
AUTOMATING THE DESIGN OF DEEP LEARNING MODELS USING NEURAL ARCHITECTURE

SEARCH FOR MEDICAL IMAGE CLASSIFICATION

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Ridhanya Sree Balamurugan

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Electrical and Computer Engineering

May 2024

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

AUTOMATING THE DESIGN OF DEEP LEARNING MODELS USING NEURAL

ARCHITECTURE SEARCH FOR MEDICAL IMAGE CLASSIFICATION

By

Ridhanya Sree Balamurugan

The Supervisory Committee certifies that this thesis complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Umamaheswara Rao Tida
Chair

Dr. Dharmakeerthi Nawarathna

Dr. Dali Sun

Dr. Danling Wang

Approved:

05/09/2024
Date

Dr. Benjamin Braaten
Department Chair

ABSTRACT

Designing Deep Learning (DL) models for medical image classification tasks poses sig-

nificant challenges, demanding substantial expertise owing to the intricate nature and critical

importance of the undertaking. Creating a DL model tailored for such purposes entails iterative

processes of designing, implementing, and fine-tuning algorithms to achieve optimal perfor-

mance. To mitigate these difficulties, Neural Architecture Search (NAS) has risen as a key field

to generate the most effective DL models automatically. However, much of the previous stud-

ies involving NAS focus on automating the design of DL models for well-established datasets

such as CIFAR-10 and ImageNet. This technique should also be extended to medical image

datasets where detecting crucial features accurately in medical images is essential to detect

specific illnesses correctly. Therefore, in this study, we investigate NAS to autonomously de-

sign best performing DL models for skin lesion detection, thereby demonstrating its usefulness

for additional medical image classification endeavours.

iii

ACKNOWLEDGEMENTS

I sincerely thank my supervisor, Dr. Umamaheswara Rao Tida, for his invaluable guid-

ance and support throughout this research. His provision of laboratory facilities and resources

has been instrumental to my success. I am thankful for his constant encouragement and men-

torship, which has significantly contributed to my academic and personal growth. My deepest

appreciation goes to my mother, whose unwavering support and belief in my capabilities have

been a constant source of strength and motivation. Her sacrifices and love are the foundation

of my aspirations. I am very grateful to all my friends and labmates for their unwavering sup-

port, understanding and encouragement. Special thanks to my labmates for their collaborative

spirit and friendship, which have created a productive environment contributing to the success

of my research. I also thank the supervisory committee members for their crucial support and

input. Lastly, I would like to express my gratitude to everyone who contributed to this journey,

your impact has been profound, and I am deeply thankful.

iv

DEDICATION

To the Almighty God

&

To My Dear Family and Friends

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

LIST OF SYMBOLS . xv

1. INTRODUCTION . 1

1.1. Deep Learning in Medical Research . 1

1.2. Challenges in Developing DL Models for Medical Research 2

1.2.1. Navigating Data Challenges . 3

1.2.2. Navigating Challenges Associated with DL Model Development 3

1.2.3. Addressing Model Complexity and Overfitting 3

1.2.4. Enhancing Interpretability and Fostering Trust 4

1.2.5. Overcoming Computational and Temporal Constraints 4

1.2.6. Navigating Ethical and Regulatory Landscapes 4

1.3. Diving Deeper into the Hurdles in Crafting Optimized Neural Networks 5

1.3.1. Navigating the Challenges Associated with Hyperparameter Tuning in
Neural Network Optimization . 6

1.4. Advent of Neural Architecture Search . 8

1.5. Thesis Overview . 10

2. NEURAL ARCHITECTURE SEARCH FOR MEDICAL IMAGE CLASSIFICATION 12

2.1. Abstract . 12

2.2. Introduction . 12

2.2.1. Related Works . 14

vi

2.3. Methodology . 15

2.3.1. Child Model Design . 16

2.3.2. Implementation of the LSTM Controller . 18

2.3.3. Working of the LSTM Controller . 23

2.3.4. REINFORCE Algorithm . 24

2.4. Results and Discussion . 28

2.4.1. LSTM Controller Sampling and Training Details 28

2.4.2. Child Model Implementation and Training Details 29

2.4.3. Data Split and Preprocessing . 29

2.4.4. Navigating Dataset Challenges . 32

2.4.5. Evaluating the Effectiveness of the LSTM Controller 34

2.4.6. Filtering the Best Model . 35

2.4.7. Grid-Based Hyperparameter Search . 35

2.4.8. Clarifying the Metrics . 39

2.4.9. Top Model Performance Summary . 40

2.4.10. Implications of Our Study . 42

2.5. Conclusion and Future Work . 45

3. ADDITIONAL PROJECT 1: AUTOMATIC MICRORNA DETECTION AND CONCEN-
TRATION PREDICTION FOR THE EARLY DETECTION OF PANCREATIC CANCER US-
ING MACHINE LEARNING . 47

3.1. Abstract . 47

3.2. Introduction . 47

3.3. Methodology . 49

3.3.1. DEP to Concentrate ss-DNA Molecules on TIEs 50

3.3.2. Performing DEP Experiment . 53

3.3.3. Automatic Identification of the End of Experiment 53

3.3.4. Automatic Detection of miRNA Concentration Using ML 54

3.4. Results and Discussion . 56

3.4.1. DEP Experimental Results . 56

vii

3.4.2. Results on the End of Experiment Detection 59

3.4.3. Data Collection for the ML Approach . 64

3.5. Conclusion and Future Work . 64

4. ADDITIONAL PROJECT 2: AUTOMATIC AMINO ACID TYPE IDENTIFICATION IN EL-
LIPTICAL DICHROISM SPECTROMETER USING MACHINE LEARNING 66

4.1. Abstract . 66

4.2. Introduction . 66

4.3. Methodology . 67

4.3.1. Data Acquisition and Distribution . 67

4.3.2. Data Preprocessing Techniques . 68

4.3.3. Model Development and Validation Framework 70

4.4. Results and Discussion . 70

4.4.1. Classification Performance in Distinguishing 17 Amino Acid Types 71

4.4.2. Classification Performance in Distinguishing L-Arginine and L-Alanine . . 72

4.5. Conclusion and Future Work . 76

5. ADDITIONAL PROJECT 3: AUTOMATING THE TASK OF DATA ANNOTATION FOR
PLANT WEED IMAGE SEGMENTATION USING SEGMENT ANYTHING MODEL 77

5.1. Abstract . 77

5.2. Introduction . 77

5.3. Methodology . 79

5.4. Results and Discussion . 82

5.5. Conclusion and Future Work . 86

6. CONCLUSION . 88

6.1. Recapitulation of Research Premise . 88

6.2. Synopsis of Key Discoveries . 88

6.3. Study’s Outcomes and Implications . 88

6.4. Architectural Innovation via NAS . 89

6.5. NAS’s Revolution in Medical Diagnostics . 89

6.6. Challenges and Perspectives . 89

viii

6.7. Future Work . 90

6.7.1. Advancing Towards Hardware-Aware NAS Models 90

6.7.2. Validation Across Broader Medical Datasets 91

6.7.3. Exploring Alternative Reinforcement Learning Algorithms 91

6.7.4. Extending NAS to Other Image-Related Tasks 91

6.7.5. Application in Non-Medical Fields: Agriculture 91

6.7.6. Investigating Alternative NAS Algorithms 92

REFERENCES . 93

ix

LIST OF TABLES

Table Page

2.1. Distribution of DermaMNIST Dataset . 30

2.2. Performance of the Best Performing Child Model in Different Hyperparameter Con-
figurations . 39

2.3. Performance of Different Architectures v.s. the Top Child Model Performance Gen-
erated Using Our NAS Framework . 41

2.4. Performance of the Top Child Model Across the Train, Test and Validation Datasets 41

3.1. Results of the Curve Tracking Algorithm for Increase Point Detection (in minutes) . 63

3.2. Results of the Curve Tracking Algorithm for Decrease Point Detection (in minutes) 63

3.3. Results of the Curve Tracking Algorithm for End Point Detection (in minutes) 64

4.1. Data Distribution Across 17 Amino Acid Types . 68

4.2. Accuracy Obtained Across Different ML Algorithms in Classifying 17 Amino Acid
Types . 71

4.3. Accuracy Obtained Across Different ML Algorithms in Classifying L-Alanine and
L-Arginine . 73

4.4. Individual Amino Acid Accuracy Obtained Across Different ML Algorithms 76

5.1. U-Net Model Performance Across Train, Test and Validation Datasets. Reported
Scores are in terms of Average Dice Score. 82

5.2. U-Net Model Segmentation Results Across Different Weed Categories. Reported
Scores are the Accuracy Values, ranging between 0 and 1 84

x

LIST OF FIGURES

Figure Page

2.1. Key Components of NAS . 13

2.2. NAS Framework Overview . 16

2.3. Child Model Design . 17

2.4. Subunit Design . 17

2.5. Architecture of LSTM Cell. Image edited from GeeksforGeeks 18

2.6. Illustrative Example of Fully Connected Layers. 22

2.7. Overview of RL. Image adapted from Deeplizard . 24

2.8. Skin Lesion Types in DermaMNIST Dataset . 30

2.9. Performance of Our NAS Framework in Sampling Child Models of Superior Quality
Over Time. 35

2.10. Best Performing Child Model Design . 41

3.1. Biomarker Detection Device Overview . 49

3.2. Array of TIEs with the Concentrating Region Highlighted with an Orange Box. Im-
age captured using a Bright-Field Microscope . 50

3.3. Microfabricated TIEs Setup . 52

3.4. Techniques Involved in Building a Hardware-Optimized Object Detection Frame-
work for TIEs Concentrating Region Identification . 55

3.5. DEP Experimental Results. (a)With Electric Field (b) Without Electric Field 57

3.6. DEP Experimental Results. (a)Without Electric Field (b) With Electric Field Using
the Modified Experimental Protocol to Avoid Coffee Ring Effect Consistently 58

3.7. Time-Lapse Captures of Fluorescent Images Observed at Time 0 and 38 minutes . . 59

3.8. Time-Lapse Captures of Bright field Images Observed at Time 0, 15, 22.2 and 30
minutes. 60

3.9. Intensity Vs Time Plot for Bright-Field Time-Lapse Captures 61

4.1. DL Model Configuration Used in Classifying L-Alanine and L-Arginine 73

5.1. SAM Overview . 78

xi

https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://deeplizard.com/learn/video/my207WNoeyA

5.2. Automatic Segmentation Using SAM With and Without the Bounding Box Informa-
tion; (a) Segmentation Using SAM Automatic Mask Generator, (b) Segmentation
Using SAM Predictor . 80

5.3. U-Net Architecture Used for the Segmentation Task . 81

5.4. Average Dice Score vs. Epoch Observed on the Training and Validation Datasets
During the Training of U-Net. 84

5.5. Segmentation Output Masks Predicted by U-Net in comparison to the Ground Truth
Masks Across Different Weed Types in the Test Dataset. An Example Test Case
from Each Weed Category was used for the Demonstration. Expected denotes the
Ground Truth Masks Segmented Using the SAM, whereas Predicted denotes the
Output Masks Predicted by the U-Net during Inference. 85

xii

LIST OF ABBREVIATIONS

AI . Artificial Intelligence

ML . Machine Learning

DL . Deep Learning

CNN . Convolutional Neural Network

EHR. .Electronic Health Records

NAS. .Neural Architecture Search

RL . Reinforcement Learning

LSTM . Long Short-Term Memory

PPO . Proximal Policy Optimization

RNN . Recurrent Neural Network

AUC. .Area Under the ROC Curve

ROC . Receiver Operating Characteristics

TPR . True Positive Rate

FPR . False Positive Rate

Acc. .Accuracy

R-CNN . Region-based Convolutional Neural Network

YOLO . You Look Only Once

ReLU . Rectified Linear Unit

AC . Alternating Current

miRNA . microRNA

RNA . Ribonucleic Acid

DEP . Dielectrophoresis

TIE. .T-shaped Interdigitated Electrode

DNA . Deoxyribonucleic acid

DI .Distilled Water

SAM . Segment Anything Model

xiii

HR . Herbicide-Resistant

SSWM . Site-Specific Weed Management

UAS . Unmanned Aircraft System

IoU . Intersection Over Union

ss . Single-Stranded

MHz . Megahertz

R. .Reward

Vpp . Peak-to-Peak Voltage

CT . Computed Tomography

MRI . Magnetic Resonance Imaging

L . Litres

M . Molarity

nm . Nanometers

ED . Elliptical Dichroism

wandb . Weights and Biases Framework

ViT .Vision Transformers

ResNet . Residual Networks

HAM10000. .Human Against Machine with 10000 Training Im-
ages

EDTA. .Ethylenediamine Tetraacetic Acid

TE . Tris-EDTA

SSD . Single Shot Detector

VGG . Visual Geometry Group

BN . Batch Normalization

Conv1D . One-Dimensional Convolution Layer

Conv2D . Two-Dimensional Convolution Layer

xiv

LIST OF SYMBOLS

σ . Sigmoid Function

α .Learning Rate

ε . Epsilon

µ .Micro

% . Percentage

. Number of Filters in a Convolution Layer

xv

1. INTRODUCTION

1.1. Deep Learning in Medical Research

The advent of Deep Learning (DL) within medical research signifies a paradigm shift to-

wards data-driven insights and precision medicine. As a subset of Machine Learning (ML), DL

employs artificial neural networks with multiple layers to model complex nonlinear relation-

ships in large datasets [1]. This innovative approach has the unique capability of autonomously

learning and improving, distinguishing itself from traditional computational methods through

its ability to process and analyze data at an unprecedented scale and depth [2].

Integrating DL into medical research can be traced back to its foundational success in

recognizing intricate patterns and anomalies within vast amounts of data, particularly well-

suited to the multifaceted nature of medical diagnostics and research. DL algorithms have

begun to outperform traditional statistical methods and even expert human interpretation in

tasks such as image classification, natural language processing, and predictive modelling [3].

Such advancements are not merely incremental; they represent transformative progress in how

medical data are analyzed, interpreted, and applied to patient care.

Central to the utility of DL in this domain is its proficiency in handling medical imaging

data. Technologies such as Magnetic resonance imaging (MRI), Computed Tomography (CT)

scans, and X-rays generate large volumes of high-dimensional data, presenting a challenge for

traditional analysis techniques. DL models, particularly convolutional neural networks (CNNs),

have demonstrated unparalleled accuracy in interpreting these images, enabling the detection

of pathological features with a previously unattainable level of precision [4]. This capability

extends beyond diagnostics to include monitoring disease progression and predicting treatment

outcomes, thereby offering a holistic approach to patient care.

Moreover, DL has extended its impact to the realm of genomics, which aids in under-

standing the complex genetic underpinnings of various diseases. By analyzing the vast datasets

1

generated by genomic sequencing, DL algorithms can identify genetic variants associated with

specific conditions, facilitating the development of targeted therapies [5]. This application un-

derscores the move towards personalized medicine, where treatments can be tailored to the

individual genetic makeup of patients, optimizing efficacy and minimizing adverse effects.

Another significant contribution of DL in medical research is its ability to shift through

Electronic Health Records (EHRs) to extract meaningful insights. The heterogeneous and un-

structured nature of EHR data has traditionally posed a barrier to efficient analysis. However,

DL techniques, through their ability to learn feature representations directly from raw data,

can uncover patterns and correlations that inform clinical decision-making and policy devel-

opment [6]. This includes predicting patient outcomes, identifying disease risk factors, and

optimizing resource allocation within healthcare systems.

Considering these advancements, DL is not just an auxiliary tool but a foundational

pillar that reshapes the medical research landscape. Its ability to decipher the complexities of

biological data and translate these findings into clinical applications accelerates the transition

toward a more informed, efficient, and personalized healthcare paradigm [7]. As we continue

to explore and refine DL technologies, their potential to contribute to medical science is bound-

less, promising a future in which data-driven insights with unparalleled accuracy and depth

underpin medical decisions.

1.2. Challenges in Developing DL Models for Medical Research

Incorporating DL technologies into medical research introduces a landscape replete

with unprecedented opportunities and formidable challenges. The endeavour to harness the

full capabilities of DL models is marked by several obstacles intricately linked to the models’

inherent complexity, the unique nature of medical data, and the stringent demands for accu-

racy and reliability in clinical outcomes [8]. A nuanced understanding of these impediments

is imperative to advance the field and realize the extensive potential of DL in medical applica-

tions.

2

1.2.1. Navigating Data Challenges

The bedrock of DL efficacy depends on extensive, diverse, and accurately annotated

datasets. However, securing such datasets poses significant challenges in medical research.

Privacy concerns, regulatory limitations, and innate heterogeneity of medical data sources

contribute to the paucity and fragmentation of accessible data. Furthermore, medical datasets

often exhibit imbalances with the under-representation of certain conditions or outcomes, com-

plicating the development of models that perform uniformly across various patient demograph-

ics or disease spectra [9]. The issues of data scarcity and imbalance present substantial barriers

to crafting robust and universally applicable DL models.

1.2.2. Navigating Challenges Associated with DL Model Development

Optimized neural network structures are of paramount importance in medical-related

DL tasks due to the critical nature of the predictions and their direct impact on patient care

and deployment. This neural network structure can be conceptualized as a graph, specifically

a directed graph. This graph structure helps us understand how information flows through the

network when an input is passed [10]. The structure of the neural network graph is crucial for

achieving high performance and enabling the learning of complex features. A well-designed

architecture can capture intricate patterns and features in the input data, leading to better

performance. However, achieving an optimized neural network architecture requires a combi-

nation of expertise, experimentation, and time.

1.2.3. Addressing Model Complexity and Overfitting

DL models tailored for decoding complex medical data are distinguished by their elab-

orate architectures featuring a multitude of parameters and layers. Although this intricacy

enables the capture of subtle data patterns, it concurrently elevates the risk of overfitting.

Overfitting—a scenario in which a model memorizes rather than learns from the training

data—jeopardizes the model’s performance on novel, unseen datasets [11]. In the medical

3

sphere, where prediction inaccuracies carry grave consequences, the imperative of maintain-

ing model generalizability cannot be overstated.

1.2.4. Enhancing Interpretability and Fostering Trust

A pivotal challenge in deploying DL models for medical research is their "black-box" na-

ture, which obscures the models’ internal decision-making processes. This opacity complicates

clinicians’ and researchers’ efforts to comprehend the rationale underlying model predictions.

This is critical to engendering trust and acceptance of DL-based diagnostic and prognostic tools

in clinical environments [12]. The quest for transparent, interpretable models is thus essential

for integrating DL into healthcare settings, where decisions directly impact patient care.

1.2.5. Overcoming Computational and Temporal Constraints

DL models are marked by their high computational intensity, necessitating substantial

hardware resources. This is particularly true for models dealing with high-dimensional data,

such as those encountered in medical imaging or genomics. The considerable computational

expenses associated with iterative training and refinement of DL models can render them in-

accessible to many research institutions, thereby constraining the scalability and adoption of

DL applications in medical research [13].

1.2.6. Navigating Ethical and Regulatory Landscapes

As DL models have become increasingly integral to clinical workflows, they use a com-

plex array of ethical and regulatory considerations. Ensuring the ethical deployment of these

models requires stringent adherence to principles that safeguard patient privacy, data security,

and equitable healthcare outcomes [14]. Moreover, as regulatory frameworks evolve to align

with technological progress, continuous dialogue between developers, researchers, clinicians,

and policymakers is vital to guarantee that DL medical applications meet the highest standards

of safety, efficacy, and fairness.

The path to leveraging the transformative potential of DL in medical research is fraught

with several challenges. Addressing the intricacies of data management, model design, in-

4

terpretability, computational demands, and ethical governance is paramount for successfully

integrating DL in healthcare. Tackling these hurdles necessitates a collaborative, interdisci-

plinary approach that merges expertise from computer science, medicine, ethics, and policy,

thereby unlocking the full capacity of DL to enhance patient outcomes and enrich medical

knowledge.

1.3. Diving Deeper into the Hurdles in Crafting Optimized Neural Networks

In the realm of DL, particularly within medical applications, the optimization of neural

network structures stands as a pivotal endeavour. The significance of this optimization stems

from the profound implications associated with the predictions generated by these networks

[15]. Unlike many other domains, where errors might result in inconvenience or financial

loss, in the medical field, the stakes are infinitely higher. The predictions made by DL models

directly influence patient care, treatment decisions, and, ultimately, health outcomes. Thus,

pursuing optimized neural network architectures becomes not merely a technical challenge but

a moral imperative, with the potential to significantly impact the lives of individuals seeking

medical assistance. However, building an optimized, high-performing neural network for a DL

task is challenging and requires considerable expertise, time, and careful consideration.

