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ABSTRACT

Ornithologist often need to recognize individual birds, but traditional invasive meth-

ods, such as capturing, marking, releasing, and recapturing of birds, have limitations. To

overcome this, researchers use non-invasive alternatives, such as bird vocalizations. In our

study, we used wing flap sounds of three male Zebra Finch birds for individual recognition.

We achieved identification accuracies ranging from 55% to 100% by using a combination

of Principal Component Analysis-K-Nearest Neighbor (PCA-KNN) and Cross-Correlation

method on training data and testing data. PCA-KNN allows for dimensionality reduction

and pattern recognition, while the Cross-Correlation method bases data analysis on shifting

data elements. Our approach can be applied to other bird species and is becoming more

accessible due to technological advancements. Non-invasive methods for bird identification

are becoming increasingly popular, and our study demonstrates the potential for using wing

flap sounds to recognize individual birds.
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1. INTRODUCTION AND THESIS STATEMENT

1.1. Introduction

There have been studies conducted on how birds, both male and female, attend nests

during the breeding season. To monitor bird nest attendance, researchers often capture the

birds and place bands on their legs (Boulton et al., 2010; Cantarero et al., 2016; Sandell

et al., 1996; Wierucka et al., 2016). These bands can be made of metal or plastic and are

fitted onto the bird’s leg. However, the process of capturing and marking birds can have

negative impacts on their well-being. Capturing birds can cause stress, leading to changes

in behavior and potentially affect study results (Linhart et al., 2012). Furthermore, metal

and plastic rings can cause injury to the birds. Plastic rings may cause inflammation and

infection, and the buildup of substances under the ring can lead to physical damage. Metal

rings, on the other hand, can be sharp and cause injuries (Amat, 1999; Griesser et al., 2012).

Efficient and accurate methods for individual bird identification are crucial to the

study and management of birds. Invasive methods, which generally involve banding individ-

ual birds, can be highly accurate (approaching 100%) but are usually expensive, pose a risk

of bird injury and can produce undesirable behavior changes: birds may become more alert

to their surroundings to avoid being recaptured.

Non-invasive, or near non-invasive, techniques are therefore gaining increased inter-

est. Methods based on human observation can be extremely accurate and provide nuanced

insights but are generally prohibitively expensive, difficult to achieve continuous monitor-

ing, and challenging to scale up (Hałupka, 1994). Camera or video systems can be highly

accurate but are expensive and complex (Ferreira et al., 2020).
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Identification based on bird calls (Bedoya and Molles, 2021; Galeotti and Pavan,

1991; Pedroza et al., 2020; Rogers and Paton, 2005) is typically less expensive and less

likely to induce behavior changes but is better suited for species-level rather than individual

identification. Such systems, of course, cannot work in the absence of bird vocalizations and

are generally less accurate than invasive approaches. Additionally, mimicry by other birds

can affect the accuracy of the results.

This thesis propose a new approach: the use of wing flap sounds to identify individual

birds, well-suited for many bird studies that involve monitoring ingress and egress at nests

or feeding sites. This method is similar to gait detection methods used to identify humans

(AbdAlKader, 2019; Zhang et al., 2004). Birds have unique wing flap sounds that can be

used to identify individual birds without causing any stress or harm to them. This approach

is well-suited to many bird studies that involve monitoring nest or feeding site ingress and

egress.

This method is completely non-invasive and can be hidden so as to avoid inducing

changes in bird behaviors. While not as accurate as some other identification systems,

we demonstrate reasonable accuracy is possible, and accuracy rates are sure to improve as

algorithm development and refinement continue.

1.2. Thesis Statement

This study focuses on the individual identification of three male Zebra Finch birds

based on the differences in the sound of their wing flaps. The Zebra Finches were selected

based on their availability and active behavior, and wing flap audio plots were used to an-

alyze their flight sounds. The analysis revealed that each bird has unique acoustic features

associated with its flight, and that the sound waveforms differ consistently between birds.
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To classify the birds based on their wing flap sounds, we used a combination of Principal

Component Analysis (PCA) and K-Nearest Neighbor (KNN) algorithms (PCA-KNN), as

well as the Cross-Correlation method. The PCA-KNN techniques allowed for dimensionality

reduction and pattern recognition, while the Cross-Correlation technique provided an addi-

tional method that potentially gives more accurate data analysis by shifting data elements,

although this method does require relatively more computer time and power.

Our results demonstrate that the PCA-KNN and Cross-Correlation methods are

highly effective in identifying individual birds based on their wing flap sounds. We ob-

served identification accuracies ranging from 55% to 100%. The most frequent identification

accuracy recorded across our tests was 85%. This approach offers a non-invasive alternative

to traditional bird capturing and marking techniques. Moreover, its feasibility is increasingly

enhanced by ongoing technological advancements.

Overall, our study highlights the potential of using wing flap sounds for individual bird

identification and demonstrates the effectiveness of the PCA-KNN and Cross-Correlation

methods in this context. Further research can improve the accuracy of the identification

technique and expand its applicability to other bird species.

1.2.1. Introduction to Distance Metrics

Distance metrics, sometimes referred to as similarity or dissimilarity measures, play

a foundational role in various fields such as machine learning (Hoi et al., 2006; Yang and Jin,

2006), statistics (Cohen et al., 2003), and data mining (Singh et al., 2013). They essentially

quantify the “distance” or difference between two data points and are instrumental for tasks

ranging from clustering (where the aim is to group similar data points together) (Singh

et al., 2013) to classification (where the goal is to assign a data point to a predefined group)
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(Singh et al., 2013), recommendation systems (recommending items based on similarity to

user preferences) (Kumar et al., 2015; Yu et al., 2017), and nearest neighbor searches (finding

the closest data point or points to a given point) (Brin, 1995; Ruan et al., 2021).

It’s important to note that the concept of “distance” in this context does not always

pertain to physical distance. Rather, it serves as an abstract representation of how different

two sets of data are from each other. A few key aspects to consider when discussing distance

metrics include the type of data being worked with; the nature of your data (be it categorical,

continuous, binary, etc.) can often dictate the best distance metric to use. The specific

problem at hand also matters; depending on the problem, some metrics might be more

appropriate than others (Singh et al., 2013). Additionally, robustness is a crucial factor as

some metrics are more sensitive to outliers or variations in the data (Singh et al., 2013).

Finally, computational efficiency is a concern, especially in high-dimensional spaces or with

large datasets. In such cases, computing distances can become computationally intensive,

making some metrics more efficient than others (Suárez et al., 2021).

1.2.2. Method 1: PCA-KNN for Distinguishing Individual Birds

In this study, one of the methods employed for distinguishing individual birds is

PCA-KNN, a hybrid of Principal Component Analysis (PCA) and K-Nearest Neighbors

(KNN). PCA is a dimensionality reduction technique that transforms the original variables

into a new set of uncorrelated variables, known as principal components. These principal

components retain most of the original data’s variance, often allowing for a reduction in

the dimensionality of the data without significant loss of information (Jolliffe, 2002; Shlens,

2014; Wold et al., 1987). KNN is a simple yet effective algorithm for classification, where

an unknown sample is classified based on the majority class of its ’K’ nearest neighbors in
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the feature space (Kramer and Kramer, 2013; Laaksonen and Oja, 1996; Mucherino et al.,

2009).

By combining PCA and KNN, we can achieve efficient and accurate classification.

PCA aids in reducing the dimensionality of the dataset, making the KNN algorithm faster

and more effective(Borman et al., 2021; Haque et al., 2019; Xia et al., 2021). In the context

of distinguishing individual birds based on wing flap sounds, PCA is first applied to reduce

the dimensionality of the sound feature space. The KNN algorithm then uses this reduced

feature space for classification, employing various distance metrics like Euclidean, Cityblock,

Correlation, and Cosine distance for enhanced accuracy.

1.2.2.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used to reduce the

complexity of high-dimensional datasets while retaining most of the important information.

The fundamental idea behind PCA is to transform the original variables into a new set of

variables, called principal components, that are uncorrelated with each other and capture

the maximum amount of variation in the data. In essence, PCA seeks to summarize the

most important features or patterns in the data, while removing redundant or irrelevant

information (Daffertshofer et al., 2004).

The process of performing PCA involves several steps (Karim et al., 2010). The

first step is to standardize the data by subtracting the mean and dividing by the standard

deviation of each variable. This ensures that each variable is on the same scale and prevents

one variable from dominating the analysis. Next, the correlation matrix is calculated, which

shows the linear relationship between each pair of variables. The eigenvectors and eigenvalues

of the correlation matrix are then computed, with the eigenvectors representing the directions
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in the dataset that have the most variation. The eigenvalues correspond to the amount of

variance explained by each eigenvector, with larger eigenvalues indicating more important

principal components.

The principal components are then extracted by multiplying the original dataset by

the eigenvectors. The first principal component captures the largest amount of variance in

the data, while each subsequent principal component captures as much of the remaining

variation as possible, subject to the constraint of being orthogonal to all preceding compo-

nents. The principal components can be used for data visualization, feature extraction, and

data compression. The extracted principal components are typically ordered by decreasing

eigenvalue, so that the first few components capture most of the variation in the data.

One of the benefits of PCA is that it can be used to reduce the number of dimensions in

a dataset without losing too much information. This is useful for visualizing high-dimensional

data, as well as for machine learning and predictive modeling applications. Principal Com-

ponent Analysis can also be used to identify the most important variables in a dataset, which

can help to simplify the analysis and improve the accuracy of the results (Wold et al., 1987).

However, there are also some potential limitations and challenges associated with

PCA. One of the challenges is interpreting the results of the analysis. While the principal

components capture the most important patterns in the data, it can be difficult to under-

stand what these patterns represent, especially when dealing with large or complex datasets.

Additionally, PCA assumes that the data is linearly related, and may not work well with

categorical data (Wold et al., 1987).

In the end, PCA is a powerful and widely used technique for reducing the complexity

of high-dimensional datasets. By transforming the data into a new set of variables that
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capture the most important patterns, PCA can help to improve the accuracy of analysis and

modeling, as well as simplify the visualization of complex data. However, it is important to

use PCA appropriately and to interpret the results carefully, as well as to be aware of its

potential limitations and challenges.

1.2.2.2. K-Nearest Neighbor (KNN)

K-Nearest Neighbor (KNN) is a popular machine learning algorithm used for clas-

sification problems (Bukhari et al., 2020; Jutzi and Gross, 2009; Lakshmi and Prabakaran,

2014; Ramteke and Monali, 2012). The KNN learning algorithm does not build a model

beforehand, it relies on the data itself to make predictions. KNN is based on the idea that

similar objects belong to the same class as objects that are close to each other.

In a KNN classification problem, a set of labeled training data is used to make pre-

dictions on new, unseen data. The training data is composed of various classes that have

been classified differently, as their unique features set them apart. To make a prediction, the

KNN calculates the distances between the test data and all training data. The algorithm

then selects the K nearest neighbors (based on the distance metric used) and assigns the test

data to the class that is majority represented among the K nearest neighbors. The value of

K is a user-defined parameter that determines the number of neighbors to consider for each

prediction (Ali et al., 2019; Kataria and Singh, 2013).

There are several distance metrics that can be used with KNN, including Euclidean

distance, Cityblock distance, Cosine distance, and Correlation distance. Euclidean distance

is the most used distance metric, and is simply the straight-line distance between two points

in space. Cityblock distance is the sum of the absolute differences between the coordinates
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of two points. The choice of distance metric depends on the characteristics of the data and

the specific requirements of the problem(Ali et al., 2019; Kataria and Singh, 2013).

One of the main advantages of the KNN algorithm is its simplicity. It is easy to

understand and implement and does not require a lot of data preparation. In addition, KNN

is flexible, as it can handle both continuous and categorical data. (Ali et al., 2019; Kataria

and Singh, 2013).

Another advantage of KNN is that it is computationally efficient. Unlike other algo-

rithms, KNN does not require training of a model. Instead, it relies on the training data

to make predictions, which makes it fast and easy to use for large data sets. KNN is also

adaptable, as the value of K can be adjusted to control the trade-off between overfitting and

underfitting(Ali et al., 2019; Kataria and Singh, 2013).

However, there are also some disadvantages of KNN (Ali et al., 2019; Kataria and

Singh, 2013). One of the main limitations is that it can be sensitive to the choice of distance

metric. The choice of distance metric can greatly impact the performance of the algorithm,

and it can be difficult to determine the optimal metric for a particular data set. In addition,

KNN can be computationally expensive for large data sets, as the distance between the test

point and all the points in the training data must be calculated. Finally, KNN is susceptible

to the curse of dimensionality, meaning that it can perform poorly in high-dimensional spaces.

Figure 1.1 demonstrates the operation of KNN. The illustration includes two training

classes, Class A and Class B, and an unclassified triangle. If K is set to 1, the KNN will

assign the triangle to Class A due to its proximity to that class. If K is set to 2, there is a

tie between Class A and Class B, and one possible solution is to classify the triangle based

on the closest class. If K is set to 3, the KNN will assign the triangle to Class B, as it is the

8



class represented by the majority of the three nearest neighbors (2 belonging to Class B and

1 belonging to Class A).

Training data A Training data B Unclassified data

K = 3

K = 2

K = 1

A B

A

A

A

A

B

B

B

B

B

Figure 1.1. Example of the K values in KNN classification.
© 2020 IEEE.

In Figure 1.2 and Figure 1.3, close-up views of specific waveforms are provided. Each

waveform is depicted with its sampled values highlighted. These sampled values, essential

for signal analysis, can be systematically arranged into arrays.

The sample values of the waveforms x1, x2, and x3 presented in Figure 1.2 are orga-

nized into arrays, as illustrated in Figure 1.4. Similarly, the sampled values of the waveforms

y1, y2, and y3 in Figure 1.3 are arranged into arrays, as shown in Figure 1.5.
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x1[1]

x2[1]

x3[1]

x1[2]

x2[2]

x3[2]

x1[3]

x2[3]

x3[3]

x1[4]

x2[4]

x2[4]

Figure 1.2. Zoomed-in view of the x waveforms showing specific sampled values.

y1[1]

y2[1]

y3[1]

y1[2]

y2[2]

y3[2]

y1[3]

y2[3]

y3[3]

y1[4]

y2[4]

y2[4]

Figure 1.3. Zoomed-in view of the y waveforms showing specific sampled values.

x1 = [x1[1], x1[2], x1[3], x1[4]]

x2 = [x2[1], x2[2], x2[3], x2[4]]

x3 = [x3[1], x3[2], x3[3], x3[4]]

x4 = [x4[1], x4[2], x4[3], x4[4]]

Figure 1.4. Arrays representation of the sampled values from the x waveform.
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y1 = [y1[1], y1[2], y1[3], y1[4]]

y2 = [y2[1], y2[2], y2[3], y2[4]]

y3 = [y3[1], y3[2], y3[3], y3[4]]

y4 = [y4[1], y4[2], y4[3], y4[4]]

Figure 1.5. Arrays representation of the sampled values from the y waveform.

