions of the 

upper and lower ply surfaces according to the static equilibrium equations. A set of governing 

ODEs of the interfacial stress functions are obtained via evoking the principle of minimum 

complementary strain energy and then solved explicitly in terms of eigenfunctions. The present 

method ensures the stress field of the cracked PMC laminate to satisfy all the traction BCs at 

interfaces and crack surfaces. It is needed to mention that for nearly all existing models in the 

literature, the interfacial shear stresses on the ply surfaces do not satisfy the simple traction-free 



 

75 

condition at crack tips and free edges, and the interfacial normal stresses perpendicular to the ply 

direction are just simply ignored, i.e., the defection of the longitudinal plies after cracking in the 

transverse plies is not considered. As one of the major advantages, the present semi-analytic 

approach has effectively taken into account those BCs in the modeling process. 

The current semi-analytic stress-function variational method has been effectively 

validated via comprehensive FEA based on a commercially available software package 

(ANSYSTM). Comparative studies demonstrate that this present stress-function variational 

method is a robust, accurate, and efficient semi-analytical approach for stress analysis of the 

cross-ply composite laminates under consideration. Contrast to those FEM-based and other 

analytic methods available in the literature, the present semi-analytic method has showed that it 

is capable of accurately predicting the interfacial stresses and crack spacing in the PMC 

laminates. Furthermore, scaling analysis of dependencies of the interfacial stresses and crack 

spacing in the PMC laminates upon the laminate geometries and elastic properties can be 

conveniently made. The findings from the present study suggest that a thicker and stiffer mid-ply 

is susceptible to cracking compared to a thinner and more flexible mid-ply. Consequently, the 

current model offers valuable insights for laminate design optimization and quantitative 

comparison of different laminate layup as well as thickness effect. 

Addition research efforts can be made to further enhance the current semi-analytic 

method such as 

• Generalizing it for a comprehensive analysis of interfacial stresses and progressive 

cracking in angle-ply polymer matrix composite (PMC) laminates. 
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• Extend the applicability of the semi-analytic method to encompass multi-layered 

coating systems and layered smart material systems, thereby establishing a more 

versatile analytical framework. 

• Expand the method to consider dynamic interfacial stresses in layered materials under 

both steady (vibrational) and impulsive loadings, contributing to a better 

understanding of structural responses in diverse composite configurations. 

• Develop a semi-analytic stress-function variational method tailored for 3D free-edge 

interfacial stresses, specifically engineered to facilitate nonlinear stress analysis of 

layered materials, including considerations of plastic deformations near free edges. 

Through implementing the present semi-analytic method, the objective is to make a 

valuable contribution to the creation of a comprehensive analytical set of tools for accurate 

characterization of complex mechanical behavior of advanced composite structures across a 

variety of loading conditions, configurations, and environmental factors. 
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