Designing an effective neural network architecture demands a deep understanding of

the problem domain, the characteristics of the input data, and the desired output. This un-

derstanding allows data scientists and ML engineers to make informed decisions regarding the

network’s structure, including the number of layers, the types of neurons, and the connectivity

patterns [16]. Furthermore, the expertise of neural network developers in architectural inno-

vations, such as convolutional or recurrent layers for image and sequential data, respectively,

and careful incorporation of such layers can significantly impact the network’s ability to learn

complex features relevant to the task.

Besides crafting and experimenting with different neural network architectures, DL

models typically undergo refinement through a process known as Hyperparameter Tuning to

5

optimize their performance [17]. However, optimizing a neural network’s hyperparameters

requires extensive experimentation and iterative tuning. Hyperparameters in the context of

neural networks refer to the configuration settings that are external to the model and are not

learned during the training process [18]. These settings govern the behaviour of the neural

network during training and impact its performance, convergence, and generalization ability

[19]. Hyperparameters such as learning rate, batch size, and activation functions are crucial

in shaping the model’s performance and generalization capabilities. Achieving the optimal

configuration often involves conducting numerous training runs with different hyperparam-

eter settings, evaluating their impact on the model’s performance, and refining the choices

based on results. This process demands a deep understanding of the underlying principles of

optimization and the ability to interpret experimental outcomes to guide further adjustments.

Additionally, building an optimized neural network entails a significant investment

of time, both in terms of model development and computational resources. Experimenting

with different architectures and hyperparameters requires running multiple training iterations,

which can be computationally intensive, particularly for large datasets and complex models.

Furthermore, the iterative optimization process means that achieving the desired performance

may take considerable time and effort, as data scientists iterate through various architecture

configurations and fine-tune the model’s parameters [20].

1.3.1. Navigating the Challenges Associated with Hyperparameter Tuning in Neural Net-

work Optimization

In the intricate process of developing optimized neural networks for medical research,

hyperparameter tuning has emerged as a critical but challenging endeavour. Hyperparameters,

external configurations that dictate the model’s architecture and behaviour, are instrumental

in a model’s learning efficacy [21]. However, identifying the optimal hyperparameter constel-

lation presents several hurdles that can impede the creation of high-performance models.

6

• The Challenge of Complexity and Dimensionality : The task of hyperparameter tun-

ing is daunting owing to the vast array of hyperparameters and their potential config-

urations. Variables such as learning rates and number of neurons per layer, along with

more complex parameters such as dropout rates and convolution kernel sizes, each

have a significant influence on model performance [22]. This diversity spawns a mul-

tidimensional search space, where finding the optimal setup becomes a herculean task

regarding computational demand and time [20].

• The Maze of Interdependencies : Hyperparameters do not operate in isolation; ad-

justments to one parameter can necessitate changes in another, creating a tangled web

of interdependencies [23]. The interplay between hyperparameter settings and model

performance is typically nonlinear and counterintuitive, further complicating the opti-

mization process [24]. Such complexity renders simple or brute-force search strategies

insufficient and calls for more nuanced, iterative approaches capable of navigating the

intricate hyperparameter landscape.

• The Hurdle of Resource Intensiveness : Evaluating potential hyperparameter sets is

marked by their intense resource consumption [17]. Given the vast data volumes and

complex architectural characteristics of medical research models, each evaluation can

significantly strain computational resources and time [25]. This intensiveness limits

the practicality of thorough searches, particularly for teams with restricted access to

high-performance computing capabilities.

• The Dilemma of Limited Generalizability : Discovering an optimal set of hyperparam-

eters for a given dataset or problem does not guarantee its applicability to other datasets

or their variations [17]. This is particularly relevant in medical research, where dataset

disparities (stemming from patient demographics and measurement techniques) are

routine [26]. Consequently, the necessity to recalibrate hyperparameters for new datasets

or problems markedly increases the effort and timeline required for model deployment.

7

• The Influence of Expertise and Intuition : Despite the advent of automated hyperpa-

rameter optimization technologies, the tuning process relies heavily on the modeler’s

experience and intuitive judgment [27]. Decisions regarding which hyperparameters

to adjust and the initial search boundaries are typically more art than science grounded

in personal expertise.

• The Evolution of Solutions and Their Shortcomings : Efforts to mitigate the chal-

lenges of hyperparameter tuning have yielded strategies such as grid search, random

search, and Bayesian optimization [28]. However, each of these solutions has its own

limitations: no guarantee of optimization in a random search, inefficiency in the grid

and reliance on the complexity of the surrogate model for optimal results in Bayesian

optimization [29].

Hyperparameter tuning is a significant bottleneck in crafting optimized neural net-

works, constrained by search space complexity, resource demands, and the need for specialized

insight. Overcoming these constraints is pivotal for enhancing the performance and develop-

ment efficiency of DL models in medical research. This underscores the critical need to develop

automated approaches for neural network design.

1.4. Advent of Neural Architecture Search

The intricate process of developing optimized neural networks, coupled with the chal-

lenges inherent in hyperparameter tuning methodologies, underscores the necessity for auto-

mated algorithms capable of autonomously crafting neural network architectures. As discussed

earlier, while traditional approaches to model optimization rely on manual intervention and

iterative adjustments of hyperparameters, such practices often require expertise and entail sub-

stantial time investments. They may not consistently yield the most effective configurations.

Consequently, there has been a growing recognition of such methods’ limitations, prompting

a shift towards automated solutions to streamline the network design process and enhance

model performance.

8

In this context, Neural Architecture Search (NAS) [30] emerges as a promising paradigm

that seeks to revolutionize the landscape of neural network development. NAS leverages the

power of computational algorithms, often drawing inspiration from evolutionary strategies,

reinforcement learning techniques, or gradient-based optimization, to navigate the vast space

of possible network architectures and identify configurations that maximize performance for a

given task [31]. By automating the search process, NAS transcends the constraints of manual

hyperparameter tuning, offering a more efficient and scalable approach to model optimization.

One key advantage of NAS is its ability to conduct automated exploration of the architec-

tural space, facilitating comprehensive evaluation of a wide range of network configurations.

Unlike manual approaches, which may overlook promising design choices or require exhaustive

experimentation, NAS algorithms systematically navigate through architectural permutations,

uncovering patterns and architectures that exhibit superior performance characteristics [32].

This automated exploration not only accelerates the model development process but also en-

hances the likelihood of discovering novel architectures that may have been overlooked using

traditional methods.

Moreover, NAS algorithms are adept at optimizing resource utilization, a critical con-

sideration in the context of neural network design. By employing effective strategies, NAS has

the potential to mitigate the computational burden associated with exhaustive exploration of

the architectural space. This enables efficient allocation of computational resources and re-

duces the time and cost involved in model development, making NAS particularly well-suited

for large-scale optimization tasks and real-world applications where computational efficiency

is paramount.

Furthermore, NAS fosters transferability and generalization by identifying architectural

principles and design patterns that transcend specific datasets or tasks. Through iterative re-

finement and knowledge transfer mechanisms, NAS algorithms leverage insights from previous

searches to inform subsequent experiments, facilitating the development of architectures that

9

generalize well across diverse domains [33]. This capacity for knowledge transfer enhances

the robustness of neural network models and accelerates innovation and progress in the field

of deep learning.

In summary, NAS represents a paradigm shift in the realm of neural network design,

offering automated solutions to the challenges associated with manual hyperparameter tuning

and model optimization. By harnessing the capabilities of computational algorithms, NAS en-

ables efficient exploration of the architectural space, optimizes resource utilization, and fosters

transferability and generalization across diverse domains. As the demand for high-performing

neural network models continues to grow, NAS stands poised to revolutionize the model de-

velopment process, paving the way for advancements in Artificial Intelligence (AI).

1.5. Thesis Overview

In this thesis, we delved into the forefront of NAS and the REINFORCE policy gradient

method [30], aiming to significantly advance the development of DL architectures for medi-

cal image classification. This endeavour is driven by the crucial challenge of overcoming the

limitations posed by the traditional manual design of neural networks, which require exten-

sive expertise and considerable time investment, often rendering the development of high-

performance DL models a daunting task. Our methodology harnesses the autonomous design

capabilities of NAS, effectively reducing reliance on manual expertise, and pairs this with the

strategic optimization offered by Reinforcement Learning (RL) to refine and enhance DL archi-

tectures specifically crafted for the intricate demands of medical imaging, which has not been

explored before.

In order to prove the efficacy of NAS in autonomously designing neural networks for

medical image analysis, our research applies this integrated approach to precisely classifying

skin lesions within the DermaMNIST dataset. Through the application of NAS, augmented by

the REINFORCE policy gradient method, our research seeks not only to streamline the process

of architectural design and optimization for DL models but also to conduct a thorough evalua-

10

tion of the performance and efficiency of these autonomously generated architectures against

the current benchmarks set by state of the art human architected models.

This exploration is positioned to make significant contributions to the field of medical

image analysis, showcasing the viability and efficacy of integrating NAS with cutting-edge RL

techniques in developing DL models. The models emerging from our study are designed not

only to meet but also to surpass existing standards of performance and efficiency in medical

imaging, thereby establishing new paradigms for diagnostic accuracy and computational ef-

fectiveness. Our findings are anticipated to expand the body of knowledge on NAS and RL

in medical imaging, thereby setting the stage for groundbreaking innovations that potentially

transform the domain of medical diagnostics. By unveiling new avenues for developing DL

models, this research underscores the transformative impact of NAS and RL, promising to rev-

olutionize medical image classification and, by extension, enhance patient care and healthcare

delivery efficiency. Additionally, this thesis extends beyond its primary focus to encompass ad-

ditional projects and topics that are not central to the main research question but still relevant.

11

2. NEURAL ARCHITECTURE SEARCH FOR MEDICAL IMAGE

CLASSIFICATION 1

2.1. Abstract

The custom design of Deep Learning (DL) models for medical image classification repre-

sents a substantial challenge, compounded by the intricate balance between model complexity

and practical constraints of point-of-care deployment. This study delves into the potential of

Neural Architecture Search (NAS) with the REINFORCE algorithm as a strategy to circumvent

these obstacles and streamline the development of efficient DL models tailored for the Der-

maMNIST dataset. Through rigorous experimentation, we unveiled the capabilities of NAS

to automate the model design process and achieve an optimal balance between accuracy and

computational efficiency. Our findings suggest that NAS holds significant promise in enhanc-

ing the performance and applicability of DL models in medical diagnostics. This work not only

contributes to the ongoing dialogue on the feasibility of NAS in medical image analysis but also

sets a precedent for future research, underscoring the necessity for innovative solutions in the

era of digital medicine.

2.2. Introduction

The expanding use of DL in medical research is fueled by its capacity to offer precise,

automated, and effective analysis. This advancement not only boosts diagnostic procedures

but also enhances patient care, potentially leading to life-saving outcomes. The proficiency of

meticulously crafted DL models in discerning intricate features in medical images has greatly

propelled this trajectory [34]. However, designing a neural network that makes a DL model is

1 This chapter is based on the manuscript "On the Feasibility of Neural Architecture Search for DermaMNIST
Dataset" submitted to IEEE Research and Applications of Photonics in Defense Conference. This paper was
authored by Ridhanya Sree Balamurugan, Madhava Sarma Vemuri, Dharmakeerthi Nawarathna and
Umamaheswara Rao Tida. Ridhanya Sree Balamurugan was the lead author, responsible for conceptualizing the
research problem, drafting the manuscript, developing the research methodology, coding the Python scripts and
conducting simulations. Madhava Sarma Vemuri contributed to the result verification and proofreading of the
manuscript, while Dr. Dharmakeerthi Nawarathna and Dr. Umamaheswara Rao Tida provided guidance on the
research methodology, allocated resources, and contributed to the manuscript’s writing.

12

a complex task requiring specialization. Moreover, the process itself is very time-consuming,

where the developed initial neural network design is tested and fine-tuned several times to

obtain an optimal DL model that has superior performance on the target task [35]. Therefore,

there is a need to build algorithms that can efficiently automate this process. Recent research

in this direction has given rise to NAS, an algorithm that can autonomously design neural

networks efficiently for a target DL task [32].

Figure 2.1. Key Components of NAS

As illustrated in Figure 2.1 adapted from [36], NAS employs a sophisticated framework

comprised of three fundamental components: the search space, the search strategy, and the

performance estimation strategy. Central to NAS is the concept of the search space, a metic-

ulously defined domain encompassing the fundamental building blocks of neural network ar-

chitectures. Within this space, various architectural elements, such as layers, neurons, and

connectivity patterns, are carefully crafted to encapsulate the diverse range of configurations

that contribute to the structure of a neural network.

The search strategy is the guiding force that navigates through the vast expanse of the

search space, orchestrating the assembly of these architectural components into coherent end-

to-end deep learning models. Through a process of exploration and optimization, the search

strategy systematically samples from the search space, iteratively synthesizing and evaluating

candidate architectures with the help of a performance estimation strategy to identify those

with superior performance characteristics. This iterative refinement process is essential for

uncovering novel architectural designs and fine-tuning model configurations to maximize per-

formance across various tasks and datasets. As illustrated in Figure 2.1, when the search strat-

13

egy constructs Architecture A by assembling components in the search space, it relies on the

performance estimation strategy to evaluate its performance. This evaluation is subsequently

leveraged by the search strategy to refine the construction of superior architectures.

Central to the efficacy of NAS is the performance estimation strategy, which serves as a

critical mechanism for efficiently evaluating the sampled neural network architectures. Given

the computational complexity associated with training and evaluating numerous candidate

models, the performance estimation strategy plays a pivotal role in enabling the search strat-

egy to make informed decisions about the design and refinement of architectures. Moreover,

the performance estimation strategy facilitates rapid and accurate assessment of architecture

performance, thereby accelerating the optimization process and enhancing the effectiveness

of NAS. Together, these three components form the backbone of the NAS framework, provid-

ing a systematic and automated approach to the design and optimization of neural network

architectures.

Previous studies in NAS have proved the efficacy of using Reinforcement Learning (RL)

as a search strategy in building architectures for DL models that outperformed state of the

art architectures designed manually by experts in the Imagenet classification task [30][37].

Additionally, the neural networks designed by these RL-based NAS were lightweight, an im-

portant criterion for edge deployment, as compared to the existing state of the art DL models.

Therefore, in this work, we investigate if NAS integrated with the REINFORCE policy gradient

method, a class of RL algorithms, can create efficient neural network designs for medical image

classification tasks. We have proved the efficacy of our approach by developing efficient DL

architecture designs to detect and classify skin lesions on the DermaMNIST dataset [38].

2.2.1. Related Works

Our research is related to the previous studies in the domain of NAS with RL [30][37],

where they used NAS frameworks to design Convolutional Neural Networks (CNNs) for the

ImageNet Classification tasks. [30] designed NAS using Long Short-Term Memory (LSTM)

14

and REINFORCE policy gradient to search for optimized variable-length hyperparameters for

CNN layers. [37] designed a NAS framework utilizing Proximal Policy Optimization (PPO), a

class of RL algorithms, and LSTM to design two cells, called the Normal and the Reduction cell.

They stacked these cells to formulate an end-to-end neural network for image classification on

the CIFAR-10 dataset. The optimized neural network was then scaled for its application on

larger datasets. Although the above-mentioned studies inspired our research, they did not

investigate generating top performing DL architectures for medical use cases, specifically for

skin lesion detection and classification on the DermaMNIST dataset.

Many of the previous research [34][35][38][39][40] involving skin lesion classification

using the DermaMNIST dataset utilized expert designed neural networks to report the results.

Of these studies, two notable NAS-based research are [34] and [35], both of which utilized

evolutionary algorithms to build a NAS framework. This is vastly different from the RL-based

approach that we investigated in this study.

Additionally, [34] used AutoML techniques, which are closely related to our NAS frame-

work in autonomously designing Machine Learning (ML) models on the DermaMNIST dataset.

These techniques include auto-sklearn [41], AutoKeras [42] and Google AutoML Vision. auto-

sklearn, which is based on the python package scikit-learn [43], utilizes techniques like Bayesian

optimization and ensemble methods to search for optimized input processing methods and ML

classifiers such as random forest along with their hyperparameters. AutoKeras, which is based

on the Keras package [44], utilizes NAS framework guided by Bayesian Optimization. Google

AutoML Vision, available as a service from Google Cloud (as of July 2021), is a commercial

AutoML tool designed for image recognition and classification tasks. The techniques employed

in these frameworks vastly differ from the approach we investigated in this study.

2.3. Methodology

The entirety of our framework’s implementation is illustrated in Figure 2.2. Our NAS

framework generates DL model architecture configurations autonomously using a component

15

known as the LSTM controller. This LSTM controller sequentially samples a neural network

architecture in over 30 iterations to build a DL model, referred to as the child model in our

framework. This sampled architecture comprises two units, Basic and Reduction Unit, com-

prising three subunits each. Each subunit comprises five nodes, I1, I2, OP1, OP2 and CO, as

shown in Figure 2.2. Once the child model is constructed as per the sampled architectural

design, it is trained for 20 epochs to detect and classify skin lesions on the target DermaMNIST

dataset. The validation accuracy obtained is used as a low-fidelity performance estimate to

evaluate the effectiveness of the generated architecture designed by the LSTM controller. The

REINFORCE algorithm also utilizes this performance to update the weight parameters of the

LSTM controller so that it is trained to generate better performing architectures over time.

Figure 2.2. NAS Framework Overview

Subsequent subsections provide a detailed explanation of the LSTM controller’s imple-

mentation and operation, nuances in the child model architectural designs, and an elaboration

on the REINFORCE policy gradient algorithm.

2.3.1. Child Model Design

A child model sampled by the LSTM controller consists of two units, Basic and Reduction

Unit, as shown in Figure 2.3. Just like [37], the basic unit takes the input image as its input

16

and maintains its size, while the reduction unit takes the output of the basic unit as its input

and reduces the feature map size with a stride of 2 and doubles the depth size. Each of these

units is composed of three subunits. Each subunit comprises five nodes: two Input nodes (I1

and I2), two Operation nodes (OP1 and OP2), and a combining operation node (CO).

Figure 2.3. Child Model Design

Figure 2.4. Subunit Design

As shown in Figure 2.4, to build a subunit, the two operation nodes OP1 and OP2

are applied to the input nodes, I1 and I2, respectively. The two intermediate outputs are

then combined using the combining operation node, CO. The choices from which the LSTM

controller samples these nodes make our search space. Similar to [37], for the basic unit, I1

and I2 can either be the input images or any previous subunit outputs within the unit. The final

17

output of the basic unit is the output of the third subunit concatenated with any unconnected

subunit outputs within that unit. Likewise, for the reduction unit, I1 and I2 can either be

the final output of the basic unit or any previous subunit output within the unit, and its final

output is the output of the third subunit concatenated with any unconnected subunit outputs

within that unit. For both basic and reduction units, OP1 and OP2 can be from any of the 10

two-dimensional convolution operations, which include (i) 3*3 average pooling, , (ii) 5*5 max

pooling, (iii) 1*1 convolution, (iv) 3*3 depthwise-separable convolution, (v) 7*7 depthwise-

separable convolution, (vi) 3*3 dilated convolution, (vii) 3*3 max pooling, (viii) 7*7 max

pooling, (ix) 3*3 convolution, and (x) 5*5 depthwise-separable convolution. CO node can

either be add or concat operations for both the units.

In summary, the LSTM controller samples two units to generate the architecture config-

uration for the child model. Each unit comprises three subunits, which are, in turn, composed

of five nodes. Therefore, to sample one child model’s architecture, the LSTM controller has to

sample 30 nodes from the search space.

2.3.2. Implementation of the LSTM Controller

Figure 2.5. Architecture of LSTM Cell. Image edited from GeeksforGeeks

The fundamental concept guiding the sequential sampling process of the LSTM con-

troller revolves around the utilization of LSTM layers. LSTMs are a type of Recurrent Neural

Network (RNN) that are particularly well-suited for tasks involving sequential data, such as

18

https://www.geeksforgeeks.org/understanding-of-lstm-networks/

time series forecasting, natural language processing, and speech recognition. They were in-

troduced by [45] and vastly differ from traditional neural networks because they can learn

long-term dependencies. For instance, LSTM can predict the last word in a statement given

the previous words as input, while the traditional neural networks struggle at this task. This

is because LSTMs can practically learn to remember information over a long period of time.

Since this particular task of predicting the last word in a statement depends on remembering

the context using the preceding words, the traditional neural networks fail to perform well as

they don’t excel at capturing long-term dependencies.