1.2.2.3. Distance Formulas Used in PCA-KNN

In the pursuit of classifying individual bird, a range of distance metrics, including

Cityblock, Euclidean, Correlation, and Cosine, is employed.

• Cosine distance:

d = 1−

N∑
n=1

(xj [n])(yi[n])√√√√ N∑
n=1

(xj [n])
2

√√√√ N∑
n=1

(yi[n])
2

(1.1)

• Correlation distance:

d = 1−

N∑
n=1

(yi[n] − yi)(xj [n] − xj)√√√√ N∑
n=1

(yi[n] − yi)
2

√√√√ N∑
n=1

(xj [n] − xj)
2

(1.2)

where xj =
1

N

N∑
n=1

xj [n]
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and yi =
1

N

N∑
n=1

yi[n]

• Cityblock distance:

d =
N∑
n=1

| yi[n] − xj [n] | (1.3)

• Euclidean distance:

d =

√√√√ N∑
n=1

(yi[n] − xj [n])2 (1.4)

As an example, the Euclidean distance defined in Equation 1.8 can be used to compute

the distance between y3 from Figure 1.5 and x2 from Figure 1.4.

An example using the Euclidean distance in Equation 1.8 to calculate the distance

between y3 in Figure 1.5 and x2 in Figure 1.4:

dy3−x2 =

√√√√ 4∑
n=1

(y3[n]− x2[n])
2

1.2.2.4. PCA-KNN

Figure 1.6(a) displays a tabular representation of a dataset poised for dimensionality

reduction via PCA. Two primary columns, x and y, represent the features of the dataset

across four distinct observations. These observations are categorized into two training classes:

“training class 1” encapsulates observations 1 and 2, while “training class 2” contains obser-

vations 3 and 4. Subsequently, the dataset is concisely encoded as matrix A in Figure 1.6(b).

Each row in matrix A aligns with an observation vector consisting of x and y feature values.

This matrix construct serves as a standardized mathematical model for datasets undergoing
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PCA, facilitating the transformation from a 2-dimensional feature space to a 1-dimensional

feature space.

Observation 1, training class 1
Observation 2, training class 1
Observation 3, training class 2
Observation 4, training class 2

x y

x1 y1

x2 y2

x3 y3

x4 y4

A =

x1 y1

x2 y2

x3 y3

x4 y4

(a) (b)

Figure 1.6. Example of PCA - (a) Data information. (b) The matrix contains only the
features of the data.

Proceeding to Figure 1.7, the data encapsulated in Figure 1.6 is visualized in a Carte-

sian plane, with each point representing an individual observation’s features x’s and y’s.

This scatter plot delineates the observations according to their respective training classes.

The eigenvector of the covariance matrix A, labeled E, represents the first principal com-

ponent in PCA and indicates the direction of maximum data variance. The features of the

training classes are projected onto this eigenvector, facilitating a dimensionality reduction

while retaining significant data characteristics.

The same projection process is applied to the features of the unknown class. Subse-

quently, KNN classification is carried out by computing the distances between the projected

features of the unknown class and those of the training classes along the eigenvector. This

method allows for the classification of the unknown data point by identifying its nearest

neighbors in the feature space. The implementation of this classification strategy is further

illustrated in Figure 1.8.
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Observation 1,
training class 1

Observation 2,
training class 1

Observation 3,
training class 2

Observation 4,
training class 2

E

x

y
Unknown class

x2, y2

x3, y3

x4, y4

x1, y1

Figure 1.7. An example of using PCA to reduce the dimensionality from two to one. The
data, originally in two dimensions, are now in one dimension after being projected onto the
eigenvector.

y

E

x

y

K = 1
K = 2

K = 3

Figure 1.8. After the data dimensions are reduced from two to one using the eigenvector,
KNN is utilized along the same eigenvector for classification.
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1.2.3. Method 2: Cross-Correlation for Distinguishing Individual Birds

In the PCA-KNN method, manual alignment of each flight waveform is required,

involving meticulous adjustment to ensure that all start points match. Conversely, the Cross-

Correlation method eliminates the need for this manual alignment. This technique offers an

efficient solution, particularly useful in situations where the data is not easily separable or

when the features of the dataset are not well-defined.

1.2.3.1. Cross-Correlation

The Cross-Correlation method aims to identify the closest match using distance metric

formulas. This involves padding zeros to the training dataset and padding zeros to the testing

dataset. The calculation to find the closest match involves shifting elements, which are the

sample values, within the testing dataset. For each shift, the distance metric formula is used

to compute the distance between the testing data and all the training data.

Once the smallest distance is found, the testing data is assigned to the class with

the shortest distance to the training data that belongs to that class. The shortest distance

represents the closest match between the two datasets.

The downside to the Cross-Correlation method is that it requires a computer with

fast computation capabilities. Because the method involves shifting and comparing large

arrays of data, it can be computationally intensive and requires significant processing power.

Nonetheless, the benefits of the method in terms of accuracy and reliability make it a worth-

while investment in cases where precise data matching is critical.

Figures 1.9, 1.10, 1.11, 1.12, and 1.13 provide a visual illustration of the concept.

The figures depict two waves, namely Wave A in Figure 1.9 and Wave B in Figure 1.10. To

determine the closest match between the two waves, Wave A is initially placed on the left
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side of Wave B, as shown in Figure 1.11. This position results in a low amount of similarity

between the two waves.

Next, Wave A is slid towards the right. As Wave A is moved to the right, the degree

of similarity between Wave A and Wave B increases. When Wave A reaches the position

that best matches Wave B, as seen in Figure 1.12, this relative position results in the highest

level of similarity between the two waves. In Figure 1.13, Wave A is placed to the right of

Wave B, resulting in the least similarity between the two waves.

Figure 1.9. Wave A. Figure 1.10. Wave B.

Figure 1.11. Wave A is on the left of wave B. This relative position gives the least similarity.
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Figure 1.12. Wave A overlap wave B. This relative position gives the most similarity.

Figure 1.13. Wave A is on the right of wave B. This relative position gives the least similarity.

1.2.3.2. Distance Formulas Used in Cross-Correlation

• Cosine distance:

dp = 1−

N∑
n=1

(yi[n−Mp])(xj [n])√√√√ N∑
n=1

(yi[n−Mp])2

√√√√ N∑
n=1

(xj [n])
2

(1.5)

• Correlation distance:

dp = 1−

N∑
n=1

(yi[n−Mp] − yi)(xj [n] − xj)√√√√ N∑
n=1

(yi[n−Mp] − yi)
2

√√√√ N∑
n=1

(xj [n] − xj)
2

(1.6)
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where xj =
1

N

N∑
n=1

xj [n]

and yi =
1

N

N∑
n=1

yi[n−Mp]

• Cityblock distance:

dp =
N∑
n=1

| yi[n−Mp] − xj [n] | (1.7)

• Euclidean distance:

dp =

√√√√ N∑
n=1

(yi[n−Mp] − xj [n])2 (1.8)

In all cross-correlation formulations, N denotes the total number of elements within an

array. The parameter M specifies the magnitude of each individual shift, while p represents

the number of times the array has been shifted. Let D denote the set of distances computed

for each corresponding shift value m. The set D is defined in equation 1.9.

D = {d0, d1, d2, d3, . . . , dp} (1.9)

where the value of p is determined by the floor function of a specific expression, as shown in

equation 1.10

p =

⌊
Z

M

⌋
(1.10)

where Z denotes the total number of zeros padded to an array, and Z ≤ 2N .

The illustrations presented in Figures 1.15 and 1.16 depict a process analogous to the

sounds generated by wing flaps, with M = 1 and Z = 6.
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A =
[
5 7 3

]
B =

[
5 7 2

]
Figure 1.14. Arrays A and B

The array A serves as the training data, while the array B is the testing data. To

prepare array A for analysis, zeros are added to both the beginning and the end of the array.

The number of zeros added to the beginning is equal to the total number of elements in the

array, and the same number of zeros are added to the end. The resulting array is denoted

by ZA = [0 0 0 5 7 3 0 0 0], which has a length of 9. Similarly, zeros are added to the

end of array B to match the length of ZA. In this case, the number of zeros added to the

end is twice the total number of elements in the array. The resulting array is denoted by

ZB = [5 7 2 0 0 0 0 0 0], which also has a length of 9.

ZA = [0 0 0 5 7 3 0 0 0]

ZB = [5 7 2 0 0 0 0 0 0]

Figure 1.15. Alignment of the arrays ZA and ZB through zero-padding.

In Figure 1.16, the relative shifting of the elements in array ZB compared to those in

array ZA is displayed. The shifting process is visualized as a series of iterations, where after

each iteration, the first position in the array is filled with a zero. This shifting process will

be repeated a total of six times. The number of shifts is determined by the equation 1.10.

The value of dp in equation 1.11 represents the Euclidean distance between the two ar-

rays with p = 0, 1, 2, 3, 4, 5, 6. The corresponding value for each p in D = {d0, d1, d2, d3, d4, d5, d6}.

dp =

√√√√ 9∑
n=1

(ZAn − ZBn−Mp)2 (1.11)

19



The Euclidean distance is a measure of the distance between two points in a mul-

tidimensional space and can be used to quantify the degree of dissimilarity between two

arrays. In the context of this example, the Euclidean distance between array ZA and ZB

is a metric that can help assess the degree of similarity between the two arrays after the

iterative shifting process. A smaller distance indicates a higher degree of similarity between

the arrays, while a larger distance indicates a lower degree of similarity.

From Figure 1.16, D = {12.5, 11.3, 6.7, 1, 7.7, 11.5, 12.5}. The smallest number in D

is 1, which corresponds to the position where the two arrays A and B are lined up.

The example demonstrating the cross-correlation between the two arrays ZA and ZB

illustrates the application of cross-correlation in identifying similarities between two arrays.

ZA

ZB

0 0 0 000
d0 = 12.5

5 7 3
4 7 3 0 0 0 0 0 0

ZA

ZB

0 0 0 000
d1 = 11.3

5 7 3
0 4 7 3 0 0 0 0 0

ZA

ZB

0 0 0 000
d2 = 6.7

5 7 3
0 0 4 7 3 0 0 0 0

ZA

ZB

0 0 0 000
d3 = 1

5 7 3
0 0 0 4 7 3 0 0 0

ZA

ZB

0 0 0 000
d4 = 7.7

5 7 3
0 0 0 0 4 7 3 0 0

ZA

ZB

0 0 0 000
d5 = 11.5

5 7 3
0 0 0 0 0 4 7 3 0

ZA

ZB

0 0 0 000
d6 = 12.5

5 7 3
0 0 0 0 0 0 4 7 3

Figure 1.16. Example of two arrays with shifting and the similarity dp using Euclidean
distance.
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2. DATA COLLECTION AND PREPROCESSING

2.1. Equipment Setup for Audio Recording

The equipment utilized in the experiment is itemized in Table 2.1. A visual depiction

of the custom-built cage utilized during the experiment is provided in Figure 2.1. To provide

additional context, Figure 2.2 provides an end view schematic of the cage, illustrating the

placement of microphones “MP1” and “MP2” positioned above the floor level. Figure 2.3

provides an overhead view schematic of the cage, delineating the microphone placements and

the USB webcam location. “MP1” indicates the microphone positioned to capture wing flap

audio when the bird traverses between perches, while “MP2” designates the microphone’s

location for acquiring sound data as the bird flies towards or away from the perch. “VC”

denotes the fixed location of the USB webcam, strategically placed to monitor the birds’

flight paths and perch interactions.

Table 2.1. List of equipment.

Manufacture Product
Equipment Manufacture Name
USB microphone Blue Snowball
USB webcam Logitech C922 Pro
Laptop Computer Gigabyte Areo 15-Y9
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Figure 2.1. Our experiment’s custom cage.

16"

MP1,MP226"

23"

9"

17"

FLOOR

Figure 2.2. The dimension of the end of the cage, and the position of the microphone above
the floor.
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96"

16"

MP1

48"

MP2

10"

VC

48"

Figure 2.3. The dimension of the top of the cage, the two positions of the microphone, and
the position of the camera.

2.2. Audio Data Preprocessing

In the process of audio data preprocessing for this thesis, a pivotal aspect was ensuring

the ethical treatment of the subjects involved. The research conducted involved working with

birds, specifically utilizing privately owned animals at a private residence. This approach

adhered to the guidelines provided by North Dakota State University’s Institutional Animal

Care and Use Committee (NDSU IACUC), which determined that this specific setup did

not require formal IACUC review or approval.

Following these ethical considerations, the study focused on three Zebra Finches,

individually named Curly, Moe, and Larry. To help readers visualize these birds, Figure 2.4

displays an image of Curly, Moe, and Larry. To capture their wing flap sounds, individual

recordings were made for each bird, with a sampling frequency of 44100Hz. The recordings

were made using Audacity software, which is a popular audio recording and editing program.

Figure 2.6 shows a waveform of the wing flap sounds recorded using Audacity. In Figure 2.7,

the manual selection of wing flap sounds is displayed, with the gray area representing the

selected portion of the waveform.
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Curly LarryMoe

Figure 2.4. The three birds used for this experiment.

Each bird was recorded for 300 flights, with 100 flights recorded for each type of flight,

including leaving the perch, flying between the perches, and approaching the perch. This

ensured that the data captured a range of flight patterns exhibited by the birds.

In total, the study recorded 900 flights across the three birds. To train a flight classifier

that could distinguish between the different flight patterns, the researcher randomly selected

80 flights out of the 100 recorded flights for each type of flight for each bird as training data.

The remaining 20 flights of each type of flight for each bird were used as test data.

This resulted in a total of 240 flights being used for training data for each type of

flight for each bird, and a total of 720 flights being used in total for training data. The

remaining 180 flights, 20 flights for each type of flight for each bird, were used for testing

data.

During their flights, the Zebra Finches occasionally produced vocalizations. The

frequency of these vocalizations fell within the range of 500Hz to 8kHz. The microphone

recordings captured both the sound of the vocalizations and the sound of the wing flaps,

which had a frequency range of 25.2Hz to 31.9Hz.
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To isolate the wing flap sounds in the audio recordings, vocalizations produced by the

birds were attenuated. This was accomplished through the application of a finite impulse

response (FIR) Equiripple low-pass filter, designed using MATLAB. The filter specifications

included an order of 124, a passband frequency of 100 Hz, a stopband frequency of 1 kHz,

a passband ripple of 1 dB, and a stopband attenuation of 80 dB. An FIR filter was selected

due to its advantageous properties, such as the ability to produce minimal waveform distor-

tion. The magnitude response of the implemented low-pass filter is depicted in Figure 2.5.

Subsequent to the removal of vocal sounds, the audio recordings were rescaled, ensuring that

all data points were within the range of -1 to 1.

Frequency (kHz)
5 10

80
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40

20

0

0

M
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tu
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(d

B
)

Figure 2.5. Magnitude response of the 100Hz lowpass filter.
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Figure 2.6. Sample wing flap sounds recorded using Audacity.

The gray area highlights the segment manually
selected for examination of wing flap acoustics.

Figure 2.7. Audio waveform showcasing manually selected wing flap sounds for analysis, as
processed in Audacity.

In Figures 2.8, 2.9, and 2.10, all audio plots were manually lined up and scaled from

-1 to 1, with vocal sounds filtered out. Figure 2.8 displays twenty audio plots capturing the

sounds of each bird leaving the perch, while Figure 2.9 shows twenty audio plots recording

the sounds of each bird in flight between perches. Figure 2.10 presents twenty audio plots of

each bird approaching the perch. These figures offer a comprehensive and detailed look at

the wing flap sounds of individual birds during different stages of their movements, providing

deeper insights into the process of individual recognition.
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-1

Larry

1
-1

Moe

1
-1

Curly

1

Figure 2.8. Twenty audio plots of the sounds of each bird leaving the perch.

-1

Larry

1
-1

Moe

1
-1

Curly

1

Figure 2.9. Twenty audio plots record the sounds of each bird as it flies between perches.
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-1

Larry

1
-1

Moe

1
-1

Curly

1

Figure 2.10. Twenty audio plots of the sounds of each bird approaching the perch.
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3. INDIVIDUAL CLASSIFICATION OF BIRDS:

METHODOLOGY AND RESULTS

Each bird exhibits distinct wing flap acoustic signatures associated with different

flight behaviors, such as leaving the perch, flying in a straight line between two perches, and

approaching the perch. Both PCA-KNN and Cross-Correlation methods have demonstrated

reasonable effectiveness in classifying not only individual birds but also in accurately identi-

fying these specific flight behaviors. This innovative approach leverages the unique acoustic

signatures of birds to successfully distinguish between various flight patterns.

Confusion matrices serve as a fundamental tool for analyzing the research results,

particularly in quantitatively assessing the accuracy and precision of various classification

methods. These matrices are crucial for visualizing and understanding how effectively the

sound-based bird flight recognition system performs. They are structured such that the

rows represent the predictions made by the system, and the columns correspond to the

actual bird flight classes. The matrices clearly delineate correct detections, which appear

on the diagonal where predicted and actual classes align, and misclassifications, which are

indicated by off-diagonal elements.

To provide a comprehensive overview of the system’s capabilities in various scenar-

ios, this thesis employs confusion matrices in two distinct yet interrelated contexts for bird

recognition. This includes analyses both with and without consideration of flight directions.

Specifically, in scenarios accounting for flight directions, the confusion matrices are 9×9 ma-

trices. The columns and rows of these matrices are labeled with abbreviations such as CuL,

CuS, CuA, MoL, MoS, MoA, LaL, LaS, and LaA. ‘CuL’ denotes Curly leaving the perch,
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‘CuS’ represents Curly flying in a straight line between two perches, and ‘CuA’ signifies Curly

approaching the perch. Similar labels are used for Moe (‘MoL’, ‘MoS’, ‘MoA’) and Larry

(‘LaL’, ‘LaS’, ‘LaA’). In contrast, for scenarios without consideration of flight direction, the

confusion matrices are 3×3 matrices, derived by aggregating data from the 9×9 matrices.

The resultant matrices are labeled ‘Cu’, ‘Mo’, and ‘La’, abbreviating Curly, Moe, and Larry,

respectively. This dual approach in using confusion matrices, varying in size based on the

level of detail considered, provides detailed insights into the system’s performance across

various bird flight recognition scenarios.

In an effort to further enhance the analytical depth of this study, an additional row

labeled ‘PA’, standing for Percentage of Accuracy, has been incorporated below the last

row of each confusion matrix, both for matrices considering flying direction and those not

considering flying direction. The inclusion of the PA row provides a quick, at-a-glance

indicator of the overall accuracy of each scenario being analyzed.

3.1. Bird Classification Results From Using The Combination Of PCA-KNN

In the series of figures, each one is dedicated to a specific distance metric. Figure 3.1

focuses on the Cosine metric, 3.3 on the Cityblock metric, 3.2 on the Correlation metric,

and 3.4 on the Euclidean metric. In all these figures, the vertical axis represents ‘Identifi-

cation Accuracy,’ and the horizontal axis represents the ‘Number of Principal Components.’

Identification Accuracy is computed as the ratio of correct predictions to total predictions,

defined as Identification Accuracy = (Number of Correct Predictions) / (Total Number of

Test Instances). Each figure illustrates how identification accuracy varies with the number of

principal components, ranging from 1 to 200, and examines this relationship across different

K-values of 3, 5, 10, and 15.
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Figure 3.1. Variation of classification accuracy with Number of Principal Components for
Cosine distance in PCA-KNN analysis.
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Figure 3.2. Variation of classification accuracy with Number of Principal Components for
Correlation distance in PCA-KNN analysis.
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Figure 3.3. Variation of classification accuracy with Number of Principal Components for
Cityblock distance in PCA-KNN analysis.
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Figure 3.4. Variation of classification accuracy with Number of Principal Components for
Euclidean distance in PCA-KNN analysis.

Table 3.1 showcases the highest classification accuracies for varying neighborhood

sizes, captured by K values of 3, 5, 10, and 15. This table enumerates the maximum ac-
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curacy attained with each considered distance metric: Cosine, Correlation, Cityblock, and

Euclidean. In addition, it details the specific number of principal components that are linked

to these maximal accuracies. The highlighted rows represent the highest accuracy obtained

for each metric. For the Correlation distance metric, while both K = 3 and K = 5 yield

identical accuracies, the choice of K = 5 with 31 principal components is optimal. This con-

figuration benefits from a more stable classification due to a higher K value while maintaining

model simplicity and computational efficiency with fewer components.

Table 3.1. Optimal accuracy achieved with various distance metrics at different K values

Distance metric K value Components Accuracy

Cosine 3 36 0.80556
Cosine 5 31 0.80000
Cosine 10 23 0.77222
Cosine 15 22 0.74444

Correlation 3 81 0.81111
Correlation 5 31 0.81111
Correlation 10 23 0.77222
Correlation 15 21 0.75556

Cityblock 3 45 0.80556
Cityblock 5 53 0.81667
Cityblock 10 56 0.76667
Cityblock 15 24 0.72778

Euclidean 3 33 0.80556
Euclidean 5 39 0.81667
Euclidean 10 39 0.78889
Euclidean 15 33 0.72778

Figures 3.5, 3.6, 3.7, and 3.8 each display the confusion matrices corresponding to

various highlighted results within the Table 3.1. Regarding accuracy, the lowest observed

accuracy is 55%. The highest accuracy is 100%. The overall average is 81%.
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Figure 3.5. Confusion matrix for recognizing birds in flight directions using PCA-KNN with
the Cosine distance metric.
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Figure 3.6. Confusion matrix for recognizing birds in flight directions using PCA-KNN with
the Correlation distance metric.
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Figure 3.7. Confusion matrix for recognizing birds in flight directions using PCA-KNN with
the Cityblock distance metric.
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Figure 3.8. Confusion matrix for recognizing birds in flight directions using PCA-KNN with
the Euclidean distance metric.
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Figures 3.9, 3.10, 3.11, and 3.12 each display a confusion matrix for the classification

of birds’ flight without considering the direction of flight. These matrices correspond to

the Cosine, Correlation, Cityblock, and Euclidean distance metrics, respectively. Analysis

of the matrices that exclude flying direction reveals a range of classification accuracy: the

minimum observed accuracy is 80%, the maximum is 100%, and the overall average is 87%
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Figure 3.9. Confusion matrix for
recognizing birds using PCA-KNN
with the Cosine distance metric,
without considering flight direc-
tions.
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with the Correlation distance met-
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with the Cityblock distance met-
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Figure 3.12. Confusion matrix for
recognizing birds using PCA-KNN
with the Euclidean distance met-
ric, without considering flight di-
rections.

Table 3.2. Average recognition percentages from PCA-KNN using different distance metrics,
with highest and lowest averages.

Percent recognition
Avr Lowest avr Highest avr

Distance WD WOD WD WOD WD WOD

Cosine 80.5 86.3 80.5
Correlation 81.1 85.6 85.6
Cityblock 81.6 90 81.6 90
Euclidean 81.6 87.3 81.6

Avr/avr - average. WD - With Direction - the recognitions of bird flying with direction.
WOD - Without Direction - the recognition is narrowed to birds only, without direction.
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3.2. Bird Classification Results From Using Cross-Correlation

Figures 3.13, 3.14, 3.15, and 3.16 each display a confusion matrix, illustrating the

classification outcomes for recognizing birds’ flight considering their direction. These out-

comes are analyzed using Cosine, Correlation, Cityblock, and Euclidean distance metrics,

respectively. The matrices reveal a range of accuracies, with the lowest being 60% and the

highest reaching 100%. The overall average is 86%. Notably, the Cosine and Correlation

metrics yield similar recognition rates. The reasons for these similar rates will be explored

in the Discussion section.
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Figure 3.13. Confusion matrix for recognizing birds in flight directions using Cross-
Correlation with the Cosine distance metric.
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Figure 3.14. Confusion matrix for recognizing birds in flight directions using Cross-
Correlation with the Correlation distance metric.

CuL CuS CuA MoL MoS MoA LaL LaS LaA
CuL

CuS

CuA

MoL

MoS

MoA

LaL

LaS

LaA

13 1

18

15

20

19

1 20

3 18

1 19

18

Actual Flights

Pr
ed

ic
te

d
Fl

ig
ht

s

PA 65% 90% 75%100% 95%100% 90% 95% 90%

1

1

3

1

1

1

4

1 1

Figure 3.15. Confusion matrix for recognizing birds in flight directions using Cross-
Correlation with the Cityblock distance metric.
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Figure 3.16. Confusion matrix for recognizing birds in flight directions using Cross-
Correlation with the Euclidean distance metric.

Each of the confusion matrices depicted in Figures 3.17, 3.18, 3.19, and 3.20 is focused

on classifying birds’ flight patterns while omitting the aspect of flight direction. These

matrices are individually aligned with the Cosine, Correlation, Cityblock, and Euclidean

distance metrics. A review of these matrices, which do not take flight direction into account,

indicates a spectrum of accuracy in classification. The lowest recorded accuracy stands at

80%, the highest reaches 100%, and the overall average is 89%.
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Figure 3.17. Confusion matrix
for recognizing birds using Cross-
Correlation with the Cosine dis-
tance metric, without considering
flight directions.
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Figure 3.18. Confusion matrix
for recognizing birds using Cross-
Correlation with the Correlation
distance metric, without consider-
ing flight directions.
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Figure 3.19. Confusion matrix
for recognizing birds using Cross-
Correlation with the Cityblock dis-
tance metric, without considering
flight directions.
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Table 3.3. Average recognition percentages from Cross-Correlation using different distance
metrics, with highest and lowest averages.

Percent recognition
Avr Lowest avr Highest avr

Distance WD WOD WD WOD WD WOD

Cosine 84.4 87 84.4 87
Correlation 84.4 87 84.4 87
Cityblock 88.9 91.7 88.9 91.7
Euclidean 87.7 90.3

Avr/avr - average. WD - With Direction - the recognitions of bird flying with direction.
WOD - Without Direction - the recognition is narrow to birds only, without direction.
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4. DISCUSSION

Due to the subtle differences in the wing beat characteristics of individual birds,

distinguishing among them poses a challenge. In response to this, the PCA-KNN and Cross-

Correlation methods are employed. Both techniques are adept at pattern recognition and

effective in scenarios where significant differences in the wing beat characteristics of individ-

ual birds are not present. However, the PCA-KNN approach requires precise alignment of

the wing flap sounds, which is a manual process that is both tedious and time-consuming.

The task requires close attention to detail and the success of the classification significantly

depends on how accurately the wing flap sounds are aligned. Any imperfections in the

manual alignment process may lower recognition rates.

Unlike the PCA-KNN method, the Cross-Correlation method does not require align-

ment of the wing flap sounds. This makes it a more efficient option as it does not require

a manual alignment process. However, the method requires a longer calculation time due

to its iterative process of shifting and recalculating distance metrics between the two wing

flap sounds for each shift. This iterative shifting and computation process is repeated until

a predetermined number of shifts is reached. In contrast, the PCA-KNN method involves

just a single calculation of the distance metric between two arrays. Despite the increased

computational demand, the Cross-Correlation method offers a promising alternative to the

PCA-KNN approach for bird classification based on wing flap sounds.

Each wing flap sound array comprises approximately 20,000 elements. With the

Cross-Correlation method in the current analysis, to conserve computation time, a total of

only 4,000 zeros are padded, with the magnitude of each individual shift being 100 elements.
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However, it is postulated that with enhanced computational capabilities, a more detailed

analysis could be conducted. In such a scenario, padding as many as 40,000 zeros and reduc-

ing the magnitude of individual shifts to as small as 1 element could be feasible. This finer

resolution in data processing is assumed to potentially yield higher accuracy in identifying

and analyzing the wing flap sounds.

In the analysis of wing flap sounds, each data point is treated as a feature. To

standardize their lengths for calculations, zeros were appended to the ends of these sounds.

This modification results in features with unequal variance, primarily due to the addition of

zeros, and also leads to sparse data. Features with unequal variance are situations where the

variability or spread of values in one feature is significantly different from that of another,

meaning the variance of one feature can be much larger or smaller than another. Sparse

data, on the other hand, refers to datasets in which a large proportion of the elements are

non-informative, typically zeros or missing entries.

Moreover, in this context, particularly because the data values range between -1

and 1, an underflow error is likely to occur. Underflow or overflow errors are numerical

errors that happen in computer programs when values become too small or too large to be

represented accurately. The squaring operations involved in calculating Cosine, Correlation,

and Euclidean distances can exacerbate this issue, increasing the likelihood of underflow

errors.