An LSTM cell, shown in Figure 2.5, contains various components (or gates) that allow

it to learn and forget information over time selectively. This enables LSTMs to capture long-

term dependencies. The line connecting Ct−1 and Ct is where the information flows from the

previous LSTM cell to the next through the current cell. Ct , referred to as the cell state of the

LSTM cell, serves as a memory that retains information over long sequences and across multiple

time steps. Additionally, each LSTM cell takes a time-dependent input. Time-dependent inputs

refer to data where the order or sequence of observations matters, and each observation is

associated with a specific time or time step. In other words, the input data has a temporal

structure, and the relationship between observations is not independent but dependent on

their order in time. As illustrated in Figure 2.5, the three LSTM cells take inputs at a specific

time, t-1,t and t+1.

The LSTM cells transmit information among themselves through the various gates,

which determine what information to add or remove before passing it to the next cell. These

gates are explained in detail below.

2.3.2.1. Forget Gate

Forget gate determines the amount of previous information or cell state, Ct−1 to be

retained using the equation below.

ft = σ(Wf .[ht−1, x t] + b f)

19

where σ, referred to as a sigmoid layer, is an activation function which outputs a number

between 0 and 1; ht−1, referred to as a hidden state, is the output of the previous LSTM cell; x t

is the input at time t ; (Wf , b f) are the weight parameters associated with the forget gate of the

LSTM cell. ft ranges between 0 and 1 and is multiplied with the previous cell state, Ct−1, as

shown in Figure 2.5, to determine the amount of information to retain from the previous cell

state. Multiplying ft value of 1 with Ct−1, denotes that the information from the preceding cell

is completely retained for further processing, and 0 denotes that this information is completely

discarded.

2.3.2.2. Input Gate

The input gate is a pivotal component responsible for determining how much new in-

formation should be incorporated into the cell state, Ct . This is performed in two parts, repre-

sented mathematically using the following equations.

it = σ(Wi.[ht−1, x t] + bi)

C ′t = tanh(WC .[ht−1, x t] + bC)

where (Wi, bi, WC , bC) are the weight parameters associated with the input gate and tanh,

referred to as tanh layer, is an activation function which outputs values between -1 and 1. The

first equation outputs values between 0 and 1, which, when multiplied with the outcome of

the second equation, determines how much of the new information has to be added to the cell

state, Ct .

2.3.2.3. Output Gate

The output gate determines the final cell state output, Ct , and hidden state output, ht ,

of the LSTM cell. Ct , determined by the results of the input and forget gate, remains unchanged

20

while passing through this gate. ht is determined by the following equations.

O′t = σ(Wo.[ht−1, x t] + bo)

ht = O′t ∗ tanh(Ct)

where (Wo, bo) are the weight parameters associated with the output gate. The first equation

outputs values between 0 and 1, which, when multiplied with the outcome of the second

equation, determines the hidden state output ht of the LSTM cell. The hidden state output of

an LSTM cell is not only passed to the next LSTM cell in the sequence but is also produced as

the final output of that cell. This hidden state basically contains the filtered version of the cell

state to selectively retain and focus on relevant information while discarding less important

details. As the the cell state is a long-term memory that stores information over the entire

sequence of inputs at different timesteps, it can potentially contain a mix of both relevant and

irrelevant information to predict outcomes for an input at that time step. Therefore, the hidden

state captures the relevant short-term dependencies from the cell state to produce the output

of the LSTM cell for the current time step, as determined by the output gate.

As shown in Figure 2.5, each LSTM cell, stacked horizontally, can be used to process

inputs at a specific time step. Usually, this is referred to as an LSTM layer, which encapsulates

the multidimensional hidden and cell states. This vector-based memory structure enhances

the LSTM’s capacity to learn features from sequential data, making it proficient in capturing

complex patterns and dependencies.

In our implementation, we utilize an LSTM layer, akin to the depiction in Figure 2.5,

where both the hidden and cell states are vectors of size 100. Input X t at time t is passed as its

input. The output from this LSTM layer at each timestep is then connected to 30 different fully

connected layers of varying sizes. A fully connected layer, or Dense layer, is a fundamental

component of any DL model. In a dense layer, each neuron or unit is connected to every

21

neuron in the previous layer, forming a fully connected network topology. Mathematically, the

operation performed by a dense layer is illustrated using an example as follows:

Figure 2.6. Illustrative Example of Fully Connected Layers.

Let X, a vector of size 3 ∗ 1, be the input to the dense layer of size 2. The output of

the dense layer, denoted as Z of size 2 ∗ 1, can be calculated using the equation Z =W.x + b,

where W, a matrix of size 2 ∗ 3 and b, a vector of size 2 ∗ 1, are the weight parameters of the

dense layer. This is demonstrated in Figure 2.6.

The size of vector X, in our implementation, is 100 as the LSTM layer’s output at each

timestep is of size 100. The size of the dense layers to which this vector X is connected in the

LSTM controller in our framework varies according to the number of choices available in the

search space to sample a particular node. This is demonstrated in Figure 2.2. For instance, to

choose a CO node, the LSTM controller uses a dense layer of size 2 as the choices for the CO

node in the search space are add and concat operations. To sample a choice for a node, the

LSTM controller uses probability distributions, which can be generated by applying a softmax

activation function defined by σ(Zi) = eZi/
∑K

j=1 eZ j , where Z, of size 1 ∗ K , is the output of

each of these dense layers. This is often referred to as softmax probability distribution.

22

2.3.3. Working of the LSTM Controller

To generate an architecture configuration, the LSTM controller samples choices for the

30 nodes sequentially. That is, at time t=0, it samples the choice for input node I1 for the basic

unit’s first subunit. Similarly, at t=29, it samples the choices for the CO node of the reduction

unit’s third subunit. Additionally, the five nodes in a subunit are sampled sequentially in an

order - I1, I2, OP1, OP2 and CO, and the reduction unit’s subunits are sampled only after the

basic unit’s architecture is sampled. This is demonstrated in Figure 2.2.

Initially, at time t=0, a set of 30 zeroes, denoting 30 different nodes that the controller

has to sample over the course of 30 iterations, is passed as inputs to the LSTM controller.

This generates 30 different softmax probability distributions. As we intend to choose only the

input node I1 at t=0, we sample a choice for I1 based on the respective softmax probability

distribution, ignoring the remaining 29 softmax probability distributions. The sampled choice,

I1, is then added to the first position of the set of 30 zeroes, replacing the first zero. This denotes

that the first node is sampled. Then, this new input formed by adding a set of 29 zeroes to the

choice sampled for I1 is passed as input to the LSTM controller at time t=1 to sample I2. This

process continues until all the 30 zeroes are replaced with the respective node choices. As the

LSTM controller can only process numbers, each choice available for the node in the search

space is assigned a numerical encoding, starting from 1 and incrementing by 1 up to the total

number of choices in the search space. Thus, the numbers from this numerical encoding are

utilized to replace the respective 0-s for each choice sampled by the LSTM controller.

In our implementation, as there are no other potential choices in the search space for

I1 and I2 for the basic unit’s first subunit other than the input image, we choose them as the

two input nodes with a probability of 1. Similarly, we choose the basic unit’s final output as

the input nodes, I1 and I2, for the reduction unit’s first subunit with a probability of 1. The

strategy for choosing a particular node from a softmax probability distribution is elaborated in

sections dedicated to the REINFORCE policy gradient.

23

Once the LSTM controller samples these 30 nodes, a child model is built and trained

for 20 epochs on the target DermaMNIST dataset to get a performance estimation to assess

the effectiveness of the sampled architecture. To train the LSTM controller to sample better

architectures over time, this performance of the child model is also used as feedback to update

its weight parameters, which includes the weights of the dense layers and the LSTM layer. This

is done using the REINFORCE policy gradient method. In our implementation, we sample a

batch of architectures (or a batch of 30 choices for the nodes) for the child model, train them

for 20 epochs and use the cubed maximum validation accuracy in the last 5 epochs to update

the LSTM controller’s weight parameters using the REINFORCE policy gradient algorithm to

enable it to sample better architectures over time.

2.3.4. REINFORCE Algorithm

Figure 2.7. Overview of RL. Image adapted from Deeplizard

In the context of the REINFORCE algorithm, the choices that the LSTM controller sam-

ples for all 30 nodes can be considered as a list of actions a1:T taken by it to design the child

model’s architecture, where T=30 in our implementation. In RL, the component which per-

forms the role of sampling actions is called an agent.

As illustrated in Figure 2.7, an agent observes and interacts with an environment, which

is at a state St , at time t by taking an action At . This causes the environment to change its state

to St+1, incurring a reward Rt+1. If the action, At , caused a favourable St+1, the reward obtained

24

https://deeplizard.com/learn/video/my207WNoeyA

is higher, else it’s lower. This reward, Rt+1, is then passed as feedback to the agent to sample

better actions over time. This process then starts over for the next time step, t+1. When we

cross the dotted line on the bottom left, the figure shows t+1 transforming into the current

time step t. Usually, the agent has a set of possible actions to select for a particular state of

the environment. What action to choose upon observing a particular state of the environment

is decided by a policy which the agent follows to act. A policy is a function that maps a given

state to probabilities of selecting each possible action. The goal of the agent in RL is to learn

a policy to sample actions that maximizes the expected reward, which is simply the sum of

future rewards. That is, if the agent has to sample T actions to perform a task, it has to learn

an optimal policy which when followed to sample actions, each incuring an reward, gives the

highest cumulative reward. In other words, R1+R2+ ...+RT must be the highest value possible

where each Rt is the reward incured when the agent performs action At−1.

In our case, the agent is the LSTM controller, environment is the state of the architec-

ture; that is, the input of the LSTM at time t and reward, R, for each node selection is the

maximum cubed validation accuracy obtained in the last 5 epochs when the child model is

trained for 20 epochs. The policy, in this case, is the LSTM controller itself, which tunes its

weight parameters to generate softmax probability distributions favoring the best actions that

incur maximum expected reward, with high probabilities, given the state of the architecture as

input. Usually, the choice corresponding to the highest probability in the softmax probability

distribution is sampled for the node. However, to enable the LSTM controller to explore new

choices and to avoid getting optimized to suboptimal choices, in our implementation, we use

an epsilon greedy strategy with ε = 0.1. In this method, we generate a random probability.

If this probability is greater than ε, we sample the choice with the highest probability in the

softmax probability distribution, and if it is lower than ε, we randomly choose a choice for the

node.

25

As stated earlier, the objective of our agent, the LSTM controller, is to learn an optimal

policy to sample actions a1:30 through which it can obtain the maximum possible expected

validation accuracy, R. This is represented by the objective function J(θc).

J(θc) = EP(a1:T ;θc)[R]

where P(a1:T) denotes the list of softmax probabilities using which the LSTM controller makes

a choice for 30 nodes using it’s weight parameters, θc.

In order to update the weight parameters of any neural network, firstly, an objective

function, also known as the loss function, like the one defined above, is partially differentiated

with respect to each weight parameter in the model. This procedure is called Backpropagation.

This partially differentiated value is then scaled by a learning rate α and is then subtracted

from the weight parameter in order to update it. This process is called Gradient Descent.

Usually, the objective function or the loss function is an error quantifying how the predictions

by the neural network are far from the actual true values. Therefore, the above theory holds

if the goal is to minimize the error value from this objective function. In our case, the value

from the objective function, J(θc), needs to be maximized as the agent’s goal is to maximize

the validation accuracy (R). Therefore, in this scenario, the objective function, J(θc) defined

above, must be backpropagated and then the scaled partial differentiations must be added to

the LSTM weight parameters. This process is called Gradient Ascent. However, the reward R

is not differentiable with respect to the weight parameters of the LSTM controller. Therefore,

we use the REINFORCE policy gradient method from [46]:

∇θc
J(θc) =

T
∑

t=1

EP(a1:T ;θc)[∇θc
log P(at |a(t−1):1;θc)R]

26

An approximation of the above equation is:

∇θc
J(θc) =

1
m

m
∑

k=1

T
∑

t=1

∇θc
log P(at |a(t−1):1;θc)Rk

Where m represents the number of different architecture configurations sampled by the

LSTM controller. Rk represents the reward obtained by training the k-th architecture configu-

rations sampled for the child model. This equation contains the term log P(at |a(t−1):1), which

is the log of the probability from the softmax probability distribution associated with choosing

an action at when the previously sampled actions, a(t−1):1 are passed as inputs of the LSTM

controller. As this probability comes from the softmax probability distribution computed using

the weight parameters of the LSTM controller, the above equation can be used for finding par-

tial differentiations using backpropagation and gradient ascent can be utilized to update the

weights.

Usually, the reward Rk varies drastically among different architectural configurations

sampled. Therefore, this leads to drastic variations in the LSTM weight parameters update.

This can potentially lead to instability in the training process of the LSTM controller and might

cause it to optimize to a suboptimal architectural design for the child model. Therefore, to

handle this variation in the reward signal, we use a baseline function.

∇θc
J(θc) =

1
m

m
∑

k=1

T
∑

t=1

∇θc
log P(at |a(t−1):1;θc)(Rk − b)

where, in our implementation, b is the exponential moving average of rewards of pre-

vious batches.

In summary, to train the LSTM controller, a batch of architecture configurations is sam-

pled and trained for 20 epochs to generate the rewards. Then the weight parameters, θc, of

27

the controller LSTM are updated using the gradient ascent rule :

θc = θc +α∇θc
J(θc)

where α is the learning rate.

2.4. Results and Discussion

In the ambit of our investigation, we meticulously explored the incorporation of NAS

to autonomously design DL models for the sophisticated realm of medical image classifica-

tion. Central to our methodological framework was deploying a LSTM controller designated

to traverse a broad spectrum of potential neural network configurations. This exploration was

rigorously defined by specific implementation parameters pivotal to our experimental endeav-

ours’ success.

Our experimental framework, built using Tensorflow 2.11.1, was underpinned by a

high-performance computing setup utilizing NVIDIA dual RTX A6000 GPUs and an AMD Thread-

ripper 64-core processor, supplemented by 500GB of RAM. This infrastructure was paramount

in managing the substantial computational load necessitated by our NAS framework, enabling

efficient processing and evaluation of a wide array of complex model architectures.

2.4.1. LSTM Controller Sampling and Training Details

The core of our experiment hinged on the LSTM controller’s capacity to sample over

50,000 architecture variations throughout the study’s course. The weight parameters gov-

erning the LSTM controller were dynamically refined after evaluating every five architectural

samples, leveraging the capabilities of the Adam optimizer with a default learning rate α =

0.001. The default weight initialization provided by TensorFlow 2.11.1 was applied, except

for the LSTM layer, where the weights linked to the hidden state and inputs were initialized

using Glorot uniform, while biases were set to zeros. Additionally, the initial hidden and cell

states of the LSTM layer were initialized as vectors of zeros, each with a size of 100.

28

2.4.2. Child Model Implementation and Training Details

Once the LSTM controller sampled an architecture, the node selections were decoded

based on the numerical encoding performed on the search space, and the child model was

built with an initial depth size (#) of 3. Due to the application of combining operation nodes

in each subunit, the depth size was varied dynamically based on the addition or the concate-

nation operation. Additionally, 1*1 convolution layers were used when necessary during the

application of the add and concat operations. The default weight initialization provided by

TensorFlow 2.11.1 was applied across all the child model layers. Each generated child model

was trained for 20 epochs using the Adam optimizer with a default learning rate α = 0.001

and categorical cross-entropy loss. Data for training these models was passed in batches of

size 64. Additionally, since we train the child models only for 20 epochs to get a performance

estimation, the child model weights were saved at the 20th epoch to continue training them

until convergence, if required, after the architecture search by the NAS framework is complete.

Training until convergence refers to the process of training a child model until its performance

metrics stabilize or improve to a satisfactory level.

2.4.3. Data Split and Preprocessing

Within the expansive realm of medical image datasets, the DermaMNIST dataset emerges

as a specialized subset meticulously curated to propel dermatological diagnostics into the new

era of ML. Central to our exploration, DermaMNIST lays the groundwork for a comprehensive

evaluation of child model architectures generated by our NAS framework. This dataset, encap-

sulating the multifaceted challenges of dermatological imagery, serves as an ideal canvas for

probing the boundaries of contemporary DL architectures. In the upcoming subsections, we

will provide a detailed explanation of the data preprocessing and splitting procedures applied

to the DermaMNIST dataset in preparation for training our child model.

29

2.4.3.1. Data Composition and split

DermaMNIST is not just a collection of images but a meticulously curated gallery show-

casing dermatoscopic imagery distributed across seven distinct lesion categories. From Melanocytic

nevi to melanoma and basal cell carcinoma, the dataset offers a panoramic view of dermatolog-

ical conditions, enabling a holistic approach to model training and evaluation. This dataset is

based on Human Against Machine with 10000 training images (HAM10000) [47][48], which

contains a vast collection of dermatoscopic images depicting various common pigmented skin

lesions. These images serve as valuable resources for dermatological research and analysis.

In total, the DermaMNIST dataset comprises 10,015 dermatoscopic images, each categorized

into one of seven different diseases. This categorization forms the basis of a multi-class classi-

fication task, where the goal is to develop a ML model, which in our case is the optimized child

model, capable of accurately classifying these images into their respective disease categories.

Table 2.1. Distribution of DermaMNIST Dataset

Skin Lesion Type Data Count

Actinic Keratoses 327
Basal cell carcinoma 514

Benign keratosis 1099
Dermatofibroma 115
Melanocytic nevi 6705

Melanoma 1113
Vascular skin lesions 142

Figure 2.8. Skin Lesion Types in DermaMNIST Dataset

30

The distribution of the seven categories within the dataset is presented in Table 2.1. An

image randomly chosen representing each category is displayed in Figure 2.8. The publishers

of the dataset resized the original source images, resulting in a published dataset composed of

images with dimensions 28x28 pixels, each containing three image channels (RGB). Addition-

ally, to facilitate model training and evaluation, the publishers of the dataset also partitioned

the dataset into three subsets: training, validation, and test sets. The partitioning is performed

using a ratio of 7:1:2, ensuring that the majority of the data is allocated for training while also

reserving portions for validation and final evaluation. Specifically, 70% of the images are as-

signed to the training set, 10% to the validation set, and 20% to the test set. In our experiment,

we retained this default data split provided by the publishers and preserved the original size

of the images without resizing them.

2.4.3.2. Data Preprocessing

Central to our preprocessing regimen is normalizing images across the dataset. It is typ-

ical to divide the pixel values by a scaling factor, often 255. This normalization step brings the

pixel values into the range [0, 1]. Since pixel values in typical image datasets are represented

as integers in the range [0, 255], dividing by 255 ensures that the pixel values are scaled to

the range [0, 1]. Normalization helps standardize the input data and ensures all features have

a similar scale, aiding faster convergence during training.

After image normalization, mean subtraction was performed. In this process, the mean

of the training dataset across the three image channels is computed and subtracted across the

entire dataset. Subtracting this mean value from each pixel helps center the data around zero,

improving the training process’s convergence and stability. To prevent data leakage, the mean

of only the training dataset is computed, excluding the validation and test. When performing

ML tasks, it’s crucial to ensure the model does not inadvertently learn information from the

validation or test sets. If the mean subtraction is applied to the images with the entire dataset’s

mean, the model could indirectly gain knowledge about these unseen datasets, leading to data

31

leakage. Data leakage can significantly affect the performance and reliability of ML models.

Data leakage can artificially inflate the performance metrics of a ML model. Since the model

unintentionally learns information from the validation or test sets, it may appear to perform

well on these datasets. However, this performance does not indicate the model’s ability to

generalize to unseen data, leading to overestimated performance metrics. Utilizing only the

training dataset’s mean to compute mean subtraction on the entire dataset ensures that the

model is only trained on information in the training data.

Each of these processed images is associated with a specific category or class label that

represents the type of lesion it depicts. These class labels are essential for training a classifi-

cation model to predict the correct class for new, unseen images. Therefore, one hot encoding

was performed to ensure that the class labels were converted into a format that the child model

could understand. One-hot encoding is a technique used to represent categorical data, such as

class labels, in a format suitable for ML algorithms. One-hot encoding transforms each class

label into a binary vector representation. Specifically, for each image:

• A binary vector of length seven is created, where each element corresponds to one of

the seven skin lesion categories.

• The element corresponding to the class label of the image is set to 1, while all other

elements are set to 0. This element, represented with a 1, indicates the presence of the

associated category.

• For instance, if an image belongs to category 3, its one-hot encoded representation

would be [0, 0, 1, 0, 0, 0, 0].

2.4.4. Navigating Dataset Challenges

2.4.4.1. Addressing Skewed Distribution

Despite meticulous curation, DermaMNIST mirrors the real-world scenario of uneven

lesion prevalence, presenting a skewed distribution that could bias learning processes. Our

32

methodology incorporates sophisticated preprocessing measures, recalibrating this imbalance

to foster equitable model learning—an endeavour critical for achieving diagnostic impartiality.