Tables 3.2 and 3.3 display the average recognition rates, with the highest average

recognition rates achieved by both the PCA-KNN and Cross-Correlation methods occurring

with the Cityblock distance metric. The superiority of the Cityblock distance is particularly

evident when comparing its performance to that of Cosine, Correlation, and Euclidean dis-
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tances in scenarios involving sparse data and features with unequal variance. This becomes

apparent when examining two arrays: arrayA = [1, 0, 0, 0, 0.1, 0.2, 0.3, 0.4] and arrayB

= [1, 0, 0, 0, 0, 0, 0, 0]. The calculated distances for Cityblock, Cosine, Correlation, and

Euclidean were 1.00, 0.12, 0.10, and 0.55, respectively. With the Cityblock distance showing

the highest value of 1.00, it distinctly indicates the dissimilarity between arrayA and arrayB.

In contrast, the smaller values obtained from Cosine, Correlation, and Euclidean distances

imply less clarity in distinguishing the dissimilarity. This example underscores the effective-

ness of Cityblock distance in situations where other distances may not as clearly differentiate

between arrays with sparse data and features that exhibit unequal variance.

In the application of the Cross-Correlation method, it is noted that the confusion

matrices for Cosine distance (refer to Figure 3.13) and Correlation distance (refer to Fig-

ure 3.14) yield the same results. This can be attributed to the data points of the waveform

being confined within the -1 to 1 range. Consequently, the average values of these wave-

forms are relatively low. This results in minimal average terms xj and yi in the Correlation

distance formula (as detailed in Equation 1.6), leading Correlation distance to closely mimic

the behavior of Cosine distance. However, when applying the PCA-KNN method, the con-

fusion matrices for Cosine distance (shown in Figure 3.5) and Correlation distance (shown

in Figure 3.6) do not yield identical results, possibly due to imperfect alignment.
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5. CONCLUSION AND FUTURE STUDY

The goal of this study was to differentiate individual Zebra Finch birds by analyzing

the distinct characteristics of their wing flap sounds. This exploration was enriched by the

discovery that these sounds vary not only among individual birds but also in response to

different flight behaviors, such as approaching a perch, flying away from a perch, and flying

in a straight line. The study was conducted by recording the flight sounds of each Zebra

Finch bird separately; one bird flew by the microphone and was recorded, followed by the

next bird, ensuring that only one bird was recorded at a time. This method was utilized for

a total of three individual Zebra Finch birds, capturing their unique audio signatures under

these varied conditions.

The PCA-KNN combination and the Cross-Correlation method were used to classify

a bird based on its acoustic pattern of flight. The highest identification accuracy reached up

to 100% for flights with specific behaviors, such as flying away from the perch, approaching

the perch, and flying in a straight line, as well as for flights that did not adhere to these

specific patterns.

The wing flap sounds method provides a non-invasive technique for studying bird

behavior, setting itself apart from conventional methods that typically require capturing,

handling, marking, or attaching devices to birds. These traditional practices can lead to

stress and potential harm for the birds. In contrast, this new technique is highly beneficial

in research contexts, as it significantly reduces stress and harm, thereby enhancing the overall

well-being and quality of life of the birds.
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In real-world applications, the task of capturing wing flap sounds is fraught with

significant challenges. While this study’s recordings were made in a quiet, controlled room

with birds flying in a consistent pattern past a microphone, the situation is markedly different

in natural environments like nesting or feeding sites. Here, the microphone picks up a blend

of various sounds – the noise of the wind, calls of other animals, human activities, and

the wing flaps of other birds, ect – all mixing with the wing flap sounds of interest. This

amalgamation of noises creates interference, complicating the task of accurately isolating

and capturing the distinct wing flap sounds of individual birds.

In addressing the complexities of capturing wing flap sounds in natural environments,

future work should focus on the development and application of advanced acoustic technolo-

gies and methodologies. This includes the utilization of directional microphones or parabolic

listening devices, which are more adept at isolating specific sounds from background noise.

Additionally, integrating sophisticated noise reduction and signal processing techniques, such

as active noise cancellation and advanced filtering algorithms, could substantially enhance

the clarity of the wing flap sounds. Furthermore, the implementation of machine learning

models for sound analysis, capable of distinguishing and isolating the wing flap sounds from

an array of environmental noises, presents a promising avenue. Strategic placement and tim-

ing of recordings, considering environmental noise patterns, could also improve data quality.

Lastly, continual research into new and emerging acoustic processing technologies will be

crucial in refining the methodology, thereby paving the way for more accurate and reliable

bird behavior studies in their natural habitats.

In conclusion, the wing flap sounds method is a valuable tool for bird research that

minimizes the impact on the birds and provides new opportunities for scientific discovery.
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This research presents an innovative approach in ornithology, achieving individual bird recog-

nition through the unique signature of wing flap sounds. This non-invasive technique marks

a significant departure from traditional methods that require capturing and marking birds,

which can be stressful and harmful to the subjects. Our approach not only preserves the

well-being of birds but also facilitates continuous monitoring without interference in their

natural behaviors. The successful application of our method demonstrates its potential as

a sustainable, ethical alternative for wildlife research, offering an unobtrusive yet highly

effective tool for the conservation and study of avian species.
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APPENDIX

A.1. Appendix MATLAB Code

The MATLAB code is structured into three distinct segments. The first segment is

dedicated to preprocessing bird flight waveforms, involving filtering, scaling, padding with

zeros to equalize the lengths of all waveforms, and randomly splitting each group into 80%

for training and 20% for testing. The second segment applies PCA-KNN for classification,

while the third segment employs Cross-Correlation techniques for the same objective.

A.1.1. MATLAB Code Segment I - Waveform Preprocessing

This section of the MATLAB code is meticulously designed for processing bird flight

waveforms.

% Birds_Fly_Preproc
% This script processes flight waveform data of birds.
%
% Steps:
% 1. Data Loading: Loads flight data from a .mat file and a low-pass
% filter.
% 2. Data Processing: Applies the filter to different sets of flight
% waveforms and normalizes them.
% 3. Data Selection and Plotting: Selects random samples and plots data
% for various flight types.
% 4. Data Pruning: Prunes the beginning and end of each waveform set.
% 5. Determining Longest Waveform: Finds the longest waveform for
% processing.
% 6. Data Padding: Pads zeros to the end of waveforms to achieve uniform
% length.
% 7. Data Splitting: Splits data into training and testing sets.
% 8. Saving Processed Data: Saves processed data to a .mat file.

%%
clc; % Clears the Command Window
close all; % Closes all open figures
clear; % Removes all variables from the workspace

load('Data_Birds_Fly.mat'); % Load data from .mat file

Hd = low_pass_filter(); % Load the low-pass filter
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%%
% Call the 'filter_scale' function to apply the low pass filter to each
% flight waveforms and scale each waveform to a range between -1 and 1
CuA_filter_scale = filter_scale(CuA, Hd);
CuL_filter_scale = filter_scale(CuL, Hd);
CuS_filter_scale = filter_scale(CuS, Hd);
MoA_filter_scale = filter_scale(MoA, Hd);
MoL_filter_scale = filter_scale(MoL, Hd);
MoS_filter_scale = filter_scale(MoS, Hd);
LaA_filter_scale = filter_scale(LaA, Hd);
LaL_filter_scale = filter_scale(LaL, Hd);
LaS_filter_scale = filter_scale(LaS, Hd);

%%
% Call the 'selectRandom20' function to randomly select 20 flight
% waveforms for plotting
CuA_selected = selectRandom20(CuA_filter_scale);
CuL_selected = selectRandom20(CuL_filter_scale);
CuS_selected = selectRandom20(CuS_filter_scale);
MoA_selected = selectRandom20(MoA_filter_scale);
MoL_selected = selectRandom20(MoL_filter_scale);
MoS_selected = selectRandom20(MoS_filter_scale);
LaA_selected = selectRandom20(LaA_filter_scale);
LaL_selected = selectRandom20(LaL_filter_scale);
LaS_selected = selectRandom20(LaS_filter_scale);

% Call the 'plotWaveforms' to plot the waveform

% Create subplots for the group type 'Flights Approaching the Perch'
figure; % Create a new figure window
% Plot data for flights approaching the perch'
plotWaveforms(1, CuA_selected, 'Curly''s Flights Approaching the Perch');
plotWaveforms(2, MoA_selected, 'Moe''s Flights Approaching the Perch');
plotWaveforms(3, LaA_selected, 'Larry''s Flights Approaching the Perch');

% Create subplots for the group type 'Flights Leaving the Perch'
figure; % Create a new figure window
% Plot data for flights leaving the perch'
plotWaveforms(1, CuL_selected, 'Curly''s Flights Leaving the Perch');
plotWaveforms(2, MoL_selected, 'Moe''s Flights Leaving the Perch');
plotWaveforms(3, LaL_selected, 'Larry''s Flights Leaving the Perch');

% Create subplots for the group type 'Flights Between Two Perches'
figure; % Create a new figure window
% Plot data for flights between two perches'
plotWaveforms(1, CuS_selected, 'Curly''s Flights Between Two Perches');
plotWaveforms(2, MoS_selected, 'Moe''s Flights Between Two Perches');
plotWaveforms(3, LaS_selected, 'Larry''s Flights Between Two Perches');

%%
% Call the 'prunedStartWaveform' function to prune the beginning of each
% waveform for CuA, CuL, CuS, MoA, MoL, MoS, LaA, LaL, and LaS
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CuA_prunedStart = prunedStartWaveform(CuA_filter_scale);
CuL_prunedStart = prunedStartWaveform(CuL_filter_scale);
CuS_prunedStart = prunedStartWaveform(CuS_filter_scale);
MoA_prunedStart = prunedStartWaveform(MoA_filter_scale);
MoL_prunedStart = prunedStartWaveform(MoL_filter_scale);
MoS_prunedStart = prunedStartWaveform(MoS_filter_scale);
LaA_prunedStart = prunedStartWaveform(LaA_filter_scale);
LaL_prunedStart = prunedStartWaveform(LaL_filter_scale);
LaS_prunedStart = prunedStartWaveform(LaS_filter_scale);

%%
% Call the 'prunedEndWaveform' function to prune the end of each
% waveform for CuA, CuL, CuS, MoA, MoL, MoS, LaA, LaL, and LaS
CuA_prunedEnd = prunedEndWaveform(CuA_prunedStart);
CuL_prunedEnd = prunedEndWaveform(CuL_prunedStart);
CuS_prunedEnd = prunedEndWaveform(CuS_prunedStart);
MoA_prunedEnd = prunedEndWaveform(MoA_prunedStart);
MoL_prunedEnd = prunedEndWaveform(MoL_prunedStart);
MoS_prunedEnd = prunedEndWaveform(MoS_prunedStart);
LaA_prunedEnd = prunedEndWaveform(LaA_prunedStart);
LaL_prunedEnd = prunedEndWaveform(LaL_prunedStart);
LaS_prunedEnd = prunedEndWaveform(LaS_prunedStart);

%%
% This code finds the lengths of the longest and shortest cell arrays

% Create a cell array containing the pruned-end waveforms for CuA, CuL,
% CuS, MoA, MoL, MoS, LaA, LaL, and LaS
cellArrays = {CuA_prunedEnd, CuL_prunedEnd, CuS_prunedEnd, ...

MoA_prunedEnd, MoL_prunedEnd, MoS_prunedEnd, ...
LaA_prunedEnd, LaL_prunedEnd, LaS_prunedEnd};

% Initialize min and max lengths
minLength = inf; % Start with infinity for minimum
maxLength = -inf; % Start with negative infinity for maximum

% Loop through each cell array
for i = 1:length(cellArrays)

% Loop through each array in the cell array
for j = 1:length(cellArrays{i})

currentLength = length(cellArrays{i}{j});
if currentLength < minLength

minLength = currentLength;
end
if currentLength > maxLength

maxLength = currentLength;
end

end
end

% Display results
disp(['Shortest Array Length: ', num2str(minLength)]);
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disp(['Longest Array Length: ', num2str(maxLength)]);

%%
% Plot to visualize the flight waveform before and after pruning both
% ends

% Randomly select one array from CuA_filter_scale
selectedArrayIndex = randi(length(CuA_filter_scale));

% Instead of selecting randomly, set selectedArrayIndex = 46 for clarity
selectedArrayIndex = 46;

selectedArrayProcessed = CuA_filter_scale{selectedArrayIndex};
selectedArrayNew = CuA_prunedEnd{selectedArrayIndex};

% Determine the maximum length for the x-axis
maxLength = max(length(selectedArrayProcessed), length(selectedArrayNew));

% Find local maxima and minima in the processed flight waveform
[positivePeaksProcessed, locsPositiveProcessed] = ...

findpeaks(selectedArrayProcessed);
[negativePeaksProcessed, locsNegativeProcessed] = ...

findpeaks(-selectedArrayProcessed);
% Correct sign for minima
negativePeaksProcessed = -negativePeaksProcessed;

% Find local maxima and minima in the new (pruned) waveform
[positivePeaksNew, locsPositiveNew] = findpeaks(selectedArrayNew);
[negativePeaksNew, locsNegativeNew] = findpeaks(-selectedArrayNew);
negativePeaksNew = -negativePeaksNew; % Correct sign for minima

% Plot the selected waveform from CuA_filter_scale
figure;
subplot(2,1,1);
plot(selectedArrayProcessed, 'k'); % Black color for the waveform
hold on;

% Mark and label the local maxima in processed waveform
for i = 1:length(locsPositiveProcessed)

plot(locsPositiveProcessed(i), positivePeaksProcessed(i), ...
'v', 'MarkerSize', 10, 'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'none'); % Black color for markers

text(locsPositiveProcessed(i), positivePeaksProcessed(i), ...
sprintf('%.2f', positivePeaksProcessed(i)), ...
'VerticalAlignment', 'bottom');

end

% Mark and label the local minima in processed waveform
for i = 1:length(locsNegativeProcessed)

plot(locsNegativeProcessed(i), negativePeaksProcessed(i), ...
'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'none'); % Black color for markers
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text(locsNegativeProcessed(i), negativePeaksProcessed(i), ...
sprintf('%.2f', negativePeaksProcessed(i)), ...
'VerticalAlignment', 'top');

end

% Draw dashed lines at y = 0.1, y = -0.1, and y = 0
yline(0.1, '--', 'Color', 'k');
yline(-0.1, '--', 'Color', 'k');
yline(0, ':', 'Color', 'k'); % Dotted line at y = 0

% Set x-axis and y-axis limits
xlim([0 maxLength]);
ylim([-1 1]);

hold off;
title('Selected flight waveform before both ends are pruned');
xlabel('Sample Index');
ylabel('Amplitude');

% Plot the corresponding flight waveform from CuA_prunedEnd
subplot(2,1,2);
plot(selectedArrayNew, 'k'); % Black color for the waveform
hold on;

% Mark and label the local maxima in corresponding flight waveform
for i = 1:length(locsPositiveNew)

plot(locsPositiveNew(i), positivePeaksNew(i), ...
'v', 'MarkerSize', 10, 'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'none'); % Black color for markers

text(locsPositiveNew(i), positivePeaksNew(i), ...
sprintf('%.2f', positivePeaksNew(i)), ...
'VerticalAlignment', 'bottom');

end

% Mark and label the local minima in corresponding flight waveform
for i = 1:length(locsNegativeNew)

plot(locsNegativeNew(i), negativePeaksNew(i), ...
'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'none'); % Black color for markers

text(locsNegativeNew(i), negativePeaksNew(i), ...
sprintf('%.2f', negativePeaksNew(i)), ...
'VerticalAlignment', 'top');

end

% Draw dashed lines at y = 0.1, y = -0.1, and y = 0
yline(0.1, '--', 'Color', 'k');
yline(-0.1, '--', 'Color', 'k');
yline(0, ':', 'Color', 'k'); % Dotted line at y = 0

% Set x-axis and y-axis limits
xlim([0 maxLength]);
ylim([-1 1]);
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hold off;
title('Corresponding flight waveform with both ends pruned');
xlabel('Sample Index');
ylabel('Amplitude');

%%
% Determine the length of the longest flight waveform to ascertain the
% number of zeros to be added to each waveform

% Store the list of variable names in a cell array
variables = {'CuA_prunedEnd', 'CuL_prunedEnd', 'CuS_prunedEnd', ...

'MoA_prunedEnd', 'MoL_prunedEnd', 'MoS_prunedEnd', ...
'LaA_prunedEnd', 'LaL_prunedEnd', 'LaS_prunedEnd'};

% Initialize an array to store the maxLengthResults
maxLengthResults = [];

% Loop through each variable name
for i = 1:length(variables)

% Get the result for the current variable
currentResult = find_longest_array_length_in_variable(variables{i});

% Append the result to the maxLengthResults array
maxLengthResults = [maxLengthResults, currentResult];

end

% Find the maximum value in the MaxLength column
[maxLength, idx] = max([maxLengthResults.MaxLength]);

% Store the maximum length in a variable
longestArrayLength = maxLength;

%%
% Pad zeros to waveforms to make all waveforms uniformly length

% Array of original cell array names
originalNames = {'CuA_prunedEnd', 'CuL_prunedEnd', 'CuS_prunedEnd', ...

'MoA_prunedEnd', 'MoL_prunedEnd', 'MoS_prunedEnd', ...
'LaA_prunedEnd', 'LaL_prunedEnd', 'LaS_prunedEnd'};

% Prefix for new variable names
prefix = 'preProcess_';

% Loop through each cell array name
for k = 1:length(originalNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', originalNames{k});

% Loop through each array in the current cell array
for i = 1:length(currentCellArray)

currentLength = length(currentCellArray{i});
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if currentLength < longestArrayLength
% Calculate the number of zeros needed for padding
paddingLength = longestArrayLength - currentLength;

% Determine if the array is a row or column vector and pad
% with zeros
if isrow(currentCellArray{i})

currentCellArray{i} = [currentCellArray{i}, ...
zeros(1, paddingLength)];

else % For a column vector
currentCellArray{i} = [currentCellArray{i}; ...

zeros(paddingLength, 1)];
end

end
end

% Create new variable name
newVarName = [prefix, strrep(originalNames{k}, '_prunedEnd', '')];

% Assign the processed cell array to the new variable in the
% base workspace
assignin('base', newVarName, currentCellArray);

end

%%
% Count the number of waveforms in each group. If a group contains more than
% 100 waveforms, randomly select 100 waveforms . Do nothing if the group has
% exactly 100 waveforms.

% Set the seed for the random number generator
rng(1);

% Store the list of variable names in a cell array
originalNames = {'preProcess_CuA', 'preProcess_CuL', 'preProcess_CuS', ...

'preProcess_MoA', 'preProcess_MoL', 'preProcess_MoS', ...
'preProcess_LaA', 'preProcess_LaL', 'preProcess_LaS'};

% Suffix for new variable names
suffix = '_100_selected';

% Number of arrays to select
numToSelect = 100;

% Loop through each cell array name
for k = 1:length(originalNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', originalNames{k});

% Check if the cell array has more than numToSelect waveforms
if length(currentCellArray) > numToSelect

% Randomly select numToSelect indices
selectedIndices = randperm(length(currentCellArray), numToSelect);
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% Select waveforms at these indices
selectedArrays = currentCellArray(selectedIndices);

else
% If the cell array has numToSelect or fewer waveforms, use it as is
selectedArrays = currentCellArray;

end

% Create new variable name
newVarName = [originalNames{k}, suffix];

% Assign the selected arrays to the new variable in the base workspace
assignin('base', newVarName, selectedArrays);

end

%%
% Randomly split each group, which consists of 100 waveforms,
% into an 80/20 ratio

% Set the seed for the random number generator for consistency
rng(4);

% Store the list of variable names in a cell array
originalNames = {'preProcess_CuA_100_selected', ...

'preProcess_CuL_100_selected', 'preProcess_CuS_100_selected', ...
'preProcess_MoA_100_selected', 'preProcess_MoL_100_selected', ...
'preProcess_MoS_100_selected', 'preProcess_LaA_100_selected', ...
'preProcess_LaL_100_selected', 'preProcess_LaS_100_selected'};

% Prefix for the new variable names
prefixes = {'CuA', 'CuL', 'CuS', 'MoA', 'MoL', 'MoS', 'LaA', 'LaL', ...

'LaS'};

% Loop through each cell array name
for k = 1:length(originalNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', originalNames{k});

% Determine the split indices (80/20 split)
totalLength = length(currentCellArray);
splitIndex = round(totalLength * 0.8);

% Randomly shuffle the indices
shuffledIndices = randperm(totalLength);

% Split the cell array into training (80%) and testing (20%) subsets
trainingData = currentCellArray(shuffledIndices(1:splitIndex));
testingData = currentCellArray(shuffledIndices(splitIndex+1:end));

% Create new variable names
trainingVarName = ['trainingData_', prefixes{k}];
testingVarName = ['testingData_', prefixes{k}];
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% Assign the subsets to new variables in the base workspace
assignin('base', trainingVarName, trainingData);
assignin('base', testingVarName, testingData);

end

%%
% Transposes the contents of training and testing data cell arrays

% Store the list of variable names in a cell array
% Array of cell array names for training and testing data
trainingNames = {'trainingData_CuA', 'trainingData_CuL', ...

'trainingData_CuS', 'trainingData_MoA', 'trainingData_MoL', ...
'trainingData_MoS', 'trainingData_LaA', 'trainingData_LaL', ...
'trainingData_LaS'};

testingNames = {'testingData_CuA', 'testingData_CuL', ...
'testingData_CuS', 'testingData_MoA', 'testingData_MoL', ...
'testingData_MoS', 'testingData_LaA', 'testingData_LaL', ...
'testingData_LaS'};

% Transpose each array in the training cell arrays
for k = 1:length(trainingNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', trainingNames{k});

% Transpose each array within the cell array
transposedCellArray = cellfun(@(x) x', currentCellArray, ...

'UniformOutput', false);

% Assign the transposed cell array back to the base workspace
assignin('base', trainingNames{k}, transposedCellArray);

end

% Transpose each array in the testing cell arrays
for k = 1:length(testingNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', testingNames{k});

% Transpose each array within the cell array
transposedCellArray = cellfun(@(x) x', currentCellArray, ...

'UniformOutput', false);

% Assign the transposed cell array back to the base workspace
assignin('base', testingNames{k}, transposedCellArray);

end

%%
%Save the dataset, including both training and testing data, ready for
% classification

% Store the list of variable names in a cell array
% Specify the variable names to save
variableNames = {'trainingData_CuA', 'trainingData_CuL', ...
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'trainingData_CuS', 'trainingData_MoA', 'trainingData_MoL', ...
'trainingData_MoS', 'trainingData_LaA', 'trainingData_LaL', ...
'trainingData_LaS', 'testingData_CuA', 'testingData_CuL', ...
'testingData_CuS', 'testingData_MoA', 'testingData_MoL', ...
'testingData_MoS', 'testingData_LaA', 'testingData_LaL', ...
'testingData_LaS'};

% Save the variables to 'preProcData.mat'
save('preProcBirdsFliesData.mat', variableNames{:});

%%
%END OF 'Birds_Fly_Preproc' CODE

function Hd = low_pass_filter
%FILTER1 Returns a discrete-time filter object.

% MATLAB Code
% Generated by MATLAB(R) 9.6 and Signal Processing Toolbox 8.2.
% Generated on: 01-Jul-2019 16:43:39

% Butterworth Lowpass filter designed using FDESIGN.LOWPASS.

% All frequency values are in Hz.
Fs = 44100; % Sampling Frequency

Fpass = 100; % Passband Frequency
Fstop = 1000; % Stopband Frequency
Apass = 1; % Passband Ripple (dB)
Astop = 80; % Stopband Attenuation (dB)
match = 'stopband'; % Band to match exactly

% Construct an FDESIGN object and call its BUTTER method.
h = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);
Hd = design(h, 'butter', 'MatchExactly', match);

% END OF 'low_pass_filter' FUNCTION

function processedCellArray = filter_scale(cellArray, filterObj)
% This function applies a filter and normalization to each waveforms in
% a cell array.
%
% This function takes a cell array of waveforms and a filter object. It
% applies the filter to each waveforms in the cell array and then
% normalizes the filtered waveform so that its values are within the
% range [-1, 1].
%
% Inputs:
% cellArray - A cell array where each element is a waveforms to be
% processed.
% filterObj - A filter function used for low-pass filtering the waveforms.
%
% Output:
% processedCellArray - A cell array containing the filtered and normalized
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% waveforms.

% Initialize an empty cell array of the same size as the input cellArray
processedCellArray = cell(size(cellArray));

% Loop over each element in the cell array
for i = 1:numel(cellArray)

% Apply the low-pass filter specified by filterObj to the input array
filteredArray = filter(filterObj, cellArray{i});

% Find the maximum absolute value in the filtered array
maxAbsVal = max(abs(filteredArray));

% Check if the maximum absolute value is nonzero
if maxAbsVal ~= 0

% Normalize the filtered array to be within the range [-1, 1]
processedCellArray{i} = filteredArray / maxAbsVal;

else
% If the maximum absolute value is zero, return the filtered
% array as is
processedCellArray{i} = filteredArray;

end
end

end
% END OF 'filter_scale' FUNCTION

function selected = selectRandom20(cellArray)
% This function selects 20 random waveforms from a cell array.
%
% This function takes a cell array as input and randomly selects up to 20
% waveforms from it. If the cell array contains 20 or fewer waveforms, it
% selects all waveforms in a random order. If the cell array contains more
% than 20 waveforms, it selects 20 waveforms at random without replacement
.
%
% Input:
% cellArray - A cell array from which waveforms will be randomly selected.
%
% Output:
% selected - A cell array containing the randomly selected waveforms.
indices = randperm(length(cellArray), min(20, length(cellArray)));
selected = cellArray(indices);

end
% END OF 'selectRandom20' FUNCTION

function plotWaveforms(subplotIndex, data, titleStr)
% This function plots the waveforms in a specified subplot.
%
% This function takes a series of waveforms (in a cell array), a subplot
% index, and a title string, then plots each waveform in the specified
% subplot of a 3-row subplot structure. It is designed to work within a
% figure that has been divided into three subplots vertically.
%
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% Inputs:
% subplotIndex - An integer specifying which subplot to use (1, 2, or 3).
% data - A cell array where each cell contains waveform to be plotted.
% titleStr - A string for the title of the subplot.
subplot(3,1,subplotIndex);
hold on;
for i = 1:length(data)

plot(data{i});
end
hold off;
title(titleStr);

end
% END OF 'plotWaveforms' FUNCTION

function processedCellArray = prunedStartWaveform(cellArray)
% This function trims each waveform contained in cell arrays.
% It identifies peaks and troughs in each waveform
% and potentially trims the waveform starting from the first element of
% the waveform to a point relative to the first peak or trough.
%
% The trimming process is based on the first significant peak or trough,
% where 'significant' is defined by a threshold: greater than or equal to
% 0.1 for a peak and less than or equal to -0.1 for a trough. The
% waveform is trimmed to a point where it crosses zero before this peak
% or trough. If no such peak or troughis found, or if the waveform does
% not cross zero before the first peak or trough, the waveform is not
% trimmed.
%
% Inputs:
% cellArray - A cell array where each element is a waveform to be
% processed.
%
% Outputs:
% processedCellArray - A cell array containing the trimmed waveforms.

% Initialize an empty cell array of the same size
processedCellArray = cell(size(cellArray));

% Loop over each waveform in the cell array
for i = 1:numel(cellArray)

waveform = cellArray{i};

% Find local maxima and minima in the waveform
[pksMax, locsMax] = findpeaks(waveform);
[pksMin, locsMin] = findpeaks(-waveform);
pksMin = -pksMin; % Correct the sign for minima

% Find the first significant local maximum or minimum
firstMaxIndex = find(pksMax >= 0.1, 1);
firstMinIndex = find(pksMin <= -0.1, 1);

% Determine the start point for trimming
if isempty(firstMaxIndex) && isempty(firstMinIndex)
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zeroIndex = []; % No significant peaks found
else

if isempty(firstMinIndex) || (~isempty(firstMaxIndex) && ...
locsMax(firstMaxIndex) < locsMin(firstMinIndex))

% First significant peak is a maximum
zeroIndex = find(waveform(1:locsMax(firstMaxIndex))...

<= 0, 1, 'last');
else

% First significant peak is a minimum
zeroIndex = find(waveform(1:locsMin(firstMinIndex))...

>= 0, 1, 'last');
end

end

% Trim the waveform if a valid zeroIndex is found
if ~isempty(zeroIndex)

processedCellArray{i} = waveform(zeroIndex+1:end);
else

processedCellArray{i} = waveform;
end

end
end
% END OF 'prunedStartWaveform' FUNCTION

function trimmed_waveforms = prunedEndWaveform(original_waveforms)
% This function trims each waveform contained in cell arrays.
% It identifies peaks and troughs in each waveform
% and potentially trims the waveform starting from the last element back
% to a point relative to the last peak or trough.
%
% The trimming process is based on the last significant peak or trough,
% where 'significant' is defined by a threshold: greater than or equal to
% 0.1 for a peak and less than or equal to -0.1 for a trough. The waveform
% is trimmed to a point where it crosses zero after this peak or trough.
% If no such peak or trough is found, or if the waveform does not cross
% zero after the last peak or trough, the waveform is not trimmed.
%
% Inputs:
% original_waveforms - A cell array where each element is a waveform
% to be processed.
%
% Outputs:
% trimmed_waveforms - A cell array containing the trimmed waveforms.