Data imbalance in medical datasets, where significantly fewer examples than others

represent certain classes or conditions, can seriously affect diagnostic models and patient care.

ML models trained on imbalanced datasets tend to be biased towards the majority classes.

Since there are fewer examples of minority classes, the model may not learn to accurately

distinguish between them. As a result, it may prioritize predicting the majority class, leading

to underrepresentation or misclassification of minority classes.

In medical diagnosis, false negatives can have severe consequences, as they may result

in delayed treatment or lack of necessary interventions. In the case of imbalanced datasets,

models may be more likely to incorrectly predict the outcome as the majority class, leading

to false negatives for minority classes. This can result in undetected medical conditions or

diseases going untreated.

Data imbalance can exacerbate existing healthcare disparities by disproportionately af-

fecting underrepresented patient populations. If minority classes are underrepresented in the

training data, models may perform poorly for these groups, leading to disparities in diagnostic

accuracy and potentially unequal access to healthcare services and treatments.

To mitigate this problem, in our approach, we implemented class weights within the

training regimen to neutralize this imbalance. The computation of class weights is grounded

in the principle of inverse frequency, ensuring that rarer categories wield a proportional influ-

ence on the learning process. In our implementation, initially, the dataset was examined to

identify the category with the highest number of images. This category serves as the reference

point for computing the class weights. Next, the number of images belonging to each individual

skin lesion category was determined. This information is essential for understanding the dis-

tribution of data across different classes. The class weight for each category was calculated by

dividing the highest image count by the number of images in the respective category. This com-

33

putation results in a weight value that reflects the relative imbalance of each class compared

to the category with the highest representation. For example, if the category with the highest

image count has 1000 images, and a specific category contains 500 images, the class weight

for that category would be 1000/500 = 2. This indicates that the category with 500 images

is represented only 50% compared to the category with 1000 images. Such a methodologi-

cally sound approach compensates for underrepresentation, facilitating an equitable learning

landscape.

By integrating these class weights into the model training phase, we adjust the loss func-

tion to accurately reflect the dataset’s class distribution. This adjustment guarantees that the

learning process is not unduly influenced by more prevalent lesion types, promoting balanced

and comprehensive learning across all categories.

2.4.4.2. Complexity in Visual Diagnosis

The dataset’s visual diversity, marked by varying lesion shapes, sizes, colours, and tex-

tures, elevates the complexity of the classification challenge. It necessitates models of ex-

ceptional discernment, capable of extracting and synthesizing these intricate visual cues into

accurate diagnostic conclusions.

2.4.5. Evaluating the Effectiveness of the LSTM Controller

Figure 2.9 demonstrates the effectiveness of our LSTM controller in sampling archi-

tecture configurations better than the previously sampled designs for the child models. To

understand this effectiveness, the mean of maximum validation accuracy obtained in the last

5 epochs of the 20 epochs (cube root of the reward) of the top 1, 5 and 25 performing models

across 50,000 sampled architectures was computed. By analyzing the trend and stability of

this plot, one can gain insights into the controller’s learning progress, performance, and con-

vergence towards an optimal policy. Therefore, this is a valuable metric for assessing the LSTM

controller’s policy over time.

34

Additionally, this plot shows a consistently increasing trend, which indicates that the

LSTM controller’s policy is yielding favourable outcomes and maximizing rewards. This sus-

tained increase also reflects that the LSTM controller is effectively learning from experience

and making better decisions. Moreover, it provides insights into the relative effectiveness of

sampled architecture configurations. That is, the LSTM controller has learnt to sample archi-

tecture configurations of superior quality over the previously sampled designs with time.

Figure 2.9. Performance of Our NAS Framework in Sampling Child Models of Superior Quality
Over Time.

2.4.6. Filtering the Best Model

Of the 50,000 architectures sampled by the LSTM controller, we selected the 25 models

with the best rewards during the search. These top 25 models were trained until convergence.

The best performing model from this analysis was selected as the optimized child model for

the skin lesion detection and classification on the DermaMNIST dataset.

2.4.7. Grid-Based Hyperparameter Search

The selected best performing child model was further optimized with a small hyperpa-

rameter tuning with grid search. A grid-based hyperparameter search is a systematic approach

35

used in ML to optimize a model’s performance by exploring a predefined set of hyperparameter

combinations.

The grid search technique involves defining a grid of hyperparameter values to explore.

Each dimension of the grid represents a different hyperparameter, and each point in the grid

corresponds to a specific combination of hyperparameters. The algorithm then systematically

evaluates the performance of the model trained with each hyperparameter combination using

a predefined evaluation metric, which in our case is the validation accuracy.

In our implementation, we ran a grid-based hyperparameter search to find the optimal

batch size, learning rate and number of epochs to train the child model. Here’s an elaboration

on each of the terms:

2.4.7.1. Batch Size

• In machine learning, particularly in training neural networks, the batch size refers to

the number of training examples used in one iteration of the optimization algorithm

(e.g., gradient descent) before updating the model’s weight parameters.

• The choice of batch size can affect the speed and stability of training, as well as the

memory requirements of the training process. Common batch sizes range from small

values like 32 or 64 to larger values like 128, 256, or even higher, depending on the

dataset size and the available hardware resources.

2.4.7.2. Learning Rate

• The learning rate is a hyperparameter that determines the size of the step taken dur-

ing the optimization process, such as gradient descent, to update the model’s weight

parameters.

• It controls the rate at which the model parameters are adjusted in the direction of

minimizing the loss or the objective function. A higher learning rate leads to larger

parameter updates, while a lower learning rate results in smaller updates.

36

• Choosing an appropriate learning rate is crucial for training stable and effective mod-

els. A learning rate that is too high may cause the optimization process to diverge or

oscillate, while a learning rate that is too low may result in slow convergence or getting

stuck in local minima.

2.4.7.3. Number of Epochs

• An epoch refers to one complete pass through the entire training dataset during the

training of a machine learning model.

• The number of epochs is a hyperparameter that specifies the number of times the entire

dataset is fed to the model for training.

• Training for multiple epochs allows the model to see the training data multiple times,

enabling it to learn from it and improve its performance over time.

• The choice of the number of epochs depends on factors such as the complexity of the

model, the size of the dataset, and the desired level of model performance. It is typically

determined through experimentation,

In summary, the batch size, learning rate, and number of epochs are essential hyperpa-

rameters in training machine learning models, particularly neural networks. Proper selection

and tuning of these hyperparameters are critical for achieving optimal model performance and

training stability.

In the grid search, we explored the hyperparameter space of batch size,

consisting of values 4,8,16,32,64,128,256, learning rate consisting of values

0.1,0.01,0.001,0.0001,0.00001,0.000001 and number of epochs consisting of values

250,300,350,400,450,500. Therefore, we explored about 252 model configurations. Further-

more, we incorporated an early stopping strategy into our training pipeline, utilizing a callback

mechanism to halt training if the validation accuracy fails to improve over consecutive epochs.

Additionally, we implemented a checkpointing system to save the model parameters when the

validation accuracy is at its highest. These implementations were seamlessly integrated using

37

the Weights and Biases (wandb) framework, which provides a comprehensive suite of tools for

experiment tracking, visualization, and management. Here’s an elaboration on each aspect:

2.4.7.4. Early Stopping Strategy

• Early stopping is a technique used to prevent overfitting by terminating training when

the model’s performance on a validation set no longer improves.

• We employed a callback mechanism that monitors the validation accuracy over consec-

utive epochs. If the validation accuracy does not increase within a predefined number

of epochs (in this case, 50 epochs), the training process is terminated.

• This strategy helps prevent the model from overfitting to the training data and ensures

that it generalizes well to unseen data.

2.4.7.5. Checkpointing System

• A checkpointing system is used to save the model’s parameters at specific points during

training, allowing us to restore the model to its best-performing state if needed.

• We implemented a checkpoint mechanism that periodically saves the model’s parame-

ters based on the validation accuracy. Whenever the validation accuracy improves and

reaches a new high, the model parameters are saved.

• This ensures that we have access to the best version of the model throughout the training

process, enabling us to use it for inference or further analysis.

2.4.7.6. Integration with wandb

• We leveraged the wandb framework to seamlessly incorporate these training strategies

into our workflow.

• wandb provides powerful tools for experiment tracking, visualization, and collabora-

tion, allowing us to monitor training progress, track performance metrics, and visualize

results in real-time.

Based on our hyperparameter tuning results, we found that using a batch size of 16,

a learning rate of 0.00001, and 300 epochs yields the best test results. Table 2.2 shows the

38

Table 2.2. Performance of the Best Performing Child Model in Different Hyperparameter Con-
figurations

Batch size Learning Rate Epochs Test AUC Test Acc

16 0.00001 300 0.9659 0.7706
4 0.00001 400 0.9665 0.7661
4 0.00001 450 0.965 0.7631

64 0.00001 350 0.9663 0.7626
8 0.00001 250 0.9647 0.7616

top 5 best performing hyperparameter configurations for the top child model chosen. The best

model obtained through this methodology was then compared to the existing state of the art

human-designed architectures.

2.4.8. Clarifying the Metrics

2.4.8.1. AUC

The Area Under the ROC Curve (AUC) is a widely used metric in machine learning.

However, extending it to multiclass classification scenarios requires modifications to accom-

modate multiple classes. In our implementation, we computed AUC using the default ap-

proach followed in the Tensorflow 2.11.1 framework. The AUC metric quantifies the area

under the Receiver Operating Characteristic (ROC) curve, which is a graphical representation

of the trade-off between the true positive rate (TPR, also known as sensitivity) and the false

positive rate (FPR, also known as 1-specificity).

In the context of multiclass classification, AUC represents the model’s ability to discrim-

inate between different classes. AUC values range from 0 to 1, where a higher value indicates

better discrimination ability. An AUC of 0.5 suggests that the model’s performance is no better

than random, while an AUC of 1.0 indicates perfect discrimination. AUC is also robust to class

imbalance, making it suitable for evaluating models in scenarios where class distributions are

skewed. AUC is commonly used in medical diagnostics, fraud detection, and other applications

where the cost of false positives and false negatives may vary, and a comprehensive evaluation

of model performance is desired.

39

2.4.8.2. Acc

Accuracy (Acc) is one of the most straightforward and commonly used metrics for eval-

uating the performance of classification models in ML. It measures the proportion of correctly

classified instances from the total number of instances in the dataset. Acc is calculated by divid-

ing the number of correctly classified instances (true positives and true negatives) by the total

number of instances in the dataset. It represents the overall correctness of the model’s pre-

dictions across all classes. Higher Acc values indicate better performance, while lower values

suggest poorer performance.

Acc is commonly used as a primary evaluation metric, especially when classes in the

dataset are balanced (i.e., the number of instances in each class is roughly equal). It provides

a simple and intuitive measure of model performance, making it easy to interpret and commu-

nicate. Acc may not be a suitable metric when classes in the dataset are imbalanced, meaning

one class dominates the dataset. In such cases, a model that always predicts the majority class

can achieve high accuracy while performing poorly on minority classes. Acc does not provide

insights into the type of errors the model makes (e.g., false positives, false negatives), which

may be crucial in certain applications. While Acc is useful, it is often used in conjunction with

other metrics, especially in imbalanced datasets. Additional metrics such as AUC provide a

more comprehensive understanding of the model’s performance.

2.4.9. Top Model Performance Summary

Table 2.3 shows the performance of the top model on the test data compared to human

designed state of the art architectures. Figure 2.10 illustrates the design of the top-performing

child model configuration used to report the results. Table 2.4 also illustrates the performance

of the top child model across the different data splits, thereby reflecting the model generaliza-

tion. Only the metric values at the epoch where the validation accuracy reached its highest

point are reported for the top model. More detailed discussions on the implications of our

results are provided in the upcoming subsections.

40

Table 2.3. Performance of Different Architectures v.s. the Top Child Model Performance Gen-
erated Using Our NAS Framework

Architecture Parameters AUC Acc

ResNet-18 ([34]) 11.7M 0.917 0.735
ResNet-50 ([34]) 23.5M 0.913 0.735

ViT ([39]) 86.6M 0.859 0.704
AlexNet ([40]) 60M - 0.668

Top model 0.26M 0.966 0.771

Table 2.4. Performance of the Top Child Model Across the Train, Test and Validation Datasets

Datasplit AUC Acc

Train 0.9793 0.818
Validation 0.9667 0.7876

Test 0.9659 0.7706

Figure 2.10. Best Performing Child Model Design
41

2.4.10. Implications of Our Study

Our comparative analysis, fortified by strategic hyperparameter tuning and an astute

model-saving approach, unequivocally establishes the preeminence of our NAS-generated top

model. The deployment of AUC and Acc as evaluative metrics furnishes a panoramic view of the

model’s architectural prowess, heralding its potential to redefine benchmarks in medical image

classification. Through this analytical journey, we not only validate the technical virtuosity of

our approach but also illuminate the pathway towards revolutionizing medical diagnostics with

advanced, efficient, and precise DL solutions.

2.4.10.1. Top Model’s Prowess in Outperforming State of the Art Architectures

From the results reported in Table 2.3, it is evident that the top model generated by

our NAS framework outperforms the existing human designed state of the art architectures.

This proves the adoption of our NAS framework has the potential to streamline the model

development process, save time and effort for researchers, and accelerate progress in the field

of ML. By automating the search for optimal architectures, NAS enables researchers to focus on

higher-level tasks such as problem formulation, data preprocessing, and model interpretation,

ultimately driving innovation and advancing the state of the art.

Instead of spending time on trial and error or relying on intuition to design architec-

tures, researchers can delegate the architecture search process to our NAS framework, freeing

up valuable time and resources for other tasks. Additionally, by leveraging computational

power to efficiently explore this space, NAS can discover architectures that human designers

may not have considered, leading to novel and potentially superior solutions. Moreover, by ab-

stracting away the complexities of architecture design, NAS democratizes access to advanced

ML techniques, making them more accessible to researchers with varying levels of expertise.

This democratization of AI empowers a broader community of researchers to engage in model

development and innovation, leading to a more diverse range of solutions and advancements.

42

2.4.10.2. Dissecting the Generalization Proficiency

Within the sphere of NAS, the prowess of a model is not solely gauged by its training

performance but also by its capacity to generalize across unseen data. This holistic approach to

model evaluation underpins our study, where we meticulously analyze the training, validation,

and testing accuracies of our NAS generated model, as elucidated in the Table 2.4. Such a

detailed examination serves not just as a testament to the model’s learning efficiency but also

as an indicator of its broader utility in real-world applications.

In ML, generalization embodies a model’s aptitude to transpose learned patterns from

the training dataset to novel, unseen datasets with efficacy. It is the linchpin distinguishing

models of theoretical value from those with tangible, practical utility, marking their robustness

across varied data landscapes. From table 2.4, it is evident that the metric values on the

training dataset are the highest. While this high level of training accuracy is commendable, it

necessitates a juxtaposition with commensurate validation and testing performance to preclude

the pitfalls of overfitting.

The moderation observed in transitioning from training to validation AUC and Acc

aligns with expectations, given the latter’s assessment on unseen data. Nonetheless, the model’s

substantial validation accuracy intimates that it hasn’t succumbed to overfitting, retaining a sig-

nificant portion of its predictive prowess. This nuance underscores the model’s refined ability

to generalize effectively. The harmony between validation and testing Acc and AUC further

cements the model’s generalization capacity. The testing accuracy, drawn from a completely

novel subset of the dataset, accentuates the model’s resilience and adaptability, heralding its

suitability for deployment in authentic diagnostic scenarios.

The synergy observed among the training, validation, and testing performance not only

showcases the NAS generated model’s profound ability to generalize but also highlights the

NAS framework’s success in traversing a complex architectural landscape to distil a high-

performing model. This equilibrium of accuracies elucidates the model’s readiness for real-

43

world applications, particularly in medical diagnostics where the interpretation of unseen im-

ages is routine.

2.4.10.3. Impact of Architectural Preferences on Performance

Within the specialized niche of NAS, the quest for the quintessential DL architecture

for medical image classification has been a journey of both discovery and innovation. Our

NAS framework, through meticulous exploration and evaluation, has brought to light a model

of unparalleled architectural design and performance. This model, distinguished by its adept

employment of concatenation operations among other salient features, stands as a testament

to the framework’s prowess in identifying and optimizing DL architectures for complex tasks.

Herein, we delve into the sampled best model’s architectural landscape, dissecting its design

choices and the subsequent implications on performance and application within medical diag-

nostics.

Concatenation Operation, serving as a conduit for merging feature maps from disparate

layers, enrich the model’s information representation. This mechanism enables the seamless

integration of both granular, low-level features and abstract, high-level features, thereby aug-

menting the model’s discriminative capacity across diverse skin lesion classes. Incorporating

concatenation operations ensures a streamlined flow of information across the model’s archi-

tecture. This attribute is invaluable in the realm of medical image classification, where the

meticulous preservation of spatial relationships and textural details is paramount for achiev-

ing diagnostic accuracy.

2.4.10.4. Towards Deployment: The Model’s Lightweight Nature and Edge Computing Po-

tential

Remarkably, despite its architectural complexity, the model maintains a lightweight

stature, significantly augmenting its deployment feasibility. With a minimal parameter foot-

print, it is ideally positioned for integration within edge computing environments character-

ized by computational resource constraints. This amalgamation of lightweight design, stellar

44

performance, and architectural adaptability heralds the model as a prime candidate for real-

time diagnostic applications, envisaging a future where advanced medical imaging analysis is

ubiquitously accessible at the point of care.

Compared to other state of the art human-designed architectures, with a mere 0.26M

parameters, the model’s demand on storage space is substantially minimized, making it a per-

fect fit for edge devices where memory capacity is at a premium. This strategic reduction

ensures the accessibility of high-calibre medical imaging analysis even in settings constrained

by resources.

2.5. Conclusion and Future Work

In this research, we studied the feasibility of using NAS with the REINFORCE algorithm

for medical image classification by showcasing its efficacy in building an optimized neural net-

work for skin lesion classification. Our findings unequivocally demonstrate the superiority of

our NAS framework in automatically generating architecture designs compared to hand de-

signed DL models crafted by experts. Through rigorous experimentation, we have established

that architectures produced by our NAS frameworks consistently outperform those meticu-

lously crafted by human experts. This validation not only underscores the effectiveness of our

approach but also highlights the transformative potential of automated architecture design in

the realm of DL.

One of the key highlights of our research lies in attaining the best-performing model

with significantly fewer parameters compared to other state of the art human designed archi-

tectures. This achievement not only validates the efficacy of our NAS frameworks but also

emphasizes their capability to yield highly efficient and optimized DL models. Furthermore,

our results provide compelling evidence for the applicability of our approach to real-world use

cases, particularly in the domain of medical datasets and applications.

The superior performance demonstrated by architectures generated through our NAS

framework suggests their potential to address the unique challenges and complexities inherent

45

in medical datasets, where accuracy, efficiency, and interpretability are of paramount impor-

tance. By leveraging automated architecture design, researchers and practitioners in the med-

ical field can harness the power of state of the art DL models without the need for extensive

manual intervention or domain specific expertise.

Moreover, adopting NAS frameworks offers tangible benefits regarding time efficiency

and knowledge acquisition for researchers. By automating the architecture design process, our

frameworks empower researchers to focus their efforts on higher-level tasks, such as problem

formulation, data preprocessing, and model interpretation. This streamlined workflow can

potentially accelerate the pace of research and development. In addition to their practical

utility, NAS frameworks hold immense promise for driving innovation and advancement in

the field of DL. By democratizing access to cutting-edge architecture design techniques, our

framework empower researchers across diverse domains to push the boundaries of what is

possible in DL model development.

In conclusion, our research provides compelling evidence for the transformative poten-

tial of NAS framework in automated architecture design. By outperforming hand designed

models and offering superior efficiency and optimization, our framework pave the way for ac-

celerated progress and innovation in DL research and application. As we continue to refine and

expand upon our methodologies, we envision a future where automated architecture design

becomes the cornerstone of DL model development, unlocking new frontiers of discovery and

impact across a myriad of domains and industries.