% Process each waveform in the cell array
trimmed_waveforms = cell(size(original_waveforms));
for i = 1:length(original_waveforms)

waveform = original_waveforms{i};
[pks_max, locs_max] = findpeaks(waveform);
[pks_min, locs_min] = findpeaks(-waveform);

% Convert locations of minima to positive peaks
pks_min = -pks_min;
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% Filter peaks based on the threshold
valid_max = locs_max(pks_max >= 0.1);
valid_min = locs_min(pks_min <= -0.1);

% Find the last valid peak, max or min
if ~isempty(valid_max) && ~isempty(valid_min)

last_peak_loc = max(max(valid_max), max(valid_min));
elseif ~isempty(valid_max)

last_peak_loc = max(valid_max);
elseif ~isempty(valid_min)

last_peak_loc = max(valid_min);
else

last_peak_loc = 0;
end

% Trim the waveform based on the last peak
if last_peak_loc > 0

if any(waveform(last_peak_loc:end) <= 0) && ...
ismember(last_peak_loc, valid_max)

zero_cross = find(waveform(last_peak_loc:end) <= ...
0, 1, 'first');

waveform = waveform(1:last_peak_loc+zero_cross-2);
elseif any(waveform(last_peak_loc:end) >= 0) ...

&& ismember(last_peak_loc, valid_min)
zero_cross = find(waveform(last_peak_loc:end) >= ...

0, 1, 'first');
waveform = waveform(1:last_peak_loc+zero_cross-2);

end
end

% Save the trimmed waveform
trimmed_waveforms{i} = waveform;

end
end
% END OF 'prunedEndWaveform' FUNCTION

A.1.2. MATLAB Code Segment II - PCA-KNN Classification

This segment implements PCA (Principal Component Analysis) combined with KNN

(K-Nearest Neighbors) for the classification of bird flight patterns.

% PCA_KNN.m
% This script performs Principal Component Analysis (PCA) and K-Nearest
% Neighbors (KNN) classification on bird flight data.
%
% Steps:
% 1. Data Loading: Loads preprocessed bird flight data from a .mat file.
% 2. Length Check: Verifies if all arrays in the dataset have equal lengths.
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% Reports any discrepancies.
% 3. Data Concatenation: Vertically stacks arrays of flight waveforms for
% both training and testing data.
% 4. Label Creation: Creates label vectors for training and testing datasets.
% 5. Data Standardization: Standardizes the training and testing data based on
% the training data mean and standard deviation.
% 6. PCA-KNN Classification: Applies PCA to reduce dimensionality and then
% performs KNN classification.
% - Loops over various distance metrics and K values for KNN.
% - Calculates and stores classification accuracies.
% - Determines optimal PCA components and K values for each distance
% metric.
% 7. Accuracy Visualization: Plots accuracy versus the number of principal
% components for different K values and distance metrics.
% 8. Summary Table: Creates and displays a summary table of the best accuracy
% details for each combination of distance metric and K value.
% 9. Optimal Parameters Identification: Stores and displays the best K value
% and the number of principal components for each distance metric.
% 10. Confusion Matrix Calculation: Reruns the PCA-KNN analysis using the
% optimal parameters to generate confusion matrices.
% 11. Confusion Matrix Visualization: Visualizes the confusion matrices for
% different distance metrics.
% 12. Confusion Matrix Grouping: Groups the 9x9 confusion matrix into a
% smaller 3x3 matrix, calculates recognition percentages, and displays
% the matrices with enhanced graphical details.
%
% Auxiliary Functions:
% - concatenateArrays: Function to concatenate arrays within a cell.
% - extractConfusionMatrices: Function to extract confusion matrices for
% specific distance metrics from a structured KNN classification collection.

%%
clc; % Clears the Command Window
close all; % Closes all open figures
clear; % Removes all variables from the workspace

% Load data from .mat file
load('preProcBirdsFliesData_rng(4).mat');

%%
% Check if the lengths of all waveforms are equal

% Creates a list of names for training and testing data cell arrays
cellArrayNames = {'trainingData_CuA', 'trainingData_CuL', ...

'trainingData_CuS', 'trainingData_MoA', 'trainingData_MoL', ...
'trainingData_MoS', 'trainingData_LaA', 'trainingData_LaL', ...
'trainingData_LaS', 'testingData_CuA', 'testingData_CuL', ...
'testingData_CuS', 'testingData_MoA', 'testingData_MoL', ...
'testingData_MoS', 'testingData_LaA', 'testingData_LaL', ...
'testingData_LaS'};

% Determine the maximum number of arrays in any cell array
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maxArrays = 0;
for k = 1:length(cellArrayNames)

numArrays = length(evalin('base', cellArrayNames{k}));
maxArrays = max(maxArrays, numArrays);

end

% Initialize a matrix to store lengths from all cell arrays
numCellArrays = length(cellArrayNames);
allLengths = zeros(maxArrays, numCellArrays);

% Loop through each cell array name
for k = 1:numCellArrays

% Load the current cell array from the base workspace
currentCellArray = evalin('base', cellArrayNames{k});

% Store lengths of current cell array
currentLengths = cellfun(@length, currentCellArray);
allLengths(1:length(currentLengths), k) = currentLengths;

end

% Compare lengths across cell arrays for each array position and report
% non-equal lengths
discrepancies = false;
for i = 1:maxArrays

uniqueLengths = unique(allLengths(i, allLengths(i, :) > 0));
if length(uniqueLengths) > 1

discrepancies = true;
fprintf('Non-equal lengths found at array position %d:\n', i);
for k = 1:numCellArrays

if allLengths(i, k) > 0
fprintf(' %s has array length %d.\n', ...

cellArrayNames{k}, allLengths(i, k));
end

end
end

end

% Display overall result
if discrepancies

disp(['There are discrepancies in array lengths ', ...
'across the cell arrays.']);

else
disp(['All corresponding arrays across the cell arrays ', ...

'have equal lengths.']);
end

%%
% Vertically stack arrays of flight waveforms.

% Concatenate Training Data
allTrainingData = [concatenateArrays(trainingData_CuA); ...

concatenateArrays(trainingData_CuL); ...
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concatenateArrays(trainingData_CuS);
concatenateArrays(trainingData_MoA); ...
concatenateArrays(trainingData_MoL); ...
concatenateArrays(trainingData_MoS);
concatenateArrays(trainingData_LaA); ...
concatenateArrays(trainingData_LaL); ...
concatenateArrays(trainingData_LaS)];

% Concatenate Testing Data
allTestingData = [concatenateArrays(testingData_CuA); ...

concatenateArrays(testingData_CuL); ...
concatenateArrays(testingData_CuS);

concatenateArrays(testingData_MoA); ...
concatenateArrays(testingData_MoL); ...
concatenateArrays(testingData_MoS);
concatenateArrays(testingData_LaA); ...
concatenateArrays(testingData_LaL); ...
concatenateArrays(testingData_LaS)];

%%
% Generates label vectors for training and testing datasets

% Defines a list of labels
labels = {'CuA', 'CuL', 'CuS', 'MoA', 'MoL', 'MoS', 'LaA', 'LaL', 'LaS'};
Y_train = [];
Y_test = [];
for i = 1:length(labels)

% Assuming each training cell array contains 80 arrays
Y_train = [Y_train; repmat(labels(i), 80, 1)];
% Assuming each testing cell array contains 20 arrays
Y_test = [Y_test; repmat(labels(i), 20, 1)];

end

%%
%Standardize Training and Testing Data
meanTraining = mean(allTrainingData, 1);
stdTraining = std(allTrainingData, 0, 1);

% Standardize training data
allTrainingDataStandardized = (allTrainingData - meanTraining) ./ ...

stdTraining;

% Standardize testing data
allTestingDataStandardized = (allTestingData - meanTraining) ./ ...

stdTraining;

%%
% KNN PCA classification

% Define parameters
maxComponents = 200; % Maximum number of PCA components to consider
kValues = [3, 5, 10, 15]; % Different k values for KNN
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distanceMetrics = {'cosine', 'cityblock', 'correlation', 'euclidean'};
markers = {'o', 's', 'p', 'd', '*'};

% Initialize structure for accuracies and max accuracy details
accuracies = struct();
maxAccuracyDetails = struct();

% Loop over distance metrics
for dIndex = 1:length(distanceMetrics)

distanceMetric = distanceMetrics{dIndex};

% Initialize accuracy matrix and max accuracy details for each
% k value
accuracies.(distanceMetric) = zeros(maxComponents, length(kValues));
for kIndex = 1:length(kValues)

maxAccuracyDetails.(distanceMetric).(...
['k' num2str(kValues(kIndex))]) = ...
struct('Component', 0, 'Accuracy', 0);

end

% Loop over the number of components
for numComponents = 1:maxComponents

% Apply PCA
[coeff, score] = pca(allTrainingDataStandardized, ...

'NumComponents', numComponents);
X_train_pca = score;
X_test_pca = allTestingDataStandardized * ...

coeff(:, 1:numComponents);

% Loop over different values of k
for kIndex = 1:length(kValues)

k = kValues(kIndex);
disp(['Distance: ' distanceMetric ', K: ' num2str(k) ...

', PCA component: ' num2str(numComponents)]);

% Train KNN Classifier
knnModel = fitcknn(X_train_pca, Y_train, 'NumNeighbors', ...

k, 'Distance', distanceMetric);

% Test Classifier and calculate accuracy
Y_pred = predict(knnModel, X_test_pca);
accuracy = sum(strcmp(Y_pred, Y_test)) / length(Y_test);

% Store and update accuracy
accuracies.(distanceMetric)(numComponents, kIndex) = ...

accuracy;
if accuracy > maxAccuracyDetails.(distanceMetric).(...

['k' num2str(k)]).Accuracy
maxAccuracyDetails.(distanceMetric).(...

['k' num2str(k)]).Accuracy = accuracy;
maxAccuracyDetails.(distanceMetric).(...

['k' num2str(k)]).Component = numComponents;
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end
end

end

% Plotting
figure;
hold on;

for kIndex = 1:length(kValues)
yData = accuracies.(distanceMetric)(:, kIndex);
xData = 1:maxComponents;

% Calculate the second derivative (curvature)
d2y = abs(diff(yData, 2));
% Append zeros at the ends since diff reduces the length by 2
d2y = [0; d2y; 0];

% Define a threshold for the curvature
curvatureThreshold = 0.01; % Adjust based on your data
minSpacing = 5; % Minimum spacing between markers
markerIndices = [];
lastAddedIndex = 1;

for i = 1:length(yData)
if d2y(i) > curvatureThreshold || (i - lastAddedIndex) ...

>= minSpacing
markerIndices = [markerIndices, i];
lastAddedIndex = i;

end
end

% Combine line and markers in one plot command
p = plot(xData, yData, 'Color', 'k', 'DisplayName', ...

['k = ' num2str(kValues(kIndex))]);
set(p, 'Marker', markers{kIndex}, 'MarkerIndices', ...

markerIndices);
end

hold off;
xlabel('Number of Principal Components');
ylabel('Accuracy');
title(['Accuracy vs Number of Principal Components '...

'(Distance Metric: ' distanceMetric ')']);
legend('Location', 'southeast');
ylim([0.68, 0.82]);

end

%%
% Create summary table and display the summary table

% Create summary table
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% Initialize the arrays and the cell array
distanceMetricsArray = {};
kValuesArray = [];
componentsArray = [];
accuraciesArray = [];

% Populate the arrays
for dIndex = 1:length(distanceMetrics)

distanceMetric = distanceMetrics{dIndex};
for kIndex = 1:length(kValues)

k = kValues(kIndex);
maxAccDetail = maxAccuracyDetails.(distanceMetric).(...

['k' num2str(k)]);

distanceMetricsArray{end+1} = distanceMetric;
kValuesArray(end+1) = k;
componentsArray(end+1) = maxAccDetail.Component;
accuraciesArray(end+1) = maxAccDetail.Accuracy;

end
end

% Display the summary table
summaryTable = table(distanceMetricsArray', kValuesArray', ...

componentsArray', accuraciesArray', ...
'VariableNames', {'DistanceMetric', 'KValue', ...
'Components', 'Accuracy'});

disp(summaryTable);

%%
% Store and display the optimal K and the optimal principal components

% Initialize structure to store the best parameters
bestParameters = struct();

% Loop over distance metrics to find the best parameters
for dIndex = 1:length(distanceMetrics)

distanceMetric = distanceMetrics{dIndex};
maxAccuracy = 0; % Initialize the maximum accuracy

% Loop over the number of components
for numComponents = 1:maxComponents

for kIndex = 1:length(kValues)
k = kValues(kIndex);
accuracy = accuracies.(distanceMetric)(numComponents, kIndex);

% Check if current accuracy is greater than the max
% found so far
if accuracy > maxAccuracy

maxAccuracy = accuracy;
bestParameters.(distanceMetric).KValue = k;
bestParameters.(distanceMetric).Component = numComponents;

end
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end
end

end

% Display the best parameters for each distance metric
disp('Best Parameters for each Distance Metric:');
for dIndex = 1:length(distanceMetrics)

distanceMetric = distanceMetrics{dIndex};
fprintf('%s: k = %d, Components = %d, Accuracy = %.4f\n', ...

distanceMetric, bestParameters.(distanceMetric).KValue, ...
bestParameters.(distanceMetric).Component, ...
maxAccuracyDetails.(distanceMetric).(...
['k' num2str(bestParameters.(distanceMetric).KValue)]...
).Accuracy);

end

% The bestParameters contains the best k value and component for
% each distance metric

%%
% Rerun the PCA-KNN analysis using the optimal K and principal components
% for each distance metric to generate data for the confusion matrices

classOrder = unique(Y_train);
confusionMatrices = struct();
labelToIndexMap = containers.Map(classOrder, 1:length(classOrder));

% Loop through distance metrics
for dIndex = 1:length(distanceMetrics)

distanceMetric = distanceMetrics{dIndex};
bestK = bestParameters.(distanceMetric).KValue;
bestComponent = bestParameters.(distanceMetric).Component;

% Apply PCA
[coeff, ~] = pca(allTrainingDataStandardized, 'NumComponents', ...

bestComponent);
X_train_pca = allTrainingDataStandardized * coeff(:, 1:bestComponent);
X_test_pca = allTestingDataStandardized * coeff(:, 1:bestComponent);

% Train KNN Classifier
knnModel = fitcknn(X_train_pca, Y_train, 'NumNeighbors', bestK, ...