46

3. ADDITIONAL PROJECT 1: AUTOMATIC MICRORNA DETECTION AND

CONCENTRATION PREDICTION FOR THE EARLY DETECTION OF

PANCREATIC CANCER USING MACHINE LEARNING 1

3.1. Abstract

Early detection of cancer is of paramount importance as it significantly improves treat-

ment outcomes, reduces mortality rates, and enhances patients’ quality of life. However, the

lack of early symptoms in some cancers, like pancreatic, necessitates exploring noninvasive

methods for early detection, such as identifying biomarkers like nucleic acids. With the re-

cent identification of specific circulating microRNA (miRNA) panels in the blood responsible

for pancreatic cancer, in this study, we explore the commercialization potential of a biomarker

detection device which automatically detects and quantifies these miRNA molecules. We use

Dielectrophoresis (DEP) to concentrate these biomarkers on T-shaped interdigitated electrodes

(TIEs) and use a Machine Learning (ML) algorithm optimized for low-cost hardware designed

by Neural Architecture Search (NAS) to automatically detect its concentration. The results

we’ve attained so far underscore the promise of a non-invasive diagnostic device for the early

detection of pancreatic cancer, which can be used for routine health checkups.

3.2. Introduction

Cancer, with a projected 11.5 million deaths globally in 2030, is one of the leading

causes of death worldwide. This statistic can undergo a significant shift in the event of early-

stage cancer detection [49]. However, the lack of early symptoms in some cancers, like pancre-

1 The dielectrophoresis experimental protocols discussed in this chapter are based on the manuscript
"Controlled Concentration Of Short DNA Molecules On The Electrodes Using AC Electric Fields And Capillary
Flow ", submitted to the IEEE Research and Applications of Photonics in Defense Conference. This paper was
authored by Akila Wijesinghe, Ridhanya Sree Balamurugan, Umamaheswara Rao Tida and Dharmakeerthi
Nawarathna. Ridhanya Sree Balamurugan conducted the initial experiments and Akila Wijesinghe improved the
outcomes of the experiments. Dr. Dharmakeerthi Nawarathna and Dr. Umamaheswara Rao Tida provided
guidance on the research methodology and allocated the necessary resources required to conduct the research.

47

atic [50], necessitates exploring non-invasive methods for early detection, such as identifying

biomarkers like proteins, nucleic acids, antibodies, and peptides [51].

Recently, a sensitive circulating miRNA panel (miR-22, miR-642b, miR-885-5p) was

identified for early detection of pancreatic cancer [52]. Circulating miRNA targets, serving

as a biomarker in the bloodstream, provide a sensitive means of identifying cancers, given

their stable expression in the blood [52]. A significant feature of miRNAs is their durability:

they remain stable during standard handling and storage, making them ideal candidates for

developing reliable biomarker-based diagnostic tools [53]. Despite extensive research on the

role of miRNAs in cancer, one of the primary challenges remains the economically feasible

detection of these biomolecules at clinically relevant concentrations. Most existing detection

methods are either too costly or lack the sensitivity required for effective early-stage cancer

diagnosis. Therefore, our research aims to develop and validate an affordable device that

accurately measures the concentration of miRNAs in blood samples, addressing the existing gap

in this area. By concentrating on this objective, this study seeks to provide a practical solution

for regular screenings, which could result in earlier diagnoses and improved management of

pancreatic cancer. This device would not only simplify the process of miRNA quantification but

also increase accessibility to early cancer detection in clinical settings.

To detect and identify miRNAs responsible for pancreatic cancer, our study employs

DEP. This entails utilizing a sensor equipped with TIEs, a specific electrode configuration sig-

nificantly enhancing the DEP force [54]. This force selectively attracts and traps charged

biomolecules, such as miRNAs, enabling their concentration and detection. Our method’s prac-

tical application was confirmed through the successful concentration of single-stranded DNA

(ssDNA) molecules, which were labelled with fluorophores, on the sensor. In our experiments,

fluorescence labelling served a dual purpose: it enabled the visual tracking of the ssDNA dur-

ing the DEP process, and it provided a measurable concentration by evaluating the fluorescent

intensity of the accumulated ssDNA molecules. Additionally, we studied advanced methods to

48

enhance our experiment monitoring capabilities along with automation to improve the accu-

racy and reliability of our experiments. Specifically, we investigated ML algorithms capable of

detecting and forecasting the levels of biomarkers. By integrating ML, we can now more effec-

tively detect these critical biomarkers at clinically significant levels, thereby enabling earlier

diagnosis of pancreatic cancer through non-invasive means.

3.3. Methodology

Figure 3.1. Biomarker Detection Device Overview

Figure 3.1 illustrates the overall processes involved in the automatic circulating miRNA

detection and concentration prediction for the early detection of pancreatic cancer. The first

step is the application of the sample and Alternating Current (AC) electric field on the T-

electrode sensor (containing TIEs). Applying an AC electric field is necessary for concentrating

the biomarker in the sample on the TIEs using DEP. Ideally, the sample should contain miRNA

molecules hybridized with complementary ssDNA sequences labelled with fluorophores at its 5’

end. However, to demonstrate the proof of concept, we just used ssDNA molecules labelled with

fluorophores for our experiments. Fluorophores are molecules that can absorb light energy at

a specific wavelength and then emit light at a longer wavelength. They are commonly used in

fluorescence microscopy to visualize the samples labelled with them. Labelling refers to the

process of attaching or incorporating a detectable marker such as a fluorophore. This labelling

of fluorophores is necessary in our experiments as we quantify the concentrated biomarkers

using the fluorescence emitted by them.

49

Once the biomarkers concentrate on the TIEs, this is detected automatically and the

fluorescence emitted by these concentrated biomarker molecules is then captured for concen-

tration prediction. This step is essential as the concentration at which these miRNAs are circu-

lating in the blood demonstrates the presence and stage of pancreatic cancer. The capability

of ML is used to automate this step.

Experiments aimed at capturing the nucleic acid (biomarker) of interest through DEP

were meticulously conducted by our collaborators. Therefore, this study provides only a brief

overview of this experimental procedure while elaborating more on the experiments performed

for the automations involved in the device (marked by dotted lines in Figure 3.1).

3.3.1. DEP to Concentrate ss-DNA Molecules on TIEs

Figure 3.2. Array of TIEs with the Concentrating Region Highlighted with an Orange Box.
Image captured using a Bright-Field Microscope

To concentrate the biomarker of interest, we perform DEP on TIEs, which contain an

array of electrodes resembling T-shape [54] as shown in Figure 3.2. DEP is a phenomenon in

which particles, typically micrometer or nanometer-sized, are manipulated in a non-uniform

50

electric field [55]. DEP can be used to concentrate nucleic acids by applying an AC electric

field. This pushes the nucleic acids towards regions of higher electric field intensity. In our

case, this high electric field intensity is produced by the concentrating regions of the TIEs [54],

marked by an orange box in Figure 3.2. Therefore, upon applying the AC electric field, this

concentrating region is where the ssDNA molecules of interest concentrate.

Conducting DEP to concentrate ssDNA molecules on TIEs begins with sample prepa-

ration. This sample is then pipetted to the N-BK7 glass substrate with microfabricated TIEs,

followed by applying an AC electric field using a function generator.

3.3.1.1. Preparation of Sample

The sample preparation involves diluting the stock solution of ssDNA with 0.01x TE

buffer (15 µS/cm). This stock solution, purchased from Integrated DNA Technologies, Inc.

(Coralville, Iowa, USA), contains 22 bases long ssDNA molecules of sequence AACTATACAAC-

CTACTACCTCA labelled with Alexa 555 fluorophore (Quantum yield – 0.10, excitation max –

555 nm, emission max – 580 nm). In our experimentations, we prepared samples of concen-

tration 1µM using a stock solution of 21µL volume with a concentration 100 µM.

Before the sample preparation, as this stock solution was stored at -20 degrees Celsius,

we thawed it for 15 minutes at room temperature and vortexed it for about a minute before

it was used. Since it contains photosensitive fluorophores, to avoid photobleaching effects,

sample preparations were conducted in a dark room. Photobleaching refers to the process by

which a fluorophore loses its ability to fluoresce after exposure to light. This phenomenon

occurs when the fluorophore undergoes chemical reactions or structural changes that render

it incapable of emitting fluorescence.

3.3.1.2. TIEs Preparation

An array of TIEs microfabricated (the process of fabrication is discussed in [54]) on

an N-BK7 glass substrate was inspected for any electrode damage and was rigorously cleaned

using 2-propanol, acetone and Distilled (DI) water. This cleaning process includes adding 2-

51

propanol, acetone and DI water in three separate beakers and exposing the TIEs to 2-propanol

for 2 minutes and acetone for 1 minute. Each of these steps is followed by rinsing it with DI

water. Finally, Kim wipes are used to clean the region containing the T-electrodes very carefully,

avoiding any damage and ensuring that the region containing the panel of electrodes is dry.

Figure 3.3. Microfabricated TIEs Setup

Two electrical wires were soldered to the pads of the electrodes, as shown in Figure 3.3.

This was followed by verifying conductivity using a digital multimeter. Next, the glass substrate

containing the TIEs was fixed to a clean, flat surface by attaching each edge of the glass slide

using thin strips of general-purpose masking tape. This setup is of paramount importance as

the adhesive glueing to a flat surface enables the electrodes to remain still to agitations, which

avoids any disruptions to the process of DEP.

3.3.1.3. Function Generator Setup

A function generator is an electronic device that generates a variety of periodic wave-

forms. It produces precise electrical signals with specific frequencies, amplitudes, and wave-

forms. In our experiments, we used the AFG 3021B function generator (Beaverton, Oregon,

USA) to generate a sinusoidal wave with a frequency of 3MHz and an amplitude of 10Vpp. The

52

generated output was also validated using a digital multimeter. Then, this function generator

was connected to wires soldered at the pads of the TIEs panel.

3.3.2. Performing DEP Experiment

The final step was pipetting 3µL of the sample onto the TIEs panel. This step was con-

ducted in complete darkness, devoid of light. The end of the experiment is when the sample

pipetted on the TIEs panel completely dries. To determine this end, the experiment was moni-

tored every 10 minutes. Once the sample dried, approximately 40 minutes after its application

on the TIEs, the glass substrate with TIEs was analyzed under a fluorescence microscope and

fluorescence images were recorded.

3.3.3. Automatic Identification of the End of Experiment

As indicated earlier, experiments were manually monitored to determine their endpoint.

Determining this endpoint is essential as it indicates proceeding to the next stage of analyz-

ing the resulting fluorescence produced by the concentrated biomarkers and determining their

concentration. However, this process of manually monitoring the experiments is tedious and

time-consuming, and any significant delays in determining the endpoint might cause photo-

bleaching effects. Therefore, there is a need to automate this process.

We experimented with two approaches to solve this challenge. Both of these approaches

involve capturing sequential photographs of the TIEs on which the sample was pipetted as the

experiment progresses over time. The first approach captures these images under a fluorescent

microscope, and the second approach uses a bright field microscope. In both approaches, the

idea is to detect the end of the experiment based on the changes in the intensities demonstrated

by these time-lapse images. As the experiment progresses, there are changes in the intensity,

and at the end of the experiment, the intensity stabilizes. Therefore, the idea is to detect this

change point where the intensity stabilizes using image processing and curve tracking algo-

rithms. The image processing and curving tracking algorithm used to detect this change point

53

and results obtained from testing these approaches on different experiments are elaborately

discussed in the results section.

3.3.4. Automatic Detection of miRNA Concentration Using ML

The next step after detecting the end of the experiment is automatically predicting the

concentration of the biomarker. As discussed earlier, DEP causes the biomarker of interest to

concentrate on the concentrating regions of the T-electrodes. Therefore, concentration must be

predicted only from the biomarker’s fluorescence intensities in concentrating regions, which is

also known as the total fluorescence intensity. To automatically compute this total fluorescence

intensity, it is essential to detect these regions of TIEs using ML.

Object detection in ML is a computer vision task that aims to identify and localize objects

within an image or video frame. It involves training algorithms to recognize various objects

of interest and accurately predict their bounding boxes or regions in the input data. Popular

object detection algorithms are Faster R-CNN (Region-based Convolutional Neural Networks)

[56], YOLO (You Only Look Once) [57] and SSD (Single Shot Multibox Detector) [58]. This

concept in ML can be utilized to detect these concentration regions of the TIEs where the object

of our interest in an image would be the region denoted by an orange box in Figure 3.2.

Although the existing object detection algorithms can solve the problem, deploying such

models onto low-cost hardware devices can be challenging due to their typically large number

of weight parameters. Often, this issue can be addressed by employing high-end hardware

configurations. However, as we are investigating a low-cost biomarker detection device which

potentially involves the use of low-cost hardware devices, we plan to utilize the capability of

NAS that we discussed in the second chapter to build the object detection framework. We plan

to investigate an approach similar to [37], where the DL classification model designed by NAS

can easily replace the backbone DL model used for the object detection task.

Popular backbone DL models used in the object detection frameworks are ResNet [59],

VGG [60] and EfficientNet [61]. Previous studies have investigated these popular ML models

54

for image classification, which significantly contribute to the weight parameters of the object

detection framework. Therefore, this backbone DL model can be designed through a NAS

approach, similar to the methodologies in the study discussed in the second chapter 2 of this

thesis.

Moreover, as reported in the second chapter 2, NAS can design highly optimized ML

models. Additionally, the NAS framework explored in the second chapter can readily be adapted

to become hardware-aware. This adaptation involves integrating considerations of the hard-

ware constraints and characteristics into the search process. This hardware-aware approach

aims to optimize not only the performance metrics of the neural network architectures, like

Accuracy (Acc), but also their efficiency and compatibility with specific hardware platforms.

By incorporating hardware awareness into the NAS framework, it becomes possible to design

neural network architectures that are well-suited for deployment on diverse hardware envi-

ronments, ranging from edge devices to high performance computing clusters.

Figure 3.4. Techniques Involved in Building a Hardware-Optimized Object Detection Frame-
work for TIEs Concentrating Region Identification

Figure 3.4 illustrates the steps involved in building a hardware-optimized ML algorithm

for automatically detecting the concentrating regions of TIEs. The first step involves the design

of a proxy task to build a DL model using NAS. This proxy task is designed to enable the DL

model to learn features of the TIEs so that when it is used as a DL backbone for the object

detection framework, the accuracy of detecting these concentrating regions is close to 1. In

ML, a proxy task is an auxiliary or intermediate task that facilitates learning or representing

features for a primary task of interest. Since the primary task of our interest is the detection of

concentrating regions of the TIEs panel, we need to design a proxy task which would enable the

55

NAS designed architecture to learn the features of the T-electrodes. A promising proxy task for

investigation could be automatically identifying the rotation angle given a rotated image. This

involves classifying the rotated fluorescent images of TIEs with the concentrated biomarker

based on their rotation angles, encompassing orientations at 0, 45, and 90 degrees.

Once the concentrating regions are detected, the next step is the concentration predic-

tion. This task can be accomplished in two ways. The first method uses ML, where we collect

data for the known concentrations and use ML algorithms like regression to predict the con-

centration at each concentrating region of TIEs. The final concentration would be the mean

of the predicted concentration at each concentrating region. The other approach uses image

processing algorithms, which involve identifying an intensity threshold for each concentration

range. In this case, we find the fluorescent intensity of biomarkers concentrated at each de-

tected concentrating region of TIEs using image processing algorithms and compute the total

fluorescent intensity by taking the sum of these individual intensities. Then, we compare this

value with the specified threshold to categorize them into a specific concentration. Currently,

we have not investigated methodologies involved in automatic concentration prediction as our

collaborators are in the data collection phase to investigate these tasks.

3.4. Results and Discussion

3.4.1. DEP Experimental Results

DEP experiments were performed with samples of concentration 1µM containing ss-

DNA molecules labelled with Alexa 555 fluorophore with and without the AC electric field.

Figure 3.5 depicts fluorescent images showcasing concentrated biomarkers under these two

experimental conditions: (a) with and (b) without the application of the AC electric field. The

comparison highlights the efficacy of DEP in biomarker concentration.

The visualization of concentrated biomarkers on TIEs is possible with the help of flu-

orescent microscopy due to the fluorophores in the sample. Fluorescent lights are commonly

used in fluorescence microscopy to illuminate samples and capture fluorescent images. Fluo-

56

rescent lights emit specific wavelengths of light that can excite fluorophores within the sample.

Fluorophores are molecules that absorb light energy at one wavelength (the excitation wave-

length) and emit light at a longer wavelength (the emission wavelength). The excitation light

from fluorescent lamps provides the energy required to excite the fluorophores in the sample.

This excitation of fluorophores plays a vital role in fluorescence microscopy, enabling us to

visualize.

Figure 3.5. DEP Experimental Results. (a)With Electric Field (b) Without Electric Field

3.4.1.1. Recent Modification to the Experiment Protocol

One major limitation of the DEP experiments is that it is challenging to consistently

avoid the coffee ring effect. The coffee ring effect is a phenomenon observed when a droplet

dries on a solid surface. As the liquid evaporates, capillary forces draw the particles to the

droplet’s edges, forming a ring-like particle deposition pattern. Our collaborators elaborately

studied reliable means to eliminate the coffee ring effect in the experiments, and the following

adjustments were made to the experimental protocol.

• In the sample preparation step, ssDNA samples were suspended in a 0.0036xTris Ethylene-

diamine tetraacetic acid (EDTA) (TE) buffer (conductivity = 5 µS/cm), purchased from

Thermo Fisher Scientific Chemical Inc. (220 Neck Road, Ward Hill, MA, 01835, USA),

57

supplemented with .0067% (by volume) Tween solution, purchased from Fisher Scien-

tific Company LLC (4500 Turnberry Drive, Hanover Park, IL, 60133-5491, USA).

Figure 3.6. DEP Experimental Results. (a)Without Electric Field (b) With Electric Field Using
the Modified Experimental Protocol to Avoid Coffee Ring Effect Consistently

• The electric field was produced by applying an electric potential of 10 Vpp at 1MHz.

• Briefly, during experiments, first, a layer of TE buffer was deposited around the elec-

trodes to slow down the droplet evaporation. Then, the T-electrode array was covered

with a non-transparent petri dish to prevent external disturbances.

• Electrodes were cleaned with Piranha solution before using them for the experiments.

This solution was prepared by mixing H2S04, purchased from Sigma-Aldrich Inc. (6950

58

Ambassador Drive, Allentown, PA 18106, USA), and H2O2, purchased from Sigma-

Aldrich (6000 N. Teutonia Ave, Milwaukee, WI, 53209, USA), in 3:1 ratio.

Figure 3.6 shows the fluorescence images of concentrated DNA molecules in the elec-

trodes (b) with and (a) without electric fields for an experiment performed with the modified

protocol.

3.4.2. Results on the End of Experiment Detection

3.4.2.1. Results with Time-Lapse Fluorescent Microscope Images

Figure 3.7. Time-Lapse Captures of Fluorescent Images Observed at Time 0 and 38 minutes

As discussed earlier, to automatically determine the end of the experiment, we captured

time-lapse fluorescent images of TIEs when the experiments were progressing. However, this

resulted in the disruption of the DEP effect, thereby leading to the incorrect concentration

of the biomarkers on the TIEs. Additionally, we observed that due to the constant exposure

to fluorescent light from the microscope, the photosensitive fluorophore eventually loses its

ability to emit light for visualization. This is evident from Figure 3.7 where timelapse captures

selected at time t = 0 and 38 minutes are illustrated. We captured these sequences of images

59

every 2 minutes. Increasing the frequency of capturing these images, that is, increasing the

time interval from 2 minutes to any higher duration might suppress these factors affecting the

experiment. Still, at the same time, it would cause significant delays in detecting the end of

the experiment.

3.4.2.2. Results with Time-Lapse Bright Field Images

Due to encountering experimental failures in the method of capturing time-lapse flu-

orescent images, we decided to investigate an alternative approach, bright-field time-lapse

imaging.

Figure 3.8. Time-Lapse Captures of Bright field Images Observed at Time 0, 15, 22.2 and 30
minutes.

60

In this approach, we capture time-lapse images under bright-field conditions as the

experiment progresses. We observed that exposure to bright field light does not make the fluo-

rophores lose their ability to emit light, and the concentration of biomarkers through DEP was

also not disturbed. We even experimented by varying the frequency of capturing these images.

We determined that capturing images every 10 seconds is optimal for avoiding disturbances

with the biomarker concentration and accurately detecting the experiment’s endpoint.

Figure 3.9. Intensity Vs Time Plot for Bright-Field Time-Lapse Captures

Figure 3.8 illustrates bright field timelapse captures at selected times. We calculated

the intensity of the time-lapse images captured every 10 seconds, and the intensity vs time plot

for a selected experiment is depicted in Figure 3.9. We used Python libraries such as OpenCV

and Numpy to compute the intensities. The red line in the plots indicates the endpoint. It

is evident from the plot that the endpoint does not fall at a specific changepoint in the plot,

making their detection challenging. Therefore, we devised an approximation algorithm to

61

detect these endpoints. Change points in a plot refer to specific locations or instances with

a noticeable shift or discontinuity in the data. These shifts could represent changes in the

underlying pattern, trend, or behaviour of the plotted data points. For instance, the points

marked by the yellow and green lines in Figure 3.9 depict a change point.

The working of the approximation algorithm to detect the end point from the curve

illustrated in the 3.9 is as follows.

• Detecting the Change Point Where the Curve Starts Decreasing (marked by a yel-

low line): The intensity value It of each image at a specific time t is compared to

the intensity value It−1 at t-1. A counter named "increase" gets incremented whenever

It>It−1 and a counter named "decrease" gets incremented whenever It<It−1. Both these

counters get reset to 0 after every 90 seconds. Every time the values It and It−1 are com-

pared, the counters are compared too. If increase > decrease, we continue the process

and if increase < decrease, the process quits and the point at which it quits is marked

as the change point (marked by a yellow line).

• Detecting the Change Point Where the Curve Starts Increasing (marked by a green

line): Similar to the logic mentioned above, the intensity value It of each image at

time t is compared to the intensity value It−1 at t-1, where t-1 > time at which the

first changepoint marked by the yellow line is detected. A counter named "increase"

gets incremented whenever It>It−1 and a counter named "decrease" gets incremented

whenever It<It−1. Both these counters get reset to 0 after every 50 seconds. Every

time the values It and It−1 are compared, the counters are compared too. If increase <

decrease, we continue the process, and if increase > decrease, the process quits, and

the point at which it quits is marked as the change point (marked by a green line).

• Detecting the End Point (marked by the red line): Based on the data from the ex-

periments we analyzed, we observed that the endpoint was a maximum of 2 minutes

away from the change point, marked by the green line.

62

Table 3.1. Results of the Curve Tracking Algorithm for Increase Point Detection (in minutes)

Experiment Increase Point Actual Increase Point Detected

1 22.33 22.83
2 19.16 19.5
3 17.33 17.83
4 23.16 23.5
5 21.83 22,16
6 18.83 19

Table 3.2. Results of the Curve Tracking Algorithm for Decrease Point Detection (in minutes)

Experiment Decrease Point Actual Decrease Point Detected

1 20.33 21
2 15.83 16.5
3 13.33 13.5
4 22 22.5
5 19.5 19.5
6 18 18

We tested this algorithm on 6 experimental data of concentration 1µM. Tables 3.2, 3.1,

3.3 demonstrate the results of this algorithm where the End Point Actual (marked by the red

line) is the observed time at which the sample dried, and the End Point Detected is computed

by the approximation algorithm discussed above. Similar notations apply to Decrease Point

(marked by the yellow line) and Increase Point (marked by the green line). The results in

these tables are reported in minutes.

The differences in the actual and detected change points (Decrease and Increase Point)

are because the algorithm waits until it is sure that the curve indeed has a decreasing or in-

creasing trend to avoid detecting small variations as change points. Also, the time interval

employed for resetting the counters in the algorithm was carefully adjusted to reduce delays

in identifying change points while simultaneously ensuring optimal sensitivity to significant

variations and minimizing the detection of minor fluctuations.

63

Table 3.3. Results of the Curve Tracking Algorithm for End Point Detection (in minutes)

Experiment End Point Actual End Point Detected

1 23 24.83
2 19.43 21.5
3 19 19.83
4 23.1 25.5
5 22.2 24.16
6 19.2 21

The experimental data used to report these results were acquired by our collaborators

with the modified protocol discussed in section 3.4.1.1, and they measured the time at which

the sample dries as accurately as possible. We are still in the process of acquiring more data,

specifically for different concentrations, to validate and fine-tune our algorithm.

3.4.3. Data Collection for the ML Approach

As mentioned before, we haven’t explored the techniques proposed for automatic biomarker

concentration prediction yet. We are still in the data collection phase to design object detection

frameworks using NAS. For this purpose, we plan to collect fluorescent images at the end of

the DEP experiment with varying concentrations of miRNA samples.

3.5. Conclusion and Future Work

In this study, we delved into techniques to build an end-to-end biomarker detection

device for the identification of pancreatic cancer specific circulating miRNA in blood. We used

DEP and performed experiments on TIEs where ssDNA molecules tagged with fluorophore

molecules were captured in their concentrating regions to prove the utility of our approach.

We also discussed methods to automate the end of the experiment detection and concentration

prediction of the biomarker concentrated. Additionally, preliminary results on our experimen-

tal approach and end of experiment detection algorithm were presented.

In the future, we plan to test our end of experiment detection algorithm across various

concentrations and study the implications of the intensity trend we observed with the bright

64

field time-lapse captures. We also plan to utilize miRNA samples to execute NAS-based ML

approaches for concentration prediction.

65

4. ADDITIONAL PROJECT 2: AUTOMATIC AMINO ACID TYPE

IDENTIFICATION IN ELLIPTICAL DICHROISM SPECTROMETER USING

MACHINE LEARNING

4.1. Abstract

In this study, we introduce a pioneering Machine Learning (ML) approach for automatic

amino acid identification by analysing their unique absorption profiles in an Elliptical Dichro-

ism (ED) spectrometer. This advancement is critical for pharmaceuticals, medical diagnostics,

and biochemistry, offering a substantial improvement in analytical precision. The develop-

ment process involved thorough preprocessing to enhance the algorithm’s accuracy. Validation

with a distinct dataset affirmed its exceptional performance, laying the groundwork for a new

paradigm in amino acid analysis. This research not only demonstrates the potential of ML

in biochemical diagnostics but also signifies a critical milestone with practical implications in

clinical diagnostics and drug development.

4.2. Introduction

Identifying amino acids is pivotal across various scientific disciplines, including bio-

chemistry, pharmaceutical research, and medical diagnostics. Traditionally, methods such as

chromatography and mass spectrometry have been employed for amino acid analysis [62].

While effective, these techniques often require extensive sample preparation and are time-

consuming, complex and costly [63]. This underscores the pressing need for more efficient,

scalable, and accessible alternatives.

Emerging technologies in ML offer promising solutions to these challenges. Specifi-

cally, this study introduces a novel ML algorithm designed to leverage the unique absorption

profiles of amino acids under elliptically polarized light, a method unexplored by traditional

approaches [64]. This innovative strategy harnesses ED spectrometry to capture the distinct

66

spectral signatures of amino acids, providing a dataset rich in discriminatory features conducive

to ML analysis.

Our research aims to bridge the gap between traditional amino acid detection meth-

ods and the capabilities offered by contemporary ML techniques. By developing a ML model

grounded in robust spectral data, we endeavour to achieve a level of precision and efficiency

hitherto unattainable with conventional methods. The model’s development involved meticu-

lous preprocessing to enhance its predictive accuracy, followed by rigorous validation against

a diverse dataset to ensure its reliability in real-world applications.

This study details our methodological framework, from data acquisition through ED

spectrometry to the intricacies of model training and validation [64]. It highlights ML’s poten-

tial to revolutionize amino acid analysis and further sets a foundation for its application across

a spectrum of bioanalytical tasks. Our findings aim to catalyze a paradigm shift in biochemical

analysis, offering a scalable, cost-effective, and highly accurate alternative to traditional amino

acid detection techniques for biomedical applications in health and disease.

4.3. Methodology

4.3.1. Data Acquisition and Distribution

In the realm of ML, the initial and arguably most critical step in any project is data acqui-

sition. Data is the foundation upon which ML models are built and trained to make predictions

or decisions. The process of data acquisition involves gathering, collecting, and organizing

relevant datasets that are essential for training and testing ML algorithms. In this study, as the

main goal is to develop an ML algorithm to detect the type of amino acid automatically using

the absorption profiles generated by the ED spectrometer, the data to train the algorithm must

comprise these absorption profiles. Experiments to acquire this data were performed by our

collaborators. Therefore, only a summary of the experimentation protocol is discussed below.

To collect such information, the amino acid samples were dissolved in phosphate-buffered

saline at designated concentrations and introduced into a cuvette for spectrometric analysis.

67

Table 4.1. Data Distribution Across 17 Amino Acid Types

Amino Acid Type Data Count

L-Alanine 132
L-Arginine 142

L-Asparagine 17
L-Cysteine 12

L-Glutamate 26
L-Glutamine 22
L-Histidine 22
L-Isoleucine 37
L-Leucine 37
L- Lysine 42

L-Methionine 17
L-Phenylalanine 37

L-Proline 22
L-Serine 17

L-Threonine 17
L-Tryptophan 12

L-Valine 17

Before measurement, the system was preheated for thirty minutes to ensure consistent read-

outs. Initial blank measurements of the solvent were conducted five times to mitigate the

influence of optical components within the measurement pathway. Subsequently, each sample

underwent quintuple measurements. Absorbance values were adjusted relative to the blank,

employing specific baseline correction techniques for angle sweep and ED modes, thereby cal-

culating differential absorbance at two distinct polarization angles. In this way, multiple ab-

sorption profiles of 17 amino acid types were acquired. Detailed data distribution is shown

in Table 4.1. Each absorption profile contains 72 data points corresponding to angles ranging

from 0 to 355 with intervals of 5.

4.3.2. Data Preprocessing Techniques

Data preprocessing techniques play a pivotal role in ML because they directly impact

the performance, accuracy, and efficiency of ML models. The subsequent sections outline the

preprocessing techniques employed in this investigation.

68

4.3.2.1. Baseline Correction

We initiated our analytical process by implementing a baseline correction for each

amino acid dataset. For each absorption profile, we utilized absorption readings at 0 and 355

degrees, both converted to radians, to construct a linear baseline. The values from this linear

line were subtracted from the corresponding absorption readings recorded at angles between

0 and 355 with an interval of 5. This step was critical for minimizing systematic biases and

enhancing the reliability of the subsequent analyses.

4.3.2.2. Normalization

After the baseline correction, the absorption data underwent a normalization process.

This involved adjusting the readings to a common scale, which is essential for comparative

analysis across diverse experimental setups. Such normalization aids in maintaining the in-

tegrity of data variations while ensuring consistency. Here’s how the normalization process

was performed for our use case.

• For each experimental data, mean and standard deviation were computed across all 72

data points. The mean represents the average value of the feature, while the standard

deviation measures the dispersion of values around the mean.

• Each data point in the experimental data was subtracted by the mean and divided by

the standard deviation. This transformation ensures that each feature has a similar

scale and variation, which are beneficial for ML algorithms to improve their stability

and performance.

By normalizing the data in this manner, the range of values for each feature becomes

more consistent across the dataset. This can help prevent features with larger scales from

dominating those with smaller scales during the training process of ML models.

4.3.2.3. Correlation-Based Data Filtration

Correlation-based filtering is a technique used in preprocessing experimental data to

identify and potentially remove outliers before applying ML algorithms. By comparing indi-

69

vidual records against a mean sequence derived from the collective dataset under each amino

acid type, we removed experimental records that were minimally correlated with the mean

sequence. In our implementation, we removed three such sequences under each amino acid

type.

4.3.3. Model Development and Validation Framework

4.3.3.1. Data Split

Data splitting is a crucial step in ML, where the available dataset is divided into separate

subsets for training, validation, and testing. In our investigation, we performed a stratified

data split, where 70% of the data is used for training, 15% for validation, and 15% for testing.

Stratified data splitting is a variation of the standard data splitting technique that ensures the

class distribution in the dataset is preserved across the training, validation, and testing sets.

This is particularly important when dealing with imbalanced datasets, where one class may be

significantly underrepresented compared to others. This imbalance in our dataset is evident

from Table 4.1.

4.3.3.2. Model Development

In our study, we delved into the realm of traditional ML algorithms, namely Random

Forest [65], Decision Tree [66], and XGBoost [67]. These algorithms are stalwarts in the field,

renowned for their robustness and versatility across various classification tasks.

In tandem with our exploration of traditional ML algorithms, we also embarked on a

deep dive into deep neural networks. These architectures represent a cutting edge approach to

ML, characterized by their ability to learn intricate patterns and representations from complex

data. The details of their implementation and the architecture configurations are detailed in

the results section.

4.4. Results and Discussion

In our experimental setup, we leveraged deep neural networks implemented using Ten-

sorFlow 2.11.1 alongside traditional ML algorithms implemented in scikit-learn to classify be-

70

tween all 17 amino acid types. Since traditional ML algorithms typically do not incorporate

a separate validation dataset during training, we amalgamated the validation and test data

into a unified test set for each of these algorithms. This consolidation enabled us to eval-

uate the performance of traditional ML models on a comprehensive dataset, encompassing

both validation and test samples. Also, in our study, we employed traditional ML algorithms

with default settings from the scikit-learn library to ensure a standardized and fair comparison

across different models. These default settings represent the baseline configuration provided

by scikit-learn, offering a starting point for model training and evaluation without any manual

tuning of hyperparameters.

Additionally, it’s worth noting that our implementation incorporated class weights based

on the data distribution within our dataset. Class weights are a crucial aspect of training

ML models, particularly when class imbalance is prevalent. Class imbalance occurs when the

number of instances belonging to different classes in the dataset is not evenly distributed,

which can lead to biased model predictions favouring the majority class. We assigned class

weights based on the inverse of the class or amino acid type frequency, with each class weight

calculated as the maximum number of experimental records divided by the number of records

in that class. However, as the XGBoost algorithm in scikit-learn does not provide an option for

directly assigning class weights, our exploration of this particular algorithm proceeded without

incorporating them.

4.4.1. Classification Performance in Distinguishing 17 Amino Acid Types

Table 4.2. Accuracy Obtained Across Different ML Algorithms in Classifying 17 Amino Acid
Types

Algorithm Train Validation Test

Decision Tree 1.0 - 0.19
Random Forest 1.0 - 0.33

XgBoost 1.0 - 0.26
Deep Learning Model 0.159 0.157 0.159

71

Table 4.2 summarizes the results we obtained in classifying between all the 17 amino

acid types across different algorithms. Accuracy (Acc) obtained across the data splits is reported

in this table. In ML, Acc is a metric used to evaluate the performance of a classification model.

It represents the ratio of correctly predicted instances to the total number of instances in the

dataset.

The lower performance observed in our study can be attributed to the imbalance in class

distribution within the dataset. The limited availability of experimental data, especially for

certain amino acid categories like L-Tryptophan, poses a significant challenge for ML algorithms

to learn discriminative features and generalize well to unseen data effectively. Despite setting

class weights to address class imbalances, the small size of the dataset severely constrains the

learning capacity of the models. It undermines their ability to extract meaningful patterns and

relationships from the data. Thus, our next endeavour was to perform classification between

L-Alanine and L-Arginine, which had the highest count of data among all the 17 amino acid

types. Additionally, since there was inadequate data in most of the amino acid categories, using

different DL models with varying hyperparameters didn’t improve the results. Therefore, the

best DL model we obtained in classifying L-Arginine and L-Alanine was used to report the

results in Table 4.2. The architectural details associated with this DL Model will be elaborately

discussed in the subsequent section.

4.4.2. Classification Performance in Distinguishing L-Arginine and L-Alanine

Table 4.3 summarizes our results in classifying L-Arginine and L-Alanine across different

algorithms, and Table 4.4 summarizes the individual amino acid accuracy obtained across these

algorithms. Figure 4.1 illustrates the configuration of the DL model utilized in our study. The

model was structured with specific hyperparameters tailored to optimize learning dynamics

and model performance. Notably, a learning rate of 0.001 and a batch size of 5 were employed

to regulate the training process. The Adam optimizer, a popular choice in deep learning, was

utilized to optimize the model parameters during training. The categorical cross-entropy loss

72

function was employed as the objective function for training the DL model. Furthermore, class

weights were not incorporated in this experiment as L-Alanine and L-Arginine do not showcase

class imbalance.

Figure 4.1. DL Model Configuration Used in Classifying L-Alanine and L-Arginine

Table 4.3. Accuracy Obtained Across Different ML Algorithms in Classifying L-Alanine and L-
Arginine

Algorithm Train Validation Test

Decision Tree 1.0 - 0.69
Random Forest 1.0 - 0.77

XgBoost 1.0 - 0.67
Deep Learning Model 0.83 0.86 0.8

The DL model utilized in our study incorporates several components, which are elabo-

rately discussed below.

• Convolutional one-dimensional (Conv1D) Layers: Conv1D layers are specialized neural

network layers designed to extract features from one-dimensional sequential data, such

73

as time series or text. These layers apply a set of learnable filters to input sequences,

sliding them along the sequence and computing convolutions at each position. Conv1D

layers effectively capture local patterns and dependencies within the input sequences.

When configuring a Conv1D layer in TensorFlow, several parameters can be specified to

customize its behaviour and architecture. In our study, our primary focus was on three

key parameters of the Conv1D layer in our DL model: filter size (#), kernel size, and

strides. The number of filters (#) corresponds to the depth or the number of output

channels of the Conv1D layer. Each filter captures different patterns or features from

the input sequence. By varying the number of filters, we can control the richness and

complexity of the features extracted by the Conv1D layer. The kernel size determines

the length of the sliding window used for the convolution operation. It specifies the

number of consecutive elements along the input sequence that each filter considers at

a time. By adjusting the kernel size, we can control the scope or the size of the patterns

captured by the filters. Strides determine the step size of the sliding window during

the convolution operation. They specify the spacing between consecutive applications

of the filters along the input sequence. By modifying the strides, we can control the

spatial downsampling of the output feature maps.

• Batch Normalization (BatchNorm): Batch normalization is a technique used to improve

the stability and performance of deep neural networks by normalizing the outputs of

each layer. In 1D data processing, BatchNorm normalizes the outputs across the chan-

nels (features) of each sample in a batch. It computes the mean and standard deviation

of the activations within each channel and then normalizes the activations using these

statistics.

• Rectified Linear Unit (ReLU): ReLU is an activation function commonly used in deep

neural networks to introduce non-linearity into the model. In 1D data processing, ReLU

74

applies an element-wise operation to the data, setting negative values to zero while

leaving positive values unchanged.

• MaxPooling Layer (Maxpool 1D): MaxPooling is a downsampling operation commonly

used in convolutional neural networks (CNNs) to reduce the spatial dimensions of fea-

ture maps while retaining the most salient information. When using MaxPooling with

a kernel size of 2 and a stride of 2, the output size is reduced by a factor of 2.

• Flatten Layer: A Flatten layer is used to reshape a tensor to a 1D vector suitable to input

to Dense Layers.

• Dense Layers: A Dense layer, also known as a fully connected layer, connects every

neuron in one layer to every neuron in the subsequent layer. Dense layers are typically

employed in the final stages of the neural network architecture, transforming the high-

level features learned by earlier layers into predictions or classifications.

• Dropout Layer: Dropout is a regularization technique commonly used in deep neural

networks to prevent overfitting and improve generalization performance. Dropout lay-

ers randomly deactivate a fraction of neurons during training, effectively "dropping out"

or temporarily removing them from the network with a certain probability. By intro-

ducing noise and redundancy into the network, Dropout encourages the model to learn

more robust and generalizable data representations, reducing the likelihood of over-

fitting. During inference (i.e., when making predictions), Dropout layers are typically

deactivated, and the full network generates predictions without dropout.

• Output Layer: The output layer, also known as the output or prediction layer, is the

final layer in the neural network architecture. It generates the model’s predictions or

classifications based on the learned features extracted from the input data.

From Tables 4.3 and 4.2, it is clear that the traditional ML algorithms demonstrate over-

fitting. Overfitting occurs when a model learns to memorize the training data rather than cap-

turing underlying patterns that generalize well to unseen data. However, this is not observed

75

Table 4.4. Individual Amino Acid Accuracy Obtained Across Different ML Algorithms

Algorithm L-Arginine L-Alanine

Decision Tree 0.69 0.7
Random Forest 0.81 0.73

XgBoost 0.69 0.65
Deep Learning Model 0.76 0.85

with the performance of the DL model. This demonstrates that traditional ML algorithms, such

as Random Forest, Decision Tree, and XGBoost, are susceptible to overfitting when trained on

datasets with limited size or noisy features. Additionally, the good performance of the DL model

in classifying L-Arginine and L-Alanine proves that with adequate data, DL can be leveraged to

classify all 17 amino acid types in the future.

4.5. Conclusion and Future Work

The study successfully demonstrates the potential of an ML algorithm to precisely iden-

tify amino acids through their unique absorption profiles under elliptically polarized light. As

the acquired data for the 17 amino acid types were inadequate, the potential of this innovative

approach, leveraging meticulous data preprocessing techniques, has been showcased through

the high accuracy across amino acid groups, L-Alanine and L-Arginine, which had highest count

of data. The findings suggest a significant advancement in biochemical analysis, offering a scal-

able, efficient alternative to traditional methods. Despite certain limitations, like the skewed

distribution of the original dataset, this research paves the way for future developments in the

field, highlighting the utility of ML in enhancing diagnostic and analytical methodologies in

biochemistry and medical diagnostics. In the future, we plan to acquire adequate experimental

records for other amino acid types and we plan to deploy the model on the ED spectrometer

device for real-time automatic amino acid identification.