'Distance', distanceMetric);

% Predict responses
Y_pred = predict(knnModel, X_test_pca);

% Initialize confusion matrix
C_manual = zeros(length(classOrder), length(classOrder));

% Populate confusion matrix
for i = 1:length(Y_test)

trueLabel = Y_test{i};
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predictedLabel = Y_pred{i};
if isKey(labelToIndexMap, trueLabel) && isKey(labelToIndexMap, ...

predictedLabel)
trueIndex = labelToIndexMap(trueLabel);
predIndex = labelToIndexMap(predictedLabel);
C_manual(predIndex, trueIndex) = ...

C_manual(predIndex, trueIndex) + 1;
end

end

% Store confusion matrix in the 'confusionMatrices'
confusionMatrices.(distanceMetric).(['k' num2str(bestK)]).(...

['Comp' num2str(bestComponent)]) = C_manual;
end

%%
% Calculates the recognition percentages,
% and displays the confusion matrices with enhanced graphical details

% These confusion matrices and the corresponding recognition percentages
% indicate the accuracy in identifying birds' flight patterns with
% directions

% Define arrays with the names of training and testing matrices for
% different categories
trainingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};
testingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};

% Calls the function to extract specific confusion matrices for various
% distance metrics from the 'confusionMatrices' structure
confusionMatrices_extract = extractConfusionMatrices(confusionMatrices);
for metric = distanceMetrics

% Transpose the matrix to have predicted classes on the y-axis
% and actual classes on the x-axis
cm = confusionMatrices_extract.(metric{1});

% Calculate the percent of correct classifications for each
% actual class
sumPerColumn = sum(cm, 1); % Total count for each actual class
% Percentage of correct predictions
percentCorrect = diag(cm) ./ sumPerColumn' * 100;
% Append the percentage row to the confusion matrix
cmWithPercent = [cm; percentCorrect'];

% Create a new figure for the confusion matrix visualization
figure;
imagesc(cmWithPercent); % Display the confusion matrix as an image
% Set the colormap to 'parula' (you can choose a different colormap)
colormap(parula);
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% Lighten the colormap for aesthetic purposes
currentColormap = colormap;
% Adjust the colormap to be lighter
colormap(currentColormap + 0.7 * (1 - currentColormap));

% Set titles and labels
title(['Confusion Matrix for ' metric{1} ' Distance']);
xlabel('Actual');
ylabel('Predicted');
set(gca, 'XTick', 1:length(testingMatrixNames) + 1, 'XTickLabel', ...

[testingMatrixNames, {'% Correct'}]);
set(gca, 'YTick', 1:length(trainingMatrixNames) + 1, 'YTickLabel', ...

[trainingMatrixNames, {'% Correct'}]);

% Add numerical labels to each cell of the matrix
[rows, cols] = size(cmWithPercent);
for i = 1:rows

for j = 1:cols
num = cmWithPercent(i, j); % Get the cell value
text(j, i, num2str(num, '%0.0f'), 'HorizontalAlignment', ...

'center', 'VerticalAlignment', 'middle');
end

end

% Rotate the x-axis labels for better readability if there are
% many classes
if length(trainingMatrixNames) > 10

set(gca, 'XTickLabelRotation', 45);
end

end

%%
% Groups the 9x9 confusion matrix into a smaller 3x3 matrix by summing
% values in groups of three, and calculates the recognition percentages
% Display confusion matrices in the MATLAB command window as textual output

% These confusion matrices and the corresponding recognition percentages
% indicate the accuracy in identifying birds' flight patterns without
% directions

% Define distance metrics used in the analysis
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};

% Define labels for the groups
groupLabels = {'Cu', 'Mo', 'La'};

% Process each confusion matrix for each metric
for metricIdx = 1:length(distanceMetrics)

metric = distanceMetrics{metricIdx};
fprintf('Processing for %s Distance:\n', metric);

% Get the field names for the current metric
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% Get the 'k' field name
kField = fieldnames(confusionMatrices.(metric));
% Get the 'Comp' field name
compField = fieldnames(confusionMatrices.(metric).(kField{1}));

% Access the confusion matrix
cm = confusionMatrices.(metric).(kField{1}).(compField{1});

% Transpose the confusion matrix if necessary
cmT = cm;

% Sum by groups of three
groupedSum = zeros(3, 3);
for i = 1:3:size(cmT, 1)

for j = 1:3:size(cmT, 2)
groupedSum((i-1)/3 + 1, (j-1)/3 + 1) = ...

sum(sum(cmT(i:i+2, j:j+2)));
end

end

% Calculate the recognition percentage for each column
recognitionPercentages = zeros(1, size(groupedSum, 2));
for col = 1:size(groupedSum, 2)

diagonalElement = groupedSum(col, col); % Diagonal element
columnSum = sum(groupedSum(:, col)); % Sum of the column
recognitionPercentages(col) = (diagonalElement / columnSum) * 100;

end

% Display the grouped sums and recognition percentages
disp(['Grouped Sums for ' metric ':']);
disp(groupedSum);
disp(['Recognition Percentages (%) for ' metric ':']);
for i = 1:length(recognitionPercentages)

fprintf('%s: %.2f%%\n', groupLabels{i}, ...
recognitionPercentages(i));

end

fprintf('\n');
end

%%
% Groups the 9x9 confusion matrix into a smaller 3x3 matrix by summing
% values in groups of three, calculates the recognition percentages,
% and displays the confusion matrices with enhanced graphical details

% These confusion matrices and the corresponding recognition percentages
% indicate the accuracy in identifying birds' flight patterns without
% directions

% Define distance metrics used in the analysis
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};
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% Define labels for the groups
groupLabels = {'Cu', 'Mo', 'La'};

% Process and visualize each confusion matrix for each metric
for metricIdx = 1:length(distanceMetrics)

metric = distanceMetrics{metricIdx};

% Get the field names for the current metric
% Get the 'k' field name
kField = fieldnames(confusionMatrices.(metric));
% Get the 'Comp' field name
compField = fieldnames(confusionMatrices.(metric).(kField{1}));

% Access the confusion matrix
cm = confusionMatrices.(metric).(kField{1}).(compField{1});

% Sum by groups of three
groupedSum = zeros(3, 3);
for i = 1:3:size(cm, 1)

for j = 1:3:size(cm, 2)
groupedSum((i-1)/3 + 1, (j-1)/3 + 1) = ...

sum(sum(cm(i:i+2, j:j+2)));
end

end

% Calculate the recognition percentage for each column
recognitionPercentages = zeros(1, size(groupedSum, 2));
for col = 1:size(groupedSum, 2)

diagonalElement = groupedSum(col, col); % Diagonal element
columnSum = sum(groupedSum(:, col)); % Sum of the column
recognitionPercentages(col) = (diagonalElement / columnSum) * 100;

end

% Create figure for visualization of the small matrices
figure;
% Append recognition percentages as a new row
cmWithPercent = [groupedSum; recognitionPercentages];
% Display matrix with recognition percentages
imagesc(cmWithPercent);
colormap(parula); % Choose colormap

% Lighten the colormap
currentColormap = colormap;
colormap(currentColormap + 0.7 * (1 - currentColormap));

% Set titles and labels
title(['Confusion Matrix for ' metric ' Distance']);
xlabel('Actual');
ylabel('Predicted');
set(gca, 'XTick', 1:4, 'XTickLabel', [groupLabels, {'% Correct'}]);
set(gca, 'YTick', 1:4, 'YTickLabel', [groupLabels, {'% Correct'}]);
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% Add numerical labels to each cell
[rows, cols] = size(cmWithPercent);
for i = 1:rows

for j = 1:cols
num = cmWithPercent(i, j);
if i == rows % For the last row (recognition percentages)

text(j, i, [num2str(num, '%0.2f') '%'], ...
'HorizontalAlignment', 'center', ...
'VerticalAlignment', 'middle');

else % For the grouped sum matrix
text(j, i, num2str(num, '%0.0f'), ...

'HorizontalAlignment', 'center', ...
'VerticalAlignment', 'middle');

end
end

end
end
%%
%END OF 'PCA_KNN' CODE

function confusionMatrices_extract = ...
extractConfusionMatrices(confusionMatrices)

% This function extracts specific confusion matrices from a structured
% collection.
%
% This function takes a structured array containing confusion matrices
% for various distance metrics and K values in a K-Nearest Neighbors
% (KNN) classification setting. It extracts the confusion matrix for
% each distance metric using the first K value and the first set of
% components specified in the structure.
%
% The function is designed to work with a structured array where each
% field corresponds to a different distance metric, and each subfield
% corresponds to different K values and PCA component counts.
%
% Input:
% confusionMatrices - A structured array containing confusion matrices
% for different distance metrics, K values, and PCA
% components.
%
% Output:
% confusionMatrices_extract - A structured array with extracted confusion
% matrices for each distance metric. The
% extracted matrix corresponds to the first
% K value andthe first set of components for
% each metric.

% Extract the confusion matrix for cosine distance
cosineFields = fieldnames(confusionMatrices.cosine);
kCosine = cosineFields{1};
compCosineFields = fieldnames(confusionMatrices.cosine.(kCosine));
compCosine = compCosineFields{1};
confusionMatrices_extract.cosine = ...
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confusionMatrices.cosine.(kCosine).(compCosine);

% Extract the confusion matrix for cityblock distance
cityblockFields = fieldnames(confusionMatrices.cityblock);
kCityblock = cityblockFields{1};
compCityblockFields = ...

fieldnames(confusionMatrices.cityblock.(kCityblock));
compCityblock = compCityblockFields{1};
confusionMatrices_extract.cityblock = ...

confusionMatrices.cityblock.(kCityblock).(compCityblock);

% Extract the confusion matrix for correlation distance
correlationFields = fieldnames(confusionMatrices.correlation);
kCorrelation = correlationFields{1};
compCorrelationFields = ...

fieldnames(confusionMatrices.correlation.(kCorrelation));
compCorrelation = compCorrelationFields{1};
confusionMatrices_extract.correlation = ...

confusionMatrices.correlation.(kCorrelation).(compCorrelation);

% Extract the confusion matrix for euclidean distance
euclideanFields = fieldnames(confusionMatrices.euclidean);
kEuclidean = euclideanFields{1};
compEuclideanFields = ...

fieldnames(confusionMatrices.euclidean.(kEuclidean));
compEuclidean = compEuclideanFields{1};
confusionMatrices_extract.euclidean = ...

confusionMatrices.euclidean.(kEuclidean).(compEuclidean);
end
% END OF 'extractConfusionMatrices' FUNCTION

function concatenatedMatrix = concatenateArrays(cellArray)
% This function concatenates waveforms within a cell array into a single
% matrix.
%
% This function takes a cell array containing waveforms and concatenates
them
% vertically into a single matrix. The waveforms within the cell array are
% expected to have the same number of columns but can have different
% numbers of rows.
%
% Input:
% cellArray - A cell array where each waveform is an array to be
% concatenated.
%
% Output:
% concatenatedMatrix - A matrix formed by vertically concatenating the
% waveforms from the cell array.
concatenatedMatrix = [];
for i = 1:length(cellArray)

concatenatedMatrix = [concatenatedMatrix; cellArray{i}];
end

end
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% END OF 'concatenateArrays' FUNCTION

A.1.3. MATLAB Code Segment III - Cross-Correlation Classification

In this final segment, cross-correlation techniques are utilized to classify bird flight

patterns.

% Cross_Corr.m
% This script performs cross-correlation analysis on bird flight data.
%
% Steps:
% 1. Data Loading: Loads preprocessed bird flight data from a .mat file.
% 2. Length Check: Verifies if all arrays in the dataset have equal
% lengths.
% 3. Zero-Padding: Adds padding to facilitate cross-correlation analysis.
% 4. Data Plotting: Plots training and testing data after padding.
% 5. Cross-Correlation Analysis: Calculates the smallest distance between
% datasets using various distance metrics (cityblock, euclidean,
% correlation, cosine).
% 6. Confusion Matrix: Constructs and presents confusion matrices for
% each distance metric, and calculates the recognition percentages.
% These are the confusion matrices for birds flying with direction.
% 7. Group the confusion matrices for birds flying with direction to
% form the confusion matrices for birds flying without direction, and
% calculate the recognition percentages.

%%
clc; % Clears the Command Window
close all; % Closes all open figures
clear; % Removes all variables from the workspace

% Load data from .mat file
load('preProcBirdsFliesData_rng(4).mat');

%%
% Check if the lengths of all arrays are equal

% Array of cell array names
cellArrayNames = {'trainingData_CuA', 'trainingData_CuL', ...

'trainingData_CuS', 'trainingData_MoA', 'trainingData_MoL', ...
'trainingData_MoS', 'trainingData_LaA', 'trainingData_LaL', ...
'trainingData_LaS', 'testingData_CuA', 'testingData_CuL', ...
'testingData_CuS', 'testingData_MoA', 'testingData_MoL', ...
'testingData_MoS', 'testingData_LaA', 'testingData_LaL', ...
'testingData_LaS'};

% Determine the maximum number of arrays in any cell array
maxArrays = 0;
for k = 1:length(cellArrayNames)
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numArrays = length(evalin('base', cellArrayNames{k}));
maxArrays = max(maxArrays, numArrays);

end

% Initialize a matrix to store lengths from all cell arrays
numCellArrays = length(cellArrayNames);
allLengths = zeros(maxArrays, numCellArrays);

% Loop through each cell array name
for k = 1:numCellArrays

% Load the current cell array from the base workspace
currentCellArray = evalin('base', cellArrayNames{k});

% Store lengths of current cell array
currentLengths = cellfun(@length, currentCellArray);
allLengths(1:length(currentLengths), k) = currentLengths;

end

% Compare lengths across cell arrays for each array position and report
% non-equal lengths
discrepancies = false;
for i = 1:maxArrays

uniqueLengths = unique(allLengths(i, allLengths(i, :) > 0));
if length(uniqueLengths) > 1

discrepancies = true;
fprintf('Non-equal lengths found at array position %d:\n', i);
for k = 1:numCellArrays

if allLengths(i, k) > 0
fprintf(' %s has array length %d.\n', ...

cellArrayNames{k}, allLengths(i, k));
end

end
end

end

% Display overall result
if discrepancies

disp(['There are discrepancies in array lengths ', ...
'across the cell arrays.']);

else
disp(['All corresponding arrays across the cell arrays ', ...