76

5. ADDITIONAL PROJECT 3: AUTOMATING THE TASK OF DATA

ANNOTATION FOR PLANT WEED IMAGE SEGMENTATION USING

SEGMENT ANYTHING MODEL 1

5.1. Abstract

Weeds are unwanted plants that compete with crops for water and nutrients and can

cause yield loss in sugarbeet and other crop fields. Accurate classification of weeds and crops

in the images is critically important to implement integrated weed control. Machine Learn-

ing (ML) models can be used for this purpose. However, good-quality training datasets with

good annotations are essential for ML algorithm development. Therefore, in this study, we use

the Segment Anything Model (SAM) to automatically annotate data for weed identification

and segmentation tasks. We then develop a U-Net model by training the model with this gen-

erated dataset. Successful weed identification using this approach ensures the accuracy of a

prescription weed map for effective site-specific weed control.

5.2. Introduction

Weeds are unwanted plants that grow in the field and compete with crops for water,

light, nutrients, and space [68][69] and can cause the sugarbeet yield loss of up to $ 699

million per year (Beet Sugar Development Foundation, 2021). The sugarbeet industry has

been using in pre- and post-emergence whole-field herbicide applications (i.e., blanket appli-

cation) for weed control. The spatial density of weeds is not uniform across the field, thereby

resulting in the overuse of chemicals, which causes environmental concerns and leads to the

1 This chapter is based on the paper "Weed Identification using U-Net Machine Learning Model and SAM
Segmentation" submitted to 2024 American Society of Agricultural and Biological Engineers Meeting
Presentation. This paper was authored by James Y. Kim, Ridhanya Sree Balamurugan, Madhava Sarma Vemuri
and Umamaheswara Rao Tida. Dr. James Y. Kim annotated and verified the required dataset for the analysis and
contributed to writing the Introduction Section of the manuscript. Ridhanya Sree Balamurugan trained the
U-Net segmentation framework on the dataset, optimized the parameters suitable for good results and drafted
the paper’s Methodology, Results and Conclusion sections. Madhava Sarma Vemuri assisted in building the
U-Net framework and reviewed the paper. Dr. Umamaheswara Rao Tida provided guidance on the research
methodology, allocated resources to conduct the research and reviewed the manuscript.

77

evolution of Herbicide-Resistant (HR) weeds [70]. There is a high demand for weed manage-

ment for HR weeds that threaten sugarbeet production in the U.S. For instance, waterhemp is a

formidable HR weed in west central Minnesota and North Dakota and impedes sugarbeet pro-

duction with its capability of growing 1 inch per day and populating 250,000 seeds per plant

(Link to the Source). Efforts to control HR weeds have been made by adding S-metolachlor pre-

herbicide treatments and utilizing agronomic practices such as crop rotation, dense seeding,

and inter-row cultivation, but no effective solutions are reported. Site-specific weed manage-

ment (SSWM) was introduced in the early 1990s [71] and has been implemented by image-

based weed detection. Vegetation segmentation followed by crop row detection is a common

approach using an unmanned aircraft system (UAS) for inter-row weed classification. ML-

based classifications make outstanding improvements for weed identification [72][73][74],

but there is still limited performance due to the strong dependence on weed types, growth

stages, and lighting conditions [75] and sensitivity to the segmentation accuracy for different

crops and field conditions [76]. In practice, there are still limitations and challenges for current

weed recognition research to provide weed control in large-scale crop production systems.

Figure 5.1. SAM Overview

A critical part of image analysis is a process known as image segmentation to identify

regions of interest in an image accurately. Traditional segmentation techniques often require

extensive human input and intervention for accurate results. Efforts were made to realize a

more automated approach with artificial intelligence (AI) and Deep Learning (DL) methods,

but still facing challenges, particularly in the effective segmentation of images with minimal

human input [77]. There is a significant gap in terms of obtaining a quality dataset that has

78

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://mdf.eclipticcms.com/files/pdf/beettopics/Waterhemp.pdf

pixel-wise object class annotations for efficient weed detection. Recently, Meta AI developed an

open-sourced, cutting-edge segmentation framework called Segment Anything Model (SAM)

that can be applied for pixel-wise weed annotations ([78]). SAM can cut any object in any

image, playing like a counterpart of ChatGPT in image segmentation. SAM consists of an en-

coder that embeds prompts and a lightweight mask decoder that combines the two information

sources and predicts segmentation masks as shown in Figure 5.1 (adapted from [78]).

We propose a novel approach to improve the segmentation accuracy of training weed

image datasets for weed detection. The goal of this study is to provide a new perspective to

solve the weed annotation and identification problem. The objectives of the proposal are to 1)

generate high-quality training datasets of weed images using Meta AI SAM with bounding box

prompt and 2) evaluate the annotations using ML models such as U-Net [79].

5.3. Methodology

The dataset [80] utilized for our investigation comprises 3424 RGB images of weeds

falling under four weed types: Horseweed (Erigeron canadensis), Kochia (Bassia scoparia),

Ragweed (Ambrosia), and Redroot Pigweed (Amaranthus retroflexus). Each image in this

dataset is also associated with a JSON file containing the coordinates of bounding boxes en-

capsulating the regions containing weeds. These images, along with their bounding box de-

tails, were passed as input to the SAM to generate ground truth masks for training the U-Net

segmentation model.

Figure 5.2 illustrates the working of SAM in generating ground truth masks. When an

image is passed as input, SAM segments all the objects present in the image and creates a mask

using its component called SAM Automatic Mask Generator (Figure 5.2(a)). Since the ground

truth masks required for training the U-Net must contain only segments of the weed regions,

the bounding box data provided along with the images in the dataset helps SAM localize its

segmentation to these regions. Therefore, utilizing this information, SAM specifically segments

79

and generates masks only for the objects falling within the given bounding box coordinates

using its component called SAM Predictor (Figure 5.2(b)).

Although the bounding box information enables SAM to generate ground truth masks

as accurately as possible, there are some challenging scenarios where it generates incorrect

masks. When the bounding box from the JSON file encompasses objects other than weeds

or exhibits areas of varying brightness, with weed regions appearing dark, SAM segments the

wrong objects in the image. Therefore, to ensure that the ground truth masks generated by

SAM contain only masks for weeds, a visual inspection was performed to filter incorrect mask

outputs from SAM. Through this process, we eliminated about 515 ground truth masks gener-

ated by SAM and their corresponding images. Therefore, 2909 images, along with their ground

truth masks generated by SAM, were used for training the U-Net-based segmentation model

to precisely segment weed canopy and classify the type of segmented weed.

Figure 5.2. Automatic Segmentation Using SAM With and Without the Bounding Box Informa-
tion; (a) Segmentation Using SAM Automatic Mask Generator, (b) Segmentation Using SAM
Predictor

The architecture of UNet [81][82] investigated in this study is given in Figure 5.3. It

consists of three units, including 1) Encoder, 2) Bottleneck, and 3) Decoder. An image passes

80

through these consecutive units to generate the inference. The Encoder and Decoder unit is

created using four stages. All the stages are created using a fundamental building block called

the Residual Block. During the stages inside the Encoder and Bottleneck unit, the Residual

Block helps to increase the dimensionality of the image by increasing the total number of

features along the z-direction. Subsequently for the Decoder stages, the Residual Block helps

to reduce the dimensionality of the image by decreasing the total number of features along the

z-direction. The outputs of each Encoder unit are passed to the subsequent Decoder unit using

skip connections, as shown in Figure 5.3. The construction of U-Net architecture is as follows:

Figure 5.3. U-Net Architecture Used for the Segmentation Task

Inside the Residual Block are three sets of Convolutional layers, which are connected

sequentially. The input is passed through the set of the first 2-dimensional Convolutional

(Conv2D) layer with 3x3 filter size (unpadded convolutions), followed by batch normaliza-

tion (BN) and rectified linear unit (ReLU) activation. The subsequent output is sent to the next

set of Conv2D, BN, and ReLU operations. Finally, the output is sent to a final set of Conv2D and

BN operations, where the residuals from the first and second sets of convolutions are added to

the third convolution output using a skip connection, as shown in Figure 5.3. The subsequent

81

result inside the Residual Block is passed through a ReLU activation. The output of each stage

is passed to 1) the next stage and 2) the corresponding Decoder stage as a skip connection.

During the subsequent stages, the size of the input images is reduced by half using a 2x2 Max-

Pool2D layer with a stride of 2, and the number of filters is doubled. This process continues

until the Bottleneck stage, where the number of filters is increased by 16x. The output size

of the Bottleneck stage is increased by 2 using Bilinear Interpolation with a scale factor of 2.

The current output is concatenated to the corresponding Encoder stage output using a skip

connection and passed as input to the Decoder stage. The process continues until the final de-

coder stage, where five filters are created using the network and a Softmax activation. These

five filters contain the segmented output corresponding to the classes – Horseweed, Kochia,

Ragweed, Redroot Pigweed, and Background.

5.4. Results and Discussion

The entirety of our study was implemented and executed in a workstation (Lambda,

San Jose, CA) equipped with NVIDIA threefold RTX A6000 GPU and AMD Ryzen Threadripper

PRO 5995WX 64-Core machine with 512GB RAM. Pytorch 2.2.1 was utilized to implement

the U-Net framework (with initial filters F = 32) and to generate ground truth masks for the

weed image dataset using SAM. As the images in the dataset were of varying sizes, for our

experiments, we selected only the images which were under 1000 pixels in height and width

and maintained the image resolution without resizing, because of the limitation of the GPU

capacity. This resulted in a dataset of 2604 images, of which 80% of images falling under

each weed type were randomly selected and used for training. The remaining 20% was evenly

distributed for validating and testing the U-Net segmentation model.

Table 5.1. U-Net Model Performance Across Train, Test and Validation Datasets. Reported
Scores are in terms of Average Dice Score.

Train Test Validation

0.982 0.952 0.944

82

For training the U-Net model, categorical cross-entropy was used as the loss function.

As the data distribution of the four weed types was skewed, class weights were incorporated

into this loss function to resolve the imbalance. Class weight for each weed type was set to

the inverse of the total number of pixels corresponding to the weed segments in their ground

truth masks. By incorporating these class weights into the training, we ensured that the U-Net

segmentation model learnt features of all four weed types equally without bias towards the

weed category represented by higher amounts of image data. Additionally, this U-Net model

was trained for 1000 epochs on the training dataset with a batch size of 32 using the Adam

Optimizer with a learning rate of 0.05. Furthermore, before training the U-Net, the pixel

intensity of images in the train, test and validation datasets were normalized to range between

0 and 1 by dividing them by 255. Also, the pixel mean across the three channels (RGB) for the

entire training dataset was computed and used to perform per-pixel mean subtraction on the

entire train, test and validation dataset.

While training, the U-Net model was saved whenever an increase in the performance

on the validation dataset was observed. This performance was measured using the popular

metric called Average Dice Score, which ranges between 0 and 1. We computed the average

dice score to measure the similarity between the ground truth masks generated by SAM and

the output masks predicted by the U-Net on the validation dataset. Usually, a higher average

dice score means that the ground truth masks and output masks predicted by U-Net almost

completely overlap. The average dice score is the mean of dice scores obtained for each image

in the validation dataset. The dice score between the ground truth and output mask for an

image in the validation dataset can be defined as:

Dice =
2 ∗Area of Overlap between ground truth and predicted output masks

Area of predicted output masks + Area of Ground truth masks

Table 5.1 summarizes the average dice score obtained across the train, test and valida-

tion datasets with the best U-Net model saved at the epoch where maximum performance was

83

observed on the validation dataset. This result demonstrates the ability of the U-Net model

to perform well on the unseen test and validation datasets compared to its performance on

the training dataset. This also shows that the U-Net investigated in our study has general-

ized well to unseen data and did not suffer from overfitting. Overfitting is a scenario when

the model performs well during training but fails to predict the correct outcomes on the un-

seen test dataset. Figure 5.4 also illustrates how the average dice score progressed over 1000

epochs for the training and validation dataset while training the U-Net. It is evident from the

trend that with increasing epochs, the performance across the train and validation datasets

improved. This demonstrates that the U-Net model used in our study has effectively learnt to

segment and classify weeds from the training data.

Figure 5.4. Average Dice Score vs. Epoch Observed on the Training and Validation Datasets
During the Training of U-Net.

Table 5.2. U-Net Model Segmentation Results Across Different Weed Categories. Reported
Scores are the Accuracy Values, ranging between 0 and 1

Horseweed Kochia Ragweed Redroot pigweed Overall Test Accuracy

0.919 0.91 0.935 0.9 0.919

84

Figure 5.5. Segmentation Output Masks Predicted by U-Net in comparison to the Ground
Truth Masks Across Different Weed Types in the Test Dataset. An Example Test Case from Each
Weed Category was used for the Demonstration. Expected denotes the Ground Truth Masks
Segmented Using the SAM, whereas Predicted denotes the Output Masks Predicted by the U-
Net during Inference.

Table 5.2 summarizes U-Net’s performance in terms of accuracy in classifying and seg-

menting four different weed types on the test dataset. This result demonstrates how accu-

rately the U-Net model can segment the correct weed type at an Intersection over Union (IoU)

85

greater than 0.5. With an overall test accuracy of about 0.91, we can conclude that the U-Net

investigated in our study accurately distinguishes different weed types. Furthermore, the high

accuracy obtained across individual weed types at an IoU threshold greater than 0.5 demon-

strates that the U-Net performs reasonably well in predicting correct segmentations [83]. IoU

is a popular metric used to measure the performance of ML models for object detection and

segmentation tasks. Like the dice score, IoU ranges between 0 and 1. An IoU score greater than

0.5 is considered good [84]. IoU between the ground truth and output masks can be defined

as:

IoU =
Area of Overlap between ground truth and predicted output masks

Area of the ground truth and predicted output masks

We also plotted the outcomes that the U-Net predicts for test cases falling under each

weed type from the test dataset. This is illustrated in Figure 5.5. Predicted are the output

masks segmented by U-Net, and Expected are the ground truth masks generated by SAM. As

stated earlier, images of different sizes were utilized for U-Net model training and testing, and

this is illustrated in the figure. Additionally, through visual comparison, it is evident that the

U-Net model investigated in our study demonstrates a higher capability to segment weeds as

masks that are close to the ground truth masks generated by SAM.

5.5. Conclusion and Future Work

In this study, we investigated if data annotations associated with ML tasks involving the

segmentation of weeds can be automated using the SAM. To prove the efficacy of our approach,

we used a publicly available dataset consisting of images of four different weed categories and

generated ground truth masks using the bounding box information provided. These annotated

images were then utilized to train a U-Net segmentation model. The performance of this U-Net

model demonstrated the validity of our approach.

Although in our experiments in this paper, we filtered the ground truth masks that were

incorrectly segmented by SAM, in the future, we plan to use techniques like filtering masks

based on pixel intensities, geometric conditions, and leaf pattern to completely avoid the use

86

of bounding boxes to localize regions of interest. In this way, we plan to utilize the entire weed

image dataset to train U-Net which can further improve the performance. Additionally, we

plan to build a U-Net-based automatic data annotator for ML-based image segmentation tasks

for weed image datasets as SAM does not generate masks specific to the weed images. We

plan to train this U-Net-based annotator by combining publicly released weed image datasets

automatically annotated using SAM. Furthermore, we plan to extend this work to the weed

image datasets comprising UAV images.

87

6. CONCLUSION

6.1. Recapitulation of Research Premise

Our work conducted an in-depth examination of integrating Neural Architecture Search

(NAS) with Deep Learning (DL) models, specifically targeted towards revolutionizing medical

image classification. Conceived amidst a critical demand for advanced diagnostic tools, our

investigation positioned NAS as a pivotal innovation, poised to transform the DL architecture

development process. We hypothesized that NAS could markedly enhance diagnostic model

precision and efficiency, heralding significant advancements in patient care and diagnostic ac-

curacy.

The exploration was underpinned by the strategic deployment of a Long-Short-Term

Memory (LSTM) controller, which navigated a comprehensive array of neural network config-

urations. This methodological journey, delineated by precise implementation parameters and

augmented by training strategies like early stopping and checkpointing, sought to refine DL

architectures capable of accurately classifying intricate medical images.

6.2. Synopsis of Key Discoveries

The zenith of our exploration revealed a model that exemplified not only superior per-

formance metrics but also unique architectural tendencies, particularly a propensity for con-

catenation operations. This model’s extraordinary ability to generalize across the DermaMNIST

dataset significantly outstripped the existing benchmarks established by human designed ar-

chitectures. These outcomes affirm the efficacy of NAS in discovering superior neural network

architectures and underscore its potential to redefine medical image classification paradigms.

6.3. Study’s Outcomes and Implications

Our findings illuminate the transformative impact of NAS on model development land-

scapes. By automating the search for optimal architectures, NAS platforms effectively minimize

the necessity for extensive domain expertise among researchers, expediting the model develop-

88

ment process and democratizing access to advanced Machine Learning (ML) techniques. This

paradigm shift not only accelerates innovation but also broadens the scope for research and

application within the field. Moreover, the efficiency of NAS in automatically designing optimal

neural networks, exemplifies the time-saving prowess of NAS, paving the way for more inclu-

sive and accessible advanced ML methodologies. Through automating essential aspects of the

architectural design process, NAS platforms encourage wider engagement in ML, expanding

research and application horizons.

6.4. Architectural Innovation via NAS

A critical aspect of NAS is its unparalleled ability to uncover accurate and novel struc-

tural designs beyond the conventional bounds of human intuition. This capability not only ad-

vances the field of DL but also introduces architectures that set new standards for performance

and efficiency. NAS’s role in fostering architectural innovation and excellence is indispensable

for propelling the state of the art in DL forward.

6.5. NAS’s Revolution in Medical Diagnostics

Centred around the DermaMNIST dataset, our empirical investigation showcases NAS’s

profound potential to revolutionize medical diagnostics. The automated generation of models

that are both high performing and efficient for diagnostic applications highlights NAS’s capac-

ity to significantly improve patient care and diagnostic workflows. This validation of NAS’s

utility in medical diagnostics anticipates its wider application, poised to fundamentally alter

the landscape of precision medicine.

6.6. Challenges and Perspectives

While NAS promises substantial advancements, it requires significant computational

resources and complex framework construction. Nonetheless, the evolving landscape of hard-

ware technology is progressively mitigating these challenges. NAS frameworks’ scalability am-

plifies research efficiency, offering a versatile instrument for diverse datasets and tasks. Al-

though expert interpretation is crucial, the NAS methodology streamlines the development

89

process, reducing the dependency on extensive development teams and deepening our under-

standing of DL operations’ operational implications.

In essence, our work validates the transformative potential of NAS in enhancing DL

models for medical image classification, setting a foundation for future innovations in medical

diagnostics. By demonstrating NAS’s effectiveness with the DermaMNIST dataset, we not only

underscore its capability to improve diagnostic precision across various medical conditions but

also herald a new era in the democratization of advanced medical diagnostics, ensuring the

broader accessibility of cutting edge Artificial Intelligence (AI) and ML innovations in health-

care.

6.7. Future Work

The completion of this thesis heralds the beginning of an expansive journey into the

realms of NAS, with its successful application, using the REINFORCE algorithm for the classifi-

cation of skin lesions, showcasing a seminal advancement in medical diagnostics through DL.

This study underlines the efficacy of NAS frameworks not just in transcending the capabilities

of manually designed models but in achieving such with significantly fewer parameters. Such

progress sets the stage for an array of promising research directions.

6.7.1. Advancing Towards Hardware-Aware NAS Models

The evolution of NAS beckons a shift towards models cognizant of hardware constraints,

achieved by redefining the reward function to encompass validation accuracy, inference time,

and memory usage. This novel approach aims to produce models that are not only precise but

also optimized for specific hardware limitations, marking a significant leap in the DL model op-

timization domain. Introducing a more intricate reward system could herald the development

of models that embody the ideal equilibrium between performance and resource efficiency,

establishing Hardware-aware NAS as a pivotal advancement in creating scalable, efficient so-

lutions suitable for varied deployment contexts.

90

6.7.2. Validation Across Broader Medical Datasets

Extending the validation of our NAS framework to encompass a wider array of medical

datasets is paramount. This endeavour will enable a comprehensive assessment of the archi-

tecture’s adaptability and performance across different imaging challenges, affirming NAS’s

potential as a versatile tool in medical diagnostics. Such expansive validation is instrumen-

tal in reinforcing the applicability and effectiveness of NAS-derived models in navigating the

complexities of medical image analysis.

6.7.3. Exploring Alternative Reinforcement Learning Algorithms

Avenues for enhancing NAS frameworks include the exploration and integration of al-

ternative Reinforcement Learning (RL) algorithms. Through the assessment and comparison

of various RL strategies, the architecture search process could be optimized, potentially un-

covering architectures of superior efficiency and performance. This comparative analysis will

shed light on the relative merits of different RL algorithms, informing the strategic selection of

algorithms in future NAS endeavours.

6.7.4. Extending NAS to Other Image-Related Tasks

The extension of NAS frameworks to address other image-related tasks, such as seg-

mentation, signifies a notable expansion of this research. Image segmentation’s critical role

in medical imaging underscores the potential impact of NAS in simplifying and enhancing the

analysis of complex images. Developing NAS frameworks specifically for segmentation tasks

could revolutionize medical imaging analyses, offering more precise, detailed insights.

6.7.5. Application in Non-Medical Fields: Agriculture

The foundational principles of NAS, as explored in this thesis, have implications far

beyond medical diagnostics. In agriculture, for example, researchers often face a steep learn-

ing curve in applying ML for crop disease detection or yield prediction. NAS can significantly

mitigate these challenges by automating the creation of efficient, optimized DL models, thus

91

accelerating agricultural research and advancements without the need for in-depth ML knowl-

edge.

6.7.6. Investigating Alternative NAS Algorithms

Lastly, exploring NAS algorithms beyond the realm of RL, such as evolutionary algo-

rithms and one-shot NAS approaches, presents a promising research trajectory. These alter-

native methodologies offer fresh perspectives on navigating the architecture search space, po-

tentially unveiling more efficient architectural solutions. Delving into the comparative effec-

tiveness of these diverse NAS algorithms will enrich our understanding of the NAS ecosystem,

fostering the development of advanced, high-impact models.

The validation of NAS through this thesis, particularly for skin lesion classification,

affirms the approach’s validity and catalyzes many prospects for future exploration. By broad-

ening the application scope of NAS, refining the algorithms at its core, and venturing into new

domains, we stand on the precipice of harnessing NAS’s full potential. This endeavour aims to

cultivate DL models that are at the forefront of innovation, offering significant contributions

across a broad spectrum of fields and challenges.

92

REFERENCES

[1] C. Chakraborty, M. Bhattacharya, S. Pal, and S.-S. Lee, “From machine learning to

deep learning: Advances of the recent data-driven paradigm shift in medicine and

healthcare,” Current Research in Biotechnology, vol. 7, p. 100164, 2024. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S2590262823000461

[2] Y. Qiu, L. Ma, and R. Priyadarshi, “Deep learning challenges and prospects in wireless

sensor network deployment,” Archives of Computational Methods in Engineering, pp. 1–

24, 2024.

[3] M. M. Taye, “Understanding of machine learning with deep learning: architectures, work-

flow, applications and future directions,” Computers, vol. 12, no. 5, p. 91, 2023.

[4] B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, R. M. Sum-

mers, and M. L. Giger, “Deep learning in medical imaging and radiation therapy,” Medical

physics, vol. 46, no. 1, pp. e1–e36, 2019.

[5] X. Shen, C. Jiang, Y. Wen, C. Li, and Q. Lu, “A brief review on deep learning applications

in genomic studies,” Frontiers in Systems Biology, vol. 2, p. 877717, 2022.

[6] P. N. Ahmad, A. M. Shah, and K. Lee, “A review on electronic health record text-mining for

biomedical name entity recognition in healthcare domain,” in Healthcare, vol. 11, no. 9.

MDPI, 2023, p. 1268.

[7] H.-P. Chan, R. K. Samala, L. M. Hadjiiski, and C. Zhou, “Deep learning in medical image

analysis,” Deep learning in medical image analysis: challenges and applications, pp. 3–21,

2020.

93

https://www.sciencedirect.com/science/article/pii/S2590262823000461

[8] S. Rasool, A. Husnain, A. Saeed, A. Y. Gill, and H. K. Hussain, “Harnessing predictive

power: Exploring the crucial role of machine learning in early disease detection,” JURI-

HUM: Jurnal Inovasi dan Humaniora, vol. 1, no. 2, pp. 302–315, 2023.

[9] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare:

review, opportunities and challenges,” Briefings in bioinformatics, vol. 19, no. 6, pp. 1236–

1246, 2018.

[10] I. Tobore, J. Li, L. Yuhang, Y. Al-Handarish, A. Kandwal, Z. Nie, L. Wang et al., “Deep

learning intervention for health care challenges: some biomedical domain considera-

tions,” JMIR mHealth and uHealth, vol. 7, no. 8, p. e11966, 2019.

[11] Y. Wang, L. Liu, and C. Wang, “Trends in using deep learning algorithms in biomedical

prediction systems,” Frontiers in Neuroscience, vol. 17, p. 1256351, 2023.

[12] C. Metta, A. Beretta, R. Guidotti, Y. Yin, P. Gallinari, S. Rinzivillo, and F. Giannotti, “Ad-

vancing dermatological diagnostics: Interpretable ai for enhanced skin lesion classifica-

tion,” Diagnostics, vol. 14, no. 7, p. 753, 2024.

[13] M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image analysis using deep learning algo-

rithms,” Frontiers in Public Health, vol. 11, p. 1273253, 2023.

[14] C. Mennella, U. Maniscalco, G. De Pietro, and M. Esposito, “Ethical and regulatory chal-

lenges of ai technologies in healthcare: A narrative review,” Heliyon, 2024.

[15] L. Pinto-Coelho, “How artificial intelligence is shaping medical imaging technology: A

survey of innovations and applications,” Bioengineering, vol. 10, no. 12, p. 1435, 2023.

[16] I. H. Sarker, “Deep learning: a comprehensive overview on techniques, taxonomy, appli-

cations and research directions,” SN Computer Science, vol. 2, no. 6, p. 420, 2021.

94

[17] L. Liao, H. Li, W. Shang, and L. Ma, “An empirical study of the impact of hyperparameter

tuning and model optimization on the performance properties of deep neural networks,”

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 31, no. 3, pp.

1–40, 2022.

[18] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algorithms and applica-

tions,” arXiv preprint arXiv:2003.05689, 2020.

[19] F. Z. El-Hassani, M. Amri, N.-E. Joudar, and K. Haddouch, “A new optimization model for

mlp hyperparameter tuning: Modeling and resolution by real-coded genetic algorithm,”

Neural Processing Letters, vol. 56, no. 2, pp. 1–31, 2024.

[20] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms:

Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020.

[21] J. B. Awotunde, A. L. Imoize, O. B. Ayoade, M. K. Abiodun, D.-T. Do, A. Silva, and S. N. Sur,

“An enhanced hyper-parameter optimization of a convolutional neural network model for

leukemia cancer diagnosis in a smart healthcare system,” Sensors, vol. 22, no. 24, p. 9689,

2022.

[22] M. Decuyper, J. Maebe, R. Van Holen, and S. Vandenberghe, “Artificial intelligence with

deep learning in nuclear medicine and radiology,” EJNMMI physics, vol. 8, no. 1, p. 81,

2021.

[23] L. B. Sappa, I. P. Okuwobi, M. Li, Y. Zhang, S. Xie, S. Yuan, and Q. Chen, “Retfluidnet:

retinal fluid segmentation for sd-oct images using convolutional neural network,” Journal

of Digital Imaging, vol. 34, no. 3, pp. 691–704, 2021.

[24] S. Lins, K. D. Pandl, H. Teigeler, S. Thiebes, C. Bayer, and A. Sunyaev, “Artificial intelli-

gence as a service: classification and research directions,” Business & Information Systems

Engineering, vol. 63, pp. 441–456, 2021.

95

[25] C. Barakat et al., “Design and evaluation of parallel and scalable machine learning re-

search in biomedical modelling applications,” University of Iceland, School of Engineering

and Natural Sciences, 2023.

[26] N. DeCastro-García, A. L. Munoz Castaneda, D. Escudero García, M. V. Carriegos et al.,

“Effect of the sampling of a dataset in the hyperparameter optimization phase over the

efficiency of a machine learning algorithm,” Complexity, vol. 2019, 2019.

[27] N. Shawki, R. R. Nunez, I. Obeid, and J. Picone, “On automating hyperparameter opti-

mization for deep learning applications,” in 2021 IEEE Signal Processing in Medicine and

Biology Symposium (SPMB). IEEE, 2021, pp. 1–7.

[28] Y. A. Ali, E. M. Awwad, M. Al-Razgan, and A. Maarouf, “Hyperparameter search for

machine learning algorithms for optimizing the computational complexity,” Processes,

vol. 11, no. 2, p. 349, 2023.

[29] M. R. Hossain and D. Timmer, “Machine learning model optimization with hyper parame-

ter tuning approach,” Global Journal of Computer Science and Technology, vol. 21, no. D2,

pp. 7–13, 2021.

[30] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv

preprint arXiv:1611.01578, 2016.

[31] I. Salehin, M. S. Islam, P. Saha, S. Noman, A. Tuni, M. M. Hasan, and M. A. Baten, “Automl:

A systematic review on automated machine learning with neural architecture search,”

Journal of Information and Intelligence, vol. 2, no. 1, pp. 52–81, 2024.

[32] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, “A comprehensive

survey of neural architecture search: Challenges and solutions,” ACM Computing Surveys

(CSUR), vol. 54, no. 4, pp. 1–34, 2021.

96

[33] R. Panda, M. Merler, M. S. Jaiswal, H. Wu, K. Ramakrishnan, U. Finkler, C.-F. R. Chen,

M. Cho, R. Feris, D. Kung et al., “Nastransfer: Analyzing architecture transferability in

large scale neural architecture search,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 10, 2021, pp. 9294–9302.

[34] Y. Wang, L. Zhen, J. Zhang, M. Li, L. Zhang, Z. Wang, Y. Feng, Y. Xue, X. Wang, Z. Chen

et al., “MedNAS: Multi-Scale Training-Free Neural Architecture Search for Medical Image

Analysis,” IEEE Transactions on Evolutionary Computation, 2024.

[35] M. J. Ali, L. Moalic, M. Essaid, and L. Idoumghar, “Designing Convolutional Neural Net-

works using Surrogate assisted Genetic Algorithm for Medical Image Classification,” in

Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 2023,

pp. 263–266.

[36] T. Elsken, A. Zela, J. H. Metzen, B. Staffler, T. Brox, A. Valada, and F. Hutter, “Neu-

ral architecture search for dense prediction tasks in computer vision,” arXiv preprint

arXiv:2202.07242, 2022.

[37] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for

scalable image recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 8697–8710.

[38] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2-A large-

scale lightweight benchmark for 2D and 3D biomedical image classification,” Scientific

Data, vol. 10, no. 1, p. 41, 2023.

[39] Z. Zhang, L. Zhang, L. Wang, K. Zhong, and H. Huang, “LC2R-ViT: Long-Range Cross-

Residual Vision Transformer for Medical Image Classification,” in 2023 International An-

nual Conference on Complex Systems and Intelligent Science (CSIS-IAC). IEEE, 2023, pp.

445–450.

97

[40] F. Mercaldo, L. Brunese, F. Martinelli, A. Santone, and M. Cesarelli, “Experimenting with

Extreme Learning Machine for Biomedical Image Classification,” Applied Sciences, vol. 13,

no. 14, p. 8558, 2023.

[41] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, “Efficient

and robust automated machine learning,” Advances in neural information processing sys-

tems, vol. 28, 2015.

[42] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture search system,”

in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery &

data mining, 2019, pp. 1946–1956.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”

the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[44] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[46] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[47] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, D. Gutman, B. Helba,

A. Kalloo, K. Liopyris, M. Marchetti et al., “Skin lesion analysis toward melanoma de-

tection 2018: A challenge hosted by the international skin imaging collaboration (isic),”

arXiv preprint arXiv:1902.03368, 2019.

[48] P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset, a large collection of

multi-source dermatoscopic images of common pigmented skin lesions,” Scientific data,

vol. 5, no. 1, pp. 1–9, 2018.

98

https://github.com/fchollet/keras

[49] J. J. Ott, A. Ullrich, and A. B. Miller, “The importance of early symptom recognition in

the context of early detection and cancer survival,” European Journal of Cancer, vol. 45,

no. 16, pp. 2743–2748, 2009.

[50] T. Kamisawa, L. D. Wood, T. Itoi, and K. Takaori, “Pancreatic cancer,” The Lancet, vol. 388,

no. 10039, pp. 73–85, 2016.

[51] M. Herreros-Villanueva and L. Bujanda, “Non-invasive biomarkers in pancreatic cancer

diagnosis: what we need versus what we have,” Annals of translational medicine, vol. 4,

no. 7, 2016.

[52] G. A. Ganepola, J. R. Rutledge, P. Suman, A. Yiengpruksawan, and D. H. Chang, “Novel

blood-based microrna biomarker panel for early diagnosis of pancreatic cancer,” World

journal of gastrointestinal oncology, vol. 6, no. 1, p. 22, 2014.

[53] B. N. Chorley, E. Atabakhsh, G. Doran, J.-C. Gautier, H. Ellinger-Ziegelbauer, D. Jackson,

T. Sharapova, P. S. Yuen, R. J. Church, P. Couttet et al., “Methodological considerations

for measuring biofluid-based microrna biomarkers,” Critical reviews in toxicology, vol. 51,

no. 3, pp. 264–282, 2021.

[54] L. Velmanickam, V. Jayasooriya, and D. Nawarathna, “Integrated dielectrophoretic and

impedimetric biosensor provides a template for universal biomarker sensing in clinical

samples,” Electrophoresis, vol. 42, no. 9-10, pp. 1060–1069, 2021.

[55] R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomi-

crofluidics, vol. 4, no. 2, 2010.

[56] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-

tion with region proposal networks,” Advances in neural information processing systems,

vol. 28, 2015.

99

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 779–788.

[58] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single

shot multibox detector,” in Computer Vision–ECCV 2016: 14th European Conference, Am-

sterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer, 2016,

pp. 21–37.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[61] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-

works,” in International conference on machine learning. PMLR, 2019, pp. 6105–6114.

[62] W. Xu, C. Zhong, C. Zou, B. Wang, and N. Zhang, “Analytical methods for amino acid

determination in organisms,” Amino Acids, vol. 52, no. 8, pp. 1071–1088, 2020.

[63] Y. Zhou and J. Yoon, “Recent progress in fluorescent and colorimetric chemosensors for

detection of amino acids,” Chemical Society Reviews, vol. 41, no. 1, pp. 52–67, 2012.

[64] A. Bauer, S. Elamurugan, S. A. Tolba, E. Nega, I. T. Lima Jr, W. Xia, D. Sun et al., “A

portable elliptical dichroism spectrometer targeting secondary structural features of tu-

morous protein for pancreatic cancer detection,” Biosensors and Bioelectronics, vol. 222,

p. 114934, 2023.

[65] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

100

[66] Y.-Y. Song and L. Ying, “Decision tree methods: applications for classification and predic-

tion,” Shanghai archives of psychiatry, vol. 27, no. 2, p. 130, 2015.

[67] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, 2016,

pp. 785–794.

[68] R. Llewellyn, D. Ronning, J. Ouzman, S. Walker, A. Mayfield, and M. Clarke, “Impact of

weeds on australian grain production: the cost of weeds to australian grain growers and

the adoption of weed management and tillage practices,” Grains Research and Develop-

ment Corporation and the Commonwealth Scientific and Industrial Research Organisation,

vol. 2016, 2016.

[69] Y. Gharde, P. Singh, R. Dubey, and P. Gupta, “Assessment of yield and economic losses in

agriculture due to weeds in india,” Crop Protection, vol. 107, pp. 12–18, 2018.

[70] A. N. Veeranampalayam Sivakumar, J. Li, S. Scott, E. Psota, A. J. Jhala, J. D. Luck, and

Y. Shi, “Comparison of object detection and patch-based classification deep learning mod-

els on mid-to late-season weed detection in uav imagery,” Remote Sensing, vol. 12, no. 13,

p. 2136, 2020.

[71] S. Christensen, H. T. Søgaard, P. Kudsk, M. Nørremark, I. Lund, E. S. Nadimi, and R. Jør-

gensen, “Site-specific weed control technologies,” Weed Research, vol. 49, no. 3, pp. 233–

241, 2009.

[72] A. I. De Castro, J. Torres-Sánchez, J. M. Peña, F. M. Jiménez-Brenes, O. Csillik, and

F. López-Granados, “An automatic random forest-obia algorithm for early weed mapping

between and within crop rows using uav imagery,” Remote Sensing, vol. 10, no. 2, p. 285,

2018.

101

[73] R. Sapkota, J. Stenger, M. Ostlie, and P. Flores, “Towards reducing chemical usage for

weed control in agriculture using uas imagery analysis and computer vision techniques,”

Scientific Reports, vol. 13, no. 1, p. 6548, 2023.

[74] F. López-Granados, J. Torres-Sánchez, A. Serrano-Pérez, A. I. de Castro, F.-J. Mesas-

Carrascosa, and J.-M. Pena, “Early season weed mapping in sunflower using uav tech-

nology: variability of herbicide treatment maps against weed thresholds,” Precision agri-

culture, vol. 17, pp. 183–199, 2016.

[75] B. Scherrer, J. Sheppard, P. Jha, and J. A. Shaw, “Hyperspectral imaging and neural net-

works to classify herbicide-resistant weeds,” Journal of Applied Remote Sensing, vol. 13,

no. 4, pp. 044 516–044 516, 2019.

[76] D. Liu and F. Xia, “Assessing object-based classification: advantages and limitations,” Re-

mote sensing letters, vol. 1, no. 4, pp. 187–194, 2010.

[77] L. P. Osco, Q. Wu, E. L. de Lemos, W. N. Gonçalves, A. P. M. Ramos, J. Li, and J. M. Junior,

“The segment anything model (sam) for remote sensing applications: From zero to one

shot,” International Journal of Applied Earth Observation and Geoinformation, vol. 124, p.

103540, 2023.

[78] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,

A. C. Berg, W.-Y. Lo et al., “Segment anything,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2023, pp. 4015–4026.

[79] M. Pugliatti and M. Maestrini, “Small-body segmentation based on morphological fea-

tures with a u-shaped network architecture,” Journal of Spacecraft and Rockets, vol. 59,

no. 6, pp. 1821–1835, 2022.

102

[80] N. Rai, M. V. Mahecha, A. Christensen, J. Quanbeck, Y. Zhang, K. Howatt, M. Ostlie, and

X. Sun, “Multi-format open-source weed image dataset for real-time weed identification

in precision agriculture,” Data in Brief, vol. 51, p. 109691, 2023.

[81] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-

cal image segmentation,” in Medical image computing and computer-assisted intervention–

MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, pro-

ceedings, part III 18. Springer, 2015, pp. 234–241.

[82] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE Geoscience

and Remote Sensing Letters, vol. 15, no. 5, pp. 749–753, 2018.

[83] N. Enshaei, S. Ahmad, and F. Naderkhani, “Automated detection of textured-surface de-

fects using unet-based semantic segmentation network,” in 2020 IEEE International Con-

ference on Prognostics and Health Management (ICPHM). IEEE, 2020, pp. 1–5.

[84] A. H. Alwan, S. A. Ali, and A. T. Hashim, “Medical image segmentation using enhanced

residual u-net architecture.” Mathematical Modelling of Engineering Problems, vol. 11,

no. 2, 2024.

103

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Deep Learning in Medical Research
	Challenges in Developing DL Models for Medical Research
	Diving Deeper into the Hurdles in Crafting Optimized Neural Networks
	Advent of Neural Architecture Search
	Thesis Overview

	Neural Architecture Search for Medical Image Classification
	Abstract
	Introduction
	Methodology
	Results and Discussion
	Conclusion and Future Work

	Additional Project 1: Automatic microRNA Detection and Concentration Prediction for the Early Detection of Pancreatic Cancer Using Machine Learning
	Abstract
	Introduction
	Methodology
	Results and Discussion
	Conclusion and Future Work

	Additional Project 2: Automatic Amino Acid Type Identification in Elliptical Dichroism Spectrometer Using Machine Learning
	Abstract
	Introduction
	Methodology
	Results and Discussion
	Conclusion and Future Work

	Additional Project 3: Automating the Task of Data Annotation for Plant Weed Image Segmentation Using Segment Anything Model
	Abstract
	Introduction
	Methodology
	Results and Discussion
	Conclusion and Future Work

	Conclusion
	Recapitulation of Research Premise
	Synopsis of Key Discoveries
	Study's Outcomes and Implications
	Architectural Innovation via NAS
	NAS's Revolution in Medical Diagnostics
	Challenges and Perspectives
	Future Work

	REFERENCES
	REFERENCES