'have equal lengths.']);
end

%%
% Padding zeros to facilitate the cross-correlation method

paddingSize = 4000;

% Array of original training cell array names
trainingNames = {'trainingData_CuA', 'trainingData_CuL', ...

'trainingData_CuS', 'trainingData_MoA', 'trainingData_MoL', ...
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'trainingData_MoS', 'trainingData_LaA', 'trainingData_LaL', ...
'trainingData_LaS'};

testingNames = {'testingData_CuA', 'testingData_CuL', ...
'testingData_CuS', 'testingData_MoA', 'testingData_MoL', ...
'testingData_MoS', 'testingData_LaA', 'testingData_LaL', ...
'testingData_LaS'};

% Function for padding single-row arrays in training data
paddingFunctionTraining = @(array) [zeros(1, paddingSize), array, ...

zeros(1, paddingSize)];

% Function for padding single-row arrays in testing data
paddingFunctionTesting = @(array) [array, zeros(1, paddingSize), ...

zeros(1, paddingSize)];

% Loop through each training cell array name and pad
for k = 1:length(trainingNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', trainingNames{k});

% Add padding to each single-row array within the cell array
paddedCellArray = cellfun(paddingFunctionTraining, ...

currentCellArray, 'UniformOutput', false);

% Store the padded cell array in the base workspace
assignin('base', ['padded_' trainingNames{k}], paddedCellArray);

end

% Loop through each testing cell array name and pad
for k = 1:length(testingNames)

% Load the current cell array from the base workspace
currentCellArray = evalin('base', testingNames{k});

% Add padding to each single-row array within the cell array
paddedCellArray = cellfun(paddingFunctionTesting, ...

currentCellArray, 'UniformOutput', false);

% Store the padded cell array in the base workspace
assignin('base', ['padded_' testingNames{k}], paddedCellArray);

end

%%
% Plot the training and testing data following zero-padding

% Array of padded training and testing cell array names
paddedTrainingNames = {'padded_trainingData_CuA', ...

'padded_trainingData_CuL', 'padded_trainingData_CuS', ...
'padded_trainingData_MoA', 'padded_trainingData_MoL', ...
'padded_trainingData_MoS', 'padded_trainingData_LaA', ...
'padded_trainingData_LaL', 'padded_trainingData_LaS'};

paddedTestingNames = {'padded_testingData_CuA', ...
'padded_testingData_CuL', 'padded_testingData_CuS', ...
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'padded_testingData_MoA', 'padded_testingData_MoL', ...
'padded_testingData_MoS', 'padded_testingData_LaA', ...
'padded_testingData_LaL', 'padded_testingData_LaS'};

% Loop through each pair of padded training and testing cell array names
for k = 1:length(paddedTrainingNames)

% Load the current padded training cell array from the base workspace
currentPaddedTrainingArray = evalin('base', paddedTrainingNames{k});
% Load the current padded testing cell array from the base workspace
currentPaddedTestingArray = evalin('base', paddedTestingNames{k});

% Number of arrays in the current training and testing cell arrays
numTrainingArrays = length(currentPaddedTrainingArray);
numTestingArrays = length(currentPaddedTestingArray);

% Create a new figure for each pair of cell arrays
figure;

% Subplot for the training data
subplot(2, 1, 1);
hold on;
for i = 1:numTrainingArrays

plot(currentPaddedTrainingArray{i});
end
hold off;
title(['Training Data - ' paddedTrainingNames{k}]);

% Subplot for the testing data
subplot(2, 1, 2);
hold on;
for i = 1:numTestingArrays

plot(currentPaddedTestingArray{i});
end
hold off;
title(['Testing Data - ' paddedTestingNames{k}]);

end

%%
% Find the smallest distance using cross-correlation

% Define the matrix names for training and testing data
trainingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};
testingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};

% Define distance metrics to be used for comparison
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};

% Initialize variables for shift calculations
shift_size = 100;
shift_total = floor(paddingSize / shift_size);
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% Initialize a structure to store the results of distance calculations
distanceResults = struct();

% Loop through each testing dataset
for testMatrixIndex = 1:length(testingMatrixNames)

% Load the current testing data set
testingDataName = ['padded_testingData_' ...

testingMatrixNames{testMatrixIndex}];
testingData = evalin('base', testingDataName);

% Loop through each row of the testing data
for rowIndex = 1:length(testingData)

disp(['Testing Data Name: ' testingDataName ', Row: ' ...
num2str(rowIndex)]); % Display current testing data and row

testDataRow = testingData{rowIndex};

% Loop through each distance metric
for metricIndex = 1:length(distanceMetrics)

metric = distanceMetrics{metricIndex};

% Initialize arrays to store the smallest distance for each
% training dataset
minDistancesPerDataset = inf(length(trainingMatrixNames), 1);

% Perform distance calculations for each shift of the
% test data
for shift = 0:shift_total

% Shift the test data row
shiftedTestDataRow = [zeros(1, shift * shift_size), ...

testDataRow];
if length(shiftedTestDataRow) > length(testDataRow)

shiftedTestDataRow = shiftedTestDataRow(1:length(...
testDataRow));

end

% Loop through each training dataset for
% distance calculations
for trainingMatrixIndex = 1:length(trainingMatrixNames)

% Load the current training data set
trainingDataName = ['padded_trainingData_' ...

trainingMatrixNames{trainingMatrixIndex}];
trainingData = evalin('base', trainingDataName);

% Loop through each array in the current training data
for trainingRowIndex = 1:length(trainingData)

trainingRow = trainingData{trainingRowIndex};

% Calculate the distance
distance = pdist2(shiftedTestDataRow, ...

trainingRow, metric);
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% Update the minimum distance if necessary
if distance < ...

minDistancesPerDataset(trainingMatrixIndex)
minDistancesPerDataset(trainingMatrixIndex) ...

= distance;
end

end
end

end

% Find the smallest distance across all datasets for
% the current metric
[smallestDistance, datasetIndex] = ...

min(minDistancesPerDataset);

% Store the result in the distanceResults structure
resultField = sprintf('%s_%s_Row%d', metric, ...

testingMatrixNames{testMatrixIndex}, rowIndex);
distanceResults.(resultField) = struct('SmallestDistance', ...

smallestDistance, 'TrainingDataSet', ...
trainingMatrixNames{datasetIndex});

end
end

end

%%
% Display confusion matrices in the MATLAB command window as textual output
% These confusion matrices indicate the recognition of birds' flying
% directions

% Define the matrix names for training and testing data
trainingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};
testingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA', ...

'LaL', 'LaS', 'LaA'};

% Define distance metrics to be used in the analysis
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};

% Initialize confusion matrices for each metric
confusionMatrices = struct();
for metric = distanceMetrics

confusionMatrices.(metric{1}) = zeros(length(testingMatrixNames), ...
length(trainingMatrixNames));

end

% Mapping from dataset names to indices for confusion matrix construction
nameToIndex = containers.Map(trainingMatrixNames, ...

1:length(trainingMatrixNames));

% Assuming distanceResults is available and contains the
% necessary information
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% Extract and process results for each metric
for metric = distanceMetrics

% Retrieve all relevant field names for the current metric
% from distanceResults
metricFieldNames = fieldnames(distanceResults);
metricFieldNames = metricFieldNames(contains(metricFieldNames, ...

metric{1}));

% Process each field name to update the confusion matrix
for i = 1:length(metricFieldNames)

fieldName = metricFieldNames{i};
% Extract the actual dataset (true label) and the predicted
% dataset label
trueLabel = extractBetween(fieldName, '_', '_Row');
predictedLabel = distanceResults.(fieldName).TrainingDataSet;

% Format the predicted label to match the indexing format
predictedLabel = strrep(predictedLabel, 'Padded', '');
predictedLabel = strrep(predictedLabel, 'trainingData_', '');

% Update the corresponding cell in the confusion matrix
trueIndex = nameToIndex(trueLabel{1});
predictedIndex = nameToIndex(predictedLabel);
confusionMatrices.(metric{1})(trueIndex, predictedIndex) = ...

confusionMatrices.(metric{1})(trueIndex, predictedIndex) + 1;
end

end

% Display each confusion matrix for the respective distance metric
for metric = distanceMetrics

fprintf('Confusion Matrix for %s Distance:\n', metric{1});
disp(confusionMatrices.(metric{1}));

end

%%
% Calculates the recognition percentages,
% and displays the confusion matrices with enhanced graphical details

% These confusion matrices indicate the recognition of birds' flying
% directions

% Define the matrix names for training and testing data
trainingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA',...

'LaL', 'LaS', 'LaA'};
testingMatrixNames = {'CuL', 'CuS', 'CuA', 'MoL', 'MoS', 'MoA',...

'LaL', 'LaS', 'LaA'};

% Assuming confusionMatrices structure is already populated
% and distanceMetrics array is defined
for metric = distanceMetrics

% Transpose the matrix
cm = confusionMatrices.(metric{1})';
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% Calculate percent correct
sumPerColumn = sum(cm, 1); % Total count for each actual class
% Percentage of correct predictions
percentCorrect = diag(cm) ./ sumPerColumn' * 100;
cmWithPercent = [cm; percentCorrect']; % Append percentage row

% Create figure for visualization
figure;
imagesc(cmWithPercent); % Display matrix
colormap(parula); % Choose colormap

% Lighten the colormap
currentColormap = colormap;
colormap(currentColormap + 0.7 * (1 - currentColormap));

% Set titles and labels
title(['Confusion Matrix for ' metric{1} ' Distance']);
xlabel('Actual');
ylabel('Predicted');
set(gca, 'XTick', 1:length(testingMatrixNames) + 1, 'XTickLabel', ...

[testingMatrixNames, {'% Correct'}]);
set(gca, 'YTick', 1:length(trainingMatrixNames) + 1, 'YTickLabel', ...

[trainingMatrixNames, {'% Correct'}]);

% Add numerical labels to each cell
[rows, cols] = size(cmWithPercent);
for i = 1:rows

for j = 1:cols
num = cmWithPercent(i, j);
text(j, i, num2str(num, '%0.0f'), 'HorizontalAlignment', ...

'center', 'VerticalAlignment', 'middle');
end

end

% Rotate x-axis labels for readability
if length(trainingMatrixNames) > 10

set(gca, 'XTickLabelRotation', 45);
end

end

%%
% Group the 9x9 confusion matrices into 3x3 matrices and calculate the
% recognition percentages
% Display confusion matrices in the MATLAB command window as textual output
% These confusion matrices indicate the recognition of birds' flying
% without directions

% Define the matrix names
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};
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% Define labels for the groups
groupLabels = {'Cu', 'Mo', 'La'};

% Process each confusion matrix for each metric
for metric = distanceMetrics

fprintf('Processing for %s Distance:\n', metric{1});

% Access the confusion matrix for the current metric
cm = confusionMatrices.(metric{1});

% Transpose the confusion matrix
cmT = cm';

% Sum by groups of three
groupedSum = zeros(3, 3);
for i = 1:3:size(cmT, 1)

for j = 1:3:size(cmT, 2)
groupedSum((i-1)/3 + 1, (j-1)/3 + 1) = ...

sum(sum(cmT(i:i+2, j:j+2)));
end

end

% Calculate the recognition percentage for each column
recognitionPercentages = zeros(1, size(groupedSum, 2));
for col = 1:size(groupedSum, 2)

diagonalElement = groupedSum(col, col); % Diagonal element
columnSum = sum(groupedSum(:, col)); % Sum of the column
recognitionPercentages(col) = ...

(diagonalElement / columnSum) * 100;
end

% Display the grouped sums and recognition percentages
disp(['Grouped Sums for ' metric{1} ':']);
disp(groupedSum);
disp(['Recognition Percentages (%) for ' metric{1} ':']);
for i = 1:length(recognitionPercentages)

fprintf('%s: %.2f%%\n', groupLabels{i}, ...
recognitionPercentages(i));

end
fprintf('\n');

end

%%
% Groups the 9x9 confusion matrix into a smaller 3x3 matrix by summing
% values in groups of three, calculates the recognition percentages,
% and displays the confusion matrices with enhanced graphical details

% These confusion matrices indicate the recognition of birds' flying
% without directions

% Define distance metrics used in the analysis
distanceMetrics = {'cityblock', 'euclidean', 'correlation', 'cosine'};
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% Define labels for the groups
groupLabels = {'Cu', 'Mo', 'La'};

% Process and visualize each confusion matrix for each metric
for metric = distanceMetrics

%fprintf('Processing and Visualizing for %s Distance:\n', metric{1});

% Access the confusion matrix for the current metric
cm = confusionMatrices.(metric{1});

% Transpose the confusion matrix
cmT = cm';

% Sum by groups of three
groupedSum = zeros(3, 3);
for i = 1:3:size(cmT, 1)

for j = 1:3:size(cmT, 2)
groupedSum((i-1)/3 + 1, (j-1)/3 + 1) = ...

sum(sum(cmT(i:i+2, j:j+2)));
end

end

% Calculate the recognition percentage for each column
recognitionPercentages = zeros(1, size(groupedSum, 2));
for col = 1:size(groupedSum, 2)

diagonalElement = groupedSum(col, col); % Diagonal element
columnSum = sum(groupedSum(:, col)); % Sum of the column
recognitionPercentages(col) = (diagonalElement / columnSum) * 100;

end

% Create figure for visualization of the small matrices
figure;
% Append recognition percentages as a new row
cmWithPercent = [groupedSum; recognitionPercentages];
% Display matrix with recognition percentages
imagesc(cmWithPercent);
colormap(parula); % Choose colormap

% Lighten the colormap
currentColormap = colormap;
colormap(currentColormap + 0.7 * (1 - currentColormap));

% Set titles and labels
title(['Confusion Matrix for ' metric{1} ' Distance']);
xlabel('Actual');
ylabel('Predicted');
set(gca, 'XTick', 1:4, 'XTickLabel', [groupLabels, {'% Correct'}]);
set(gca, 'YTick', 1:4, 'YTickLabel', [groupLabels, {'% Correct'}]);

% Add numerical labels to each cell
[rows, cols] = size(cmWithPercent);
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for i = 1:rows
for j = 1:cols

num = cmWithPercent(i, j);
if i == rows % For the last row (recognition percentages)

text(j, i, [num2str(num, '%0.2f') '%'], ...
'HorizontalAlignment', 'center', ...
'VerticalAlignment', 'middle');

else % For the grouped sum matrix
text(j, i, num2str(num, '%0.0f'), ...

'HorizontalAlignment', 'center', ...
'VerticalAlignment', 'middle');

end
end

end
end

%%
% END OF 'Croos_Corr' CODE
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